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HOMOGENEOUS ALMOST KÄHLER MANIFOLDS AND THE

CHERN-EINSTEIN EQUATION

DMITRI V. ALEKSEEVSKY AND FABIO PODESTÀ

Abstract. Given a non compact semisimple Lie group G we describe all homogeneous
spaces G/L carrying an invariant almost Kähler structure (ω, J). When L is abelian and G
is of classical type, we classify all such spaces which are Chern-Einstein, i.e. which satisfy
ρ = λω for some λ ∈ R, where ρ is the Ricci form associated to the Chern connection.

1. Introduction

Given an almost Kähler manifold (M,g, J), that is an Hermitian manifold with closed
Kähler form ω = g ◦ J , the Ricci form ρ of the associated Chern connection D is a closed
2-form which represents the cohomology class 2πc1(M,J) in H2(M,R). The Chern-Einstein
equation ρ = λω for some λ ∈ R gives a very natural generalization of the Einstein condition.
This equation has been considered in [AD] and more recently in [DV]. More generally, we
can consider a symplectic manifold (M,ω) and study the existence of a compatible almost
complex structure J so that the Chern- Einstein equation ρ = λω is satisfied. In [DV]
several examples of non-compact homogeneous examples of Chern-Einstein almost Kähler
manifolds are given and some structure theorems are proved.

In this work we focus on non-compact symplectic manifolds (M,ω) which admit a (non-
compact) semisimple Lie group G of transitive symplectomorphisms with compact isotropy
subgroup. Our first result is stated in Theorem 2.2 and it shows that there exists a unique
G-homogeneous almost complex structure J which is compatible with ω. This result has
to be contrasted to the well-known case when G is compact and the homogeneous almost
complex structure is necessarily integrable (see e.g. [WG]). We then study the Chern-
Einstein equation in the homogeneous setting and we can establish a full classification under
the additional condition that the isotropy subgroup is abelian (hence a maximal torus in
G). The main result is summarized in the following

Theorem 1.1. Let (M = G/L,ω) be a homogeneous symplectic manifold of a non compact
semisimple Lie group and L compact. Then there exists a unique invariant almost complex
structure J compatible with ω so that (M,ω, J) is almost Kähler.

If the group G is simple non compact of classical type and L is abelian, then (M,ω, J) is
Chern Einstein, say ρ = λω, if and only if one of the following occurs:

i) λ < 0 and g = sl(2,R)
ii) λ = 0 and g = su(p+ 1, p), p ≥ 1.
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While the full classification of the Chern-Einstein non compact homogeneous almost
Kähler manifolds remains out of reach by this time, we can give some simple examples
when the isotropy has one dimensional center (see section 4.2). We also remark that the
case when G is semisimple can be easily deduced from the main result, as the manifold will
split as an almost Kähler product of Gi- homogeneous manifolds where Gi are the simple
factors of G.

In section 2 we describe the homogeneous almost Kähler non-compact manifolds, which
are acted on transitively by a semisimple Lie group. In section 3 we describe the Chern
connection in the homogeneous setting and give a formula for the Ricci form ρ, which is
analogue to the standard formula in the compact case (see e.g. [AP], [BFR]). In the last
section we describe the general strategy to prove the classification claimed in our main
theorem and we prove it going through each simple Lie algebra of classical type. We also
indicate how to produce homogeneous Chern-Einstein manifolds with non abelian compact
isotropy with one dimensional center.

Notation. Lie groups and their Lie algebras will be indicated by capital and gothic
letters respectively. We will denote the Cartan-Killing form by B. If a Lie group G acts on
a manifold M , for every X ∈ g we will denote by X∗ the corresponding vector field induced
by the one-parameter subgroup exp(tX).

2. Homogeneous almost Kähler non-compact manifolds of semisimple Lie

groups

Let G be a non compact semisimple Lie group with Cartan decomposition

g = k+ p,

where k is the Lie algebra of a maximal compact subgroup K and p is an Ad(K)-invariant
complement with [p, p] ⊆ k.

We consider a homogeneous symplectic manifold of the form G/L where L ⊆ K is the
centralizer CG(to) for some to ∈ k. Any G-homogeneous symplectic manifold with compact
stabilizer is simply connected and it has this form (see e.g. [BFR]).

The reductive decomposition of the manifold M = G/L is given by

g = l+m = l+ n+ p, k = l+ n.

The manifold G/L admits a G-equivariant fibration G/L → G/K over the non-compact
symmetric space S := G/K with typical fibre given by the flag manifold F := K/L.

Any invariant symplectic form ω is defined by a closed non degenerate Ad(L)-invariant
element ωm in Λ2(m∗). Any such form ωm can be written as ωm = dη, where the 1-form
η = B ◦ to for some element to ∈ t so that Cg(to) = l. We fix an invariant symplectic form
ω which is associated to an element to ∈ l.

