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1. Introduction

Abstract. We study higher dimensional versions of shearfree null-congurences in con-
formal Lorentz manifolds. We show that such structures induce a subconformal structure
and a partially integrable almost CR-structure on the leaf space and we classify the
Lorentz metrics that induce the same subconformal structure. In the last section we sur-
vey some known applications of the correspondence between almost CR-structures and
shearfree null-congurences in dimension 4.

It is well known that CR-manifolds are intimately related with conformal Lorentzian
manifolds by the Fefferman metric [1, 4, 7]. However there exist also other natural con-
structions of Lorentzian metrics on sphere or line bundles over CR-manifolds associated
with the underlying CR-structure. Such correspondences have been used in both ways: to
describe special algebraic solutions to Einstein’s equation in 4-dimensional Lorentz space
using CR-structures and also to interpret CR-phenomena in terms of general relativity.

More precisely, let M be a 3-dimensional CR-manifold with contact distribution H and
CR-structure J : H → H. Following Cartan, the CR-stucture ofM can be (locally) encoded
as a choice of a real 1-form λ and a complex 1-form µ such that

(i) λ ∧ µ ∧ µ̄ 6= 0
(ii) H = kerλ
(iii) µ|H ◦ J = iµ|H for all X ∈ H.

Then any other pair (λ′, µ′) of 1-forms defines the same CR-structure if it is related to
(λ, µ) by

λ′ = fλ, µ′ = φµ+ ψλ

where f is a non-vanishing real function, φ is a non-vanishing complex function and ψ is
an arbitrary complex function.

We assume that the CR-structure (M,H, J) = (M, [λ, µ]) is Levi-nondegenerate, i.e.
dλ ∧ λ 6= 0. In this case we can choose the pair of forms such that

dλ = iµ ∧ µ̄+ cµ ∧ λ+ c̄µ̄ ∧ λ(1)

dµ = aµ ∧ λ+ bµ̄ ∧ λ.
Recall that the Fefferman metric is a conformal class of Lorentzian metrics defined on

the circle bundle M = H1,0/R+ where H1,0 is the i-eigenbundle of J on H ⊗ C. Using a
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coframe (µ, λ) that satisfies (1) and the trivialisation M 3 m|p = e−t−i r ∂|p 7→ (p, r) where
r ∈ [0, 2π), the Fefferman metric is defined by

(2) g = e2t

[
µµ̄+

1

3
λ

(
2dr − i cµ+ i c̄µ̄−

(
cµ̄ + c̄µ

4
− 3 i(a− ā)

4

)
λ

)]
where, by abuse of notation, µ, µ̄, λ denote the pull-backs of the corresponding 1-forms on
M , dr is the differential of the coordinate function r, a, c are the pull-backs of the structure
functions from (1), e2t is a conformal scaling factor and

dc = cµµ+ cµ̄µ̄+ cλλ, dc̄ = c̄µµ+ c̄µ̄µ̄+ c̄λλ.

It can be shown, e.g. by using the canonical Cartan connection, that the conformal
Fefferman metric (2) does not depend on the choice of the pair (λ, µ). It is obvious that
the fundamental vector field ∂r is a conformal Killing null vector field of the Fefferman
metric.

The Fefferman construction is universal in the sense that it provides a unique confor-
mal Lorentz space for any Levi-nondegenerate CR-manifold, but, in general, the resulting
conformal metrics cannot be rescaled to Einstein metrics.

An alternative, more flexible approach has been introduced by physicists. They consider
a line bundle M over a CR-manifold M together with a family of Lorentz metrics, which
takes in a trivialising chart M × R the form

(3) g = e2t
[
µµ̄+ λ

(
dr +Wµ+ W̄ µ̄+Hλ

)]
where r is the fibre variable and t,W,H are arbitrary functions.

