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1. Introduction. Asymptotic analysis and homogenization (cf., for example, [34,
6, 4, 37, 32, 35, 10]) are basic methods for studying mathematical problems ap-
pearing in theories of media with nontrivial microstructure. These methods allow
to simplify modeling of composites, skeletons, reinforced structures, perforated ma-
terials (porous media), cell-structures, bodies with concentrated masses, stratified
flows (of Newtonian and non-Newtonian fluids), mixtures of fluids with different
viscosities (densities) or mixtures of fluids and gases (fluids and solid particles),
and many others.

Homogenization methods allow to consider media with periodic microstructure
as well as with random one (for random case cf., for instance, [11, 12, 13, 1, 14, 15]).

In this paper we study the attractors of differential equations that model the
long time behaviour of such media with complicated microstructure.

Attractors describe the final behaviour of solutions of dissipative nonlinear evolu-
tion equations on large time intervals and in the limit as time tends to infinity. It is
also convenient to study, using attractors, the stability and instability of the limiting
structures of the corresponding dynamical systems that are finite-dimensional for
ODEs and infinite dimensional for PDEs. Attractors make it possible to single out
the most essential limit sets of trajectories, which characterize the whole dynam-
ics of the complicated model described by evolution equations (see, for examples,
monographes [3, 20, 38] and the references therein).

More precisely, our interest is the asymptotic behavior of trajectory attractors
of 3D Navier–Stokes systems with randomly oscillating outer forces.

Along the lines of the Bogolyubov averaging principle [8], the first results related
to attractors of evolution equations with rapidly, but non-randomly oscillating terms
of periodic or almost periodic kind, can be found in the papers [29, 30, 31]. The av-
eraging of global attractors of autonomous and non-autonomous 2D Navier–Stokes
equations has been studied in [20, 21, 23, 39]. Some problems related to the homog-
enization and the averaging of uniform global attractors for dissipative wave equa-
tions has been considered in [16, 24, 30, 40, 44], in presence of time oscillations, and
in [20, 36, 39, 43], in presence of oscillations in space. For parabolic equations with
oscillating parameters, similar problems have been considered in [20, 25, 26, 27, 28].
Papers [17, 18, 22, 23, 41] deal with partial differential equations containing singular
oscillating terms.

The methods of trajectory attractors for evolution partial differential equations
were developed in [19, 20] (see also the review [42]). This approach is very fruitful
in the study of the long time behaviour of solutions to evolution equations for
which the uniqueness theorem of the corresponding initial-value problem is not
proved yet (e.g., for the inhomogeneous 3D Navier–Stokes system) or does not
hold. Some homogenization problem for trajectory attractors of evolution equation
with rapidly oscillating terms were studied in [20, 39] see also a paper [5] for random
homogenization of attractors.

In this paper we consider autonomous and non-autonomous 3D Navier-Stokes
systems and we assume that the right–hand sides g

(
x, xε , ω

)
or g

(
x, tε , ω

)
of the

systems are random functions, which oscillates rapidly with respect to the spatial
or time variables. Here ω is an element of a standard probability space (D,B, µ).
The parameter ε > 0 characterizes the oscillation frequency. Along with such
systems we also consider the corresponding homogenized 3D Navier–Stokes system
with external force ghom (x), where ghom (x) is the mathematical expectation of
g
(
x, xε , ω

)
or g

(
x, tε , ω

)
as ε→ 0.
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We prove that the trajectory attractor Aε of the system with randomly oscil-
lating term converges almost surely as ε → 0 to the trajectory attractor A of the
homogenized system in an appropriate functional space.

We do not assume that the corresponding Cauchy problem for the 3D Navier–
Stokes system with the external force g

(
x, xε , ω

)
or g

(
x, tε , ω

)
has the unique so-

lution. Under the assumption that the random function g
(
x, xε , ω

)
or g

(
x, tε , ω

)
is statistically homogeneous and ergodic with smooth realizations (for detailed def-
initions see below), we prove that the mathematical expectation coincides with
deterministic spacial mean.

In Section 1 we formulate the problem and give necessary definitions of random-
ness. In Section 2 we give the main notions and theorems concerning the trajectory
attractors of autonomous and non-autonomous evolution equations. Section 3 is de-
voted to the study of the averaging of attractors of autonomous and non-autonomous
3D Navier–Stokes systems with randomly rapidly oscillating external forces.

2. Notation and settings. Consider the 3D Navier-Stokes system in the domain
D b R3 :

∂tuε + νLuε +B(uε) = g, divuε = 0, uε|∂D = 0, (1)

where x = (x1, x2, x3) ∈ D, g = (g1, g2, g3), and uε = uε(x, t) = (u1
ε, u

2
ε, u

3
ε) is the

unknown velocity–vector and ε > 0 is a small parameter.
Using the standard approach, we exclude the pressure from the 3D Navier–Stokes

system assuming from the very beginning that div g = 0.
We study two cases:

1. autonomous system (1) with rapid oscillations in space having the external
force g = g

(
x, xε , ω

)
, where gj = gj(x, ξ, ω), x ∈ D, ξ ∈ R3, j = 1, 2, 3;

2. non-autonomous system (1) with rapid oscillations in time having the external
force g = g

(
x, tε , ω

)
, where gj = gj(x, τ, ω), x ∈ D, τ ∈ R, j = 1, 2, 3.

We assume that g is a random statistically homogeneous (in space or in time)
ergodic function with smooth realizations, ω is an element of a standard probability
space (Ω,B, µ) (for the detailed definitions see below).

In the system (1), L is the 3D Stokes operator, Lu = −P∆u, and

B(u) = B(u, u), B(u, v) := P (u,∇) v = P

3∑
i=1

ui ∂xiv.

The Laplace operator ∆ := ∂2
x1

+ ∂2
x2

+ ∂2
x3

acts in x-space. The parameter ν > 0
stands for the kinematic viscosity, while the density of the fluid is assumed to be
constant and equal to 1. Throughout the paper we shall omit the subindex ε of
functions uε.

We denote by H and H1 the closure in (L2(D))3 and (H1(D))3 of the set

V0 = {v | v ∈ (C∞0 (D))3, div v = 0}.

P denotes the Leray–Helmholtz orthogonal projector in (L2(D))3 onto the Hilbert
space H. The scalar products in H and in H1 are

(u, v) :=

∫
D

(u(x), v(x)) dx and (u, v)1 := 〈Lu, v〉 =

∫
D

(∇u(x),∇v(x)) dx

and the norms are ‖u‖ := (u, u)1/2 and ‖u‖1 := 〈Lu, u〉1/2, respectively.
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Randomness. Assume that (Ω,B, µ) is a probability space, i.e., the set Ω is en-
dowed with a σ-algebra B of its subsets and a σ-additive nonnegative measure µ on
B such that µ(Ω) = 1.

