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Abstract

There are several different, but equivalent definitions of geodesics in a Rieman-
nian manifold, based on two characteristic properties: geodesics as shortest curves
and geodesics as straightest curves. They are generalized to sub-Riemannian man-
ifolds, but become non-equivalent. We give an overview of different approaches to
the definition, study and generalisation of sub-Riemannian geodesics and discuss
interrelations between different definitions. For Chaplygin transversally homoge-
neous sub-Riemannian manifold Q, we prove that straightest geodesics (defined as
geodesics of the Schouten partial connection) coincide with shortest geodesics (de-
fined as the projection to Q of integral curves (with trivial initial covector) of the
sub-Riemannian Hamiltonian system). This gives a Hamiltonization of Chaplygin
systems in non-holonomic mechanics.
We consider a class of homogeneous sub-Riemannian manifolds, where straight-
est geodesics coincide with shortest geodesics, and give a description of all sub-
Riemannian symmetric spaces in terms of affine symmetric spaces.
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1 Introduction

The important role of Riemannian geometry in applications is based on the fact
that many important equations, arising in mechanics, mathematical physics, bi-
ology, economy, information theory, image processing etc., can be reduced to the
geodesic equation. Moreover, Riemannian geometry gives an effective tool to investi-
gate the geodesic equation and other equations associated with the metric (Laplace,
wave, heat and Schrödinger equations, Einstein equation, Yang-Mills equation etc).
There are many equivalent definitions of geodesics in a Riemannian manifold. They
are naturally generalised to sub-Riemannian manifolds, but become non-equivalent.
H.R. Herz remarked that there are two main approaches to the definition of geodesics:
geodesics as shortest curves based on Maupertruis principle of least action (varia-
tional approach) and geodesics as straightest curves based on d’Alembert’s prin-
ciple of virtual work (which leads to a geometric description, based on the notion
of connection).

We consider three variational definitions of geodesics of a sub-Riemannian mani-
fold (Q,D, gD) (i.e. a manifold Q with a non-holonomic distribution D and a
Riemannian metric gD on D) as (locally) shortest curves ( Euler-Lagrange (EL-
geodesics), Pontryagin (P-geodesics) and Hamilton (H-geodesics)) and three geo-
metric definitions of sub-Riemannian geodesics as straightest curves ( d’Alembert
(dA-geodesics), Schouten-Synge-Vranceanu (S-geodesics) and Morimoto (M-geode-
sics)) and discuss interrelations between them.
The definition of M-geodesics is based on E.Cartan frame bundle definition of Rie-
mannian geodesics, which is naturally generalized to Cartan connections and G-
structures of finite type. We give a short introduction to this theory in section 4.
In section 5, we discuss the relation between Cartan connections and Tanaka struc-
tures (or non-holonomic G-structures). They are defined as a G-principal bundle
π : P → Q = P/G of frames on a non-holonomic distribution D ⊂ TQ. In particu-
lar, a regular sub-Riemannian manifold (Q,D, gD) (see Sect. 5.1) may be identified
with a Tanaka structure π : P → Q of admissible orthonormal frames in D.
Using his theory of filtered manifold, T. Morimoto proved that this Tanaka structure
admits a unique normal Cartan connection, i.e. a Cartan connection with coclosed
curvature. The Morimoto geodesics are defined in terms of this Cartan connection.
We give a simple description of all (not necessary normal) Cartan connections, asso-
ciated to a regular sub-Riemannian manifold (Q,D, gD) in term of admissible rig-
gings V (some distribution, which is complement to D) and define Cartan-Morimoto
(shortly, CM) geodesics in terms of such Cartan connections. CM-geodesics are hor-
izontal geodesics of some Riemannian connection with torsion, which preserves the
distribution. A necessary and sufficient condition that CM-geodesics coincides with
S-geodesics (i.e. geodesics of the partial sub-Riemannian Schouten connection, as-
sociated with a given rigging V) is given.
A. Vershik and L. Faddeev [35] had formulated the problem how to characterize
sub-Riemannian manifolds such that straightest S-geodesics ”coincide”( more pre-
cisely, consistent) with shortest H-geodesics in the following sense.
An S-geodesic γ(t) of a sub-Riemannian manifold (Q,D, gD) is determined by the
initial velocity γ̇(0) ∈ Dq ⊂ TqQ. The initial data for an H-geodesic is a pair
(γ̇(0), λ) ∈ Dq ×D0

q where D0 ⊂ T ∗Q is the codistribution (the annihilator of the
distribution D). The covector λ is called the initial codistribution covector.
Taking this into account, we say, following [35], that (straightest) S-geodesics coin-
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cide with (shortest) H-geodesics if the class of S-geodesics coincides with the class
of H-geodesics with zero initial codistribution covector.
Vershik and Faddeev showed that for generic sub-Riemannian manifolds almost
all shortest geodesics are different from straightest geodesics. They gave the first
example when shortest geodesics coincide with straightest geodesics with zero codis-
tribution covector.
In the second part of the paper, we show that this is true for any Chaplygin system,
that is G-invariant sub-Riemannian metric (D = ker(ϖ), gD) on the total space of
a G-principal bundle π : Q→M = Q/G over a Riemannian manifold (M, gM ) with
a principal connection ϖ : TQ → g, where gD is the metric in D, induced by the
Riemannian metric gM .
Any left-invariant metric on the group G defines an extension of the sub-Riemannian
metric gD to a Riemannian metric gQ on Q. We show that H-geodesics of sub-
Riemannian Chaplygin metric are the horizontal lifts of the projection to M of
geodesics of the Riemannian metric gQ and S-geodesics are horizontal lift of geodesics
of the Riemannian metric gM . This is a generalization of results by R. Montgomery
[23], who considered the case when the extended metric gQ is defined by a bi-
invariant metric on G. We give a simple proof of Wong results on the description of
the evolution of charge particle in a classical Yang-Mills field in terms of geodesics
of the bi-invariant extension gQ of the Chaplygin sub-Riemannian metric.
In the last section, we describe some classes of invariant sub-Riemannian structures
on homogeneous manifolds, where straightest geodesics coincide with shortest ones.
We give also a simple description of all bracket generating symmetric sub-Riemannian
manifolds, introduced by R.S. Strichartz [30], and show that any flag manifold of a
compact semisimple Lie group G, associated to a gradation of depth k > 1 of the
corresponding complex semisimple Lie algebra, has a structure of sub-Riemannian
symmetric space.

Acknowledgment. I thank A.M. Vershik for his comments on non-holonomic
geometry and explanation of his joint with L.D. Faddeev results and A. Spiro for
useful discussions.

2 Sub-Riemannian geodesics as shortest curves

Here we briefly discuss three approaches to the definition of geodesics of sub-
Riemannian manifolds : Euler-Lagrange variational approach, Pontryagin optimal
control approach and Hamiltonian approach. We describe interrelation between cor-
responding notions of sub-Riemannian geodesics : EL-geodesics, P-geodesics and
H-geodesics.

2.1 Euler-Lagrange sub-Riemannian geodesics

Recall that a rank-m distribution D ⊂ TQ on a connected n-dimensional manifold
Q is called bracket generating if the space ΓD of sections generates the Lie
algebra X(M) of vector fields.
According to Rashevsky-Chow theorem, any two points on such manifold can be
joint by a horizontal (i.e. tangent to D) curve. Then any Lagrangian L ∈ C∞(TQ)
defines a nonholonomic variational problem:
Let CD(q0, q1) be the space of horizontal curves, connecting points q0 and q1. Find
a curve q(t), t ∈ [0, T ] in CD(q0, q1) which delivers a minimum or, more generally,
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a critical point, for the action functional

A(q(t)) =

∫ T

0
L(q(t), q̇(t))dt, q(t) ∈ CD(q0, q1).

The Lagrangian L(q, q̇) determines a horizontal 1-form

FL = (δL)idq
i := (

d

dt
Lq̇i − Lqi)dq

i

on TQ, called the Lagrangian force [31], [35]. Locally the distribution D is the
kernel of a system (ω1, · · · , ωk), k = n−m, of 1-forms. The 1-form

ωλ =
∑

λaω
a =

∑
λa(q, q̇)ω

a
i (q)dq

i

vanishes on D for any vector-function λ(q, q̇) = (λ1, · · · , λm) on TQ.

