Shortest and Straightest Geodesics in Sub-Riemannian
Geometry

Dmitri Alekseevsky *

A.A Kharkevich Institute for Information Transmission Problems
B.Karetnuj per.,19, 127051, Moscow, Russia
and University of Hradec Kréalové, Faculty of Science, Rokitanského 62,
500 03 Hradec Kralové, Czech Republic

Dedicated to Jubilee of Joseph Krasil’shchik

Abstract

There are several different, but equivalent definitions of geodesics in a Rieman-
nian manifold, based on two characteristic properties: geodesics as shortest curves
and geodesics as straightest curves. They are generalized to sub-Riemannian man-
ifolds, but become non-equivalent. We give an overview of different approaches to
the definition, study and generalisation of sub-Riemannian geodesics and discuss
interrelations between different definitions. For Chaplygin transversally homoge-
neous sub-Riemannian manifold @), we prove that straightest geodesics (defined as
geodesics of the Schouten partial connection) coincide with shortest geodesics (de-
fined as the projection to @ of integral curves (with trivial initial covector) of the
sub-Riemannian Hamiltonian system). This gives a Hamiltonization of Chaplygin
systems in non-holonomic mechanics.

We consider a class of homogeneous sub-Riemannian manifolds, where straight-
est geodesics coincide with shortest geodesics, and give a description of all sub-
Riemannian symmetric spaces in terms of affine symmetric spaces.
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1 Introduction

The important role of Riemannian geometry in applications is based on the fact
that many important equations, arising in mechanics, mathematical physics, bi-
ology, economy, information theory, image processing etc., can be reduced to the
geodesic equation. Moreover, Riemannian geometry gives an effective tool to investi-
gate the geodesic equation and other equations associated with the metric (Laplace,
wave, heat and Schrodinger equations, Einstein equation, Yang-Mills equation etc).
There are many equivalent definitions of geodesics in a Riemannian manifold. They
are naturally generalised to sub-Riemannian manifolds, but become non-equivalent.
H.R. Herz remarked that there are two main approaches to the definition of geodesics:
geodesics as shortest curves based on Maupertruis principle of least action (varia-
tional approach) and geodesics as straightest curves based on d’Alembert’s prin-
ciple of virtual work (which leads to a geometric description, based on the notion
of connection).

We consider three variational definitions of geodesics of a sub-Riemannian mani-
fold (@, D,g”) (i.e. a manifold @ with a non-holonomic distribution D and a
Riemannian metric g” on D) as (locally) shortest curves ( Euler-Lagrange (EL-
geodesics), Pontryagin (P-geodesics) and Hamilton (H-geodesics)) and three geo-
metric definitions of sub-Riemannian geodesics as straightest curves ( d’Alembert
(dA-geodesics), Schouten-Synge-Vranceanu (S-geodesics) and Morimoto (M-geode-
sics)) and discuss interrelations between them.

The definition of M-geodesics is based on E.Cartan frame bundle definition of Rie-
mannian geodesics, which is naturally generalized to Cartan connections and G-
structures of finite type. We give a short introduction to this theory in section 4.
In section 5, we discuss the relation between Cartan connections and Tanaka struc-
tures (or non-holonomic G-structures). They are defined as a G-principal bundle
m: P — @Q = P/G of frames on a non-holonomic distribution D C T'Q. In particu-
lar, a regular sub-Riemannian manifold (Q, D, g?) (see Sect. 5.1) may be identified
with a Tanaka structure 7 : P — () of admissible orthonormal frames in D.

Using his theory of filtered manifold, T. Morimoto proved that this Tanaka structure
admits a unique normal Cartan connection, i.e. a Cartan connection with coclosed
curvature. The Morimoto geodesics are defined in terms of this Cartan connection.
We give a simple description of all (not necessary normal) Cartan connections, asso-
ciated to a regular sub-Riemannian manifold (Q, D, g”) in term of admissible rig-
gings V' (some distribution, which is complement to D) and define Cartan-Morimoto
(shortly, CM) geodesics in terms of such Cartan connections. CM-geodesics are hor-
izontal geodesics of some Riemannian connection with torsion, which preserves the
distribution. A necessary and sufficient condition that CM-geodesics coincides with
S-geodesics (i.e. geodesics of the partial sub-Riemannian Schouten connection, as-
sociated with a given rigging V) is given.

A. Vershik and L. Faddeev [35] had formulated the problem how to characterize
sub-Riemannian manifolds such that straightest S-geodesics ”coincide” ( more pre-
cisely, consistent) with shortest H-geodesics in the following sense.

An S-geodesic (t) of a sub-Riemannian manifold (Q, D, g”) is determined by the
initial velocity 4(0) € D, C T,Q. The initial data for an H-geodesic is a pair
(%(0),X) € Dy x Dg where D° C T*Q is the codistribution (the annihilator of the
distribution D). The covector A is called the initial codistribution covector.
Taking this into account, we say, following [35], that (straightest) S-geodesics coin-



cide with (shortest) H-geodesics if the class of S-geodesics coincides with the class
of H-geodesics with zero initial codistribution covector.

Vershik and Faddeev showed that for generic sub-Riemannian manifolds almost
all shortest geodesics are different from straightest geodesics. They gave the first
example when shortest geodesics coincide with straightest geodesics with zero codis-
tribution covector.

In the second part of the paper, we show that this is true for any Chaplygin system,
that is G-invariant sub-Riemannian metric (D = ker(cww), g”) on the total space of
a G-principal bundle 7 : Q — M = Q/G over a Riemannian manifold (M, g™) with
a principal connection @ : TQ — g, where g” is the metric in D, induced by the
Riemannian metric g™.

Any left-invariant metric on the group G defines an extension of the sub-Riemannian
metric g to a Riemannian metric g9 on Q. We show that H-geodesics of sub-
Riemannian Chaplygin metric are the horizontal lifts of the projection to M of
geodesics of the Riemannian metric g% and S-geodesics are horizontal lift of geodesics
of the Riemannian metric g™ . This is a generalization of results by R. Montgomery
(23], who considered the case when the extended metric g@ is defined by a bi-
invariant metric on G. We give a simple proof of Wong results on the description of
the evolution of charge particle in a classical Yang-Mills field in terms of geodesics
of the bi-invariant extension g® of the Chaplygin sub-Riemannian metric.

In the last section, we describe some classes of invariant sub-Riemannian structures
on homogeneous manifolds, where straightest geodesics coincide with shortest ones.
We give also a simple description of all bracket generating symmetric sub-Riemannian
manifolds, introduced by R.S. Strichartz [30], and show that any flag manifold of a
compact semisimple Lie group G, associated to a gradation of depth £ > 1 of the
corresponding complex semisimple Lie algebra, has a structure of sub-Riemannian
symmetric space.

Acknowledgment. I thank A.M. Vershik for his comments on non-holonomic
geometry and explanation of his joint with L.D. Faddeev results and A. Spiro for
useful discussions.

2 Sub-Riemannian geodesics as shortest curves

Here we briefly discuss three approaches to the definition of geodesics of sub-
Riemannian manifolds : Euler-Lagrange variational approach, Pontryagin optimal
control approach and Hamiltonian approach. We describe interrelation between cor-
responding notions of sub-Riemannian geodesics : EL-geodesics, P-geodesics and
H-geodesics.

2.1 Euler-Lagrange sub-Riemannian geodesics

Recall that a rank-m distribution D C T'Q) on a connected n-dimensional manifold
Q is called bracket generating if the space I'D of sections generates the Lie
algebra X(M) of vector fields.

According to Rashevsky-Chow theorem, any two points on such manifold can be
joint by a horizontal (i.e. tangent to D) curve. Then any Lagrangian L € C*°(T'Q)
defines a nonholonomic variational problem:

Let CP(qo, q1) be the space of horizontal curves, connecting points o and ¢;. Find
a curve ¢(t), t € [0,T] in CP(qo,q1) which delivers a minimum or, more generally,
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a critical point, for the action functional

T
Alq(t)) = /0 La(t). d(0)dt, a(t) € CP(qo, ).

The Lagrangian L(q, ¢) determines a horizontal 1-form
d
—Lg,

(dt qi

on T'Q, called the Lagrangian force [31], [35]. Locally the distribution D is the

L. Wk, k =n —m, of 1-forms. The 1-form

kernel of a system (w",
w) = Z )\awa - Z Aa(‘b Q)w?(Q)dql

vanishes on D for any vector-function A(q,§) = (A1, , Am) on TQ.

Fj, = (6L);dq" = — Lg,)dq"

Then critical points ¢(t) of the functional A(q(t)) are solution of the Euler-
Lagrange equations [38]

Fr = (6L)id'(t) = Lywy = Aaw® 4+ AaGudw® (1)

wx(d) =0

for unknown curve ¢(t) € CP(qo, q1) and vector-function A(¢(t), §(t)). Here Ly is
the Lie derivative along the vector field ¢(t).

A sub-Riemannian manifold (Q,D,¢”) is a manifold with a distribution D
and a Riemannian metric g” on D .

Let (Q,D,g"”) be a sub-Riemannian manifold with bracket generating distri-
bution D. An Euler-Lagrange or EL non-parametrized geodesic ( resp.,
EL-parametrized geodesic) is a critical point of the length functional with L =

9(q,q)) (resp., the energy functional with L = %g(q', ) ) in the space CP(qo, q1).

2.2 Pontryagin sub-Riemannian geodesics

Let (Q, D, g”) be a bracket generating sub-Riemannian manifold as above. Denote
by (X1, ,X;) a field of orthonormal frames in D. Then any horizontal curve
q(t) € CP(qo, q1) is a solution of the first order ODE

g(t) = > _u' (D) Xi(q(t)), ¢(0) = qo. (2)

i=1
where the vector-function u(t) = (u!(t),---,u™(t)) ( called the control ) con-
sists of the coordinates of the velocity vector ﬁeld ¢(t) with respect to the frame

(Xi) -
The vector-function u(t) is called an admissible control if the solution ¢(t) of (2)
belongs to CP (qo, ql)
The energy E(u(t)) = 5 fo S ui(t)?dt and the length £(u \/Z u'(t)2dt of the
solution ¢(t) of ( ) depend only on the control wu(t) and may be Con51dered as the
functionals (called the cost functionals) on the space of admissible controls.

A parametrized ( respectively, non-parametrized ) Pontryagin geodesic
( shortly, P-geodesic) is defined as the integral curve ¢“(t) € C”(qo,q1) of the

>



equation (2) with an admissible control u(t), which is a critical point of the cost
functional E(u(t)) ( respectively, £(u(t))).

