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Abstract
The paper considers modal logics of products of neighbourhood frames. The n-product of modal logics is the logic of
all products of neighbourhood frames of the corresponding logics. We find the n-product of any two pretransitive Horn
axiomatizable logics. As a corollary, we find the d-logic of products of topological spaces from some classes of topological
spaces.
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1 Introduction

The neighbourhood semantics is a generalization of Kripke semantics and topological semantics. It
was introduced by Dana Scott in [12] and Richard Montague in [9] independently. In this paper, we
will consider the product of neighbourhood frames introduced by Sano in [11]. It is a generalization
of the product of topological spaces1 presented in [17].

The product of neighbourhood frames is defined in the same manner as the product of Kripke
frames (see [14] and [16]). But there are some differences. The axioms of commutativity and
Church–Rosser property are valid in any product of Kripke frames. Whereas in [17] it was shown
that the logic of the products of all topological spaces is the fusion2 of logics S4 ∗ S4. Moreover,
S4 ∗ S4 is complete w.r.t. the product Q ×t Q (×t stands for the product of topological spaces
defined in [17]).

In [7] it was proved that, for any pair L and L′ of logics from {S4, D4, D, T}, the modal logic of
the family of products of L-neighbourhood frames and L′-neighbourhood frames is the fusion of L
and L′. But at that point it was unclear how to proceed in the case of logics that does not contain the
seriality axiom ♦�. In [8] it was shown that, for any variable-free and �2-free formula B, formula
B → �2B is valid in any product of neighbourhood frames (and the same holds for B′ → �1B′,
where B′ is variable-free and �1-free). It was also proved that K ∗ K plus all these formulas is the
logic of all products of neighbourhood frames. For any two modal logics L1 and L2 we can define〈
L1, L2

〉
as L1 ∗ L2 plus all the formulas from the above. For details, see Definition 3.8.

∗E-mail: kudinov.andrey@gmail.com
1‘Product of topological spaces’ is a well-known notion in Topology, but here we use a different definition (for details

see [17]).
2Some authors (see [5, 17]) use ⊕ for the fusion.
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2 On neighbourhood product of some Horn axiomatizable logics

In this paper, we will find a sufficient conditions for two logics L1 and L2 to be n-product matching.
Two logics are called n-product matching if L1 ×n L2 = 〈

L1, L2
〉
, where L1 ×n L2 is the logic of all

products of neighbourhood frames X1 × X2 such that X1 |� L1 and X2 |� L2.
Neighbourhood frames are often considered in the context of non-normal modal logics. Since

many non-normal logics are complete w.r.t. neighbourhood semantics. Examples of Kripke incom-
plete normal modal logics that are complete w.r.t. neighbourhood semantics are rare and usually
artificial. This paper, however, shows that in the case of the products neighbourhood frames give
different results from Kripke frames even in case of normal modal logics. To be precise this paper
(and others: [7, 11, 17]) shows that ‘neighbourhood’ product, in general, generates a weaker logic in
comparison to ‘Kripke’ product. It also shows how the notion of the product of modal logics depends
on the underlining semantics.

We also prove some corollaries for the derivational semantics of topological spaces. In particular
the logic of all products of all T1 spaces is

〈
K4, K4

〉
. What is the logic of all products of all

topological products is still unknown.

2 Language, logics and semantics

In this paper, we study propositional modal logics. A formula is defined recursively by using the
Backus–Naur form as follows:

φ ::= p
∣∣ ⊥ ∣∣ (

φ → φ
) | �iφ,

where p ∈ PROP is a propositional letter and �i is a modal operator (i = 1, . . ., n). Other connectives
are introduced as abbreviations: classical connectives are expressed through ⊥ and →, and dual
modal operators ♦i are expressed as ¬�i¬. The set of all modal formulas is denoted by MLn, and
in order to specify the modalities used in the language we write them in subindex, e.g. ML�1 or
ML�2 .

DEFINITION 2.1
A normal modal logic (or a logic, for short) is a set of modal formulas closed under Substitution(

A(p)
A(B)

)
, Modus Ponens

(
A, A→B

B

)
and Generalization rules

(
A�iA

)
, containing all the classical

tautologies and the normality axioms:

�i
(
p → q

) → (�ip → �iq
)
.

Kn denotes the minimal normal modal logic with n modalities and K = K1.

Let L be a logic and � a set of formulas, then L + � denotes the minimal logic containing L and
�. If � = {

A
}
, then we write L + A rather than L + {

A
}
.

DEFINITION 2.2
A formula B is called closed if it has no variables.

DEFINITION 2.3
Let L1 and L2 be two modal logics with one modality � (unimodal logics), then the fusion of these
logics is the following modal logic with 2 modalities:

L1 ∗ L2 = K2 + L′
1 + L′

2,
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On neighbourhood product of some Horn axiomatizable logics 3

where L′
i is the set of all formulas from Li in which all instances of � are replaced by �i.

DEFINITION 2.4
Let R ⊆ W × W be a relation on W �= ∅, then for n ≥ 1 and w ∈ W we define

R0 = IdW = {(w, w) | w ∈ W } ,

Rn+1 = Rn ◦ R,

R∗ =
∞⋃

k=0

Rk ,

R(w) = {u | wRu } .

Notice that R∗ is the reflexive transitive closure of R.
A Kripke frame with n relations is a tuple F = (

W , R1, . . . , Rn
)
, where W is a non-empty set and

Ri ⊆ W × W is a relation on W for each i ∈ {1, . . . , n}.

REMARK 2.5
We will sometimes write w ∈ F as a shortcut for w ∈ W and F = (

W , R1, . . . , Rn
)
.

A frame F with a valuation V : PROP → 2W is called a model M = (F, V ).
For a Kripke frame F = (W , R1, . . ., Rn) we define the subframe generated by w ∈ W as the frame

Fw = (
W ′, R1|W ′ , . . . , Rn|W ′

)
, where W ′ = (

R1 ∪ . . . , ∪Rn
)∗

(w) and Ri|W ′ = Ri ∩ W ′×W ′. A frame
F is called rooted if F = Fw for some w.

The truth of a formula in a model M at a point x ∈ W is defined, as usual, by induction on the
length of the formula:

M , x �|� ⊥,

M , x |� p ⇐⇒ x ∈ V
(
p
)
;

M , x |� A → B ⇐⇒ M , x �|� A or M , x |� B;

M , x |� �iA ⇐⇒ ∀y
(
xRiy ⇒ M , y |� A

)
.