Then critical points q(t) of the functional A(q(t)) are solution of the Euler-
Lagrange equations [38]

FL ≡ (δL)iq̇
i(t) = Lq̇ωλ = λ̇aω

a + λaq̇ydωa (1)

ωλ(q̇) = 0

for unknown curve q(t) ∈ CD(q0, q1) and vector-function λ(q(t), q̇(t)). Here Lq̇(t) is
the Lie derivative along the vector field q̇(t).

A sub-Riemannian manifold (Q,D, gD) is a manifold with a distribution D
and a Riemannian metric gD on D .

Let (Q,D, gD) be a sub-Riemannian manifold with bracket generating distri-
bution D. An Euler-Lagrange or EL non-parametrized geodesic ( resp.,
EL-parametrized geodesic) is a critical point of the length functional with L =√
g(q̇, q̇)) ( resp., the energy functional with L = 1

2g(q̇, q̇) ) in the space CD(q0, q1).

2.2 Pontryagin sub-Riemannian geodesics

Let (Q,D, gD) be a bracket generating sub-Riemannian manifold as above. Denote
by (X1, · · · , Xm) a field of orthonormal frames in D. Then any horizontal curve
q(t) ∈ CD(q0, q1) is a solution of the first order ODE

q̇(t) =

m∑
i=1

ui(t)Xi(q(t)), q(0) = q0. (2)

where the vector-function u(t) = (u1(t), · · · , um(t)) ( called the control ) con-
sists of the coordinates of the velocity vector field q̇(t) with respect to the frame
(Xi) .
The vector-function u(t) is called an admissible control if the solution q(t) of (2)
belongs to CD(q0, q1).

The energy E(u(t)) = 1
2

∫ T
0

∑
ui(t)2dt and the length ℓ(u) =

∫ T
0

√∑
ui(t)2dt of the

solution q(t) of (2) depend only on the control u(t) and may be considered as the
functionals (called the cost functionals) on the space of admissible controls.

A parametrized ( respectively, non-parametrized ) Pontryagin geodesic
( shortly, P-geodesic) is defined as the integral curve qu(t) ∈ CD(q0, q1) of the
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equation (2) with an admissible control u(t), which is a critical point of the cost
functional E(u(t)) ( respectively, ℓ(u(t))).
A P-geodesic with an admissible control u(t), which delivers a minimum of the cost
functional is called a minimizer or a minimal geodesic. P-geodesics coincide
with EL-geodesics and are locally minimizers, [8].

2.3 Hamiltonian sub-Riemannian geodesics

Let (Q,D, gD) be a sub-Riemannian manifold. Denote by (Xi) an orthonormal
frame in D and by (θi) the dual coframe. Then the restriction ξD of a covector
ξ ∈ T ∗Q to D has coordinates pi(ξ) := ξ(Xi) and can be written as ξ = piθ

i.
The inverse (gD)−1 of the sub-Riemannian metric gD is a non-degenerate metric in
the dual to D vector bundle D∗. It defines a degenerate symmetric bilinear form
g∗ ∈ Γ(S2TQ) in T ∗Q, called the cometric, which is given by

g∗(ξ, ξ) = (gD)−1(ξD, ξD) =
∑
i

pi(ξ)
2, ξ ∈ T ∗Q.

The function hgD(ξ, ξ) = 1
2g

∗(ξ, ξ) = 1
2

∑
pi(ξ)

2 on T ∗Q is called the sub-
Riemannian Hamiltonian. H-geodesics are projection to Q of orbits of Hamil-
tonian vector field h⃗ = ω−1dh ∈ X(T ∗Q) with quadratic ( degenerate ) sub-
Riemannian Hamiltonian hgD(ξ, ξ) =

1
2g

∗(ξ, ξ). Here ω = dpa ∧ dqa, a = 1, · · · , n is
the standard symplectic form of T ∗Q.

2.4 Pontryagin Maximum Principle

Recall that vector fieldsX = Xa∂qa , where (x
a) are local coordinates inQ bijectively

correspond to fiberwise linear functions

pX : T ∗Q→ R, ξ = pa∂qa 7→ p(X) = Xapa

on the cotangent bundle T ∗Q. The function pX is the Hamiltonian of the Hamilto-
nian vector field

p⃗X = Xa∂qa − pa∂qbX
a∂pb ,

which is the complete lift of X to T ∗Q. The map

X(Q) ∋ X → p⃗X ∈ X(T ∗Q)

is an isomorphism of the Lie algebra X(Q) of vector field onto the Lie algebra
X(T ∗Q)1 of fiberwise linear vector fields on T ∗Q.

Theorem 1 (Pontryagin Maximum Principle) Let q(t) ∈ CD(q0, q1) be a mini-
mal P-geodesic on a sub-Riemannian manifold (Q,D = span(Xi), g

D) with natural
parametrization (s.t. |q̇(t)| = const), which corresponds to a control u(t) = (ui(t)) :

q̇(t) = ui(t)Xi(q(t)). (3)

Denote by φt the (local) flow, generated by the non-autonomous vector field
Xu = ui(t)Xi. Then for some covector ξ0 ∈ T ∗

q0Q the curve

ξ(t) := φ∗
−tξ0 := ξ0 ◦ φ−t∗ ∈ T ∗

q(t)Q
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satisfies the equation
ξ̇(t) = ui(t)p⃗i(ξ(t)) (4)

where pi := pXi and one of the following conditions holds

ui(t) ≡ < ξ(t), Xi(q(t)) > (N)
0 ≡ < ξ(t), Xi(q(t)) > . (A)

Here the bracket < ξ,X > denotes the pairing between covectors and vectors.

An extremal curve ξ(t) ⊂ T ∗Q, which satisfies (N) ( resp., (A)), is called a
normal ( resp., an abnormal) extremal, and its projection q(t) ⊂ Q is called a
normal (resp., an abnormal) P-geodesic. Note that abnormal extremals are
curves in the codistribution D0, considered as a submanifold of T ∗Q.

2.4.1 Normal P-geodesics as H-geodesics

Pontryagin theorem shows that normal geodesics are H-geodesics. More precisely,
we have

Corollary 2 Let D be a rank-m bracket generating distribution with a sub-Riemannian
metric gD. A normal extremal ξ(t) ⊂ T ∗Q for (Q,D, gD) is an integral curve of the
Hamiltonian equation on T ∗Q with the sub-Riemannian Hamiltonian

hgD(ξ) =
1

2
g∗(ξ, ξ) =

1

2

m∑
i=1

pi(ξ)
2,

where ξ = pi(ξ)θ
i, pi(ξ) = ξ(Xi).

Proof: In the case of normal geodesic, the equation (4) take the form

ξ̇(t) =
∑

pi(ξ(t))p⃗i(ξ(t)) =
1

2
ω−1d

∑
p2i (ξ(t)) = h⃗gD(ξ(t)).

�

Since the Hamiltonian vector field h⃗gD preserves the Hamiltonian hgD , a normal
extremal ξ(t) belongs to a level set Lc = {h = c} ⊂ T ∗Q of the Hamiltonian h = hgD .

A curve ξ(t) ⊂ L on a submanifold L ⊂ T ∗Q is called a characteristic if its
velocity ξ̇(t) belongs to the kernel ker (ω|L) of the restriction of the symplectic form
to L.

Corollary 3 Assume that an extremal ξ(t) ⊂ Lc belongs to a regular level set of
the Hamiltonian h = hgQ, i.e. Lc is a smooth hypersurface. Then ker ω|Lc is the

1-dimensional distribution generated by h⃗. In particular, the extremals ξ(t) are the
characteristic curves of Lc.

Proof: The tangent space of the level set Lc is described as follows

TξLc = {w ∈ Tξ(T
∗Q), 0 =< dhξ, w >=< ω(⃗hξ), w >= ω(⃗hξ, w)}.

This shows that TξLc consists of all ω-orthogonal to h⃗ξ vectors. Since the ω|TξLc

has 1-dimensional kernel, it is generated by h⃗ξ. �
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2.4.2 Abnormal P-geodesics

Now we shortly discuss main properties of abnormal geodesics, following R. Mont-
gometry. Denote by CD(q0) = {γ : [0, T ] → Q, γ(0) = q0, γ̇ ∈ D} the space of
horizontal curves, starting from q0 , where D ⊂ TQ is a bracket generating distri-
bution. A curve γ(t) ∈ CD(q0) is called singular ( resp.,regular) if the end-point
map

ε : CD(q0) → Q, γ(t) 7→ γ(T )

is singular ( resp., regular).
The following theorem by L.S. Pontryagin, L. Hsu and R. Montgomery shows that
abnormal geodesics coincide with singular curves and they are projection on Q of
characteristic curves of the codistribution D0, considered as a submanifold of the
symplectic manifold (T ∗Q,ω).