Definition 2.1. A family of measurable maps Tξ : Ω → Ω, ξ ∈ R3 (Tτ : Ω → Ω,
τ ∈ R ) is called a dynamical system if the following properties hold:

1) group property : Tξ1+ξ2 = Tξ1Tξ2 , ∀ξ1, ξ2 ∈ R3; T0 = Id (Tτ1+τ2 = Tτ1Tτ2 ,
∀τ1, τ2 ∈ R; T0 = Id) (Id is the identity mapping on Ω);

2) isometry property (the mappings Tξ ( Tτ ) preserve the measure µ on Ω):
TξB ∈ B, µ(TξB) = µ(B), ∀ξ ∈ R3, ∀B ∈ B (TτB ∈ B, µ(TτB) = µ(B), ∀τ ∈
R, ∀B ∈ B );

3) measurability : for any measurable function ψ(ω) on Ω, the function ψ(Tξω)
(ψ(Tτω)) is measurable on Ω× R3 (on Ω× R) and continuous in ξ (in τ).

Let Lq(Ω, µ) (q ≥ 1) be the space of measurable functions on Ω whose absolute
value at the power q is integrable with respect to the measure µ. If Tξ : Ω → Ω
( Tτ : Ω → Ω) is a dynamical system, then on the space L2(Ω, µ) we define a
parameter dependent group of operators {Tξ}, ξ ∈ R3 ({Tτ}, τ ∈ R) (we keep the
same notation), by the formula (Tξψ)(ω) := ψ(Tξω) ( (Tτψ)(ω) := ψ(Tτω) ), ψ ∈
L2(Ω, µ).

Condition 3) in the definition implies that the group Tξ ( Tτ ) is strongly contin-
uous, i.e., we have lim

ξ→0
‖Tξψ − ψ‖L2(Ω,µ) = 0 ( lim

τ→0
‖Tτψ − ψ‖L2(Ω,µ) = 0 ) for any

ψ ∈ L2(Ω, µ).

Definition 2.2. Suppose that ψ(ω) is a measurable function on Ω. The function
R3 3 ξ 7→ ψ(Tξω) ∈ R ( R 3 τ 7→ ψ(Tτω) ∈ R ) for fixed ω ∈ Ω is called the
realization of the function ψ.

The following assertion is proved, for instance, in [32] and [10].

Proposition 1. If ψ ∈ Lq(Ω, µ), then ω-almost all realizations ξ 7→ ψ(Tξω) ( τ 7→
ψ(Tτω) ) belong to Llocq (R3) ( to Llocq (R) ).

If the sequence {ψk} ⊂ Lq(Ω, µ) converges in Lq(Ω, µ) to the function ψ, then
there exists a subsequence {ψk′} such that ω-almost all realizations ξ 7→ ψk′(Tξω)
( τ 7→ ψk′(Tτω) ) converge in Llocq (R3) ( Llocq (R) ) to the realization ξ 7→ ψ(Tξω)
( τ 7→ ψ(Tτω) ).

Definition 2.3. A measurable function ψ(ω) on Ω is called invariant, if ψ(Tξω) =
ψ(ω) ( ψ(Tτω) = ψ(ω) ) for any ξ ∈ R3 ( τ ∈ R ) and almost all ω ∈ Ω.

Definition 2.4. The dynamical system Tξ ( Tτ ) is called ergodic, if any invariant
function is ω-almost everywhere a constant.

We denote by R the natural Borel σ-algebra of subsets of R3 ( of R ). Suppose
that z(ξ) ∈ Lloc1 (R3) ( F(τ) ∈ Lloc1 (R) ).

Definition 2.5. We say that the function z(ξ) ( F(τ) ) has a space average
( average in time ), if the limit

M(z) := lim
ε→0

1

|R|

∫∫∫
R

z
(x
ε

)
dx

M(F) := lim
ε→0

1

|R|

∫
R

F

(
t

ε

)
dt


exists for any bounded Borel set R ∈ R and does not depend on the choice of R.
The number M(z) ( M(F) ) is called the spatial mean value ( mean value in
time ) of the function z ( F ).
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Equivalently, the space average is defined by

M(z) := lim
s→+∞

1

|Bs|

∫∫∫
Bs

z(ξ) dξ, where Bs =

{
ξ ∈ R3

∣∣∣∣ ξs ∈ B
}

M(F) =: lim
s→+∞

1

|Bs|

∫
Bs

F(τ) dτ, where Bs =
{
τ ∈ R

∣∣∣ τ
s
∈ B

} .

The following statement can be found, for instance, in [10].

Proposition 2. Let the function z(ξ) have a space mean value in R3, and suppose

that the family {z
(
ζ
ε

)
, 0 < ε ≤ 1} is bounded in Lq(K) for some q ≥ 1, where K is

an arbitrary compact set in R3. Then z
(
ζ
ε

)
⇀M(z) weakly in Llocq (R3) as ε→ 0.

Let the function F(τ) have a mean value in time, and suppose that the family of
functions F

(
ς
ε

)
, 0 < ε ≤ 1} is bounded in Lq(K) for some q ≥ 1, where K is an

arbitrary compact set in R. Then F
(
ς
ε

)
⇀M(F) weakly in Llocq (R) as ε→ 0.

Throughout the paper we use the Birkhoff theorem (see [7] and [2]) in the fol-
lowing form (see, for instance, [32] and [10]):

Theorem 2.6. (Birkhoff ergodic theorem) Let the dynamical system Tξ, ξ ∈ R3,
satisfy Definition 2.1 and assume that ψ ∈ Lq(Ω, µ), q ≥ 1. Then, for almost all
ω ∈ Ω, the realization ψ(Tξω) has the space mean value M(ψ(Tξω)). Moreover,
the space mean value M(ψ(Tξω)) is a conditional mathematical expectation of the
function ψ(ω) with respect to the σ-algebra of invariant subsets. Hence, M(ψ(Tξω))
is an invariant function and

E(ψ) ≡
∫
Ω

ψ(ω) dµ =

∫
Ω

M(ψ(Tξω)) dµ.

In particular, if the dynamical system Tξ is ergodic then, for almost all ω ∈ Ω, we
have the identity

E(ψ) = M(ψ(ξ)).

Remark 1. The formulation of the Birkhoff ergodic theorem for mean value in
time is completely the same and for an ergodic dynamical system Tτ , τ ∈ R, we
have

E(ψ) = M(ψ(τ)).

Definition 2.7. A random function ψ(ξ, ω), ξ ∈ R3, ω ∈ Ω, is called statistically
homogeneous, if the representation ψ(ξ, ω) = Ψ(Tξω) is valid for some measurable
function Ψ : Ω→ R, where Tξ is a dynamical system in Ω.