The fundamental vector field p = ∂r is again null with respect to all metrics from the
family g but it is not, in general, conformal Killing. Instead it satisfies the following
condition of shearfreeness:

Lpg = ρg + g(p, ·) ∨ ψ
where ρ is some function and ψ is some 1-form. This condition controls only the change of
g on kerλ and hence is somewhat weaker than p being conformal Killing.

In this paper we describe a generalisation of the correspondence between higher dimen-
sional CR-geometry, subconformal geometry and shearfree Lorentz geometry.

2. Subconformal and CR-manifolds

Throughout this paper we use the notion of a CR-manifold as a shorthand for a Levi-
nondegenerate, partially integrable almost CR-manifold of hypersurface type as defined
below:

Definition 1. A CR-manifold M is a contact manifold with contact distribution H and a
smooth family of endomorphisms Jx : Hx → Hx with J2

x = − id. We assume that (M,H, J)
is partially integrable, i.e. the complex eigen-distribution H1,0 ⊂ H⊗C of J with eigenvalue
i satisfies

[H1,0, H1,0] ⊆ H ⊗ C.
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Remark. Partial integrability is equivalent to the following property: If λ is a contact
form for the contact distribution H then

dλ(JX, JY ) = dλ(X,Y )

for any sections X,Y of H. This property is also equivalent to dλ(·, J ·) being symmetric.

Definition 2. A subconformal manifold is a contact manifold M with contact distribution
H that is endowed with a conformal class of subRiemannian metrics [gH ].

In this article we will only consider orientable subconformal manifolds. In this case there
exists a global contact 1-form λ such that H = kerλ.

For dimM = 3 subconformal manifolds are essentially the same as CR-manifolds. More
precisely, the conformal metric on the contact distribution induces two mutually conjugate
complex structures that rotate vectors by an angle π

2 . Vice versa, the conformal structure
can be recovered from either of these complex structures by making multiplication by
complex numbers conformal mappings on the distribution.

In higher dimensions the relation between subconformal and CR-manifolds is less obvi-
ous.

Theorem 1. Let (M,H, [gH ]) be an orientable subconformal manifold. Then M inherits
two mutually conjugated partially integrable almost CR structures J and −J .

Proof. Choose a contact form λ. Let A = g−1dλ|H , i.e. dλ|H = g(A·, ·)|H . Then A is
non-degenerate and skew-symmetric, hence A2 is symmetric and negative definite. Define
J =

√
−A−2A. It follows that J depends smoothly on the coordinates of M . A different

choice of the contact form λ affects only the sign of J . We show that J , and hence −J ,
define partially integrable almost CR-structures.

Since A and A2 commute, the eigenspaces of A2 at each point are invariant for A and,
since

√
−A−2 is diagonalisable with the same eigenspaces as A2, A commutes with

√
−A−2.

Therefore,

J2 =
√
−A−2A

√
−A−2A = −A−2A2 = − id .

To prove partial integrability let X,Y be two sections of H. Since
√
−A−2 is symmetric,

then

dλ(JX, JY ) = g(A
√
−A−2AX,

√
−A−2AY ) = g(−A−2A2X,AY )

= −g(X,AY ) = −g(AY,X) = −dλ(Y,X) = dλ(X,Y ).

This proves partial integrability. �

The Theorem above indicates that CR-structures in higher dimensions are weaker struc-
tures than subconformal ones. There are many different conformal structures that induce
the same almost CR-structure. E.g. different subconformal structures can be obtained
from a strictly pseudoconvex CR-structure (M,H, J) by additionally prescribing different
dλ-orthogonal decompositions of the distribution H

H = ⊕Hj
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and positive functions αj . Then let A|Hj = αjJ |Hj and g = dλ ◦A−1.
The extremal choices of the decomposition of H are on the one hand the trivial decom-

position H = H and on the other hand the decomposition into complex one-dimensional
Hj . The former choice is equivalent to the CR-structure while the latter one induces a
much more rigid geometric structure.