Theorem 4 ( see [23], [24] ) i) Abnormal geodesics of any sub-Riemannian metric
gD on D are exactly singular horizontal curves in Q.
ii) A horizontal curve γ ⊂ Q is singular if and only if it is a projection to Q of a

characteristic curve of the submanifold D̃0 := D0 \ {zero section} ⊂ T ∗Q.

Now we give a description of characteristic curves in D̃0, following [23]. To sim-
plify notation, we will denote D̃0 by D0.

Denote by τ : T ∗Q→ Q, τ∗ : T (T
∗Q) → T ∗Q the natural projections.

We fix a complementary to D distribution V such that TQ = D ⊕ V . Let
(Xi), i = 1, · · · ,m be a local frame in D, (Yα), α = 1, · · · , n −m a local frame in
V and denote by (θiQ, η

α
Q) the dual coframe, such that

θiQ(Xj) = δij , η
α
Q(Yβ) = δαβ , θ

i
Q(Yα) = ηαQ(Xi) = 0.

The Liouville tautological 1-form θξ = τ∗ξ = ξ ◦ τ∗ in T ∗Q = D∗⊕D0 at a point
ξ = hiθ

i
Q + kαη

α
Q ∈ T ∗Q can be written as

θξ = hiθ
i + kαη

α ∈ (τ∗)
∗D∗

ξ ⊕ (τ∗)
∗D0

ξ ⊂ T ∗(T ∗Q),

where θi = θiQ ◦ τ∗, ηα = ηαQ ◦ τ∗ are the pull back of the 1-forms θiQ, η
α
Q to T ∗Q.

We will consider hi, kα as fiberwise coordinates in the bundle T ∗Q and in the bundle
τ∗(T ∗Q) ⊂ T ∗(T ∗Q) of horizontal 1-forms on T ∗Q.

The restrictions θ0, ω0 of the Liuville form θ and the standard symplectic form
ω = −dθ on T ∗Q to the submanifold D0 ⊂ T ∗Q are given by

θ0ξ = ξ|D = kαη
α, −ω0 = dθ0 = dkα ∧ ηα + kαdη

α.

Denote by

Ch(D0) := ker ω0 = T (D0)⊥ ∩ T (D0) = {v ∈ TηD
0, ω(v, TηD

0) = 0}

the characteristic submanifold of T (D0), where the vector bundle T (D0)⊥ ⊂ T (T ∗Q)|D0

is the ω-orthogonal complement to the tangent bundle T (D0) of D0.
The fiber Chη(D

0) = ker ω0
η ⊂ Tη(Q

0) over a point η ∈ Q0 is a vector space, but
since the rank of ω0

η may vary, the natural projection Ch(D0) → D0 is not a vector
bundle, in general.

By definition,characteristic curves are curves η(t) ⊂ D0, tangent to the char-
acteristic manifold Ch(D0) ⊂ T (D0).
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Lemma 5 The vector bundle T (D0)⊥ = span{h⃗i, i = 1, · · · ,m}, and the projection
τ∗ : T (T

∗Q) → TQ) induces for any η ∈ D0 the isomorphism

τ∗ : Tη(D
0)⊥ → Dq, q = τ(η),

uih⃗i 7→ uiXi|q.

Proof: The submanifold D0 = {η = kαη
α} is defined by the equations

hi = 0, i = 1, · · · ,m.,

Hence,

TηD
0 = {v ∈ Tη(T

∗Q), 0 =< dhi, v >= ω(ω−1dhi, v) = ω(⃗hi, v)}.

�
Since D0 = {η = kαη

α}, kα are fiberwise coordinate of the bundle D0 → Q. We
identify Xi, Yα with ”horizontal” vector fields in T ∗Q, which annihilate the fiberwise
coordinates hi, kα. Then ∂kα , Xi, Yα form a frame in the tangent bundle T (D0). The
tangent vector to a curve η(t) = kα(t)η

α(t) ⊂ D0 with projection γ(t) = τη(t) can
be written as

η̇(t) = k̇α∂kα + γ̇iXi(γ(t)) + γ̇αYα(γ(t)). (5)

We need an explicit description of the restriction −ω0 = dkα ∧ ηα + dηα to D0

of the symplectic 2-form ω = −dθ. We may write the 2-form dηα as

dηα = −cαijθi ∧ θj − cαiβθ
i ∧ ηβ − cαβδη

β ∧ ηδ

where cαij = ηα([Xi, Xj ]), c
α
βi = ηα([Yβ, Xi]), c

α
βδ = ηα(Yβ, Yδ).

Then
ω0 = −dkα ∧ ηα + kα(c

α
ijθ

i ∧ θj + cαiβθ
i ∧ ηβ + cαβδη

β ∧ ηδ).
Now we are ready to write down the necessary and sufficient condition that a tangent
vector η̇(t) ∈ Tη(t)D

0 of a curve η(t) ⊂ D0 belongs to Chη(t)(D
0).

Calculating the contraction η̇yω0, we get

η̇yω0 = γ̇αdkα + κα(c
α
ij γ̇

j − cαiβ γ̇
β)θi + (kαc

α
iβ γ̇

i + kαc
α
βδγ̇

δ − k̇β)η
β.

In particular, a curve η(t) = kαη
α ⊂ D0 is a characteristic curve if and only if its

velocity vector (5) satisfies the following equations

i) γ̇α = 0,

ii) k̇β − kαc
α
iβ γ̇

i = 0,

iii) kαc
α
ij γ̇

i = 0.

For q ∈ Q, denote by Λ2D∗
q the space of 2-forms in Dq and by D0

q the fiber of
the bundle τ : D0 → Q. There is a natural linear map

d̄ : Dq → Λ2D∗
q

η 7→ dη̃|Λ2Dx
,

where η̃ is an extension of η to a local 1-form. If X̃, X̃ ′ are extensions of vectors
X,X ′ ∈ Dq to local sections of D, then

d̄η(X,X ′) = −η([X̃, X̃ ′]).

This shows that the map d̄ does not depend on extensions ξ̃, X̃, X̃ ′.
We set

Kη = ker d̄η ⊂ Dτ(η).

9



Proposition 6 The projection τ∗ : Tη(D
0) → Dτ(η) induces an isomorphism

τ∗ : Chη(D
0) = ker ω0

η → Kη.

Proof: Lemma 5 shows that τ∗ : TηD
0 → Dτ(η) is an isomorphism. The conditions

i), iii) may be rewritten as

γ̇ = γ̇i(t)Xi ∈ Kη(t) = Kkαηα .

Any characteristic vector η̇ ∈ Chη(D
0) = ker ω0

η can be written now as

η̇ = k̇α∂kα + γ̇ = kβc
β
αiγ̇

i∂kα + γ̇iXi

and it is completely determined by the point η = kαη
α ∈ D0

q and the tangent vector
γ̇ ∈ Kη ⊂ Dτ(η). �

As a corollary, we get the following characterization of characteristic curves and
abnormal geodesics.

Theorem 7 i) A curve η(t) = kα(t)η
α(γ(t)) ⊂ D0 with the projection γ(t) =

τ(η(t)) is a characteristic and then γ(t) is an abnormal geodesic if and only if the
velocity vector field has the form

η̇(t) = kβc
β
αiγ̇

i∂kα + γ̇iXi

such that γ̇(t) = γ̇iXi ∈ Kη(t).
ii) A horizontal curve γ(t) ⊂ Q with velocity vector field γ̇(t) = γ̇i(t)Xi(γ(t)) is an
abnormal geodesic if and only if it can be lifted to a characteristic curve η(t) ⊂ D0

such that γ̇(t) ∈ Kη(t).