We denote by t a Cartan subalgebra of l and we set h := it ⊂ gc together with zo := ito ∈
h. The complexification gC has the root space decomposition

gC = hC ⊕
⊕

α∈R

gα,
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where R ⊂ h∗ is the root system w.r.t. to the Cartan subalgebra hC. The root system R
can be split as R = Rl ∪Rm = Rl ∪ (Rc ∪Rnc) where

l = hC ⊕
⊕

α∈R

gα, nC =
⊕

α∈Rc

gα, pC =
⊕

α∈Rnc

gα

The roots in Rc are called compact, while roots in Rnc are said to be non-compact.
We select a standard Chevalley basis for root spaces, namely a set of root vectors {Eα}α∈R

so that gα = C ·Eα for every α ∈ R and

B(Eα, E−a) = 1, [Eα, E−α] = Hα ∈ h,

where Hα denotes the coroot in h so that B(Hα,H) = α(H) for every H ∈ h. If we now
consider the antilinear involution σ of gC corresponding to the real form g (for brevity we
will write the conjugation τ as¯ ), then

Eα = −E−α, α ∈ Rc

Eα = E−α, α ∈ Rnc.

We consider the vectors in g defined as follows

vα := Eα + Ēα =

{

Eα − E−α, α ∈ Rc

Eα + E−α, α ∈ Rnc

wα := i(Eα − Ēα) =

{

i(Eα + E−α), α ∈ Rc

i(Eα − E−α), α ∈ Rnc.

Then
n =

⊕

α∈Rc

SpanR{vα, wα}, p =
⊕

β∈Rnc

SpanR{vβ , wβ}.

We now consider G-invariant almost complex structures J on G/L, i.e. Ad(L)-invariant en-
domorphisms J ∈ End(m) with J2 = −Id, or equivalently ad(lC)-invariant endomorphisms
J ∈ End(mC) with J2 = −Id and commuting with the conjugation σ.

Since lC contains a Cartan subalgebra, the ad(l)-invariance of J implies that J preserves
every root space and therefore for every α ∈ Rm we have

JEα = iǫα ·Eα, ǫα = ±1.

Therefore we can decompose

Rc = R10
c ∪R01

c , Rnc = R10
nc ∪R01

nc,

where
R10

c/nc = {α ∈ Rc/nc| ǫα = 1}, R01
c/nc = {α ∈ Rc/nc| ǫα = −1}.

Since J commutes with σ, we have ǫ−α = −ǫα for every α ∈ Rm, hence

R01
c = −R10

c , R01
nc = −R10

nc.

The ad(lC)-invariance of J means that

(2.1) (Rl +R10
c ) ∩R ⊆ R10

c , (Rl +R10
nc) ∩R ⊆ R10

nc.

We now consider the invariant pseudo-Riemannian metric g which is defined by the
symmetric form

g(u, v) = ω(u, Jv), u, v ∈ m.
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Lemma 2.1. The pseudo-Riemannian metric g defined above is J-Hermitian and it is
positive definite if and only if the following conditions are satisfied

α(zo) > 0 for α ∈ R10
c , α(zo) < 0 for α ∈ R10

nc.

Proof. In order to prove that g is J-Hermitian, we note that ω(Eα, Eβ) 6= 0 if and only if
α+ β = 0 and in this case we have

ω(JEα, JE−α) = −ǫ−α · ǫα · ω(Eα, E−α) = ω(Eα, E−α).

Clearly g(Eα, Eβ) = 0 if α+ β 6= 0 and g is positive definite if and only if g(vα, vα) > 0 for
every α ∈ Rm. Now if α ∈ R10

c we have

0 < g(vα, vα) = ω(Eα−E−α, J(Eα−E−α)) = i ω(Eα−E−α, Eα+E−α) = 2i ω(Eα, E−α) =

= 2i B([to, Eα], E−α) = 2α(zo),

while if α ∈ R10
nc we have

0 < g(vα, vα) = ω(Eα+E−α, J(Eα+E−α)) = i ω(Eα+E−α, Eα−E−α) = −2i ω(Eα, E−α) =

= −2i B([to, Eα], E−α) = −2α(zo).

�

We summarize the above arguments in the following Theorem.

Theorem 2.2. Let G be a semisimple non-compact Lie group, L a compact subgroup of G
given by the centralizer in G of some element to ∈ g. Let ω = ωto be the invariant symplectic
form associated to to. Then there exists a unique extension of the homogeneous symplectic
manifold (M,ω) to a homogeneous almost Kähler manifold (M,ω, Jto) where the invariant
almost complex structure Jto is defined by the holomorphic space m10

m10 = g(R10), R10 = R10
c ∪R10

nc,

R10
c = {α ∈ Rc| α(zo) > 0}, R10

nc = {α ∈ Rnc| α(zo) < 0}.

The almost complex structure Jto is integrable, hence (M,ω, Jto) is Kähler if and only if the
symmetric space G/K is Hermitian.

The last assertion follows from the following observations. Indeed, (R01
c +R10

nc)∩R ⊂ R10
nc

and K-invariance of J |p is equivalent to the integrability condition (R10
c +R10

nc) ∩R ⊂ R10
nc.

Remark 2.3. (1) Note that the restriction of the almost complex structure Jto to the
(complex) fibre F is integrable and (ω|F , J |F ) is a Kähler structure.

(2) If we decompose G = G1 ·G2 · . . . ·Gk as the product of its simple factors, then the
homogenous almost Kähler space G/L splits accordingly as Πk

i=1Gi/Li where Li = L ∩Gi

and each factor is a homogeneous almost Kähler space. Therefore we can always assume
that G is simple.