A random function φ(τ, ω), τ ∈ R, ω ∈ Ω, is called statistically homogeneous, if
the representation φ(τ, ω) = Φ(Tτω) is valid for some measurable function Φ : Ω→
R, where Tτ is a dynamical system in Ω.

3. Trajectory attractors of evolution equations. In this section we give a
scheme for the construction of trajectory attractors of autonomous and non-autono-
mous evolution equations. In the next section we shall apply this scheme to the
study of trajectory attractors of the concrete evolution equations with rapidly os-
cillating coefficients and the corresponding averaged equations.
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To begin with we consider an abstract autonomous evolution equation

∂tu = A(u), t ≥ 0. (2)

Here A(·) : E1 → E0 is a nonlinear operator, E1, E0 are Banach spaces and E1 ⊆ E0.
For instance, A(u) = a∆u− f(u) + g (see also Section 4).

We are going to study solutions u(s) of equation (2) as functions of s ∈ R+ as a
whole. Here s ≡ t denote the time variable. The set of solutions of (2) is said to be
a trajectory space K+ of equation (2). Let us describe the trajectory space K+ in
greater detail.

At first, we consider solutions u(s) of (2) defined on a fixed time interval [t1, t2]
from R. We study solutions of (2) in a Banach space Ft1,t2 that depends on t1 and
t2. The space Ft1,t2 consists of functions f(s), s ∈ [t1, t2] such that f(s) ∈ E for
almost all s ∈ [t1, t2], where E is a Banach space. It is assumed that E1 ⊆ E ⊆ E0.

For example, Ft1,t2 can be the space C([t1, t2];E), or Lp([t1, t2];E), for p ∈ [1,∞],
or the intersection of such spaces (see Section 4). We assume that Πt1,t2Fτ1,τ2 ⊆
Ft1,t2 and

‖Πt1,t2f‖Ft1,t2 ≤ ‖f‖Fτ1,τ2 , ∀f ∈ Fτ1,τ2 , (3)

where [t1, t2] ⊆ [τ1, τ2] and Πt1,t2 denotes the restriction operator onto the interval
[t1, t2].

Let S(h) for h ∈ R denote the translation operator

S(h)f(s) = f(h+ s).

Evidently, if the argument s of f(·) belongs [t1, t2], then the argument s of S(h)f(·)
can be taken form [t1 − h, t2 − h] for h ∈ R. We assume that the mapping S(h) is
an isomorphism from Ft1,t2 to Ft1−h,t2−h and

‖S(h)f‖Ft1−h,t2−h = ‖f‖Ft1,t2 , ∀f ∈ Ft1,t2 . (4)

This assumption is fairly natural.
We assume that if f(s) ∈ Ft1,t2 , then A(f(s)) ∈ Dt1,t2 , where Dt1,t2 is a larger

Banach space, Ft1,t2 ⊆ Dt1,t2 . The derivative ∂tf(t) is a distribution with values
in E0, ∂tf(s) ∈ D′((t1, t2);E0) and we assume that Dt1,t2 ⊆ D′((t1, t2);E0) for all
(t1, t2) ⊂ R. A function u(s) ∈ Ft1,t2 is said to be a solution of (2) from the space
Ft1,t2 (on the interval (t1, t2)) if ∂tu(s) = A(u(s)) in the distributional sense of the
space D′((t1, t2);E0).

We also define the space

F loc+ = {f(s), s ∈ R+ | Πt1,t2f(s) ∈ Ft1,t2 , ∀ [t1, t2] ⊂ R+}. (5)

For example, if Ft1,t2 = C([t1, t2];E), then F loc+ = C(R+;E) and if Ft1,t2 =

Lp([t1, t2];E), then F loc+ = Llocp (R+;E).

A function u(s) ∈ F loc+ is called a solution of (2) from F loc+ if Πt1,t2u(s) ∈ Ft1,t2
and this function is a solution of (2) for every [t1, t2] ⊂ R+.

We denote by K+ a set of solutions of (2) from F loc+ . Notice, that K+ is not nec-

essarily the set of all solutions from F loc+ . The elements of K+ are called trajectories
and the set K+ is called the trajectory space of the equation (2).

We assume that the trajectory space K+ is translation invariant in the following
sense: if u(s) ∈ K+, then u(h + s) ∈ K+ for every h ≥ 0. This is a very natural
assumption for solutions of autonomous equations.

We now consider the translation operators S(h) in F loc+ :

S(h)f(s) = f(s+ h), h ≥ 0.
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It is clear that the mappings {S(h), h ≥ 0} form a semigroup in F loc+ : S(h1)S(h2) =
S(h1 + h2) for h1, h2 ≥ 0 and S(0) is the identity operator. We change the variable
h into the time variable t. The semigroup {S(t), t ≥ 0} is called the translation
semigroup. By our assumption the translation semigroup maps the trajectory space
K+ to itself:

S(t)K+ ⊆ K+, ∀t ≥ 0. (6)

We shall study attracting properties of the translation semigroup {S(t)} acting
on the trajectory space K+ ⊂ F loc+ . We define a topology in the space F loc+ .

Let metrics ρt1,t2(·, ·) be defined on Ft1,t2 for all [t1, t2] ⊂ R. Similar to (3) and
(4) we assume that

ρt1,t2 (Πt1,t2f,Πt1,t2g) ≤ ρτ1,τ2 (f, g) , ∀f, g ∈ Fτ1,τ2 , [t1, t2] ⊆ [τ1, τ2],

ρt1−h,t2−h(S(h)f, S(h)g) = ρt1,t2(f, g), ∀f, g ∈ Ft1,t2 , [t1, t2] ⊂ R, h ∈ R.

Denote by Θt1,t2 the corresponding metric spaces on Ft1,t2 . For example, ρt1,t2
can be the metric associated with the norm ‖ · ‖Ft1,t2 of the Banach space Ft1,t2 .
However, usually in application ρt1,t2 generate the topologies Θt1,t2 that are weaker
than the strong convergence topology of the Banach spaces Ft1,t2 .

The inductive limit of the spaces Θt1,t2 defines the topology Θloc
+ in F loc+ , i.e., by

definition, a sequence {fn(s)} ⊂ F loc+ converges to f(s) ∈ F loc+ as n → ∞ in Θloc
+

if ρt1,t2(Πt1,t2fn,Πt1,t2f) → 0 as n → ∞ for each [t1, t2] ⊂ R+. It is not hard to
prove that the topology Θloc

+ is metrizable using, for example, the Frechet metric

ρ+(f1, f2) :=
∑
m∈N

2−m
ρ0,m(f1, f2)

1 + ρ0,m(f1, f2)
. (7)

If it is known that all metric spaces Θt1,t2 are complete, then clearly the space Θloc
+

is also complete.
We claim that the translation semigroup {S(t)} is continuous in Θloc

+ . This as-

sertion follows directly from the definition of the topological space Θloc
+ .

