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Abstract

We study the problem of optimal long term investment with a view to beat a bench-
mark for a diffusion model of asset prices. Two kinds of objectives are considered. One
criterion concerns the probability of outperforming the benchmark and seeks either to
minimise the decay rate of the probability that a portfolio exceeds the benchmark or
to maximise the decay rate that the portfolio falls short. The other criterion concerns
the growth rate of an expected risk–sensitised utility of wealth which has to be either
minimised, for a risk–averse investor, or maximised, for a risk–seeking investor. It is
assumed that the mean returns and volatilities of the securities are affected by an eco-
nomic factor, possibly, in a nonlinear fashion. The economic factor and the benchmark
are modelled with general Itô differential equations. The results identify asymptotically
optimal portfolios and produce the decay, or growth, rates. The proportions of wealth
invested in the individual securities are time–homogeneous functions of the economic
factor. Furthermore, a uniform treatment is given to the out– and under– performance
probability optimisation as well as to the risk–averse and risk–seeking portfolio optimi-
sation. It is shown that there exists a portfolio that optimises the decay rates of both
the outperformance probability and the underperformance probability. While earlier
research on the subject has relied, for the most part, on the techniques of stochastic
optimal control and dynamic programming, in this contribution the quantities of inter-
est are studied directly by employing the methods of the large deviation theory. The
key to the analysis is to recognise the setup in question as a case of coupled diffusions
with time scale separation, with the economic factor representing ”the fast motion”.

1 Introduction

Recently, two approaches have emerged to constructing long–term optimal portfolios for
diffusion models of asset prices: optimising the risk–sensitive criterion and optimising the
probability of outperforming a benchmark. In the risk–sensitive framework, one is concerned
with the expected risk–sensitised utility of wealth Eeλ lnZt , where Zt represents the portfo-
lio’s wealth at time t and λ is the risk–sensitivity parameter. If λ < 0 , then λ ln(Zt/Z0)
is a measure of an investor’s losses, whereas it measures the investor’s gains if λ > 0 .
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As the risk–averse investor (respectively, the risk–seeking investor) seeks to minimise their
losses (respectively, to maximise their gains), it is arguable that λ is representative of the
investor’s degree of risk aversion, if negative, or of risk–seeking, if positive. (One can find a
more detailed discussion in Bielecki and Pliska [5].) When trying to beat a benchmark, Yt,
the expected risk–sensitised utility of wealth is given by Eeλ ln(Zt/Yt) . Since typically those
expectations grow, or decay, at an exponential rate, one is led to optimise that rate, so an
optimal portfolio for the risk–averse investor (respectively, for the risk–seeking investor) is
defined as the one that minimises (respectively, maximises) the limit, assuming it exists, of
(1/t) lnEeλ ln(Zt/Yt) , as t → ∞ . In a similar vein, there are two ways to define the crite-
rion when the objective is to outperform the benchmark. One can either choose the limit
of (1/t) lnP(ln(Zt/Yt) ≤ 0) , as t → ∞ , as the quantity to be minimised or the limit of
(1/t) lnP(ln(Zt/Yt) ≥ 0) as the quantity to be maximised. Arguably, the former criterion is
favoured by the risk–averse investor and the latter, by the risk–seeking one. More generally,
one may look at the limits of (1/t) lnP(ln(Zt/Yt) ≤ q) or of (1/t) lnP(ln(Zt/Yt) ≥ q) , for
some threshold q .

Risk–sensitive optimisation has received considerable attention in the literature and has
been studied under various sets of hypotheses. Bielecki and Pliska [5] consider a nonbench-
marked setting with constant volatilitities and with mean returns of the securities being
affine functions of an economic factor, which is modelled as a Gaussian process satisfying a
linear stochastic differential equation. For the risk–averse investor, they find an asymptot-
ically optimal portfolio and the risk–sensitised expected growth rate. Subsequent research
has relaxed some of the assumptions made, such as the independence of the diffusions driving
the economic factor process and the asset price process, see Kuroda and Nagai [26], Bielecki
and Pliska [6]. Fleming and Sheu [17], [18] analyse both the risk–averse and the risk–seeking
setups. A benchmarked setting is studied by Davis and Lleo [11], [12], [13], the latter two
papers being concerned with diffusions with jumps as driving processes. Nagai [32] assumes
general mean returns and volatilities and the factor process being the solution to a general
stochastic differential equation and obtains an asymptotically optimal portfolio for the risk–
averse investor when there is no benchmark involved. Special one–dimensional models are
treated in Fleming and Sheu [16] and Bielecki, Pliska, and Sheu [7]. The methods of the
aforementioned papers rely on the tools of stochastic optimal control. A Hamilton–Jacobi–
Bellman equation is invoked in order to identify a portfolio that minimises the expected
risk–sensitised utility of wealth on a finite horizon. Next, a limit is taken as the length of
time goes to infinity. The optimal portfolio is expressed in terms of a solution to a Riccati
algebraic equation in the affine case, and to an ergodic Bellman equation, in the general
case.

The criterion of the probability of outperformance is considered in Pham [34], who stud-
ies a one–dimensional affine setup. The minimisation of the underperformance probability
for the Bielecki and Pliska [5] model is addressed in Hata, Nagai, and Sheu [20]. Nagai [33]
studies the general model with the riskless asset as the benchmark. Those authors build on
the foundation laid by the work on the risk–sensitive optimisation. Stochastic control meth-
ods are applied in order to identify an optimal risk–sensitive portfolio, first, and, afterwards,
duality considerations are invoked to optimise the probabilities of out/under performance.
The risk–sensitive optimal portfolio for an appropriately chosen risk–sensitivity parameter is
found to be optimal for the out/under performance probability criterion. The parameter is
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between zero and one for the outperformance case and is negative, for the underperformance
case. Puhalskii [35] analyses the out/under performance probabilities directly and obtains a
portfolio that is asymptotically optimal both for the outperformance and underperformance
probabilities, the limitation of their study being that it is confined to a geometric Brownian
motion model of the asset prices with no economic factor involved. Puhalskii and Stutzer
[37], in an unpublished manuscript, study the underperformance probability for the model
in Nagai [33] with a general benchmark by applying direct methods.

Whereas the cases of a negative risk–sensitivity parameter for risk–sensitive optimisation
and of the underperformance probability minimisation seem to be fairly well understood,
the setups of risk–sensitive optimisation for a positive parameter and of the outperformance
probability optimisation lack clarity. The reason seems to be twofold. Firstly, the expected
risk–sensitised utility of wealth may grow at an infinite exponential rate for certain λ ∈
[0, 1] , see Fleming and Sheu [18]. Secondly, the analysis of the ergodic Bellman equation
presents difficulty because no Lyapunov function is readily available, cf., condition (A3) in
Kaise and Sheu [23]. Although Pham [34] carries out a detailed study and identifies the
threshold value of λ when ”the blow–up” occurs for an affine model of one security and one
factor, for the multidimensional case, we are unaware of results that produce asymptotically
optimal portfolios either for the risk–seeking criterion or for the outperformance probability
maximisation.

The purpose of this paper is to fill in the aforementioned gaps. We study a benchmarked
version of the general model in Nagai [32, 33]. Capitalising on the insights in Puhalskii and
Stutzer [37], we identify an optimal portfolio for maximising the outperformance probability.
For the risk–sensitive setup, we prove that there is a threshold value λ ∈ (0, 1] such that
for all λ < λ there exists an asymptotically optimal risk–seeking portfolio. It is obtained as
an optimal outperformance portfolio for certain threshold q . If λ > λ , there is a portfolio
such that the expected risk–sensitised utility of wealth grows at an infinite exponential rate.
Furthermore, we give a uniform treatment to the out– and under– performance probability
optimisation as well as to the risk–averse and risk–seeking portfolio optimisation. We show
that the same portfolio optimises both the underperformance and outperformance proba-
bilities, in line with conclusions in Puhalskii [35]. Similarly, the same procedure can be
used for finding optimal risk–sensitive portfolios both for the risk–averse investor and for the
risk–seeking investor. The portfolios are expressed in terms of solutions to ergodic Bellman
equations.

No stochastic control techniques are invoked and standard tools of large deviation the-
ory are employed, such as a change of a probability measure and an exponential Markov
inequality. We treat the setup as a case of coupled diffusions with time scale separation,
the factor process representing ”the fast motion”. The empirical measure of the factor pro-
cess plays a key role in the proofs. An application of the large deviation principle to the
pair comprising the portfolio and the economic factor produces a heuristic derivation of
the asymptotic bounds being sought. The bounds are then confirmed rigourously. Another
notable feature is an extensive use of the minimax theorem and a characterisation of the
optimal portfolios in terms of saddle points. Being more direct than the one based on the
stochastic optimal control theory, this approach streamlines considerations, e.g., there is no
need to contend with a Hamilton–Jacobi–Bellman equation on finite time, thereby enabling
us both to obtain new results and relax or drop altogether a number of assumptions present
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in the earlier research on the subject. For instance, we do not restrict the class of portfolios
under consideration to portfolios whose total wealth is a sublinear function of the economic
factor, nor do we require that the limit growth rate of the expected risk–sensitised utility
of wealth be an essentially smooth (or ”steep”) function of the risk–sensitivity parameter,
which conditions are needed in Pham [34] even for a one–dimensional model.

Our results also extend and (or) complement those in Kuroda and Nagai [26], Nagai
[32], Hata, Nagai, and Sheu [20], and Nagai [33] on risk–sensitive optimisation for a negative
risk–sensitivity parameter and on underperformace probability optimisation on an infinite
horizon. We tackle a general benchmark and dispose of a number of assumptions some
of which are questionable from the modelling perspective. Besides, our proofs seem to be
cleaner, see the discussion that follows the statement of the main results in Section 2 for more
detail. On the other hand, we require a certain regularity condition. Another distinction
is that the cited papers assume certain stability conditions which involve the coefficients of
both the equations for the economic factor and the equations for the securities, whereas the
model’s definition has it that the economic factor is not affected by the security prices. We
use a different stability condition which is along similar lines as the one in Fleming and Sheu
[18] and concerns the properties of the economic factor only.

This is how this paper is organised. In Section 2, we define the model, provide the
heuristics, and state the main results. More detail is given on the relation to earlier work.
The proofs are provided in Section 4 whereas Section 3 and the appendix are concerned with
laying the groundwork and shedding additional light on the model of Pham [34].

2 A model description and main results

We are concerned with a market of n risky securities priced S1
t , . . . , S

n
t at time t and a safe

security of price S0
t at time t . We assume that, for i = 1, 2, . . . , n,

dSit
Sit

= ai(Xt) dt+ bi(Xt)
T
dWt

and that
dS0

t

S0
t

= r(Xt) dt ,

where Xt represents the economic factor. It is governed by the equation

dXt = θ(Xt) dt+ σ(Xt) dWt . (2.1)

In the equations above, the ai(x) are real-valued functions, the bi(x) are Rk-valued functions,
θ(x) is an Rl-valued function, σ(x) is an l × k-matrix, W = (Wt , t ≥ 0) is a k-dimensional
standard Wiener process, and Si0 > 0 , T is used to denote the transpose of a matrix or a
vector. Accordingly, the process X = (Xt , t ≥ 0) is l-dimensional.

Benchmark Y = (Yt , t ≥ 0) follows an equation similar to those for the risky securities:

dYt
Yt

= α(Xt) dt+ β(Xt)
T dWt,
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where α(x) is an R-valued function, β(x) is an Rk-valued function, and Y0 > 0 .
All processes are defined on a complete probability space (Ω,F ,P) . It is assumed,

furthermore, that the processes Si = (Sit , t ≥ 0) , X , and Y = (Yt , t ≥ 0) are adapted to
(right–continuous, complete) filtration F = (Ft , t ≥ 0) and that W is an F-Wiener process.

We let a(x) denote the n-vector with entries a1(x), . . . , an(x), let b(x) denote the n × k
matrix with rows b1(x)

T
, . . . , bn(x)T and let 1 denote the n-vector with unit entries. The

matrices b(x)b(x)T and σ(x)σ(x)T are assumed to be uniformly positive definite and bounded.
The functions a(x) , r(x) , θ(x) , α(x) , b(x) , σ(x) , and β(x) are assumed to be continuously
differentiable with bounded derivatives and the function σ(x)σ(x)T is assumed to be twice
continuously differentiable. The function |β(x)|2 is assumed to be bounded and bounded
away from zero. (We will also indicate how the results change if the benchmark ”is not
volatile” meaning that β(x) = 0 .) Under those hypotheses, the processes Si , X , and Y are
well defined, see, e.g., chapter 5 of Karatzas and Shreve [24].

For the factor process, we assume that

lim sup
|x|→∞

θ(x)T
x

|x|2
< 0 . (2.2)

Thus, X has a unique invariant measure, see, e.g., Bogachev, Krylov, and Röckner [9]. As
for the initial condition, we will assume that Eeγ|X0|2 < ∞ , for some γ > 0 . Sometimes it
will be required that |X0| be, moreover, bounded.

The investor holds lit shares of risky security i and l0t shares of the safe security at time t ,
so the total wealth is given by Zt =

∑n
i=1 l

i
tS

i
t + l0tS

0
t . Portfolio πt = (π1

t , . . . , π
n
t )T specifies

the proportions of the total wealth invested in the risky securities so that, for i = 1, 2, . . . , n,
litS

i
t = πitZt . The processes πi = (πit , t ≥ 0) are assumed to be (B ⊗Ft, t ≥ 0)–progressively

measurable, where B denotes the Borel σ–algebra on R+, and such that
∫ t

0
πis

2
ds < ∞ a.s.

We do not impose any other restrictions on the magnitudes of the πit so that unlimited
borrowing and shortselling are allowed.

Let

Lπt =
1

t
ln
(Zt
Yt

)
.

Since the amount of wealth invested in the safe security is (1 −
∑n

i=1 π
i
t)Zt , in a standard

fashion by using the self–financing condition that dZt =
∑n

i=1 l
i
t dS

i
t + l0t dS

0
t , one obtains

that
dZt
Zt

=
n∑
i=1

πit
dSit
Sit

+
(
1−

n∑
i=1

πit
) dS0

t

S0
t

.

Assuming that Z0 = Y0 and letting c(x) = b(x)b(x)T , we have by Itô’s lemma that, cf. Pham
[34],

Lπt =
1

t

t∫
0

(
πTs a(Xs) + (1− πTs 1)r(Xs)−

1

2
πTs c(Xs)πs − α(Xs) +

1

2
|β(Xs)|2

)
ds

+
1

t

t∫
0

(
b(Xs)

Tπs − β(Xs)
)T
dWs . (2.3)
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One can see that Lπt is ”of order one” for t great. Therefore, if one embeds the probabil-
ity of outperformance P(ln(Zt/Yt) ≥ 0) (respectively, the probability of underperfomance
P(ln(Zt/Yt) ≤ 0)) into the parameterised family of probabilities P(Lπt ≥ q) (respectively,
P(Lπt ≤ q)) , one will concern themselves with large deviation probabilities.

Let, for u ∈ Rn and x ∈ Rl ,

M(u, x) = uT (a(x)− r(x)1)− 1

2
uT c(x)u+ r(x)− α(x) +

1

2
|β(x)|2 (2.4a)

and

N(u, x) = b(x)Tu− β(x) . (2.4b)

A change of variables brings (2.3) to the form

Lπt =

1∫
0

M(πts, Xts) ds+
1√
t

1∫
0

N(πts, Xts)
T dW t

s , (2.5)

where W t
s = Wts/

√
t . The righthand side of (2.5) can be viewed as a diffusion process

with a small diffusion coefficient which lives in ”normal time” represented by the variable s ,
whereas in Xts and πts ”time” is accelerated by a factor of t . Furthermore, on introducing
πts = πts , X t

s = Xts , assuming that, for suitable function u(·) , πts = u(X t
s) , defining

Ψt
s =

s∫
0

M(u(X t
s̃), X

t
s̃) ds̃+

1√
t

s∫
0

N(u(X t
s̃), X

t
s̃)
T dW t

s̃ , (2.6)

so that Lπt = Ψt
1 , and writing (2.1) as

X t
s = X t

0 + t

s∫
0

θ(X t
s̃) ds̃+

√
t

s∫
0

σ(X t
s̃) dW

t
s̃ , (2.7)

one can see that (2.6) and (2.7) make up a similar system of equations to those studied in
Liptser [28] and in Puhalskii [36]. The heuristic derivation below which is based on the Large
Deviation Principle (LDP) in Theorem 2.1 in Puhalskii [36] provides insight into our results
below. It is helpful to keep in mind that W t = (W t

s , s ∈ [0, 1]) is a Wiener process relative
to Ft = (Fts, s ∈ [0, 1]) and that both X t = (X t

s, s ∈ [0, 1]) and πt = (πts, s ∈ [0, 1]) are
Ft-adapted processes.

Let us introduce additional pieces of notation first. Let C2 represent the set of real–valued
twice continuously differentiable functions on Rl . For f ∈ C2 , we let ∇f(x) represent the
gradient of f at x which is regarded as a column l–vector and we let ∇2f(x) represent the
l × l–Hessian matrix of f at x . Let C1

0 and C2
0 represent the sets of functions of compact

support on Rl that are once and twice continuously differentiable, respectively. Let P denote
the set of probability densities m = (m(x) , x ∈ Rl) on Rl such that

∫
Rl |x|

2m(x) dx < ∞
and let P̂ denote the set of probability densities m from P such that m ∈ W1,1

loc(Rl) and
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√
m ∈W1,2(Rl) , where W is used for denoting a Sobolev space, see, e.g., Adams and Fournier

[1]. Let C([0, 1],R) represent the set of continuous real–valued functions on [0, 1] being
endowed with the uniform topology and let C↑([0, 1],M(Rl)) represent the set of functions
µt on [0, 1] with values in the set M(Rl) of (nonnegative) measures on Rl such that µt(Rl) = t
and µt−µs is a nonnegative measure when t ≥ s . The space M(Rl) is assumed to be equipped
with the weak topology and the space C↑([0, 1],M(Rl)) , with the uniform topology. Let the
empirical process of X t , which is denoted by µt = (µt(ds, dx)) , be defined by the equation

µt([0, s],Γ) =

s∫
0

χΓ(X t
s̃) ds̃ ,

with Γ denoting a Borel subset of Rl and with χΓ(x) representing the indicator function of
Γ .

If one were to apply to the processes Ψt = (Ψt
s , s ∈ [0, 1]) and µt Theorem 2.1 in Puhalskii

[36], then the pair (Ψt, µt) would satisfy the LDP in C([0, 1],R)×C↑([0, 1],M(Rl)) , as t→∞ ,
with the deviation function (usually referred to as a rate function)

J(Ψ, µ) =

1∫
0

sup
λ∈R

(
λ
(
Ψ̇s −

∫
Rl

M(u(x), x)ms(x) dx
)
− 1

2
λ2

∫
Rl

|N(u(x), x)|2ms(x) dx

+ sup
f∈C1

0

∫
Rl

(
∇f(x)T

(1

2
div
(
σ(x)σ(x)Tms(x)

)
−
(
θ(x) + λσ(x)TN(u(x), x)

)
ms(x)

)
− 1

2
|σ(x)T∇f(x)|2ms(x)

)
dx
)
ds , (2.8)

provided the function Ψ = (Ψs, s ∈ [0, 1]) is absolutely continuous w.r.t. Lebesgue measure
on R and the function µ = (µs(Γ)) , when considered as a measure on [0, 1]×Rl , is absolutely
continuous w.r.t. Lebesgue measure on R×Rl , i.e., µ(ds, dx) = ms(x) dx ds , where ms(x) ,
as a function of x , belongs to P̂ for almost all s . If those conditions do not hold, then
J(Ψ, µ) =∞ . (We assume that the divergence of a square matrix is evaluated rowwise.)