A formula is true in a (Kripke) model M if it is true at all points of M (notation M |�A).
A formula is valid on a (Kripke) frame F if it is true in all models based on F (notation F|�A).
We write F |� L if, for any A ∈ L, F|�A. The logic of a class of Kripke frames C is Log(C) =
{A | F |� A for all F ∈ C }. For a logic L we also define V(L)={

F
∣∣ F is a Kripke frame and F |� L

}
.

Note that if there is no F such that F |� L, then V(L) = ∅.

DEFINITION 2.6
Let F = (

W , R1, . . . , Rn
)

and G = (
U , S1, . . . , Sn

)
be Kripke frames. A function f : W → U is

called a p-morphism (Notation: f : F � G) if

1. f is surjective;
2. [monotonisity] for any w, v ∈ W wRiv implies f (w)Si f (v);
3. [lifting] for any w ∈ W and v ′∈ U such that f (w)Siv ′ there exists v ∈ W such that wRiv and

f (v) = v ′.
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4 On neighbourhood product of some Horn axiomatizable logics

The following p-morphism lemma is well known (see [2, Proposition 2.14]):

LEMMA 2.7
Let f : F � G and V be a valuation on G. We define a valuation on F by

[
f −1(V)

] (
p
) = f −1

(
V

(
p
))

.
Then for any w ∈ F and any formula A

F, f −1(V), w |� A ⇐⇒ G, V , f (w) |� A.

The following is a straightforward corollary.

COROLLARY 2.8
If f : F � G, then Log(F) ⊆ Log(G).

For a consistent modal logic L with n modalities we define the canonical model (c.f. [2]) ML =(
FL, VL

)
, where FL = (

W , R1, . . . , Rn
)

such that

W = {x | x is an L-complete set of formulas } ,

xRiy ⇐⇒ ∀A
(�i A ∈ x ⇒ A ∈ y

)
,

x ∈ V
(
p
) ⇐⇒ p ∈ x.

The classical result on canonical models is

LEMMA 2.9
For any formula A and any consistent logic L

ML, x |� A ⇐⇒ A ∈ x.

We also define 0-canonical frame F0
L being the counterparts of canonical frame in the modal

language without variables. More precisely,

F0 =
(

W 0, R′
1, . . . , R′

n

)
,

W 0 = {x̄ | x̄ is an L-complete set of closed formulas } ,

x̄R′
iȳ ⇐⇒ ∀A

(�i A ∈ x̄ ⇒ A ∈ ȳ
)
.

Note that there are no 0-canonical models since there are no variables in closed formulas. So the
lemma for canonical model transforms into

LEMMA 2.10
For any closed formula A and any logic L

F0
L , x̄ |� A ⇐⇒ A ∈ x̄.

Here we describe a construction of continuum unravelling. It is similar to the construction in
[4, Lemma 4.9].
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On neighbourhood product of some Horn axiomatizable logics 5

DEFINITION 2.11
Let F = (

W , R
) = Fw0 be a rooted Kripke frame, S be a non-empty set and x0 ∈ S be a point in it

(the starting point). Then

F · S = (
W × S, R · S

)
;

(w, x)R · S
(
v, y

) ⇐⇒ wRv;

FS = (
F · S

)(w0,x0

)
= (

WS , RS
)

— a rooted subframe.

FS is called the thickening of F by S.

The proof of the following lemma is straightforward.

LEMMA 2.12
The first projection p1(w, x) = w is a p-morphism p1 : FS � F.

The following construction is well known (c.f. [2]).

DEFINITION 2.13
Let F = (

W , R1, . . . , Rn
) = Fw0 be a rooted Kripke frame.

We define the unravelling of it and a map π as follows

F� =
(

W �, R�
1, . . . , R�

n

)′
;

W � = {
w0Rj1 w1 . . . Rjmwm

∣∣ ∀i ∈ {1, . . . , m} (
wi−1Rji wi

)}
;

π
(
w0w1 . . . wm

) = wm,
(
π : W � → W

)
;

αR�
j β ⇐⇒ β = αwm+1 and π(α)Rjπ

(
β
)
.

LEMMA 2.14
The map π is a p-morphism: π : F� � F.

The proof is straightforward.

DEFINITION 2.15
Let F = Fw0 be a rooted frame. Then we define the continuum unravelling of it as F�

R
= (

FR

)� (the
unravelling of the thickening by R with 0 as the starting point).

Now we turn to neighbourhood frames (c.f. [13] and [3] or a recent book [10]).

DEFINITION 2.16
Let X be a non-empty set, then F ⊆ 2X is a filter on X if

1 X ∈ F ;
2 if U1, U2 ∈ F , then U1 ∩ U2 ∈ F ;
3 if U1 ∈ F and U1 ⊆ U2, then U2 ∈ F .
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6 On neighbourhood product of some Horn axiomatizable logics

It is usually required that ∅ /∈ F (F is a proper filter), but we will not require this in our paper.

DEFINITION 2.17
A (normal) neighbourhood frame (or an n-frame) is a pair X = (X , τ), where X is a non-empty set
and τ : X → 22X

such that τ (x) is a filter on X for any x. The function τ is called the neighbourhood
function of X, and sets from τ (x) are called neighbourhoods of x. A neighbourhood model (n-model)
is a pair (X, V), where X = (X , τ) is an n-frame and V : PROP → 2X is a valuation. In a similar
way, we define neighbourhood 2-frame (n-2-frame) as (X , τ1, τ2) such that τ i(x) is a filter on X for
any x, and an n-2-model.

REMARK 2.18
Many authors consider neighbourhood semantics for non-normal and even non-monotone logics. In
this case a set of neighbourhoods can be an arbitrary set of sets. Other authors consider monotone
neighbourhood frames and require only item 3 from Definition 2.16 (a set of neighbourhoods is
closed under supersets).

DEFINITION 2.19
The valuation function in an n-model can be extended to all formulas by induction. For Boolean
connectives the definition is as usual, so we omit it. For modalities the definition is as follows:

M , x |� �iA ⇐⇒ ∃U∀y
(
y ∈ U ∈ τi(x) ⇒ M , y |� A

)
.

A formula is true in an n-model M if it is valid at all points of M (notation M |�A). A formula is valid
on an n-frame X if it is true in all models based on X (notation X |� A). We write X |� L if for any
A ∈ L, X |� A. We define the logic of a class of n-frames C as Log(C) = {A |X |� A for all X ∈ C }.
For a logic L we also define Vn(L) = {X |X is an n-frame and X |� L }. Note that if there is no X

such that X |� L, then Vn(L) = ∅.

DEFINITION 2.20
Let F = (W , R) be a Kripke frame. We define the n-frame N

(
F

) = (W , τ) in the following way

τ(w) = {U | R(w) ⊆ U ⊆ W } .

