A PILOT PERIMETRIC STUDY OF FAR PERIPHERAL COLOR VISION USING TWO SMARTPHONES

Galina Rozhkova ${ }^{1}$, Alexander Belokopytov ${ }^{1}$, Egor Ershov ${ }^{1}$, Ilia Nikolaev ${ }^{2}$ and Peter Nikolaev ${ }^{1}$
${ }^{1}$ Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
${ }^{2}$ Moscow State University, Faculty of Physics, Russia
Corresponding author: gir@iitp.ru
Despite a significant number of investigations showing that, in conditions of a proper scaling test stimulus size and/or luminance, human peripheral retina can provide foveal-like color perception, some doubts concerning peripheral color vision are still common among visual scientists and ophthalmologists. Methodological and technical problems in creating conditions for a suitable stimulus presentation and adequate characterization of perceived images at the periphery of the visual field make it difficult to collect enough data and formulate comprehensive notion of the peripheral vision. Up to now, search for a simple technique allowing fast assessment of the peripheral vision capabilities seems to be rather pressing. In our pilot study, we tried to use identical smartphones (Samsung Galaxy S6 with AMOLED screen) both for test stimulus presentation and for quantitative evaluation of perceived images using color checker. The test stimuli (uniform color circles of $4-8^{\circ}$ in diameter turning on/off each 1.5 s) were displayed on the smartphone attached to the platform moving along the perimetric arc to vary stimulus eccentricity. The second smartphone, displaying color checker circle, was fixed at the center of the perimeter arc. The hue and saturation of each test stimuli corresponded to one of the smartphone primaries ($\mathrm{R}, \mathrm{G}, \mathrm{B}$). Hue, saturation, and luminance of the checker circle could be easily controlled by the subject employing mouse connected with the checker smartphone. The test stimulus and the checker circle were observed simultaneously in monocular viewing conditions. Subjects were three males and one female ($30-75$ years old) with normal color vision. The subject task was to make the appearance of the checker image as similar as possible to the appearance of the peripheral one adjusting hue, saturation, and luminance of the checker circle. Presenting color test stimuli at far periphery (temporal visual field, $60-95^{\circ}$), we have found that perceived peripheral images could be vivid and allowed matching in hue and saturation to the foveal checker image. The peripheral images preserved or changed their appearance with increasing eccentricity depending on the stimulus parameters and individual eye properties. For instance, in subjects IP and PN, at the maximal test stimulus intensities, the quantitative estimates of the perceived hue (according to the HSV color model) at the eccentricities of 60°, 80° and 95° were: $0 \rightarrow 3 \rightarrow 1$; and $0 \rightarrow 0 \rightarrow 0$ (for R); $126 \rightarrow 76 \rightarrow 81$ and $121 \rightarrow 30 \rightarrow 135$ (for G); $217 \rightarrow 227 \rightarrow 211$ and $234 \rightarrow 240 \rightarrow 232$ (for B), respectively. In the range $80-95^{\circ}$, perceived luminance could be very high, significantly exceeding the maximal possible level of the checker image. It was surprising that, in certain conditions, two of our subjects could perceive the red stimuli as certainly the green ones or see the two hues at once in one image. Transformation of the red image into the green one and back could be verified by means of moving the test stimuli along the perimetric arc repeatedly.

Partially supported by RFBR grant 19-015-00396A.

A PILOT PERIMETRIC STUDY OF FAR PERIPHERAL COLOR VISION USING TW O SMARTPHONES Galina Rozhkova1, Alexander Belokopytov ${ }^{1}$, EgorErshov ${ }^{1}$, Ilya Nikolaev ${ }^{2}$, PetrNikolayev ${ }^{1}$

RIGA 2019
${ }^{1}$ Institute for Information Transmission Problems (Kharkevich Institute) Russian Academy of Sciences, Moscow, Russia
${ }^{2}$ Moscow State University, Moscow, Russia
E-mail: gir@iitp.ru

Purpose

The purposeof this investigation was to find a simple technique for a quantitative assessment of peripheral color vision. Despite a significant number of investigations showing that, in conditions of a proper scaling test stimulus size and/or luminance, human peripheral retina can provide foveal-like color perception, some doubts concerning peripheral color vision are still common among visual scientists and ophthalmologists. Methodological and technical problems in creating conditions for a suitable stimulus presentation and adequate characterization of perceived images at the periphery of the visual field make it difficult to collect enough data and formulate comprehensive notion of the peripheral vision.

Methods

Experimental setup

In our pilot study, we tried to use identical smartphones (Samsung Galaxy S6 with AMOLED screen) both for test stimulus presentation and for quantitative evaluation of perceived images using color checker. The test stimuli (uniform color circles of $4-8^{\circ}$ in diameter turning on/off each 1.5 s) were displayed on the smartphone attached to the platform moving along the perimetric arc to vary stimulus eccentricity. The second smartphone, displaying color checker circle, was fixed at the center of the perimeter arc.

The hue and saturation of each test stimuli corresponded to one of the smartphone primaries ($\mathrm{R}, \mathrm{G}, \mathrm{B}$). Hue (H), saturation (S) and luminance (Volume-V) of the checker circle could be easily controlled by subjects with a mouse connected to the checker smartphone. The test stimulus and the checker circle were observed simultaneously in monocular viewing conditions. The subject's task was to make the checker image as similar as possible to the appearance of the peripheral one adjusting hue, saturation, and luminance of the checker circle by means of moving the mouse. The quantitative estimates of the perceived colors were obtained according to the HSV color model and were displayed on the checker.

