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1. INTRODUCTION

On the Riemannian sphere C, we consider a Fuchsian system of p linear differential equations

dy

dz
=

( n∑
i=1

Bi

z − ai

)
y, y(z) ∈ C

p, (1.1)

where Bi are constant p× p matrices. For definiteness, we can set
∑n

i=1Bi = 0, i.e., we can assume
that the system has n singular points a1, . . . , an and the infinite point is not a singular point.

The Piccard–Vessiot extension of the field C(z) of rational functions corresponding to system (1.1)
is the differential field F = C(z)〈Y 〉 obtained by supplementing C(z) with all elements yij of a funda-
mental matrix Y (z) of system (1.1). We note that (by the Cauchy theorem) the functions yij can be
treated as elements of the field of germs of meromorphic functions at a nonsingular point z0 of this
system. System (1.1) is said to be solvable in generalized quadratures if the elements of the matrix Y
can be expressed in elementary or algebraic functions and their primitives or, more formally, if the field F
is contained in the extension of the field C(z) obtained by successively adding exponentials, integrals,
and algebraic functions:

C(z) = F1 ⊆ · · · ⊆ Fm, F ⊆ Fm,

where the field Fi+1 = Fi〈xi〉 is generated over the field Fi by an element xi which is an exponential or
an integral of an element of the field Fi or an algebraic element over the field Fi. Such an extension
C(z) ⊆ Fm is called a generalized Liouville extension and the solvability in generalized quadratures
thus means that the Piccard–Vessiot extension F is contained in a generalized Liouville extension of the
field of rational functions.

An individual solution of system (1.1) is said to be Liouvillian if all of its components are contained
in a generalized Liouville extension of the field of rational functions. The set L of all Liouvillian solutions
is a subspace in the space of solutions of the system and 0 ≤ dimL ≤ p (the solvability of a system in
generalized quadratures means that dimL = p). We note that the quantity dimL can take the values
0, 1, . . . , p− 2, and p, because the fact that there are p− 1 linearly independent Liouvillian solutions
implies that there exists another solution which is linearly independent of them. This can easily be
verified in the case of a scalar linear differential equation

Lu = u(p) + b1(z)u
(p−1) + · · ·+ bp(z)u = 0, bi ∈ C(z), (1.2)
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of order p. Indeed, if u1, . . . , up−1 are linearly independent Liouvillian solutions of this equation, then one
can consider a linear differential operator L1 of order p− 1 with coefficients from a generalized Liouville
extension K = C(z)〈u1, . . . , up−1〉 of the field of rational functions

L1u = W (u, u1, . . . , up−1),

where W (u, u1, . . . , up−1) is the Wronskian of the unknown function u and the functions u1, . . . , up−1.
Since the functions u1, . . . , up−1 form a fundamental system of solutions of the equation L1u = 0,
then L = L̃ ◦ L1, where L̃ is a first-order linear differential operator with coefficients from the field K.
Therefore, determining the last basic solution up of Eq. (1.2) reduces to solving the inhomogeneous
linear differential equation L1u = f , where f is a nonzero solution of the equation L̃f = 0. Because f
is necessarily Liouvillian, the method of variation of constants shows that each solution of the equation
L1u = f is also Liouvillian and linearly independent of u1, . . . , up−1 (because f �= 0). The case of a
system of linear differential equations can be reduced to the case of a scalar equation by using the Deligne
lemma on cyclic vectors (see the proof of Lemma 2).

By analogy with classical Galois theory, the solvability or unsolvability of a linear system in
quadratures is related to the properties of its differential Galois group. The differential Galois group
G = Gal(F/C(z)) of system (1.1) (the Piccard–Vessiot extensions C(z) ⊆ F ) is the group of differential
automorphisms of the field F (the automorphisms commuting with the operation of differentiation)
which leave the elements of the field C(z) fixed:

G =

{
σ : F → F

∣∣∣ σ ◦ d

dz
=

d

dz
◦ σ, σ(f) = f, f ∈ C(z)

}
.

It follows from the definition that the image σ(Y ) of the fundamental matrix Y of system (1.1) under the
action of an arbitrary element σ of the Galois group is again a fundamental matrix of this system and,
therefore, σ(Y ) = Y (z)C, C ∈ GL(p,C). Since each element of the differential Galois group is uniquely
determined by its action on the fundamental matrix, the group G can be considered as a subgroup of the
matrix group GL(p,C). Moreover, this subgroup G ⊆ GL(p,C) is algebraic, i.e., closed in the Zariski
topology of the space GL(p,C) (see [1, Theorem 5.5]).