3. Shearfree congruences

Definition 3. A shearfree congruence is a (2n+2)-dimensional Lorentz-manifold (M, g)
equipped with a foliation into integral curves of a nowhere vanishing vector field p such that

(i) p is null, i.e. g(p, p) = 0
(ii) Lpg = ρg + θ ∨ ψ, where θ = g(p, ·), ρ is a function and ψ is a 1-form. This

condition means that the local flow of p preserves the distribution

p⊥ = {X ∈ TM : g(X, p) = 0}

and the degenerate subconformal metric the metric [g|p⊥ ] on p⊥.

We call p a shearfree vector field (with respect to (M, g)) if it satisfies conditions (i) and
(ii) above.

It can be shown that the conditions (i) and (ii) in the definition above imply that the
vector field p is geodetic, i.e.

∇pp = βp,

where ∇ is the Levi-Civita connection of g and β is some function. (See Proposition 1
below.) Hence a shearfree congruence is in fact a foliation of M into null-geodesics, which
can be interpreted as light rays.

Notice that shearfreeness of p depends only on the conformal class of g and is preserved
under scaling of p.

We define also a global conformal version of shearfree congruences.

Definition 4. Let (M, [g]) be a 2n + 2-dimensional conformal Lorentz manifold with a
shearfree vector field p and assume that the flow of p generates a free action of G = R or
G = S1 so that the orbit space by M = M/G is a manifold and the canonical projection
π : M→M is a principal G-bundle. We call the (M, [g], p,M) a Robinson-Trautman space
(RT-space) of type G.

Examples. 1. For a Lorentzian metric g any conformal Killing null vector field p is
shearfree.
2. For the Lorentzian metrics (3) p = ∂r is a shearfree vector field on the trivial R-bundle
M × R.

Definition 5. A shearfree congruence is called diverging if the function ρ in (ii) does not
vanish; it is called distinguished in the opposite case, i.e. if ρ = 0.
A shearfree vector field p is said to be autoparallel if

∇pp = 0.
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By rescaling the Lorentzian metric g, a shearfree congruence can be made distinguished,
locally, and by rescaling the shearfree vector field p it can be made autoparallel at the same
time. If M is an RT space of type R then this can be achieved globally.

We summarise some properties of shearfree congruences.

Proposition 1. (i) A shearfree vector field p is geodetic, i.e. ∇pp = βp.
(ii) Locally, a Lorentzian metric g and a shearfree vector field p can be rescaled, so

that g becomes distinguished and p becomes autoparallel at the same time. On an
RT-space of type R this can be achieved globally.

(iii) Being autoparallel is equivalent to pydθ = 0, which in turn is equivalent to

Lpθ = d(pyθ) + pydθ = 0.

Sketch of the proof. For the proof of (i) and (iii) the notion of the Nomizu operator
is convenient. For any vector field X the Nomizu operator LX is defined as

LX : Y 7→ −∇YX,

where ∇ is the covariant derivative of the Levi-Civita connection for g. It is well known
that

g−1LXg = −LX − L∗X(4)

2g−1dθ = −LX + L∗X ,(5)

where θ = g(X, ·) and L∗X is the g-adjoint of LX .
The Nomizu operator satisfies

(6) L∗pp = 0

for any null vector field p, because of

g(L∗pp,X) = g(p, LpX) = g(p,−∇Xp) = −1

2
Xg(p, p) = 0.

Now, statement (i) follows from

g(∇pp,X) = −g(Lpp,X) = −g(Lpp+ L∗pp,X) = Lpg(p,X) = ρg(p,X) + ψ(p)θ(X)

= g(ρp,X) + ψ(p)g(p,X) = g((ρ+ ψ(p))p,X),

for all X, hence ∇pp = βp with β = ρ+ ψ(p).
The condition that the shearfree congruence is distinguished can be achieved by scaling

g by a factor t that is a solution of ∂p log t = −ρ. The condition ∇pp = 0 can be achieved
by scaling p by a factor s that is a solution of ∂p log s = −β. These PDE can be solved
locally, or globally in the case of an RT-space of type R.