3 Sub-Riemannian geodesics as straightest

curves

3.1 d’Alembert’s sub-Riemannian geodesics

Let (Q,D, gD) be a sub-Riemannian manifold. To define d’Alembert’s (shortly, dA)
geodesics, we extend the sub-Riemannian metric gD to a Riemannian metric gQ.
The d’Alembert’s principle of virtual displacements for a mechanical system may
be formulated as follows, see [35].
1) The evolution of a mechanical system with a (smooth) configuration space Q is
described by projection to Q of integral curves of a special vector field X ∈ X(TQ)
(the evolution field). A field X is called special if it corresponds to a second order
equation, that is π∗X(q,q̇) = q̇ where π : TQ→ Q is the projection.
2) The vector fieldX is determined by the Lagrangian force, defined as the horizontal
1-form FL := (δL(q, q̇))idq

i on TQ, associated with the Lagrangian L(q, q̇), and
external forces.
3) d’Alembert’s Principle states that the special vector field X, which describes
the real dynamics of a mechanical system, is determined by the condition that the
Lagrangian force is equal to the external force.
Assume that
i) the Lagrangian L(q, q̇) of the system with a configuration space Q is quadratic in
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velocities q̇ and positively defined ( that is can be written as L = 1
2g(q̇, q̇), where g

is a Riemannian metric in Q ) and that
ii) the only external force is the reaction of a non-holonomic constraint, defined by
a rank-m distribution D = ker η1 ∩ · · · ∩ ker ηk, where ηα = ηαi dq

i, α = 1, · · · , k =
n − m is a coframe of the codistribution D0. The reaction of the constraint is
the horizontal 1-form ϕλ = λα(q, q̇)η

α ∈ Ω1(TQ) defined by the condition that the
equation FL − ϕλ = 0 corresponds to a vector field X ∈ X(TQ) tangent to the
distribution D ⊂ TQ.
In coordinates, this equation take the form [38]

FL ≡ (
d

dt
Lq̇i − Lqi)dq

i = λα(q(t), q̇(t))η
α
i dq

i

or
d

dt
Lq̇i − Lqi ≡ 0 (modD0).

The projection to Q of integral curves of this equation is called dA-geodesic of the
sub-Riemannian metric (D, gD), associated with an extension of gD to a Rieman-
nian metric g on Q. In general, the equation of dA-geodesics is neither Lagrangian
nor Hamiltonian.

3.2 Schouten-Synge-Vranceanu sub-Riemannian geodesics

Recall that Levi-Civita associated to a Riemannian manifold (Q, g) the canonical
torsion free connection ∇g, which preserves the metric (called the Levi-Civita con-
nection). According to Levi-Civita, a geodesic is defined as an autoparallel curve
q(t), such that the velocity vector field q̇(t) is parallel along q(t), i.e. satisfies the
geodesic equation

∇g
γ̇ γ̇ ≡ q̈i(t) + Γi

jk(q
j(t))q̇j(t)q̇k(t) = 0

where Γi
jk are the Christoffel symbols of the metric g = gij(q)dq

idqj . The extension
of this definition to sub-Riemannian manifolds had been proposed independently
by J.A. Schouten, J.L.Synge and G. Vranceanu, see [10].

3.2.1 Schouten partial connection of a sub-Riemannian manifold

Let D ⊂ TQ be a distribution. A partial D-connection in D is an R-bilinear map

∇D : ΓD × ΓD → ΓD, (X,Y ) 7→ ∇D
XY

which is C∞(Q) linear in X and satisfies the Leibnitz rule in Y :

∇D
X(fY ) = f∇D

XY + (X · f)Y, f ∈ C∞(Q).

Let ei, i = 1, · · · ,m be a frame of D defined in a neighborhood of a horizontal
curve q(t).
The Christoffel symbols of a partial connection ∇D are the local functions Γi

jk(q)
on Q defined by

∇ejek = Γi
jk(q)ei.

The value of the functions Γi
jk(t) := Γi

jk(q(t)) on a horizontal curve q(t) depends
only on the frame ei(t) := ei(q(t)) along the curve q(t). Due to this, the partial
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connection defines a parallel transport of a vector Y0 ∈ Dq0 along a horizontal curve
qt as the solution Y (t) = Y c(t)ec(t) ∈ Dqt of the equation

0 = ∇q̇tY (t) = ∇q̇t(Y
i(t)ei(t)) = [Ẏ i(t) + Γi

jk(t)q
j
tY

k(t)]ei(t).

I.A. Schouten showed that a complementary toD distribution V on a sub-Riemannian
manifold (Q,D, gD) ( called a rigging) defines a partial connection ∇S in D which
preserves the metric gD and has zero torsion T . The torsion tensor is defined by

T (X,Y ) = ∇S
XY −∇S

YX − [X,Y ]D, X, Y ∈ ΓD,

where XD is the horizontal part of the vector

X = XD +XV ∈ TqQ = Dq ⊕ Vq.

In coordinate-free way, the Schouten partial connection of (Q,D, gD) associated
to a rigging V is defined by the Koszul formula

2g(∇S
XY, Z) = X · g(Y,Z) + Y · g(X,Z)− Z · g(X,Y )+

g([X,Y ]D, Z)− g(Y, [X,Z]D)− g(X, [Y, Z]D),
X, Y, Z ∈ Γ(D).

Schouten defined the curvature tensor R ∈ so(D) ⊗ Λ2T ∗M of the Schouten con-
nection by

R(X,Y )Z = [∇X ,∇Y ]Z − [[X,Y ]V , Z]D, X, Y, Z ∈ ΓD.

V.V. Wagner generalized this notion and defined Wagner curvature tensor, such
that the vanishing of the Wagner tensor is equivalent to the flatness of the Schouten
connection ( that is the property that the associated parallel transport does not
depend on the path, connecting two points), see [10], [17] for a modern exposition
and generalization of this theory.

3.2.2 Sub-Riemannian S-geodesics and non-holonomic mechanics

Schouten-Synge-Vranceanu geodesics ( S-geodesics) of a sub-Riemannian
manifold (Q,D, gD), associated to a rigging V , are defined as horizontal curves γ(t)
with parallel (w.r.t. Schouten connection) tangent vector field γ̇(t), i.e. solutions of
the equation ∇S

γ̇ γ̇ = 0.

Assume that the sub-Riemannian metric gD is extended to a Riemannian metric g
on Q. Denote by V = D⊥ the g-orthogonal complement to D. Then the Levi-Civita
connection ∇g induces a connection ∇D in D given by

∇D
XY = prD∇

g
XY = (∇g

XY )D, X ∈ TQ, Y ∈ ΓD.

where prD : TQ = D ⊕D⊥ → D is the natural projection.
The connection ∇D is an extension of the partial Schouten connection ∇S asso-

ciated to the rigging D⊥.

Theorem 8 ( Vershik-Faddeev[35], [36]) Let (Q,D, gD) be a sub-Riemannian manifold,
g an extension of gD to a metric in Q and V = D⊥ the orthogonal complement to
D. Then S-geodesics coincide with dA-geodesics and they describe evolution of
the free mechanical system with kinetic energy g in configuration space Q with
nonholonomic linear constraint D.
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4 Cartan frame bundle definition of geodesics

An important frame bundle definition of Riemannian geodesics had been proposed
by E. Cartan. It is naturally generalized to a wide class of geometric structures.
Below we consider Cartan approach to definition of geodesics for Cartan connec-
tions and G-structures of finite type. This will be used for definition of Morimoto
geodesics on a regular sub-Riemannian manifold.

4.1 Cartan definition of Riemannian geodesics

A Riemannian metric g on a manifold Q can be considered as a G = On-structure,
i.e. a principal G-subbundle π : P → Q = P/G of the bundle of orthonormal frames
(i.e. isometries f : Rn = V → TxQ ) with the tautological soldering form

θ : TP → V, θf (X) := f−1(π∗X).

The total space P of an On-structure admits a canonical On-equivariant absolute
parallelism (Cartan connection)

κ = θ ⊕ ω : TP → V ⊕ so(V ),

which is an extension of the vertical parallelism ip : T v
p P ≃ son, ∀p ∈ P (defined

by the free action of On on P ). Here T vP ⊂ TP is the vertical subbundle and
ω : TP → son is the connection form of the Levi-Civita connection.
Cartan geodesics (C-geodesics) are defined as the projection to Q of constant
horizontal vector fields X ∈ κ−1(V ) ⊂ X(P ), see [21].

4.2 Normal Cartan connection and C-geodesics

We recall the definitions of a Cartan connection and associated C-geodesics.
Let M0 = L/G be an n-dimensional homogeneous manifold.
A Cartan connection of type M0 = L/G on an n-dimensional manifold Q is a
principal G-bundle π : P → Q = P/G together with an l-valued G-equivariant ( s.t.
r∗gκ = Ad−1

g ◦ κ, g ∈ G ) kernel-free 1-form κ : TP → l which extends the vertical
parallelism T v

p P ≃ g.
The form κ defines an absolute parallelism κp : TpP ≃ l. Hence, tensor fields on P
may be identified with tensor-valued functions.
In particular, the horizontal curvature 2-form Ω := dκ + 1

2 [κ, κ] on P can be
identified with a function K : P → C2(n, l) := Λ2n∗ ⊗ l where n = l/g.

