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Abstract. The aim of this work is to provide another proof of the sufficient
condition of the convergence of a generalized power series (with complex power
exponents) formally satisfying an algebraic (polynomial) ordinary differential
equation. This proof is based on the implicit mapping theorem for Banach
spaces rather than on the majorant method used in our previous proof. We
also discuss some examples of a such type formal solutions of Painlevé equa-
tions.
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1. Introduction

Let us consider an ordinary differential equation (ODE)

F (z, u, δu, . . . , δmu) = 0 (1.1)

of order m with respect to the unknown u, where F (z, u0, u1, . . . , um) 6≡ 0 is a
polynomial of m+ 2 variables, δ = z d

dz .
In the paper we study generalized power series solutions of (1.1) of the form

ϕ =

∞∑
n=0

cnz
sn , cn ∈ C, sn ∈ C, (1.2)

with the power exponents satisfying conditions

0 6 Re s0 6 Re s1 6 . . . , lim
n→∞

Re sn = +∞

(the latter, in particular, implies that a set of exponents having a fixed real part
is finite).
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Note that substituting the series (1.2) into the equation (1.1) makes sense,
as only a finite number of terms in ϕ contribute to any term of the form czs in
the expansion of F (z,Φ) = F (z, ϕ, δϕ, . . . , δmϕ) in powers of z. Indeed, δjϕ =∑∞
n=0 cns

j
nz
sn , and an equation s = sn0

+ sn1
+ . . . + snl has a finite number of

solutions (sn0
, sn1

, . . . , snl), since 0 6 Re sn → +∞. Furthermore, for any integer
N an inequality Re(sn0 +sn1 + . . .+snl) 6 N has also a finite number of solutions,
so that powers of z in the expansion of F (z,Φ) can be ordered by the increasing
of real parts. Thus, one may correctly define the notion of a formal solution of
(1.1) in the form of a generalized power series. In particular, the Painlevé III,
V, VI equations are known to have such formal solutions (see [1] – [9]). Their
convergence in sectorial domains near zero is also proved in some of those papers.
Here we are interested in convergence for an equation of the general form (1.1).

There is the following sufficient condition [10] of the convergence of a gener-
alized power series solution of (1.1).

Theorem 1.1. Let the generalized power series (1.2) formally satisfy the equation
(1.1), ∂F

∂um
(z,Φ) 6= 0, and for each i = 0, 1, . . . ,m one have

∂F

∂ui
(z,Φ) = Aiz

λ +Biz
λi + . . . , Reλi > Reλ, Am 6= 0. (1.3)

Then for any sector S of sufficiently small radius with the vertex at the origin and
of the opening less than 2π, the series ϕ converges uniformly in S.

In this paper we propose a shorter proof of Theorem 1.1 based on the implicit
mapping theorem, whereas in the original proof in [10] we used the majorant
method. In the case of integer powers sn = n ∈ Z+, Theorem 1.1 was obtained by
Malgrange [11], and in the case of real powers sn ∈ R this theorem was formulated
in a somewhat different form in [12, Th. 3.4].

2. Auxiliary lemmas

The proof of Theorem 1.1 is preceded by some auxiliary lemmas which have been
proved in [10].

Lemma 2.1. Under the assumptions of Theorem 1.1, there exists an integer µ′ > 0
such that for any integer µ > µ′ satisfying Re(sµ+1 − sµ) > 0, a transformation

u =

µ∑
n=0

cnz
sn + zsµv (2.1)

reduces the equation (1.1) to an equation of the form

L(δ)v +N(z, v, δv, . . . , δmv) = 0, (2.2)

where

– L is a polynomial of degree m,
– L(s) 6= 0 for any s with Re s > 0, and
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– N is a finite linear combination of monomials of the form

zβvq0(δv)q1 . . . (δmv)qm , β ∈ C, Reβ > 0, qi ∈ Z+.

As follows from the form of the transformation (2.1), the reduced equation
(2.2) has a generalized power series solution ψ =

∑∞
n=µ+1 cnz

sn−sµ . The second
auxiliary lemma describes a structure of the set of power exponents sn − sµ ∈ C
of this series.

Let us define an additive semi-group Γ generated by a (finite) set of power
exponents of the variable z containing in N(z, v, δv, . . . , δmv), and let r1, . . . , rl be
generators of this semi-group, that is,

Γ = {m1r1 + . . .+mlrl | mi ∈ Z+,

l∑
i=1

mi > 0}, Re ri > 0.

Lemma 2.2. All the numbers sn − sµ, n > µ+ 1, belong to the semi-group Γ.

We may assume that the generators r1, . . . , rl of Γ are linearly independent
over Z. This is provided by the following lemma.