Let M = G/L → G/K be the G-equivariant fibering of an almost Kähler homogeneous
manifold (M = G/L,ω, J) over the symmetric space G/K. We can construct an integrable

complex structure J̃ which coincides with J along the fibre F and is the opposite to J on
the orthogonal space. We call J̃ the complex structure associated to the almost Kähler
homogeneous manifold (M = G/L,ω, J). Note that (ω, J̃to) is an invariant pseudo-Kähler
structure on M = G/L.
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3. The Chern-Einstein equation for almost Kähler homogeneous manifolds

Now we describe the expression for the Chern connection D on the homogeneous almost
Kähler manifold G/L with invariant symplectic structure ωzo and corresponding invariant
almost complex structure J (see also [P]).

It is well known that the Chern connection is the unique connection D that leaves g and
J parallel and whose torsion T satisfies the property

T (JX, Y ) = T (X,JY ) = JT (X,Y ).

We are mainly interested in the (first) Ricci form ρ which is a defined as

ρ(X,Y ) = Tr J ◦RXY ,

where R denotes the curvature tensor. It is known that the Ricci form ρ is a closed 2-form
whose cohomology class [ρ] represents 2πc1(M,ω) (see e.g. [AD], §7).

We recall that any invariant connection D on the homogeneous space G/L with reductive
decomposition g = l +m can be described by the ad(l)-equivariant Nomizu’s map Λ : g →
End(m) satisfying the condition

ΛX = adX |m, X ∈ l.

Under the identification m ∼= ToG/L we have

ΛXY = (DXY ∗ − [X∗, Y ∗])|o,

where X∗, Y ∗ denote the vector fields on M corresponding to X,Y ∈ m. Then in terms of
Nomizu’s operator, the torsion T and the curvature R at o ∈ M are given by

T (X,Y ) = ΛXY − ΛY X − [X,Y ]m,

RXY = [ΛX ,ΛY ]− Λ[X,Y ].

If D is the Chern connection on the homogeneous space G/L we can compute its Ricci form
in terms of the root space decomposition.

Proposition 3.1. For every root α, β ∈ Rm we have

ρ(Eα, Eβ) = 0 if α+ β 6= 0,

ρ(Eα, E−α) = −2i
∑

β∈R10
m

〈α, β〉.

Proof. Using the expression for the curvature R and the fact that Λ commutes with J , we
see that for X,Y ∈ m

ρ(X,Y ) = Tr(JΛXΛY − JΛY ΛX)− Tr(JΛ[X,Y ]) =

= Tr([ΛX , JΛY ])− Tr(JΛ[X,Y ]) = −Tr(JΛ[X,Y ]).

For α, β ∈ Rm and H ∈ t the ad(l)-invariance implies that

0 = ρ([H,Eα], Eβ) + ρ(Eα, [H,Eβ ]) = (α+ β)(H) · ρ(Eα, Eβ),

so that ρ(Eα, Eβ) = 0 unless α+ β = 0.
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Now for α ∈ Rm

ρ(Eα, E−α) = −Tr|mCJ ad(Hα) = −2i
∑

β∈R10
m

〈α, β〉.

�

We introduce the Koszul’s form

δ := 2
∑

γ∈R10
m

γ ∈ h∗

so that we have the following corollary

Corollary 3.2. The Ricci form ρ is given by

ρ = i dδ,

where for every X,Y ∈ m

dδ(X,Y ) = −δ([X,Y ]t).

The Ricci form ρ does not depend on the metric, but only on the almost complex structure
J

Note that the map d : t∗ → Λ2(m∗) is injective and ρ is Ad(L)-invariant, so that δ belongs
to the center z of l.

Definition 3.3. An almost Kähler manifold (M,ω, J) is called Chern-Einstein if its Ricci
form ρ satisfies

ρ = λω

for some constant λ ∈ R.

Remark 3.4. We remark that when L is maximal compact in G, i.e. the homogeneous space
G/L is Hermitian symmetric, the center of L is one-dimensional and there exists only one
invariant symplectic structure up to a multiple. It follows that the corresponding invariant
almost complex structure is integrable and the manifold is Kähler. In this case the Chern
connection coincides with the Levi Civita connection and the manifold is Kähler-Einstein.

More generally, it is known that any non-compact homogeneous Kähler manifold G/L
with non compact simple G is Kähler if a maximal compact subgroup K ⊃ L of G has
1-dimensional center. Then G/L → G/K is a G-equivariant fibering over the Hermitian
symmetric space G/K. Moreover, G/K is the only Kähler-Einstein homogeneous manifold
of the group G, see e.g. [BFR].

Let J̃ be the integrable complex structure, associated with (M = G/L,ω, J). We set

δ̃ = 2
∑

α∈Rm,α(z0)>0

α.

Then ρ̃ = idδ̃ defines an invariant non-degenerate representative ρ̃ of the Chern class c1(J̃).

Hence for any λ 6= 0, ω̃λ := −(λ)−1ρ̃ defines an invariant pseudo-Kähler structure (ω̃λ, J̃)
on M = G/L which satisfies the Einstein equation ρ̃ = λω̃λ.
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Proposition 3.5. Let (M = G/L,ω, J) be a homogeneous almost Kähler manifold of a

semisimple Lie group G. Then (ω̃λ, J̃) is an invariant pseudo-Kähler-Einstein structure on
M = G/L.