The differential Galois group G can be represented as a union of finitely many nonintersecting
connected sets simultaneously closed and open (in the Zariski topology), and a set containing a unit
matrix is called a connected component of unity. The connected component of the unity G0 ⊆ G is
a normal subgroup of a finite index (see [1, Lemma 4.5]). According to the Piccard–Vessiot theorem,
the solvability of system (1.1) in generalized quadratures is equivalent to the solvability of the group G0

(see [1, Theorem 5.12], [2, Chap. 3, Theorem 5.1]). Thus, the Piccard–Vessiot theory (which was later
completed by Kolchin, who considered other types of solvability and their dependence on the properties
of the differential Galois group) explains why linear differential equations can be solvable or unsolvable
in quadratures. But the theory cannot answer this question posed for each specific system, because the
dependence of the differential Galois group of a system on its coefficients remains unknown. Therefore, it
is interesting to study the cases where the problem of solvability of a system in generalized quadratures
(or, more generally, the problem of the existence of Liouvillian solutions) can be answered directly in
terms of the coefficients of the system.

It was shown in [3] that, in the case where the eigenvalues of the residue-matrices Bi of Fuchsian
system (1.1) are sufficiently small, the solvability of such a system in generalized quadratures is
equivalent to the triangularity of all matrices Bi (in a certain common basis). Following a simple and
elegant remark of Professor Y. Haraoka, we here specify that this solvability criterion also holds in the
case where the pairwise differences of eigenvalues of each matrix Bi are sufficiently small. We use this
to propose the following answer to a more general question about the dimension of the subspace L of
Liouvillian solutions of system (1.1).

Theorem 1. Suppose that dimL = k > 0 and the eigenvalues βj
i of each residue-matrix Bi satisfy

the condition

Reβj
i > − 1

nk
, j = 1, . . . , p, (1.3)

MATHEMATICAL NOTES Vol. 102 No. 2 2017



ON THE DIMENSION OF THE SUBSPACE OF LIOUVILLIAN SOLUTIONS 151

and all differences satisfy the condition βj
i − βl

i /∈ Q \ Z. Then all matrices Bi (in a certain basis)
have the form

Bi =

⎛
⎝B′

i ∗

0 ∗

⎞
⎠ , i = 1, . . . , n,

where B′
i are upper-triangular k × k blocks.

Theorem 2. The assertion of Theorem 1 also holds if conditions (1.3) are replaced by the
conditions

|Re βj
i − Re βl

i| <
1

nk
, j, l = 1, . . . , p.

2. ON THE SOLVABILITY OF A FUCHSIAN SYSTEM
IN GENERALIZED QUADRATURES

Along with the differential Galois group G, we consider the monodromy group M of system (1.1)
generated by the monodromy matrices M1, . . . ,Mn of the system that correspond to the analytic
continuation of the fundamental matrix Y around the singular points a1, . . . , an, respectively. Each
matrix Mi is defined as follows: since the operations of analytic continuation and differentiation
commute, the matrix Y extended from a neighborhood of a nonsingular point z0 along a simple loop γi
surrounding only one singular point ai is again a fundamental matrix YMi (generally a different one).
The analytic continuation also preserves the elements of the field C(z), because they are singly-valued
functions. Therefore, we have M ⊆ G. Moreover, the differential Galois group of a Fuchsian system
coincides with the closure of its monodromy group in the Zariski topology, namely, G = M (see [2,
Chap. 6, Corollary 1.3]). Therefore, system (1.1) is solvable in generalized quadratures if and only if the
group G0 ∩M is solvable.

Recall that, in the geometric interpretation, Fuchsian system (1.1) determines the logarithmic
(Fuchsian) connection ∇ in a holomorphically trivial vector bundle E of rank p over the Riemannian
sphere (see [4, Lectures 1–7], [5, Chap. 17] for details). The exponents β1

i , . . . , β
p
i of the system

(connection ∇) at a singular point ai are eigenvalues of the matrix Bi. If the monodromy group M is
reducible (i.e., the monodromy matrices M1, . . . ,Mn form a general invariant subspace of dimension k),
then the bundle E has a subbundle E′ ⊂ E (of rank k) invariant under the connection ∇. In this case,
the exponents of the logarithmic connection ∇′ (the restriction of the connection ∇ to the subbundle E′)
at a singular point ai coincide with arbitrarily many k exponents of the p exponents β1

i , . . . , β
p
i . The

degree of the holomorphic vector bundle equipped with the logarithmic connection can be calculated as
the sum of exponents of the connection over all of its singular points (the degree is an integer).