One of the most powerful method for studying different (holonomic and non-
holonomic) geometric structures and for constructing their invariants is based on
construction of the associated canonically defined Cartan connection. In many
cases, it is not difficult to associate to a given structure a family of Cartan connec-
tions. Then the problem comes down to finding suitable normalization conditions
which uniquely specify a Cartan connection (called the normal Cartan connec-
tion) of this family. The standard way is to impose some normalization conditions
on the curvature function K, for example, the condition that the curvature tensor
Kp, ∀p ∈ P is coclosed.
We explain this condition in the case when the homogeneous manifold M0 = L/G
satisfies the following property :
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(∗) The Lie algebra l admits an ad g-invariant metric g and the g-orthogonal
complement m to g in l is a subalgebra.
This is sufficient to define Morimoto geodesics for regular sub-Riemannian structures.
Let

∂ : C1(m, l) = Hom(m,m+ g) → C2(m, l)

be the differential of the complex of exterior forms on the Lie algebra m with values
in m-module γ. Denote by

∂∗ : C2(m, l) → C1(m, l)

the dual codifferential, defined by means of the induced metrics on Cj(m, l).
A Cartan connection is called normal if the curvature K is coclosed, i.e.
∂∗K = 0.

Theorem 9 (see [25], [5], [12]) Let (π : P → Q, κ : TP → l = g+m) be a Cartan
connection, which satisfies the condition (*). Then the bundle π admits a unique
normal Cartan connection κ0.

More general sufficient conditions for the existence of a unique normal Cartan con-
nection are given in [?], [14], [5], [12], [13].

Let (π : P → l, κ : TP → l) be a Cartan connection and m a fixed com-
plementary to g subspace of l. Then κ−1(m) ⊂ TP is a complementary to T vP
distribution, called the horizontal distribution and any vector v ∈ m defines a
horizontal vector field Xv = κ−1(v), called the constant horizontal vector field
associated to v.

Like in Riemannian case, C-geodesics of a Cartan connection are defined
as the projection to Q of integral curves of constant horizontal vector fields.

Assume that the homogeneous manifold M0 = L/G is reductive, i.e. there is a
reductive decomposition l = g⊕ V , where V is an AdG-invariant complement to g.
Let (π, κ) be Cartan connection of a reductive type M0 = L/G. Denote by

θ := prV ◦ κ : TP → V ( resp., ω := prg ◦ κ : TP → g)

the horizontal part ( resp., the vertical part) of the 1-form κ. Then θ is a soldering
form, which turns π into a G-structure, and ω is a connection form, which defines a
principal connection in π. The form ω defines a linear connection ∇ in the tangent
bundle TQ = P ×G V , see [21] and C-geodesics of the Cartan connection coincide
with geodesics of ∇.

4.3 C-geodesics for G-structures

4.3.1 G-structures and their torsion function

We recall the definition of G-structure and its torsion function.

Let G ⊂ GL(V ), V = Rn be a linear Lie group. A G-structure on an n-
dimensional manifold Q is a G-principal bundle π : P → Q = P/G with a soldering
1-form θ : TP → V i.e. a strictly horizontal ( ker θ = T vP ) G-equivariant 1-form.
Such 1-form allows to identify the G-principal bundle with a G-principal bundle of
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frames on TQ.
Indeed, the soldering form at a point p ∈ P defines a coframe, i.e. an isomorphism

θp : Tπ(p)Q→ V.

We denote by
p̂ = θ−1

p : V → Tπ(p)Q

the dual frame. This allows to identify the bundle π with a G-principal bundle of
frames.
Denote by j1(π) : J1 → P the bundle of 1-jets of local sections H = Hp = j1p(s),
that is horizontal subspaces H ⊂ TpP such that TpP = T v

p P ⊕H.
The differential dθ of the soldering 1-form defines a function τ : J1 → Tor(V ) with
values in the space Tor(V ) := V ⊗ Λ2(V ∗) of V -valued 2-forms. It is called the
torsion function and it associates with a horizontal space H = Hp the 2-form τH
defined by

τH(u, v) = dθ(uH , vH) ∈ V, u, v ∈ V

where uH , vH are the horizontal lifts to H ⊂ TpP of tangent vectors p̂u, p̂v ∈ Tπ(p)Q.

4.3.2 C-geodesics of a G-structure of type k = 0

Assume that the linear Lie algebra g = Lie(G) ⊂ gl(V ) has type k = 0, i.e. has
trivial first prolongation

g(1) := g⊗ V ∗ ∩ V ⊗ S2(V ∗) = 0.

Then the Spencer differential

∂ : g⊗ V ∗ → Tor(V )

∂(A⊗ ξ)(u, v) = ξ(u)Av − ξ(v)Au ∈ V

is an embedding. Assume that there is a G-invariant complementary subspace W
to the image ∂(g ⊗ V ∗) in Tor(V ). Then the preimage D := τ−1(W ), where τ is
the torsion function, see 4.3.1, is a G-invariant distribution of horizontal subspaces.
More precisely, for any p ∈ P there is a unique horizontal subspace D = Dp such
that τH ∈ W and the field P ∋ p → Hp is G-invariant. Such distribution defines
a linear connection in the frame bundle π : P → Q with the connection form
ω : TP = T vP ⊕D → g which has kernel ker ω = D and coincides with the vertical
parallelism T vP → g on T vP . Then the sum

κ = θ + ω : TP → V ⊕ g

is a Cartan connection. Like in the Riemannian case, C-geodesics are defined as
projection to Q of constant horizontal vector fields X ∈ κ−1(V ), and they coincides
with geodesics of the linear connection ω, see [21].

Example 10 Let (Q, g) be a Riemannian manifold and π : P → Q the O(V )-
bundle of orthonormal frames, i.e. O(V ) -structure.
One may easily check that the first prolongation of the orthogonal Lie algebra so(V )
is trivial and that the map ∂ : so(V ) ⊗ V ∗ → Tor(V ) is an isomorphism. Taking
W = 0, we get the distribution D = τ−1(0), defined by the condition τ |D = 0. The
associated connection is the Levi-Civita connection.
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More generally, let G ⊂ O(V ) be a closed subgroup of the orthogonal group O(V )
and π : P → Q a G-structure. Let g⊥ be the orthogonal complement to the subalge-
bra g = Lie(G) in so(V ) with respect to the Killing form. Then W = ∂(g⊥⊗V ∗) is
a G-invariant complement to ∂(g⊗ V ∗) in Tor(V ). The corresponding distribution
D = τ−1(W ) defines a linear connection ωcan in π with torsion in W . In the classi-
cal language, this means that at any point q ∈ Q, the torsion tensor Tq of the linear
connection ω at a point q ∈ Q, calculated with respect to a frame p̂, takes values in
the subspace W = g⊥ ⊕ V ∗.

We call the connection ωcan the canonical connection of the G-structure with
G ⊂ O(V ). We use this example for the definition of the sub-Riemannian geodesics
in the sense of T. Morimoto.

4.3.3 C-geodesics for a G-structure of finite type k > 0

Assume that G ⊂ GL(V ) group G has the finite type k, that is its Lie algebra g
has non trivial k-th prolongation g(k) and g(k+1) = 0. Then the full prolongation

g(∞) =

∞∑
j=−1

g(j) = V ⊕ g⊕ g(1) ⊕ · · · ⊕ g(k), V = g(−1), g = g(0)

is a finite dimensional Z-graded Lie algebra, see [29]. The bundle π can be prolonged
([29]) to a bundle π(k) : P (k) → Q with absolute parallelism

κ : TP (k) → g(∞) = V ⊕ g⊕ g(1) ⊕ · · · ⊕ g(k).

C-geodesics for the G-structure π : P → Q of finite type k are defined as
the projection of orbits of constant vector fields X ∈ κ−1(V ) ⊂ X(P (k)) to Q.

Remark 11 In general, π(k) : P (k) → Q is not a principal bundle and κ is not a
Cartan connection.