Integration by parts yields an alternative form:

J(Ψ, µ) =

1∫
0

sup
λ∈R

(
λ
(
Ψ̇s −

∫
Rl

M(u(x), x)ms(x) dx
)
− 1

2
λ2

∫
Rl

|N(u(x), x)|2ms(x) dx

+ sup
f∈C2

0

∫
Rl

(
− 1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
−∇f(x)T (θ(x) + λσ(x)TN(u(x), x))

− 1

2
|σ(x)T∇f(x)|2

)
ms(x) dx

)
ds , (2.9)

with tr Σ standing for the trace of square matrix Σ . Since Lπt = Ψt
1 , by projection, Lπt

obeys the LDP in R for rate t with the deviation function I(L) = inf{J(Ψ, µ) : Ψ1 = L } .
Therefore,

lim sup
t→∞

1

t
lnP(Lπt ≥ q) ≤ − inf

L≥q
I(L) . (2.10)
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The integrand against ds in (2.9) being a convex function of Ψ̇s and of ms(x) , along with the

requirements that
∫ 1

0
Ψ̇s ds = L and

∫
Rlms(x) dx = 1 imply, by Jensen’s inequality, that one

may assume that Ψ̇s = L and that ms(x) does not depend on s either, so that ms(x) = m(x) .
Hence,

inf
L≥q

I(L) = inf
L≥q

inf
m∈P̂

sup
λ∈R

(
λ
(
L−

∫
Rl

M(u(x), x)m(x) dx
)
− 1

2
λ2

∫
Rl

|N(u(x), x)|2m(x) dx

+ sup
f∈C2

0

∫
Rl

(
− 1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
−∇f(x)T (θ(x) + λσ(x)TN(u(x), x))

− 1

2
|σ(x)T∇f(x)|2

)
m(x) dx

)
.

On noting that the expression on the righthand side is convex in (L,m) and is concave in
(λ, f) , one hopes to be able to apply a minimax theorem to change the order of taking inf
and sup so that

inf
L≥q

I(L) = sup
λ∈R

sup
f∈C2

0

inf
L≥q

inf
m∈P̂

(
λ
(
L−

∫
Rl

M(u(x), x)m(x) dx
)
− 1

2
λ2

∫
Rl

|N(u(x), x)|2m(x) dx

+

∫
Rl

(
− 1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
−∇f(x)T (θ(x) + λσ(x)TN(u(x), x))

− 1

2
|σ(x)T∇f(x)|2

)
m(x) dx

)
. (2.11)

If λ < 0 , then the infimum over L ≥ q equals −∞ . If λ ≥ 0 , it is attained at L = q and
infm∈P̂ ”is attained at a δ–density” so that (2.11) results in

inf
L≥q

I(L) = sup
λ∈R+

sup
f∈C2

0

(
λq − sup

x∈Rl

(
λM(u(x), x) +

1

2
λ2|N(u(x), x)|2

+
1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
+∇f(x)T (θ(x) + λσ(x)TN(u(x), x)) +

1

2
|σ(x)T∇f(x)|2

))
.

(2.12)

For an optimal outperforming portfolio, one wants to maximise the righthand side of (2.10)
over functions u(x) , so the righthand side of (2.12) has to be minimised. Assuming one can
apply minimax considerations once again yields

inf
u(·)

inf
L≥q

I(L) = sup
λ∈R+

sup
f∈C2

0

(
λq − sup

x∈Rl
sup
u∈Rn

(
λM(u, x) +

1

2
λ2|N(u, x)|2

+∇f(x)T (θ(x) + λσ(x)TN(u, x))
)

+
1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
+

1

2
|σ(x)T∇f(x)|2

)
.

By (2.4a) and (2.4b), the supu∈Rn = ∞ if λ > 1 so, on recalling (2.10), it is reasonable to
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conjecture that

sup
π

lim sup
t→∞

1

t
lnP(Lπt ≥ q) = − sup

λ∈[0,1]

sup
f∈C2

0

(
λq − sup

x∈Rl
sup
u∈Rn

(
λM(u, x) +

1

2
λ2|N(u, x)|2

+∇f(x)T (θ(x) + λσ(x)TN(u, x))
)

+
1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
+

1

2
|σ(x)T∇f(x)|2

)
(2.13)

and an optimal portfolio is of the form u(Xt) , with u(x) attaining the supremum with respect
to u on the righthand side of (2.13) for λ and f that deliver their respective suprema. Similar
arguments may be applied to finding infπ lim inft→∞(1/t) lnP(Lπt < q) . Unfortunately, we
are unable to fill in the gaps in the above derivation, e.g., in order for the results of Puhalskii
[36] to apply, the function u(x) has to be bounded in x, while the optimal portfolio typically
is not. Besides, it is not at all obvious that the optimal portfolio should be expressed as
a function of the economic factor. Nevertheless, the above line of reasoning is essentially
correct, as our results show. Besides, there is a special case which we analyse at the final
stages of our proofs that allows a direct application of Theorem 2.1 in Puhalskii [36]. We
now proceed to stating the results. That requires introducing more pieces of notation and
foreshadowing certain properties to be proved later.

The following nondegeneracy condition is needed. Let Ik denote the k×k–identity matrix
and let

Q1(x) = Ik − b(x)T c(x)−1b(x) .

The matrix Q1(x) represents the orthogonal projection operator onto the null space of b(x)
in Rk . We will assume the following ”general position” condition:

(N) 1. The matrix σ(x)Q1(x)σ(x)T is uniformly positive definite.

2. The quantity β(x)TQ2(x)β(x) is bounded away from zero, where

Q2(x) = Q1(x)
(
Ik − σ(x)T (σ(x)Q1(x)σ(x)T )−1σ(x)

)
Q1(x) . (2.14)

It admits the following geometric interpretation.

Lemma 2.1. The matrix σ(x)Q1(x)σ(x)T is uniformly positive definite if and only if arbi-
trary nonzero vectors from the ranges of σ(x)T and b(x)T , respectively, are at angles bounded
away from zero if and only if the matrix c(x)−b(x)σ(x)T (σ(x)σ(x)T )−1σ(x)b(x)T is uniformly
positive definite. Also, β(x)TQ2(x)β(x) is bounded away from zero if and only if the projec-
tion of β(x) onto the null space of b(x) is of length bounded away from zero and is at angles
bounded away from zero to all projections onto that null space of nonzero vectors from the
range of σ(x)T .

The proof of the lemma is provided in the appendix. Under part 1 of condition (N), we
have that k ≥ n + l and the rows of the matrices σ(x) and b(x) are linearly independent.
Part 2 of condition (N) implies that β(x) does not belong to the sum of the ranges of b(x)T

and of σ(x)T . (Indeed, if that were the case, then Q1(x)β(x) , which is the projection of
β(x) onto the null space of b(x) , would also be the projection of a vector from the range of
σ(x)T onto the null space of b(x) .) Thus, k > n+ l .
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The righthand side of (2.13) motivates the following definitions. Let, given x ∈ Rl ,
λ ∈ R , and p ∈ Rl ,

H̆(x;λ, p) = λ sup
u∈Rn

(
M(u, x)+

1

2
λ|N(u, x)|2+pTσ(x)N(u, x)

)
+pT θ(x)+

1

2
|σ(x)Tp|2 . (2.15)

By (2.4a) and (2.4b), the latter righthand side is finite if λ < 1 , with the supremum being
attained at

u(x) =
1

1− λ
c(x)−1

(
a(x)− r(x)1− λb(x)β(x) + b(x)σ(x)Tp

)
. (2.16)

Furthermore,

sup
u∈Rn

(
M(u, x) +

1

2
λ|N(u, x)|2 + pTσ(x)N(u, x)

)
=

1

2

1

1− λ
‖a(x)− r(x)1− λb(x)β(x) + b(x)σ(x)Tp‖2

c(x)−1

+
1

2
λ|β(x)|2 + r(x)− α(x) +

1

2
|β(x)|2 − β(x)Tσ(x)Tp , (2.17)

where, for y ∈ Rn and positive definite symmetric n×n–matrix Σ , we denote ‖y‖2
Σ = yTΣy .

Therefore, on introducing

Tλ(x) = σ(x)σ(x)T +
λ

1− λ
σ(x)b(x)T c(x)−1b(x)σ(x)T , (2.18a)

Sλ(x) =
λ

1− λ
(a(x)− r(x)1− λb(x)β(x))T c(x)−1b(x)σ(x)T − λβ(x)Tσ(x)T + θ(x)T ,

(2.18b)

and

Rλ(x) =
λ

2(1− λ)
‖a(x)− r(x)1− λb(x)β(x)‖2

c(x)−1 + λ(r(x)− α(x) +
1

2
|β(x)|2)

+
1

2
λ2|β(x)|2 , (2.18c)

we have that

H̆(x;λ, p) =
1

2
pTTλ(x)p+ Sλ(x)p+Rλ(x) . (2.19)

Let us note that, by condition (N), Tλ(x) is a uniformly positive definite matrix.
If λ = 1 , then, on noting that

M(u, x) +
1

2
|N(u, x)|2 + pTσ(x)N(u, x) = uT (a(x)− r(x)1− b(x)β(x) + b(x)σ(x)Tp)

+ r(x)− α(x) + |β(x)|2 − pTσ(x)β(x) , (2.20)

we have that H̆(x; 1, p) <∞ if and only if

a(x)− r(x)1− b(x)β(x) + b(x)σ(x)Tp = 0 , (2.21)
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in which case

H̆(x; 1, p) = r(x)− α(x) + |β(x)|2 − pTσ(x)β(x) + pT θ(x) +
1

2
|σ(x)Tp|2 . (2.22)

As mentioned, if λ > 1 , then the righthand side of (2.15) equals infinity. Consequently,
H̆(x;λ, p) is a lower semicontinuous function of (λ, p) with values in R∪{+∞} . By Lemma
3.5 below, H̆(x;λ, p) is convex in (λ, p) .

We define, given f ∈ C2 ,

H(x;λ, f) = H̆(x;λ,∇f(x)) +
1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
. (2.23)

By the convexity of H̆ , the function H(x;λ, f) is convex in (λ, f) .
Let

F (λ) = inf
f∈C2

sup
x∈Rl

H(x;λ, f) if λ < 1 , (2.24)

F (1) = limλ↑1 F (λ) , F (λ) = ∞ if λ > 1 , and λ = sup{λ ∈ R : F (λ) < ∞} . By H(x;λ, f)
being convex in (λ, f) , F (λ) is convex for λ < 1 , so F (1) is well defined, see, e.g., Theorem
7.5 on p.57 in Rockafellar [38]. As a function on R , F (λ) is seen to be convex and proper
(i.e., F (λ) > −∞ , see Remark 3.3). It is finite when λ < λ0 , for some λ0 ∈ (0, 1] , which
is obtained by taking f(x) = κ|x|2 , κ > 0 being small enough (see Lemma 3.1 for more
detail). Therefore λ ∈ (0, 1] . Lemma 3.4 below establishes that F (0) = 0 , that F (λ) is
lower semicontinuous on R and that if F (λ) is finite, with λ < 1 , then the infimum in (2.24)
is attained at function fλ which satisfies the equation

H(x;λ, fλ) = F (λ) , for all x ∈ Rl . (2.25)

Furthermore, fλ ∈ C1
` , with C1

` representing the set of real–valued continuously differentiable
functions on Rl whose gradients grow no faster than linearly. Thus, the infimum in (2.24)
can be taken over C2 ∩C1

` when λ < 1 . Equation (2.25) is referred to as an ergodic Bellman
equation, see, e.g., Fleming and Sheu [18], Kaise and Sheu [23], Hata, Nagai, and Sheu [20],
Ichihara [21].

Let

Jo
q = sup

λ∈[0,1]

(λq − F (λ)) (2.26a)

and

J s
q = sup

λ≤0
(λq − F (λ)) . (2.26b)

We note that −Jo
q is the righthand side of (2.13).

Theorem 2.1. 1. If |X0| is bounded and, for all 0 < λ < λ , there exist minimisers fλ(x)
of the righthand sides of (2.24) which are bounded below by affine functions of x , then

lim sup
t→∞

1

t
lnP(Lπt ≥ q) ≤ −Jo

q . (2.27)
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2.

lim inf
t→∞

1

t
lnP(Lπt < q) ≥ −J s

q . (2.28)

Remark 2.1. The requirement that fλ(x) be bounded below by affine functions when 0 <
λ < λ is fulfilled for the affine model, as we discuss below.

Our next aim is to produce a portfolio that will attain the bounds. Let P represent
the set of probability measures ν on Rl such that

∫
Rl |x|

2 ν(dx) < ∞ . For ν ∈ P , we
let L2(Rl,Rl, ν(dx)) represent the Hilbert space (of the equivalence classes) of Rl-valued
functions h(x) on Rl that are square integrable with respect to ν(dx) equipped with the norm(∫

Rl |h(x)|2 ν(dx)
)1/2

and we let L1,2
0 (Rl,Rl, ν(dx)) represent the closure in L2(Rl,Rl, ν(dx))

of the set of gradients of C1
0-functions. We will retain the notation ∇f for the elements of

L1,2
0 (Rl,Rl, ν(dx)) , although those functions might not be proper gradients. Let Uλ denote

the set of functions f ∈ C2 ∩C1
` such that supx∈Rl H(x;λ, f) <∞ . The set Uλ is nonempty

if and only if F (λ) <∞ . It is convenient to write (2.24) in the form, cf. (2.11),

F (λ) = inf
f∈Uλ

sup
ν∈P

∫
Rl

H(x;λ, f) ν(dx) , if λ < 1, (2.29)

the latter integral possibly being equal to −∞ . We adopt the convention that inf∅ = ∞ ,
so that (2.29) holds when Uλ = ∅ too. Let C2

b represent the subset of C2 of functions with
bounded second derivatives. Let, for f ∈ C2

b and m ∈ P ,

G(λ, f,m) =

∫
Rl

H(x;λ, f)m(x) dx . (2.30)

This function is well defined, is convex in (λ, f) and is concave in m . By Lemma 3.5 and
Lemma 3.6 below, for λ < λ , F (λ) = supm∈P̂ inff∈C2

0
G(λ, f,m) . One can replace P̂ with P

in the preceding sup and replace C2
0 with C2

b in the preceding inf. If m ∈ P̂ , then integration
by parts in (2.30) obtains that, for f ∈ C2

b ,

G(λ, f,m) = Ğ(λ,∇f,m) , (2.31)

where

Ğ(λ,∇f,m) =

∫
Rl

(
H̆(x;λ,∇f(x))− 1

2
∇f(x)T

div (σ(x)σ(x)T m(x))

m(x)

)
m(x) dx . (2.32)

(Unless specifically mentioned otherwise, it is assumed throughout that 0/0 = 0 . More detail
on the integration by parts is given in the proof of Lemma 3.4.) The function Ğ(λ,∇f,m)
is convex in (λ, f) and is concave in m . The righthand side of (2.32) being well defined for
∇f ∈ L1,2

0 (Rl,Rl,m(x) dx) , we adopt (2.32) as the definition of Ğ(λ,∇f,m) for (λ,∇f,m) ∈
R× L1,2

0 (Rl,Rl,m(x) dx)× P̂ .
Let, for m ∈ P̂ ,

F̆ (λ,m) = inf
∇f∈L1,2

0 (Rl,Rl,m(x) dx)
Ğ(λ,∇f,m) , (2.33)

12



when λ ≤ 1 and let F̆ (λ,m) = ∞ , for λ > 1 . By Lemma 3.5 below, the infimum in (2.33)
is attained uniquely, if finite, the latter always being the case for λ < 1 . Furthermore, if
λ < 1 , then F̆ (λ,m) = inff∈C2

0
G(λ, f,m) . By (2.32), the function F̆ (λ,m) is convex in

λ and is concave in m . It is lower semicontinuous in λ and is strictly convex on (−∞, 1)
by Lemma 3.5, so, by convexity, see Corollary 7.5.1 on p.57 in Rockafellar [38], F̆ (1,m) =
limλ↑1 inff∈C2

0
G(λ, f,m) . By Lemma 3.6 below, λq − F̆ (λ,m) has saddle point (λ̂, m̂) in

(−∞, λ] × P̂ , with λ̂ being specified uniquely, and the supremum of λq − F (λ) over R is
attained at λ̂ . It is noteworthy that if λ̂ < 0 , then J s

q > 0 and J0
q = 0 , while if λ̂ > 0 , then

Jo
q > 0 and J s

q = 0 , if λ̂ = 0 , then Jo
q = J s

q = 0 . Consequently, Jo
q ∨ J s

q = λ̂q − F (λ̂) , where
a ∨ b = max(a, b) .

If λ̂ < 1 , which is ”the regular case”, then m̂ is specified uniquely and there exists
f̂ ∈ C2 ∩ C1

` such that (λ̂, f̂ , m̂) is a saddle point of the function λq − Ğ(λ,∇f,m) in

R× (C2 ∩C1
`)× P̂ , with ∇f̂ being specified uniquely, see Lemma 3.6. As a matter of fact, f̂

is a minimizer for the righthand side of (2.24), so, it satisfies the ergodic Bellman equation

H(x; λ̂, f̂) = F (λ̂) , for all x ∈ Rl . (2.34)

We define û(x) as the u that attains supremum in (2.15) for λ = λ̂ and p = ∇f̂(x) so that,
by (2.16),

û(x) =
1

1− λ̂
c(x)−1

(
a(x)− r(x)1− λ̂b(x)β(x) + b(x)σ(x)T∇f̂(x)

)
. (2.35)

The density m̂ is the invariant density of a diffusion process in that∫
Rl

(
∇h(x)T (λ̂σ(x)N(û(x), x) + θ(x) + σ(x)σ(x)T∇f̂(x)) +

1

2
tr (σ(x)σ(x)T ∇2h(x))

)
m̂(x) dx = 0 , (2.36)

for all h ∈ C2
0 . Essentially, equations (2.34) and (2.36) represent Euler–Lagrange equations

for Ğ(λ̂,∇f,m) at (f̂ , m̂) . They specify ∇f̂ and m̂ uniquely and imply that (f̂ , m̂) is a
saddle point of Ğ(λ̂,∇f,m) , cf., Proposition 1.6 on p.169 in Ekeland and Temam [14].

Suppose that λ̂ = 1 , which is ”the degenerate case”. Necessarily, λ = 1 , so, the infimum
on the righthand side of (2.33) for λ = 1 and m = m̂ is finite and is attained at unique
∇f̂ (see Lemma 3.5). Consequently, F (1) <∞ . According to Lemma 3.6 below, cf., (2.21)
and (2.36),

a(x)− r(x)1− b(x)β(x) + b(x)σ(x)T∇f̂(x) = 0 m̂(x)dx–a.e. (2.37)

and∫
Rl

(
∇h(x)T

(
−σ(x)β(x) + θ(x) + σ(x)σ(x)T∇f̂(x)

)
+

1

2
tr
(
σ(x)σ(x)T∇2h(x)

))
m̂(x) dx = 0 ,

provided that h ∈ C2
0 and b(x)σ(x)T∇h(x) = 0 m̂(x) dx–a.e. By (2.20), the value

of the expression in the supremum in (2.15) does not depend on the choice of u
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when λ = 1 and p = ∇f̂(x) , so, there is some leeway as to the choice of an op-
timal control. As the concave function λq − F̆ (λ, m̂) attains maximum at λ = 1 ,

d/dλ F̆ (λ, m̂)
∣∣∣
1−
≤ q , with d/dλ F̆ (λ, m̂)

∣∣∣
1−

standing for the lefthand derivative of F̆ (λ, m̂)

at λ = 1 . Hence, there exists bounded continuous function v̂(x) with values in the

range of b(x)T such that |v̂(x)|2/2 = q − d/dλ F̆ (λ, m̂)
∣∣∣
1−

. (For instance, one can take

v̂(x) = b(x)T c(x)−1/2 z

√
2(q − d/dλ F̆ (λ, m̂)

∣∣∣
1−

) , where z represents an element of Rn of

length one.) We let û(x) = c(x)−1b(x)(β(x) + v̂(x)) .
In either case, we define π̂t = û(Xt) . The next theorem provides conditions for π̂ =

(π̂t , t ≥ 0) to be an asymptotically optimal portfolio.