The equivalence of ∇pp = 0 and pydθ = 0 follows from (6) because ∇pp = −Lpp = 0 can
be written as 0 = −g(Lpp,X) = −g(Lpp− L∗pp,X) = dθ(p,X), that is pydθ = 0, which is
equivalent to

Lpθ = pydθ + d(pyθ) = pydθ = 0. �
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4. Shearfree congruences and their orbit spaces

In this section let (M, [g], p) be an RT-space.

Definition 6. We say that (M, [g], p) is twisting if (dθ)n ∧ θ 6= 0, where θ = g(p, ·).

Notice that the notion of being twisting is invariant under scaling of p and g and therefore
it is well-defined. Indeed, both scalings result in a scaling of θ, hence

d(αθ) ≡ αdθ(mod θ),

and
(dαθ)n ∧ αθ = αn+1(dθ)n ∧ θ.

Since the notion of shearfreeness of p is invariant with respect to rescalings of p we can
replace p in the definition of a twisting RT-space by its equivalence class [p].

We will show that the orbit space M of a twisting RT-space carries a canonical subcon-
formal structure and hence a CR-stucture.

Definition 7. An RT-structure (M, [g], [p]) and a subconformal structure (H, [gH ]) with
contact distribution H and subconformal metric [gH ] on the orbit space M are called com-
patible if for any contact form λ on M with Reeb vector field Z

(i) kerπ∗λ = p⊥ = {X ∈ TM : g(X, p) = 0} and
(ii) π∗gλH |p⊥ is conformally equivalent to g|p⊥. Here gλH is the extension of gH to the

degenerate metric on M with Z = ker gλH . That is

g = P 2(π∗gλH + g(p, ·) ∨ ψ)

for some positive function P 2 and some 1-form ψ.

Theorem 2. Let (M, [g], [p]) be a twisting RT-space. Then there exists a unique compatible
subconformal structure on the orbit space M .

Proof. Let U ∈ TQM . Then we call u ∈ TqM a lift of U if π(q) = Q and π∗u = U . A
compatible contact distribution HQ ⊂ TQM must satisfy the condition θ(u) = g(p, u) = 0
for any lift u of any U ∈ HQ. This proves the uniqueness of the contact structure. We
show that this condition does not depend on the choice of the lift. Let u0 and u1 be two
lifts at q0 and q1, respectively, connected by a path u(t), where t is the time parameter of
the flow of the vector field p. Then, with respect to some local trivialisation,

u(t) = U + α(t)p

and
d

dt
θ(u(t)) = Lpg(u(t), p) = ρg(u(t), p) + θ(u(t))ψ(p) = (ρ+ ψ(p))θ(u(t)).

It follows that θ(u(t)) = Ce
∫
ρ+ψ(p)dt and therefore either equals zero for all t or nowhere.

We show that H is a contact distribution. Let λ be a form that annihilates H. Then
π∗λ = αθ, where α is a non-vanishing function. Since π∗dλn ∧ λ = αn+1dθn ∧ θ 6= 0 it
follows dλn ∧ λ 6= 0. The conformal metric gH on HQ is uniquely determined by

gH(U, V ) = g(u, v)
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for U, V ∈ HQ and any lifts u, v ∈ p⊥ at the same base point q. We show that this definition
does not depend on the choice of the lifts. Let

u(t) = U + α(t)p, v(t) = V + β(t)p

be two paths connecting two pairs of lifts (u0, v0) and u1, v1 with respect to some triviali-
sation. Then,

d

dt
g(u(t), v(t)) = Lpg(u(t), v(t)) = ρg(u(t), v(t)),

where ρ depends on t but not on u(t) and v(t) It follows that g(u(t), v(t)) scales along the
path by a multiplier that does not depend on the path. Hence gH(U, V ) is well-defined as
a conformal metric. �

The theorem below describes the RT-structures that are compatible with a given sub-
conformal structure on their orbit space.