Of particular interest is the case of G-structures, when G ⊂ GL(V ) is an irreducible
linear Lie group of type k = 1. Then the full prolongation

g∞ = g−1 ⊕ g(0) ⊕ g(1) = V ⊕ g⊕ V ∗

is a simple 3-graded Lie algebra. List of all such 3-graded Lie algebras is known
and it is very short. In this case, the prolongation π(1) : P (1) → Q is a princi-
pal bundle with the structure group G≥0 = G · G(1), associated to the Lie algebra
g≥0 = g+g(1). Moreover, there exists a canonical choice of the absolute parallelism
κ : TP (1) → g+g(1) ( the normal Cartan connection ) which is G≥0-equivariant
and has the coclosed curvature, see [20], [14], [5], [7].
The C-geodesics for such geometries form an interesting class of distinguished curves
in Q, studied, for example, in [14], [15], [16], [?].
For the conformal structure, which can be considered as R+ ·SOn-structure, gener-
alized geodesics are conformal circles.
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5 Regular sub-Riemannian manifolds and Mo-

rimoto geodesics

Now we consider less familiar approach for the definition and the study of sub-
Riemannian geodesics, based on the theory of Cartan connections and Tanaka the-
ory of non-holonomic G-structures (or Tanaka structures).

5.1 Regular distributions and regular sub-Riemannian
structures

5.1.1 Regular distributions

Let D ⊂ TM be a bracket generating distribution on M and D−1 := ΓD the
C∞(M)-module of sections. It generates a negative filtration

D−1 ⊂ D−2 ⊂ · · · ⊂ D−k = X(Q)

of the Lie algebra of vector fields, inductively defined by

D−i−1 := D−i + [D−i,D−i], i = 1, 2, · · · .

The restriction D−i
q = D−i|q of vector fields to a point q ∈ Q defines a flag of

subspaces
D−1

q ⊂ D−2
q ⊂ · · · ⊂ D−k

q = TqQ (6)

of the tangent space. The associated graded space

T gr
q Q = mq = m−1

q ⊕m−2
q ⊕ · · · ⊕m−k

q := D−1
q ⊕D−2

q /D−1
q ⊕ · · ·+⊕D−k

q /D−(k−1)
q

has the structure of negatively graded metric Lie algebra, induced by the Lie bracket
of vector fields. The graded Lie algebra mq is called the symbol algebra of the
distribution D at a point q or graded tangent space at q.
The distribution D is called a regular distribution of type m and depth k,
if all symbol algebras mq, q ∈ Q are isomorphic to a fixed negatively graded Lie
algebra m = m−1⊕· · ·⊕m−k. Then (6) defines the derived flag of vector bundles

D−1 = D ⊂ D−2 ⊂ · · · ⊂ D−k = TQ.

Note that m is a fundamentally graded Lie algebra, i.e. it is generated by m−1.

5.1.2 Regular sub-Riemannian manifolds

Let (Q,D, g) be a sub-Riemannian manifold, where D is a regular distribution of
type m.

Then the graded tangent space T gr
q Q = mq has the structure of a negatively

graded metric Lie algebra, i.e. a graded Lie algebra mq =
∑−k

i=−1m
i
q with an

Euclidean metric gmq such that the graded spaces mi
q are mutually orthogonal.

The metric gmq is a natural extension of the sub-Riemannian metric gDq in Dq,
which is described in the following elementary lemma.

Lemma 12 Let m = m−1 + · · · + m−k be a negatively graded fundamental Lie
algebra. Then an Euclidean metric g on m−1 has a natural extension to an Euclidean
metric gm in m.
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A sub-Riemannian manifold (Q,D, gD) with a regular distribution D of type m
is called a regular sub-Riemannian manifold of the metric type (m, gm) if all met-
ric Lie algebras (mq, g

m
q ) are isomorphic to the metric graded Lie algebra (m, gm).

5.1.3 Regular sub-Riemannian structure as Tanaka structure

Let D ⊂ TQ be a regular rank-m distribution of type m, and Aut(m) the group of
graded preserving automorphisms of m.

An admissible frame of D is an isomorphism

f : m → T gr
q Q = mq

of graded Lie algebras. The automorphism group Aut(m) acts freely and properly on
the manifold Fr(D) of admissible frames on D with the orbit space Fr(D)/Aut(m) =
Q. Hence, Fr(D) → Q is a principal bundle ( called the bundle of admissible
frames on D).
Let G0 ⊂ Aut(m) be a Lie subgroup. A Tanaka G0-structure ( or a relative
G0-structure) is a G0-principal subbundle π : P → Q = P/G0 of the bundle of
admissible frames on D.

The classical identification of Riemannian manifolds with On-structures is ex-
tended to the sub-Riemannian case:

Proposition 13 A regular sub-Riemannian manifold (Q,D, gD) of type (m, gm) is
identified with a Tanaka G0-structure with the structure group G0 = Aut(m, gm) ⊂
O(m). Conversely, any G0 = Aut(m, gm)-Tanaka structure defines a regular sub-
Riemannian manifold (Q,D, gD) of type (m, gm).

Proof: The Tanaka G0-structure, associated to (Q,D, gD), consists of all admissible
frames f : m → mq, which are isomorphisms of the metric Lie algebras.
Conversely, let (π : P → Q, D) be a Tanaka G0-structure with G0 = Aut(m, gm).
Then the associated sub-Riemannian metric on D is defined by the condition that
for any admissible frame f ∈ P , its restriction

fm−1 : m−1 → Dq = m−1
q

is an isometry. �

5.2 Morimoto geodesics of sub-Riemannian manifolds

5.2.1 Tanaka prolongation of non-holonomic G-structures

N. Tanaka generalised the theory of G-structures to Tanaka structures. In par-
ticular, he defined the full prolongation of a non-positively graded Lie algebra
g =

∑0
i=−k g

i = g−k ++g−1 + g0 as a maximal Z-graded Lie algebra of the form

g(∞) =
∞∑

i=−k

gi = g⊕ g(1) ⊕ g(2) ⊕ · · ·
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such that for any X ∈ g(i), i > 0 the condition [X, g−1] = 0 implies X = 0.
A non-positively graded Lie algebra g is called a Lie algebra of finite type ℓ , if
ℓ <∞ is the maximal number such that g(ℓ) ̸= 0.

Theorem 14 (Tanaka)(see [14],[33], [42],[6]). Let π : P → Q be a Tanaka G0-
structure on (Q,D) where D is a regular distribution of type m = m−1 + · · ·+m−k

and G0 ⊂ Aut(m) a connected closed subgroup of the automorphism group with
Lie algebra g0 ⊂ der(m). Assume that the non-positively graded Lie algebra m̃ :=
m + g0 has finite type ℓ. Then there is a canonical bundle P∞ → Q, constructed
by successive prolongations, with an absolute parallelism κ : TP∞ → m̃∞. If the
first prolongation g(1) = 0, then the absolute parallelism κ : TP → m̃ = m+ g0 is a
Cartan connection.

5.2.2 Morimoto definition of sub-Riemannian geodesics

The Morimoto definition of sub-Riemannian geodesics is based on the following
important theorem , which he proved in the framework of his remarkable theory of
filtered manifolds [?].

Theorem 15 (T. Morimoto [25]) i) Let (m =
∑−1

−k m
i, gm) be a fundamental neg-

atively graded metric Lie algebra and G0 = Aut(m, gm) the linear Lie group of
orthogonal automorphisms with the Lie algebra g0 = der(m, gm). Then the full pro-
longation of the non-positively graded Lie algebra m̃ = m+ g0 coincides with m̃.
ii) Let (Q,D, gD) be a regular sub-Riemannian manifold of the metric type (m, gm).
Then the associated Tanaka structure π : P → Q = P/G0 admits a canonically de-
fined 1-form

κ : TP → m̃ = m+ g0 (7)

such that (π, κ) is a normal Cartan connection of type L/G0, where L is the simply
connected Lie group associated with the Lie algebra m̃. Moreover, the horizontal
part θ = prm ◦ κ of κ is a soldering form and the vertical part ω = prg ◦ κ is a
principal connection.

The Morimoto sub-Riemannian geodesics ( shortly, M-geodesics) of a
regular sub-Riemannian manifold ((Q,D, gD) is defined as projection to Q of the
integral curves of a constant vector fields X ∈ κ−1(m−1), where κ is the associated
Cartan connection (7).

