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Abstract

The problem of existence of predictive complexity for the abso-
lute loss game is studied. Predictive complexity is a generalization
of Kolmogorov complexity which bounds the ability of any algorithm
to predict elements of a sequence of outcomes. For perfectly mixable
loss functions (logarithmic and squared difference are among them)
predictive complexity is defined like Kolmogorov complexity to within
an additive constant. The absolute loss function is not perfectly mix-
able, and the question on existence of the corresponding predictive
complexity which is defined to within an additive constant is open.
We prove that in the case of the absolute loss game the predictive
complexity can be defined to within an additive term O(

√
n), where

n is the length of a sequence of outcomes. We prove also that in some
restricted setting this bound cannot be improved.

1 Introduction

A central problem in machine learning (and statistics) is the problem of
predicting future events based on past observations. We consider only the
simplest case, where events are simple binary outcomes. A prediction algo-
rithm makes its prediction in a form of a real number between 0 and 1. The
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quality of prediction is measured by a loss function λ(σ, p), where σ is an
outcome and 0 ≤ p ≤ 1 is a prediction. Various loss functions λ(σ, p) are
considered in the literature on machine learning and prediction with expert
advice (see, for example, [9], [2], [11], [13], [3]). In this paper we concentrate
our interest in the absolute loss function λ(σ, p) = |σ − p|. A popular in-
terpretation of the absolute loss function is that it is the expectation of the
learner loss in the simple prediction game, where a biased coin is tossed and
outcome 1 is predicted with probability p and outcome 0 is predicted with
probability 1− p.

In the framework of Dawid [1], Vovk [8], Rissanen [6] and others no as-
sumptions whatsoever are made about the actual sequence of events that
is observed. The analysis is done in the worst case over all possible binary
outcomes sequences. The typical setting is that we have a set of N experts
predicting the same sequence of outcomes. Our goal is to construct an al-
gorithm which performs as well as the best expert no matter what outcome
sequence is produced by nature. Specifically, let Li(y) denote the total loss
of an expert i = 1, 2, . . . , N on a particular sequence y. Then our goal is to
minimize the maximum of the difference L(y) − Li(y) over i = 1, 2, . . . , N ,
where L(y) is the total loss of our “aggregating” algorithm. A family of pre-
dicting algorithms achieving this goal was constructed in Vovk [8], Haussler
et al. [2] and others.

In Cesa-Bianchi et al. [3] the upper and lower bounds of the performance
of predicting algorithms were obtained in the case of the absolute loss func-
tion. An aggregating algorithm P was developed such that for any set of N
experts for each expert i = 1, 2, . . . , N an inequality

LP (y)− Li(y) ≤ c1

√
Li(y) lnN + c2 lnN (1)

holds for all binary sequences y of sufficiently large length n, where LP (x) is
the total loss suffered by P on a sequence x and c1, c2 are positive constants.
Also, no algorithm P can improve this estimate as N, n→∞.

Vovk in [11] and [10] proposed in the spirit of Kolmogorov’s and
Solomonoff’s framework an “ideal” setting, where a generalized prediction
algorithm is considered that performs as well as any expert from an infinite
pool of all possible experts. All experts with computable prediction strate-
gies are in this pool. The correct definition of this algorithm will be given in
Sections 2 and 4.1. Under this setting for some “good” loss functions (per-
fectly mixable [9]), like logarithmic and square, it is possible to prove that
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like traditional Kolmogorov complexity there exists an optimal measure of
predictive complexity KA(x) such that for any other measure of predictive
complexity KAi(x)

KA(x) ≤ KAi(x) +O(1) (2)

holds for each finite sequence x of data. It follows from (2) that in the case
of perfectly mixable loss function the predictive complexity KA(x) is defined
(like Kolmogorov complexity) up to an additive constant.

The absolute loss function is not perfectly mixable. We prove that in the

absolute loss case the term O(1) in (2) can be replaced on a term O(
√
l(x))

where l(x) is the length of x, namely, a sub-optimal measure of predictive
complexity KA(x) exists such that for any other measure of predictive com-
plexity KAi(x) the inequality

KA(x) ≤ KAi(x) +O(
√
l(x)) (3)

holds for all x. It is clear that for any two sub-optimal measures of predictive
complexity KA(x) and KA′(x)

KA(x) = KA′(x) +O(
√
l(x)).