The following criterion for solvability of Fuchsian system (1.1) in quadratures holds.

Theorem 3 ([3], [6]). Suppose that the exponents β1
i , . . . , β

p
i at each singular point ai of sys-

tem (1.1) satisfy the inequalities

Re βj
i > − 1

n(p− 1)
, j = 1, . . . , p,

and all the differences satisfy the condition βj
i − βl

i /∈ Q \Z. Then the solvability of this system in
generalized quadratures is equivalent to the triangularity of all matrices Bi (in a certain common
basis).

To show that the conditions of Theorem 3 can be replaced by somewhat more general conditions, we
assume that there are numbers λ1, . . . , λn ∈ R whose sum is zero and the exponents of system (1.1) at
each singular point ai satisfy the inequalities

Reβj
i > λi −

1

n(p− 1)
, j = 1, . . . , p.
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The transformation ỹ = (z − a1)
−λ1 · · · (z − an)

−λny results in the Fuchsian system

dỹ

dz
=

( n∑
i=1

Bi − λiI

z − ai

)
ỹ

with the same singular points a1, . . . , an (the infinite point is not a singular point, because
∑n

i=1 λi = 0).
In this case, the exponents of the obtained system satisfy the conditions of Theorem 3. Therefore,
Theorem 3, which is a criterion of solvability in generalized quadratures, can be applied both to the
transformed system and and to initial system. In particular, if the pairwise differences of the exponents
at each singular point ai of system (1.1) satisfy the inequalities

|Re βj
i − Reβl

i | <
1

n(p− 1)
, j, l = 1, . . . , p,

then one can take the numbers

λi =
1

p

p∑
j=1

Re βj
i , i = 1, . . . , n,

for the numbers λ1, . . . , λn. Indeed, in this case, we have
∑n

i=1 λi = 0 due to the relation
∑n

i=1 trBi = 0,
and for each singular point ai, we have

Reβj
i − λi =

1

p
((Re βj

i − Re β1
i ) + · · ·+ (Re βj

i − Reβp
i )) > − 1

n(p− 1)
, j = 1, . . . , p.

Thus, we arrive at the following assertion.

Theorem 4. Suppose that the pairwise differences of the exponents of system (1.1) at each
singular point ai satisfy the inequalities

|Re βj
i − Reβl

i | <
1

n(p− 1)
, j, l = 1, . . . , p,

and do not belong to the set Q \ Z. Then the solvability of this system in generalized quadratures
is equivalent to the triangularity of all matrices Bi (in a certain common basis).

3. PROOF OF THE THEOREM ON THE DIMENSION OF THE SPACE L

Lemma 1. Let y be a Liouvillian solution of system (1.1). Then σ(y) is also a Liouvillian solution
of this system for each element σ of its monodromy group M.

Proof. By definition, all components of the solution y (as elements of the field of germs of meromorphic
functions at a nonsingular point z0) are contained in a generalized Liouville extension C(z) ⊆ Fm of
the field of rational functions. Then all components of the solution σ(y) are contained in the extension
C(z) ⊆ σ(Fm) which is also a generalized Liouville extension. Indeed, if

C(z) = F1 ⊆ · · · ⊆ Fm

is a chain of elementary extensions, where Fi+1 = Fi〈xi〉 and the element xi is an exponential or an
integral of an element of the field Fi or an algebraic element over the field Fi, then

C(z) = σ(F1) ⊆ · · · ⊆ σ(Fm)

is also a chain of elementary extensions, where σ(Fi+1) = σ(Fi)〈σ(xi)〉 and the element σ(xi) is
respectively an exponential of an integral of an element of the field σ(Fi) or an algebraic element over
the field σ(Fi). The lemma is proved.
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It follows from Lemma 1 that the subspace L of Liouvillian solutions of system (1.1) is invariant
under the action of the monodromy group. Thus, the monodromy matrices of the system have a
common invariant subspace of dimension k. Therefore, the holomorphically trivial vector bundle E has a
subbundle E′ ⊂ E of rank k which is invariant under the connection ∇. The degree of any subbundle of
a trivial bundle is nonpositive, and if this degree is zero, then the subbundle itself is also holomorphically
trivial (see [5, Corollary 17.25]). We show that the subbundle E′ is therefore holomorphically trivial. As
was explained at the beginning of the preceding section,

degE′ =
n∑

i=1

k∑
j=1

Re β̃j
i ,

where β̃1
i , . . . , β̃

k
i are exponents of the logarithmic connection ∇′ (the restriction of the connection ∇

to the subbundle E′) at a singular point ai (they coincide with arbitrarily many k exponents of the p
exponents β1

i , . . . , β
p
i of the connection ∇). Under the conditions of Theorem 2, we determine the

quantities

λi =
1

p

p∑
j=1

Re βj
i , i = 1, . . . , n,

whose sum is zero and, as in the proof of Theorem 4, obtain

Re β̃j
i − λi > − 1

nk
.