A P-geodesic with an admissible control u(t), which delivers a minimum of the cost
functional is called a minimizer or a minimal geodesic. P-geodesics coincide
with EL-geodesics and are locally minimizers, [8].

2.3 Hamiltonian sub-Riemannian geodesics

Let (Q,D,g"”) be a sub-Riemannian manifold. Denote by (X;) an orthonormal
frame in D and by (6%) the dual coframe. Then the restriction £p of a covector
€ € T*Q to D has coordinates p;(¢) := £(X;) and can be written as £ = p;6°.
The inverse (g”)~! of the sub-Riemannian metric g” is a non-degenerate metric in
the dual to D vector bundle D*. It defines a degenerate symmetric bilinear form
g* € T(S?TQ) in T*Q, called the cometric, which is given by

g*(&,8) = (¢") (. &p) = Zm(&)z, £eT*Q.

The function hyp(€,§) = 29%7(£,€) = 33 pi(€)? on T*Q is called the sub-
Riemannian Hamiltonian. H-geodesics are projection to ) of orbits of Hamil-
tonian vector field h = w~!'dh € X(T*Q) with quadratic ( degenerate ) sub-
Riemannian Hamiltonian h,p(§, &) = %g*(f,f). Here w =dp, ANdg*, a=1,--- ,nis
the standard symplectic form of T*Q.

2.4 Pontryagin Maximum Principle

Recall that vector fields X = X *0,a, where (z%) are local coordinates in ) bijectively
correspond to fiberwise linear functions

Px 3T*Q —+ R, & :paaqa HP(X) = Xapa

on the cotangent bundle T*@Q). The function px is the Hamiltonian of the Hamilto-
nian vector field
px = X0ga — paOp X0y,

which is the complete lift of X to T*@Q. The map
X(Q) > X = px € X(T"Q)

is an isomorphism of the Lie algebra X(Q) of vector field onto the Lie algebra
X(T*Q)" of fiberwise linear vector fields on T*Q.

Theorem 1 (Pontryagin Mazimum Principle) Let q(t) € CP(qo,q1) be a mini-
mal P-geodesic on a sub-Riemannian manifold (Q, D = span(X;), g”) with natural
parametrization (s.t. |§(t)| = const), which corresponds to a control u(t) = (u'(t)) :

q(t) = u'(t)Xi(q(1)). (3)

Denote by ¢ the (local) flow, generated by the non-autonomous vector field
X% ='(t)X;. Then for some covector & € T, Q the curve

£@t) == Ziko == &o o p—t. € Ty @



satisfies the equation

E(t) = u' ()pi(E(t)) (4)
where p; := px, and one of the following conditions holds
ul(t) = <€), Xi(a(t) > (V)
0 = <&@), Xi(q(t) > . (4)

Here the bracket < £, X > denotes the pairing between covectors and vectors.

An extremal curve £(t) C T*(Q, which satisfies (V) ( resp., (A)), is called a
normal ( resp., an abnormal) extremal, and its projection ¢(t) C @ is called a
normal (resp., an abnormal) P-geodesic. Note that abnormal extremals are
curves in the codistribution D°, considered as a submanifold of T*Q.

2.4.1 Normal P-geodesics as H-geodesics

Pontryagin theorem shows that normal geodesics are H-geodesics. More precisely,
we have

Corollary 2 Let D be a rank-m bracket generating distribution with a sub-Riemannian
metric gP. A normal extremal £(t) C T*Q for (Q, D, gP) is an integral curve of the
Hamiltonian equation on T*Q with the sub-Riemannian Hamiltonian

hop(€) = 50766 = 5 D (&,
1=1
where & = p; ()0, pi(§) = £(Xi).

Proof: In the case of normal geodesic, the equation (4) take the form

) = S mlEOIR(EW) = 5o d D pHEW) = o (6(1).
U

Since the Hamiltonian vector field ng preserves the Hamiltonian h,p, a normal
extremal {(t) belongs to a level set L. = {h = ¢} C T*Q of the Hamiltonian h = h .

A curve £(t) C L on a submanifold L C T*Q is called a characteristic if its
velocity £(t) belongs to the kernel ker (w|L) of the restriction of the symplectic form
to L.

Corollary 3 Assume that an extremal £(t) C L. belongs to a regular level set of
the Hamiltonian h = hyq, i.e. L¢ is a smooth hypersurface. Then ker wlr, is the

1-dimensional distribution generated by h. In particular, the extremals £(t) are the
characteristic curves of L.

Proof: The tangent space of the level set L, is described as follows
TeLe = {w € T¢(T7Q), 0 =< dhg,w >=< w(ﬁg),w >= w(l_ig,w)}.

This shows that T¢ L. consists of all w-orthogonal to 55 vectors. Since the w|T¢L.
has 1-dimensional kernel, it is generated by l_ig. (]



2.4.2 Abnormal P-geodesics

Now we shortly discuss main properties of abnormal geodesics, following R. Mont-
gometry. Denote by CP(q0) = {7 : [0,T] — Q, ¥(0) = qo,% € D} the space of
horizontal curves, starting from ¢o , where D C T'Q is a bracket generating distri-
bution. A curve ¥(t) € CP(qp) is called singular ( resp.,regular) if the end-point
map

e: CP(q0) = Q, (1) = 4(T)
is singular ( resp., regular).
The following theorem by L.S. Pontryagin, L. Hsu and R. Montgomery shows that
abnormal geodesics coincide with singular curves and they are projection on ) of
characteristic curves of the codistribution DY, considered as a submanifold of the
symplectic manifold (7T*Q, w).
Theorem 4 ( see [23], [24] ) i) Abnormal geodesics of any sub-Riemannian metric
gP on D are exactly singular horizontal curves in Q.
it) A horizontal curve v C Q is singular if and only if it is a projection to Q of a
characteristic curve of the submanifold DO := DO \ {zero section} C T*Q.

Now we give a description of characteristic curves in DO, following [23]. To sim-
plify notation, we will denote D° by D°.

Denote by 7: T*Q — Q, 7« : T(T*Q) — T™*Q the natural projections.

We fix a complementary to D distribution V such that TQ = D & V. Let
(Xi),i=1,---,m be a local frame in D, (Y,), « =1,--- ,n —m a local frame in
V and denote by (GiQ, ng) the dual coframe, such that

00 (X;) = 85,15 (Ys) = 08,05 (Ya) = 15(X:) = 0.
The Liouville tautological 1-form 8 = 7§ = {or, in T7Q = D* @ DY at a point
&= hzﬂé? + kang € T*Q can be written as
b = hib 4 kon® € (1+)"Dg @ (T*)*Dg CcT(T*Q),

where §° = 9&2 o Ty, N =ng o Tx are the pull back of the 1-forms 922, ng to Q.
We will consider h;, k, as fiberwise coordinates in the bundle 7% and in the bundle
™(T*Q) C T*(T*Q) of horizontal 1-forms on T7Q.

The restrictions 8°, w® of the Liuville form 6 and the standard symplectic form
w = —df on T*Q to the submanifold D C T*Q are given by
00 = &|p = kan®, —w’ =db® = dko A1 + kadn®.
Denote by
Ch(D°) :=ker w® = T(D)* NT(D°) = {v € T,,D°, w(v, T, D°) = 0}

the characteristic submanifold of T'(D°), where the vector bundle 7'(D%)* ¢ T(T*Q)| po
is the w-orthogonal complement to the tangent bundle 7'(D°) of D°.

The fiber Ch,(D°) = ker wg C T,(Q°) over a point n € Q° is a vector space, but
since the rank of wg may vary, the natural projection Ch(D°) — DY is not a vector
bundle, in general.

By definition,characteristic curves are curves n(t) C D, tangent to the char-
acteristic manifold Ch(D°) c T'(D?).



Lemma 5 The vector bundle T(D%)* = span{ﬁi, i=1,---,m}, and the projection
7 : T(T*Q) — TQ) induces for any n € D° the isomorphism

7o Ty(D°) = Dy, g = 7(n),
u'h; — uiXZ-]q.
Proof: The submanifold D° = {n = k,n®} is defined by the equations
hi=0,i=1,---,m.,
Hence,
T,D° = {v € T,(T*Q),0 =< dhy,v >= w(w  dhs,v) = w(hi,v)}.

O
Since DY = {n = kan®}, ko are fiberwise coordinate of the bundle D — Q. We
identify X;, Y, with ”horizontal” vector fields in 7%, which annihilate the fiberwise
coordinates h;, ko. Then O, , X;, Y, form a frame in the tangent bundle T(D). The
tangent vector to a curve n(t) = kq(t)n®(t) C D° with projection v(t) = 7n(t) can
be written as ‘

1(t) = kaOk, + ¥ Xi(y(t) + 7" Ya(v(1))- (5)
We need an explicit description of the restriction —w® = dk, A n® + dn® to D

of the symplectic 2-form w = —df. We may write the 2-form dn® as

dn® = —ci0" N 0T — 0" AP — i A’

where ¢ = n*([Xi, Xj]), ¢ = n*([Ys, Xil), g5 = n* (Y3, ¥5).
Then
W' = —dky A* + ka(cgﬁi NG+ C?ﬁﬁi AP+ cg(mﬁ AnP).
Now we are ready to write down the necessary and sufficient condition that a tangent
vector 7)(t) € T, D of a curve n(t) C D belongs to Chyy (D).
Calculating the contraction 7.w®, we get

Naw” = 4¥dka + o (5 — c5AP)0 + (kacly' + kaclsy — kg)n”.

In particular, a curve 7(t) = kon® C D is a characteristic curve if and only if its
velocity vector (5) satisfies the following equations

Hoo =0,
i) kg — kacigy' =0,
i) kacld’ =0.

For ¢ € @, denote by A2D; the space of 2-forms in D, and by Dg the fiber of
the bundle 7 : D° — Q. There is a natural linear map

7 2
d: Dy — A°Dy
n— dﬁ‘AQDxa

where 7} is an extension of  to a local 1-form. If X, X’ are extensions of vectors
X, X' € D, to local sections of D, then

di(X, X") = —n([X, X']).

This shows that the map d does not depend on extensions &, X, X'.
We set )
Ky =ker dn C D).



Proposition 6 The projection Ty : Tn(DO) — Dr(y) induces an isomorphism

T(n
T : Chy (DY) = ker wg — K,.

Proof: Lemma 5 shows that 7, : T, nDO — D
i), iii) may be rewritten as

(n) 18 an isomorphism. The conditions

Y =4(t)Xi € Kypy = Kpone-

Any characteristic vector 1) € Ch,(D°) = ker wg can be written now as

0 = kadk, + = kchi ¥ O, +4' X

and it is completely determined by the point n = k,n® € DS and the tangent vector
v e K, C DT(n)' [l

As a corollary, we get the following characterization of characteristic curves and
abnormal geodesics.