Theorem 2.2. 1.

lim inf
t→∞

1

t
lnP(Lπ̂t > q) ≥ −Jo

q . (2.38)

2. If

lim
|x|→∞

1

|x|
(
‖b(x)σ(x)T∇f̂(x)‖2

c(x)−1 − ‖a(x)− r(x)1‖2
c(x)−1

)
= −∞ , (2.39)

then

lim sup
t→∞

1

t
lnP(Lπ̂t ≤ q) ≤ −J s

q . (2.40)

Remark 2.2. As a consequence, if conditions of part 1 of Theorem 2.1 hold, then

lim
t→∞

1

t
lnP(Lπ̂t > q) = sup

π
lim sup
t→∞

1

t
lnP(Lπt ≥ q) = −Jo

q .

If conditions of part 2 of Theorem 2.2 hold, then

lim
t→∞

1

t
lnP(Lπ̂t ≤ q) = inf

π
lim inf
t→∞

1

t
lnP(Lπt < q) = −J s

q .

Remark 2.3. The upper bounds in (2.27) and in (2.40) are of interest only if λ̂ > 0 and
λ̂ < 0 , respectively.

Remark 2.4. When β(x) = 0 , the proofs of Theorems 2.1 and 2.2 go through and their
assertions are maintained provided part 1 of condition (N) is satisfied and infx∈Rl(r(x) −
α(x)) < q . If infx∈Rl(r(x)− α(x)) ≥ q , then investing in the safe security only is obviously
optimal.

Remark 2.5. One can relax condition (2.2) and require that there exist a positive definite
symmetric l × l–matrix Φ such that

lim sup
|x|→∞

θ(x)T
Φx

|x|2
< 0 .

The following theorem states risk–sensitive optimality properties of π̂ . More specifically,
it shows that, given risk–sensitivity parameter λ , the portfolio π̂ is risk–sensitive optimal for
appropriately chosen q . If F is subdifferentiable at λ , we let ûλ(x) represent the function
û(x) for a value of q that is a subgradient of F at λ . We also let π̂λt = ûλ(Xt) , and π̂λ =
(π̂λt , t ≥ 0) . The function F is subdifferentiable at λ < λ . It might not be subdifferentiable
at λ .
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Theorem 2.3. 1. If 0 < λ < λ , if, for all small enough ε > 0 , there exist fλ(1+ε)(x)
(as in (2.25)) which are bounded below by affine functions of x and if |X0| is bounded,
then, for any portfolio π ,

lim sup
t→∞

1

t
lnEeλtL

π
t ≤ F (λ) .

If either 0 < λ < λ or λ = λ and F is subdifferentiable at λ , then

lim inf
t→∞

1

t
lnEeλtL

π̂λ

t ≥ F (λ) .

If either λ = λ and F is not subdifferentiable at λ or λ > λ , then there exists portfolio
πλ such that

lim inf
t→∞

1

t
lnEeλtL

πλ

t ≥ F (λ) .

2. If λ < 0 , then, for any portfolio π ,

lim inf
t→∞

1

t
lnEeλtL

π
t ≥ F (λ)

and, provided (2.39) holds for λ̂ = λ ,

lim sup
t→∞

1

t
lnEeλtL

π̂λ

t ≤ F (λ) .

Remark 2.6. The inequalities in parts 1 and 2 imply that, if λ < λ , then, in a fairly general
situation,

lim
t→∞

1

t
lnEeλtL

π̂λ

t = F (λ) .

Remark 2.7. We recall that F (λ) = ∞ if λ > λ . For a one–dimensional model, λ is found
explicitly in Pham [34], also, see the appendix below. We conjecture that F is differentiable
and strictly convex for λ < λ , which would imply that πλ is specified uniquely. This is
provably the case for the model of Pham [34] and provided λ < 0 , see Pham [34] and
Lemma 3.7 (or Puhalskii and Stutzer [37]), respectively.

If we assume that the functions a(x) , r(x) , α(x) and θ(x) are affine functions of x and
that the diffusion coefficients are constant so that X is a Gaussian process, then fairly explicit
formulas are available. More specifically, let

a(x) = A1x+ a2 , (2.41a)

r(x) = rT1 x+ r2 , (2.41b)

α(x) = αT1 x+ α2 , (2.41c)

θ(x) = Θ1x+ θ2 , (2.41d)

and

b(x) = b, β(x) = β, σ(x) = σ , (2.41e)
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where A1 ∈ Rn×l , a2 ∈ Rn , r1 ∈ Rl , r2 ∈ R , α1 ∈ Rl , α2 ∈ R , Θ1 is a negative definite
l× l-matrix (in fact, owing to Remark 2.5, one can only require that Θ1 be stable), θ1 ∈ Rl , b
is an n×k-matrix such that the matrix bbT is positive definite, β is a non-zero k-vector, and
σ is an l × k-matrix such that the matrix σσT is positive definite. Condition (N) expresses
the requirement that the ranges of σT and bT have the trivial intersection and that β is not
an element of the sum of those ranges.

Finding the optimal portfolio π̂t may be reduced to solving an algebraic Riccati equation.
We introduce, for λ < 1 ,

A(λ) = Θ1 +
λ

1− λ
σbT c−1(A1 − 1rT1 ), (2.42a)

B(λ) = Tλ(x) = σσT +
λ

1− λ
σbT c−1bσT , (2.42b)

and

C = ‖A1 − 1rT1 ‖2
c−1 . (2.42c)

Let us suppose that there exists symmetric l × l–matrix P1(λ) that satisfies the algebraic
Riccati equation

P1(λ)B(λ)P1(λ) + A(λ)TP1(λ) + P1(λ)A(λ) +
λ

1− λ
C = 0 . (2.43)

Conditions for the existence of solutions can be found in Fleming and Sheu [18], see also
Willems [42] and Wonham [43]. According to Lemma 3.3 in Fleming and Sheu [18], provided
that λ < 0 , there exists unique P1(λ) solving (2.43) such that P1(λ) is negative semidefinite.
Furthermore, the matrix

D(λ) = A(λ) +B(λ)P1(λ) (2.44)

is stable. If 0 < λ < 1 and F (λ) < ∞ , then, by Lemma 4.3 in Fleming and Sheu [18],
there exists unique P1(λ) solving (2.43) such that P1(λ) is positive semidefinite and D(λ)
is semistable. By Theorem 4.6 in Fleming and Sheu [18], the matrix D(λ) is stable if λ is
small enough.

With D(λ) being stable, the equation

D(λ)Tp2(λ) + E(λ) = 0 (2.45)

has a unique solution for p2(λ) , where

E(λ) =
λ

1− λ
(A1−1rT1 + bσTP1(λ))T c−1(a2− r21−λbβ) +λ(r1−α1−P1(λ)σβ) +P1(λ)θ2 .

(2.46)
Substitution shows that H(x;λ, f̃λ) , with f̃λ(x) = xTP1(λ)x/2 + p2(λ)Tx , does not depend
on x . Let mλ denote the invariant distribution of the linear diffusion

dYt = D(λ)Yt dt+
( λ

1− λ
σbT c−1(a2 − r21− λbβ + bσTp2(λ))− λσβ + σσTp2(λ) + θ2

)
dt

+ σ dWt . (2.47)
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Then the pair (f̃λ,mλ) is a saddle point of Ğ(λ,∇f,m) as well as of G(λ, f,m) considered
as functions of (f,m) ∈ Uλ × P̂ . Hence,

H(x;λ, fλ) = Ğ(λ,∇fλ,mλ) = inf
f∈Uλ

sup
m∈P̂

Ğ(λ,∇f,m) = inf
f∈Uλ

sup
m∈P

G(λ, f,m)

= inf
f∈Uλ

sup
x∈Rl

H(x;λ, f) = F (λ) ,

so f̃λ satisfies the Bellman equation (2.25). As a result, under the hypotheses of Fleming
and Sheu [18], f̃λ is bounded below by an affine function when λ ∈ (0, 1) and F (λ) < ∞ .
Condition (2.39) is implied by the condition that the matrix (bσTP1(λ̂))T c−1bσTP1(λ̂)−(A1−
1rT1 )T c−1(A1 − 1rT1 ) is negative definite.

Furthermore, one can see that

F (λ) =
1

2
‖p2(λ)‖2

σσT +
1

2

λ

1− λ
‖a2 − r21− λbβ + bσTp2(λ)‖2

c−1

+ (−λβTσT + θT2 )p2(λ) + λ(r2 − α2 +
1

2
|β|2) +

1

2
λ2|β|2 +

1

2
tr (σσTP1(λ)) . (2.48)

If λ̂ < 1 , equation (2.35) is as follows

û(x) =
1

1− λ̂
c−1
(
A1 − 1rT1 + bσTP1(λ̂))x+

1

1− λ̂
c−1
(
a2 − r21− λ̂bβ + bσTp2(λ̂)

)
. (2.49)

If λ̂ = 1 , then one may look, once again, for f̂(x) = xTP1(1)x/2 + p2(1)Tx . Substitution in
(2.37) yields

A1 − 1rT1 + bσTP1(1) = 0 , (2.50a)

a2 − r21− bβ + bσTp2(1) = 0 . (2.50b)

(One can also obtain (2.50a) by multiplying (2.43) through with 1− λ and taking a formal
limit as λ ↑ 1.) If those conditions hold, choosing f̂(x) quadratic is justified. An optimal
control is û(x) = c−1(bβ + v̂) , with v̂ coming from the range of bT and with |v̂|2/2 =

q − d/dλ F̆ (λ, m̂)
∣∣∣
1−

.

With λ̃ representing the supremum of λ such that P1(λ) exists and D(λ) is stable, one has
that λ̃ ≤ λ . Pham [34] shows that, in the one–dimensional case, under broad assumptions,
λ̃ = λ and F (λ) is differentiable on (−∞, λ) , both cases that λ < 1 and λ = 1 being
realisable. The hypotheses in Pham [34], however, rule out the possibility that λ̂ = 1 . In
the appendix, we complete the analysis of Pham [34] so that the case where λ̂ = 1 is realised
too.

For the case where α(x) = r(x) and β(x) = 0 , the control in (2.35) appears in Theorem
2.5 in Nagai [33], which obtains the limit in part 2 of Theorem 2.2. The stability condition is

of the form lim sup|x|→∞
(
θ(x)−σ(x)b(x)T c(x)−1(a(x)−r(x)1)

)T
x/|x|2 < 0 . Instead of condi-

tion (2.39), it is required in Nagai [33] that ‖b(x)σ(x)T∇f̂(x)‖2
c(x)−1−‖a(x)−r(x)1‖2

c(x)−1 < 0 ,

for all x (see (2.25) in Nagai [33]). We have our doubts, though, as to the proof of Theorem
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2.5 in Nagai [33] being sound: the last display of the proof on p.660 doesn’t seem to be

substantiated in that it is not clear how the term Ě
∫ T

0
e−w(Xs)(−χ) ds on the preceding line

is tackled, −χ being a positive number, e.g., why should Ěe−w(Xs) < ∞ , given that −w(x)
grows no slower than quadratically with |x| ? Theorem 2.4 in Nagai [33], which produces
an optimal portfolio on a finite time horizon, has no such condition. Besides, additional
assumptions are introduced both in Theorem 2.4 and in Theorem 2.5 in Nagai [33] (see
(2.20) and (2.21) there, the latter condition being characterised as ”crucial”) along with the
requirement that 0 < q < F ′(0) . Puhalskii and Stutzer [37] obtain the bound in (2.28) under
a relaxed stability condition. Theorems 2.1 and 2.2 improve on the results in Puhalskii [35]
by doing away with a certain growth requirement on |πt| (see (2.12) in Puhalskii [35]).

The portfolio in (2.49) generalises the one in Hata, Nagai, and Sheu [20] (see (2.39) and
Theorem 2.2 there whose proof is omitted) who assume that r1 = 0 , α1 = 0 , α2 = 0 , and
β = 0 . For the optimality of π̂ , those authors, in addition to requiring that the matrix
Θ1−σbT c−1A1 be stable and that the matrix (bσT P̂1)T c−1bσT P̂1− (A1−1rT1 )T c−1(A1−1rT1 )
be negative definite, need that (Θ1, σ) be controllable and that q < F ′(0) . Hata, Nagai, and
Sheu [20] produce optimal finite–horizon portfolios as well.

Maximising the probability of outperformance for a one-dimensional affine model is stud-
ied in Pham [34], who, however, stops short of proving the asymptotic optimality of π̂ and
produces nearly optimal portfolios instead. Besides, the requirements in Pham [34] amount
to F (λ) being essentially smooth, the portfolio’s wealth growing no faster than linearly with
the economic factor (see condition in (2.5) in Pham [34]) and θ2 = 0 .

Most of the results on the risk–sensitive optimisation concern the case of a negative risk–
sensitivity parameter. Theorem 4.1 in Nagai [32] obtains asymptotic optimality of π̂λ in
part 2 of Theorem 2.3 for a nonbenchmarked setup under a number of additional conditions.
The stability condition is the same as in Nagai [33]. (Unfortunately, there seem to be pieces
of undefined notation in Nagai [32] such as u(0, x;T ) .) Fleming and Sheu [17], [18], who
treat an affine model, allow λ to assume either sign. Their stability condition is similar
to ours. The authors prove that F (λ) can be obtained as the limit of the optimal growth
rates associated with bounded portfolios as the bound constraint is being relaxed. It is also
required that λ be sufficiently small, if positive. The assertion of part 1 of Theorem 2.3 has
not been available in this generality even for the affine model, Theorem 4.1 in Pham [34]
tackling a case of one security.

On the other hand, it has to be mentioned that none of the cited papers requires condition
(N).

3 Technical preliminaries

In this section, we lay the groundwork for the proofs of the main results. Drawing on Bonnans
and Shapiro [10] (see p.14 there), we will say that function h : T→ R , with T representing a
topological space, is inf–compact (respectively, sup–compact) if the sets {x ∈ T : h(x) ≤ δ}
(respectively, the sets {x ∈ T : h(x) ≥ δ}) are compact for all δ ∈ R . (It is worth noting
that Aubin [3] and Aubin and Ekeland [4] adopt a slightly different terminology by requiring
only that the sets {x ∈ T : h(x) ≤ δ} be relatively compact in order for h to be inf–compact.
Both definitions are equivalent if h is, in addition, lower semicontinuous.)

18



We endow the set P of probability measures ν on Rl such that
∫
Rl |x|

2 ν(dx) < ∞ with
the Kantorovich–Rubinstein distance

d1(µ, ν) = sup{|
∫
Rl

g(x)µ(dx)−
∫
Rl

g(x) ν(dx)| : |g(x)− g(y)|
|x− y|

≤ 1 for all x 6= y} .

Convergence with respect to d1 is equivalent to weak convergence coupled with convergence
of first moments, see, e.g., Villani [41]. For κ > 0 , let fκ(x) = κ|x|2/2 , where κ > 0 and
x ∈ Rl , and let Aκ represent the convex hull of C2

0 and of the function fκ .

Lemma 3.1. There exist κ0 > 0 and λ0 > 0 such that if κ ≤ κ0 and λ ≤ λ0 , then the
functions

∫
Rl H(x;λ, fκ) ν(dx) and inff∈C2

0

∫
Rl H(x;λ, f) ν(dx) are sup–compact in ν ∈ P for

the Kantorovich–Rubinstein distance d1 . Furthermore, given λ̃ ≤ λ0 , the set
⋃
λ∈[λ̃,λ0]{ν ∈

P : inff∈C2
0

∫
Rl H(x;λ, f) ν(dx) ≥ δ} is relatively compact, where δ ∈ R .

Proof. By (2.19) and (2.23), for λ < 1 ,

H(x;λ, fκ) =
κ2

2
xTTλ(x)x+ κSλ(x)x+Rλ(x) + tr(σ(x)σ(x)T ) .

By (2.2), (2.18a), (2.18b), and (2.18c), as |x| → ∞ , if κ is small, then the dominating
term in (κ2/2)xTTλ(x)x is of order κ2|x|2 , the dominating terms in κSλ(x)x are of orders
(λ/(1−λ))κ|x|2 and −κ|x|2 , and the dominating term in Rλ(x) is of order (λ/(1−λ)) |x|2 .
If κ is small enough, then −κ|x|2 dominates κ2|x|2 . For those κ , (λ/(1−λ)) |x|2 is dominated
by −κ|x|2 if λ is small relative to κ . We conclude that, provided κ is small enough, there
exist λ0 ∈ (0, 1) , K1 , and K2 > 0 , such that

H(x;λ, fκ) ≤ K1 −K2|x|2 , (3.1)

for all λ ≤ λ0 . Therefore, given δ ∈ R , supν∈Γδ

∫
Rl |x|

2 ν(dx) < ∞ , where Γδ =
{
ν :∫

Rl H(x;λ, fκ) ν(dx) ≥ δ
}

. In addition, by H(x;λ, fκ) being continuous in x and Fatou’s
lemma,

∫
Rl H(x;λ, fκ) ν(dx) is an upper semicontinuous function of ν , so Γδ is a closed set.

Thus, by Prohorov’s theorem, Γδ is compact.
By (2.19) and (2.23), the function H(x;λ, f) is convex in f . Therefore, if f ∈ Aκ , then,

by (2.19), (2.23), and (3.1), H(x;λ, f) is bounded above by an affine function of x . Since
H(x;λ, f) is continuous in x , the function

∫
Rl H(x;λ, f) ν(dx) is upper semicontinuous in

ν . Since fκ ∈ Aκ , we obtain that inff∈Aκ
∫
Rl H(x;λ, f) ν(dx) is sup–compact, provided

λ ≤ λ0 . Since inff∈Aκ
∫
Rl H(x;λ, f) ν(dx) = inff∈C2

0

∫
Rl H(x;λ, f) ν(dx) , the latter function

is sup–compact.
An examination of the reasoning that led to (3.1) reveals that there exist K1 and K2 > 0

such that H(x;λ, fκ) ≤ K1 −K2|x|2 if λ ∈ [λ̃, λ0] . Therefore,⋃
λ∈[λ̃,λ0]

{ν ∈ P : inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) ≥ δ} ⊂
⋃

λ∈[λ̃,λ0]

{ν ∈ P :

∫
Rl

H(x;λ, fκ) ν(dx) ≥ δ}

⊂ {ν ∈ P : K2

∫
Rl

|x|2 ν(dx) ≤ K1 − δ} .
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Lemma 3.2. If λ < 1 and Uλ 6= ∅ , then, for ν ∈ P ,

inf
f∈Uλ

∫
Rl

H(x;λ, f) ν(dx) = inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) . (3.2)

Proof. Let η be a cut–off function, i.e., a [0, 1]–valued smooth nonincreasing function on R+

such that η(y) = 1 when y ∈ [0, 1] and η(y) = 0 when y ≥ 2 . Let us assume, in addition, that
the derivative η′ does not exceed 2 in absolute value and let R > 0 . Let ηR(x) = η(|x|/R) .
Given ψ ∈ C2

0 and ϕ ∈ Uλ , by (2.19) and (2.23),

H(x;λ, ηRψ + (1− ηR)ϕ) =
1

2
∇ψ(x)TTλ(x)∇ψ(x) ηR(x)2 + Sλ(x)∇ψ(x) ηR(x)

+
1

2
tr
(
σ(x)σ(x)T∇2ψ(x)

)
ηR(x)+

1

2
∇ϕ(x)TTλ(x)∇ϕ(x) (1−ηR(x))2+Sλ(x)∇ϕ(x) (1−ηR(x))

+
1

2
tr
(
σ(x)σ(x)T∇2ϕ(x)

)
(1− ηR(x)) + εR(x) +Rλ(x) , (3.3)

where

εR(x) =
1

2
∇ηR(x)TTλ(x)∇ηR(x) (ψ(x)−ϕ(x))2 +∇ψ(x)TTλ(x)∇ηR(x) (ψ(x)−ϕ(x))ηR(x)

+∇ψ(x)TTλ(x)∇ϕ(x) (1− ηR(x))ηR(x) +∇ϕ(x)TTλ(x)∇ηR(x) (ψ(x)− ϕ(x))(1− ηR(x))

+ Sλ(x)(ψ(x)− ϕ(x))∇ηR(x) +
1

2
tr
(
σ(x)σ(x)T

(
(ψ(x)− ϕ(x))∇2ηR(x)

+ (∇ψ(x)−∇ϕ(x))∇ηR(x)T
))
. (3.4)

Replacing on the righthand side of (3.3) ηR(x)2 and (1− ηR(x))2 with ηR(x) and 1− ηR(x) ,
respectively, obtains that

H(x;λ, ηRψ + (1 − ηR)ϕ) ≤ ηR(x)H(x;λ, ψ) + (1 − ηR(x))H(x;λ, ϕ) + εR(x) . (3.5)

Therefore,∫
Rl

H(x;λ, ηRψ + (1− ηR)ϕ) ν(dx) ≤
∫
Rl

ηR(x)H(x;λ, ψ) ν(dx)

+ sup
x∈Rl

(H(x;λ, ϕ) ∨ 0)ν(x : |x| > R) +

∫
Rl

εR(x) ν(dx) .

