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1 Introduction

We present a conformal spherical model of hypercolumns of primary visual
cortex V1, which is a modification of the Bressloff- Cowan Riemannian spher-
ical model and is closely related to the Sarti-Citti-Petit symplectic model of
V1 cortex. Application to visual stability problem will be considered.

D. Hubel and T. Wiesel put forward the idea that the visual cortex should
be viewed as a fiber bundle over the retina R. Fiber of the bundle corresponds
to different internal parameters ( orientation, spatial frequency, ocular dom-
inance, direction of motion, curvature, etc.) that affect the excitation of
visual neurons. N.V. Swindale [?] estimated the dimension of the fibers ( =
the number of internal parameters) as 6-7 or 9-10.
In 1989 , W. Hoffman [?] stated that the primary visual cortex is a contact
bundle.

Following the idea by Hubel and Wiesel, J.Petitot [?] proposed a contact
model of V1 cortex as the contact bundle π : F → R of orientations (direc-
tions) over the retina R (identified with the Euclidean plane R = R2). The
manifold F has coordinates (x, y, θ) where (x, y) ∈ R2 and the orientation
θ is the angle between the tangent line to a contour in retina and the axis
0x. The manifold F is identified with the bundle of ( oriented) orthonormal
frames and with the group SE(2) = SO(2) · R2 of (unimodular) Euclidean
isometries.
The basic assumption is that simple neurons are parametrized by points of
F = SE(2). More precisely, the simple neuron, associated to a frame f ∈ F ,
is working as the mother Gabor filter in the Euclidean coordinates defined
by the frame f .
Note that in this model, ”points” of retina correspond to pinwheels, that is,
singular columns of cortex, which contains simple neurons of any orientation.
Recall that all simple neurons of a regular column act as (almost) identical
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Gabor filters with (almost) the same receptive field D and they fire only if
the contour on the retia, which cross D, has an appropriate orientation θ.

Recently, this model ( with an appropriate sub-Riemannian metric ) had
been successfully applied by B. Franceschiello, A. Mashtakov, G. Citti and
A. Sarti for explanation of some optical illusions.

The contact model had been extended by Sarti, Citti and Petitot [?] to a
symplectic model, with two-dimensional fiber, associated with the orientation
θ and the scaling σ. In this model, simple cells are parametrized by conformal
frames or points of the conformal group Sim(E2) = R+ · SE(2). Again, the
simple neuron, associated with a frame f acts as Gabor filter, written w.r.t.
coordinates associated with f .

P. Bressloff and J. Cowan [?] proposed a Riemannian spherical model of
a hypercolumn H, associated with the orientation θ and spatial frequency
p. They assume that a hypercolumn H is associated with two pinwheels
S,N , which correspond to minimum and maximum of the spatial frequency.
Simple neurons are parametrized by θ and normalised spatial frequency
σ ∈ [−π/2, π/2]. More precisely, this means that the simple neuron n(θ, σ) is
fired if a stimulus has the orientation θ and the normalised spatial frequency
σ. The exception are simple neurons from singular columns, which corre-
sponds to South and North poles S,N and have spatial frequency σ = −π/2
and , respectively, π/2. They contain simple neurons of any orientation and
the longitude coordinate θ is not defined for them.

We present a modification of this model, based on the assumption that
a hypercolumn H is a conformal sphere. Simple neurons of H are working
as the mother Gabor filter with respect to conformal coordinates, obtained
from some standard coordinates by transformations from the Möbius group
G = SL(2.C).
This corresponds to the Cartan approach to conformal geometry, bases on
the construction of so-called Cartan connection. In the case of conformal
sphere, the Cartan connection is the principal bundle G = Sl(2,C)→ S2 =
G/Sim(E2) with the Maurer-Cartan form µ : TG → sl(2,C) ( which iden-
tifies tangent spaces TgG with the Lie algebra sl(2.C)). Moreover, points
of the sphere ( which correspond to columns of the hypercolumn H) ara
parametrised by the stability subgroups. Remark that a hypercolumn in the
conformal model can be considered as the Tits model of the conformal sphere
(where points are defined as stability subgroups).

2



We show that in a neighborhood of each pinwheel, the conformal model re-
duces to the symplectic model of Sarti, Citti and Petitot.
Application of this model to the problem of visual stability is considered.
The visual stability problem consists in explanation how we perceive sta-
ble objects as stable in spite of change their retina images caused by eyes
rotation.