We also consider the following Banach space

Fb+ := {f(s) ∈ F loc+ | ‖f‖Fb+ < +∞},

where the norm

‖f‖Fb+ := sup
h≥0
‖Π0,1f(h+ s)‖F0,1 . (8)

For example, if F loc+ = C(R+;E), then the space Fb+ = Cb(R+;E) with norm

‖f‖Fb+ = suph≥0 ‖f(h)‖E and if F loc+ = Llocp (R+;E), then Fb+ = Lbp(R+;E) with

norm ‖f‖Fb+ =
(

suph≥0

∫ h+1

h
‖f(s)‖pEds

)1/p

.

Recall that Fb+ ⊆ Θloc
+ . We require the Banach space Fb+ only to define bounded

subsets in the trajectory space K+. To construct a trajectory attractor in K+, we do
not consider the corresponding uniform convergence topology of the Banach space
Fb+. Instead, we utilize the local convergence topology Θloc

+ which is much weaker.

We suppose that K+ ⊆ Fb+, i.e., every trajectory u(s) ∈ K+ of equation (2) has
a finite norm (8). Let us define a trajectory attractor of the translation semigroup
{S(t)} acting on K+.

Definition 3.1. A set P ⊆ Θloc
+ is called an attracting set of the semigroup {S(t)}

acting on K+ in the topology Θloc
+ if for any bounded in Fb+ set B ⊆ K+ the set
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P attracts S(t)B as t → +∞ in the topology Θloc
+ , i.e., for any ε-neighbourhood

Oε(P) in Θloc
+ there exists t1 ≥ 0 such that S(t)B ⊆ Oε(P) for all t ≥ t1.

It is clear that the attracting property of P can be formulated in the following
equivalent form: for any set B ⊆ K+ bounded in Fb+ and for each M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MP)→ 0 (t→ +∞),

where distM(X,Y ) := supx∈X distM(x, Y ) = supx∈X infy∈Y ρM(x, y) is the Haus-
dorff semidistance from a set X to a set Y in a metric space M.

Definition 3.2. (see [20]) A set A ⊆ K+ is called the trajectory attractor of the
translation semigroup {S(t)} on K+ in the topology Θloc

+ , if (i) A is bounded in

Fb+ and compact in Θloc
+ , (ii) the set A is strictly invariant with respect to the

semigroup: S(t)A = A for all t ≥ 0, and (iii) A is an attracting set for {S(t)} on
K+ in the topology Θloc

+ , that is, for each M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MA)→ 0 (t→ +∞).

Remark 2. Using the terminology from [3] we can say that the trajectory attractor
A is the global (Fb+,Θloc

+ )-attractor of the translation semigroup {S(t)} acting on

K+, that is, A attracts S(t)B as t→ +∞ in the topology Θloc
+ for any bounded (in

Fb+) set B from K+ :

distΘloc+
(S(t)B,A)→ 0 (t→ +∞).

We now formulate the central result on the trajectory attractor for equation (2).

Theorem 3.3. Assume that the trajectory space K+ corresponding to equation (2)
is contained in Fb+ and (6) holds. Suppose that the translation semigroup {S(t)}
has an attracting set P ⊆K+ which is bounded in Fb+ and compact in Θloc

+ . Then
the translation semigroup {S(t), t ≥ 0} acting on K+ has the trajectory attractor
A ⊆ P. The set A is bounded in Fb+ and compact in Θloc

+ .

Proof. Indeed, the semigroup {S(t)} is continuous on K+ in the metric space Θloc
+ .

The set P is (Fb+,Θloc
+ )-attracting, compact in the space Θloc

+ , and bounded in

Fb+. Then the semigroup {S(t)} has the global (Fb+,Θloc
+ )-attractor A which is

evidently the trajectory attractor (see [3, 19, 20] for the complete proof). This
attractor can be constructed from the set P by the standard formula A = ω(P) :=
∩h≥0 [∪t≥hS(t)P]Θloc+

.

We now describe the structure of the trajectory attractor A of equation (2) in
terms of complete trajectories of this equation.

Consider the equation (2) on the entire time axis

∂tu = A(u), t ∈ R. (9)

We have defined the trajectory space K+ of equation (9) on R+. We now extend this
definition on the entire R. If a function f(s), s ∈ R, is defined on the entire time
axis, then the translations S(h)f(s) = f(s + h) are also defined for negative h. A
function u(s), s ∈ R is called a complete trajectory of equation (9) if Π+u(s+h) ∈ K+

for all h ∈ R. Here Π+ = Π0,∞ denotes the restriction operator to the semiaxis R+.
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We have introduced the spaces F loc+ ,Fb+, and Θloc
+ . We now define spaces F loc,Fb,

and Θloc in the same way:

F loc := {f(s), s ∈ R | Πt1,t2f(s) ∈ Ft1,t2 ∀ [t1, t2] ⊆ R};

Fb := {f(s) ∈ F loc | ‖f‖Fb < +∞},

where

‖f‖Fb := sup
h∈R
‖Π0,1f(h+ s)‖F0,1 . (10)

The topological space Θloc coincides (as a set) with F loc and, by definition, fn(s)→
f(s) (n → ∞) in Θloc if Πt1,t2fn(s) → Πt1,t2f(s) (n → ∞) in Θt1,t2 for each
[t1, t2] ⊆ R. It is clear that Θloc is a metric space as well as Θloc

+ .

Definition 3.4. The kernel K in the space Fb of equation (9) is the union of all
complete trajectories u(s), s ∈ R, of equation (9) that are bounded in the space Fb
with respect to the norm (10):

‖Π0,1u(h+ s)‖F0,1
≤ Cu, ∀h ∈ R. (11)

Theorem 3.5. Assume that the hypotheses of Theorem 3.3 holds. Then

A = Π+K, (12)

the set K is compact in Θloc and bounded in Fb.

The complete proof can be found in [19, 20].
We now describe briefly the construction of the trajectory attractors for non-

autonomous evolution equations. Non-autonomous equations contain terms that
explicitly depend on time. For example, such terms can be the external forces, the
interaction functions or other time dependent coefficients of the equation. Thus, it
is convenient to introduce a function σ(t), t ∈ R, which is called the time symbol of
the considering equation and consists of all time dependent terms of the equation.
The values of the function σ(t) belong to the corresponding function (Banach or
metric) space Ψ.