By dominated convergence, the first integral on the righthand side converges to∫
Rl H(x;λ, ψ) ν(dx) , as R→∞ . Since |∇ηR(x)| ≤ 4χ{|x|≥R}(x)/|x| , |∇ϕ(x)| is, at most, of

linear growth, by ϕ being a member of C1
` , so that ϕ(x) grows, at most, quadratically, and

since
∫
Rl |x|

2 ν(dx) <∞ , by (3.4), one has that

lim
R→∞

∫
Rl

εR(x) ν(dx) = 0 . (3.6)
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Since ψηR + ϕ(1− ηR) ∈ Uλ , agreeing with ϕ if |x| > 2R ,

inf
f∈Uλ

∫
Rl

H(x;λ, f) ν(dx) ≤ inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) .

Conversely, let ϕ ∈ Uλ and ψR(x) = ηR(x)ϕ(x) . One can see that ψR is a C2
0–function. By

(2.31), in analogy with (3.5) and (3.6),∫
Rl

H(x;λ, ψR) ν(dx) ≤
∫
Rl

(
ηR(x)H(x;λ, ϕ) + (1− ηR(x))H(x;λ,0)

)
ν(dx) + ε̂R ,

where limR→∞ ε̂R = 0 , with 0 representing the function that is equal to zero identically. By
Fatou’s lemma, H(x;λ, ϕ) being bounded from above,

lim sup
R→∞

∫
Rl

ηR(x)H(x;λ, ϕ) ν(dx) ≤
∫
Rl

H(x;λ, ϕ) ν(dx) . (3.7)

By dominated convergence,

lim
R→∞

∫
Rl

(1− ηR(x))H(x;λ,0) ν(dx) = 0 .

Hence,

inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) ≤ inf
f∈Uλ

∫
Rl

H(x;λ, f) ν(dx) ,

which concludes the proof of (3.2).

Remark 3.1. Similarly, it can be shown that, if λ < 1 , then

inf
f∈C2

b

∫
Rl

H(x;λ, f) ν(dx) = inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) .

(The analogue of (3.7) holds with equality by bounded convergence.)

The following lemma appears in Puhalskii and Stutzer [37].

Lemma 3.3. Let λ < 1 and ν ∈ P . The integrals
∫
Rl H(x;λ, f) ν(dx) are bounded below

uniformly over f ∈ C2
0 if and only if ν admits density which belongs to P̂ .

Proof. We start with necessity. The reasoning follows that of Puhalskii [36], cf. Lemma 6.1,
Lemma 6.4, and Theorem 6.1 there. If there exists κ ∈ R such that

∫
Rl H(x;λ, f) ν(dx) ≥ κ

for all f ∈ C2
0 , then by (2.23), for arbitrary δ > 0 ,

δ

∫
Rl

1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
ν(dx) ≥ κ−

∫
Rl

H̆(x;λ, δ∇f(x)) ν(dx) .
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On letting

δ = κ1/2
(∫
Rl

∇f(x)TTλ(x)∇f(x) ν(dx)
)−1/2

,

we obtain with the aid of (2.19) and the Cauchy–Schwarz inequality that there exists constant
K1 > 0 such that, for all f ∈ C2

0 ,∫
Rl

tr
(
σ(x)σ(x)T∇2f(x)

)
ν(dx) ≤ K1

(∫
Rl

|∇f(x)|2 ν(dx)
)1/2

.

It follows that the lefthand side extends to a bounded linear functional on L1,2
0 (Rl,Rl, ν(dx)) ,

hence, by the Riesz representation theorem, there exists ∇h ∈ L1,2
0 (Rl,Rl, ν(dx)) such that∫

Rl

tr
(
σ(x)σ(x)T∇2f(x)

)
ν(dx) =

∫
Rl

∇h(x)T∇f(x) ν(dx) (3.8)

and
∫
Rl |∇h(x)|2ν(dx) ≤ K1 . Theorem 2.1 in Bogachev, Krylov, and Röckner [8] implies

that the measure ν(dx) has density m(x) with respect to Lebesgue measure which belongs
to Lξloc(Rl) for all ξ ∈ (1, l/(l − 1)) . It follows that, for arbitrary open ball S in Rl , there
exists K2 > 0 such that for all f ∈ C2

0 with support in S ,

|
∫
S

tr
(
σ(x)σ(x)T∇2f(x)

)
m(x) dx| ≤ K2

(∫
S

|∇f(x)|2ξ/(ξ−1) dx
)(ξ−1)/(2ξ)

.

By Theorem 6.1 in Agmon [2], the density m belongs to W1,ζ
loc(S) for all ζ ∈ (1, 2l/(2l − 1)).

Furthermore, ∇h(x) = −div (σ(x)σ(x)Tm(x))/m(x) so that
√
m ∈W1,2(Rl) .

The sufficiency follows by (2.18a), (2.18b), (2.18c), (2.19), (2.30), (2.31), and (2.32) via
integration by parts.

Remark 3.2. Essentially, (3.8) signifies that one can integrate by parts on the lefthand side,
so m(x) needs to be differentiable.

Remark 3.3. By (2.29), Lemma 3.2 and Lemma 3.3, F (λ) > −∞ .

Lemma 3.4. If λ < 1 and F (λ) <∞ , then the infimum in (2.24) is attained at C2–function
fλ that satisfies the ergodic Bellman equation (2.25) and belongs to C1

` . In addition, the
function F (λ) is lower semicontinuous and F (0) = 0 .

Proof. Applying the reasoning on pp.289–294 in Kaise and Sheu [23], one can see that, for
arbitrary ε > 0 , there exists C2–function fε such that, for all x ∈ Rl , H(x;λ, fε) = F (λ)+ ε .
Considering that some details are omitted in Kaise and Sheu [23], we give an outline of the
proof, following the lead of Ichihara [21]. As F (λ) < ∞ , by (2.24), there exists function

f
(1)
ε ∈ C2 such that H(x;λ, f

(1)
ε ) < F (λ) + ε for all x . Given open ball S , centred at the ori-

gin, by Theorem 6.14 on p.107 in Gilbarg and Trudinger [19], there exists C2–solution f
(2)
ε to

the linear elliptic boundary value problem H(x;λ, f)−(1/2)∇f(x)TTλ(x)∇f(x) = F (λ)+2ε
when x ∈ S and f(x) = fκ(x) when x ∈ ∂S , with ∂S standing for the boundary
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of S . Therefore, H(x;λ, f
(2)
ε ) > F (λ) + ε in S . By Theorem 8.4 on p.302 of Chap-

ter 4 in Ladyzhenskaya and Uraltseva [27], for any ball S ′ contained in S and centred

at the origin, there exists C2–solution f
(3)
ε,S′ to the boundary value problem H(x;λ, f) =

F (λ) + ε in S ′ and f(x) = fκ(x) on ∂S ′ . Since f
(3)
ε,S′ solves the boundary value problem

(1/2)tr (σ(x)σ(x)T∇2f(x)) = −H̆(x;λ,∇f (3)
ε,S′(x)) + F (λ) + ε when x ∈ S ′ and f(x) = fκ(x)

when x ∈ ∂S ′ , we have by Theorem 6.17 on p.109 of Gilbarg and Trudinger [19] that f
(3)
ε,S′(x)

is thrice continuously differentiable. Letting the radius of S ′ (and that of S) go to infin-
ity, we have, by p.294 in Kaise and Sheu [23], see also Proposition 3.2 in Ichihara [21],

that the f
(3)
ε,S′ converge locally uniformly and in W1,2

loc(Rl) to fε which is a weak solution to
H(x;λ, f) = F (λ) + ε . Furthermore, by Lemma 2.4 in Kaise and Sheu [23], the W1,∞(S ′′)–

norms of the f
(3)
ε,S′ are uniformly bounded over balls S ′ for any fixed ball S ′′ contained in the

S ′ . Therefore, fε belongs to W1,∞
loc (Rl) . By Theorem 6.4 on p.284 in Ladyzhenskaya and

Uraltseva [27], fε is thrice continuously differentiable.
As in Theorem 4.2 in Kaise and Sheu [23], by using the gradient bound in Lemma 2.4

there (which proof does require fε to be thrice continuously differentiable), we have that the
fε converge along a subsequence uniformly on compact sets as ε → 0 to a C2–solution of
H(x;λ, f) = F (λ) . That solution, which we denote by fλ , delivers the infimum in (2.24)
and satisfies the ergodic Bellman equation, with ∇fλ(x) being, at most, of linear growth,
see Remark 2.5 in Kaise and Sheu [23].

We prove that F is a lower semicontinuous function. Let λi → λ < 1 , and the F (λi)
converge to a finite quantity, as i→∞ . By the part just proved, there exist f̃i ∈ C2 such that
H(x;λi, f̃i) = F (λi) , for all x . Furthermore, by a similar reasoning to the one used above, the
sequence f̃i is relatively compact in L∞loc(Rl)∩W1,2

loc(Rl) with limit points being in W1,∞
loc (Rl)

as well. A subsequential limit f̃ is a C2-function such that H(x;λ, f̃) = limi→∞ F (λi) . By
(2.24), limi→∞ F (λi) ≥ F (λ) .

We prove that F (0) = 0 . Taking f(x) = 0 in (2.24) yields F (0) ≤ 0 . Suppose that
F (0) < 0 and let f ∈ C2 ∩ C1

` be such that, for all x ∈ Rl ,

∇f(x)T θ(x) +
1

2
|σ(x)T∇f(x)|2 +

1

2
tr
(
σ(x)σ(x)T∇2f(x) < 0 . (3.9)

By (2.2), there exists density m ∈ P̂ such that∫
Rl

(
∇h(x)T θ(x) +

1

2
tr
(
σ(x)σ(x)T∇2h(x)

))
m(x) dx = 0 , (3.10)

for all h ∈ C2
0 , see, e.g., Corollary 1.4.2 in Bogachev, Krylov, and Rëckner [9]. By (3.9),∫

Rl
(
∇f(x)T θ(x) + (1/2)tr

(
σ(x)σ(x)T∇2f(x)

))
m(x) dx is well defined, being possibly equal

to −∞ and, by monotone convergence,∫
Rl

(
∇f(x)T θ(x) +

1

2
tr
(
σ(x)σ(x)T∇2f(x)

))
m(x) dx

= lim
R→∞

∫
x∈Rl: |x|≤R

(
∇f(x)T θ(x) +

1

2
tr
(
σ(x)σ(x)T∇2f(x)

))
m(x) dx .
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By integration by parts,∫
x∈Rl: |x|≤R

(
∇f(x)T θ(x) +

1

2
tr
(
σ(x)σ(x)T∇2f(x)

))
m(x) dx

=

∫
x∈Rl: |x|≤R

(
∇f(x)T θ(x)− 1

2
∇f(x)T

div
(
σ(x)σ(x)Tm(x)

)
m(x)

)
m(x) dx

+
1

2

∫
x∈Rl: |x|=R

∇f(x)Tσ(x)σ(x)Td(x)m(x) dτ,

with d(x) denoting the unit outward normal to the sphere {x ∈ Rl : |x| = R} at point x
and with the latter integral being a surface integral. As

∫
Rl |∇f(x)|m(x) dx <∞ ,

lim inf
R→∞

∫
x∈Rl: |x|=R

|∇f(x)Tσ(x)σ(x)Td(x)|m(x) dτ = 0 ,

so letting R→∞ appropriately yields the identity∫
Rl

(
∇f(x)T θ(x) +

1

2
tr
(
σ(x)σ(x)T∇2f(x)

))
m(x) dx

=

∫
Rl

(
∇f(x)T θ(x)− 1

2
∇f(x)T

div
(
σ(x)σ(x)Tm(x)

)
m(x)

)
m(x) dx , (3.11)

implying that the lefthand side is finite. A similar integration by parts in (3.10) yields∫
Rl

(
∇h(x)T θ(x)− 1

2
∇h(x)T

div
(
σ(x)σ(x)Tm(x)

)
m(x)

)
m(x) dx = 0 .

Since m ∈ P̂ , this identity extends to h ∈ C2∩C1
` , so the lefthand side of (3.11) equals zero,

which contradicts (3.9). Thus, F (0) = 0 .

Remark 3.4. As a byproduct, for λ < 1 ,

inf
f∈C2

sup
x∈Rl

H(x;λ, f) = inf
f∈C2∩C1

`

sup
x∈Rl

H(x;λ, f) .

Remark 3.5. Since one can write (3.9) as H(x; 0, f) < 0 , a similar line of reasoning to the
one used for (3.11) yields the identity G(λ; f,m) = Ğ(λ;∇f,m) , the lefthand side being
well defined, provided λ < 1 and f ∈ Uλ .

Lemma 3.5. 1. The function H̆(x, λ, p) is strictly convex in (λ, p) on (−∞, 1)×Rl and
is convex on R × Rl . The function H(x;λ, f) is convex in (λ, f) on R × C2 . For
m ∈ P , the function G(λ, f,m) is convex in (λ, f) on R× C2

b .
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2. Let m ∈ P̂ . Then the function Ğ(λ,∇f,m) is convex and lower semicontinu-
ous in (λ,∇f) on R × L1,2

0 (Rl,Rl,m(x) dx) and is strictly convex on (−∞, 1) ×
L1,2

0 (Rl,Rl,m(x) dx) . If λ < 1 , then the infimum in (2.33) is attained at unique
∇f . If λ = 1 and the infimum in (2.33) is finite, then it is attained at unique ∇f
too. The function F̆ (λ,m) is convex and lower semicontinuous with respect to λ , it
is strictly convex on (−∞, 1) , and tends to ∞ superlinearly, as λ → −∞ . If λ < 1 ,
then

F̆ (λ,m) = inf
f∈C2∩C1

`

Ğ(λ,∇f,m) = inf
f∈C2

0

G(λ, f,m) . (3.12)

If λ < 1 and Uλ 6= ∅ , then

F̆ (λ,m) = inf
f∈Uλ

Ğ(λ,∇f,m) = inf
f∈Uλ

G(λ, f,m) . (3.13)

If ∇f ∈ L1,2
0 (Rl,Rl,m(x) dx) , then Ğ(λ,∇f,m) is differentiable in λ ∈ (−∞, 1) and

d

dλ
Ğ(λ,∇f,m) =

∫
Rl

(
M(uλ,∇f (x), x) + λ|N(uλ,∇f (x), x)|2

+∇f(x)Tσ(x)N(uλ,∇f (x), x)
)
m(x) dx , (3.14)

where uλ,∇f (x) is defined by (2.16) with ∇f(x) as p . Furthermore, F̆ (λ,m) is differ-
entiable with respect to λ and

d

dλ
F̆ (λ,m) =

d

dλ
Ğ(λ,∇fλ,m,m) , (3.15)

with ∇fλ,m attaining the infimum on the righthand side of (2.33). In addition, if
F̆ (1,m) <∞ , then the lefthand derivatives at 1 equal each other as well:

d

dλ
F̆ (λ,m)

∣∣
1− =

d

dλ
Ğ(λ,∇f 1,m,m)

∣∣
1− . (3.16)

3. The function F (λ) is convex, is continuous for λ < λ , and F (λ) → ∞ superlinearly,
as λ→ −∞ . The functions Jo

q and J s
q are continuous.

Proof. If λ < 1 , then, by (2.15), (2.17), and (2.19), the Hessian matrix of H̆(x;λ, p) with
respect to (λ, p) is given by

H̆pp(x;λ, p) = Tλ(x) ,

H̆λλ(x;λ, p) =
1

(1− λ)3
‖a(x)− r(x)1 + b(x)σ(x)Tp− b(x)β(x)‖2

c(x)−1 + β(x)TQ1(x)β(x) ,

H̆λp(x;λ, p) = − 1

(1− λ)2

(
a(x)− r(x)1 + b(x)σ(x)Tp− b(x)β(x)

)T
c(x)−1b(x)σ(x)T

+ β(x)TQ1(x)σ(x)T .
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We show that it is positive definite. More specifically, we prove that for all τ ∈ R and y ∈ Rl

such that τ 2 + |y|2 6= 0 ,

τ 2H̆λλ(x;λ, p) + yTTλ(x)y + 2τH̆λp(x;λ, p)y > 0 .

Since Tλ(x) is a positive definite matrix by condition (N), the latter inequality holds when
τ = 0 . Assuming τ 6= 0 , we need to show that

H̆λλ(x;λ, p) + yTTλ(x)y + 2H̆λp(x;λ, p)y > 0 . (3.17)

Let, for d1 = (v1(x), w1(x)) and d2 = (v2(x), w2(x)) , where v1(x) ∈ Rn , w1(x) ∈ Rk , v2(x) ∈
Rn , w2(x) ∈ Rk , and x ∈ Rl , the inner product be defined by d1 · d2 = v1(x)T c(x)−1v2(x) +
w1(x)Tw2(x) . By the Cauchy–Schwarz inequality, applied to d1 =

(
(1−λ)−3/2(a(x)−r(x)1+

b(x)σ(x)Tp−b(x)β(x)), Q1(x)β(x)
)

and d2 = ((1−λ)−1/2b(x)σ(x)Ty,Q1(x)σ(x)Ty) , we have

that (H̆λp(x;λ, p)y)2 < yTTλ(x)yH̆λλ(x;λ, p) , with the inequality being strict because, by
part 2 of condition (N), Q1(x)β(x) is not a scalar multiple of Q1(x)σ(x)Ty . Thus, (3.17)
holds, so the function H̆(x;λ, p) is strictly convex in (λ, p) on (−∞, 1)× Rl , for all x ∈ Rl .

Since by (2.15) and (2.17), H̆(x;λn, pn) → H̆(x; 1, p) ≤ ∞ as λn ↑ 1 and pn → p , and
H̆(x;λ, p) = ∞ if λ > 1 , the function H̆(x;λ, p) is convex in (λ, p) on R × Rl . By (2.23),
the function H(x;λ, f) is convex in (λ, f) on R×C2 . By (2.30), for any m ∈ P , G(λ, f,m)
is convex in (λ, f) on R× C2

b .

Let m ∈ P̂ . By (2.19), by H̆(x;λ, p) being a lower semicontinuous function
of (λ, p) with values in R ∪ {+∞} , by (2.32) and Fatou’s lemma, Ğ(λ,∇f,m) is
lower semicontinuous in (λ,∇f) on R × L1,2

0 (Rl,Rl,m(x) dx) . By (2.32) and the
strict convexity of H̆(x;λ, p) , Ğ(λ,∇f,m) is strictly convex in (λ,∇f) ∈ (−∞, 1) ×
L1,2

0 (Rl,Rl,m(x) dx) . By (2.19), (2.32), and by the facts that
∫
Rl |x|

2m(x) dx < ∞ and∫
Rl |∇m(x)|2/m(x) dx < ∞ , Ğ(λ,∇f,m) tends to infinity as the L2(Rl,Rl,m(x) dx)–norm

of ∇f tends to infinity, locally uniformly over λ . Hence, the infimum on the right-
hand side of (2.33) is attained at unique ∇f , if finite, see, e.g., Proposition 1.2 on
p.35 in Ekeland and Temam [14]. (If λ < 1 , then Ğ(λ,∇f,m) < ∞ , for all ∇f ∈
L1,2

0 (Rl,Rl,m(x) dx) , by (2.19) and (2.32).) Hence, the righthand side of (2.33) is strictly
convex in λ on (−∞, 1) . (For, let inf∇f∈L1,2

0 (Rl,Rl,m(x) dx) Ğ(λi,∇f,m) = Ğ(λi,∇fi,m) ,

for i = 1, 2 . Then inf∇f∈L1,2
0 (Rl,Rl,m(x) dx) Ğ((λ1 + λ2)/2,∇f,m) ≤ Ğ((λ1 + λ2)/2, (∇f1 +

∇f2)/2,m) < (Ğ(λ1,∇f1,m) + Ğ(λ2,∇f2,m))/2 = (inf∇f∈L1,2
0 (Rl,Rl,m(x) dx) Ğ(λ1,∇f,m) +

inf∇f∈L1,2
0 (Rl,Rl,m(x) dx) Ğ(λ2,∇f,m))/2 .)