4. Chern-Einstein almost Kähler homogeneous spaces

4.1. General approach for classification. Let (M = G/L,ω, J) be a homogeneous al-
most Kähler manifold with G simple non-compact Lie group. The description of all almost
Kähler Chern Einstein homogeneous manifolds with ρ = λω (λ ∈ R) reduces to the solutions
of the following equation

δ = λ(B ◦ zo).

Recall that a real simple Lie algebra is either the real form of a complex simple Lie algebra
or it is the realification of a complex simple Lie algebra. The following Lemma shows that
the last possibility does not occur.

Lemma 4.1. If M = G/L with G simple admits an invariant almost Kähler structure,
then g is the real form of a complex simple Lie algebra.

Proof. If g = sR, where s is a simple complex Lie algebra, then a Cartan decomposition
of g is given by g = q + iq, where q is a compact real form of s. If z ∈ g is an element
whose centralizer l is a compact subalgebra, then there is an automorphism φ of g such
that φ(z) ∈ φ(l) ⊆ q. But then the centralizer of φ(z) in g is given by φ(l) + iφ(l), a
contradiction. �

Therefore we will suppose that g is a real form of the complex simple Lie algebra gc.
Step 1. As a first step we consider the list of all inner symmetric pairs (g, k) of non-

compact type with g simple. Using the notation as in [He], p. 126, we obtain Table 1.
Step 2.We fix a Cartan subalgebra t in k and we choose an admissible element z ∈ h := it,

i.e. such that

Ck(to) = Cg(to) := l.

Step 3 We define

R+
c (z) := R10

c (z) = {α ∈ Rc| α(z) > 0},

R+
nc(z) := R01

nc(z) = {α ∈ Rnc| α(z) > 0}

and we set

δc(z) := 2
∑

α∈R+
c (z)

α, δnc(z) := 2
∑

α∈R+
nc(z)

α,

δ(z) := δc(z)− δnc(z).

Step 4. We solve the equation

(4.1) δ(z) = λBz.
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Type g k conditions

A su(p, q) su(p) + su(q) + R p ≥ q ≥ 1

B so(2p + 1, 2q) so(2p + 1) + so(2q) p ≥ 0, q ≥ 1

C sp(n,R) su(n) + R n ≥ 1

C sp(p, q) sp(p) + sp(q) p, q ≥ 1

D so(2n)∗ su(n) + R n ≥ 3

D so(2p, 2q) so(2p) + so(2q) p, q ≥ 1, p+ q ≥ 3

G g2(2) su(2) + su(2)

F f4(−20) so(9)

F f4(4) su(2) + sp(3)

E e6(2) su(2) + su(6)

E e6(−14) so(10) + R

E e7(7) su(8)

E e7(−5) su(2) + so(12)

E e7(−25) e6 + R

E e8(8) so(16)

E e8(−24) su(2) + e7

Table 1. Inner symmetric pairs (g, k) of non-compact type with g simple.

4.2. Examples of Chern Einstein manifolds. In the special case when l has one-
dimensional center z = iRz, then the equation 4.1 is automatically satisfied for some λ ∈ R

since δ(z) belongs to the center of l. In the particular case when l = k, the space is Kähler
and irreducible Hermitian symmetric, hence automatically Chern-Einstein. We may then
start with a non-Hermitian symmetric pair (g, k) out of Table 1 and all simple factors of
k will be included in l except one, say k1. In k1 we take l1 so that the pair (k1, l1) is a
flag manifold whose corresponding painted Dynkin diagram has only one black node (see
e.g. [AP], [BFR]). We then have to restrict ourselves to the cases when the centralizer in
g of the center of l1 coincides with l. It is not difficult to see that for classical g the only
pairs (g, l) with dim z(l) = 1 are given in Table 2.

Type g l conditions

B so(2p + 1, 2q) R+ so(2p + 1) + su(q) p ≥ 0, q ≥ 1

C sp(p, q)
• R+ su(p) + sp(q)

• R+ sp(p) + su(q)
p, q ≥ 1

D so(2p, 2q)
• R+ su(p) + so(2q)

• R+ so(2p) + su(q)
p, q ≥ 1, p + q ≥ 3

Table 2. Pairs (g, l) with g simple of classical type, l ( k and dim z(l) = 1.
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Note also that in [DV], Theorem 5, the homogeneous manifolds M = SO(2p, q)/U(p) ×
SO(q) are shown to be Chern-Einstein with constant λ = 2(p− q− 1), which therefore may
vanish or assume a positive/negative sign.

4.3. The case of abelian L. We now restrict ourselves to the case when the isotropy L
is a maximal torus. We recall that for any admissible z ∈ h the set

R+
c (z) ∪R+

nc(z)

gives a sytem of positive roots of gC and therefore there exists a unique element w in the
Weyl group W that maps the standard system of positive root R+

o into R+
c (z) ∪R+

nc(z).
Then

δc(z) = 2
∑

α∈w(R+
o )∩Rc

α, δnc(z) = 2
∑

α∈w(R+
o )∩Rnc

α.

Note that the equation (4.1) with λ 6= 0 admits a solution if and only

(4.2) ∀α ∈ w(R+
o ) 〈α, δ(z)〉 > 0 (or < 0) if λ > 0 (λ < 0 resp.).

We remark that the computation of δ(z) depends only on the root system of gC and its
decomposition into compact and non-compact roots together with the action of Weyl group.

In the next sections we will go through the classical Lie algebras of type A,B,C,D.