5.3 Admissible rigging, associated Cartan connections
and Cartan-Morimoto geodesics

Here we develop an elementary approach for constructing Cartan connections (in
particular, normal Cartan connection ) for regular sub-Riemannian manifold, con-
sidered as Tanaka structurs. It is working also for other Tanaka structures with
trivial first prolongation. It is based on the notion of admissible rigging, see [7], and
results from [5].
Let (Q,D, gD) be a regular sub-Riemannian manifold of metric type (m, gm), and
D−1 = D ⊂ D−2 ⊂ · · · ⊂ D−k = TQ the derived flag of distributions.
A complementary to D distribution V with a direct sum decomposition V =
V −2 ⊕ · · · ⊕ V −k as called an admissible rigging if V −j as a complementary
to D−j+1 subdistribution in D−j . In other words,

TQ = D ⊕ V −2 ⊕ · · · ⊕ V −k, D−j = D−j+1 ⊕ V −j , j = 2, · · · , k.
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Since m−j := D−j/D−j+1 = (D−j+1 ⊕ V −j)/D−j ≃ V −j , the admissible rigging
V defines an isomorphism ψV : T grQ → TQ of vector bundles. It induces an
isomorphism ψ̂V : P → P V of the Tanaka structure π : P → Q = P/G0, associated
to the sub-Riemannian manifold, onto a G0-structure, which we denote by πV :
P V → P V /G0. Identifying these principal bundles, we will consider the soldering
form θV of the G0-structure πV as a soldering form on P . It turns the Tanaka
principal bundle π : P → Q into a G-structure, with the structure group G0 =
Aut(m, gm) ⊂ O(m). We denote by g the associated Riemannian metric in Q
and by ωV the canonical connection form.The principal connection ωV defines a
Riemannian connection∇ωV

with torsion. Denote by τθV : P →W := ∂(g⊥⊗m∗) ⊂
Tor(m) the associated torsion function. Then the 1-form

κV := θV + ωV : TQ→ m+ g

defines a structure of Cartan connection in the principal bundle π : P → Q.
This Cartan connection induces the Tanaka structure π : P → Q via the isomor-
phism ψ : TQ → T grQ. Moreover, any Cartan connection, which induces the
Tanaka structure π, is associated with some admissible rigging, see [5], proposition
2.
Like in the case of normal connections, we define sub-Riemannian geodesics as the
projection to Q of the integral curves of constant vector fields from κ−1(m−1). We
call such geodesics CM-geodesics associated to an admissible rigging. Since
the connection ∇ωV

preserves the sub-Riemannian metric (D, gD), CM-geodesics

are D-horizontal geodesics of the connection ∇ωV
or, in other words, the geodesics

of the partial connection on D, which is the restriction of ∇ωV
to D. Note that this

partial connection coincides with the Schouten partial connection ∇S associated to
the rigging V if and only if the torsion function τ of the soldering form θV satisfies
the condition τp(D,D) ⊂ V, ∀p ∈ P . We get

Proposition 16 Let V be an admissible rigging of a regular sub-Riemannian man-
ifold (Q,D, gD). Then CM-geodesics of the Cartan connection κV coincide with
the S-geodesics of the Schouten partial connection ∇S, defined by the rigging V , if
and only if the torsion function τ of the soldering form θV satisfies the condition
τp(D,D) ⊂ V, ∀p ∈ P .

5.3.1 Admissible riggings and the normal Cartan connection

Here we apply the results from [5], to prove the existence and the uniqueness of an
admissible rigging V which defines the normal Cartan connection κV associated to
a regular sub-Riemannian manifold. It reduces the problem of constructing normal
Cartan connections to an appropriate deformation of an admissible rigging.

The following theorem is an elaboration of the Morimoto theorem.

Theorem 17 Let π : P → Q be the Tanaka G0-structure, associated to a regular
sub-Riemannian manifold (Q,D, gD) with a metric symbol (m, gm). Then there is
a uniquely defined admissible rigging V0, which defines a normal Cartan connection
(π : P = P V → Q,κV0 = θV0 + ωV0).

Proof: The proof follows from [5], theorems 1 and 2. For the uniqueness of the
Cartan connection, we have to check that the first cohomology group for the cocycles
of positive degree vanishes: H1(m,m + g)1‘ = 0. The degree of a cocycle from
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(m−i)∗ ⊗ m−j is defined as i − j. The vanishing of this cohomology is a simple
exercise. �

Corollary 18 Let (Q,D, gD) be a regular sub-Riemannian manifold with metric
symbol algebra (m, gm) and π : P → Q the associated Tanaka structure with the
structure group G0 = Aut(m, gm) ⊂ O(m). Then
i) there exists the unique soldering form θ0 : TP → m which together with the as-
sociated canonical connection ωcan : TP → g defines the normal Cartan connection
κcan = θ0 + ωcan.
ii) The sub-Riemannian metric gD admits a canonical extension to the Rieman-
nain metric g on Q, defined by the condition that the isomorphism (coframes)
θ0p : Tπ(p)Q→ m is an isometry onto the Euclidean space (m, gm) for p ∈ P .

iii) The isometry group A = Iso(Q,D, gD) is a Lie group of dimension dimA ≤
n + dimG ≤ n + m(m−1)

2 where m = dimm, which preserves the Riemannian met-
ric g and acts freely with closed orbits on P . The stability subgroup Aq of a point
q ∈ Q has the exact isotropy representation j : Aq → GL(TqQ) and the isotropy
group j(Aq) is identified with a subgroup of the group G0 = Aut(m, gm) and has

dimension dimAq ≤ m(m−1)
2 .

Proof: i) and ii) directly follow from the Theorem. iii) The isometry group A
preserves the absolute parallelism κcan on P and the Riemannian metric g. By the
Kobayashi theorem about the automorphism group of an absolute parallelism [29],

it acts freely with closed orbits on P . Hence dimA ≤ dimP = n+dimG ≤ m(m−1)
2 ,

since G is identified with a subgroup of the orthogonal group O(m). The stability
subgroup Aq has exact isotropy representation j : Aq → GL(TqQ) and since j(Aq)
preserves the metric of TqQ and the derived flag Dq ⊂ D−2

q ⊂ · · · ⊂ D−k
q , it acts

freely in TqQ ≃ T grQ = mq and preserves the Lie algebra structure in mq. This
implies that j(Aq) is identified with a subgroup of G. �

6 Geodesics of Chaplygin transversally

homogeneous sub-Riemannian manifolds

6.1 Principal connection and its curvature

Let π : Q → M = Q/G be a G-principal bundle with a right action Rgq = qg of a
Lie group G.
For a ∈ g = Lie(G), we denote by a∗ : q 7→ qa := d

dtq exp(ta)|t=0 ∈ TqQ the
fundamental vector field ( the velocity vector field of Rexp ta).
Recall that the principal connection is a G-equivariant g-valued 1-form ϖ : TQ→ g,
which is an extension of the vertical parallelism, defined by TqQ ∋ a∗q 7→ a ∈ g. The
equivariancy means that R∗

gϖ = Ad−1
g ◦ϖ, g ∈ G.

The connection ϖ is completely determined by the horizontal G-invariant dis-
tribution D = ker ϖ.
Since TqQ = Dq ⊕ T v

q Q, any vector X ∈ TqQ is decomposed as X = Xh ⊕ Xv

into the horizontal and the vertical parts. Moreover, any vector filed X ∈ X(M)
has the canonical (G-invariant) horizontal lift XD ∈ ΓD due to the isomorphism
π∗ : Dq → Tπ(q)M . Recall the following formulas, [21],

[a∗, b∗] = [a, b]∗, [a∗, XD] = 0, [XD, Y D] = [X,Y ]D + [XD, Y D]v. (8)
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where a, b ∈ g, X, Y ∈ X(M).
Note that [XD, Y D]v is a G-invariant vertical vector field and its restriction to a
fiber π−1(x) depends only on vectors Xx, Yx. So we have a linear skew-symmetric
map

A : TxM × TxM → X(π−1(x))G, (X,Y ) 7→ A(X,Y ) :=
1

2
[XD, Y D]v

into the space of RG-invariant vector fields along the fiber π−1(x).
For X ∈ X(M), we defines a C∞(Q) linear map

AX : Γ(D) → ΓT vQ, Y D 7→ [XD, Y D]v = A(X,π∗Y
D)

which maps G-invariant horizontal vector fields Y D into G-invariant vertical vector
fields from ΓT v(Q). The dual map

A∗
X : Γ(T v(Q)) → ΓD

sends G -invariant vertical vector fields into G-invariant horizontal vector fields.
The curvature of ϖ is the g-valued horizontal 2-form F = dϖ + 1

2ϖ ∧ ϖ. Denote
by e∗α the basis of fundamental vector fields, associated to a basis eα of g. Then the
curvature form is related with the tensor A(X,Y ) as follows:

Fq(X
D, Y D) = Fq(X

D, Y D)αeα = −ϖq([X
D, Y D]) + (ϖq ∧ϖq)(X

D, Y D)
= −2ϖq(Aq(X,Y )) = −2ϖq(A

α
q (X,Y )e∗α)

= (Aq(X,Y )αeα.
(9)

6.1.1 Formulas in coordinates

To write formulas in coordinates, we fix a section s of π. To simplify notations, we
assume that the section s :M → Q is global. It defines a trivialization

M ×G = Q, (x, g) = s(x)g

of the principal bundle, where the group G acts on M ×G as

Rg(x, g1) = (x, g1g).