By a similar argument to that in Proposition 1.7 on p.14 in Aubin [3] or Proposition 5
on p.12 in Aubin and Ekeland [4], the function F̆ (λ,m) is lower semicontinuous in λ . More
specifically, let λi → λ and let K1 = lim infi→∞ F̆ (λi,m) . Assuming that K1 < ∞ , by
(2.33), for all i great enough,

F̆ (λi,m) = inf
∇f∈L1,2

0 (Rl,Rl,m(x) dx): Ğ(λi,∇f,m)≤K1+1
Ğ(λi,∇f,m) .

By (2.19) and (2.32), there exists K2 such that, for all i , if Ğ(λi,∇f,m) ≤ K1 + 1 ,
then

∫
Rl |∇f(x)|2m(x) dx ≤ K2 . The set of the latter ∇f being weakly compact in
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L1,2
0 (Rl,Rl,m(x) dx) and the function Ğ(λ,∇f,m) being convex and lower semicontinuous

in ∇f , there exist ∇fi such that F̆ (λi,m) = Ğ(λi,∇fi,m) . Extracting a suitable subse-
quence of ∇fi that weakly converges to some ∇f̃ and invoking the lower semicontinuity of
Ğ(λ,∇f,m) in (λ,∇f) yields

lim inf
i→∞

F̆ (λi,m) = lim inf
i→∞

inf
∇f∈L1,2

0 (Rl,Rl,m(x) dx): Ğ(λi,∇f,m)≤K1+1
Ğ(λi,∇f,m)

≥ lim inf
i→∞

inf
∇f∈L1,2

0 (Rl,Rl,m(x) dx):
∫
Rl |∇f(x)|2 m(x) dx≤K2

Ğ(λi,∇f,m)

= lim inf
i→∞

Ğ(λi,∇fi,m) ≥ Ğ(λ,∇f̃ ,m) ≥ F̆ (λ,m) .

We have proved that the function F̆ (λ,m) is lower semicontinuous in λ . It follows that the
function supm∈P̂ F̆ (λ,m) is lower semicontinuous.

Let us show that the gradients of functions from C2 ∩ C1
` make up a dense subset of

L1,2
0 (Rl,Rl,m(x) dx) . Let f ∈ C1

` and let η(y) represent a cut–off function, i.e., a [0, 1]–
valued smooth nonincreasing function on R+ such that η(y) = 1 when y ∈ [0, 1] and η(y) = 0
when y ≥ 2 . Let R > 0 . The function f(x)η(|x|/R) belongs to C1

0 . In addition,∫
Rl

|∇f(x)−∇
(
f(x)η

( |x|
R

))
|2m(x) dx ≤ 2

∫
Rl

|∇f(x)|2
(
1− η

( |x|
R

))2
m(x) dx

+
2

R2

∫
Rl

f(x)2η′
( |x|
R

)2
m(x) dx ,

where η′ stands for the derivative of η . Since
∫
Rl |x|

2m(x) dx converges, the righthand side

of the latter inequality tends to 0 as R → ∞ . Hence, ∇f ∈ L1,2
0 (Rl,Rl,m(x) dx) . On

the other hand, the gradients of C1
0–functions can be approximated with the gradients of

C2 ∩ C1
`–functions in L1,2

0 (Rl,Rl,m(x) dx) , which ends the proof.
On recalling (2.33), we obtain the leftmost equality in (3.12). Similarly, since

G(λ, f,m) = Ğ(λ,∇f,m) when f ∈ C2
0 and the gradients of C2

0–functions are dense in
L1,2

0 (Rl,Rl,m(x) dx) , the rightmost side of (3.12) equals the leftmost side. For (3.13), we
recall Lemma 3.2 and Remark 3.5.

By (2.14), (2.18a), (2.18b), (2.18c), and (2.19),

inf
p∈Rl

(
H̆(x;λ, p)− 1

2
pT

div(σ(x)σ(x)Tm(x))

m(x)

)
= −1

2
‖Sλ(x)− 1

2

div(σ(x)σ(x)Tm(x))

m(x)
‖2
Tλ(x)−1

+Rλ(x) ,

so, the lefthand sides are bounded below uniformly over λ ≤ 0 by an integrable function and

lim
λ→−∞

1

λ2
inf
p∈Rl

(
H̆(x;λ, p)− 1

2
pT

div(σ(x)σ(x)Tm(x))

m(x)

)
=

1

2
‖β(x)‖2

Q2(x) .

The latter quantity being positive by the second part of condition (N) im-
plies, by (2.33) and Fatou’s lemma, that lim infλ→−∞(1/λ2)F̆ (λ,m) > 0 , so,
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lim infλ→−∞(1/λ2) inff∈C2
0
G(λ, f,m) > 0 . By (2.24) and (2.30), lim infλ→−∞ F (λ)/λ2 > 0 .

Therefore, for all q from a bounded set, the supremum in (2.26b) can be taken over λ from
the same compact set, which implies that J s

q is continuous. The function Jo
q is continuous

for a similar reason. Since supx∈Rl H(x;λ, f) is a convex function of (λ, f) , by (2.24), F (λ)
is convex. Being finite, it is continuous for λ < λ .

We prove the differentiability properties. The equality in (3.14) follows by Theorem 4.13
on p.273 in Bonnans and Shapiro [10] and dominated convergence, once we recall (2.19)
and (2.32). Equation (3.15) is obtained similarly, with Ğ(·, ·,m) as f(·, ·) , with λ as u ,
and with ∇f as x , respectively, in the hypotheses of Theorem 4.13 on p.273 in Bonnans
and Shapiro [10]. In some more detail, Ğ(λ,∇f,m) and dĞ(λ,∇f,m)/dλ are continuous
functions of (λ,∇f) by (2.15), (2.16), and (2.32). The inf–compactness condition on p.272
in Bonnans and Shapiro [10] holds because, as it has been shown in the proof of the lower
semicontinuity of F̆ (λ,m) , the infimum on the righthand side of (2.33) can be taken over
the same weakly compact subset of L1,2

0 (Rl,Rl,m(x) dx) for all λ from a compact subset of
(−∞, 1) . For (3.16), one can also apply the reasoning of the proof of Theorem 4.13 on p.273
in Bonnans and Shapiro [10]. Although the hypotheses of the theorem are not satisfied,
the proof on pp.274,275 goes through, the key being that the function Ğ(λ,∇f,m) tends to
infinity uniformly over λ close enough to 1 on the left, as the L2(Rl,Rl,m(x) dx)–norm of
∇f tends to infinity.

Remark 3.6. If condition (N) is not assumed, then strict convexity in the statement has to
be replaced with convexity.

Remark 3.7. If β(x) = 0 , then F (λ)/λ2 tends to zero as λ→ −∞ . Furthermore,

lim inf
λ→−∞

1

|λ|
inf
f∈C2

0

G(λ, f,m) ≥ −
∫
Rl

(r(x)− α(x))m(x) dx ,

so that

lim inf
λ→−∞

F (λ)

|λ|
≥ sup

m∈P̂

(
−
∫
Rl

(r(x)− α(x))m(x) dx
)

= − inf
x∈Rl

(r(x)− α(x)) .

Consequently, if infx∈Rl(r(x) − α(x)) < q , then λq − F (λ) tends to −∞ as λ → −∞, so
supλ∈R(λq − F (λ)) is attained. That might not be the case if infx∈Rl(r(x) − α(x) ≥ q .
For instance, if the functions a(x) , r(x) , α(x) , b(x) , and σ(x) are constant and q is small
enough, then the derivative of λq−F (λ) is positive for all λ < 0 . In particular, either J s

q or
Jo
q might not be continuous at infx∈Rl(r(x)− α(x)) , J s

q being right continuous and Jo
q being

left continuous regardless.

Lemma 3.6. 1. The function λq− F̆ (λ,m) has saddle point (λ̂, m̂) in (−∞, λ]× P̂ , with
λ̂ being specified uniquely. In addition, λ̂q − F (λ̂) = supλ∈R(λq − F (λ)) . If λ ≤ λ ,

then F (λ) = supm∈P̂ F̆ (λ,m) .

2. Suppose that λ̂ < 1 . Then the function λq− Ğ(λ,∇f,m) , being concave in (λ, f) and
convex in m , has saddle point (λ̂, f̂ , m̂) in (−∞, λ] × (C2 ∩ C1

`) × P̂ , with ∇f̂ and
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m̂ being specified uniquely. Equations (2.34) and (2.36) hold. The density m̂ may be
chosen positive, bounded and of class C1 .

3. Suppose that λ̂ = 1 . Then there exists unique ∇f̂ ∈ L1,2
0 (Rl,Rl, m̂(x) dx) such that

F̆ (1, m̂) = Ğ(1,∇f̂ , m̂) , a(x)− r(x)1− b(x)β(x) + b(x)σ(x)T∇f̂(x) = 0 m̂(x) dx–a.e.
and∫
Rl

(
∇h(x)T

(
−σ(x)β(x)+θ(x)+σ(x)σ(x)T∇f̂(x)

)
+

1

2
tr
(
σ(x)σ(x)T∇2h(x)

))
m̂(x) dx = 0 ,

for all h ∈ C2
0 such that b(x)σ(x)T∇h(x) = 0 m̂(x) dx–a.e.

Proof. Let U = {(λ, f) : f ∈ Uλ} . It is a convex set by H(x;λ, f) being convex in (λ, f) .
Let q̃ ∈ R . When (λ, f) ∈ U and ν ∈ P , the function λq̃−

∫
Rl H(x;λ, f) ν(dx) is well defined,

being possibly equal to +∞ , is concave in (λ, f) , is convex and lower semicontinuous in ν ,
and is inf–compact in ν , provided λ < 0 and f = fκ , κ being small enough, the latter
property holding by Lemma 3.1. Theorem 7 on p.319 in Aubin and Ekeland [4], whose proof
applies to the case of the function f(x, y) in the statement of the theorem taking values in
R ∪ {+∞} yields the identity

inf
ν∈P

sup
(λ,f)∈U

(
λq̃ −

∫
Rl

H(x;λ, f) ν(dx)
)

= sup
(λ,f)∈U

inf
ν∈P

(
λq̃ −

∫
Rl

H(x;λ, f) ν(dx)
)
,

with the infimum on the lefthand side being attained. We denote that ν by ν̂ when q̃ = q .
If ν has no density with respect to Lebesgue measure that belongs to P̂ , then, by Lemma 3.2
and Lemma 3.3, the supremum on the lefthand side equals +∞ . (We recall that if Uλ = ∅
then inff∈Uλ = ∞ .) Hence, the infimum on the lefthand side may be taken over ν with

densities from P̂ , in particular, it may be assumed that ν̂(dx) = m̂(x) dx , where m̂ ∈ P̂ .
We thus have that

inf
m∈P̂

sup
λ∈R

(λq̃ − inf
f∈Uλ

G(λ, f,m)) = sup
λ∈R

(λq̃ − inf
f∈C2∩C1

`

sup
x∈Rl

H(x;λ, f)) . (3.18)

By part 3 of Lemma 3.5, F (λ) → ∞ superlinearly, as λ → −∞ , so, the righthand side of
(3.18) is finite. We have that

inf
m∈P̂

sup
λ∈R

(λq̃− inf
f∈Uλ

G(λ, f,m)) ≥ sup
λ∈R

inf
m∈P̂

(λq̃− inf
f∈Uλ

G(λ, f,m)) ≥ sup
λ∈R

(λq̃− inf
f∈Uλ

sup
m∈P̂

G(λ, f,m)) .

The latter rightmost side being equal to the rightmost side of (3.18) implies that the in-
equalities on the preceding are, in fact, equalities. Besides, by the definition of F (λ) ,
inff∈C2∩C1

`
supx∈Rl H(x; 1, f) ≥ F (1) and F (λ) is continuous on the left at λ = 1 . On

recalling Lemma 3.4 and Remark 3.4, we obtain that

sup
λ∈R

(λq̃− sup
m∈P̂

inf
f∈Uλ

G(λ, f,m)) = sup
λ∈R

(λq̃− inf
f∈C2∩C1

`

sup
x∈Rl

H(x;λ, f)) = sup
λ∈R

(λq̃− F (λ)) . (3.19)

Therefore, for arbitrary λ ∈ R and q̃ ∈ R ,

sup
m∈P̂

inf
f∈Uλ

G(λ, f,m) ≥ λq̃ − sup
λ̃∈R

(λ̃q̃ − F (λ̃)) . (3.20)
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Since F is a lower semicontinuous and convex function, it equals its bidual, so, taking
supremum over q̃ in (3.20) yields the inequality supm∈P̂ inff∈Uλ G(λ, f,m) ≥ F (λ) . The
opposite inequality being true for λ < 1 by the definition of F (λ) (see (2.24)) implies that,
if λ < 1 , then

F (λ) = sup
m∈P̂

inf
f∈Uλ

G(λ, f,m) .

Owing to Lemma 3.5, if λ < λ , then

F (λ) = sup
m∈P̂

inf
f∈C2∩C1

`

Ğ(λ,∇f,m) = sup
m∈P̂

F̆ (λ,m) . (3.21)

By convexity and lower semicontinuity, the leftmost side equals the rightmost side for λ = λ
too.

Since the infimum on the lefthand side of (3.18) is attained at m̂ when q̃ = q , by (3.19),

sup
λ∈R

(
λq − inf

f∈Uλ
G(λ, f, m̂)

)
= inf

m∈P̂
sup
λ∈R

(
λq − inf

f∈Uλ
G(λ, f,m)

)
= sup

λ∈R
inf
m∈P̂

(
λq − inf

f∈Uλ
G(λ, f,m)

)
. (3.22)

By the convexity of inff∈Uλ G(λ, f, m̂) and of F̆ (λ, m̂) in λ , we have that inff∈Uλ G(λ, f, m̂)

and F̆ (λ, m̂) are greater than or equal to their respective lefthand limits at λ , so, by the
fact that Uλ = ∅ if λ > λ and part 2 of Lemma 3.5,

sup
λ∈R

(λq− inf
f∈Uλ

G(λ, f, m̂)) = sup
λ<λ

(λq− inf
f∈Uλ

G(λ, f, m̂)) = sup
λ<λ

(λq−F̆ (λ, m̂)) = sup
λ≤λ

(λq−F̆ (λ, m̂)) .

Similarly,
inf
m∈P̂

sup
λ∈R

(
λq − inf

f∈Uλ
G(λ, f,m)

)
= inf

m∈P̂
sup
λ≤λ

(
λq − F̆ (λ,m)

)
and

sup
λ∈R

inf
m∈P̂

(
λq − inf

f∈Uλ
G(λ, f,m)

)
= sup

λ≤λ
inf
m∈P̂

(
λq − F̆ (λ,m)

)
,

so, by (3.22),

sup
λ≤λ

(λq − F̆ (λ, m̂)) = inf
m∈P̂

sup
λ≤λ

(
λq − F̆ (λ,m)

)
= sup

λ≤λ
inf
m∈P̂

(
λq − F̆ (λ,m)

)
.

Since, by Lemma 3.5, F̆ (λ, m̂) is a lower semicontinuous function of λ and F̆ (λ, m̂) → ∞
superlinearly as λ → −∞ , the supremum on the leftmost side is attained at some λ̂ . It
follows that (λ̂, m̂) is a saddle point of λq − F̆ (λ,m) in (−∞, λ] × P̂ . By Lemma 3.5,
λq − F̆ (λ,m) is a strictly concave function of λ on (−∞, 1) for all m , so λ̂ is specified
uniquely, see Proposition 1.5 on p.169 in Ekeland and Temam [14].

On recalling (3.21), we obtain that

sup
λ∈R

(λq − F (λ)) = sup
λ≤λ

(λq − F (λ)) = sup
λ≤λ

(λq − sup
m∈P̂

F̆ (λ,m)) = λ̂q − F̆ (λ̂, m̂)

= λ̂q − sup
m∈P̂

F̆ (λ̂,m) = λ̂q − F (λ̂) .
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Part 1 has been proved.
Suppose that λ̂ < 1 and let f̂ = f λ̂ , fλ being defined in Lemma 3.4. Since

H(x; λ̂, f̂) = F (λ̂) for all x ∈ Rl , we have, by (2.30) and Remark 3.5, that F (λ̂) =
G(λ̂, f̂ ,m) = Ğ(λ̂,∇f̂ ,m) , for all m ∈ P̂ . It follows that

inf
f∈C2∩C1

`

sup
m∈P̂

Ğ(λ̂,∇f,m) ≤ sup
m∈P̂

Ğ(λ̂,∇f̂ ,m) = F (λ̂) = Ğ(λ̂,∇f̂ , m̂) . (3.23)

By (3.21), the latter inequality is actually equality, so, (f̂ , m̂) is a saddle point of Ğ(λ̂,∇f,m)
in (C2 ∩ C1

`) × P̂ , see, e.g., Proposition 2.156 on p.104 in Bonnans and Shapiro [10] or
Proposition 1.2 on p.167 in Ekeland and Temam [14]. As a result,

inf
f∈C2∩C1

`

Ğ(λ̂,∇f, m̂) = Ğ(λ̂,∇f̂ , m̂) . (3.24)

By (2.32), (2.33) and the gradients of the functions from C2 ∩ C1
` being dense in

L1,2
0 (Rl,Rl, m̂(x) dx) , the lefthand side of (3.24) equals F̆ (λ, m̂) , so, the infimum on the

righthand side of (2.33) for m = m̂ is attained at the gradient of the C2 ∩ C1
`–function f̂ .

The following reasoning shows that (λ̂, f̂ , m̂) is a saddle point of λq − Ğ(λ,∇f,m) in
(−∞, λ] × (C2 ∩ C1

`) × P̂ . Let λ ≤ λ , f ∈ C2 ∩ C1
` , and m ∈ P̂ . Since Ğ(λ̂,∇f̂ , m̂) ≥

Ğ(λ̂,∇f̂ ,m) by (f̂ , m̂) being a saddle point of Ğ(λ̂,∇f,m) , we have that

λ̂q − Ğ(λ̂,∇f̂ , m̂) ≤ λ̂q − Ğ(λ̂,∇f̂ ,m) . (3.25)

By (3.23), by (λ̂, m̂) being a saddle point of λq − F̆ (λ,m) , and by (2.33),

λ̂q − Ğ(λ̂,∇f̂ , m̂) = λ̂q − F̆ (λ̂, m̂) ≥ λq − F̆ (λ, m̂) ≥ λq − Ğ(λ,∇f, m̂) . (3.26)

Putting together (3.25) and (3.26) yields the required property.
Since (λ̂, f̂ , m̂) is a saddle point of λq − Ğ(λ,∇f,m) in (−∞, λ] × (C2 ∩ C1

`) × P̂ and

λq − Ğ(λ,∇f,m) is strictly concave in (λ,∇f) for all m by Lemma 3.5 , the pair (λ̂,∇f̂)
is specified uniquely, see Proposition 1.5 on p.169 of Ekeland and Temam [14]. Equation
(2.34) follows by Lemma 3.4. Since f̂ is a stationary point of Ğ(λ̂,∇f, m̂) , the directional
derivatives of Ğ(λ̂,∇f, m̂) at f̂ are equal to zero, cf. Proposition 1.6 on p.169 in Ekeland
and Temam [14]. By (2.32),∫

Rl

(
H̆p(x; λ̂,∇f̂(x))− 1

2

(
div (σ(x)σ(x)T m̂(x))

)T
m̂(x)

)
∇h(x) m̂(x) dx = 0 , (3.27)

for all h ∈ C2
0 . Integration by parts yields (2.36). In more detail, by Theorem 4.17 on p.276

in Bonnans and Shapiro [10], if λ < 1 , then the function supu∈Rn
(
M(u, x) +λ|N(u, x)|2/2 +

pTσ(x)N(u, x)
)

, with the supremum being attained at unique point ũ(x) , has a derivative
with respect to p given by (σ(x)N(ũ(x), x))T , which, when combined with (2.15), (2.16) and
(2.32), yields (3.27). According to Example 1.7.11 (or Example 1.7.14) in Bogachev, Krylov,
and Röckner [9], m̂ is specified uniquely by (2.36). The function m̂(x) is positive, bounded
and is of class C1 by Corollaries 2.10 and 2.11 in Bogachev, Krylov, and Röckner [8] and by
Agmon [2], see also Theorem 4.1(ii) and p.413 in Metafune, Pallardi, and Rhandi [31], and
Proposition 1.2.18 in Bogachev, Krylov, and Röckner [9]. Part 2 has been proved.