Lemma 2.3. There are complex numbers ρ1, . . . , ρτ linearly independent over Z,
such that all Re ρi > 0, and an additive semi-group Γ′ generated by them contains
the above semi-group Γ generated by r1, . . . , rl.

3. Proof of Theorem 1.1

For the simplicity of exposition we assume that the semi-group Γ is generated by
two numbers:

Γ = {m1r1 +m2r2 | m1,m2 ∈ Z+, m1 +m2 > 0}, Re r1, Re r2 > 0.

In the case of an arbitrary number l of generators all constructions are analogous,
only multivariate Taylor series in l rather than in two variables are involved.

We should establish the convergence of the generalized power series

ψ =

∞∑
n=µ+1

cnz
sn−sµ ,

which satisfies the equality

L(δ)ψ +N(z, ψ, δψ, . . . , δmψ) = 0. (3.1)

According to Lemma 2.2, all the exponents sn − sµ belong to the semi-group Γ:

sn − sµ = m1r1 +m2r2, (m1,m2) ∈M ⊆ Z2
+ \ {0},

for some set M such that the map n 7→ (m1,m2) is a bijection from N \ {1, . . . , µ}
to M . Hence,

ψ =
∑

(m1,m2)∈M

cm1,m2
zm1r1+m2r2 =

∑
(m1,m2)∈Z2

+\{0}

cm1,m2
zm1r1+m2r2
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(in the last series one puts cm1,m2 = 0, if (m1,m2) 6∈M).

Now we define a natural linear map σ : C[[zΓ]] → C[[z1, z2]]∗ from the C-
algebra of generalized power series with exponents in Γ to the C-algebra of Taylor
series in two variables without a constant term,

σ :
∑

γ=m1r1+m2r2∈Γ

aγz
γ 7→

∑
γ=m1r1+m2r2∈Γ

aγz
m1
1 zm2

2 .

As follows from the linear independence of the generators r1, r2 over Z,

σ(η1η2) = σ(η1)σ(η2) ∀η1, η2 ∈ C[[zΓ]],

hence σ is an isomorphism. The differentiation δ : C[[zΓ]] → C[[zΓ]] naturally
induces a linear bijective map ∆ of C[[z1, z2]]∗ to itself,

∆ :
∑
γ∈Γ

aγz
m1
1 zm2

2 7→
∑
γ∈Γ

γ aγz
m1
1 zm2

2 ,

which clearly satisfies ∆◦σ = σ ◦ δ, so that the following commutative diagramme
holds:

C[[zΓ]]
δ−→ C[[zΓ]]

↓ σ ↓ σ
C[[z1, z2]]∗

∆−→ C[[z1, z2]]∗

Thus we have the representation

ψ̃ = σ(ψ) =
∑
γ∈Γ

cγz
m1
1 zm2

2

of the formal solution ψ of (2.2) by a multivariate Taylor series, where cγ = cm1,m2

for every γ = m1r1 + m2r2. Now we apply the map σ to the both sides of the
equality (3.1) and obtain a relation for ψ̃:

L(∆)ψ̃ + Ñ(z1, z2, ψ̃,∆ψ̃, . . . ,∆
mψ̃) = 0, (3.2)

where Ñ(z1, z2, u0, . . . , um) is a polynomial such that Ñ(0, 0, u0, . . . , um) ≡ 0.
We conclude the proof of Theorem 1.1 establishing the convergence of the

bivariate Taylor series ψ̃, which represents the generalized power series ψ and
satisfies the relation (3.2). We use the dilatation method based on the implicit
mapping theorem for Banach spaces. This was originally used by Malgrange [11]
for proving Theorem 1.1 in the case of integer powers sn = n ∈ Z+.

Let us define the following Banach spaces Hj of (formal) Taylor series in two
variables without a constant term:

Hj =
{
η =

∑
γ∈Γ

aγz
m1
1 zm2

2 |
∑
γ∈Γ

|γ|j |aγ | < +∞
}
, j = 0, 1, . . . ,m,

with the norm

‖η‖j =
∑
γ∈Γ

|γ|j |aγ | = ‖∆jη‖0.
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(The completeness of each Hj is checked in a way similar to that how one checks
the completeness of the space l2; see, for example, [13, Ch. 6, §4].) One clearly has
Hm ⊂ Hm−1 . . . ⊂ H0 and

∆ : Hj → Hj−1, j = 1, . . . ,m,

are continuous linear mappings.
We recall below the implicit mapping theorem for Banach spaces (see [13,

Th. 10.2.1]).

Let E, F , G be Banach spaces, A an open subset of the direct product E ×F ,
and h : A→ G a continuously differentiable mapping. Consider a point (x0, y0) ∈ A
such that h(x0, y0) = 0 and ∂h

∂y (x0, y0) is a bijective linear mapping from F to G.