We fix some sub-optimal (or universal) measure KA(x) satisfying (3) and
call it predictive complexity for the absolute loss game. By (4) the predictive

complexity is defined to within an O(
√
l(x)) term.

A natural question arises whether (2) holds for absolute loss case, i.e.
whether predictive complexity KA(x) can be defined such that (2) holds for
this KA(x). It would be ideal to prove that the predictive complexity for

absolute loss function cannot be defined with better accuracy than O(
√
l(x)):

for any measure of predictive complexity KA(x) there exists another measure
of predictive complexity KA′(x) such that

lim sup
n→∞

sup
x:l(x)=n

KA(x)−KA′(x)√
n

> 0.

This question still remains open. This paper studies this problem in a more
restricted setting. A stronger version of (2) is

KA(x) ≤ KAi(x) +O(K(i)), (4)
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where K(i) is Kolmogorov prefix complexity of a program i enumerating
predictive complexity KAi(x) from above.

Inequality (4) in many ways is more useful than (2). We study to what
degree (4) can be extended to the absolute loss case. We define a measure of
predictive complexity KA(x) such that

KA(x) ≤ KAi(x) +O(
√
l(x))K(i) (5)

for each i and x. We prove that inequality (5) cannot be improved in the
following sense. The total loss LS(x) suffered by any computable prediction
strategy S on a sequence x can be represented as LS(x) = KAi(x) for some
i. Then by (5) the inequality

KA(x) ≤ LS(x) +O(
√
n)K(S), (6)

holds for each computable prediction strategy S for each n and for each
sequence x of the length n, where K(S) is the Kolmogorov prefix complexity
of the prediction strategy S. We extend the result of Cesa-Bianchi et al.
[3] (Section 3.2, Theorem 8) to an arbitrary linearly bounded measure of
predictive complexity KA(x). We prove that if some nondecreasing function
f and constants c1, c2, c3 satisfy the inequality

KA(x) ≤ LS(x) + f(c1n)(c2 + c3K(S))

for each computable prediction strategy S for each n and for each sequence
x of the length n then

lim inf
n→∞

f(n)√
n/ log2 n

=∞.

2 Measures of predictive complexity

Let a sequence x1, x2, . . . , xi . . . of some data is given, where xi ∈ {0, 1}.
Our goal is to predict the elements of this data set on-line: we predict x1,
then predict x2 given x1, then predict xi+1 given x1, x2, . . . xi, etc. At every
step i the loss is measured by some nonnegative function λ(xi, pi), where the
forecast is a real number pi ∈ [0, 1] and the actual outcome is xi. Several loss
functions were considered in Vovk [9], Haussler et al. [2] (log-loss, Hellinger,
etc.), Vovk and Watkins [11] (financial theory), Yamanishi [13] (logistic, etc).
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It is natural to suppose that all predictions are given according to a pre-
diction strategy (or prediction algorithm) pi = S(x1x2 . . . xi−1) (it is supposed
that p1 = S(Λ), where Λ is the empty sequence). The total loss incurred by
the predictor who follows the strategy S over the first n trials x1, x2, . . . , xn
is defined

LS(x1x2 . . . xn) =
n∑
i=1

λ(xi, S(x1x2 . . . xi−1)).

The main task is to minimize the total loss suffered on a sequence x =
x1x2 . . . xn of outcomes. A set of all possible outcomes σ, a set of all predic-
tions p, and a loss function λ(σ, p) are called the game. The corresponding
game-theoretic interpretation was introduced by Littlestone and Warmuth
[5] (for details we refer readers to Vovk [11]).