1.1 Riemannian spinor model of conformal sphere

To describe our conformal model of hypercolumns, which is a conformal
modification of the model by Bressloff andf Cowanm, we recall Riemann
spinor model of conformal sphere as Riemann sphere S2 = Ĉ = C ∪ {∞}
with two distinguished points S = 0 and N = ∞ (which correspond to
two pinwheels of the hypercolumn) and complex coordinate z ∈ S2 \N and
w = 1

z
∈ S2 \ S. The group G = SL(2,C) acts on S2 as conformal group by

fractional-linear transformations

z 7→ Az =
az + b

cz + d
, a, b, c, d ∈ C, detA = 1

Remark that this group is acts non-effectively, and the effectively acts its
quotient PSL(2,C) = SL(2,C)/{±Id }, which is isomorphic to the Lorentz
group SO0(1, 3).

Denote by

G = G− ·G0 ·G+ =

(
1 0
C 0

)
·
(
a 0
0 a−1

)
·
(

1 C
0 1

)
, a ∈ C∗

the Gauss decomposition. Then the stability subgroups GS, GN of points
S = 0 and N = ∞ are B∓ = G0 · G∓ ' Sim(E2) = CO2 · R2. As a
homogeneous manifold, the sphere is S2 = G/B∓ = SL2(C)/Sim(E2).

1.2 Conformal spherical model of hypercolumns

We present a conformal modification of the Bressloff-Cowan model. We as-
sume that a hypercolumn associated with two pinwheels N,S is a conformal
sphere with spherical coordinates θ, σ. Simple neurons are parametrized by
the conformal Möbius group G ' SL(2,C), hence depends of 6 parameters.
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More precisely, each simple neuron acts as the mother Gabot filtder w.r.t.
conformal coordinated, obtained from the standard coordinates by a confor-
mal transformation from G.
We show that in a small neighborhood DS of the South pole , responsible
for perception of low frequency stimuli, the model reduces to the symplectic
model by Sarti, Citti, Petitot.
Similarly, a small neighborhood DN of the north pole N , responsible for
perception of higher frequency stimuli, is identify with another copy of the
symplectic model. The identification is realised by the stereographic projec-
tions from North and , respectively , South pole.

1.3 Relation with symplectic Sarti-Citti-Petitot model

Using stereographic projections, we show that Sarti-Citti-Petitot model is
an approximation of the conformal spherical model in neighborhood of the
pinwheels N,S.
Let σN : S2 → TSS

2 = E2 be the stereographic projection from the North
pole N to the tangent space at the South pole. The transitive action of
GN ' Sim(E2) on S2\N corresponds to the the action of GN = B+ = G0 ·G+

as the homothety group on TSS
2 = E2.

More precisely, the subgroup G+ acts on TSS
2 = E2 by parallel transla-

tions,
the group SO2 = {diag(eiα, e−iα)} acts by rotations
the group R+ = {diag(λ, λ−1)} acts by homotheties.
The subgroup G+ ⊂ GS acts trivially on TSS

2 = E2. We conclude:
Simple neurons in a neighbourhood of the South pole depends only
on 4-parameters and are parametrized by the points of the group
GN = Sim(E2) of similarities according to the Sarti-Citti-Petitot model.

1.4 Principle of invariancy

We will state the following obvious general principle of invariancy:
Let G be a group of transformations of a space V and O = Gx an orbit.
Principle of invariancy The information, which observers, distributed
along the orbit O, send to some center is invariant w.r.t. the group G.

Application. The information about low spatial frequency stimulus,
coded in simple cells neat South pinwheel and parametrized by the group
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GN , is invariant w.r.t. GN .
Similarly, the information about high spatial frequency stimulus is invariant
w.r.t. the group GS.
The information about local stimulus, coded in simple cells of a hypercolumn
and parametrized by the conformal group G = SL2(C) , is invariant with
respect to the conformal group G.
In particular, if we assume that the remapping of the retina image after each
saccade is carried out by a conformal transformation, then the simple neurons
of a hypercolumns contain information, which is sufficient to identify retina
images before and after saccade.

In the next section, we justify the conjecture that the remapping after
each saccades is described by a conformal transformation of the retina image.

1.5 The cental projection

Let M ⊂ E3 be a surface , whose points are sources of diffuse reflected light.
We assume that all the light rays emitted from a point A ∈ M carry the
same energy density E(A). The retina image of the surface is described by
the central projection of the surface to the eye sphere with respect to the
nodal point F of the eye.
The central projection of a surface M ⊂ E3 onto a sphere S2 ⊂ E3 with
center F ∈ S2 is defined by

ϕ : M 3 A→ Ā = `AF ∩ S2 ⊂ S2

where `AF ∩S2 is the second point of intersection of the ray `AF , which goes
through the point F , with the sphere.
We may assume that the central projection is a (local) diffeomorphism and
that the energy density I(Ā) at a point Ā is proportional to E(A). So the
input function I : S2 → R contains information about illumination of points
of the surface M .
We are assuming that the point F belongs to the sphere. It is not completely
true for the case of the eye, where the point F , called the node point or
optical center, is located inside the eye ball, but very close to the eye
sphere.