Then there are a neighbourhood U0 ⊂ E of the point x0 and a unique contin-
uous mapping g : U0 → F such that g(x0) = y0, (x, g(x)) ∈ A, and h(x, g(x)) = 0
for any x ∈ U0.

We will apply this theorem to the Banach spaces C, Hm, H0, and to the
mapping h : C×Hm → H0 defined by

h : (λ, η) 7→ L(∆)η + Ñ(λz1, λz2, η,∆η, . . . ,∆
mη),

with L and Ñ coming from (3.2). This mapping is continuously differentiable,
moreover h(0, 0) = 0, and ∂h

∂η (0, 0) = L(∆) is a bijective linear mapping from Hm

to H0. Indeed,

L(∆) : aγz
m1
1 zm2

2 7→ aγL(γ)zm1
1 zm2

2 (= 0⇐⇒ aγ = 0),

therefore kerL(∆) = {0} (recall that L(γ) 6= 0 for any γ with Re γ > 0). In the
same time, if

∑
γ∈Γ aγz

m1
1 zm2

2 ∈ H0, then
∑
γ∈Γ(aγ/L(γ)) zm1

1 zm2
2 ∈ Hm, that is,

the image of L(∆) coincides with H0.
Hence, by the implicit mapping theorem, there are a real number ρ > 0 and

ηρ ∈ Hm such that

L(∆)ηρ + Ñ(ρz1, ρz2, ηρ,∆ηρ . . . ,∆
mηρ) = 0.

Making the change of variables (z1, z2) 7→ ( z1ρ ,
z2
ρ ), which induces an automorphism

η(z1, z2) 7→ η( z1ρ ,
z2
ρ ) of C[[z1, z2]]∗ commuting with ∆, one can easily see that the

above relation implies that the power series ηρ(
z1
ρ ,

z2
ρ ) satisfies the same equality

(3.2) as ψ̃ =
∑
γ∈Γ cγz

m1
1 zm2

2 does. Hence, these two series coincide (the coefficients

of a series satisfying (3.2) are determined uniquely by this equality) and ψ̃ has
a non-zero radius of convergence. This implies (substitute z1 = zr1 , z2 = zr2

remembering that Re r1, Re r2 > 0) the convergence of the series∑
γ∈Γ

cγz
γ =

∞∑
n=µ+1

cnz
sn−sµ

for any z from a sector S of sufficiently small radius with the vertex at the origin
and of the opening less than 2π, whence Theorem 1.1 follows.
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4. Examples

As was mentioned in Introduction, for the Painlevé III, V, VI equations, their
generalized power series solutions of the form (1.2) converge in some sectorial
domains near the origin. This is proved in each case mainly by using a kind of
majorant series. Here we give examples of such formal solutions and illustrate how
Theorem 1.1 can be applied to prove their convergence.

Let us consider the Painlevé III equation with the parameters a = b = 0,
c = d = 1:

d2u

dz2
=

1

u

(
du

dz

)2

− 1

z

du

dz
+ u3 +

1

u
.

Rewritten in the form (1.1), this becomes

u δ2u− (δu)2 − z2u4 − z2 = 0 or F (z, u, δu, δ2u) = 0, (4.1)

where

F (z, u0, u1, u2) = u0u2 − u2
1 − z2(u4

0 + 1).

As known [2], [5], the equation (4.1) has a two-parametric family of formal
solutions

ϕ = crz
r +

∑
s∈K

csz
s, (4.2)

where cr 6= 0 is an arbitrary complex number and r is any complex number with
−1 6 Re r 6 1. The other coefficients cs are determined uniquely by cr, and the
set K of power exponents is of the form

K = {r +m1(1− r) +m2(1 + r) | m1,m2 ∈ Z+,m1 +m2 > 0}.

Denote r = ρ+ iσ. There are two essentially different types of formal solutions in
the family above.

1) Solutions with ρ ∈ (−1, 1). For any solution of such type there is only a
finite number of exponents s = r + m1(1 − r) + m2(1 + r) with a fixed real part
Re s = ρ + m1(1 − ρ) + m2(1 + ρ), since 1 − ρ and 1 + ρ are positive. Therefore,
such solutions are of the form (1.2), and we will apply Theorem 1.1 to prove their
convergence.

2) Solutions with ρ = ±1. For any solution of such type there are infinitely
many exponents s = r + m1(1 − r) + m2(1 + r) with a fixed real part Re s =
ρ+m1(1− ρ) +m2(1 + ρ), since the latter depends only on one of the two indexes
m1, m2. Therefore, such solutions are not generalized power series of the form
(1.2), and Theorem 1.1 cannot be used for studying their convergence. In fact,
such series diverge along some rays coming to the origin, which will be explained
below.