Subjects

Subjects were three males and one female ($30-75$ years old) whose color vision (CV) was assessed with CAD (Colour Assessment and Diagnosis) test by City Occupational Ltd.

Some results of our preliminary investigation are shown here in tables and polar plots. Presenting color test stimuli at far periphery (temporal visual field, $60-95^{\circ}$), we have found that perceived peripheral images could be vivid and, in most cases, allowed matching in hue and saturation to the foveal checker image. Matching in perceived brightness (volume) was less reliable: the highest possible value $\mathrm{V}=1.0$ was often insufficient for matching. With increasing eccentricity, the peripheral images preserved or changed their appearance depending on the stimulus parameters and individual eye properties (see the Tables 1,2 and plots).

Table 1. Subject IPN. Test $4 \mathrm{~cm} .(\mathrm{H}-\mathrm{S}-\mathrm{V})$

EIE, normal CV

IPN

Diagnosis: normal RG color vision; deficient YB color vision

Procedure

NNV, normal CV

PPN

Diagnosis: potential deutan deficiency; deficient YB color vision; acquired deficiency likely

four
It was surprising that, in certain conditions, two of our subjects could perceive the red stimuli as certainly the green ones or see the two hues at once in one image. The data of one such subject (EIE) are presented in the two lower plots. At the intensity level 100 and the eccentricity 80°, a red stimulus was perceived as red-green and, at 95°, - as green. Transformation of the red image into the green one and back could be verified by means of moving the test stimuli along the perimetric arc repeatedly. At higher intensity level, 255, transformation of red into green was not observed.

Table 2. Subject NNV. Test 4 cm . (H-S-V)

T	Eccentricity					
	60°		80°		95°	
	L	Perceived image	L	Perceived imager	L	Perceived image
R	34	Orange-red circle	40	Dark red circle	35	Achromatic flicker
E	100	0-1-0.6	100	3-0.79-0.6	100	1-0.88-0.8
D	255	0-1-1	255	0-0.89>1	255	0-0.88>1
G						
R	15	Achromatic flicker	15	Achromatic flicker	15	Dark green flicker
E	100	115-0.7-0.3	100	114-0.64-0.8	100	154-0.85-0.4
$\begin{aligned} & \mathrm{E} \\ & \mathrm{~N} \end{aligned}$	255	128-0.69-0.9	255	$120-0.63>1$	255	152-0.85-1
B						
L	20	Bluish flicker	20	Dark-bluie flicker	30	Achromatic flicker
U	100	228-0.95-0.5	100	240-0.79-0.9	100	219-0.71-0.4
E	255	224-0.96-1	255	232-0.75>1	255	222-0.82>1

Comments to the Tables:
-The triplets of values in the cells of both Tables correspond to the values $\mathrm{H}, \mathrm{S}, \mathrm{V}$ chosen by the subjects as a result of matching. At low intensities of the peripheral stimuli, matching was impossible though subjects could perceive not only "something flickering" but also clear pale circular images.
-The signs >1 and $\gg 1$ correspond to the cases when the peripheral image was perceived as very bright and the foveal image with $\mathrm{V}=1$ (the maximum possible value) appeared to be too weak in comparison with it.

Conclusions

In many cases, far peripheral images were characterized by unusually high brightness making it impossible to obtain the foveal image matched to the peripheral one in V .

Matching in H and S was also not always possible, supposedly, because of relatively low precision of the smartphones as the devices for color coding and displaying.
(1) A simple setup with two smartphones designed for displaying and varying color test and checker images proved to be suitable for fast preliminary investigation of peripheral color vision providing consistent and reliable data.
(2) The quality and applicability of the set up as a measuring instrument could be improved by using more perfect color model and taking the devices with better color characteristics.

References

Acknowledgments
We are greatly indebted to our colleagues Maria Gracheva and Nadezhda Vasilyeva for their help and participation in our

Abramov I., Gordon J. Color vision in the peripheral retina. I. Spectral sensitivity. J. Opt. Soc. Am1977. V. 67(2). P. 195-202. Gordon J., Abramov I., Color vision in the peripheral retina. II. Hue and saturation. J. Opt. Soc. Am1977. V. 67(2). P. 202 -207. Gordon J., Abramov I., Color vision in the peripheral retina. II. Hue and saturation J. Ot. Soc. Am.977. V. 6 (2). P. P. 202-20.2.
Abramov I., Gordon J., Chan H. Color appearance in the peripheral retina: effects of stimulus size. J. Opt. Soc. Am. A991. V. 8(2). P. 404-414. Abramov I., Gordon J., Chan H. Color appearance in the peripheral retina: effects of stimulus size. J. Opt. Soc. Am. A.A91. V. 8 (2). P. P. $404-414$.
Rozhkova, G. I. \& Yarbus, A. LThe effects of velocity of retinal image movement on peripheral vision. Biofizika [Biophysics. 1974. V. 19 (5). P. 908 -912.

Tyler C.W. Peripheral Color