A non-autonomous equation can be written in the form

∂tu = Aσ(t)(u). (13)

Here similarly to equation (2), for every t ∈ R, we are given an operator Aσ(t)(·) :
E1 → E0. For example, Aσ(t)(u) = a∆u− f(u) + g(x, t), where σ(t) = g(x, t) (see
also Section 4).

The time symbol σ(s), as a function of time, belongs to a topological space Ξ. We
assume for simplicity that Ξ is the space Cloc(R; Ψ) or Ξ = Llocp (R; Ψ), where Ψ is a
Banach space, with corresponding topology of the local strong convergence on each
finite interval of the time axis. To construct the trajectory attractor for equation
(13) we start from the following requirement: the attractor must not change when
the symbol σ(s) is replaced by any shifted symbol σ(s+ h), h ∈ R. This is why we
consider the entire family of equations (13) with various symbols σ(s) ∈ Σ, where
Σ is a translation invariant set:

S(h)Σ = Σ, ∀h ∈ R. (14)

Usually in applications Σ coincides with the hull H(σ0) (in Ξ) of some initial
symbol σ0(s) of the equation:

Σ = H(σ0) := [{σ0(t+ h) | h ∈ R}]Ξ .
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Recall that a function σ(s) is called translation compact in the space Ξ if the hull
H(σ0) is compact in the topological space Ξ (see [20]).

We now assume that the initial symbol σ0(s) of the equation (13) is a translation
compact function in Ξ. Consequently the set Σ is compact in Ξ. For example, σ0(t)
can be a periodic, quasiperiodic or almost periodic function. Then its hull H(σ0)
is compact in the space Cb(R; Ψ), and therefore the symbol space Σ = H(σ0) is
compact in Ξ = Cloc(R; Ψ).

Similarly to the autonomous case we assume that corresponding to each symbol
σ ∈ Σ there is the trajectory space K+

σ ⊂ Fb+, that consists of the solutions u(s), s ≥
0 of equation (13). The function u(t) satisfies the equation in the distributional sense
of the space D′((t1, t2);E0) for each (t1, t2) ⊂ R+. The spaces F loc+ ,Fb+, and Θloc

+

are defined exactly as in the autonomous case.
Consider the translation semigroup {S(t)} on K+

σ . It is clear that in the general
case the trajectory space K+

σ is not invariant with respect to {S(t)}, i.e., S(t)K+
σ *

K+
σ . Nevertheless, we have the inclusion

S(t)K+
σ ⊆ K+

S(t)σ, ∀t ≥ 0. (15)

Speaking informally, this means that if u(s) ∈ K+
σ is a solution of equation (13)

with symbol σ(s), then u(h+ s) = S(h)u(s) ∈ K+
S(h)σ is a solution of the h-shifted

equation (13) with symbol σ(h+ s) = S(h)σ(s).
Consider now the aggregate trajectory space

K+
Σ =

⋃
σ∈Σ

K+
σ ,

which is already invariant with respect to {S(t)}:

S(t)K+
Σ ⊆ K

+
Σ , ∀t ≥ 0.

Similarly to autonomous case we define the uniform (w.r.t. σ ∈ Σ) attractor of
the translation semigroup on K+

Σ in the topology Θloc
+ .

Definition 3.6. The global (Fb+,Θloc
+ )-attractor of the translation semigroup {S(t)}

acting on K+
Σ , is called the uniform (w.r.t. σ ∈ Σ) trajectory attractor AΣ of equa-

tion (13), that is, (i) the set AΣ ⊆ K+
Σ is compact in Θloc

+ , bounded in Fb+, (ii)
strictly invariant, S(t)AΣ = AΣ for all t ≥ 0, and (iii) AΣ attracts S(t)B as
t → +∞ in the topology Θloc

+ each bounded (in Fb+ ) set B ⊂K+
Σ , that is, for each

M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MAΣ)→ 0 (t→ +∞).

Similarly to the autonomous case we define the kernel Kσ of the non-autonomous
equation (13) that consists of all trajectories u(s), s ∈ R, of equation (13) defined
on the entire axis and bounded with respect to the norm of Fb (see (10)).

Theorem 3.7. Let the symbol space of equation (2) be the hull Σ = H(σ0) of a
translation compact function σ0(s). Assume that the aggregated trajectory space K+

Σ

corresponding to the equation (2) belongs to Fb+. Assume further that there exists

an attracting set P ⊂K+
Σ of {S(t)} in the topology Θloc

+ such that P is compact in

Θloc
+ and bounded in Fb+. Then the translation semigroup {S(t), t ≥ 0} acting on

K+
Σ has the uniform (w.r.t. σ ∈ Σ) trajectory attractor AΣ ⊆ P. Moreover,

AΣ = Π+

⋃
σ∈H(σ0)

Kσ, (16)
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the kernel Kσ is non-empty for every σ ∈ Σ and the set AΣ is compact in Θloc and
bounded in Fb.

Theorem 3.7 is proved in [19, 20] for more general symbol spaces Σ.
Theorems 3.3 and 3.7 show that for the construction of the trajectory attractor

we require an attracting set P compact in Θloc
+ and bounded in Fb+. Usually in

application, a large ball BR = {‖f‖Fb+ ≤ R} in Fb+ (R � 1) can be taken as such

an attracting (or even absorbing) set and the existence of such ball BR follows from
the inequality of the form

‖S(t)u‖Fb+ ≤ C(‖u‖Fb+)e−γt +R0, ∀t ≥ 0, (γ > 0) (17)

holding for each trajectory u(·) of autonomous equation (2) or non-autonomous
equation (13). Here, C(ξ) depends on ξ and R0 does not depend on a trajectory u.
Inequality (17) follows usually from a priori estimates for solutions of equations (2)
or (13).

In various applications, to prove that a ball in Fb+ is compact in Θloc
+ the following

lemma is useful. Let E0 and E1 be Banach spaces such that E1 ⊂ E0. We consider
the Banach spaces

Wp1,p0([0,M ];E1, E0) = {ψ(s), s ∈ [0,M ] | ψ(·) ∈ Lp1([0,M ];E1),

ψ′(·) ∈ Lp0([0,M ];E0)},
W∞,p0([0,M ];E1, E0) = {ψ(s), s ∈ [0,M ] | ψ(·) ∈ L∞([0,M ];E1),

ψ′(·) ∈ Lp0([0,M ];E0)},

(where p1 ≥ 1 and p0 > 1) with norms

‖ψ‖Wp1,p0
:=

(∫ M

0

‖ψ(s)‖p1E1
ds

)1/p1

+

(∫ M

0

‖ψ′(s)‖p0E0
ds

)1/p0

,

‖ψ‖W∞,p0 := ess sup {‖ψ(s)‖E1
| s ∈ [0,M ]}+

(∫ M

0

‖ψ′(s)‖p0E0
ds

)1/p0

.