Let us fix η > 0 (the learning rate) and put β = e−η ∈ (0, 1). Let cη be
an infinum of all c such that for each sequence of weights p1, p2, . . . with a
sum ≤ 1 there exists a prediction γ̂ such that

λ(j, γ̂) ≤ c logβ
∑
i

piβ
λ(j,γ) (7)

for j = 0, 1. By Vovk [8], [9] (Section 2), cη = 1 for an appropriate η, in
the case of logarithmic loss function λ(j, p), where λ(j, p) = − log p if j = 1,
and λ(j, p) = − log(1 − p) if j = 0, and in the case of square loss function
λ(j, γ) = (j − γ)2. By log p we mean the logarithm of p by the base 2. For
an absolute loss function λ(j, p) = |j − p| it was proven in Haussler et al. [2]
(Section 4.2) that cη = (ln 1

β
)/(2 ln 2

1+β
).

If cη = 1 for some η then the corresponding loss function (game) is called
perfectly mixable.

The absolute loss game is not perfectly mixable, since cη > 1 for each
η > 0.

The Vovk’s aggregating algorithm AA [8], [9] given a finite sequence of
predictive strategies S1, S2, . . . Sk and weights r1, r2 . . . rk with a sum ≤ 1
allows us to define their “mixture”, i.e. a prediction strategy S such that

LS(x) ≤ cη logβ

k∑
i=1

riβ
LSi (x) (8)

for all x.
Let us consider the total loss function corresponding to a computable

prediction strategy S. In this case, the value LS(x) can be interpreted as
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a predictive complexity of x. This value, however, depends on S and it
is unclear which S to choose. Levin [12], developing ideas of Kolmogorov
and Solomonoff, suggested (for the logarithmic loss function) a very natural
solution to the problem of existence of a smallest measure of predictive com-
plexity. Vovk [10] extended these ideas in a more general setting for a wide
class of loss functions.

We suppose that our loss function λ(σ, p) is computable by an algorithm.
This means that if λ(σ, p) < ∞ then given an arbitrary degree of accuracy
ε > 0 we can compute a rational approximation of λ(σ, p) with the accuracy
ε using some rational approximation of the real number p. More precise,
there are two computable sequences of simple functions λt(σ, p) nonincreasing
by t, and λt(σ, p) nondecreasing by t, such that λ(σ, p) = inft λ

t(σ, p) and
λ(σ, p) = supt λt(σ, p). By a simple function we mean a function whose
domain is a union of intervals with rational endpoints. This function is
constant on each of them and takes rational values or +∞. Simple functions
are constructive objects and can be enumerated by positive integer numbers.
By this definition any computable loss function λ(σ, p) is continuous by p.

Let Ξ be a set of all finite binary sequences. By a simple function on Ξ we
mean a function which takes nonnegative rational values or +∞ and equals
+∞ for almost all x ∈ Ξ.

A function KA(x) is a measure of predictive complexity if the following
two conditions hold:

• (i) KA(Λ) = 0 and for each x there exists an p such that

KA(xj) ≥ KA(x) + λ(j, p) (9)

for each j = 0, 1.

• (ii) KA(x) is semicomputable from above, which means that there exists
a computable sequence of simple functions KAt(x) nonincreasing by t,
and such that KA(x) = inftKA

t(x) for each x.

Requirement (i) means that the measure of predictive complexity must be
valid: there must exists a prediction strategy that achieves it. (Notice that
if ≥ is replaced by = in (9), the definition of a total loss function will be
obtained.) Requirement (ii) means that it must be “computable in the limit”.

The main advantage of this definition is that a semicomputable from
above sequence KAi(x) of all measures of predictive complexity can be con-
structed. Semicomputability of the sequence KAi(x) means that there exists
a computable from i, t, x sequence of simple functions KAti(x) such that
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• (iii) KAt+1
i (x) ≤ KAti(x) for all i, t, x;

• (iv) KAi(x) = inftKA
t
i(x) for all i, x;

• (v) for each measure of predictive complexity KA(x) there exists an i
such that KA = KAi.

A sequence KAi(x) satisfying (i)-(v) will be constructed in Section 4.1.
We suppose that some universal programming language is fixed. The

index i in KAi contains all information needed to enumerate it from above,
so we call i an enumerating program of KAi.

Let S be any computable predictive strategy and p be a program, which
given a sequence of outcomes x and a degree of accuracy computes the value
of S(x) with this degree of accuracy. By K(S) we denote the length of
the shortest program p computing S. Evidently, there exists a computable
function f translating p to some enumerating program of S, namely

LS(x) = KAf(p)(x). (10)

The following theorem is based on Vovk’s construction [11].