If λ̂ = 1 , then F̆ (1, m̂) < ∞ . By part 2 of Lemma 3.5, ∇f̂ exists and is specified
uniquely. The other properties in part 3 follow by (2.21), (2.22), and (2.32).
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Remark 3.8. By the proof of Lemma 3.1, if λ̂ ≤ λ0 , then H(x; λ̂, fκ) → −∞ as |x| → ∞ ,
where κ > 0 and is small enough. In that case, the theory in Keise and Sheu [23] and Ichihara
[21] yields an alternative approach to the existence of solution m̂ to (2.34). If λ̂ > 0 , however,
those results do not seem to apply.

Remark 3.9. If the suprema in (3.21) were attained, then F (λ) would be strictly convex.

Lemma 3.7. Suppose that λ < λ0 . Then there exists mλ ∈ P̂ such that (fλ,mλ) is a saddle
point of Ğ(λ,∇f,m) as a function of (f,m) in (C1

` ∩ C2)× P̂ , so,

inf
f∈C1

`∩C2
sup
m∈P̂

Ğ(λ,∇f,m) = sup
m∈P̂

inf
f∈C1

`∩C2
Ğ(λ,∇f,m) = F (λ) , (3.28)

with the infimum and the supremum being attained at fλ and mλ , respectively. The density
mλ(x) is the invariant density of a diffusion:∫

Rl

(
∇h(x)T (λσ(x)N(uλ(x), x) + θ(x) + σ(x)σ(x)T∇fλ(x))

+
1

2
tr (σ(x)σ(x)T ∇2h(x))

)
mλ(x) dx = 0 , (3.29)

for all h ∈ C2
0 , where

uλ(x) =
1

1− λ
c(x)−1

(
a(x)− r(x)1− λb(x)β(x) + b(x)σ(x)T∇fλ(x)

)
.

The density mλ(x) may be chosen positive, bounded and of class C1 . The functions ∇fλ(x)
and mλ(x) are specified uniquely.

In addition, the function F (λ) is strictly convex and continuously differentiable and

d

dλ
F (λ) =

∫
Rl

(
M(uλ(x), x) + λ|N(uλ(x), x)|2 +∇fλ(x)Tσ(x)N(uλ(x), x)

)
mλ(x) dx .

Proof. Let us begin by noting that, since, by (3.1) in the proof of Lemma 3.1, H(x;λ, fκ)→
−∞ as |x| → ∞ , provided κ > 0 and is small enough, we have that F (λ) < ∞ , so fλ

is well defined by Lemma 3.4. Since
∫
Rl H(x;λ, f) ν(dx) is an upper semicontinuous and

concave function of ν ∈ P , for all f ∈ Aκ , is convex in f ∈ Aκ , and
∫
Rl H(x;λ, fκ) ν(dx)

is sup–compact in ν by Lemma 3.1, an application of Theorem 7 on p.319 in Aubin and
Ekeland [4] yields

sup
ν∈P

inf
f∈C2

b

∫
Rl

H(x;λ, f) ν(dx) = sup
ν∈P

inf
f∈Aκ

∫
Rl

H(x;λ, f) ν(dx)

= inf
f∈Aκ

sup
ν∈P

∫
Rl

H(x;λ, f) ν(dx) ≥ inf
f∈C2

b

sup
ν∈P

∫
Rl

H(x;λ, f) ν(dx) ,
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the supremum on the leftmost side being attained at some νλ . It follows that

sup
ν∈P

inf
f∈C2

b

∫
Rl

H(x;λ, f) ν(dx) = inf
f∈C2

b

sup
ν∈P

∫
Rl

H(x;λ, f) ν(dx) .

By Remark 3.1 and Lemma 3.3,

sup
ν∈P

inf
f∈C2

b

∫
Rl

H(x;λ, f) ν(dx) = sup
m∈P

inf
f∈C2

0

∫
Rl

H(x;λ, f)m(x) dx

and νλ(dx) = mλ(x) dx , where mλ ∈ P̂ , and, by an approximation argument,

sup
ν∈P

∫
Rl

H(x;λ, f) ν(dx) = sup
m∈P

∫
Rl

H(x;λ, f)m(x) dx .

We obtain that

inf
f∈C2

b

sup
m∈P

G(λ, f,m) = sup
m∈P

inf
f∈C2

0

G(λ, f,m) = inf
f∈C2

0

G(λ, f,mλ) .

Therefore, on applying Lemma 3.3 and recalling (2.31),

inf
f∈C1

`∩C2
sup
m∈P̂

Ğ(λ,∇f,m) ≤ inf
f∈C2

b

sup
m∈P

Ğ(λ,∇f,m) = inf
f∈C2

b

sup
m∈P

G(λ, f,m)

= sup
m∈P

inf
f∈C2

0

G(λ, f,m) = sup
m∈P̂

inf
f∈C2

0

G(λ, f,m) = sup
m∈P̂

inf
f∈C1

`∩C2
Ğ(λ,∇f,m) .

The leftmost side not being less than the rightmost side and (3.21) in the proof of Lemma
3.6 imply (3.28).

Since fλ delivers infimum on the leftmost side of (3.28) and mλ delivers supremum on the
rightmost side, by Proposition 2.156 on p.104 in Bonnans and Shapiro [10] or by Proposition
1.2 on p.167 in Ekeland and Temam [14], the pair (fλ,mλ) is a saddle point of Ğ(λ,∇f,m) as
a function of (f,m) . Equation (3.29) expresses the requirement of the directional derivative
of Ğ(λ,∇f,m) with respect to f in the direction h being equal to zero at (fλ,mλ) and is
established similarly to (2.36) in the proof of Lemma 3.6.

The function ∇fλ is specified uniquely because Ğ(λ,∇f,m) is a strictly convex function
of ∇f by Lemma 3.5, cf. Proposition 1.5 on p.169 in Ekeland and Temam [14]. By an
argument of the proof of Lemma 3.6, the density mλ is specified uniquely, is positive, bounded
and is of class C1 . Since mλ is specified uniquely, the suprema in (3.28) are attained at unique
ν which is νλ . Both the infimum and supremum in (3.28) being attained and the function
Ĝ(λ,∇f,m) being strictly convex in (λ,∇f) on (−∞, 1) × L1,2

0 (Rl,Rl,m(x) dx) by Lemma
3.5 imply that the function F (λ) is strictly convex for λ < λ0 .

We address the differentiability of F (λ) . Given λ̃ < λ0 , if λ is close enough to λ̃ , then,
by F being continuous at λ̃ ,

F (λ) = sup
ν∈P

inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) = sup
ν∈Pλ̃

inf
f∈C2

0

∫
Rl

H(x;λ, f) ν(dx) , (3.30)
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where Pλ̃ = ∪{λ̆: |λ̆−λ̃|≤λ0−λ̃}{ν ∈ P : inff∈C2
0

∫
Rl H(x; λ̆, f) ν(dx) ≥ F (λ̃) − 1} . By Lemma

3.3, the measures from Pλ̃ possess densities m which belong to P̂ . By Lemma 3.5, for those

ν , the function in the supremum on the rightmost side of (3.30) can be written as F̆ (λ,m)
and is differentiable in λ . It is also convex in λ and upper semicontinuous in ν . By Lemma
3.1, the set Pλ̃ is relatively compact. In addition, ν(dx) = mλ̃(x) dx is the only point at
which the supremum in the middle term of (3.30) is attained for λ = λ̃ . Theorem 3 on
p.201 in Ioffe and Tihomirov [22] enables us to conclude that the rightmost side of (3.30) is
differentiable in λ at λ̃ , with the derivative being equal to∫

Rl

(
M(uλ̃(x), x) + λ̃|N(uλ̃(x), x)|2 +∇f λ̃(x)Tσ(x)N(uλ̃(x), x)

)
mλ̃(x) dx .

4 Proofs of Theorems 2.1 and 2.2

We prove Theorems 2.1 and 2.2 together by proving, firstly, the upper bounds and, after-
wards, the lower bounds.

4.1 The upper bounds

This subsection contains the proofs of (2.27) and (2.40). Let us note that, by (2.5),

Lπt =

1∫
0

M(πts, X
t
s) ds+

1√
t

1∫
0

N(πts, X
t
s)
T dW t

s

=

1∫
0

∫
Rl

M(πts, x)µt(ds, dx) +
1√
t

1∫
0

N(πts, X
t
s)
T dW t

s . (4.1)

4.1.1 The proof of (2.27).

By (2.1) and Itô’s lemma, for C2–function f ,

f(Xt) = f(X0) +

t∫
0

∇f(Xs)
T θ(Xs) ds+

1

2

t∫
0

tr
(
σ(Xs)σ(Xs)

T∇2f(Xs)
)
ds

+

t∫
0

∇f(Xs)
Tσ(Xs) dWs .
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Since the process exp
(∫ t

0
(λN(πs, Xs)

T + ∇f(Xs)
Tσ(Xs)) dWs − (1/2)

∫ t
0
|λN(πs, Xs) +

σ(Xs)
T∇f(Xs)|2 ds

)
is a local martingale, where λ ∈ R , by (2.1) and (4.1),

E exp
(
tλLπt + f(Xt)− f(X0)− t

1∫
0

λM(πts, X
t
s) ds− t

1∫
0

∇f(X t
s)
T θ(X t

s) ds

− t

2

1∫
0

tr (σ(X t
s)σ(X t

s)
T ∇2f(X t

s)) ds−
t

2

1∫
0

|λN(πts, X
t
s) + σ(X t

s)
T∇f(X t

s)|2 ds
)
≤ 1 .

Let νt(dx) = µt([0, 1], dx) . By (2.15) and (2.23), for λ ∈ (0, 1) ,

E exp
(
tλLπt + f(Xt)− f(X0)− t

∫
Rl

H(x;λ, f) νt(dx)
)
≤ 1 . (4.2)

Consequently,

Eχ{Lπt ≥q} exp
(
tλLπt + f(Xt)− f(X0)− t

∫
Rl

H(x;λ, f) νt(dx)
)
≤ 1

Thus,

lnEχ{Lπt ≥q}e
f(Xt)−f(X0) ≤ sup

ν∈P

(
−λqt+ t

∫
Rl

H(x;λ, f) ν(dx)
)

= −λqt+ t sup
x∈Rl

H(x;λ, f) .

By the reverse Hölder inequality, for arbitrary ε > 0 ,

Eχ{Lπt ≥q}e
f(Xt)−f(X0) ≥ P(Lπt ≥ q)1+ε

(
Ee−(f(Xt)−f(X0))/ε

)−ε
,

so,
1 + ε

t
lnP(Lπt ≥ q) ≤ −λq + sup

x∈Rl
H(x;λ, f) +

ε

t
lnEe−(f(Xt)−f(X0))/ε .

We may assume that inff∈C2 supx∈Rl H(x;λ, f) < ∞ . By Lemma 3.4 and the hypotheses,
the latter infimum is attained at function fλ such that fλ(x) ≥ −C1|x|−C2 for some positive
C1 and C2 . Since, in addition, |X0| is bounded, we have that

lim sup
t→∞

1 + ε

t
lnP(Lπt ≥ q) ≤ −λq + inf

f∈C2
sup
x∈Rl

H(x;λ, f) + lim sup
t→∞

ε

t
lnEeC1|Xt|/ε .

Consequently, by EeC1|Xt|/ε being bounded in t according to Lemma C.2 of the appendix and
by ε being arbitrarily small,

lim sup
t→∞

1

t
lnP(Lπt ≥ q) ≤ −

(
λq − inf

f∈C2
sup
x∈Rl

H(x;λ, f)
)

yielding (2.27), if one recalls (2.24), (2.26a), and F being convex so that the supremum in
(2.26a) can be taken over (0, 1) .
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4.1.2 The proof of (2.40)

We draw on Koncz [25] and Nagai [32]. Since J s
q = 0 when λ̂ ≥ 0 , we may assume that

λ̂ < 0 . By Lemma 3.6, f̂ ∈ C2 ∩ C1
` . Given t > 0 , let us introduce a Girsanov change of

measure on (Ω,Ft,P) by

dP̂t

dP

∣∣∣
Ft

= exp
( t∫

0

(λ̂N(û(Xs), Xs) + σ(Xs)
T∇f̂(Xs))

T dWs

− 1

2

t∫
0

|λ̂N(û(Xs), Xs) + σ(Xs)
T∇f̂(Xs)|2 ds

)
. (4.3)

A multidimensional extension of Theorem 4.7 on p.137 in Liptser and Shiryayev [29], which is
proved similarly, obtains that there exists γ′ > 0 such that sups≤tEe

γ′|Xs|2 <∞ . By Example

3 on pp.220,221 in Liptser and Shiryayev [29] and the linear growth condition on ∇f̂(x) , the
expectation of the righthand side of (4.3) with respect to P equals unity. Therefore, P̂t is
a valid probability measure and, by Lemma 6.4 on p.216 in Liptser and Shiryayev [29] and
Theorem 5.1 on p.191 in Karatzas and Shreve [24], the process (Ŵs , 0 ≤ s ≤ t) is a standard
Wiener process with respect to P̂t , where

Ŵs = Ws −
s∫

0

(
λ̂N(û(Xs̃), Xs̃) + σ(Xs̃)

T∇f̂(Xs̃)
)
ds̃ . (4.4)

By (2.1) and Itô’s lemma,

dXs =
(
θ(Xs) + σ(Xs)(λ̂N(û(Xs), Xs) + σ(Xs)

T∇f̂(Xs))
)
ds+ σ(Xs) dŴs (4.5)

and

df̂(Xs) =
(
∇f̂(Xs)

T
(
θ(Xs) + σ(Xs)(λ̂N(û(Xs), Xs) + σ(Xs)

T∇f̂(Xs))
)

+
1

2
tr(σ(Xs)σ(Xs)

T∇2f̂(Xs))
)
ds+∇f̂(Xs)

Tσ(Xs) dŴs . (4.6)

Let, given λ ∈ R , f ∈ C2 , and measurable Rn–valued function v = (v(x) , x ∈ Rl) ,

H(x;λ, f, v) = λM(v(x), x) +
1

2
|λN(v(x), x) + σ(x)T∇f(x)|2 +∇f(x)T θ(x)

+
1

2
tr
(
σ(x)σ(x)T∇2f(x)

)
. (4.7)

By (2.15), (2.23), (2.34), and (2.35), H(x; λ̂, f̂ , û) = H(x; λ̂, f̂) = F (λ̂) . On taking into
account (2.3), (2.4a), (2.4b), (2.15), (2.23), and (2.34), with π̂s being the optimal u in (2.15),

Eetλ̂L
π̂
t = etF (λ̂)Êtef̂(X0)−f̂(Xt) . (4.8)
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By Itô’s lemma and (4.6), noting that |xTy|2 = tr(xxTyyT ),

ef̂(X0)−f̂(Xt) = 1 +

t∫
0

ef̂(X0)−f̂(Xs)
(
H(Xs; λ̂,0, û)− F (λ̂)

)
ds

−
t∫

0

ef̂(X0)−f̂(Xs)∇f̂(Xs)
Tσ(Xs) dŴs .

Let
τ̂R = inf{t ≥ 0 : |Xt| > R} ,

where R > 0 . Since
(∫ s∧τ̂R

0
ef̂(X0)−f̂(Xs̃)∇f̂(Xs̃)

Tσ(Xs̃) dŴs̃ , 0 ≤ s ≤ t
)

is a martingale with

respect to P̂t ,

Êtef̂(X0)−f̂(Xt∧τ̂R ) = 1 + Êt

t∧τ̂R∫
0

ef̂(X0)−f̂(Xs)
(
H(Xs; λ̂,0, û)− F (λ̂)

)
ds .

Since, by (2.4a), (2.4b), and (2.35),

H(x; λ̂,0, û) = − λ̂

2(1− λ̂)

(
‖b(x)σ(x)T∇f̂(x)‖2

c(x)−1 − ‖a(x)− r(x)1‖2
c(x)−1

)
+ λ̂(r(x)− α(x) +

1

2
|β(x)|2) +

1

2
λ2|β(x)|2 +

λ̂

2(1− λ̂)
‖λ̂b(x)β(x)‖2

c(x)−1

− λ̂

1− λ̂
(
a(x)− r(x)1

)T
c(x)−1b(x)λ̂β(x) ,

by (2.39), there exists K > 0 such that H(x; λ̂,0, û)− F (λ̂) < 0 if |x| > K . Therefore,

Êtef̂(X0)−f̂(Xt∧τ̂R ) ≤ 1 + sup
|x|≤K

e2|f̂(x)| sup
|x|≤K
|H(x; λ̂,0, û)− F (λ̂)|t ,

so, on letting R→∞ , by Fatou’s lemma,

Êtef̂(X0)−f̂(Xt) ≤ 1 + sup
|x|≤K

e2|f̂(x)| sup
|x|≤K
|H(x; λ̂,0, û)− F (λ̂)|t ,

which implies, by (4.8), that

lim sup
t→∞

1

t
lnEetλ̂L

π̂
t ≤ F (λ̂) , (4.9)

so, (2.40) follows by Jensen’s inequality and the supremum in (2.26b) being attained at λ̂ .
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4.2 The lower bounds

In this subsection, we prove (2.28) and (2.38). Let us assume that λ̂ < λ . We prove that, if
q′ > q , then

lim inf
t→∞

1

t
lnP(Lπt < q′) ≥ −

(
λ̂q −G(λ̂, f̂ , m̂)

)
(4.10a)

and that, if q′′ < q , then

lim inf
t→∞

1

t
lnP(Lπ̂t > q′′) ≥ −

(
λ̂q −G(λ̂, f̂ , m̂)

)
. (4.10b)

We begin with showing that

λ̂q −G(λ̂, f̂ , m̂) =
1

2

∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx . (4.11)

Since (λ̂, f̂ , m̂) is a saddle point of λq − Ğ(λ,∇f,m) in (−∞, λ]× (C2 ∩C1
`)× P by Lemma

3.6, λ̂ is the point of the maximum of the strictly concave function λq − Ğ(λ,∇f̂ , m̂) on
(−∞, λ] . Since λ̂ < λ and Ğ(λ,∇f̂ , m̂) is differentiable on (−∞, λ) , the λ–derivative of
Ğ(λ,∇f̂ , m̂) at λ̂ equals zero. By (3.14) of Lemma 3.5,

d

dλ
Ğ(λ,∇f̂ , m̂)

∣∣∣
λ=λ̂

=

∫
Rl

(
M(û(x), x) + λ̂|N(û(x), x)|2 +∇f̂(x)Tσ(x)N(û(x), x)

)
m̂(x) dx ,

(4.12)
so, ∫

Rl

(
M(û(x), x) + λ̂|N(û(x), x)|2 +∇f̂(x)Tσ(x)N(û(x), x)

)
m̂(x) dx = q . (4.13)

Therefore, by (2.15), (2.23), and (2.30),

λ̂q −G(λ̂, f̂ , m̂) = λ̂

∫
Rl

(
M(û(x), x) + λ̂|N(û(x), x)|2 +∇f̂(x)Tσ(x)N(û(x), x)

)
m̂(x) dx

−
∫
Rl

(
λ̂M(û(x), x) +

1

2
λ̂2|N(û(x), x)|2 + λ̂∇f̂(x)Tσ(x)N(û(x), x)

+
1

2
|σ(x)T∇f̂(x)|2 +∇f̂(x)T θ(x) +

1

2
tr (σ(x)σ(x)T∇2f̂(x) )

)
m̂(x) dx

=

∫
Rl

1

2
λ̂2|N(û(x), x)|2m̂(x) dx−

∫
Rl

(1

2
|σ(x)T∇f̂(x)|2 +∇f̂(x)T θ(x)

+
1

2
tr (σ(x)σ(x)T∇2f̂(x) )

)
m̂(x) dx . (4.14)

Integration by parts in (2.36) combined with the facts that |∇f̂(x)| grows at most linearly
with |x| , that û(x) is a linear function of ∇f̂(x) by (2.35), that

∫
Rl |x|

2 m̂(x) dx < ∞ , and
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that
∫
Rl |∇m̂(x)|2/m̂(x) dx < ∞ , shows that (2.36) holds with f̂(x) as h(x) . Substitution

on the rightmost side of (4.14) yields (4.11).
By (2.4b) and (2.35),

a(x)− r(x)1 + b(x)(λ̂N(û(x), x) + σ(x)T∇f̂(x)) = c(x)û(x) .