LEMMA 2.21
Let F = (

W , R
)

be a Kripke frame. Then

Log
(
N

(
F

)) = Log
(
F

)
.

The proof is straightforward (see [3] or [10]).

DEFINITION 2.22
Let X = (X , τ1, . . .) and Y = (

Y , σ1, . . .
)

be n-frames. Then a function f : X → Y is a p-morphism
(notation f : X � Y) if

1. f is surjective;
2. for any x ∈ X and U ∈ τ i(x), we have f

(
U

) ∈ σi
(

f (x)
)
;

3. for any x ∈ X and V ∈ σi
(

f (x)
)

, we have f −1(V) ∈ τi(x).
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On neighbourhood product of some Horn axiomatizable logics 7

REMARK 2.23
According to Lemma 2.21, a Kripke frame is a special case of a neighbourhood frame. It is easy to
check that for any two Kripke frames F and G a function f is a p-morphism (Definition 2.6) from F
to G iff f is a p-morphism ( Definition 2.22) from N

(
F

)
to N

(
G

)
. So, a p-morphism for n-frames

is a natural generalization of the notion of p-morphism for Kripke frames. This is why we use the
same name for these two formally different notions.

LEMMA 2.24
Let X = (

X , τ1, . . .
)
, Y = (

Y , σ1, . . .
)

be n-frames and f : X � Y . Let V be a valuation on Y . We
define

[
f −1

(
V

)] (
p
) = f −1

(
V

(
p
))

. Then

X, f −1(V
)
, x |� A ⇐⇒ Y , V , f (x) |� A.

The proof is by induction on the length of formula A (c.f. [10]). The following is a straightforward
corollary.

COROLLARY 2.25
If f : X � Y , then Log

(
X

) ⊆ Log
(
Y

)
.

3 Products: from Kripke to neighbourhood frames

DEFINITION 3.1
Let Fi = (

Wi, Ri
)

(i = 1, 2) be two Kripke frames. We define their product (see [4]) as a frame with
two relations: F1 × F2 = (

W1 × W2, Rh
1, Rv

2

)
, where

(
x, y

)
Rh

1(z, t) ⇐⇒ xR1z & y = t;
(
x, y

)
Rv

2(z, t) ⇐⇒ x = z & yR2t.

DEFINITION 3.2
Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then the product of these n-frames is the
n-2-frame defined as follows:

X1 × X2 =
(

X1 × X2, τ h
1 , τ v

2

)
;

τ h
1

(
x1, x2

) = {
U ⊆ X1 × X2

∣∣ ∃V
(
V ∈ τ1(x1) & V × {x2} ⊆ U

)}
;

τ v
2

(
x1, x2

) = {
U ⊆ X1 × X2

∣∣ ∃V
(
V ∈ τ2(x2) & {x1} × V ⊆ U

)}
.

REMARK 3.3
Note that τ h

1

(
x1, x2

)
and τ v

2

(
x1, x2

)
are closed under supersets. So it is possible to generalize the

definition of the product to monotone neighbourhood frames. This was done in [11]. However,
we consider only normal n-frames in this paper, because we use Kripke semantics in the proof of
completeness.
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8 On neighbourhood product of some Horn axiomatizable logics

DEFINITION 3.4
For two unimodal logics L1 and L2 such that Vn

(
L1

) �= ∅ and Vn
(
L2

) �= ∅, we define the n-product
of them as follows:

L1 ×n L2 = Log
( {X1 × X2 |X1 ∈ Vn(L1) & X2 ∈ Vn(L2) } )

.

If we forget about one of its neighbourhood functions, say τ v
2 , then X1 × X2 will be the disjoint

union of L1 n-frames.3 Hence,

PROPOSITION 3.5 ([11])
For two unimodal normal logics L1 and L2

L1 ∗ L2 ⊆ L1 ×n L2.

In Section 8 we will show that for many logics with the seriality axiom (including S4, D4, T, D)
their n-product coincides with the fusion. But this is not the case for logic K:

PROPOSITION 3.6
K ×n K �= K ∗ K.

PROOF. Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames and X1 × X2 = (
X1 × X2, τ h

1 , τ v
2

)
.

Consider formula �1⊥ → �2�1⊥. It is non-derivable from K2 but valid in any product of two
n-frames. Indeed, consider a Kripke frame F = (

W , R1, R2
)
, where

W = {x1, x2, y} ,

x1R2x2,

R1(x1) = ∅,

x2R1y.

Then x2 |� ¬�1⊥, x1 |� �1⊥ and x1 |� ¬�2�1⊥.
Since this formula has no variables, the truth of this formula does not depend on the valuation. So

X1 × X2,
(
x, y

) |� �1⊥ ⇐⇒ ∅ ∈ τ h
1

(
x, y

) ⇐⇒

∅ ∈ τ1(x) ⇐⇒ ∀y′ ∈ X2

(
∅ ∈ τ h

1

(
x, y′)

)
⇐⇒

∀y′ ∈ X2
(
X1 × X2,

(
x, y′) |� �1⊥

) �⇒ X1 × X2,
(
x, y

) |� �2�1⊥.

Hence, X1 × X2 |� �1⊥ → �2�1⊥. �
Moreover,

3Indeed an n-frame
(
X1 ×X2, τh

1
)

is isomorphic to the disjoint union of copies of
(
X1, τ1

)
. Neighbourhoods in the union

are all supersets of all neighbourhoods of its components.
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On neighbourhood product of some Horn axiomatizable logics 9

LEMMA 3.7
For any two n-frames X1 and X2 (i) if B is a closed formula without �2, then for any two n-frames
X1 and X2

X1 × X2 |� B → �2B,

(ii) if B is a closed formula without �1, then

X1 × X2 |� B → �1B.

PROOF. We prove only (i) because (ii) can be proved analogously. Since B contains neither �2, nor
variables, its value does not depend on the second coordinate. Let F = X1 × X2. So if F, (x, y)|�B,
then ∀y ′ (F,

(
x, y ′) |� B

)
, hence, F,

(
x, y

) |� �2B. �

DEFINITION 3.8
We put


1 = {B1 → �2B1 | B1 is closed and �2-free } ;


2 = {B2 → �1B2 | B2 is closed and �1-free } ;


 = 
1 ∪ 
2.

For two unimodal logics L1 and L2, we define the weak commutator of them as

〈
L1, L2

〉 = L1 ∗ L2 + 
.

From Lemma 3.7 and Proposition 3.5 follows

LEMMA 3.9
For any two normal modal logics L1 and L2

〈
L1, L2

〉 ⊆ L1 ×n L2.