Theorem 3. Let π : M→ M be a line bundle over a subconformal manifold (M,H, [gH ])
and p any non-vanishing vertical vector field. Then (M, [g], [p]) is a twisting RT-structure
compatible with (M,H, [gH ]) if and only if

(7) g = P 2(π∗gλH + π∗λ ∨ ψ)

where λ is a contact form on M , P is a positive function on M and ψ is a 1-form on M.

Proof. Assume g has the form (7). Then

(i) g is Lorentzian, and g|p⊥ is conformally equivalent to π∗gλH |p⊥
(ii) p is null, and

(iii) Lpg = 2P ∂P
∂t (gH +π∗λ∨ψ)+P 2(π∗λ∨Lpψ) = 2P ∂P

∂v g+π∗λ∨ ψ̃, i.e. p is shearfree
for g.

Therefore, (M, [g], [p]) is an RT-space compatible with (M,H, [gM ]).
It remains to show that any conformal Lorentzian metric that satisfies (i)-(iii) has the

form (7). Condition (i) means that there exists a positive function P on M such that

g|p⊥ = P 2π∗gλH |p⊥ .

Consider the symmetric 2-form

T = g − P 2π∗gλH

for some choice of the contact form λ on M . Then T (u, v) = 0 for any u, v ∈ TqM such
that g(v, p) = 0. Let z be a lift of the Reeb vector field Z. We can choose z such that
g(z, z) = 0.

Consider the 1-forms

θ = g(p, ·) = γπ∗λ, ψ′ = g(z, ·).

We have θ(z) = g(z, p) = γλ(Z) = γ.
If u = u′ + αz is the decomposition of a vector field u on M such that u′ ∈ p⊥ then

θ(u) = αg(p, z) = αγπ∗(Z) = αγ,
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hence

α =
1

γ
θ(u) = π∗λ(u).

For two vector fields u, v on M with u = u′ + αz, v = v′ + βz where u′, v′ ∈ p⊥ we have

T (u, v) = αg(z, v) + βg(u, z) =
1

γ
(θ(u)ψ′(v) + θ(v)ψ′(u)) = π∗λ ∨ ψ′(u, v).

It follows

g = P 2π∗gλH + T = P 2(π∗gλH + π∗λ ∨ ψ)

where ψ = 1
P 2ψ

′. �

5. Applications of shearfree congruences in dimension 4

In this section we survey some applications of shearfree congruences in dimension 4.
The correspondence between 4-dimensional shearfree congruences and 3-dimensional CR-
manifolds has been known by physicists and has been exploited in both directions (see,
e.g., [5, 10] and references therein).

In [3] a 3-parametric family of Ricci flat Lorentzian 4-manifolds with shear free congru-
ence, which include the Kerr metric, have been constructed. It is given by

g = P 2µµ̄+ λ(dr +Wµ+ W̄ µ̄+Hλ),

where

µ = dz

λ = du− 2 Im
((a+ b)|z|2 + b)dz

z(1 + |z|2)2

P 2 =
r2

(1 + |z|2)2
+

(b− a) + (b+ a)|z|2

(1 + |z|2)4

W =
2 i az

(1 + |z|2)2

H =
2(mr + b2)(1 + |z|2)2 − 2ab(1− |z|4)

r2(1 + |z|2)2 + (b− a+ (b+ a)|z|2)2
− 1.