Theorem 1 Let KAi(x) be a semicomputable from above sequence of all
measures of predictive complexity, λ(ω, γ) be a loss function and β = e−η,
where η is a learning rate. Then there exists a measure of predictive com-
plexity KA(x) such that

KA(x) ≤ cηKAi(x) + cη(ln 2/η)K(i), (11)

holds for all i and x, where K(i) is the Kolmogorov prefix complexity of a
number i (see e.g. Li and Vitanyi [4], Section 3).

In particular, for each computable prediction strategy S and for each x

KA(x) ≤ cηLS(x) + cη(ln 2/η)(K(S) + c), (12)

where c is a constant.

The proof of this theorem is given in Section 4.1.
For perfectly mixable loss functions we have cη = 1 for an appropriate

η, and so, inequality (11) is analogous to that holds for optimal Kolmogorov
complexity.
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3 Main results

In Theorems 2 and 3 below we consider only the absolute loss function
λ(ω, γ) = |ω−γ|. In the previous theorem the learning rate η was a constant.
In the case of an absolute loss function we have in (11) the constant factor cη
which is bigger than 1 for each η > 0. In this section we show that AA with a
variable learning rate allows us to construct predictive complexity with more
optimal (in several cases) bound of its relative performance. Recall, that l(x)
denotes the length of a finite binary sequence x.

Theorem 2 Let KAi(x) be a semicomputable from above sequence of all
measures of predictive complexity. Then there exists a sub-optimal measure
of predictive complexity KA(x) such that for each i and each x

KA(x) ≤ KAi(x) + (
√
l(x) ln 2)K(i). (13)

In particular, for each computable prediction strategy S and for each x

KA(x) ≤ LS(x) + (
√
l(x) ln 2)(K(S) + c), (14)

where c is a constant.

The proof of this theorem is given in Section 4.2.

Corollary 1 For any two sub-optimal measures of predictive complexity for
absolute loss function KA(x) and KA′(x)

KA(x) = KA′(x) +O(
√
l(x)). (15)

We fix some sub-optimal measure of predictive complexity KA(x) satisfying
(13), (14) and call it the predictive complexity for absolute loss function.
Relation (15) means that predictive complexity for the absolute loss function

is defined to within an O(
√
l(x)) term.

In the following Theorem 3 we show that an additional square root in the
estimates (13) and (14) cannot be essentially decreased.

We call a measure of predictive complexity KA(x) linearly bounded if for
some positive constant c0 the inequality

KA(x) ≤ c0l(x) (16)
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holds for all x. The sub-optimal measures of predictive complexity defined
by (20) and in Theorem 2 are linearly bounded, since we can take in (14) S
equal to a trivial predictive strategy which always predicts 1

2
.

The following theorem shows that we cannot construct a sub-optimal
measure of predictive complexity which is better than that in Theorem 2.

Theorem 3 Let KA(x) be a linearly bounded measure of predictive complex-
ity for absolute loss function and let f be a nondecreasing function such that
for some constants c1, c2 and c3 the inequality

KA(x) ≤ LS(x) + f(c1n)(c2 + c3K(S)) (17)

holds for each computable prediction strategy S for each n and for each se-
quence x of the length n. Then

lim inf
n→∞

f(n)√
n/ log2 n

=∞. (18)

The proof of this theorem is given in Section 4.3.

Whether can we replace
√
l(x) in (14) by

√
LS(x) is an open problem.

4 Proofs

4.1 Proof of Theorem 1

A sequence KAi(x) of all measures of predictive complexity can be defined
using standard methods of the theory of algorithms as follows. We will
consider the recursively enumerable (r.e.) sets as consisting of pairs (x, r),
where x is a finite binary sequence and r is a nonnegative rational number
(all such pairs can be effectively encoded using all natural numbers). Let
W be a universal r.e. set such that for each r.e. set A (consisting of pairs
(x, r) as mentioned above) there exists a natural number i such that A = Wi,
where Wi is a projection of W defined by i, i.e. Wi = {(x, r)|(i, x, r) ∈ W}.
The existence of this set is the central result of the theory of algorithms (see
Rogers [7]).