COROLLARY 3.10〈
K, K

〉 ⊆ K ×n K.

The converse inclusion also holds but the proof requires some work.

4 Dense neighbourhood frames

To prove the completeness of a logic w.r.t. neighbourhood frames we rely on Kripke completeness.
It is possible that using purely neighbourhood semantics constructions one can prove more general
results for non-normal logics. But we leave this for the future.

Starting from a Kripke frame we will construct a neighbourhood frame so that the neighbourhood
frame will be dense. An n-frame is called dense if no point in it has a minimal neighbourhood. This
is important, because otherwise n-frames will be equivalent to Kripke frames, and any product of
Kripke frames satisfies the commutativity axioms and the Church–Rosser axiom.
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10 On neighbourhood product of some Horn axiomatizable logics

DEFINITION 4.1
Let � be a non-empty finite set (alphabet). A finite sequence of elements from � is called a word;
by ε we denote the empty word. Let �∗ be the set of all words. We will write words without brackets
or commas, e.g. a1a2. . .an ∈ �∗. The length of a word is the number of elements in it:

len
(
a1a2 . . . an

) = n, len(ε) = 0.

We also define the concatenation of words:

a1a2 . . . an · b1b2 . . . bm = a1a2 . . . anb1b2 . . . bm.

DEFINITION 4.2
For a frame F = (

W , R
)

with a fixed root a0 we define a (rooted) path with stops as a word in
alphabet W ∪{0}: a1. . .an, so that ai ∈ W or ai = 0, and after dropping zeros, each point is related to
the next one by relation R, and the first one is a successor of the root. The empty word ε is allowed
and it corresponds to the root a0. In other words, a path with stops is a word of the following type:

0i1 b10i2 . . . 0im bm, where bj ∈ W , ij ≥ 0, 0i = 00 . . . 0︸ ︷︷ ︸
i times

;

and f0
(
0i1 b10i2 . . . 0im bm

) = a0Rb1R . . . Rbm ∈ W �.

Let us consider some examples. f 0(ε) = a0. If the root is reflexive, then a0 is a path with stops,
and f 0(a0) = a0Ra0. In the frame

(
W , R

)
, W = {a0, b}, R = {(

a0, b
)}

the following are paths with
stops: ε, 000, 00b, 00b00.

We also consider infinite paths with stops that end with infinitely many zeros. We call these
sequences pseudo-infinite paths (with stops). A pseudo-infinite path can be presented uniquely in
the following way:

α = 0i1 b10i2 . . . 0imbm0ω, where bj ∈ W , ij ≥ 0.

Let Wω be the set of all pseudo-infinite paths in W .

The function of dropping zeros can be extended to Wω as f 0 : Wω → W � in the following way:
for a pseudo-infinite path α = a1. . .an. . . we define

st(α) = min
{
N

∣∣∀k > N
(
ak = 0

)}
;

α|k = a1 . . . ak ; α|0 = ε;

f0(α) = f0
(
α|st(α)

)
, i.e. f0

(
0i1 b10i2 . . . 0im bm0ω

) = a0Rb1R . . . Rbm.

In order to introduce a neighbourhood function on Wω, we define

Uk(α) = {
β ∈ Wω

∣∣ α|m = β|m & f0(α)R�f0
(
β
)
, m = max(k, st(α))

}
.

LEMMA 4.3
Uk(α) ⊆ Um(α) whenever k ≥ m.

PROOF. Let β ∈ Uk(α). Since α |k = β| k and k ≥ m, α |m = β| m. Hence, β ∈ Um(α). �
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On neighbourhood product of some Horn axiomatizable logics 11

DEFINITION 4.4
Due to Lemma 4.3, sets Un(α) form a filter base. So we can define

τ(α) — the filter with the base {Un(α) | n ∈ N } ;

Nω

(
F

) = (
Wω, τ

)
— is a dense n-frame based on F.

The frame Nω

(
F

)
is dense unlike N

(
F

)
. Indeed,

⋂

n

Un(α) = ∅ �∈ τ(α).

LEMMA 4.5
For any α and any k we have that f0

(
Uk(α)

) = R�
(
f0(α)

)
.

PROOF.
By definition for k < st(α) Uk(α) = Ust(α)(α), hence we can assume that k ≥ st(α).

Let x ∈ f0
(
Uk(α)

)
. Then

∃β
(
α|k = β|k & f0(α)R�f0

(
β
) = x

)
,

so x ∈ R�
(

f0(α)
)
.

Let x ∈ R�
(

f0(α)
)
, then for some b′ x = f 0(α)Rb′. We put

β = α0k−st(α)b′.

It is easy to show that β ∈ Uk(α) and f0
(
β
) = x. �

LEMMA 4.6
Let F = (W , R) be a Kripke frame with root a0, then

f0 : Nω

(
F

)
� N

(
F�

)
.

PROOF. From now on in this proof we will omit the subindex in f 0. Since for any b ∈ W there
is a path a0a1. . .an−1b and hence for a pseudo-infinite path α = a1. . .b0ω ∈ X , f (α) = b and f is
surjective.

Assume that α ∈ Wω and U ∈ τ (α). We need to prove that R�
(

f (α)
) ⊆ f (U). There exists an m

such that Um(α) ⊆ U , and since f
(
Um(α)

) = R�
(

f (α)
)
, we have

R�
(

f (α)
) = f

(
Um(α)

) ⊆ f (U).

Assume that α ∈ Wω and V is a neighbourhood of f (α), i.e. R�
(

f (α)
) ⊆ V . We need to prove that

there exists U ∈ τ (α) such that f (U) ⊆ V . For U , we take Um(α) for some m ≥ st(α), then

f
(
Um(α)

) = R�
(

f (α)
) ⊆ V .

�

COROLLARY 4.7
For any frame F, Log

(
Nω(F)

) ⊆ Log
(
F

)
.
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12 On neighbourhood product of some Horn axiomatizable logics

PROOF. It follows from Lemmas 2.21, 4.6, 2.14 and Corollary 2.25 that

Log
(
Nω

(
F

)) ⊆ Log
(
N

(
F�

)) = Log
(
F�

) ⊆ Log
(
F

)
. �

Let us remark that it is possible that Log
(
Nω

(
F

)) �= Log
(
F

)
. For example, let us consider the

natural numbers with the ‘next’ relation. It is convenient here to regard a number as a word in a
one-letter alphabet:

G = ( {1}∗ , S
)
, 1nS1m ⇐⇒ m = n + 1.

Obviously G |� ♦p → �p.
Since in G every point, except for the root point, has only one predecessor, we can identify a point

and a path from the root to this point, i.e. G� = G. Therefore, points in Nω(G) can be presented as
infinite sequences of 0 and 1 with only zeros at the end.