Theorem 7 i) A curve n(t) = ko(t)n*(y(t)) C D° with the projection ~(t) =
7(n(t)) is a characteristic and then ~y(t) is an abnormal geodesic if and only if the
velocity vector field has the form

0(t) = kgc Ao, + 4 X;

such that §(t) = ¥ X; € Ky

ii) A horizontal curve v(t) C Q with velocity vector field #(t) = 4 (t) X;(y(t)) is an
abnormal geodesic if and only if it can be lifted to a chamctemstzc curve n(t) C DY
such that (t) € K-

3 Sub-Riemannian geodesics as straightest
curves

3.1 d’Alembert’s sub-Riemannian geodesics

Let (Q, D, g”) be a sub-Riemannian manifold. To define d’Alembert’s (shortly, dA)
geodesics, we extend the sub-Riemannian metric ¢” to a Riemannian metric g<.
The d’Alembert’s principle of virtual displacements for a mechanical system may
be formulated as follows, see [35].

1) The evolution of a mechanical system with a (smooth) configuration space @ is
described by projection to @ of integral curves of a special vector field X € X(T'Q)
(the evolution field). A field X is called special if it corresponds to a second order
equation, that is 7. X (4 4) = ¢ where 7 : T'Q) — @ is the projection.

2) The vector field X is determined by the Lagrangian force, defined as the horizontal
1-form Fy, := (6L(q,q))idqg' on TQ, associated with the Lagrangian L(q, ), and
external forces.

3) d’Alembert’s Principle states that the special vector field X, which describes
the real dynamics of a mechanical system, is determined by the condition that the
Lagrangian force is equal to the external force.

Assume that

i) the Lagrangian L(q, ¢) of the system with a configuration space @ is quadratic in
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velocities ¢ and positively defined ( that is can be written as L = % 9(q,q), where g
is a Riemannian metric in @) ) and that

ii) the only external force is the reaction of a non-holonomic constraint, defined by
a rank-m distribution D = ker n* N --- Nker n*, where n® = nl-adq", a=1,--- k=
n — m is a coframe of the codistribution D°. The reaction of the constraint is
the horizontal 1-form ¢y = A\a(q, ¢)n* € QY (TQ) defined by the condition that the
equation Fj — ¢) = 0 corresponds to a vector field X € X(T'Q) tangent to the
distribution D C T'Q.

In coordinates, this equation take the form [38]

d 7 . « 7
Fr = (aLm — Lg;)dq" = Xa(q(t), 4(t))ni*dg

or
d
dt
The projection to ) of integral curves of this equation is called d A-geodesic of the
sub-Riemannian metric (D, g”), associated with an extension of g” to a Rieman-
nian metric g on (). In general, the equation of dA-geodesics is neither Lagrangian
nor Hamiltonian.

Li — Ly =0 (modD?).

3.2 Schouten-Synge-Vranceanu sub-Riemannian geodesics

Recall that Levi-Civita associated to a Riemannian manifold (@, g) the canonical
torsion free connection VY, which preserves the metric (called the Levi-Civita con-
nection). According to Levi-Civita, a geodesic is defined as an autoparallel curve
q(t), such that the velocity vector field ¢(¢) is parallel along ¢(t), i.e. satisfies the
geodesic equation

VY = (1) + Tl (¢ (1)@ (£)¢"(t) = 0

where F;k are the Christoffel symbols of the metric g = gl-j(q)dqidqj . The extension
of this definition to sub-Riemannian manifolds had been proposed independently
by J.A. Schouten, J.L.Synge and G. Vranceanu, see [10].

3.2.1 Schouten partial connection of a sub-Riemannian manifold

Let D C TQ be a distribution. A partial D-connection in D is an R-bilinear map
VP.I'DxI'D-TD, (X,Y)— VRY
which is C*°(Q) linear in X and satisfies the Leibnitz rule in Y:
VR(Y) = fVRY + (X - )Y, feC®(Q).

Let e;, 2 =1,--- ,m be a frame of D defined in a neighborhood of a horizontal
curve q(t).
The Christoffel symbols of a partial connection V¥ are the local functions F;k(q)
on () defined by
Ve, = }k(q)ei.
The value of the functions Fj.k(t) = F;k(q(t)) on a horizontal curve ¢(t) depends
only on the frame e;(t) := e;(q(t)) along the curve ¢(¢). Due to this, the partial
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connection defines a parallel transport of a vector Yy € Dy, along a horizontal curve
q: as the solution Y'(t) = Y(t)e.(t) € Dy, of the equation

0=V, Y(t) = Vg, (Y (t)eilt)) = [V(t) + Dy ()gd Y (8)]ei(t).

I.A. Schouten showed that a complementary to D distribution V' on a sub-Riemannian
manifold (Q, D, g”) ( called a rigging) defines a partial connection V* in D which
preserves the metric g” and has zero torsion 7. The torsion tensor is defined by

T(X,Y)=V}Y - VyX — [X,Y]p, X,Y €I'D,
where Xp is the horizontal part of the vector
X=Xp+XyeT;Q=D;dV,.

In coordinate-free way, the Schouten partial connection of (Q, D, gP) associated
to a rigging V' is defined by the Koszul formula

20(V3Y,Z) = X-g(Y,Z)+Y -9(X,2) = Z-g(X,Y)+
g([X,Y}D,Z) —g(Y, [Xa Z]D - g(Xv [Yv Z}D),
X,Y,Z e (D).

Schouten defined the curvature tensor R € so(D) ® A?T*M of the Schouten con-
nection by

R(X?Y)Z = [VX,VY]Z— [[Xa Y]V>Z]Da X,Y,Ze€T'D.

V.V. Wagner generalized this notion and defined Wagner curvature tensor, such
that the vanishing of the Wagner tensor is equivalent to the flatness of the Schouten
connection ( that is the property that the associated parallel transport does not
depend on the path, connecting two points), see [10], [17] for a modern exposition
and generalization of this theory.

3.2.2 Sub-Riemannian S-geodesics and non-holonomic mechanics

Schouten-Synge-Vranceanu geodesics ( S-geodesics) of a sub-Riemannian
manifold (Q, D, g?), associated to a rigging V, are defined as horizontal curves ~y(t)
with parallel (w.r.t. Schouten connection) tangent vector field 4(¢), i.e. solutions of
the equation ng'y =0.

Assume that the sub-Riemannian metric g” is extended to a Riemannian metric g
on Q. Denote by V = D+ the g-orthogonal complement to D. Then the Levi-Civita
connection V¢ induces a connection VP in D given by

VRY =prpViY = (V4Y)p, X € TQ,Y € T'D.

where prp : TQ = D @ D+ — D is the natural projection.
The connection VP is an extension of the partial Schouten connection V* asso-
ciated to the rigging D+.

Theorem 8 ( Vershik-Faddeev[35], [36]) Let (Q, D, g”) be a sub-Riemannian manifold,
g an extension of ¢g” to a metric in @ and V = D' the orthogonal complement to

D. Then S-geodesics coincide with dA-geodesics and they describe evolution of
the free mechanical system with kinetic energy g in configuration space ) with
nonholonomic linear constraint D.

12



4 Cartan frame bundle definition of geodesics

An important frame bundle definition of Riemannian geodesics had been proposed
by E. Cartan. It is naturally generalized to a wide class of geometric structures.
Below we consider Cartan approach to definition of geodesics for Cartan connec-
tions and G-structures of finite type. This will be used for definition of Morimoto
geodesics on a regular sub-Riemannian manifold.

4.1 Cartan definition of Riemannian geodesics

A Riemannian metric g on a manifold () can be considered as a G = O,-structure,
i.e. a principal G-subbundle 7 : P — @ = P/G of the bundle of orthonormal frames
(i.e. isometries f: R" =V — T,Q ) with the tautological soldering form

0:TP =V, 04(X):=f (mX).

The total space P of an O,-structure admits a canonical O,,-equivariant absolute
parallelism (Cartan connection)

k=0®w:TP —V &so(V),

which is an extension of the vertical parallelism i), : T)P ~ s0,, Vp € P (defined
by the free action of O, on P). Here TVP C TP is the vertical subbundle and
w: TP — s0, is the connection form of the Levi-Civita connection.

Cartan geodesics (C-geodesics) are defined as the projection to @ of constant
horizontal vector fields X € x~1(V) C X(P), see [21].

4.2 Normal Cartan connection and C-geodesics

We recall the definitions of a Cartan connection and associated C-geodesics.

Let My = L/G be an n-dimensional homogeneous manifold.

A Cartan connection of type My = L/G on an n-dimensional manifold @ is a
principal G-bundle 7 : P — @ = P/G together with an [-valued G-equivariant ( s.t.
rik =Ad; ok, g € G) kernel-free 1-form « : TP — [ which extends the vertical
parallelism T)P ~ g.

The form k defines an absolute parallelism x,, : T,P ~ [. Hence, tensor fields on P
may be identified with tensor-valued functions.

In particular, the horizontal curvature 2-form € := dx + %[H, k] on P can be
identified with a function K : P — C?(n,[) := A*n* ® [ where n = [/g.

One of the most powerful method for studying different (holonomic and non-
holonomic) geometric structures and for constructing their invariants is based on
construction of the associated canonically defined Cartan connection. In many
cases, it is not difficult to associate to a given structure a family of Cartan connec-
tions. Then the problem comes down to finding suitable normalization conditions
which uniquely specify a Cartan connection (called the normal Cartan connec-
tion) of this family. The standard way is to impose some normalization conditions
on the curvature function K, for example, the condition that the curvature tensor
K,, Vp € P is coclosed.

We explain this condition in the case when the homogeneous manifold My = L/G
satisfies the following property :
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(*) The Lie algebra [ admits an ad g-invariant metric g and the g-orthogonal
complement m to g in [ is a subalgebra.
This is sufficient to define Morimoto geodesics for regular sub-Riemannian structures.
Let
d:C*m,[) = Hom(m, m + g) — C?(m, )

be the differential of the complex of exterior forms on the Lie algebra m with values
in m-module . Denote by

9% 1 C2(m, 1) — C(m, 1)

the dual codifferential, defined by means of the induced metrics on C7(m, [).
A Cartan connection is called normal if the curvature K is coclosed, i.e.
0K =0

Theorem 9 (see [25], [5], [12]) Let (m : P — Q, k : TP — [ = g+m) be a Cartan
connection, which satisfies the condition (*). Then the bundle m admits a unique
normal Cartan connection K.

More general sufficient conditions for the existence of a unique normal Cartan con-
nection are given in [?], [14], [5], [12], [13].