Let us consider a formal solution ϕ of the first type. To prove the convergence
of ϕ in sectors of small radius, it is sufficient to find the partial derivatives ∂F

∂u0
,

∂F
∂u1

, ∂F
∂u2

along ϕ and verify the assumption (1.3). Note that in this case Re s > ρ
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for any s ∈ K. One has

∂F

∂u0
= u2 − 4z2u3

0,
∂F

∂u1
= −2u1,

∂F

∂u2
= u0.

Hence,

∂F

∂u2
(z,Φ) = ϕ = crz

r +
∑
s∈K

csz
s, cr 6= 0, Re s > ρ ∀s ∈ K,

∂F

∂u1
(z,Φ) = −2 δϕ = −2r crz

r −
∑
s∈K

2s csz
s, Re s > ρ ∀s ∈ K,

∂F

∂u0
(z,Φ) = δ2ϕ− 4z2ϕ3.

To prove the convergence of ϕ, it is remaining to find first terms of the expansion
of ∂F

∂u0
(z,Φ). Since

δ2ϕ = r2crz
r +

∑
s∈K

s2csz
s, Re s > ρ ∀s ∈ K,

z2ϕ3 = c3rz
3r+2 + . . . , 3ρ+ 2 > ρ (as − 1 < ρ < 1),

one finally has

∂F

∂u0
(z,Φ) = r2crz

r +B0z
λ0 + . . . , Reλ0 > ρ,

whence the convergence follows.
Now we consider a formal solution ϕ of the second type. Let ρ = −1. Then

ϕ can be written in the form

ϕ =
∑

(m1,m2)∈Z2
+

cm1,m2
zr+m1(1−r)+m2(1+r) =

=

∞∑
m1=0

z2m1−1
∞∑

m2=0

cm1,m2z
iσ(1−m1+m2) =

∞∑
l=0

z2l−1yl(z), (4.3)

where

yl(z) = ziσ(1−l)
∞∑
m=0

cl,mz
iσm, l = 0, 1, . . . .

Applying the technique of the Newton–Bruno polygon (see [12]), one can
check that the first term z−1y0(z) of the series (4.3) is a solution of the truncated
equation

u δ2u− (δu)2 − z2u4 = 0. (4.4)

A general solution of (4.4) has the form

u = z−1 4c21
(c2/zc1)− 4c21(zc1/c2)

,
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where c1, c2 ∈ C, c2 6= 0, are arbitrary constants. This solution coincides with the
first term z−1y0(z) of the series (4.3) only if Re c1 = 0. Let c1 = iµ, µ ∈ R \ {0}.
Then

u = z−1 −4µ2

(c2/ziµ) + 4µ2(ziµ/c2)
,

which has expansions

z−1

(
−4µ2

c2

)
ziµ

∞∑
m=0

(−1)m
(

2µ

c2

)2m

z2iµm, |ziµ| < |c2/2µ|, (4.5)

z−1(−c2)z−iµ
∞∑
m=0

(−1)m
(
c2
2µ

)2m

z−2iµm, |ziµ| > |c2/2µ|. (4.6)

These expansions coincide with

z−1y0(z) = z−1ziσ
∞∑
m=0

c0,mz
iσm, c0,0 = cr 6= 0,

if one puts µ = σ, c2 = −4σ2/c0,0 for (4.5), and µ = −σ, c2 = −c0,0 for (4.6).
Thus, the first term z−1y0(z) of the formal solution (4.3) converges to the

function

u = z−1 4σ2

c0,0ziσ + (4σ2/c0,0)z−iσ
(4.7)

in sectors contained in the domain {|ziσ| < |2σ/c0,0|} with the boundary ray

{|ziσ| = |2σ/c0,0|} = {arg z = (−1/σ) ln |2σ/c0,0|}.

The poles of the function (4.7) accumulate to the origin along this ray. For example,
if c0,0 = 2σ, then

u = z−1 2σ

ziσ + z−iσ
= z−1 σ

cos(σ ln z)
,

whose poles zk = e(π+2πk)/2σ accumulate to the origin along the positive real axis.
In this case the series z−1y0(z) cannot converge in a whole sector containing this
ray.

Concerning the formal solution ϕ, in general the points where it diverges do
not coincide with the poles of the solution (4.7) of the truncated equation, but
we guess that they are asymptotically distributed near those poles (something
similar holds for the pole distribution of some Painlevé VI transcendents near its
critical point, see [14]). This means that the formal solution ϕ (of the second type)
converges not in any sector of sufficiently small radius and opening less than 2π,
but convergence depends on the bisecting direction of a sector. Such solutions
are ”of measure null”, as they form a (real) three-parametric subfamily in the
(real) four-parametric family (4.2) of formal solutions of (4.1), whereas ”most”
solutions (4.2) converge in any sector near the origin (which could correspond to
the accumulation of poles along spirals around the origin).
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