PROPOSITION 4.8
Nω(G) � ♦p → �p

PROOF. Consider valuation V
(
p
) = {

02n10ω | n ∈ N
}
. In every neighbourhood of point 0ω there

are points, where p is true and there are points where p is false. For example, if k is even, then in
Uk

(
0ω

)
there is a point 0k10ω where p is true, and a point 0k+110ω where p is false. Hence,

Nω(G) |� ♦p ∧ ♦¬p.

�
This formula does not preserved under the Nω operation and probably any formula that restricts

branching does not preserved under the Nω operation. In Section 7 we define some formulas that are
preserved.

5 Weak product of Kripke frames

In order to prove the completeness w.r.t. n-frames, we first establish completeness w.r.t. a special
kind of Kripke frames. The weak products of Kripke frames were introduced in [8] for this purpose.
Here we modify the definition. Nevertheless frames from the new construction are isomorphic to
frames from the old one, but their description is better in some respect.

DEFINITION 5.1
Let F1 = (

W1, R1
)

and F2 = (
W2, R2

)
be two Kripke frames with the roots x0 and y0, respectively,

and W1 ∩ W2 = ∅. Let � = W 1 ∪ W 2. Then we define the functions p1, p2 : �∗ → �∗ and
π : �∗ \ {ε} → � by induction

p1(ε) = ε,

p2(ε) = ε,

p1(au) = p1(a) · u for a ∈ �∗, u ∈ W1;

p1(au) = p1(a) for a ∈ �∗, u ∈ W2;

p2(au) = p2(a) for a ∈ �∗, u ∈ W1;

p2(au) = p2(a) · u for a ∈ �∗, u ∈ W2;

π(au) = u for a ∈ �∗, u ∈ �.
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Intuitively p1 is dropping all symbols not belonging to W 1 (the same for p2) and π maps a non-
empty word to its final symbol.

Since F1 and F2 are frames with roots and have only one relation, we will assume that paths in
them do not contain relations and start from the roots:

W �
1 = {x1 . . . xn | x0R1x1R1 . . . R1xn is a path in the usual sense } ;

W �
2 = {y1 . . . yn | y0R2y1R2 . . . R2yn is a path in the usual sense } .

We define the entanglement of F1 and F2 as follows:

F1�F2 =
{

a ∈ �∗
∣∣∣ p1(a) ∈ W �

1 and p2(a) ∈ W �
2

}
.

We define the weak product of frames F1 and F2 as follows:

〈
F1, F2

〉 = (
F1�F2, R<

1 , R<
2

)
,

aR<
1 b ⇐⇒ ∃u ∈ W1

(
b = au

)
;

aR<
2 b ⇐⇒ ∃v ∈ W2

(
b = av

)
.

PROPOSITION 5.2
For any two rooted frames F1 and F2

〈
F1, F2

〉 |� 
.

PROOF. Let B be a closed �2-free formula and
〈
F1, F2

〉
, a |� B, then for any v ∈ W 2 we need to

show that 〈F1, F2〉, av|�B. Indeed, the frames

((
R<

1

)∗
(a), R<

1 |(
R<

1

)∗
(a)

)

and
((

R<
1

)∗
(av), R<

1 |(
R<

1

)∗
(av)

)

are isomorphic to
(

F�
1

)p1(a)

. Then, since B is closed and does not contain �2,
〈
F1, F2

〉
, av |� B.

For 
2 the proof is similar. �
The aim of this section is to prove the following theorem:

THEOREM 5.3
The logic

〈
K, K

〉
is complete with respect to the class of all weak products of Kripke frames.

Let F = Fx0 be a rooted subframe of the canonical frame of a logic L with two modalities.
By ϒ we define all closed (variable-free) modal formulas of the modal language. For a point x ∈ F

we define x̄ = x ∩ ϒ . Then let F x̄0
0 be a rooted subframe of the 0-canonical frame.

We define ϒ i as the set of all closed formulas in the language with only �i modality.

Downloaded from https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzy004/4939910
by  kudinov.andrey@gmail.com
on 27 March 2018



14 On neighbourhood product of some Horn axiomatizable logics

LEMMA 5.4
Let F0 = (

W̄ , R̄1, R̄2
)

be the 0-canonical frame for logic L, such that 
 ⊂ L. Then

x̄R̄1ȳ ⇒ x̄ ∩ ϒ2 = ȳ ∩ ϒ2,

x̄R̄2ȳ ⇒ x̄ ∩ ϒ1 = ȳ ∩ ϒ1.

PROOF.
We prove only one half, since the other half is similar.

For any A ∈ϒ2

A → �1A ∈ 
 and ¬A → �1¬A ∈ 
.

So

A ∈ ϒ2 ∩ x̄ ⇒ A → �1A ∈ x̄ ⇒ A ∈ ȳ,

A ∈ ϒ2 and A /∈ x̄ ⇒ ¬A → �1¬A ∈ x̄ ⇒ ¬A ∈ ȳ ⇒ A /∈ ȳ. �
By a straightforward induction we get

COROLLARY 5.5
Let F0 = (

W̄ , R̄1, R̄2
)

be the 0-canonical frame for logic L, such that 
 ⊂ L. Then

x̄
(

R̄1 ∪ R̄−1
1

)∗
ȳ ⇒ x̄ ∩ ϒ2 = ȳ ∩ ϒ2,

x̄
(

R̄2 ∪ R̄−1
2

)∗
ȳ ⇒ x̄ ∩ ϒ1 = ȳ ∩ ϒ1.

Since any closed formula is canonical, the following holds:

LEMMA 5.6
Let L1 and L2 be two canonical logics. Then

〈
L1, L2

〉
is also canonical.

LEMMA 5.7
Let L be a 2-modal logic, Li = {

A
∣∣ A ∈ L ∩ ML�i

}
(i = 1, 2) be the 1-modal fragments of it, FL =

(
W , R1, R2

)
be the canonical frame of L and a ∈ FL. Let Fi =

((
F0

Li

)a∩ϒi
)�

R

be the continuum

unravelling of the rooted subframe of the 0-canonical model of logic Li with the root a ∩ ϒ i (i = 1,
2). Then for any a0 ∈ F1 such that π (a0) = (a ∩ ϒ1, r) for some r ∈ R there exist a p-morphism of

1-Kripke frames f : Fa0
1 �

(
R∗

1(a), R1|R∗
1(a)

)
with the following property.

∀b ∈ Fa0
1 ∀b ∈ R∗

1(a)
(

f (b) = b ⇒ ∃l ∈ R
(
π

(
b
) = (

b ∩ ϒ1, l
)))

.