By (4.4), with W̃ t
s = Ŵst/

√
t ,

Lπt =

1∫
0

M(πts, X
t
s) ds+

1√
t

1∫
0

N(πts, X
t
s)
T dW t

s =

1∫
0

M(πts, X
t
s) ds

+

1∫
0

N(πts, X
t
s)
T (λ̂N(û(X t

s), X
t
s) + σ(X t

s)
T∇f̂(X t

s)) ds+
1√
t

1∫
0

N(πts, X
t
s)
T dW̃ t

s

=
1

t
ln E t1 +

1∫
0

M(û(X t
s), X

t
s) ds+

1∫
0

N(û(X t
s), X

t
s)
T (λ̂N(û(X t

s), X
t
s) + σ(X t

s)
T∇f̂(X t

s)) ds

+
1√
t

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s , (4.15)

where E ts represents the stochastic exponential defined by

E ts = exp
(√

t

s∫
0

(πts̃ − û(X t
s̃))

T b(X t
s̃) dW̃

t
s̃ −

t

2

s∫
0

‖πts̃ − û(X t
s̃)‖2

c(Xt
s̃)
ds̃
)
.

By (4.3) and (4.15), for δ > 0 ,

P
(
Lπt < q + 3δ

)
= Êtχ

{
1∫

0

M(πts, X
t
s) ds+

1√
t

1∫
0

N(πts, X
t
s)
T dW t

s < q + 3δ}

exp
(
−
√
t

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s))
T dW̃ t

s

− t

2

1∫
0

|λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s)|2 ds
)

≥ Êtχ{1

t
ln E t1 < δ

} χ{ 1√
t
|

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s | < δ
}χ{∫

Rl

M(û(x), x) νt(dx)

+

∫
Rl

N(û(x), x)T (λ̂N(û(x), x) + σ(x)T∇f̂(x)) νt(dx) < q + δ
}
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χ{ 1√
t
|

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s))
T dW̃ t

s | < δ
}

χ{∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2 νt(dx)−
∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx < 2δ
}

exp
(
−2δt− t

2

∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx
)
. (4.16)

We will work with the terms on the righthand side in order. Since ÊtE t1 ≤ 1 , Markov’s
inequality yields the convergence

lim
t→∞

P̂t
(1

t
ln E t1 < δ

)
= 1 . (4.17)

We show that if g(x) is a continuous function such that |g(x)| ≤ K(1 + |x|2) , for all
x ∈ Rl and some K > 0 , then

lim
t→∞

P̂t
(
|
∫
Rl

g(x)νt(dx)−
∫
Rl

g(x)m̂(x) dx| > ε
)

= 0 . (4.18)

By (4.5), by (Ŵs , 0 ≤ s ≤ t) being a standard Wiener process under P̂t , and Theorem
10.1.3 on p.251 in Stroock and Varadhan [40], the distribution of (Xs , 0 ≤ s ≤ t) under P̂t

is the same as the distribution of (Xs , 0 ≤ s ≤ t) , with (Xs , s ≥ 0) being the unique strong
solution to

dXs =
(
θ(Xs) + σ(Xs)(λ̂N(û(Xs), Xs) + σ(Xs)

T∇f̂(Xs))
)
ds+ σ(Xs) dW s , X0 = X0 ,

and with W = (W s , s ≥ 0) being a standard Wiener process. Assuming that X and W are
defined on (Ω,F ,P) , we have that

P̂t
(
|
∫
Rl

g(x)νt(dx)−
∫
Rl

g(x)m̂(x) dx| > ε
)

= P
(
|
∫
Rl

g(x)νt(dx)−
∫
Rl

g(x)m̂(x) dx| > ε
)
,

where νt(dx) = (1/t)
∫ t

0
χdx(Xs) ds . Since m̂(x) is a unique solution to (2.36), by Theorem

1.7.5 in Bogachev, Krylov, and Röckner [9], m̂(x) dx is a unique invariant measure of X ,
see also Proposition 9.2 on p.239 in Ethier and Kurtz [15]. It is thus an ergodic measure.
We recall that m̂ ∈ P̂ , so

∫
Rl |x|

2m̂(x) dx < ∞ . Let P ∗ denote the probability measure on
the space C(R+,Rl) of continuous Rl–valued functions equipped with the locally uniform
topology that is defined by P ∗(B) =

∫
Rl Px(B) m̂(x) dx , where Px is the distribution in

C(R+,Rl) of the process X started at x . Since m̂(x) dx is ergodic, so is P ∗, see Corollary
on p.12 in Skorokhod [39]. Hence, P ∗–a.s.,

lim
s→∞

1

s

s∫
0

g(X̃s̃) ds̃ =

∫
Rl

g(x)m̂(x) dx , (4.19)
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see, e.g., Theorem 3 on p.9 in Skorokhod [39], with X̃ representing a generic element of
C(R+,Rl) . Let C denote the complement of the set of elements of C(R+,Rl) such that
(4.19) holds. By Lemma 3.6, m̂(x) is continuous and strictly positive. Since P ∗(C) = 0 ,
we have that Px(C) = 0 for almost all x ∈ Rl with respect to Lebesgue measure. It follows
that if X0 has an absolutely continuous distribution n(x) dx , then

∫
Rl Px(C)n(x) dx = 0 ,

which means that (4.19) holds a.s. w.r.t. P
∗

, the latter symbol denoting the distribution of
X on the space of trajectories. If the distribution of X0 is not absolutely continuous, then
the distribution of X1 is because the transition probability has a density, see pp. 220–226
in Stroock and Varadhan [40]. Hence, (4.19) holds P

∗
–a.s. for that case too. The limit in

(4.18) has been proved. (A different proof can be found in Puhalskii and Stutzer [37].)
By (2.35), the linear growth condition on ∇f̂(x) , and (4.18),

lim
t→∞

P̂t
(∣∣ ∫

Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2 νt(dx)

−
∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx
∣∣ < 2δ

)
= 1 . (4.20)

Since, for η > 0 , by the Lenglart–Rebolledo inequality, see Theorem 3 on p.66 in Liptser
and Shiryayev [30],

P̂t
(
| 1√
t

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(x)T∇f̂(X t

s)) dW̃
t
s | ≥ δ

)

≤ η

δ2
+ P̂t

( 1∫
0

|λ̂N(û(X t
s), X

t
s) + σ(x)T∇f̂(X t

s)|2 ds ≥ ηt
)
,

we conclude that

lim
t→∞

P̂t
( 1√

t
|

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s)) dW̃
t
s | < δ

)
= 1 . (4.21)

Similarly,

lim
t→∞

P̂t
( 1√

t
|

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s < δ
)

= 1 . (4.22)

By (4.13) and (4.18),

lim
t→∞

P̂t
(∫
Rl

(
M(û(x), x) +N(û(x), x)T (λ̂N(û(x), x) + σ(x)T∇f̂(x))

)
νt(dx) < q + δ

)
= 1 .

Recalling (4.16) and (4.17) obtains that

lim inf
t→∞

1

t
lnP

(
Lπt < q′

)
≥ −1

2

∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m(x) dx , (4.23)
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so, (4.10a) follows from (4.11).
In order to prove (4.10b), we note that if πts = û(X t

s) , then E ts = 0 in (4.15), so

1∫
0

M(û(X t
s), X

t
s) ds+

1√
t

1∫
0

N(û(X t
s), X

t
s)
T dW t

s =

1∫
0

M(û(X t
s), X

t
s) ds

+

1∫
0

N(û(X t
s), X

t
s)
T (λ̂N(û(X t

s), X
t
s) + σ(X t

s)
T∇f̂(X t

s)) ds

+
1√
t

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s .

On recalling (4.1), similarly to (4.16),

P
(
Lπ̂t > q − 2δ

)
= Êtχ{ 1∫

0

(
M(û(X t

s), X
t
s) +N(û(X t

s), X
t
s)
T
(
λ̂N(û(X t

s), X
t
s)

+σ(X t
s)
T∇f̂(X t

s)
))
ds+

1√
t

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s > q − 2δ
}

exp
(
−
√
t

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s))
T dW̃ t

s

− t

2

1∫
0

|λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s)|2 ds
)

≥ χ{ 1√
t

1∫
0

N(û(X t
s), X

t
s)
T dW̃ t

s > −δ
}

χ{∫
Rl

(
M(û(x), x) +N(û(x), x)T

(
λ̂N(û(x), x) + σ(x)T∇f̂(x)

))
νt(dx) ≥ q − δ

}
χ{ 1√

t

1∫
0

(λ̂N(û(X t
s), X

t
s) + σ(X t

s)
T∇f̂(X t

s))
T dW̃ t

s ≤ δ

}

χ{∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2 νt(dx)−
∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx ≤ 2δ
}

exp
(
−2δt− t

2

∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx
)
. (4.24)
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One still has (4.20), (4.21), and (4.22). By (4.13) and (4.18),

lim
t→∞

P̂t
(∫
Rl

(
M(û(x), x) +N(û(x), x)T (λ̂N(û(x), x) + σ(x)T∇f̂(x))

)
νt(dx) > q − δ

)
= 1 .

Recalling (4.24) yields

lim inf
t→∞

1

t
lnP

(
Lπ̂t > q′′

)
≥ −1

2

∫
Rl

|λ̂N(û(x), x) + σ(x)T∇f̂(x)|2m̂(x) dx , (4.25)

so, (4.10b) follows from (4.11).
Reversing the roles of q and q′ in (4.10a) and reversing the roles of q and q′′ in (4.10b)

obtain that, if q′ < q , then

lim inf
t→∞

1

t
lnP(Lπt < q) ≥ −J s

q′

and that, if q′′ > q , then

lim inf
t→∞

1

t
lnP(Lπ̂t > q) ≥ −Jo

q′′ .

Letting q′ → q and q′′ → q and using the continuity of J s
q and Jo

q , respectively, which

properties hold by Lemma 3.5, prove (2.28) and (2.38), respectively, provided λ̂ < λ .

Suppose that λ̂ = λ < 1 . Let f̂ = f λ̂ be as in Lemma 3.4. Then (4.23) and (4.25) hold
by a similar argument to the one above. Since λ maximises λq − Ğ(λ, f̂ , m̂) over λ we have
that (d/dλ) Ğ(λ, f̂ , m̂)|λ− ≤ q . By (4.12) still holding, we have that in (4.13) the = sign has

to be replaced with ≤ . By λ being positive, the first = sign in (4.14) needs to be replaced
with ≥ , so does the = sign in (4.11). By (4.23) and (4.25), one obtains (2.28) and (2.38),
respectively.

Suppose that λ̂ = λ = 1 . Since λ̂ > 0 , J s
q = 0 and Jo

q > 0 , so, (2.28) is a consequence

of (2.27). We now work toward (2.38). Since λ = 1 maximises λq − F̆ (λ, m̂) over λ and
the function F̆ (λ, m̂) is a convex function of λ , F̆ (1, m̂) < ∞ and d/dλ F̆ (λ, m̂)

∣∣
1− ≤ q .

Let ∇f̂ be defined as in part 3 of Lemma 3.6, i.e., let inf∇f∈L1,2
0 (Rl,Rl,m̂(x) dx) Ğ(1,∇f, m̂) be

attained at ∇f̂ . By (3.16) of Lemma 3.5, d/dλ Ğ(λ,∇f̂ , m̂)
∣∣
1− ≤ q . By part 3 of Lemma

3.6, Ğ(1,∇f̂ , m̂) being finite implies that, m̂(x) dx–a.e.,

b(x)σ(x)T∇f̂(x) = b(x)β(x)− a(x) + r(x)1 . (4.26)

By (3.14) of Lemma 3.5, if λ < 1 , then

dĞ(λ,∇f̂ , m̂)

dλ
=

∫
Rl

(
M(uλ,∇f̂ (x), x)+λ|N(uλ,∇f̂ (x), x)|2+N(uλ,∇f̂ (x)Tσ(x)T∇f̂(x), x)

)
m̂(x) dx ,
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where uλ,∇f̂ (x) is defined by (2.16) with ∇f̂(x) as p . On noting that by (4.26) the limit, as
λ ↑ 1 , in (2.16) with ∇f̂(x) as p equals c(x)−1b(x)β , we have, see Theorem 24.1 on p.227 in
Rockafellar [38] for the first equality below, that

d

dλ
Ğ(λ,∇f̂ , m̂)

∣∣
1− = lim

λ↑1

d

dλ
Ğ(λ,∇f̂ , m̂) =

∫
Rl

(
M(c(x)−1b(x)β(x), x)

+ |N(c(x)−1b(x)β(x), x)|2 +N(c(x)−1b(x)β(x), x)Tσ(x)T∇f̂(x)
)
m̂(x) dx .

We recall that v̂(x) is defined to be a bounded continuous function with values in the

range of b(x)T such that |v̂(x)|2/2 = q − d/dλ F̆ (λ, m̂)
∣∣∣
1−

and û(x) = c(x)−1b(x)(β(x) +

v̂(x)) . By Lemma 3.5, d/dλ F̆ (λ, m̂)
∣∣
1− = d/dλ Ğ(λ,∇f̂ , m̂)

∣∣
1− . Since the vectors

b(x)T c(x)−1b(x)β(x) − β(x) and b(x)T c(x)−1b(x)v̂(x) are orthogonal, with the former be-
ing in the null space of b(x) and the latter being in the range of b(x)T , substitution in (2.4a)
and (2.4b) with the account of (2.21) yields∫

Rl

(
M(û(x), x) + |N(û(x), x)|2 +N(û(x), x)Tσ(x)T∇f̂(x)

)
m̂(x) dx

=
d

dλ
Ğ(λ,∇f̂ , m̂)

∣∣
1− +

∫
Rl

|v̂(x)|2

2
m̂(x) dx = q . (4.27)

(As a consequence, (4.13) holds in this case too.)
We now invoke results in Puhalskii [36]. Let the process Ψ̂t = (Ψ̂t

s , s ∈ [0, 1]) be
defined by (2.6) with û(x) as u(x) . Since û(x) is a bounded continuous function, the
random variables N(û(X t

s), X
t
s) are uniformly bounded. Condition 2.2 in Puhalskii [36]

is fulfilled because part 2 of condition (N) implies that the length of the projection of
N(û(x), x) onto the nullspace of σ(x) is bounded away from zero and, consequently, the quan-
tity |N(û(x), x)|2 − N(û(x), x)Tσ(x)(σ(x)σ(x)T )−1σ(x)TN(û(x), x) is bounded away from
zero. Thus, Theorem 2.1 in Puhalskii [36] applies, so the pair (Ψ̂t, µt) satisfies the LDP
in C([0, 1]) × C↑([0, 1],M(Rl)) for rate t , as t → ∞ , with the deviation function in (2.8),
provided the function Ψ = (Ψs, s ∈ [0, 1]) is absolutely continuous w.r.t. Lebesgue mea-
sure on R+ and the function µ = (µs(Γ)) , when considered as a measure on [0, 1] × Rl ,
is absolutely continuous w.r.t. Lebesgue measure, i.e., µ(ds, dx) = ms(x) dx ds , where
ms(x) , as a function of x , belongs to P̂ for almost all s . If those conditions do not
hold then J(Ψ, µ) = ∞ . Since Lπ̂t = Ψ̂t

1 and νt(Γ) = µt([0, 1],Γ) , by projection, the
pair (Lπ̂t , ν

t) obeys the LDP in R ×M(Rl) for rate t with deviation function Iû , such that
Iû(L, ν) = inf{J(Ψ, µ) : Ψ1 = L , µ([0, 1],Γ) = ν(Γ)} . Therefore,

lim inf
t→∞

1

t
lnP

(
Lπ̂t > q

)
≥ − inf

(L,ν):L>q
Iû(L, ν) . (4.28)

Calculations show that

Iû(L, ν) = sup
λ∈R

(λL− inf
f∈C2

0

∫
Rl

H(x;λ, f, û) ν(dx)) ,
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if ν(dx) = m(x) dx , where m ∈ P̂ , and Iû(L, ν) = ∞ , otherwise, where H(x;λ, f, v) is
defined in (4.7). We have that the function λL− inff∈C2

0

∫
Rl H(x;λ, f, û) m̂(x) dx is concave

in λ and is convex and lower semicontinuous in L . It is sup–compact in λ because Iû(L, ν) is
a deviation function, i.e., it is inf–compact. (We provide a direct proof of the latter property
in the appendix.) Therefore, by Theorem 7 on p.319 in Aubin and Ekeland [4],

inf
(L,ν):L>q

Iû(L, ν) ≤ inf
L>q

sup
λ∈R

(λL− inf
f∈C2

0

∫
Rl

H(x;λ, f, û) m̂(x) dx)

= sup
λ∈R

inf
L>q

(λL− inf
f∈C2

0

∫
Rl

H(x;λ, f, û) m̂(x) dx) = sup
λ≥0

(λq − inf
f∈C2

0

∫
Rl

H(x;λ, f, û) m̂(x) dx) .

(4.29)

By integration by parts, if f ∈ C2
0 , then∫

Rl

H(x;λ, f, v)m̂(x) dx =

∫
Rl

(
λM(v(x), x) +

1

2
|λN(v(x), x) +σ(x)T∇f(x)|2 +∇f(x)T θ(x)

− 1

2
∇f(x)T

div
(
σ(x)σ(x)T m̂(x)

)
m̂(x)

)
m̂(x) dx . (4.30)

As the righthand side depends on f(x) through ∇f(x) only, similarly to developments
above, we use the righthand side of (4.30) in order to define the lefthand side when
∇f ∈ L1,2

0 (Rl,Rl, m̂(x) dx) . By the set of the gradients of C2
0–functions being dense in

L1,2
0 (Rl,Rl, m̂(x) dx) ,

inf
f∈C2

0

∫
Rl

H(x;λ, f, û) m̂(x) dx = inf
∇f∈L1,2

0 (Rl,Rl,m̂(x) dx)

∫
Rl

H(x;λ, f, û) m̂(x) dx .

Since H(x; 1, f, û) = H(x; 1, f) (see (2.20) and (4.26)) ,
∫
Rl H(x; 1, f, û)m̂(x) dx =

Ğ(1,∇f, m̂) . By ∇f̂ minimising Ğ(1,∇f, m̂) over ∇f ∈ L1,2
0 (Rl,Rl, m̂(x) dx) , the func-

tion q −
∫
Rl H(x; 1, f, û)m̂(x) dx attains maximum over ∇f in L1,2

0 (Rl,Rl, m̂(x) dx) at ∇f̂ .

Therefore, the partial derivative with respect to ∇f of λq −
∫
Rl H(x;λ, f, û)m̂(x) dx equals

zero at (1,∇f̂) . By (4.30), we can write (4.27) as d/dλ
∫
Rl H(x;λ, f̂ , û)m̂(x) dx

∣∣∣
1

= q , so,

the partial derivative with respect to λ of λq−
∫
Rl H(x;λ, f, û)m̂(x) dx at (1,∇f̂) equals zero

too. The function λq−
∫
Rl H(x;λ, f, û)m̂(x) dx being concave in (λ,∇f), it therefore attains

a global maximum in R × L1,2
0 (Rl,Rl, m̂(x) dx) at (1,∇f̂) , cf. Proposition 1.2 on p.36 in

Ekeland and Temam [14]. Hence,

sup
λ≥0

(
λq − inf

f∈C2
0

∫
Rl

H(x;λ, f, û)m̂(x) dx
)

= q − Ğ(1,∇f̂ , m̂) .