Lemma 3.8. (Aubin-Lions-Simon) [9] Assume that E1 b E ⊂ E0.Then the
following embeddings are compact:

Wp1,p0([0, T ];E1, E0) b Lp1([0, T ];E), (18)

W∞,p0([0, T ];E1, E0) b C([0, T ];E). (19)

In the next section we study evolution equations and their trajectory attractors
depending on a small parameter ε > 0.

Definition 3.9. We say that the trajectory attractors Aε converge to the trajectory
attractor A as ε→ 0 in the topological space Θloc

+ if for any neighborhood O(A) in

Θloc
+ there is an ε1 ≥ 0 such that Aε ⊆ O(A) for any ε < ε1, that is, for each M > 0

distΘ0,M
(Π0,MAε,Π0,MA)→ 0 (ε→ 0).

4. Homogenization of 3D Navier–Stokes system . Consider the autonomous
3D Navier-Stokes system:

∂tu+ νLu+B(u) = g
(
x,
x

ε
, ω
)
, divu = 0, u|∂D = 0. (20)
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Assume that Tξ, ξ ∈ R3, is an ergodic dynamical system. The function g(x, xε , ω)

is statistically homogeneous, i.e. g(x, ξ, ω) = G(x, Tξω), where G : D × Ω→ R3 is
measurable.

We suppose that ω-almost all realizations G(x, T x
ε
ω) are taken from the space

H for every ε > 0 and the function g
(
x, xε , ω

)
has the average ghom(x) = E(G)(x)

as ε→ 0 in the space Hw, that is, almost surely(
g
(
x,
x

ε
, ω
)
, ϕ(x)

)
→
(
ghom (x) , ϕ(x)

)
as ε→ 0, ∀ϕ ∈ H. (21)

Remark 3. Here we refer to the Birkhoff Theorem 2.6.

Remark 4. We can construct many examples of function g
(
x, xε , ω

)
that satisfy

(21). For instance, g
(
x, xε , ω

)
= Pg1 (x) g2(xε , ω), where g1 ∈ H and g2 (ξ, ω) is

statistically homogeneous ergodic function with smooth realization. More examples

can be constructed in the form g
(
x, xε , ω

)
= P

∑N
k=1 g

k
1 (x) gk2 (xε , ω), where gk1 ∈ H

and gk2 (ξ, ω) have the above properties.

Applying to equation (20) the general scheme from Section 3, we set E1 =
H1, E0 = H−1, E = H, where H−1 is the dual space of H1.

To describe the trajectory space K+
ε of equation (20) we consider weak solu-

tions (trajectories) of this equation in the spaces Lloc2 (R+;H1) ∩ Lloc∞ (R+;H). If
u(s) ∈ Lloc2 (R+;H1)∩ Lloc∞ (R+;H), then equation (20) makes sense in the space of
distributions D′(R+;H−1), (see [33]).

Definition 4.1. The trajectory space K+
ε is the union of all weak solutions (tra-

jectories) u(·) ∈ Lloc2 (R+;H1) ∩ Lloc∞ (R+;H) of equation (20) that satisfy almost
surely (for almost all ω or with probability one) the following inequality:

1

2

d

dt
‖u(t)‖2 + ν‖u(t)‖21 ≤ (g, u(t)) , t ∈ R+. (22)

Here g = g
(
x, xε , ω

)
. Inequality (22) means the following: for any test function

ψ(s) ∈ C∞0 (]0,+∞[), ψ ≥ 0, we have almost surely

− 1

2

∫ +∞

0

‖u(s)‖2ψ′(s)ds+ ν

∫ +∞

0

‖u(s)‖21ψ(s)ds ≤
∫ +∞

0

(g, u(s))ψ(s)ds. (23)

If u0 ∈ H, then there exists a weak solution u(s) of equation (20) belonging to the
space Lloc2 (R+;H1) ∩ Lloc∞ (R+;H) such that u(0) = u0 and u(s) satisfies inequality
(23). For the proof see [19, 20, 33].

Remark 5. For the 3D Navier–Stokes system the problem of the uniqueness of the
weak solution is still open. Neither it is known whether an arbitrary weak solution
of (20) satisfies inequality (22). Nevertheless, weak solutions u(t), t ≥ 0 provided
by the Galerkin approximation method satisfy (22).

It is well known that for any weak solution u(s) ∈ Lloc2 (R+;H1) ∩ Lloc∞ (R+;H)
of equation (20) the derivative ∂tu ∈ Lloc4/3(R+;H−1) ( see [20, 33]).

Following the general scheme of Section 3, we define the Banach spaces

Ft1,t2 := L2([t1, t2];H1) ∩ L∞([t1, t2];H) ∩ {v | ∂tv ∈ L4/3([t1, t2];H−1)}.
It is clear that equalities (3) hold for the spaces Ft1,t2 and the translation semigroup
{S(h)} satisfies (4).

It is obvious that

F loc+ = Lloc2 (R+;H1) ∩ Lloc∞ (R+;H) ∩ {v | ∂tv ∈ Lloc4/3(R+;H−1)}.
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We now define metrics ρt1,t2(·, ·) on the spaces Ft1,t2 using the norms of the
spaces L2([t1, t2];H), that is,

ρt1,t2(u, v) =

(∫ t2

t1

‖u(s)− v(s)‖2ds
)1/2

, ∀u(·), v(·) ∈ Ft1,t2 .

These metrics generates the topology Θloc
+ in F loc+ . Recall that a sequence {vn} ⊂

F loc+ converges to v ∈ F loc+ as n → ∞ if ‖vn(·) − v(·)‖L2([0,M ];H) → 0 (n → ∞)

for each M > 0. Recall that the topology Θloc
+ is metrizable (see (7)) and the

corresponding metric space is complete.
To define bounded sets in K+

ε , we shall use the Banach space

Fb+ = Lb2(R+;H1) ∩ L∞(R+;H) ∩ {v | ∂tv ∈ Lb4/3(R+;H−1)} (24)

which is clearly a subspace of F loc+ . Recall that

‖v‖Lbp(R+;E) = sup
h∈R+

‖v‖Lp([h,h+1];E).

We observe that the trajectory space K+
ε is translation invariant, that is if u(s) ∈

K+
ε , then u(h+ s) ∈ K+

ε for all h ≥ 0. Therefore,

S(t)K+
ε ⊆ K+

ε , ∀t ≥ 0.

Proposition 3. For every u(s) ∈ K+
ε the following inequality holds:

‖S(t)u( · )‖Fb+ ≤ C‖u( · )‖2L∞([0,1];H) exp(−λt) +R0, ∀t ≥ 0, (25)

where λ is the first eigenvalue of the operator νL; C depends on λ and R0 depends
on λ and ‖g‖2H (see [19, 20]).