Let (m : P - |, kK : TP — [) be a Cartan connection and m a fixed com-
plementary to g subspace of [. Then x~!(m) C TP is a complementary to T"P
distribution, called the horizontal distribution and any vector v € m defines a
horizontal vector field XV = x~!(v), called the constant horizontal vector field
associated to v.

Like in Riemannian case, C-geodesics of a Cartan connection are defined
as the projection to @) of integral curves of constant horizontal vector fields.

Assume that the homogeneous manifold My = L/G is reductive, i.e. there is a
reductive decomposition [ = g & V', where V is an Ad g-invariant complement to g.
Let (m, k) be Cartan connection of a reductive type My = L/G. Denote by

Gzzprvom:TP—H/(resp.,w::prgom:TP%g)

the horizontal part ( resp., the vertical part) of the 1-form . Then 6 is a soldering
form, which turns 7 into a G-structure, and w is a connection form, which defines a
principal connection in 7. The form w defines a linear connection V in the tangent
bundle TQ = P xg V, see [21] and C-geodesics of the Cartan connection coincide
with geodesics of V.

4.3 C-geodesics for G-structures
4.3.1 (G-structures and their torsion function

We recall the definition of G-structure and its torsion function.
Let G € GL(V),V = R" be a linear Lie group. A G-structure on an n-
dimensional manifold @ is a G-principal bundle 77 : P — @ = P/G with a soldering

1-form 0 : TP — V i.e. a strictly horizontal ( ker § = TV P) G-equivariant 1-form.
Such 1-form allows to identify the G-principal bundle with a G-principal bundle of
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frames on T'Q.
Indeed, the soldering form at a point p € P defines a coframe, i.e. an isomorphism

9p . Tﬂ(p)Q — V.

We denote by
p=0,":V = Tr)@

the dual frame. This allows to identify the bundle = with a G-principal bundle of
frames.
Denote by j'(r) : J' — P the bundle of 1-jets of local sections H = H, = jj(s),
that is horizontal subspaces H C T}, P such that TpP =T;P ® H.
The differential df of the soldering 1-form defines a function 7 : J* — Tor(V) with
values in the space Tor(V) := V ® A?(V*) of V-valued 2-forms. It is called the
torsion function and it associates with a horizontal space H = H), the 2-form 75
defined by

i (u,v) = dd(uf? o) € V, u,v e V

H

where v, v are the horizontal lifts to H C T, P of tangent vectors pu, pv € Ty, Q.

4.3.2 C-geodesics of a G-structure of type £ =0

Assume that the linear Lie algebra g = Lie(G) C gl(V) has type k = 0, i.e. has
trivial first prolongation

g =goV NV e sV =o0.
Then the Spencer differential
0:9g®V* — Tor(V)

V(A ®E(u,v) =&(u)Av — E(v)Au e V

is an embedding. Assume that there is a G-invariant complementary subspace W
to the image d(g ® V*) in Tor(V). Then the preimage D := 7= (W), where 7 is
the torsion function, see 4.3.1, is a G-invariant distribution of horizontal subspaces.
More precisely, for any p € P there is a unique horizontal subspace D = D,, such
that 7y € W and the field P > p — H), is G-invariant. Such distribution defines
a linear connection in the frame bundle 7 : P — @ with the connection form
w:TP=T"P® D — g which has kernel ker w = D and coincides with the vertical
parallelism 7P — g on TV P. Then the sum

k=0+w:TP -V ag

is a Cartan connection. Like in the Riemannian case, C-geodesics are defined as
projection to @ of constant horizontal vector fields X € x~(V), and they coincides
with geodesics of the linear connection w, see [21].

Example 10 Let (Q,g) be a Riemannian manifold and © : P — @Q the O(V)-
bundle of orthonormal frames, i.e. O(V') -structure.
One may easily check that the first prolongation of the orthogonal Lie algebra so(V')
is trivial and that the map 0 : 50(V) ® V* — Tor(V) is an isomorphism. Taking
W =0, we get the distribution D = 771(0), defined by the condition 7|D = 0. The
associated connection is the Levi-Civita connection.
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More generally, let G C O(V) be a closed subgroup of the orthogonal group O(V')
and m: P — Q a G-structure. Let g be the orthogonal complement to the subalge-
bra g = Lie(G) in $0(V) with respect to the Killing form. Then W = d(g+®V*) is
a G-invariant complement to (g @ V*) in Tor(V'). The corresponding distribution
D = 7=YW) defines a linear connection w in 7 with torsion in W. In the classi-
cal language, this means that at any point q¢ € Q, the torsion tensor T, of the linear
connection w at a point q € Q, calculated with respect to a frame p, takes values in
the subspace W = g+ @ V*.

We call the connection w®" the canonical connection of the G-structure with
G C O(V). We use this example for the definition of the sub-Riemannian geodesics
in the sense of T. Morimoto.

4.3.3 C-geodesics for a GG-structure of finite type k£ > 0

Assume that G € GL(V) group G has the finite type k, that is its Lie algebra g
has non trivial k-th prolongation g*) and g(*+1) = 0. Then the full prolongation

i=-1

is a finite dimensional Z-graded Lie algebra, see [29]. The bundle 7 can be prolonged
([29]) to a bundle 7(*) : P*¥) — @ with absolute parallelism

C-geodesics for the G-structure 7 : P — @ of finite type k£ are defined as
the projection of orbits of constant vector fields X € s~ (V) ¢ X(P®) to Q.

Remark 11 In general, 7k . PR 5 Q is not a principal bundle and k is not a
Cartan connection.

Of particular interest is the case of G-structures, when G C GL(V') is an irreducible
linear Lie group of type k = 1. Then the full prolongation

=g leg%egV =vaogav"

is a simple 3-graded Lie algebra. List of all such 3-graded Lie algebras is known
and it is very short. In this case, the prolongation 0 . PO 5 @ is a princi-
pal bundle with the structure group G20 = G - GO, associated to the Lie algebra
g2 = g+ g(M). Moreover, there exists a canonical choice of the absolute parallelism
r: TPY — g+ g (‘the normal Cartan connection ) which is GZ%equivariant
and has the coclosed curvature, see [20], [14], [5], [7].

The C-geodesics for such geometries form an interesting class of distinguished curves
in @, studied, for example, in [14], [15], [16], [?].

For the conformal structure, which can be considered as R™ - SO,,-structure, gener-
alized geodesics are conformal circles.
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5 Regular sub-Riemannian manifolds and Mo-
rimoto geodesics

Now we consider less familiar approach for the definition and the study of sub-
Riemannian geodesics, based on the theory of Cartan connections and Tanaka the-
ory of non-holonomic G-structures (or Tanaka structures).

5.1 Regular distributions and regular sub-Riemannian
structures
5.1.1 Regular distributions

Let D C TM be a bracket generating distribution on M and D' := T'D the
C°° (M )-module of sections. It generates a negative filtration

DlcD?c---cDF"=XQ)
of the Lie algebra of vector fields, inductively defined by
D =D [ DD, i=1,2,---

The restriction D(;i = @_i\q of vector fields to a point ¢ € @ defines a flag of
subspaces
-1 -2 —k
D, cD/~C---CD/"=T,Q (6)

of the tangent space. The associated graded space
_ | -2 —k._ p-1 -2 /-1 —k yy—(k—1
T9Q=my=mom e - -om =D oD /D @ +@®D /D

has the structure of negatively graded metric Lie algebra, induced by the Lie bracket
of vector fields. The graded Lie algebra m, is called the symbol algebra of the
distribution D at a point ¢ or graded tangent space at q.

The distribution D is called a regular distribution of type m and depth £,
if all symbol algebras mg, ¢ € @ are isomorphic to a fixed negatively graded Lie
algebram = m~'@-.-@m~*. Then (6) defines the derived flag of vector bundles

D'=DcD?c.-.-cD*=T10Q.

Note that m is a fundamentally graded Lie algebra, i.c. it is generated by m~!.

5.1.2 Regular sub-Riemannian manifolds

Let (@, D, g) be a sub-Riemannian manifold, where D is a regular distribution of
type m.

Then the graded tangent space Ty @ = m, has the structure of a negatively
graded metric Lie algebra, i.e. a graded Lie algebra m, = Z;:k_l mf] with an
Euclidean metric gga such that the graded spaces mz are mutually orthogonal.

The metric g}]n is a natural extension of the sub-Riemannian metric g? in Dy,
which is described in the following elementary lemma.

Lemma 12 Let m = m™' + --- + m™" be a negatively graded fundamental Lie
algebra. Then an Euclidean metric g onm™! has a natural extension to an Fuclidean
metric gm m m.
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A sub-Riemannian manifold (Q, D, gP) with a regular distribution D of type m
is called a regular sub-Riemannian manifold of the metric type (m, g™) if all met-
ric Lie algebras (my, g}ln) are isomorphic to the metric graded Lie algebra (m, g™).

5.1.3 Regular sub-Riemannian structure as Tanaka structure

Let D C TQ be a regular rank-m distribution of type m, and Aut(m) the group of
graded preserving automorphisms of m.

An admissible frame of D is an isomorphism
frm—=TIQ=m,

of graded Lie algebras. The automorphism group Aut(m) acts freely and properly on
the manifold Fr(D) of admissible frames on D with the orbit space Fr(D)/Aut(m) =
Q. Hence, Fr(D) — @ is a principal bundle ( called the bundle of admissible
frames on D).

Let G° C Aut(m) be a Lie subgroup. A Tanaka G-structure ( or a relative
G-structure) is a GO-principal subbundle 7 : P — @ = P/G° of the bundle of
admissible frames on D.

The classical identification of Riemannian manifolds with O,,-structures is ex-
tended to the sub-Riemannian case:

Proposition 13 A regular sub-Riemannian manifold (Q, D, g”) of type (m, g™) is
identified with a Tanaka GO-structure with the structure group G° = Aut(m,¢g™) C
O(m). Conwersely, any G° = Aut(m, g™)-Tanaka structure defines a reqular sub-
Riemannian manifold (Q, D, g”) of type (m, g™).

Proof: The Tanaka GC-structure, associated to (Q, D, g”), consists of all admissible
frames f : m — m,, which are isomorphisms of the metric Lie algebras.
Conversely, let (7 : P — @, D) be a Tanaka G°-structure with G® = Aut(m, g™).
Then the associated sub-Riemannian metric on D is defined by the condition that
for any admissible frame f € P, its restriction

a1 _ a1
Jm-1mT = Dy =my

is an isometry. O

5.2 Morimoto geodesics of sub-Riemannian manifolds
5.2.1 Tanaka prolongation of non-holonomic G-structures

N. Tanaka generalised the theory of G-structures to Tanaka structures. In par-
ticular, he defined the full prolongation of a non-positively graded Lie algebra
g= Z?:,k g =g % ++g7 ! + ¢g° as a maximal Z-graded Lie algebra of the form

i=—k
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such that for any X € g, i > 0 the condition [X,g7!] = 0 implies X = 0.
A non-positively graded Lie algebra g is called a Lie algebra of finite type ¢ , if
{ < oo is the maximal number such that g # 0.