The same holds for F2.

PROOF. We will describe the construction only for F1 because for F2 it is similar.

To simplify formulas we assume that G =
(

R∗
1(a), R1|R∗

1(a)

)
= (

W , R
)

and F1 = (
W ′, R′).

Since F1 and G are rooted we can define a map f : F1 → G recursively.
Base: f (ε) = x0.
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Step: We assume that f
(
b
) = x, π

(
b
) = (x ∩ ϒ1, r) and c ∈ R′(b

)
. We need to choose the image

for c from R(x).
For y, z ∈ R(x) we define a relation

y ∼ z ⇐⇒ y ∩ ϒ1 = z ∩ ϒ1.

It is obviously an equivalence relation. Let U = R(x)/∼ be the quotient set of R(x) by ∼.
Since the cardinality of each equivalence class

[
y
] ∈ U is no greater than the cardinality of the

canonical frame which is no greater than continuum, then there exists a partition of R indexed by
elements of

[
y
]

into sets of continuum cardinality:

R =
⊔

z∈
[

y
]

V

[
y
]

z and for each z ∈ [
y
]

∣∣∣∣V

[
y
]

z

∣∣∣∣ = ∣∣R
∣∣.

This is due to the standard result of Set Theory:
∣∣R × R

∣∣ = ∣∣R
∣∣.

For a fixed c ∈ R′(b) there exists y ∈ R(x) and r′ such that

π(c) = (
y ∩ ϒ1, r ′) , r ′ ∈ V

[
y
]

y .

We define

f (c) = y.

Each point in
(
F0

)�

R
is reachable from

(
x̄0, 0

)
in finitely many steps. A point reachable in m steps

will appear on m-th iteration. So the function f is defined correctly.
Let us check that f is a p-morphism.
Monotonicity. It is obvious from the construction.
Lifting. Let f (a) = x and xRy then for any r ′ ∈ V [y]

y and b = aR
(
ȳ, r ′) we have aR′b and f

(
b
) = y.

Surjectivity. Since F1 and G are rooted, and the root maps to the root, surjectivity follows from
the lifting property. �

LEMMA 5.8
Let L1 and L2 be two unimodal logics and F = Fa0 be a rooted subframe of the canonical frame for
logic

〈
L1, L2

〉
; then there exist two rooted frames F1, F2 and a p-morphism f : 〈F1, F2〉 � F .

PROOF. We take
((

F0
L1

)x̄0
)�

R

and
((

F0
L2

)ȳ0
)�

R

as F1 and F2, respectively, where x̄0 = a0 ∩ϒ1 and

ȳ0 = a0 ∩ ϒ2. Let F1 = (
W1, R′

1

)
, F2 = (

W2, R′
2

)
and F = (W , R1, R2).

Using Lemma 5.7 for each a ∈ 〈
F1, F2

〉
we fix two p-morphisms:

ga
1 : Fp1(a)

1 �
(
R∗

1(a), R1|R1(a)

)
,

ga
2 : Fp2(a)

2 �
(
R∗

2(a), R2|R2(a)

)
.

We also make sure that they are coordinated in the following way

aR<
i bR<

i c �⇒ ga
i (c) = gb

i (c),
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16 On neighbourhood product of some Horn axiomatizable logics

where R<
1 and R<

2 are the first and the second relations in
〈
F1, F2

〉
.

We can do this because the restriction of a p-morphism to a rooted submodel is a p-morphism.
Let us define a map f :

〈
F1, F2

〉 → F recursively. The root of
〈
F1, F2

〉
maps to the root of F :

f (ε) = a0.

We assume that for a ∈ F1 � F2 the map is defined. Let b = au. If u ∈ W i, then

f (b) = ga
i (b).

Let us check that f is a p-morphism. The monotonicity is due to the monotonicity of gi
a. To check

the lifting, we assume that f (a) = a and aRib. Then b ∈ Ri(a) and due to the surjectivity of gi
a there

exists b such that aRi
′b and f

(
b
) = b. The surjectivity follows from the rootedness of frames and the

lifting property. �
To prove Theorem 5.3, we assume that formula A is not in the logic

〈
K, K

〉
. Then it is refutable

in a rooted subframe of the canonical frame F〈
K,K

〉. By Lemma 5.8 there exist F1 and F2 such

that
〈
F1, F2

〉
is a p-morphic preimage of the subframe. Hence by p-morphism lemma A is refutable

in
〈
F1, F2

〉
.

6 N-product completeness theorem for
〈
K, K

〉

Let F1 = (W1, R1) = Fr1
1 and F2 = (W2, R2) = Fr2

2 be two rooted frames. Assume that W1 ∩ W2 =
∅. Consider the product of n-frames X1 = (

X1, τ1
) = Nω

(
F1

)
and X2 = (

X2, τ2
) = Nω

(
F2

)

X =
(

X1 × X2, τ h
1 , τ v

2

)
= Nω

(
F1

) × Nω

(
F2

)
.

We define a function g : X1 × X2 → 〈
F1, F2

〉
by induction, as follows.

Let
(
α, β

) ∈ X1 ×X2, so that α = x1x2. . . and β = y1y2. . ., xi ∈ W1 ∪{0}, yj ∈ W2 ∪{0}. We define
g
(
α, β

)
to be the finite sequence that we obtain after dropping all zeros from the infinite sequence

x1y1x2y2. . ..

LEMMA 6.1
The function g defined above is a p-morphism:

g : X1 × X2 � N
(〈

F1, F2
〉)

.

PROOF. First, we need to check that for any α ∈ Nω

(
F1

)
and any β ∈ Nω

(
F2

)
we have that

g
(
α, β

) ∈ F1�F2. This follows from the equalities:

p1
(
g
(
α, β

)) = p1
(

f0
(
α
))

, p2
(
g
(
α, β

)) = p2
(

f0
(
β
))

.

To prove surjectivity, we take z = z1. . .zn ∈ F1�F2. For i ≤ n we define

xi =
{

zi, if zi ∈ W1;
0, if zi ∈ W2;

yi =
{

0, if zi ∈ W1;
zi, if zi ∈ W2.