4.4. Proof of the main Theorem in case g of type An. According to Table 1, we
analyze the case g = su(p, q), p ≥ q ≥ 1. The standard Cartan subalgebra t ⊂ k gives rise
to the root system R of gc = sl(n + 1,C), where p + q = n + 1, given by {ǫi − ǫj| i, j =
1, . . . , n + 1, i 6= j}. The standard system of positive roots R+

o is given by {ǫi − ǫj| i < j}
and the Weyl group W is given by the full group of permutations Sn+1.

If we put P := {1, . . . , p} and Q := {p+ 1, . . . , n + 1}, we have

Rc = {ǫi − ǫj| i, j ∈ P or i, j ∈ Q, i 6= j}, Rnc = R \Rc.

We consider an element σ of the Weyl group, i.e. σ ∈ Sn+1, and we define Pσ = σ−1(P ),
Qσ := σ−1(Q). Then

σ(R+
o ) ∩Rc = {ǫσ(i) − ǫσ(j)| i, j ∈ Pσ, i < j} ∪ {ǫσ(i) − ǫσ(j)| i, j ∈ Qσ, i < j},

σ(R+
o ) ∩Rnc = {ǫσ(i) − ǫσ(j)| i < j, i ∈ Pσ, j ∈ Qσ} ∪ {ǫσ(i) − ǫσ(j)| i < j, i ∈ Qσ, j ∈ Pσ}.

For i ∈ {1, . . . , n+ 1} we set

kQ(i) := |{k ∈ Qσ| k > i}|, kP (i) := |{k ∈ Pσ| k > i}|,

k̄Q(i) := |{k ∈ Qσ| k < i}|, k̄P (i) := |{k ∈ Pσ| k < i}|.

We have

∑

α∈σ(R+)∩Rc

α =
∑

i<j
i,j∈Pσ

ǫσ(i) − ǫσ(j) +
∑

i<j
i,j∈Qσ

ǫσ(i) − ǫσ(j) =

=
∑

i∈Pσ

(kP (i)− k̄P (i)) ǫσ(i) +
∑

i∈Qσ

(kQ(i)− k̄Q(i)) ǫσ(i)
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and similarly we obtain
∑

α∈σ(R+)∩Rnc

α =
∑

i∈Pσ

(kQ(i)− k̄Q(i)) ǫσ(i) +
∑

i∈Qσ

(kP (i)− k̄P (i)) ǫσ(i).

Therefore for any admissible z ∈ h with corresponding system of positive roots given by
σ(R+

o ) we obtain

(4.3)
1

2
δ(z) =

∑

i∈Pσ

(kP (i)− k̄P (i)− kQ(i) + k̄Q(i)) ǫσ(i)+

+
∑

i∈Qσ

(kQ(i)− k̄Q(i)− kP (i) + k̄P (i)) ǫσ(i).

Lemma 4.2. (i) If i ∈ Pσ we have

kP (i) − k̄P (i)− kQ(i) + k̄Q(i) = 4kP (i) + 2i− n− 2p.

(ii) If i ∈ Qσ we have

kQ(i)− k̄Q(i)− kP (i) + k̄P (i) = −4kP (i)− 2i+ n+ 2p + 2.

Proof. We start noting the following trivial equalities for all i = 1, . . . , n+ 1

(4.4) kP (i) + kQ(i) = n+ 1− i, k̄P (i) + k̄Q(i) = i− 1.

If i ∈ Pσ then kP (i)+ k̄P (i) = p− 1 and therefore the first claim follows using (4.4). The
second claim follows similarly using that kP (i) + k̄P (i) = p for i ∈ Qσ. �

We now solve the equation (4.1) for λ 6= 0.

Case λ > 0. Condition (4.2) together with (4.3) and Lemma 4.2 imply the following: if
i, j ∈ Pσ , i < j,

(4.5) 2kP (i) + i > 2kP (j) + j,

while if i, j ∈ Qσ, i < j, we have

(4.6) 2kP (j) + j > 2kP (i) + i.

Now suppose i, j ∈ Pσ with i < j and any i < a < j belongs to Qσ. Then kP (i) = kP (j)+1
and (4.5) implies 2 > j − i, i.e. j = i + 1. This means that Pσ is made of consecutive
numbers. If we repeat the same argument with Qσ we obtain that also Qσ is made of
consecutive numbers. Therefore we are left with the following two possibilities:

(a) Pσ = {1, . . . , p}, Qσ = {p+ 1, . . . , n + 1},
(b) Pσ = {q + 1, . . . , n+ 1}, Qσ = {1, . . . , q}.

We now consider condition (4.2) with α ∈ σ(R+
o ) ∩Rnc. In case (a) we choose α = ǫσ(p) −

ǫσ(p+1) and (4.2) gives −2n > 0, a contradiction. In case (b) we choose α = ǫσ(q) − ǫσ(q+1)

and (4.2) gives again −2n > 0, a contradiction.

Case λ < 0. For every i, j ∈ Pσ, i < j, we have

2kP (i) + i < 2kP (j) + j.