Theorem 14 (Tanaka)(see [14],[33], [42],[6]). Let @ : P — Q be a Tanaka G°-
structure on (Q, D) where D is a reqular distribution of typem =m~1 4 ...+ m~F
and GY C Aut(m) a connected closed subgroup of the automorphism group with
Lie algebra g C der(m). Assume that the non-positively graded Lie algebra m :=
m + g% has finite type £. Then there is a canonical bundle P® — @, constructed
by successive prolongations, with an absolute parallelism r : TP>® — m™. If the
first prolongation g(l) =0, then the absolute parallelism r: TP —m =m+g° is a
Cartan connection.

5.2.2 Morimoto definition of sub-Riemannian geodesics

The Morimoto definition of sub-Riemannian geodesics is based on the following
important theorem , which he proved in the framework of his remarkable theory of
filtered manifolds [?].

Theorem 15 (1. Morimoto [25]) i) Let (m = Z:,lﬁ m?, g™) be a fundamental neg-
atively graded metric Lie algebra and G° = Aut(m,g™) the linear Lie group of
orthogonal automorphisms with the Lie algebra g° = der(m, g™). Then the full pro-
longation of the non-positively graded Lie algebra m = m + g° coincides with m.
ii) Let (Q, D, g”) be a regular sub-Riemannian manifold of the metric type (m, g™).
Then the associated Tanaka structure 7 : P — Q = P/G° admits a canonically de-
fined 1-form

k:TP —>m=m+g° (7)

such that (7, k) is a normal Cartan connection of type L/G°, where L is the simply
connected Lie group associated with the Lie algebra m. Moreover, the horizontal
part = pry o k of Kk is a soldering form and the vertical part w = prg ok s a
principal connection.

The Morimoto sub-Riemannian geodesics ( shortly, M-geodesics) of a
regular sub-Riemannian manifold ((Q, D, g”) is defined as projection to @ of the
integral curves of a constant vector fields X € x~!(m~1), where & is the associated
Cartan connection (7).

5.3 Admissible rigging, associated Cartan connections
and Cartan-Morimoto geodesics

Here we develop an elementary approach for constructing Cartan connections (in
particular, normal Cartan connection ) for regular sub-Riemannian manifold, con-
sidered as Tanaka structurs. It is working also for other Tanaka structures with
trivial first prolongation. It is based on the notion of admissible rigging, see [7], and
results from [5].

Let (Q, D, g”) be a regular sub-Riemannian manifold of metric type (m, g™), and
D '=DcD2cC...Cc D% =TQ the derived flag of distributions.

A complementary to D distribution V with a direct sum decomposition V =
V2@ ..-@® V" as called an admissible rigging if V7 as a complementary
to D771 subdistribution in D~7. In other words,

TQ=DaV > e oV DI=D7eVvi j=2. L
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Since m™ := D7/ /Dtt = (D79t @ V=9)/D~J ~ VI the admissible rigging
V' defines an isomorphism ¢y : T9"Q — TQ of vector bundles. It induces an
isomorphism @ZA}V : P — PV of the Tanaka structure 7 : P — Q = P/G°, associated
to the sub-Riemannian manifold, onto a GO-structure, which we denote by 7" :
PV — PV /GO. Identifying these principal bundles, we will consider the soldering
form @V of the GO-structure 7¥ as a soldering form on P. It turns the Tanaka
principal bundle 7 : P — @ into a G-structure, with the structure group G° =
Aut(m,¢™) C O(m). We denote by g the associated Riemannian metric in Q
and by w" the canonical connection form.The principal connection w"" defines a
Riemannian connection V*" with torsion. Denote by Tgv : P — W := d(gt@m*) C
Tor(m) the associated torsion function. Then the 1-form

nV::9V+wV:TQ—>m—|—g

defines a structure of Cartan connection in the principal bundle 7 : P — Q.

This Cartan connection induces the Tanaka structure w : P — @Q via the isomor-
phism ¢ : TQ — T9"Q. Moreover, any Cartan connection, which induces the
Tanaka structure 7, is associated with some admissible rigging, see [5], proposition
2.

Like in the case of normal connections, we define sub-Riemannian geodesics as the
projection to @ of the integral curves of constant vector fields from x~!(m~1). We
call such geodesics CM-geodesics associated to an admissible rigging. Since
the connection V" preserves the sub-Riemannian metric (D, gP ), CM-geodesics
are D-horizontal geodesics of the connection v or, in other words, the geodesics
of the partial connection on D, which is the restriction of v«" to D. Note that this
partial connection coincides with the Schouten partial connection V° associated to
the rigging V if and only if the torsion function 7 of the soldering form 6" satisfies
the condition 7,(D, D) C V, Vp € P. We get

Proposition 16 Let V be an admissible rigging of a reqular sub-Riemannian man-
ifold (Q,D,g”). Then CM-geodesics of the Cartan connection kY coincide with
the S-geodesics of the Schouten partial connection V°, defined by the rigging V., if
and only if the torsion function T of the soldering form 0V satisfies the condition
(D,D) C V,Vp e P.

5.3.1 Admissible riggings and the normal Cartan connection

Here we apply the results from [5], to prove the existence and the uniqueness of an
admissible rigging V' which defines the normal Cartan connection " associated to
a regular sub-Riemannian manifold. It reduces the problem of constructing normal
Cartan connections to an appropriate deformation of an admissible rigging.

The following theorem is an elaboration of the Morimoto theorem.

Theorem 17 Let m : P — Q be the Tanaka GO-structure, associated to a regular
sub-Riemannian manifold (Q, D, gP) with a metric symbol (m, g™). Then there is
a uniquely defined admissible rigging Vo, which defines a normal Cartan connection

(m:P =PV = Q,s" = 0" 4 ).

Proof: The proof follows from [5], theorems 1 and 2. For the uniqueness of the
Cartan connection, we have to check that the first cohomology group for the cocycles
of positive degree vanishes: H'(m,m + g);* = 0. The degree of a cocycle from
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(m~)* ® m~ is defined as i — j. The vanishing of this cohomology is a simple
exercise. (I

Corollary 18 Let (Q,D,g”) be a regular sub-Riemannian manifold with metric
symbol algebra (m, gm) and w : P — Q the associated Tanaka structure with the
structure group G = Aut(m, g™) C O(m). Then

i) there exists the unique soldering form 0° : TP — m which together with the as-
sociated canonical connection w®" : TP — g defines the normal Cartan connection
KCan — 90 4 ean,

ii) The sub-Riemannian metric g admits a canonical extension to the Rieman-
nain metric g on Q, defined by the condition that the isomorphism (coframes)
02 : Trpy@ — m is an isometry onto the Fuclidean space (m,g™) forp € P.

iti) The isometry group A = Iso(Q,D,g") is a Lie group of dimension dim A <
n+dimG <n-+ W where m = dimm, which preserves the Riemannian met-
ric g and acts freely with closed orbits on P. The stability subgroup A, of a point
q € Q has the exact isotropy representation j : Ay — GL(T,Q) and the isotropy

group j(A,) is identified with a subgroup of the group G° = Aut(m,g™) and has
m(m—1)
5

dimension dim A, <

Proof: i) and ii) directly follow from the Theorem. iii) The isometry group A
preserves the absolute parallelism k" on P and the Riemannian metric g. By the
Kobayashi theorem about the automorphism group of an absolute parallelism [29],
it acts freely with closed orbits on P. Hence dim A < dim P = n+dim G < W,
since G is identified with a subgroup of the orthogonal group O(m). The stability
subgroup A, has exact isotropy representation j : A, = GL(T,(Q)) and since j(Aq)
preserves the metric of T;() and the derived flag D, C D 2c...C Dy kit acts
freely in T,Q) ~ T9"Q) = m, and preserves the Lie algebra structure in m,. This
implies that j(A,) is identified with a subgroup of G. O

6 (Geodesics of Chaplygin transversally
homogeneous sub-Riemannian manifolds

6.1 Principal connection and its curvature

Let 7 : Q = M = Q/G be a G-principal bundle with a right action R,q = qg of a
Lie group G.
For a € g = Lie(G), we denote by a* : ¢ — qa = %qexp(m)\t:o € T,Q the
fundamental vector field ( the velocity vector field of Rexpia)-
Recall that the principal connection is a G-equivariant g-valued 1-form w : TQ) — g,
which is an extension of the vertical parallelism, defined by 7,Q > a; + a € g. The
equivariancy means that Rjww = Ad 9_1 ow, g€ G.

The connection w is completely determined by the horizontal G-invariant dis-
tribution D = ker w.
Since T,Q = D, ® T Q, any vector X € T,(Q) is decomposed as X = Xh @ XV
into the horizontal and the vertical parts. Moreover, any vector filed X € X(M)
has the canonical (G-invariant) horizontal lift X” € T'D due to the isomorphism
T 2 Dy — TrqyM. Recall the following formulas, [21],

[a*,b*] = [a, D)%, [a*, XP] =0, [XP, Y] = [X,Y]P + [ XD, VP, (8)
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where a,b € g, X, Y € X(M).

Note that [XP,YP]? is a G-invariant vertical vector field and its restriction to a
fiber 77!(z) depends only on vectors X,,Y,. So we have a linear skew-symmetric
map

AT, M x TyM — X(r 1 (2)Y, (X,Y)— AX,Y) = Z[xP,vP]p

1
2
into the space of Rg-invariant vector fields along the fiber 7—!(z).
For X € X(M), we defines a C*°(Q) linear map

Ax :T(D) - I'T°Q, YP — [XP YP]" = A(X, 7, YD)

which maps G-invariant horizontal vector fields Y? into G-invariant vertical vector
fields from I'T"(Q). The dual map

A% T(TY(Q)) — I'D

sends G -invariant vertical vector fields into G-invariant horizontal vector fields.
The curvature of w is the g-valued horizontal 2-form F' = dw + %w A w. Denote
by e}, the basis of fundamental vector fields, associated to a basis e, of g. Then the
curvature form is related with the tensor A(X,Y") as follows:

FQ(XD7 YD) = FQ<XD7 YD)ané = _WQ([XDv YD]) + (wq A WQ)(XD7YD)
= —2wy(Aq(X,Y)) = —2m,(AG (X, Y)er)
= (Ay(X,Y)%q.
(9)

6.1.1 Formulas in coordinates

To write formulas in coordinates, we fix a section s of w. To simplify notations, we
assume that the section s : M — @ is global. It defines a trivialization

MxG=Q, (z,9)=s(x)g
of the principal bundle, where the group G acts on M x G as

Ry(z,01) = (z,919)-

A fundamental vector field a*, a € g is identified with the left invariant vector
fields
al : (z,9) = (x,ga) == (Ly)xa.