Let α = x1x2. . .xn0ω and β = y1y2. . .yn0ω, then g(α, β) = z. Hence, g is surjective.
We check the next two conditions only for τ 1, since for τ 2 it is similar. We assume that(

α, β
) ∈ X1 × X2 and U ∈ τ1

(
α, β

)
. We need to prove that R<

1

(
g
(
α, β

)) ⊆ g(U). There exists
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m > max
{
st(α), st

(
β
)}

such that Um(α) × {β} ⊆ U and, since g
(
Um(α) × {

β
}) = R<

1

(
g
(
α, β

))
,

then

R<
1

(
g
(
α, β

)) = g
(
Um(α) × {

β
}) ⊆ g(U),

where Um(α) is the corresponding neighbourhood from X1.
We assume that

(
α, β

) ∈ X1 × X2 and R<
1

(
g
(
α, β

)) ⊆ V . We need to prove that there exists
U ∈ τ1

(
α, β

)
such that g(U) ⊆ V . For U , we take Um(α) × {

β
}

for some m > max
{
st(α), st

(
β
)}

,
then

g
(
Um(α) × {

β
}) = R<

1

(
g
(
α, β

)) ⊆ V . �

COROLLARY 6.2
Let F1 = (

W1, R1
)

and F2 = (
W2, R2

)
, then Log

(
Nω

(
F1

) × Nω

(
F2

)) ⊆ Log
(〈

F1, F2
〉)

.

This immediately follows from Lemma 6.1 and Corollary 2.25.

THEOREM 6.3
The logic

〈
K, K

〉
is complete with respect to products of normal neighbourhood frames, i.e.

〈
K, K

〉 = K ×n K. (1)

PROOF. The inclusion from left to right of (1) was proved in Corollary 3.10.
The converse inclusion follows from Theorem 5.3 and Corollary 6.2. Indeed,

K ×n K =
⋂

X1,X2∈Vn(K)

Log(X1 × X2)

⊆
⋂

F1,F2 — Kripke frames

Log
(
Nω

(
F1

) × Nω

(
F2

))

⊆
⋂

F1,F2 — Kripke frames

Log
(〈

F1, F2
〉) ⊆ 〈

K, K
〉
.

�

7 Horn axioms

DEFINITION 7.1
Following [4], we define a universal strict Horn sentence as a first-order closed formula of the form

∀x∀y∀z1 . . . ∀zn
(
φ
(
x, y, z1, . . . , zn

) → ψ
(
x, y

))
,

where φ
(
x, y, z1, . . . , zn

)
is quantifier-free positive (i.e. it is built from atomic formulas by using ∧

and ∨) and ψ
(
x, y

)
is an atomic formula in the signature � =

〈
R(2)

1 , . . . , R(2)
m

〉
, where R(2)

i is the

propositional letter that corresponds to the relation Ri.

DEFINITION 7.2
A logic L is called an HTC-logic (from Horn preTransitive Closed logic) if it can be axiomatized by
closed formulas and formulas of the type �p → �np, n ≥ 0. These formulas correspond to universal
strict Horn sentences (see [4]).
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18 On neighbourhood product of some Horn axiomatizable logics

Let � be a set of universal strict Horn formulas and F be a Kripke frame. By F� we define the
�-closure of F, that is the minimal (in terms of inclusion of relations) frame such that all formulas
from � are valid in it. Such a frame exists due to [4]:

LEMMA 7.3 ([4, Prop 7.9])
For any Kripke frame F = (

W , R1, . . . , Rn
)

and a set of universal strict Horn formulas �, there exists
F� = (

W , R�
1 , . . . , R�

n

)
such that

• Ri ⊆ R�
i for all i ∈ {1, . . . , n};

• F�|�� ;
• if G|�� and f : F � G then f : F� � G.

DEFINITION 7.4
Let � be a set of universal strict Horn formulas, F = (W , R) be a rooted frame, α ∈ Wω and f 0 : Wω

→ W � be the ‘zero-dropping’ function. Then we define

U�
k (α) =

{
β ∈ Wω

∣∣α|m = β|m & f0(α)
(
R�

)�
f0

(
β
)
, m = max

(
k, st(α)

)}
,

τ�(α) = {
V

∣∣ ∃k
(
U�

k (α) ⊆ V
)}

,

N �
ω

(
F

) = (
Wω, τ�

)
.

We also need the following obvious lemmas:

LEMMA 7.5
For any closed modal formula A and a p-morphism of Kripke frames f : F � G

F, x |� A ⇐⇒ G, f (x) |� A.

And its neighbourhood analogue:

LEMMA 7.6
For any closed modal formula A and a p-morphism of n-frames f : X � Y

X, x |� A ⇐⇒ Y , f (x) |� A.

In [4], the product matching was proved for a large class of Horn axiomatizable logics, including
S5. But in our case, S5 ×n S5 �= 〈

S5, S5
〉
. In fact, since neighbourhood frames correspond to

topological spaces in case of transitive and reflexive logics, and due to [6],

S5 ×n S5 = S5 × S5 = [
S5, S5

] = S5 ∗ S5 + �1�2p ↔ �2�1p + ♦1�2p → �2♦1p.

LEMMA 7.7
Let L be an HTC-logic, � be the corresponding set of Horn formulas and F |� L. If �p → �np ∈ L,
then

N �
ω

(
F

) |� �p → �np.
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PROOF. Let M = (
N �

ω

(
F

)
, V

)
be a neighbourhood model. We assume that M , α �|� �np, and then

we prove that M , α �|� �p, i.e.

∀m∃β ∈ U�
m (α)

(
β �|� p

)
.

Let us fix m. Then

∃α1 ∈ U�
m (α)

(
α1 �|� �n−1p

)
⇒

⇒∃α2 ∈ U�
m

(
α1

) (
α2 �|� �n−2p

)
⇒

...
...

...
...

...
...

...

⇒∃αn ∈ U�
m

(
αn−1

)(
αn �|� p

)
.

By the definition of U�
m (α)

f0(α)
(
R�

)�
f0

(
α1

) (
R�

)�
. . .

(
R�

)�
f0

(
αn

)

and

α
∣∣
m = α1

∣∣
m = . . . = αn

∣∣
m.

Since
(

W �,
(
R�

)�
)

|� �p → �np,

f0(α)
(
R�

)�
f0

(
αn

)
.

It follows that αn ∈ U�
m (α). �

LEMMA 7.8
Let L be an HTC-logic, � be the corresponding set of Horn formulas and F |� L. Then

f0 : N �
ω (F) � N

(
F��

)
.

PROOF. From now on in this proof we will omit the subindex in f 0. The surjectivity was established
in Lemma 4.6.

Assume that α ∈ Wω and U ∈ τ�(α). We need to prove that R��
(

f (α)
) ⊆ f (U). There exists m

such that U�
m (α) ⊆ U , and since f

(
U�

m (α)
) = R��

(
f (α)

)
, then

R��
(

f (α)
) = f

(
U�

m (α)
) ⊆ f (U).