We claim that p = 1. Indeed, suppose there exist i < j in Pσ with (i, j) ∩ Pσ = ∅. Then
kP (i) = kP (j) + 1 and therefore j − i > 2. This means that there exist at least two
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consecutive numbers, say l, l + 1 in Qσ. Then kP (l) = kP (l + 1) and condition (4.2) with
α = ǫσ(l) − ǫσ(l+1) gives the contradiction l > l + 1. This implies that Pσ has only one
element, i.e. p = 1. Hence 1 = q ≤ p = 1. In this case Rc = ∅ and g = sl(2,R), l = R. Since
R = Rnc consists of one root up to sign, the equation ρ = λω is satisfied for some λ < 0.

Case λ = 0. We recall that
∑n+1

i=1 ǫi = 0 is the only relation among the {ǫi}i=1,...,n+1, so
that the equation δ(z) = 0 implies that all the coefficients in the right-hand side of (4.3)
are mutually equal.

Lemma 4.3. Two elements in Pσ or Qσ are not consecutive.

Proof. Indeed, suppose i, i+ 1 ∈ Pσ. Then kP (i) = kP (i+ 1) + 1 and

4kP (i+ 1) + 2(i+ 1) = 4kP (i) + 2i,

yielding a contradiction. A similar argument applies for Qσ. �

As a corollary, we see that n is even. Indeed, consider i ∈ Pσ and i + 1 ∈ Qs. Then
kP (i) = kP (i+ 1) + 1 and using Lemma 4.2 we have

8k(i) + 4i− 2n− 4p− 4 = 0,

that implies n is even. Now Pσ and Qσ consist precisely of the sets of even or odd integers
in {1, . . . , n+ 1}. Since n is even, the set of even (odd) numbers less or equal to n+ 1 has
cardinality n

2 (n2 + 1 resp.) and since we supposed p ≥ q, we have p = q + 1 and

Pσ = {1, 3, 5, . . . , n+ 1}, Qσ = {2, 4, 6, . . . , n}.

Viceversa it is immediate to check that with the above choice of Pσ , Qσ the equation δ(z) = 0
is satisfied. Notice that a suitable permutation σ is given by σ(2k) = p+k, σ(2k+1) = k+1
for k = 1, . . . , q.

Example 4.4. We consider g = su(3, 2). A permutation σ that produces a Chern-Ricci flat
almost Kähler structure on SU(3, 2)/T4 is given by the cycle (2453) and the corresponding
system of positive roots is given as follows (here ǫij := ǫi − ǫj for the sake of brevity):

R+
c (z) = {ǫ12, ǫ13, ǫ23, ǫ45}, R+

nc(z) = {ǫ14, ǫ15, ǫ25, ǫ42, ǫ43, ǫ53}.

4.5. Proof of the main Theorem in case g of type Bn. According to Table 1, when
gc = so(2n + 1,C), n ≥ 2, we consider the subalgebras g = so(2p + 1, 2q) with p + q = n,
p, q ≥ 1 and g = so(1, 2n) separately. The standard root system R is given by R =
{±ǫi, ±ǫi ± ǫj, 1 ≤ i 6= j ≤ n} (± independent), with R+

o = {ǫi, ǫi ± ǫj, 1 ≤ i < j ≤ n}.
We start considering the case g = so(2p + 1, 2q) with p + q = n, p, q ≥ 1. The compact

roots are given by

Rc = {±ǫi, i = 1, . . . , p} ∪ {±ǫi ± ǫj , 1 ≤ i 6= j ≤ p} ∪ {±ǫi ± ǫj, p+ 1 ≤ i 6= j ≤ n}.

An element w in the Weyl group W ∼= (Z2)
n⋊Sn acts as w(ǫi) = φiǫσ(i), where φi ∈ {1,−1}

can be chosen independently. Therefore an easy computation shows that

(4.7)
1

2
δ(z) =

∑

i∈Pσ

(4kP (i) + 2i− 2n+ 1)φiǫσ(i) +
∑

i∈Qσ

(4kQ(i) + 2i− 2n− 1)φiǫσ(i),

where Pσ := σ−1{1, . . . , p}, Qσ := σ−1{p+ 1, . . . , n} and kP/Q(i) := |{j ∈ Pσ/Qσ | j > i}|.



12 DMITRI V. ALEKSEEVSKY AND FABIO PODESTÀ

Case λ > 0. If i ∈ Qσ, then α := φiǫσ(i) ∈ w(R+
o ) and 〈δ(z), α〉 > 0 implies 4kQ(i)+2i >

2n+ 1. If iQ is the maximum element in Qσ, then kQ(iQ) = 0 and therefore 2iQ > 2n+ 1,
a contradiction.

Case λ < 0. The maps cP : Pσ ∋ i 7→ 4kP (i) + 2i − 2n + 1 and cQ : Qσ ∋ j 7→
4kQ(i) + 2i − 2n − 1 are negative and strictly increasing. It follows that if i < j are two
numbers both in Pσ or both in Qσ then j− i > 2, contradicting Pσ ∪Qσ = {1, . . . , n}. This
implies that p = q = 1. Since 2 = n 6∈ Pσ (otherwise cP (2) = 1), we see that Pσ = {1}
and Qσ = {2}. In this case cP (1) = −1 = cQ(2) and therefore we contradict (4.2) using
α = φ1ǫ1 − φ2ǫ2.

Case λ = 0. This cannot occur as all the coefficients of 1
2δ(z) are odd numbers.

We now deal with the case g = so(1, n), where the compact roots are given by Rc =
{±ǫi ± ǫj , 1 ≤ i 6= j ≤ n}. It is immediate to compute

1

2
δ(z) =

n
∑

i=1

(2n− 2i− 1)φiǫσ(i).