We denote by a® : (x,9) — (x,ag) the right invariant vector field, generated by
acg.

We identify the tangent bundle TG with the trivial bundle g x G ( which we denote
simply as @), using left translations

gxG> (gvg) = g_lg = (Lg)*_lg € TgG

and the tangent bundle T(M x G) = TM x TG with the bundle TM ® g over
M x G. The tangent vector & + ga := 3 + (Lg)*a € T(; (M x G) will be denoted
by (%,a), where £ € T,M, a € g .

The pull back w® := s*w of the connection form @ to M is a g-valued 1-form
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w® = AY(2)da’ @ eq € Q1(M, g) on M. The horizontal distribution along M x {e}
is given by

Dige) = {& —w*(#)} = {0; — AP (z)ea}.

Since the distribution D is Rg-invariant, we get
D(sg) = (Rg)sDyc) = {& — A (x)efl} = {& — A7 (x)(Ad g)gef}

Note that w(e’) = w(ek) = e,. This shows that w|rg coincides with the left
invariant Maurer-Cartan form u(¢) = ¢g~'g. Hence, the connection form may be
written as w = pu + A, where A = A (z, g)da’ ® e, is a 1-form, which vanishes on

TG. Solving the equations
0=w(07) = (8 — A%(x)eq) = —u(Af (2)ea) + AF (z, 9)ea =

— A7 (2)(Adg 1)ges) + A (2, g)ea,

we find that the connection form w on Q = M x G is given by

w=p+A A= A¥z,9)dr' ®eq = AY(2)dz' @ (Ad;l)geg. (10)

6.2 Chaplygin metric and its standard extension

Let m: Q@ — M = @Q/G be a principal bundle with a connection o and D = ker w
the horizontal distribution.

A Riemannian metric g™ on the base manifold M defines a canonical invariant
sub-Riemannian metric g” on D such that the projection m, : Dy = TrgM is an
isometry.

The sub-Riemannian metric (D, g”) is called a Chaplygin metric and the sub-
Riemannian manifold (Q, D, g”) is called a Chaplygin system or a transversally
homogeneous sub-Riemannian manifold.

Let (Q, D, g”) be a Chaplygin system associated to a principal bundle (7 : Q —
M, w) over a Riemannian manifolds (M, g™) as above and ¢8 an Euclidean metric
on the Lie algebra g. It defines a degenerate metric

9" (X,Y) = ¢8(@(X),w(Y))

on @ with kernel D, whose restriction to a fiber F(x) = 7~ 1(x) is a Riemannian
metric. We will consider also g” as a degenerate metric on Q with ker g = T°Q.
Then

O =g"og" (11)
is a Riemannian metric in ). It is called the standard extension of the Chap-
lygin metric g”.
Note that the metric g9 is G-invariant if and only if the degenerate metric g is
invariant or, equivalently, the metric g9 is Adg-invariant. In this case the metric
¢@ is called the bi-invariant extension of the sub-Riemannian metric gP.
Denote by VM (resp., V?) the Levi-Civita connection of g™ (resp., %), and by V¥’
the Levi-Civita connection of the induced metric gf" on a fiber, which is a totally
geodesic submanifold of (Q, g%).
The Koszul formula implies the following O’Neill formulas for the covariant deriva-
tive of fundamental vector field b* and the horizontal lift X of a vector field
X € X(M), see [11].
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iy Vb= VEV, abeg
i) VEZXP= V,a*=(VEXP)h = Akat,
iti) Ve,YP = (VHY)P +A(X,Y), X,Y € X(M).

The connection V¥ is described in terms of Lie brackets as follows

29(V5*b*a c’) = gg([av bl,c) — gg(bv la, c]) — gg(a7 [b,c]), a,b,c € g.

6.2.1 S-geodesics of a Chaplygin metric

The O’Neill formulas imply the following relations between S-geodesics of the Chap-
lygin sub-Riemannian metric and geodesics of the Riemannian metrics g%, g™, see
also [11].

Theorem 19 i) The principal bundle w: Q — M with a standard metric g% asso-
ciated to a Riemannian metric g™ is a Riemannian submersion with totally geodesic
fibers.

ii)A Riemannian geodesic v(s) of (Q,g®) which is horizontal at one point is hori-
zontal and it projects onto the geodesic Ty(t) of the base manifold (M, g"™).

iii) S-geodesics of the Chaplygin metric are precisely horizontal geodesics of (Q, g%)
and they are horizontal lifts of geodesics of the base manifold.

Proof: Recall that S-geodesics are geodesics of the Schouten connection V§(Y =
pr DV%Y, X,Y € I'D, that is horizontal curves v(s) which satisfy the equation

0= V:YS(S)"Y(S) = prDV,?(s)"y(s) = (Vyw)D

The result follows from the O’Neill formula iii) and skew-symmetry of the tensor
A(X,Y). O

6.2.2 H-geodesics of a Chaplygin metric

Now we consider H-geodesics of the Chaplygin metric g” on the principal bundle
(7 : Q — M, w) over a Riemannian manifold (M, g™) and study their relation with
geodesics of the standard extension g9 and the metric ¢™ of the base manifold.
As above, we fix a trivialization Q = M x G of the principal bundle 7, defined by a
section s. Then any fiber F,, = x x G with the metric ¢ is identified with the Lie
group G with the left invariant metric ( still denoted by g ) defined by the metric
¢8. Note that the horizontal distribution D = ker @w on Q = M x G and the sub-
Riemannian metric g” are Rg-invariant, but not Lg-invariant, the fiberwise metric
g% is Lg-invariant, but not Rg-invariant and the metric g€ is neither Rg-invariant,
nor Lg-invariant.

The orthogonal decomposition g? = g” @ g" of the metric g? defines the orthog-
onal decomposition 96_21 = gBl @ g;l of the associated contravariant metric, which

we denote by gél. Here 951 (resp., g;l)is the contravariant metric on D (resp., on
TVQ ). They may be locally written as

m
gp' =Y _Xi®Xi, gp'=) e, ®¢c
=1
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where (X;) is a local orthonormal frame in D and (e, ) is an orthonormal basis of
g. We will consider gBl and g;l as functions on 7@ (cometrics).
The Hamiltonian hg = % gél € C(T*Q) of the geodesic flow of the Riemannian

metric g% is the sum hg = hp + hp of the Hamiltonian hp(€) == %ggl(&ﬁ) of the
sub-Riemannian metric and the Hamiltonian hp(§) = 59;1(5,5) of the fiberwise
metric g%

Now we describe the relations between sub-Riemannian H-geodesics and Rie-
mannian geodesics of the metric ¢™ on the base M and left invariant metric ¢*" on
the group G. In the case, when the extension ¢% in bi-invariant, i.e. the metric g9
is Ad ¢ invariant, they had been proved by R. Montgomery [23], Theorem 11.2.5

(the main theorem).

Lemma 20 Let g9 = gP @ g7 be a standard extension of a Chaplygin metric gP.
Then the Hamiltonians hg, hr, hp Poisson commute

{hp,hp} = {hr,hq} =0,
and the associated Hamiltonian vector fields ﬁp, ED, ﬁp commute.

Proof: A fundamental field a* commutes with the horizontal lift X of a basic vector
field, see (8), and preserves the decompositions TQ = T'Q+D, T*Q = (T"Q)*+D*.
We calculate the Lie derivative of the sub-Riemannian metric g as follows:

(Larg”)(XP, YD)
=a*- (gD(XDvyD)) - gD([a*vXDLYD) + gD(XD7 [a*ij])
=a* - gM(X,Y)=0.

This shows that the fundamental field a* preserves the sub-Riemannian metric g”
and the dual cometric g];l. This means that

0=CLagp' ={a*, 9p'} = e, 95"}

where pg+ is the Hamiltonian of the fundamental field a*. Then the Leibnitz rule for

Poisson bracket shows that {a* ® a*, 951} = {p., 951} = 0. Hence the Hamiltonian

he =33 ak ®a = 33 (pa,)? commute with hp = 1gp,". O
Using the same arguments as in [23], we get

Theorem 21 i)The sub-Riemannian geodesic flow of the sub-Riemannian metric
gP is a composition exp tﬁD = exp tﬁQ o exp(—tﬁp) of the Riemannian geodesic
flows of the metric g9 and the fiberwise metric g* .

i1) Denote by gq(t) C G the geodesic of the group G with the left invariant metric g*
as above with initial conditions g,(0) = e, §a(0) = a € g and by v,(t) the geodesic of
the standard metric g9 with initial conditions v(0) = q € Q, 7(0) = w = w’ +w" €
T,Q. Then the curve q(t) = Y (t)ga(t) is a sub-Riemannian H-geodesic if and only
if it has horizontal velocity ¢(0) = w + aj = wh € Dy that is w(w) = —a.

i) Horizontal geodesics of g2 are sub-Riemannian geodesics and they project to
geodesics of (M, g™).

iv) Sub-Riemannian geodesics are horizontal lifts of the projection of geodesics Yy (t)
of g% to M.
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Proof: i) is obvious. ii) The restriction g¥'|r, of ¢! to any fiber F, = (z,G) is
identified with the left invariant Riemannian metric ( denoted again by ¢ ) on G,
defined by the metric g¥.

Note that the projection of integral curves of the g@-geodesic flow to Q are geodesics
of g9. The projection of integral curves of exp th r to @ are geodesics of the metric
g", hence also of g%, since the fibers are totally geodesics, see O’Neill formulas. The
projection ¢(t) = 7 0 £(t) to @ of the composed curves

&(t) = exp thy o exptﬁQ 0 (§),§eT,Q

are curves of the form q(t) = Ry)v(t) = ~v(t)g(t) where y(t) = 7 o exp tl_iQ(f)
is a geodesic of g9 and g(t) C G is a geodesic of the metric g© on G. We may
assume that g(0) = e and ¢(0) = a € g. If 4(0) = w, then the curve ¢(t) is a sub-
Riemannian geodesic if and only if its velocity vector ¢(0) = w + aj is horizontal,
that is w(w + a;) = w(w) + a = 0. This proves ii), which implies iii). Now iv)
follows from the remark that the transformation R, deforms the geodesic v(t) in
vertical directions. Hence ¢(t) and ~(¢) have the same projection to M ( which are
geodesics if and only if y(¢) is a horizontal geodesic.) O
Let (7 : Q@ — M, ¢%) be a Riemannian submersion and D C TQ a transversal to
fibers distribution. Necessary and sufficient conditions when the projection to M of
g9-geodesics coincides with projection of geodesics of the sub-Riemannian manifold
(Q, D, g|p) are given in [22].