Therefore,

n∑
i=1

k∑
j=1

Re β̃j
i =

n∑
i=1

( k∑
j=1

Re β̃j
i − kλi

)
=

n∑
i=1

k∑
j=1

(Re β̃j
i − λi) > −1,

which implies that degE′ = 0. (Obviously, under the conditions of Theorem 1, it is not required to
introduce the quantities λi.)

By [6, Lemma 1], it follows from the holomorphic triviality of the subbundle E′ that the matrices Bi

can simultaneously be reduced to the upper-triangular block form

CBiC
−1 =

⎛
⎝B′

i ∗

0 ∗

⎞
⎠ , i = 1, . . . , n, C ∈ GL(p,C),

where B′
i are k × k blocks. Now the assertions of Theorems 1 and 2 are direct consequences of the

following lemma and Theorems 3 and 4.

Lemma 2. The following Fuchsian system of k equations

dy′

dz
=

( n∑
i=1

B′
i

z − ai

)
y′, y′(z) ∈ C

k, (3.1)

is solvable in generalized quadratures.

Proof. Let Y be a fundamental matrix of system (1.1) whose first k columns are Liouvillian solutions
of this system. The monodromy matrices Mi corresponding to the fundamental matrix Y have the
upper-triangular block form

Mi =

⎛
⎝M ′

i ∗

0 ∗

⎞
⎠ , i = 1, . . . , n,
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where the k × k blocks M ′
i generate the monodromy group M′ of system (3.1) (the connection ∇′ in the

holomorphically trivial vector bundle E′). To prove the lemma, it suffices to show that the group M′ has
a normal subgroup of a finite index.

By the Deligne lemma [7, Lemma II.1.3] on cyclic vectors (which was analytically proved in [8]), there
exists a matrix function Γ(z), whose elements are rational functions, such that the elements u1, . . . , up
in the first row of the matrix ΓY form a basis in the space of solutions of a scalar Fuchsian equation
of order p. This equation can have extra singular points in addition to a1, . . . , an, but the monodromy
is trivial at them. We note that the functions u1, . . . , uk are Liouvillian by construction and the set
(u1, . . . , uk) is transformed into the set (u1, . . . , uk)M ′

i by the analytic continuation around a singular
point ai, i = 1, . . . , n. Thus, the set of functions u1, . . . , uk permits constructing the scalar Fuchsian
equation

W (u, u1, . . . , uk)

W (u1, . . . , uk)
= 0

of order k for the unknown u (where the W are the corresponding Wronskians), and this set is a basis
in the space of solutions of this equation. The equation thus constructed turns out to be solvable in
generalized quadratures, and the group M′ is its monodromy group. Therefore, the group M′ has a
normal subgroup of a finite index. The lemma is proved.

It is easy to note that Fuchsian system (1.1) with residue-matrix of the form

Bi =

⎛
⎝B′

i ∗

0 ∗

⎞
⎠ , i = 1, . . . , n, (3.2)

where B′
i are upper-triangular k × k blocks, has at least k linearly independent Liouvillian solutions

independently of the value of the exponents, because, in this case, Fuchsian system (3.1) of k equations
with triangular residue-matrix B′

i is solvable in generalized quadratures. Therefore, we have the
following direct consequences of Theorems 1 and 2.

Corollary 1. Suppose that the eigenvalues βj
i of each residue-matrix Bi of the Fuchsian sys-

tem (1.1) satisfy the condition

Re βj
i > − 1

n(p− 1)
, j = 1, . . . , p, (3.3)

and all the differences satisfy the condition βj
i − βl

i /∈ Q \ Z. Then dimL = k if and only if all
matrices Bi can simultaneously be reduced to the form (3.2), where B′

i are upper-triangular k × k
blocks and cannot be reduced to the same form with upper-triangular blocks B′

i of a greater size.

Corollary 2. The assertion of Corollary 1 also holds if conditions (3.3) are replaced by the
conditions

|Re βj
i − Reβl

i | <
1

n(p− 1)
, j, l = 1, . . . , p.
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