The latter expression being equal to Jo
q , (4.28), and (4.29) imply the required lower bound

(2.38).
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Remark 4.1. The change of the measure in (4.3) is implicit in Puhalskii [36]. The idea of
using a stochastic exponential in order to ”absorb” control in (4.15) is borrowed from Hata,
Nagai, and Sheu [20].

5 Proof of Theorem 2.3

For the first assertion of part 1, let us assume that λ < λ . Let ε > 0 be such that λ(1+ε) < λ
and the function fλ(1+ε) is bounded below by an affine function of x . By (2.25), denoting
fε = fλ(1+ε) ,

lim sup
t→∞

1

t
lnE exp((1 + ε)λtLπt + fε(Xt)− fε(X0)) ≤ F ((1 + ε)λ) .

By the reverse Hölder inequality,

E exp((1+ε)λtLπt +fε(Xt)−fε(X0)) ≥
(
E exp(λtLπt )

)1+ε(
E exp(−(1/ε)(fε(Xt)−fε(X0))

)−ε
,

so, since fε is bounded below by an affine function, |X0| is bounded, and ε can be chosen
arbitrarily small, in analogy with the proof of (2.27),

lim sup
t→∞

1

t
lnE exp(λtLπt ) ≤ F (λ) .

The latter inequality is trivially true if λ > λ .
We address the lower bound. Let 0 < λ < λ . Then F is subdifferentiable at λ . Let q

represent a subgradient of F at λ . Since λq − F (λ) = Jo
q , by (2.38),

lim inf
t→∞

1

t
lnEeλtL

π̂λ

t ≥ lim inf
t→∞

1

t
lnEeλtL

π̂λ

t χ{Lπ̂λt ≥q}
≥ λq + lim inf

t→∞

1

t
lnP(Lπ̂

λ

t ≥ q)

≥ λq − Jo
q = F (λ) . (5.1)

If λ = λ and F is subdifferentiable at λ , a similar proof applies. Suppose that λ = λ and F
is not subdifferentiable at λ . By what has been just proved,

lim inf
λ̌↑λ

lim inf
t→∞

1

t
lnEeλ̌tL

π̂λ̌

t ≥ lim inf
λ̌↑λ

F (λ̌) = F (λ)

and Hölder’s inequality yields

lim inf
λ̌↑λ

lim inf
t→∞

1

t
lnEeλtL

π̂λ̌

t ≥ F (λ) .

By requiring πλt to match πλit on certain intervals [ti, ti+1) where λi ↑ λ and ti → ∞ appro-

priately, we can ensure that lim inft→∞(1/t) lnEeλtL
πλ

t ≥ F (λ) .
Suppose that λ > λ . If F is subdifferentiable at λ , then, similarly to (5.1), on choosing

q as a subgradient of F at λ ,

lim inf
t→∞

1

t
lnEeλtL

π̂λ

t ≥ λq + lim inf
t→∞

1

t
lnP(Lπ̂

λ

t ≥ q) ≥ λq − Jo
q = (λ− λ)q + F (λ) . (5.2)
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Since q can be chosen arbitrarily great, limt→∞(1/t) lnEeλtL
π̂λ

t = ∞ . If F is not subdiffer-
entiable at λ , then we pick λi and qi such that λi ↑ λ , qi is a subgradient of F at λi and
qi ↑ ∞ . Arguing along the lines of (5.2) yields

lim inf
t→∞

1

t
lnEeλtL

π̂λi
t ≥ λqi + lim inf

t→∞

1

t
lnP(Lπ̂

λi

t ≥ qi) ≥ (λ− λ)qi + F (λi) ,

so there exists πλ such that limt→∞(1/t) lnEeλtL
πλ

t =∞ .
We prove part 2. Since EeλtL

π
t ≥ eλqtP(Lπt ≤ q) provided λ < 0 , the inequality in (2.28)

of Theorem 2.1 implies that

lim inf
t→∞

1

t
lnEeλtL

π
t ≥ sup

q∈R
(λq − J s

q) = F (λ) ,

with the latter equality holding because by (2.26b) J s
q is the Legendre–Fenchel transform

of the function that equals F (λ) when λ ≤ 0 and equals ∞ , otherwise. Since λ < 0 , F is
differentiable at λ by Lemma 3.7, so q = F ′(λ) and π̂λ is well defined. The needed upper
bound is nothing but (4.9).

Acknowledgement. I am grateful to Professor Stutzer for introducing me to the subject
area of this research.

A The scalar case

In this subsection the one–dimensional affine setup is analysed in more detail. We will
assume that l = n = 1 , so, in (2.41a)–(2.41e), Θ1 , θ2 , A1, a2 , r1 , r2 , α1, and α2 are scalars,
Θ1 < 0 , σ is a 1× k–matrix, b is a 1× k–matrix, and β is a k–vector. Accordingly, c , σσT ,
σbT , P1(λ) , p2(λ) , A(λ) , B(λ) , and C are scalars. By (2.43), the equation for P1(λ) is

B(λ)P1(λ)2 + 2A(λ)P1(λ) +
λ

1− λ
C = 0 . (A.1)

Let

β̃ = 1 +
1

Θ2
1

A1 − r1

c

(
σσT (A1 − r1)− 2Θ1σb

T
)
. (A.2)

(The latter piece of notation is modelled on that of Pham [34].) One can see, by (2.42a),
(2.42b), and (2.42c), that β̃ ≥ 0 and

A(λ)2 −B(λ)
λ

1− λ
C = Θ2

1

1− λβ̃
1− λ

.

Hence, P1(λ) exists if and only if λ ≤ 1/β̃ and λ < 1 , so, λ̃ = (1/β̃)∧ 1 . (Not unexpectedly,
if λ < 0 then (A.1) has both a positive and a negative solution, whereas both solutions are
positive if 0 < λ ≤ λ̃ .) If λ < λ̃ , then

P1(λ) =
1

B(λ)

(
−A(λ)− |Θ1|

√
1− λβ̃
1− λ

)
(A.3)
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and F (λ) is determined by (2.45) and (2.48). The negative signature of the square root is
chosen because D(λ) in (2.14) has to be negative which is needed in order for the analogue
of (2.47) to have a stationary distribution. Therefore,

D(λ) = Θ1

√
1− λβ̃
1− λ

. (A.4)

The functions D(λ) and P1(λ) are differentiable for λ < 1 ∧ (1/β̃) . As in Pham [34], we
distinguish between three cases: β̃ > 1 , β̃ < 1 , and β̃ = 1 .

Suppose that β̃ > 1 , so, λ̃ = 1/β̃ . Then P1(λ) and D(λ) are continuous on [0, 1/β̃]
and differentiable on (0, 1/β̃) . We have that P1(1/β̃) = −A(1/β̃)/B(1/β̃) and D(1/β̃) =

0 . Also, D(λ)/
√

1/β̃ − λ → −|Θ1|
√
β̃/
√

1− 1/β̃ and (P1(1/β̃) − P1(λ))/
√

1/β̃ − λ →

|Θ1|
√
β̃/(B(1/β̃)

√
1− 1/β̃) , as λ ↑ 1/β̃ . In addition, by (2.45) and (2.48), if E(1/β̃) 6= 0 ,

then |p2(λ)| = |E(λ)/D(λ)| → ∞ and F (λ)→∞ , so, F (λ) =∞ when λ ≥ 1/β̃ , λ = 1/β̃ ,
and λ̂ < λ . Suppose that E(1/β̃) = 0 . By (2.45) and (2.46), E(λ) = D(λ)Z(λ) + U(λ) ,
where

Z(λ) =
λ

1− λ
bσT c−1(a2 − r2 − λbβ)− λσβ + θ2

and

U(λ) =
λ

1− λ
(A1 − r1)c−1(a2 − r2 − λbβ) + λ(r1 − α1)− A(λ)

B(λ)
Z(λ) .

Therefore, for λ < 1/β̃ ,

p2(λ) = −Z(λ)

B(λ)
− U(λ)

D(λ)
.

Since E(1/β̃) = D(1/β̃) = 0 , U(1/β̃) = 0 . By U(λ) being linear in a neighbour-
hood of 1/β̃ , p2(λ) has a finite limit at 1/β̃ , so, we let, by continuity, p2(1/β̃) =
−Z(1/β̃)/B(1/β̃) , and F (1/β̃) is finite. Let us look at the derivative at 1/β̃ . We

have that (p2(1/β̃) − p2(λ))/
√

1/β̃ − λ → U ′(1/β̃)
√

1− 1/β̃/(|Θ1|
√
β̃) , as λ ↑ 1/β̃ . By

(2.48), (F (1/β̃) − F (λ))/
√

1/β̃ − λ → (1/2)σσT |Θ1|
√
β̃/(B(1/β̃)

√
1− 1/β̃) . Therefore,

F ′(1/β̃−) =∞ , so, F is essentially smooth, λ = 1/β̃ and λ̂ < λ .
Suppose that β̃ < 1 . By (A.2), bσT 6= 0 . Also, λ̃ = λ = 1 . By (A.3), (2.42a), and

(2.42b), P1(λ) has limit P1(1) = −(A1−r1)/(bσT ) when λ ↑ 1 and (P1(λ)−P1(1))/
√

1− λ→
Θ1

√
1− β̃/((bσT )2c−1) as λ ↑ 1 . By (2.45), (2.46), and (A.4), p2(λ)→ −(a2−r2−bβ)/bσT ,

as λ ↑ 1 , which quantity we denote by p2(1) . By (2.45), (2.46), (A.3) and (A.4), one can
expand as follows (either by hand or by the use of Mathematica): as λ ↑ 1 ,

p2(λ) = p2(1)−K1

√
1− λ−K2(1− λ) + o(1− λ) ,

where

K1 =
1

Θ1

√
1− β̃

((
Θ1 −

σσT (A1 − r1)

bσT
)
p2(1) + r1 − α1 + P1(1)(θ2 − σβ)

)
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and

K2 =
σσT

(bσT )2c−1
p2(1) +

bβ

bσT
+

θ2 − σβ
(bσT )2c−1

.

By (2.48), F (λ) has a finite limit as λ ↑ 1 , which we denote by F (1) . In addition,

lim
λ↑1

F (1)− F (λ)√
1− λ

=
σσT |Θ1|

√
1− β̃

2(bσT )2c−1
,

implying that F ′(1−) =∞ , so, F is essentially smooth and λ̂ < λ .
Let us consider the case that β̃ = 1 , so, (A1− r1)

(
σσT (A1− r1)− 2Θ1σb

T
)

= 0 . One has

that λ̃ = λ = 1 , D(λ) = Θ1 , P1(λ) = (−σbT c−1(A1− r1))/
(
(1−λ)/λ σσT +σbT c−1bσT

)
and

p2(λ) = −E(λ)/Θ1 . Thus, if bσT = 0 , then A1 − r1 = 0 and P1(λ) = 0 . If bσT 6= 0 , then
P1(1) = −(A1 − r1)/(bσT ) , P ′1(1) = −σσT (A1 − r1)/((bσT )3c−1) , and P ′′1 (1) = 2σσT (A1 −
r1)/

(
(bσT )3c−1

)(
1− σσT/

(
(bσT )2c−1

))
. Since

A1 − r1 + bσTP1(1) = 0 , (A.5)

E(λ) is continuous and differentiable on [0, 1] , see (2.46), so is p2(λ) . By (2.48), if a2− r2−
bβ + bσTp2(1) 6= 0 , then F (λ)→∞ , as λ ↑ 1 , so λ̂ < λ . If

a2 − r2 − bβ + bσTp2(1) = 0 , (A.6)

then

F (1) =
1

2
σσTp2(1)2 + (−σβ + θ2)p2(1) + r2 − α2 + |β|2 +

1

2
σσTP1(1)

and

F ′(1−) = σσTp′2(1−)p2(1) +
1

2c
(bσTp′2(1−)− bβ)2 − βTσTp2(1) + (−σβ + θ2)p′2(1−)

+ r2 − α2 +
3

2
|β|2 +

1

2
σσTP ′1(1−) .

As one can see, F (λ) is not essentially smooth. We obtain that λ̂ < λ if and only if
F ′(1−) > q , otherwise λ̂ = 1 . It is noteworthy that (A.5) and (A.6) represent conditions
(2.50a) and (2.50b), respectively.

The cases where β̃ ≥ 1 and F (λ)→∞ as λ ↑ 1/β̃ and where β̃ < 1 have been analysed
in Pham [34].

B Proof of Lemma 2.1

Suppose that the matrix σ(x)Q1(x)σ(x)T is uniformly positive definite. Then
|Q1(x)σ(x)Ty| ≥ k1|y| , for some k1 > 0 , all x ∈ Rl and all y ∈ Rk . Since |σ(x)Ty|2 =
yTσ(x)σ(x)Ty ≤ k2|2|y|2 , for some k2 ≥ k1 , we have that

|(Ik −Q1(x))σ(x)Ty|
|σ(x)Ty|

≤
√
|σ(x)Ty|2 − k2

1|y|2
|σ(x)Ty|

≤

√
1− k2

1

k2
2

.
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Therefore, since Ik−Q1(x) represents the operator of the orthogonal projection on the range
of b(x)T , given z ∈ Rn ,

(σ(x)Ty)T b(x)T z ≤

√
1− k2

1

k2
2

|σ(x)Ty||b(x)T z| ,

so nonzero vectors from the ranges of σ(x)T and of b(x)T are at angles uniformly
bounded away from zero. Conversely, if (σ(x)Ty)T b(x)T z ≤ ρ1 |σ(x)Ty||b(x)T z|, for
some ρ1 ∈ (0, 1) , then |(Ik − Q1(x))σ(x)Ty| ≤ ρ1|σ(x)Ty| so that |Q1(x)σ(x)Ty| =√
|σ(x)Ty|2 − |(Ik −Q1(x))σ(x)Ty|2 ≥ (1−ρ1)|σ(x)Ty| ≥ (1−ρ1)ρ2|y| , the latter inequality

holding by σ(x)σ(x)T being uniformly positive definite, where ρ2 > 0 . Thus, the matrix
σ(x)Q1(x)σ(x)T is uniformly positive definite if and only if ”the angle condition” holds.
Since the angle condition is symmetric in σ(x) and b(x) , it is also equivalent to the matrix
c(x)− b(x)σ(x)T (σ(x)σ(x)T )−1σ(x)b(x)T being uniformly positive definite.

In order to prove the second assertion of the lemma, let us observe that

β(x)TQ2(x)β(x) = β(x)TQ1(x)
(
Ik−Q1(x)σ(x)T (σ(x)Q1(x)Q1(x)σ(x)T )−1σ(x)Q1(x)

)
Q1(x)β(x) ,

so, if β(x)TQ2(x)β(x) is bounded away from zero, then, by |Q1(x)β(x)| being bounded, there
exists ρ3 ∈ (0, 1) such that, for all x ∈ Rl ,

(1− ρ3)|Q1(x)β(x)| >
(
Q1(x)σ(x)T (σ(x)Q1(x)Q1(x)σ(x)T )−1σ(x)Q1(x)

)
Q1(x)β(x) .

The righthand side representing the orthogonal projection of Q1(x)β(x) onto the range of
(σ(x)Q1(x))T implies that, given y ∈ Rl ,

|(Q1(x)β(x))TQ1(x)σ(x)Ty| ≤ (1− ρ3)|Q1(x)β(x)||Q1(x)σ(x)Ty| ,

which means that Q1(x)β(x) is at angles to Q1(x)σ(x)Ty which are bounded below uniformly
over y . The converse is proved similarly.

C

Lemma C.1. Given L ∈ R , m ∈ P̂ , and v ∈ L2(Rl,Rn,m(x) dx) , the sets

{λ ∈ R : λL− inf
f∈C2

0

∫
Rl

H(x;λ, f, v)m(x) dx ≥ α}

are compact for all α ∈ R .

Proof. By (4.7),

inf
f∈C2

0

∫
Rl

H(x;λ, f, v)m(x) dx = inf
∇f∈L1,2

0 (Rl,Rl,m(x) dx)

∫
Rl

(
λM(v(x), x)

+
1

2
|λN(v(x), x)+σ(x)T∇f(x)|2+∇f(x)T θ(x)− 1

2
∇f(x)T

div(σ(x)σ(x)Tm(x))

m(x)

)
m(x) dx .
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The infimum is attained at ∇f(x) = λg1(x) + g2(x) , where

g1 = −Π
(
(σ(·)σ(·)T )−1σ(·)TN(v(·), ·)

)
,

g2 = Π
(
(σ(·)σ(·)T )−1

(
−θ(·) +

div(σ(·)σ(·)Tm(·))
2m(·)

))
,

with Π representing the operator of the orthogonal projection on L1,2
0 (Rl,Rl,m(x) dx)

in L2(Rl,Rl,m(x) dx) with respect to the inner product 〈h1, h2〉 =∫
Rl h1(x)Tσ(x)σ(x)Th2(x)m(x) dx . Therefore,

λL− inf
f∈C2

0

∫
Rl

H(x;λ, f, v)m(x) dx

= λ
(
L−

∫
Rl

M(v(x), x)m(x) dx−
∫
Rl

g1(x)Tσ(x)σ(x)Tg2(x)m(x) dx
)

+
1

2

∫
Rl

g2(x)Tσ(x)σ(x)Tg2(x)m(x) dx−λ
2

2

∫
Rl

(
|N(v(x), x)|2−g1(x)Tσ(x)σ(x)Tg1(x)

)
m(x) dx .

(C.1)

Since projection is a contraction operator,∫
Rl

g1(x)Tσ(x)σ(x)Tg1(x)m(x) dx ≤
∫
Rl

N(v(x), x)Tσ(x)T (σ(x)σ(x)T )−1σ(x)N(v(x), x)m(x) dx .

As mentioned, by condition (N), β(x) does not belong to the sum of the ranges of b(x)T

and of σ(x)T . By (2.4b), N(u, x) does not belong to the range of σ(x)T , for any u and
x . Therefore, the projection of N(v(x), x) onto the null space of σ(x) is nonzero which
implies that |N(v(x), x)|2 − N(v(x), x)Tσ(x)T (σ(x)σ(x)T )−1σ(x)N(v(x), x) is positive for
any x , so, the coefficient of λ2 on the righthand side of (C.1) is positive, yielding the needed
property.

The next result seems to be ”well known”. I haven’t been able to find a reference, though.

Lemma C.2. For arbitrary κ > 0 ,

lim sup
t→∞

Eeκ|Xt| <∞ .

Proof. We prove that, if γ > 0 and is small enough, then

lim sup
t→∞

Eeγ|Xt|
2

<∞ .

By (2.2), there exist K1 > 0 and K2 > 0 such that, for all x ∈ Rl , θ(x)Tx ≤ −K1|x|2 +K2 .
On applying Itô’s lemma to (2.1) and recalling that σ(x)σ(x)T is bounded, we have that, for
some K3 > 0 and all i ∈ N , t ≥ 0 ,

dE|Xt|2i ≤ −2iK1E|Xt|2i dt+ 2i2K3E|Xt|2i−2 dt .
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Hence,

E|Xt|2i ≤ E|X0|2ie−2iK1t + 2i2K3e
−2iK1t

t∫
0

e2iK1sE|Xs|2i−2 ds . (C.2)

Let

Mi(t) =
1

i!
sup
s≤t

E|Xs|2i .

By (C.2),

Mi(t) ≤
E|X0|2i

i!
+
K3

K1

Mi−1(t) .

Hence, if γK3/K1 < 1 , then

Eeγ|Xt|
2 ≤

∞∑
i=0

γiMi(t) ≤
1

1− γK3/K1

∞∑
i=0

γiE|X0|2i

i!
=

1

1− γK3/K1

Eeγ|X0|2 .
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