A sub-Riemannian geodesic ¢(t) = 7(£(t)) through a point ¢ = ¢(0) is deter-
mined by the initial covector {(0) € T;Q which may be decomposed as £(0) =
£(0)p + A, where X € DY = Ann(D), is the codistribution covector and £(0)p €
Dy is determined by the velocity vector ¢(0) € D,;. The sub-Riemannian geodesics,
which are horizontal geodesics of g9 are characterized as geodesics with trivial
codistribution covector. Comparing theorem 21 and theorem 19, we get

Theorem 22 Let g° be a Chaplygin sub-Riemannian metric in a principal bundle
(71:Q — M,w) and g9 the standard extension of the sub-Riemannian metric gP.
Then sub-Riemannian S-geodesics coincide with H-geodesics with trivial codistribu-
tion covector.

6.2.3 Bi-invariant extension of Chaplygin metric and Yang-Mills
dynamics

Assume now that g@ is a bi-invariant extension of the Chaplygin sub-Riemannian
metric ¢g”, defined by an Ad g-invariant metric g9 of the Lie algebra g. Such
metric exists only when g is the Lie algebra of a compact Lie group. Then the
associated left invariant metric on the Lie group G is also right-invariant and the
metric g*'(a*,b*) = g9 (a, b) on a fiber 77! (x) and the extended Riemannian metric
g9 = g¥" + gP are also Rg-invariant.

In this case, the geodesic Hamiltonian system with Hamiltonian hg has a nice
physical interpretation as dynamical system, which describes the evolution of a
charged particle in the base manifold M in the presence of the Yang-Mills field,
defined by the principal connection @ : TQ — ¢ , see [41],[23].

Recall that with respect to a trivialisation () = M x G , the connection form may
be written as
w=pu+A=(ef + A%dz") ® eq
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where (eq) is an orthonormal basis of g , (eX) (resp. , (%)) is the corresponding left
invariant field of frames (resp., coframes) on G and A = A%(x, g)dz’ ® e, the Yang-
Mills potential, given by (10). The horizontal (Rg-invariant) lifts of the coordinate
vector fields 8, := 0, has the form BD = 0;—Af'e R Together with the fundamental
fields e¥ = ek, they form a frame in Q = M x G The sub-Riemannian metric is
characterized by the conditions g? (9P, 8JD ) = g™ (0;,0;) = gij. The vertical metric
g% is defined by g% (e 5,65) = g%(ea,ep) = 5a5. The metric ¢@ = gF" + ¢”
RG invariant and the fundamental ﬁelds el = el are Killing vector fields. The

associated contravariant metric gQ = gF + ng is defined by
gp' =) ea®es, gp =97 (@)07 @07 = g" (0 — Aeg)(9; — Afeg).

Denote by (¢, p;) the local coordinates in T*M with T*M > p = p;dz® and by
(9%, Aa) the local coordinates in T*G, where g® are local coordinates in G and
T;G > XA = Aseg. Note that the linear forms A\, € T;G are identified with ek,
The left invariant vector fields 0;, 0y,, 0y, €f form a frame on T%Q = T*M x T*G.
The quadratic in momenta Hamiltonians hys, hr, hp,hg = hr + hp can be written
as follows

ha = 397 (x)pip;
hF = A %Z aeé
hp = 3g9(@)(pi — A2 (2)Xa) (pj — A7 (@) A).

Using formula for the Poisson structure on 7*G, one can easily calculate the Hamil-
tonian vector fields and the geodesic equation. We consider another approach, based
on the O’Neill formulas.

Lemma 23 The angle between a geodesic (t) of g9 and a fundamental field a*, a €
g is constant. In particular, the orthogonal projection prTUQ‘y(t) of the velocity
vector field + to vertical subbundle is the restriction to y(t) of some fundamental
vector field a* and the velocity vector field can be written as

3(t) = a*(v(1)) + &7 (v(1))

where P (y(t)) is the horizontal lift of the velocity vector filed &(t) of the projection
x(t) of v(t) to M.

Remark 24 Physically, the angles ¢, between a geodesic v and the basic funda-
mental fields e}, characterise the charges of a particle with respect to components of
the Yang-Mills field and the conditions p, = const are called the conservation of
charges. In particular, the evolution of neutral particles is described by horizontal
geodesics.

Proof: Let y(t) be a geodesic and x(t) = pr;;7v(t) its projection to M. Then &(t) =
pryas(7(t) and the horizontal part of the velocity vector field is 4(t)" = @(t)P.
Hence, we can write
() = &(6)7 + u(t)es (v(t)).
Then _ .
G#9%(es,5(t) =P (2)

= V9% (e5,7(t))

= g%(Vseh, (1) + 9%(ef, V(1)

=0,
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since the covariant derivative V.eg of a Killing vector field e}g = eé is a skew-
symmetric operator. (I

The following theorem describes the relation between geodesics of the Rieman-
nian metric ¢™ and geodesics of its bi-invariant extension ¢<.

Theorem 25 A curve vy(t) C Q with projection x(t) = pry,;v(t) and velocity vector
field %(t) = a*(y(t)) + &P (y(t)) is a geodesic of g% if and only if it satisfies the
equation

Q
Vit

() = (Vi'e)? +2A5pa” = 0. (12)
Proof: Using O’Neill formulas, we calculate the covariant derivative ng'y of the
velocity field 4 = a*(y(t)) + #P(%(t)) as follows

V94 = (V20 (1(1) + %P + 292 ya* = (VH)P(5(1) + 2A30a" (4(0).
We use the fact that geodesics of the bi-invariant metric on a Lie group G are orbits
of 1-parameter subgroups, which implies VaQ*a* =VEa =0. O

Recall that 2A%pa* = —F3\, A = g% o a* € D° where F% : g* — I'D is the
linear map, dual to the map Fx, : Dy — @, associated with the curvature 2-form F'.

The equation (12) is equivalent to the equation

Ve = gy MWE () (13)

where the right hand side is the vector field metrically dual to the 1-form A\, F()
and A € g* is a constant covector (a charge). O

The equation (13) describes the motion of a charged particle in the Yang-Mills
field @ with the strength tensor F'. In the case when 7 : ) — M is a circle bundle,
the connection @ defines the Maxwell field (if g has Lorentz signature) and the
equation reduces to the Lorentz equation for a charge particle in the electromagnetic
field, defined by the curvature 2-form F'.

7 Homogeneous sub-Riemannian manifolds

We consider some class of homogeneous sub-Riemannian manifolds, for which S-
geodesics coincide with H-geodesics and describe sub-Riemannian symmetric spaces.

7.1 Chaplygin system on homogeneous spaces
7.1.1 Chaplygin system of a Lie group

Let 1 : G — M = G/H be the principal bundle associated to a homogeneous
Riemannian manifold (M = G/H,g). A reductive decomposition g =+ m, m =
T,M, o = eH, defines a principal connection with connection form w = pry © uk,
which is the projection to h of the left invariant Maurer-Cartan form p*. Denote
by (D = ker w, gP) the associated Chaplygin sub-Riemannian metric. Since the

stability subalgebra b is compact, it admits a bi-invariant Euclidean metric gh. We
denote by ¢g@ the associated bi-invariant extension of the sub-Riemannian metric.
It is a left G-invariant and right H-invariant metric on G.
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The distribution D := ker w with Dy = m is bracket generating if and only if m
generates the Lie algebra g. The Jacobi identity shows that g’ := [m,m] + m is
a subalgebra of g. It generates a subgroup G’ C G which acts transitively in M.
Hence, changing G to G’, we may always assume that D is bracket generating.

Proposition 26 Let (M = G/H,g™) be a homogeneous Riemannian manifold with
reductive decomposition g = h+m such that m generates g. Then the principal con-
nection w := pry © ut defines a Chaplygin left invariant sub-Riemannian structure

(G, D, g") on the Lie group G with the connection w. A bi-invariant metric gb
on b defines a bi-invariant extension of the sub-Riemannuian metric gP to a left
invariant Riemannian metric on G.

7.1.2 Chaplygin systems on homogeneous manifolds

Now we consider a generalisation of the above construction.

Assume that the stabilizer H of a Riemannian homogeneous manifold M = G/H
is an almost direct product H = K - L of two compact normal subgroups and &, [
are associated Lie subalgebras. Then 7 : Q@ = G/K - M = G/K - L is an L-
principal bundle with the right action of L and M = G/H has the reductive (i.e.
Ad g-invariant ) decomposition of the form

g=b+m=>E+1[)+m.

G

The projection w™ = pr[,uL : TG — [ of the left invariant Maurer-Cartan form u

to [ is a left invariant [-valued 1-form. The form w® is right K-invariant and right
L-equivariant, that is Rjw = Ad Zl ow, ¢ € L. Hence it projects to a G-invariant
principal connection form w : T'Q — [. The principal bundle 7: Q = G/K — M =
G/K - L with the connection form w : T'Q) — [ defines a Chaplygin sub-Riemannian

metric (D = ker w, g”). As above, it admits a bi-invariant extension. We get

Proposition 27 A homogeneous Riemannian manifold (M = G/H, gM) with non
simple stabilizer H = K - L defines an invariant sub-Riemannian Chaplygin metric
(D, g") on the total space of the principal L-bundle 7 : Q = G/K — M = G/K - L
with the connection form w : TQ — [, which is the projection to Q of the form
wC = pryo pt on G. The sub-Riemannian metric admits a bi-invariant extension
to an invariant metric gQ on Q.

7.1.3 Homogeneous contact sub-Riemannian manifolds

The above construction may be applied to homogeneous Sasaki manifolds. We
consider the case of regular compact homogeneous Sasaki manifolds, described as
follows. Let M = G/H be a flag manifold (i.e. an adjoint orbit of a compact
semisimple Lie group G) and g = w(+,J-) an invariant Hodge-Kéahler metric on
M, where J is an invariant complex structure and w an integer invariant sym-
plectic form (the Kéhler form). Then there exists a homogeneous principal circle
bundle 7 : Q = G/K - M = G/H = G/K - S with a principal connection
w: TQ — R = LieS!, whose curvature form is w. The Kihler metric is naturally
extended to an invariant Sasaki metric g9, such that the fundamental field Z of the
Sl-bundle 7 is a Killing field.