By computability of λ(σ, p) a computable sequence of simple functions
λt(σ, p) exists such that λt+1(σ, p) ≤ λt(σ, p) for all t, σ, p and λ(σ, p) =
inft λ

t(σ, p).
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Let W t be a finite subset of W enumerated in t steps. Define

W t
i = {(x, r)|∃r′((i, x, r′) ∈ W t, r ≥ r′)} ∪ (Ξ× {+∞}).

It is easy to define a computable sequence of simple functions KAti(x) such
that KA0

i (x) = ∞ and KAt+1
i (x) ≤ KAti(x) for all x. Besides, KAti(x) is a

minimal (under ≤) simple function whose graph is a subset of W t
i and such

that for each x a rational p exists for which

KAti(xσ)−KAti(x) ≥ λt(σ, p) (19)

holds for each σ = 0, 1. Define KAi(x) = inftKA
t
i(x) for each i and x. It

follows from (19) and continuity of λ(σ, p) by p that for any i the function
KAi(x) is a measure of predictive complexity.

Let a function KA(x) satisfies the conditions (i), (ii) of the definition of
a measure of predictive complexity and Wi = {(x, r)|r > KA(x)}, where r
is a rational number. It is easy to verify that KA(x) = KAi(x) for all x.

Let ri be a semicomputable from below sequence of real numbers such

that
∞∑
i=1

ri ≤ 1. For instance, we can take ri = 2−K(i), where K(i) is the

Kolmogorov prefix complexity of i.
Analogously to Vovk and Gammerman [10] and Vovk and Watkins [11]

define a function KA(x) as follows

KA(x) = cη logβ

∞∑
i=1

βKAi(x)ri, (20)

We prove that KA(x) is a measure of predictive complexity. By definition
KA(x) is semicomputable from above, i.e (ii) holds. We must verify (i).
Indeed, by (20) for every x and j = 0, 1

KA(xj)−KA(x) = cη logβ

∞∑
i=1

qiβ
KAi(xj)−KAi(x) ≥ (21)

cη logβ

∞∑
i=1

qiβ
λ(j,γi) ≥ λ(j, γ), (22)

where

qi =
riβ

KAi(x)

∞∑
s=1

rsβKAs(x)
.
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Here for any i a prediction γi satisfying

KAi(xj)−KAi(x) ≥ λ(j, γi)

exists since each element of the sequence KAi(x) satisfies the condition (i)
of the measure of predictive complexity. A prediction γ satisfying (22) exists
by definition of the constant cη from Section 2. For further details see [11],
Section 7.6.

4.2 Proof of Theorem 2

Let us define

KA∗i (x) = KAi(x) +
l(x)−1∑
k=1

1

2
√
k
, (23)

where KAi(x) is a semicomputable from above sequence of all measures of
predictive complexity satisfying (i)-(v) of Section 2.

Let βn = e
− 1√

n . For any binary sequence x of length n define

KA(x) = logβn

∞∑
i=1

piβ
KA∗i (x)
n , (24)

where pi = 2−K(i).
By definition the function KA(x) is semicomputable from above. Let us

check the condition (i) of the measure of predictive complexity. We have for
each x of length n

βKA(x)
n =

∞∑
i=1

piβ
KA∗i (x)
n (25)

and for each j = 0, 1

β
KA(xj)
n+1 =

∞∑
i=1

piβ
KA∗i (xj)
n+1 . (26)

Let ε = logβn+1
βn − 1; then βn = β1+ε

n+1.
By the concavity of a function y = x1+ε, where ε > 0, we obtain an

inequality
(
∑

piai)
1+ε ≤

∑
pia

1+ε
i .
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Using this inequality we obtain

βKA(xj)
n = β

(1+ε)KA(xj)
n+1 ≤

∞∑
i=1

piβ
(1+ε)KA∗i (xj)
n+1 =

∞∑
i=1

piβ
KA∗i (xj)
n . (27)