Assume that α ∈ Wω and V is a neighbourhood of f (α), i.e. R��
(

f (α)
) ⊆ V . We need to prove

that there exists U ∈ τ�(α) such that f (U) ⊆ V . For U , we take U�
m (α) for some m ≥ st(α), then

f
(
U�

m (α)
) = R��

(
f (α)

) ⊆ V . �

COROLLARY 7.9
Let L be an HTC-logic and F |� L; then N �

ω

(
F

) |� L.
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LEMMA 7.10
Let F1 and F2 be two frames, �1 and �2 be two sets of Horn sentences that correspond to HTC-
logics, then

N �1
ω

(
F1

) × N �2
ω

(
F2

)
� N

(〈
F1, F2

〉�1∪�2

)
.

The proof is similar to Lemma 6.1. The underlining sets are the same and we can take the same
function g. So, surjectivity follows. Monotonicity and lifting are proved similarly.

THEOREM 7.11
Let L1 and L2 be two HTC-logics then

L1 ×n L2 = 〈
L1, L2

〉
.

PROOF. By Lemma 3.9
〈
L1, L2

〉 ⊆ L1 ×n L2.
Let �1 and �2 be the sets of Horn sentences corresponding to L1 and L2. Let A /∈ 〈

L1, L2
〉
; then

there is a rooted subframe F of the canonical frame of logic
〈
L1, L2

〉
such that F �|� A. Then by

Lemma 5.8 there are frames F1 and F2 such that
〈
F1, F2

〉
� F .

Since L1, L2 and
〈
L1, L2

〉
are canonical then

〈
F1, F2

〉�1∪�2 � F .

By Lemma 7.10

N �1
ω

(
F1

) × N �2
ω

(
F2

)
� N

(〈
F1, F2

〉�1∪�2

)
.

By Corollary 7.9

N �1
ω

(
F1

) |� L1 and N �2
ω

(
F2

) |� L2.

At the same time

N �1
ω

(
F1

) × N �2
ω

(
F2

) �|� A.

So L1 ×n L2 ⊆ 〈L1, L2〉. �

8 Seriality axiom

Consider the seriality axiom ¬�⊥. By induction on the length of a formula, one can easily prove

LEMMA 8.1
If ¬�⊥ ∈ L then any closed formula is L-equivalent to ⊥ or �.

The base is obvious and the inductive step follows from

� �� ↔ �, ¬�⊥ � �⊥ ↔ ⊥.
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LEMMA 8.2
For a bimodal logic L if L � ¬�1⊥ then L � B → �2B for any closed formula B ∈ ML�1 .

This is a simple exercise.

COROLLARY 8.3
If L1 and L2 are HTC-logics and ¬�⊥ ∈ L1, ¬�⊥ ∈ L2 then

〈
L1, L2

〉 = L1 ∗ L2.

From Corollary 8.3 and Theorem 7.11 it follows.

THEOREM 8.4
Let L1 and L2 be HTC-logics with seriality then

L1 ×n L2 = L1 ∗ L2.

Note that this theorem covers the results from [7], since the logics D, T, D4 and S4 are all HTC-
logics with seriality.

PROPOSITION 8.5
If L1 and L2 are finitely axiomatizable, and have only finitely many non-equivalent closed formulas
then

〈
L1, L2

〉
is finitely axiomatizable.

To prove this proposition it is enough to show that the set of formulas 
 has only finitely many
non-equivalent formulas.

9 Derivational semantics

The derivational semantics studied by many authors (see, e.g. [1, 14]) can be equivalently defined as
follows.

Let X = (
X , T

)
be a topological space. We define

τXd (x) = {
U

∣∣ U ′ \ {x} ⊆ U , x ∈ U ′ ∈ T
}

.

Then for any valuation V on X the following holds

X, V , x |�d A ⇐⇒
(

X , τXd
)

, V , x |�n A,

where |�d corresponds to the derivational semantics, and |�n corresponds to the neighbourhood
semantics. We define Nd

(
X

) = (
X , τXd

)
.

For a class of topological spaces C and logics L1 and L2 we put

Logd
(
C
) = {

A
∣∣∀X ∈ C

(
X |�d A

)}
,

L1 ×d L2 = Logd
({
X1 ×t X2 |X1,X2 — topological spaces, X1 |�d L1,X2 |�d L2

})
.

Here ×t is the bitopological product defined in [17].
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We say that Logd
(
C
)

is the d-logic of C.

THEOREM 9.1

1. K4 ×d K4 = 〈
K4, K4

〉
,

2. K4 ×d D4 = 〈
K4, D4

〉
,

3. D4 ×d K4 = 〈
D4, K4

〉
,

4. D4 ×d D4 = D4 ∗ D4.

PROOF. This follows from Theorems 7.11 and 8.4. But, it is not a straightforward corollary because
for a logic L the set of L-n-frames and the set of all n-frames that correspond to L-topological spaces
do not coincide. Indeed, in a topological space X = (

X , T
)

the family of τXd -neighbourhoods of a
point x always contains set X \ {x} and it is not the case for n-frames.

So to prove this theorem it is sufficient to say that all the logics mentioned in this theorem are not
reflexive and the unravellings are irreflexive. So let F = (

W , R
)
, then F� is irreflexive, and N �

ω

(
F�

)

can be obtained as Nd
(
X

)
, where X = (

Wω, T
)
, � is the Horn sentence expressing transitivity, and

sets U�
n form the base for topology T . �

THEOREM 9.2
The d-logic of the class of all products of T1 spaces is

〈
K4, K4

〉
.

It is enough to check that the topological space corresponding to N �
ω

(
F

)
is a T1 space, whenever F

is the unravelling of a rooted S4-frame and � corresponds to transitivity. This can be easily checked.

10 Conclusions

We are still in the beginning of the road of studying products of neighbourhood frames.
This topic can be interesting from different points of view. It is interesting in itself because it is

a natural way to combine modal logics, and the result is weaker then the product of logics based on
Kripke semantics. It is also interesting because using the products we can express new properties,
e.g. Q and R are indistinguishable in the unimodal language with topological semantics, whereas the
logics of Q ×t Q and R ×t R are different (see [5]). It is also possible that this construction will be
useful for epistemic modal logic as semantics for multi-agents systems.

There are a lot of open questions in this area, to name a few:

• find other sufficient conditions for product matching;
• investigate products of type L×n S5; we give a partial answer to this question in a forthcoming

paper: for any HTC-logic L (this result is announced at Advances in Modal Logic ’16
conference);

• find the logics of R ×t R and C ×t C, where C is the Cantor space;
• find the n-products of well-known logics like S4.1, S4.2, S4.3, GL, Grz, DL and others.
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