This Sasaki metric g€ is the bi-invariant extension of the Chaplygin sub-Riemannian
metric (D, gP) associated to the principal bundle 7 : Q — M with the connection .
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From physical point of view, the principal S'-bundle 7 : Q — M with Sasaki
metric corresponds to Kaluza-Klein description of electromagnetic field. The pro-
jection to M of geodesics of Sasaki metric are solutions of the Lorentz equation
which describes the evolution of electric charges in the electromagnetic field w.

7.2 Symmetric sub-Riemannian manifolds

Strichartz [30] defined the notion of sub-Riemannian symmetric space as a homo-
geneous sub-Riemannian manifold (Q = G/H, D, g"”) such that the stabilizer H
contains an involutive element o (called the sub-Riemannian symmetry) which acts
on the subspace D, at the point o = eH € @ as —id.

He classified 3-dimensional sub-Riemannian symmetric spaces and stated the prob-
lem of extension of this classification to higher dimensions.

P. Bieliavsky, E. Falbel and C. Gorodski [9] classified symmetric sub-Riemannian
manifolds of contact type. W. Respondek and A.J. Maciejewski [27] describe all
integrable sub-Riemannian metrics on 3-dimensional Lie groups with integrable H-
geodesic flow. They are exhausted by sub-Riemannian symmetric spaces.

Below we recall basic properties of affine symmetric spaces and give a construc-
tion of sub-Riemannian symmetric spaces in terms of affine symmetric spaces: Any
bracket generating sub-Riemannian symmetric space is the total space M = G/K
of a homogeneous bundle 7 : M = G/K — S = G/H over an affine symmetric
space S = G/H, determined by a compact subgroup K of the stability group H.

7.2.1 Affine symmetric spaces

Let (M,V) be a (connected) manifold with a linear connection V. A non-trivial
involutive automorphism o = o, of (M,V)) is called a cental symmetry with
center x € M if o preserves x and acts as —id in the tangent space T, M. The
manifold (M, V) is called an (affine) symmetric space if any point is the center
of some central symmetry o,. A product o,0, of two central symmetries with
sufficiently closed to each other centers x, y is a shift along the geodesics, connecting
these points. This implies that the group G, generated by all central symmetries
is a transitive Lie group, called the transvection group. The manifold M is
identified with the quotient space M = G/H, where H is the stabilizer of a point
o € M. Then the central symmetry ¢ = o, defines an involutive automorphism
s = Ads, : g — s(g) := 09 ogoog of the Lie group G, which acts trivially on
the connected component H® of H. We denote by s also the induced involutive
automorphism of the Lie algebra g = Lie(G). Its eigenspace decomposition

g=0,+9_, slg, ==+id,

where g, = h = Lie(H), is called the symmetric decomposition. It is charac-
terized by the conditions

9,0 1cg, [g,9 ]Cg,.
Moreover, if G is the transvection group, then

[0_.0-]=0:. (14)

The geodesics through the point o = eH are orbits e*o of 1-parametric sub-
groups /X € G generated by elements X € g_.
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The following well known result establishes a bijection between symmetric de-
composition g = g, + g_ of a Lie algebra g with (14) and simply connected affine
symmetric spaces S = G/H, where G is the simply connected transvection group
with Lie(G) = g.

Theorem 28 Let g =g, + g_ be a symmetric decomposition with (14) associated
to an involutive automorphism s. Denote by G the simply connected Lie group with
Lie(G) = g and by H° the connected subgroup of G, generated by ) = g,. Then
S = G/H" is a simply connected affine symmetric space. The invariant torsion free
linear connection V in S is defined by the condition

1
VXY*‘O = —§[X, Y]O) X,Y [ g_= TOS
where Y* denote the velocity vector field of a 1-parameter subgroup Y| Y € g_.
The central symmetry with the center o = eH° is defined by

o:2x=gH®— oz :=s(g)H°

where s s the involutive automorphism of the Lie group G generated by the auto-
morphism s of §. Moreover, any affine symmetric space, associated with the above
symmetric decomposition, has the form G/H where H is a closed subgroup such that
HY C H C G°. Here G° is the fized point set of o.

7.2.2 Sub-Riemannian symmetric spaces associated with an affine
symmetric space

Let (S = G/H,V, o) be asimply connected affine symmetric space with the transvec-
tion group G.Without loss of generality, we may assume that the central symmetry
o = o0, belongs to the center Z(H) of the stability subgroup.Then the associated
involutive automorphism s = Ad, of G acts trivially on H and defines a symmetric
decomposition g = g, + g_ where g, = bh = Lie(H). Let K C H be a compact
subgroup of H which contains o.

The homogeneous manifold @ = G/K has a reductive decomposition

g=t+m=t+{p+g.)

where £ = Lie(K) and g, = £+p is a reductive (i.e. Ad g-invariant ) decomposition
of g,. We identify m with the tangent space T,() at the point o = eK. Then
the isotropy representation of K in T,Q is identified with Ad g|m. The Ad k-
invariant subspace g_ of the tangent space m = T,Q is naturally extended to an
invariant distribution D C T'Q). More precisely, for z = a K € G/K, the subspace
D, = (L4)+9_, where L, : bK — abK is the action of G in Q = G/K.

The distribution D is invariant with respect to the action of involution o € K and
the isotropy action Ad ,|;m of o acts on g_ C m as —id . Since G is the transvection
group, [g_,g_] = g, and D is bracket generating distribution. Since the group K
is compact, there exist an Ad g-invariant Euclidean metric g in g_. It is naturally
extended to an invariant sub-Riemannian metric ¢” in D, defined by

gP(X,Y) = g((L ) X, (L 1)Y), a € Gz =aK, X,Y € ToQ = (Lo)«§_.

Hence, the invariant sub-Riemannian manifold (Q) = G/K, D, o) is a sub-Riemannian
symmetric space. This proves the first claim of the following theorem.
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Theorem 29 i) Let (S = G/H,V,0) be a simply connected affine symmetric space
with the transvection group G and K C H a compact Lie subgroup, which contains
o as a central element. Let g be an Ad g-invariant Euclidean metric in g_. Then
the Euclidean space (§_,q) is extended to an invariant sub-Riemannian structure
(D,g”) in Q = G/K such that (Q = G/K,D,g”,0) is a bracket generating sub-
Riemannian symmetric space.

i1) Conversely, up to a covering any bracket generating sub-Riemannian sym-
metric space can be obtained by this construction.

Proof:ii) Let (Q = G/K, D, gP, o) be a bracket generating sub-Riemannian symmetric
space, where o € K is the sub-Riemannian symmetry with center o = eK and

s = Ad, the associated involutive automorphism of G and g. We may chose a
reductive decomposition

g=t+m= (L, +t_ )+ (my+m_)

of G/K which is consistent with the symmetric decomposition g = g, +g_, defined
by s, such that g, =€, + my, g_ = £_ + m_. By definition,the subspace D, =
D|, C T,Q = m belongs to m_. Since the distribution D is bracket generating,
we may assume that the subalgebra g generated by A, coincides with g. But
g = [Do, D] + D, C g, + Dg. This implies that g = €, + m, +g_, and € =
t,.D,=g_.m=my +g_ =g . Denote by G, the connected subgroup of G,
generated by g, , Since it commutes with o, it is the connected component of the
group H = G4 UoG4. The manifold S = G/H is an affine symmetric space with
the symmetry o € H, belonging to the center. Consider the subgroup K’ = K N H
with the Lie algebra €. It also contains o as a central element. The claim i) shows
that the space @' = G/K’ has a structure of sub-Riemannian symmetric space
which is locally isomorphic to the initial sub-Riemannian symmetric space Q. [

7.2.3 Compact sub-Riemannian symmetric space associated to a
graded complex semisimple Lie algebra

We show that any flag manifold of depth > 1 admits the structure of bracket
generating symmetric sub-Riemannian manifold.

Letg = Z?:_ 4 9; be a fundamentally graded complex semisimple Lie algebra
of depth d > 2 ( s.t. g_; generates g_) and p := ) .., 9; the associated parabolic
subalgebra. The associated ( complex compact simply connected) homogeneous
manifold F = G/P, where G D P are the Lie groups associated to Lie algebras
g D P, is called a flag manifold.

Denote by 7 the anti-linear involution of g, which defines the compact real form g™
st g7 =90+ Dm0 M, M= (g_;+9;)"
The Lie algebra g™ has the symmetric decomposition

8" = 0%, + Goaa = (80 + Z m;) + Z m;.

1=0(mod?2) i=1(mod2)

We denote by s the associated involution of the Lie algebra g™ and the corresponding
simply connected compact Lie group G”. Denote by H C G the connected compact
subgroup generated by b = gj. The group G7 acts transitively on the flag manifold
F with stability subgroup H and has the reductive decomposition

g =b+m=gj+> m.

>0
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The involutive automorphism s acts by o|f =id , o|m, = (—1)id .
Denote by D C T'F the ( bracket generating) invariant distribution generated by my
and by ¢ the invariant sub-Riemannian metric in D defined by an Ad g-invariant
metric in my. Then (D, g") is an invariant sub-Riemannian metric of F = G/H.
Moreover, (F = G™/H, D, g") is a sub-Riemannian symmetric space, where the
symmetry, defined by the involutive automorphism s.

This implies

Theorem 30 Let g = Zf:_k g, be a fundamental depth k > 1 gradation of a
complex semisimple Lie algebra and let ' = G/P be the associated flag manifold.
Denote by

k
g =h+m=b+> m,h=grm=(g_;+g,)
i=1

the associated decomposition of the compact real form g7 and by g™ an adh—
mvariant Buclidean metric in my.

Then the pair (my,g™) defines an invariant bracket generating sub-Riemannian
metric (D, g?) on the flag manifold F = G™ /H considered as a homogeneous man-
ifold of the compact real form G7 of G. Moreover, the sub-Riemannian manifold
(F =G /H,D,gP) is a sub-Riemannian symmetric space with the symmetry defined
by the involutive automorphism s of g, associated with the symmetric decomposition
9" = 8% T Boqa-

Example Let

9=0 9+08_1+8 +8 +08 +8 dimg,, =1

be the contact gradation of a complex simple Lie algebra g , i.e. the eigenspace
decomposition of ad p, where H), is the coroot associated to the maximal root u of
g. Then the symmetric space G™ /G, is the quaternionic Kéhler symmetric space
( the Wolf space ) and the flag manifold F = G"/H, where Lie(H) = b, is the
associated twistor space. The distribution D is the holomorphic contact distribution
and g” is the unique (up to scaling ) invariant sub-Riemannian metric on D ( for
g # sl,,(C) ). It is the restriction of the invariant Kéhler-Einstein metric on F.
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