It follows from (25) that the ball B0 = ‖v‖Fb+ ≤ 2R0 is an absorbing set of the

translation semigroup {S(t)} acting on K+
ε . The set B0 is bounded in Fb+. Consider

the set Pε = B0 ∩ K+
ε . It is clear that Pε ⊂ K+

ε is also absorbing and

S(t)Pε ⊆ Pε, ∀t ≥ 0. (26)

Using Lemma 3.8 and reasoning from [20] we obtain

Proposition 4. The set Pε ⊂ K+
ε is compact in the topology Θloc

+ (see also [19, 20]).

The kernel Kε of equation (20) consists of all weak solutions u(s), s ∈ R, that
satisfy inequality (23) for every ψ(s) ∈ C∞0 (R), ψ ≥ 0 and that are bounded in the
space

Fb = Lb2(R;H1) ∩ L∞(R;H) ∩ {v | ∂tv ∈ Lb4/3(R;H−1)}.

By Propositions 3 and 4, Theorems 3.3 and 3.5 are applicable.

Theorem 4.2. The system (20) has the trajectory attractor Aε in the topological
space Θloc

+ = Lloc2 (R+;H). The set Aε is almost surely uniformly (w.r.t. ε ∈ (0, 1))

bounded in Fb+ and compact in Θloc
+ . Moreover,

Aε = Π+Kε, (27)

the kernel Kε is non-empty, uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb, and com-
pact in Θloc.
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We note that Lemma 3.8 implies that

B0 b Lloc2 (R+;H1−δ), (28)

B0 b Cloc(R+;H−δ), 0 < δ ≤ 1. (29)

Inclusion (28) follows from (18) where we set E0 = H−1, E = H1−δ, E1 = H1,
and p1 = 2, p0 = 4/3. Inclusion (29) follows from (19) and from the embeddings
H b H−δ ⊂ H−1, if we set E0 = H−1, E = H−δ, E1 = H, and p0 = 4/3.

Using compact inclusions (28) and (29), we can strengthen the attraction to the
constructed trajectory attractor (27).

Corollary 1. For any set B ⊂ K+
ε bounded in Fb+ we have almost surely

distL2([0,M ];H1−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

distC([0,M ];H−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

where M is an arbitrary positive number.

Along with equation (20) we consider the averaged equation

∂tu0 + νLu0 +B(u0) = ghom (x) , divu0 = 0, u0|∂D = 0. (30)

Clearly equation (30) also has the trajectory attractor A in the trajectory space K+

corresponding to the equation (30) (see Definition 4.1) and

A = Π+K, (31)

where K is the kernel of equation (30) in Fb. Let us formulate the first main theorem
concerning the autonomous 3D Navier-Stokes system.

Theorem 4.3. The following limit holds almost surely in the topological space
Θloc

+ :

Aε → A as ε→ 0. (32)

Moreover, almost surely

Kε → K as ε→ 0 in Θloc. (33)

Proof. It is clear that (33) implies (32). Therefore it is sufficient to prove (33), that
is, for every neighborhood O

(
K
)

in Θloc there exists ε1 = ε1(O) > 0 such that
almost surely

Kε ⊂ O
(
K
)

for ε < ε1. (34)

Suppose that (34) is not true. Consider the corresponding subset Ω′ ⊂ Ω with
µ(Ω′) > 0 and (34) does not hold for all ω ∈ Ω′. Then, for each ω ∈ Ω′, there
exists a neighborhood O′

(
K
)

in Θloc, a sequence εn → 0 (n→∞), and a sequence
uεn(·) = uεn(ω, s) ∈ K+

εn such that

uεn /∈ O′
(
K
)
, ∀n ∈ N, ω ∈ Ω′. (35)

It follows from the condition (21) that the sequence
{
g
(
x, xεn , ω

)}
is almost surely

bounded in H. Therefore from Proposition 3 we conclude that the sequence {uεn}
is also bounded in Fb for each ω ∈ Ω′. Passing to a subsequence we can assume
that

uεn → u0 (n→∞) in Θloc,
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where u0 = u0(ω). We claim that u0 ∈ K. For each ω ∈ Ω′, the functions uεn(x, s)
satisfy the equation

∂tuεn + νLuεn +B(uεn) = g

(
x,

x

εn
, ω

)
, t ∈ R (36)

and the inequality

− 1

2

∫ M

−M
‖uεn(s)‖2ψ′(s)ds+ ν

∫ M

−M
‖uεn(s)‖21ψ(s)ds (37)

≤
∫ M

−M

(
g

(
x,

x

εn
, ω

)
, uεn(s)

)
ψ(s)ds

for any M > 0 and for every function ψ ∈ C∞0 (] − M,M [), ψ ≥ 0. Moreover,
uεn(s) ⇀ u0(s) (n → ∞) weakly in L2([−M,M ];H1), ∗-weakly in L∞([−M,M ];
H), and ∂tuεn(s) ⇀ ∂tu0(s) (n → ∞) weakly in L4/3([−M,M ];H−1). By Lemma
3.8 (see inclusion (28) with δ = 0) we can assume that uεn(s) → u0(s) (n → ∞)
strongly in L2([−M,M ];H) and uεn(x, s)→ ū(x, s) (n→∞) for almost all (x, s) ∈
D×]−M,M [. In particular, uεn(s)→ u0(s) (n→∞) strongly in Θloc

+ = Lloc2 (R;H).

In view of (21) we have g
(
x, xεn , ω

)
⇀ ghom(x) (n → ∞) weakly in Hw and

therefore weakly in L2([−M,M ];H). We now pass to the limit in (36) and (37)
using the standard reasoning from [33] (see the complete proof in [19, 20, 39]). Hence
u0 ∈ K, i.e., u0 is the solution to (30) that satisfies the corresponding inequality
(37) for the external force ghom(x). At the same time we have established that,
for each ω ∈ Ω′, the sequence uεn(s) → u0(s) (n → ∞) in Θloc

+ and therefore

uεn(s) ∈ O′(u0(s)) ⊂ O′
(
K
)

for εn � 1 and for all ω ∈ Ω′. This contradicts (35).
The proof is complete.

Applying the embeddings (28) and (29) we obtain

Corollary 2. For every 0 < δ ≤ 1 and for any M > 0 almost surely

distL2([0,M ];H1−δ)

(
Π0,MAε,Π0,MA

)
→ 0 (ε→ 0), (38)

distC([0,M ];H−δ)

(
Π0,MAε,Π0,MA

)
→ 0 (ε→ 0).