Here z = x+ i y, u, r are coordinates in R4 and a, b,m are real parameters. The metric g is
singular for z = 0 if b 6= 0 and for r = 0 and |z|2 = a−b

a+b if |b| ≤ |a|. The corresponding RT-

space (M, [g], [∂r]) is twisting, unless a = b = 0. For b = 0, the metric g is the Kerr rotating
black hole with mass m and the angular momentum parameter a; if a = b = 0 the metric g
describes the Schwarzschild black hole with mass m. For m = a = 0 this is the Taub-NUT
vacuum metric. The orbit spaces M can be identified with C× R with coordinates (z, u).
If b 6= 0 we have to delete the singular line z = 0. The induced subconformal structures are
(M, [λ], [µµ̄]) and the CR-structures are defined by (M, [λ, µ]). Notice that the parameter
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m only appears in the function H and does not affect the family of CR-manifolds. All
resulting CR-manifolds can be embedded into C2 with coordinates (z, w) as

v = Imw =
−2a

1 + |z|2
+ 2b log

|z|2

1 + |z|2
.

This is the trivial Levi-flat CR-manifold v = 0 for the Schwarzschild solution, a spherical
CR-manifold (with singularity at 0) in the Taub-NUT case and a non-spherical Sasakian
manifold for the Kerr solution.

It is a natural question to ask, how analytic properties of a CR-manifold are reflected in
a corresponding shearfree congruence. The papers [5, 8] by Lewandowski, Nurowski, Tafel
and Hill, Lewandowski, Nurowski feature a fascinating approach to the local embeddability
problem for 3-dimensional CR-manifolds: Let M be a 3-dimensional manifold with a CR-
structure that is given by a pair of 1-forms (µ, λ) as above. Then the local embeddability
problem reduces to finding two functionally independent CR-functions f, g, i.e. functions
that satisfy

∂̄f = ∂̄g = 0, and df ∧ dg 6= 0,

where (∂, ∂̄, ∂0) is a dual frame to the coframe (µ, µ̄, λ). Using a Frobenius type result (see
e.g. [3, 5]), one CR-function is constructed from a complex 1-form φ such that

dφ ∧ φ = 0 and φ ∧ φ̄ 6= 0.

Such 1-form can be obtained as a structure form of the Levi-Civita connection as a con-
sequence of the vanishing of certain components of the complexified Ricci curvature. The
latter condition is, in a sense, vanishing of a ∂̄ derivative.

According to a result by Jacobowitz [6], the existence of a second, functionally indepen-
dent, CR-function can be related to a non-vanishing closed section of the canonical bundle
of M . Here, the canonical bundle is simply the complex rank 1 line bundle spanned by the
2-form µ ∧ λ. It is clear that this does not depend on the choice of the pair (µ, λ). The
theorem below is a special case of Jacobowitz’s result.

Theorem 4 (Jacobowitz,1987). If near some point x, (M3, H, J) has a non-constant CR
function and its canonical bundle has a closed non-zero section then (M3, H, J) is embed-
dable on some neighbourhood of x.

The condition of the existence of a non-zero closed section of the canonical bundle has a
nice interpretation in general relativity. Recall that a 2-form F is a solution of the Maxwell
equation in vacuum if

dF = d ∗ F = 0.

The solution F is called a plane wave if it is null, i.e. g(F, F ) = g(F, ∗F ) = 0. Let
F = F − i ∗F . According to a result by Robinson [9] the 2-forms F that correspond to
plane waves have a representation

F = θ ∧ ε
where θ = g(p, ·), ε = g(e, ·), p is a shearfree null vector field and e = e1 + i e2 is a complex
vector field with g(p, e) = 0, g(ei, ej) = δij . Vice versa, if p is a shearfree vector field and
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e a complex vector field as above, then

θ ∧ ε
is a plane wave.

A plane wave solution F = θ ∧ ε is said to be aligned with the shearfree congruence if
F = Φµ ∧ λ, where µ and λ are the lifts of the corresponding forms on the underlying
CR-manifold. Hence the existence of a nonzero closed section of the canonical bundle
translates into the existence of an aligned plane wave solution of the Maxwell equation.
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