Dividing (27) on (25) we obtain

βKA(xj)−KA(x)
n ≤

∞∑
i=1

qiβ
KA∗i (xj)−KA∗i (x)
n , (28)

where

qi =
piβ

KA∗i (x)
n

∞∑
k=1

pkβ
KA∗

k
(x)

n

are weights summing to 1.
By definition for each i = 1, 2, . . . a prediction γ̂i exists such that for

j = 0, 1

KA∗i (xj)−KA∗i (x) = KAi(xj)−KAi(x) +
1

2
√
n
≥ λ(j, γ̂i) +

1

2
√
n
. (29)

By definition of βn = e
− 1√

n and by [2] (Section 4.2) or by [9] (Section 2) for
any n we can put cη = (ln 1

βn
)/(2 ln 2

1+βn
) in the absolute loss case. By (28),

(29) and by definition (7) of cη a prediction γ̂ exists such that for j = 0, 1

βKA(xj)−KA(x)
n ≤

∞∑
i=1

qiβ
λ(j,γ̂i)
n β

1
2
√
n

n ≤

βc
−1
η λ(j,γ̂)
n β

1
2
√
n

n ≤ β
(1− 1

2
√
n

)λ(j,γ̂)
n β

1
2
√
n

n =

β
λ(j,γ̂)+ 1

2
√
n

(1−λ(j,γ̂))
n ≤ βλ(j,γ̂)

n .

Then we have KA(xj)−KA(x) ≥ λ(j, γ̂), i.e. (i) is true. Hence, the function
KA(x) defined by (24) is a measure of predictive complexity. By (24) for

each i and x of length n we have βKA(x)
n ≥ piβ

KA∗i (x)
n . Then we obtain

KA(x) ≤ KA∗i (x) + logβn pi = KAi(x) +
1

2

n−1∑
k=1

1√
k

+
√
nK(i) ln 2) ≤ (30)

KAi(x) +
√
n(1 +K(i) ln 2). (31)

We can ignore the term 1 in (31) since K(i) is defined up to an additive
constant. The inequality (14) follows from (10), since it holds K(f(p)) ≤
K(p) + c for some constant c.
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4.3 Proof of Theorem 3

Any finite binary sequence α = α1α2 . . . αn of length n defines a static pre-
diction strategy S(x1 . . . xi−1) = αi for 1 ≤ i ≤ n. The total loss suffered by
this prediction strategy over x = x1x2 . . . xn is equal to

Lα(x) = LS(x) =
n∑
i=1

|xi − αi|.

We will consider the mathematical expectation of an arbitrary function g
with respect to the uniform measure L(x) = 2−l(x)

En(g(x)) =
∑

l(x)=n

g(x)L(x).

Let Ξn be a set of all binary sequences of the length n. For any finite set E
by |E| we denote the cardinality of E. For any set E ⊆ Ξn of finite binary
sequences of the length n (static prediction strategies) we define

Rn(E) = En(min
α∈E

Lα(x))

and
RN,n = min

|E|=N,E⊆Ξn
Rn(E).

Our proof is based on the following probabilistic result from Cesa-Bianchi et
al. [3].

Lemma 1 It holds

lim inf
N→∞

lim inf
n→∞

n
2
−RN,n√
n
2

lnN
≥ 1. (32)

For the proof see Corollary 7 and the proof of Lemma 6 from [3].
We will use also the following trivial

Lemma 2 Let ξ(y) be any function on Ξn and En(ξ) ≥ γ. Then for any
ε > 0

L{y|l(y) = n, ξ(y) > (1− ε)γ} ≥ εγ

maxl(y)=n ξ(y)
.

13



Proof. Indeed, this inequality follows from

γ ≤ En(ξ) =
∑

{y|l(y)=n,ξ(y)≤(1−ε)γ}
ξ(y)L(y) +

∑
{y|l(y)=n,ξ(y)>(1−ε)γ}

ξ(y)L(y) ≤

(1− ε)γ + max
l(y)=n

ξ(y)L{y|l(y) = n, ξ(y) > (1− ε)γ}.