We now briefly consider the 3D Navier–Stokes system with random time-depen-
dent external force which oscillates rapidly in time. The system has the form

∂tu+ νLu+B(u) = g

(
x,
t

ε
, ω

)
, divu = 0, u|∂D = 0, (39)

We assume that g (x, τ, ω) , x ∈ D, t ∈ R, is a statistically homogeneous ergodic
function with smooth realizations, that is, g (x, τ, ω) = G(x, Tτω), where G : D×Ω
is measurable. We also assume that, with probability one (in ω ∈ Ω) the function
g (·, τ, ω) is translation compact in Lloc2 (Rτ ;H), that is, the hull

H(g (·, ·, ω)) := [{g(·, τ + h, ω) | h ∈ R}]Lloc2 (Rτ ;H)

is compact in Lloc2 (Rτ ;H). It is easy to prove that the function g
(
·, tε , ω

)
is almost

surely translation compact in Lloc2 (Rt;H) for every ε > 0.
Further we assume that the function g (·, τ, ω) has almost surely the uniform mean

value in time in Lloc2,w(Rτ ;H) (the definition is similar to Definition 2.5). Precisely,
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we assume that g (τ, ω) has almost surely the uniform average, that is,

1

µ

h+µ∫
h

g(·, τ, ω)dτ =
1

µ

h+µ∫
h

G(·, Tτω)dτ −→ E(G) := ghom (µ→∞) in H (40)

uniformly with respect to h ∈ R. Here ghom(·) ∈ H. Then, we prove that the
function gε (t) ≡ g

(
t
ε , ω

)
has the uniform average ghom in the local weak topology

Lloc2,w(Rt;H) as ε→ 0, that is for each M > 0 and every function ϕ ∈ L2([0,M ];H)∫ M

0

〈
g

(
t+ h

ε
, ω

)
, ϕ(t)

〉
dt→

∫ M

0

〈
ghom, ϕ(t)

〉
dt (ε→ 0+) (41)

uniformly with respect to h ∈ R.

Remark 6. Here we used the Birkhoff Theorem 2.6, bearing in mind Remark 1.

Consider the hull H (gε (·)) of the function gε = g
(
·, tε , ω

)
in Lloc2 (Rt;H). Then,

using (41) we prove that almost surely

H (gε (·))→ ghom (ε→ 0+) (42)

in the local weak topology Lloc2,w(Rt;H) (see [20] for more details).

Equation (39) has the time symbol gε = g
(
x, tε , ω

)
. Along with equation (39)

we consider the entire family of this equations

∂tu+ νLu+B(u) = ĝ (x, t, ω) , divu = 0, u|∂D = 0, (43)

with symbols ĝ(·, ·, ω) ∈ Σε := H(gε). Here Σε is the symbol space of the non-
autonomous equation (43).

Similar to autonomous case, we define the trajectory space K+
ĝ of the equation

(43) with symbol ĝ ∈ Σε. Recall that K+
ĝ consists of all weak solutions u(s) of

the non-autonomous equation (43) from the space Lloc2 (R+;H1)∩ Lloc∞ (R+;H) that
satisfies the energy inequality (22), where we replace g by ĝ(s). It is clear that K+

ĝ

satisfy (15), that is
S(t)K+

ĝ ⊆ K
+
S(t)ĝ, ∀t ≥ 0.

Consider now the aggregate trajectory space for equation (39):

K+
Σε =

⋃
ĝ∈Σε

K+
ĝ ,

which is invariant with respect to the translation semigroup {S(t)}:
S(t)K+

Σε ⊆ K
+
Σε , ∀t ≥ 0.

Proposition 3 holds true for all u ∈ K+
Σε . Moreover, the constants C and R0

are independent of ε (see [19, 20]). Therefore, the ball B0 = ‖v‖Fb+ ≤ 2R0 is an

absorbing set of the translation semigroup {S(t)} acting on K+
Σε . The set Pε =

B0 ∩ K+
Σε is bounded in Fb+ and compact in Θloc

+ . It is clear that Pε ⊂ K+
ε is also

absorbing and
S(t)Pε ⊆ Pε, ∀t ≥ 0.

Similar to Proposition 4 we prove that the set Pε ⊂ K+
Σε is compact in the

topology Θloc
+ (see [19, 20]).

We also define the kernel of equation (43) with symbol ĝ ∈ Σε that consists of all
weak solutions u(s), s ∈ R of this equation that satisfy inequality (22) (with g = ĝ)
and that are bounded in the space Fb (see (24)).
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We now apply Theorem 3.7 and obtain the following

Theorem 4.4. The system (39) has the uniform (w.r.t. ĝ ∈ Σε = H(gε)) trajectory
attractor AΣε in the topological space Θloc

+ = Lloc2 (R+;H). The set AΣε is almost

surely uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb+ and compact in Θloc
+ . Moreover,

AΣε = Π+

⋃
ĝ∈Σε

Kĝ,

the kernel Kĝ is non-empty for every ĝ ∈ Σε and the set AΣε is compact in Θloc

and bounded in Fb uniformly with respect to ε ∈ (0, 1].

Finally, we consider the averaged equation (30) with averaged external force
ghom (see (40) and (41)). This equation is autonomous. Consider its trajectory

attractor A in the trajectory space K+
:= K+

ghom
that we have constructed in the

first, “autonomous”, part of this section.
We have the second main result for the non-autonomous 3D NS system (39).

Theorem 4.5. The uniform trajectory attractor AΣε of the equation (39) converges
almost surely to the trajectory attractor A of the homogenized autonomous equation
(30) as ε→ 0 in the space Θloc

+ .

The proof of this theorem is analogous to the proof of Theorem 4.3. We use a
generalization of Propositions 3, 4 and apply the limit relation (42).

Using compact inclusions (28) and (29) we obtain

Corollary 3. For every δ > 0, almost surely

distL2([0,M ];H1−δ)

(
Π0,MAΣε ,Π0,MA

)
→ 0 (ε→ 0),

distC([0,M ];H−δ)

(
Π0,MAΣε ,Π0,MA

)
→ 0 (ε→ 0), ∀M > 0.

Remark 7. We can also consider in analogous way rapidly oscillating functions
random in time and locally periodic in space variables as well as locally periodic in
time and random in space variables or random in both space and time variables.
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Dunod, Gauthier-Villars, Paris, 1969.

[34] V. A. Marchenko and E. Ya. Khruslov, Kraevye Zadachi v Oblastyakh s Melkozernistoi Gran-
itsei, (Russian) [Boundary value problems in domains with a fine-grained boundary] Naukova

Dumka, Kiev, 1974.

[35] V. A. Marchenko and E. Ya. Khruslov, Homogenization of Partial Differential Equations,
Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006.
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