Since the coefficients 2n − 2i − 1 do not have a constant sign for i = 1, . . . , n and cannot
vanish, we see that equation (4.1) has no solution.

4.6. Proof of the main Theorem in case g of type Cn. When g is a real form of
sp(n,C), n ≥ 3, we need to consider two subcases according to Table 1, namely when
k = u(n) or k = sp(p) + sp(q), n = p+ q.

The standard root system of sp(n,C) is given by R = {±ǫi ± ǫj , 1 ≤ i < j ≤ n} ∪
{±2ǫi, i = 1, . . . , n} with R+

o = {ǫi± ǫj, 2ǫi, i < j, i, j = 1, . . . , n}. The Weyl group of gc is
a semidirect product (Z2)

n⋊Sn and any w ∈ W acts as w(ǫi) = φiǫσ(i), where φi ∈ {1,−1}
can be chosen independently.

4.6.1. Case k = u(n). We have

Rc = {ǫi − ǫj, i 6= j = 1, . . . , n}.

Given w ∈ W we have

w(R+
o ) ∩Rc = {φiǫσ(i) + φjǫσ(j)| i < j, φiφj < 0} ∪ {φiǫσ(i) − φjǫσ(j)| i < j, φiφj > 0}

and therefore, if we denote A := {i| φi = 1}, B := {i| φi = −1},
∑

α∈w(R+
o )∩Rc

α =
∑

i<j
φiφj<0

φiǫσ(i) +
∑

i<j
φiφj<0

φjǫσ(j) +
∑

i<j
φiφj>0

φiǫσ(i) −
∑

i<j
φiφj>0

φjǫσ(j) =

=
∑

i∈A

∑

B∋j>i

ǫσ(i) −
∑

i∈B

∑

A∋j>i

ǫσ(i) +
∑

j∈A

∑

B∋i<j

ǫσ(j) −
∑

j∈B

∑

A∋i<j

ǫσ(j)+

+
∑

i∈A

∑

A∋j>i

ǫσ(i) −
∑

i∈B

∑

B∋j>i

ǫσ(i) −
∑

j∈A

∑

A∋i<j

ǫσ(j) +
∑

j∈B

∑

B∋i<j

ǫσ(j).

We set
kB(i) := |{k ∈ B|k > i}|, kA(i) := |{k ∈ A|k > i}|,

k̄B(i) := |{k ∈ B|k < i}|, k̄A(i) := |{k ∈ A|k < i}|.
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Hence
∑

α∈w(R+
o )∩Rc

α =
∑

i∈A

kB(i) ǫσ(i) −
∑

i∈B

kA(i) ǫσ(i) +
∑

j∈A

k̄B(j)ǫσ(j) −
∑

j∈B

k̄A(j)ǫσ(j)+

+
∑

i∈A

kA(i) ǫσ(i) −
∑

i∈B

kB(i) ǫσ(i) −
∑

j∈A

k̄A(j) ǫσ(j) +
∑

j∈B

k̄B(j)ǫσ(j) =

=
∑

i∈A

(kB(i) + k̄B(i) + kA(i)− k̄A(i)) ǫσ(i) +
∑

i∈B

(k̄B(i)− kA(i)− k̄A(i)− kB(i)) ǫσ(i) =

=
∑

i∈A

(−2k̄A(i) + n− 1) ǫσ(i) +
∑

i∈B

(2k̄B(i)− n+ 1) ǫσ(i).

Using the fact that
∑

α∈R+
o
wα = 2

∑n
i=1(n − i+ 1) φiǫσ(i), we obtain

1

2
δ(z) =

∑

i∈A

[−4k̄A(i) + 2i− 4] ǫσ(i) +
∑

i∈B

[4k̄B(i)− 2i+ 4] ǫσ(i).

Denote by cA := −4k̄A(i) + 2i − 4 and cB := 4k̄B(i) − 2i + 4 the two coefficients. We now
discuss the equation (4.1).

First suppose λ > 0: using the root φiǫσ(i) ∈ w(R+
o ) and (4.2), we see that cA(i) > 0 if

i ∈ A and cB(i) < 0 if i ∈ B. Now, if 1 ∈ A, then k̄A(1) = 0 and cA(1) < 0, while if 1 ∈ B
then cB(1) > 0, showing that 1 6∈ A ∪B, a contradiction.

If λ < 0, then similarly as above we have cA(i) < 0 if i ∈ A and cB(i) > 0 if i ∈ B.
Suppose A is not empty and let iA be the minimum element in A: then iA < 2, i.e. iA = 1.
Similarly, if B is not empty, its minimum point is 1, showing 1 ∈ A ∩ B, a contradiction.
Then either A or B is empty. If B = ∅, then k̄A(i) = i − 1 and cA(i) = −2i. Using the
roots α = ǫσ(i) − ǫσ(i+1) and (4.2), we see that cA is increasing, a contradiction. Similarly
A = ∅ leads to a contradiction.

Finally, λ = 0 is also impossible, as cA(i) = 0, i ∈ A and cB(i) = 0, i ∈ B force i ∈ A∪B
to be even, a contradiction.