Consider the retina image of a an object , e.g. a plane Π, described by
the central projection with respect to the node point F on the eye sphere
( the boundary of eyeball). With respect to the retina coordinated ( fixed
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w.r.t. to eye sphere S2 ) the rotation Rα of the sphere D2 on an angle α
w.r.t. some axis ( say 0z) corresponds to rotation R−1α = R−α of the space
E3 which transforms the plane Π onto the plane Π′ = ΠR−αn. The prob-
lem of remapping is to identify planes Π,Π′ such that their retina images
πF (|Pi), πF (Π′) will be related by a simple way.

An important idea about remapping had been proposed by art historian
Ernst Gombrich, see [?], [?]. He supposes that for remapping, the brain con-
trol information about new position of only 3-4 salient points of the scene. It
is sufficient to reconstruct the new retina image of all scene, using redundancy
in the scene and previous experience with the given type of environment.
He claimed that ”Only a few (3-4 ) salient stimuli are contained in
the trans-saccadic visual memory and update.”
We will propose a realisation of this idea , based on assumption that remap-
ping of retina images after saccades are described by conformal transforma-
tions. First of all, we recall some basic facts about conformal geometry of
sphere.

1.6 Möbius projective model of conformal sphere

If an inertial coordinate system is fixed, the Minkowski space-time M1,3 is
identified with the vector space

M1,3 = R1,3 = V = Re0 + E3 3 X = x0e0 + x1e1 + x2e2 + x3e3 = (x0, ~x)

with the Lorentz scalar product g(X, Y ) = −x0y0 + ~x · ~y.
The light cone at 0 is the set V0 = {X ∈ V, g(X,X) = 0} of isotropic vectors.
Up to scalung, there are three orbits of the (connected ) Lorentz group G =
SO0(V ) = SO0

1,3 :
VT = Ge0 = G/SO3 - Lobachevski space,
VS = Ge1 = G/SO1,2- De Sitter space ,
V0 = Gp = G/SE(2) - isotropic (light) cone, where SE(2) = SO2 · R2.
Projectivisation of these orbits gives three G-orbits in the projective space
P 3 = PV :
The ball B3 = PVT ' VT , the conformal sphere (projective quadric ) S2 =
Q = PV0 = G/Sim(E2) = G/(R+ · SE(2));
and the exterior of the ball PVS ' VS, The action of G in the projective
quadric Q is conformal.
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1.7 Projective duality between points and planes in
PV

We have the following correspondence between projective points and planes
in the projectividation PV of the Minkowski space, define by the Minkowski
metric:

VT 3 n ⇔ Πn = Pn⊥ Πn ∩Q = ∅
PV0 = Q 3 [p] = F ⇔ ΠA = p⊥ ΠF ∩Q = F

PVS 3 m ⇔ Πm = P⊥m Πm ∩Q = S1.

Euclidean interpretation
Let n = e0 ∈ VT , ( or any other vector from VT ) and E3

e0
= e0 + e⊥0 the Eu-

clidean hypeplane. Then Q = PV0 is identified with S2(e0) := Q ∩E3
e0

, and
projective planes Πv = Pv⊥ are identified with the Euclidean planes v⊥∩E3

e0
.

Lemma The stability group GF = Sim(E2) of a point F ∈ Q acts
transitivity on VT , hence, on the set of projective planes {Πn, n ∈ VT} which
do not intersect the quadric Q.

1.8 Conjecture: remapping is defined by a conformal
transformation

Due to Lemma, there is a Lorentz transformation L ∈ SO(V )F ( which fix
the point F ) and transforms the plane Π = Πn into any other plane Π′ = Πn′

( which does not intersect Q ).
If the brain identify the planes Π, P i′ using this Lorentz transforma-
tion, the retina images πF (Π), πF (Π′) ⊂ S2 before and after saccade
are related by the conformal transformation L|S2.
Such conformal transformation (and the Lorentz transformation L) is deter-
mined by the images of three points of the sphere S2 = Q, which is consistent
with Etcetera Principle by Gombrich.
Then the problem of stability reduces to solution of the classical problem
of conformal geometry - description of a curve on the conformal sphere up
to a conformal transformation ( the conformal generalisation of the Frenet
theory). It was solved by Fialkov, Sulanke, Sharp, Shelechov and others.
Recently V. Lychagin and N. Konovenko [?] give a new elegant solution of
this problem in terms of differential invariants.
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