2

For any n define βn = e−
1
n and αn = 2 log n. Let pn be a finite bi-

nary sequence representing the rational approximation of the real number∑
l(x)=n

βKA(x)
n L(x) from below with accuracy 2−αn (this sum is ≤ 1). Then

using pn and n we can effectively find an integer number t such that the
following conditions hold

• (1)
∑

l(x)=n
βKA

t(x)
n L(x) >

∑
l(x)=n

βKA(x)
n L(x)− 2−αn , where

KAt(x) is some approximation from above of KA(x) computed in t
steps.

• (2) for each x of the length ≤ n there exists a real number γ̂ such that
for each j = 0, 1
KAt(xj)−KAt(x) ≥ λ(j, γ̂);

• (3) KAt(x) ≤ 2c1l(x) for all x, l(x) ≤ n, where c1 is from (16).

By E(λ(j, γ)) = (1− γ)1
2

+ γ 1
2

= 1
2

and (2) we obtain En(KAt(y)) ≥ n
2
.

Let
Dn,t = {x|l(x) = n,KAt(x)−KA(x) > 1}.

We have βKA
t(x)

n < βKA(x)
n βn for each x ∈ Dn,t. Then

βn
∑

x∈Dn,t
βKA(x)
n L(x) ≥

∑
x∈Dn,t

βKA(x)
n L(x)− 2−αn .

Therefore, we obtain

(1− βn)
∑

x∈Dn,t
βKA(x)
n L(x) ≤ 2−αn .
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We have also 1 − βn ≥ 1/2n and βKA(x)
n ≥ e−c0 , where c0 is that from (16).

Then we obtain 1
2n
e−c0

∑
x∈Dn,t

L(x) ≤ 2−αn or

L(Dn,t) ≤ 2−αn+logn+1+c0 log e ≤ c

n

for some positive constant c. Hence, we have

KAt(x) ≤ KA(x) + 1 (33)

for all x of the length n with an exception of a portion c/n of such x.
By Lemma 1 (32) there exists an N0 such that for each N ≥ N0 there

exists an nN such that for each n ≥ nN there is a set En,N of N static
prediction strategies of the length n such that

n
2
− En(minα∈En,N Lα(y))√

n
2

lnN
>

1

2
.

The inequality En(KAt(y)) ≥ n
2

implies

En(KAt(y)− min
α∈En,N

Lα(y)) ≥ n

2
− En( min

α∈En,N
Lα(y)) >

1

2

√
n

2
lnN.

By Lemma 2 for ε = 1
2
, ξ(y) = KAt(y)− min

α∈En,N
Lα(y) and γ = 1

2

√
n
2

lnN we

have

L{y|l(y) = n,KAt(y)− min
α∈En,N

Lα(y) >
1

4

√
n

2
lnN} ≥ (34)√

n
2

lnN

8c1n
=
c
√

lnN√
n

, (35)

where c is a constant.
A finite set En,N of cardinality N satisfying (34) can be found effectively

by n,N and pn (using exhaustive search).
Since we have for some constant c > 0

L{y|l(y) = n,KAt(y)−KA(y) > 1} < c

n

15



for all sufficiently large n, for each such n there exists an y of the length n
such that

KAt(y)− min
α∈En,N

Lα(y) >

√
n

32
lnN, (36)

KAt(y) ≤ KA(y) + 1. (37)

For each y satisfying (36) there exists an α ∈ En,N such that

KAt(y)− Lα(y) >

√
n

32
lnN. (38)

Given En,N we can specify any α ∈ En,N using logN + c bit, where c is
a constant, and so,

K(α) ≤ 2 logN + 3 log n+ c, (39)

where c is a constant.
Combining (37), (38) and (39) with the condition of Theorem 3 we obtain

Lα(y) +

√
n

32
lnN ≤ KAt(y) ≤ KA(y) + 1 ≤

Lα(y) + f(c1n)(c2 + c3K(α)) + 1.

Then √
n

32
lnN ≤ f(c1n)(c2 + 3c3 log n+ 2c3 logN + c4) + 1,

where c4 is a constant. Hence, a constant c exist such that for each N ≥ N0

for all sufficiently large n it holds

f(n)√
n/ log2 n

≥ c
√

lnN.

In other words,

lim inf
n→∞

f(n)√
n/ log2 n

=∞.
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