4.6.2. Case k = sp(p) + sp(q), p ≥ q ≥ 1. If we denote P := {1, . . . , p} and Q := {p +
1, . . . , n} we have

Rc = {±ǫi ± ǫj , ±2ǫi | i, j ∈ P} ∪ {±ǫi ± ǫj, ±2ǫi | i, j ∈ Q}

and therefore, if Pσ := σ−1(P ), Qσ := σ−1(Q),

w(R+
o ) ∩Rc = {φiǫσ(i) ± φjǫσ(j), 2φiǫσ(i)| i, j ∈ Pσ, i < j} ∪

∪ {φiǫσ(i) ± φjǫσ(j), 2φiǫσ(i)| i, j ∈ Qσ, i < j}.

Therefore
∑

α∈w(R+
o )∩Rc

α = 2
∑

i∈Pσ

(kP (i) + 1)φiǫσ(i) + 2
∑

i∈Qσ

(kQ(i) + 1)φiǫσ(i),

where kP/Q(i) := |{k ∈ Pσ/Qσ | k > i}|. We then obtain

1

2
δ(z) =

∑

i∈Pσ

(4kP (i) + 2i− 2n+ 2)φiǫσ(i) +
∑

i∈Qσ

(4kQ(i) + 2i− 2n+ 2)φiǫσ(i).
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Denote by cP := 4kP (i) + 2i − 2n + 2 and cQ := 4kQ(i) + 2i − 2n + 2 the two coefficients
for i ∈ Pσ, Qσ respectively. We now discuss the equation (4.1).

First suppose λ > 0: we have cP , cQ > 0 and if we denote by iP the maximum element
in Pσ we have iP > n− 1, i.e. iP = n. Similarly n ∈ Qσ, contradicting the fact that Pσ and
Qσ are disjoint.

Suppose now λ < 0. Then cP , cQ are negative and strictly increasing. If i < j are two
numbers both in Pσ or both in Qσ then j− i > 2, contradicting Pσ ∪Qσ = {1, . . . , n}. This
implies that p = q = 1. Then cP (i) = 2i − 2 < 0 for i ∈ Pσ and cQ(i) = 2i − 2 < 0 for
i ∈ Qσ, a contradiction.

If now λ = 0, we see that cP = 0 and cQ = 0 imply that i ≡ n − 1 (mod 2) for every
i = 1, . . . , n, a contradiction.

4.7. Proof of the main Theorem in case g of type Dn, n ≥ 3. When g is a real form
of so(2n,C), n ≥ 3, we need to consider two subcases according to Table 1, namely when
k = u(n) or k = so(2p) + so(2q), n = p+ q.

The standard root system of so(2n,C) is given by R = {±ǫi ± ǫj , 1 ≤ i < j ≤ n} with
R+

o = {ǫi ± ǫj, i < j, i, j = 1, . . . , n}. The Weyl group of gc is a semidirect product
(Z2)

n⋊Sn and any w ∈ W acts as w(ǫi) = φiǫσ(i), where φi ∈ {1,−1} satisfies
∏n

i=1 φi = 1.

4.7.1. Case k = u(n). This case can be dealt with similar arguments as in the subsection
4.6.1 for gc of type Cn and k = u(n) and we will omit the detailed computations, keeping
the same notation. We have

1

2
δ(z) =

∑

i∈A

[−4k̄A(i) + 2i− 2] ǫσ(i) +
∑

i∈B

[4k̄B(i)− 2i+ 2] ǫσ(i).

Denote by cA := −4k̄A(i) + 2i− 2 and cB := 4k̄B(i)− 2i+ 2 the two coefficients.
If λ > 0, then cA(i) > 0 if i ∈ A and cB(i) < 0 if i ∈ B. It follows that 1 6∈ A ∪ B, a

contradiction.
If λ < 0, then cA(i) < 0 if i ∈ A. If iA is the minimum point of A, then k̄A(ip) = 0 and

therefore ip < 1, a contradiction. Then A is empty. Similarly the minimum point iB of B
satisfies iB < 1, showing that B is empty, a contradiction.

Finally, λ = 0 is also impossible, as cA(i) = 0, i ∈ A and cB(i) = 0, i ∈ B force every
i ∈ A ∪B to be odd, a contradiction.

4.7.2. Case k = so(2p) + so(2q), p ≥ q ≥ 1, p + q ≥ 3. If we denote P := {1, . . . , p} and
Q := {p + 1, . . . , n} we have

Rc = {±ǫi ± ǫj | i, j ∈ P} ∪ {±ǫi ± ǫj, | i, j ∈ Q}

and therefore, if Pσ := σ−1(P ), Qσ := σ−1(Q) and kP/Q have the same meaning as in the
previous subsections, we obtain

1

2
δ(z) =

∑

i∈Pσ

(4kP (i) + 2i− 2n)φiǫσ(i) +
∑

i∈Qσ

(4kQ(i) + 2i− 2n)φiǫσ(i).

If λ > 0 and iP is the maximum element in Pσ then 4kP (iP )+2iP − 2n > 0 implies iP > n,
a contradiction.
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If λ < 0, the maps Pσ/Qσ ∋ i 7→ 4kP/Q(i) + 2i− 2n are negative and strictly increasing.
This implies that two elements i < j both in Pσ or both in Qσ satisfy j − i > 2, forcing
p = q = 1.

If λ = 0 then i ≡ n (mod 2) for every i = 1, . . . , n, a contradiction.

References
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