A fundamental vector field a∗, a ∈ g is identified with the left invariant vector
fields

aL : (x, g) 7→ (x, ga) := (Lg)∗a.

We denote by aR : (x, g) 7→ (x, ag) the right invariant vector field, generated by
a ∈ g.
We identify the tangent bundle TG with the trivial bundle g×G ( which we denote
simply as g), using left translations

g×G ∋ (ġ, g) = g−1ġ := (Lg)
−1
∗ ġ ∈ TgG

and the tangent bundle T (M × G) = TM × TG with the bundle TM ⊗ g over
M ×G. The tangent vector ẋ+ ga := ẋ+ (Lg)

∗a ∈ T(x,g)(M ×G) will be denoted
by (ẋ, a), where ẋ ∈ TxM, a ∈ g .
The pull back ωs := s∗ϖ of the connection form ϖ to M is a g-valued 1-form
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ωs = Aα
i (x)dx

i ⊗ eα ∈ Ω1(M, g) on M . The horizontal distribution along M × {e}
is given by

D(x,e) = {ẋ− ωs(ẋ)} = {∂i −Aα
i (x)eα}.

Since the distribution D is RG-invariant, we get

D(x,g) = (Rg)∗D(x,e) = {ẋ−Aα
i (x)e

R
α} = {ẋ−Aα

i (x)(Ad g)
β
αe

L
β}

Note that ϖ(e∗α) ≡ ϖ(eLα) = eα. This shows that ϖ|TG coincides with the left
invariant Maurer-Cartan form µ(ġ) = g−1ġ. Hence, the connection form may be
written as ϖ = µ + A, where A = Aα

i (x, g)dx
i ⊗ eα is a 1-form, which vanishes on

TG. Solving the equations

0 = ϖ(∂Di ) = ϖ(∂i −Aα(x)eα) = −µ(Aα
i (x)eα) +Aα

i (x, g)eα =

−Aα
i (x)(Ad

−1
g )βαeβ) +Aα

i (x, g)eα,

we find that the connection form ϖ on Q =M ×G is given by

ϖ = µ+A, A = Aα
i (x, g)dx

i ⊗ eα = Aα
i (x)dx

i ⊗ (Ad−1
g )βαeβ. (10)

6.2 Chaplygin metric and its standard extension

Let π : Q → M = Q/G be a principal bundle with a connection ϖ and D = ker ϖ
the horizontal distribution.

A Riemannian metric gM on the base manifold M defines a canonical invariant
sub-Riemannian metric gD on D such that the projection π∗ : Dq → Tπ(q)M is an
isometry.

The sub-Riemannian metric (D, gD) is called a Chaplygin metric and the sub-
Riemannian manifold (Q,D, gD) is called aChaplygin system or a transversally
homogeneous sub-Riemannian manifold.

Let (Q,D, gD) be a Chaplygin system associated to a principal bundle (π : Q→
M,ϖ) over a Riemannian manifolds (M, gM ) as above and gg an Euclidean metric
on the Lie algebra g. It defines a degenerate metric

gF (X,Y ) = gg(ϖ(X), ϖ(Y ))

on Q with kernel D, whose restriction to a fiber F(x) = π−1(x) is a Riemannian
metric. We will consider also gD as a degenerate metric on Q with ker gD = T vQ.

Then
gQ = gF ⊕ gD (11)

is a Riemannian metric in Q. It is called the standard extension of the Chap-
lygin metric gD.
Note that the metric gQ is G-invariant if and only if the degenerate metric gF is
invariant or, equivalently, the metric gg is AdG-invariant. In this case the metric
gQ is called the bi-invariant extension of the sub-Riemannian metric gD.
Denote by ∇M (resp., ∇Q) the Levi-Civita connection of gM (resp., gQ), and by ∇F

the Levi-Civita connection of the induced metric gF on a fiber, which is a totally
geodesic submanifold of (Q, gQ).
The Koszul formula implies the following O’Neill formulas for the covariant deriva-
tive of fundamental vector field b∗ and the horizontal lift XD of a vector field
X ∈ X(M), see [11].
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i) ∇Q
a∗b

∗ = ∇F
a∗b

∗, a, b ∈ g
ii) ∇Q

a∗X
D = ∇Q

XDa
∗ = (∇Q

a∗X
D)h = A∗

Xa
∗,

iii) ∇Q
XDY

D = (∇M
X Y )D +A(X,Y ), X, Y ∈ X(M).

The connection ∇F is described in terms of Lie brackets as follows

2g(∇F
a∗b

∗, c∗) = gg([a, b], c)− gg(b, [a, c])− gg(a, [b, c]), a, b, c ∈ g.

6.2.1 S-geodesics of a Chaplygin metric

The O’Neill formulas imply the following relations between S-geodesics of the Chap-
lygin sub-Riemannian metric and geodesics of the Riemannian metrics gQ, gM , see
also [11].

Theorem 19 i) The principal bundle π : Q→M with a standard metric gQ asso-
ciated to a Riemannian metric gM is a Riemannian submersion with totally geodesic
fibers.
ii)A Riemannian geodesic γ(s) of (Q, gQ) which is horizontal at one point is hori-
zontal and it projects onto the geodesic πγ(t) of the base manifold (M, gM ).
iii) S-geodesics of the Chaplygin metric are precisely horizontal geodesics of (Q, gQ)
and they are horizontal lifts of geodesics of the base manifold.

Proof: Recall that S-geodesics are geodesics of the Schouten connection ∇S
XY =

prD∇
Q
XY, X, Y ∈ ΓD, that is horizontal curves γ(s) which satisfy the equation

0 = ∇S
γ̇(s)γ̇(s) = prD∇

Q
γ̇(s)γ̇(s) = (∇M

ẋ ẋ)
D.

The result follows from the O’Neill formula iii) and skew-symmetry of the tensor
A(X,Y ). �

6.2.2 H-geodesics of a Chaplygin metric

Now we consider H-geodesics of the Chaplygin metric gD on the principal bundle
(π : Q→M,ϖ) over a Riemannian manifold (M, gM ) and study their relation with
geodesics of the standard extension gQ and the metric gM of the base manifold.
As above, we fix a trivialization Q =M ×G of the principal bundle π, defined by a
section s. Then any fiber Fx = x×G with the metric gF is identified with the Lie
group G with the left invariant metric ( still denoted by gF ) defined by the metric
gg. Note that the horizontal distribution D = ker ϖ on Q = M × G and the sub-
Riemannian metric gD are RG-invariant, but not LG-invariant, the fiberwise metric
gF is LG-invariant, but not RG-invariant and the metric gQ is neither RG-invariant,
nor LG-invariant.

The orthogonal decomposition gQ = gD⊕gF of the metric gQ defines the orthog-
onal decomposition g−1

Q = g−1
D ⊕ g−1

F of the associated contravariant metric, which

we denote by g−1
Q . Here g−1

D (resp., g−1
F )is the contravariant metric on D (resp., on

T vQ ). They may be locally written as

g−1
D =

m∑
i=1

Xi ⊗Xi, g−1
F =

∑
e∗α ⊗ e∗α
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where (Xi) is a local orthonormal frame in D and (eα) is an orthonormal basis of
g. We will consider g−1

D and g−1
F as functions on T ∗Q (cometrics).

The Hamiltonian hQ = 1
2g

−1
Q ∈ C∞(T ∗Q) of the geodesic flow of the Riemannian

metric gQ is the sum hQ = hD + hF of the Hamiltonian hD(ξ) :=
1
2g

−1
D (ξ, ξ) of the

sub-Riemannian metric and the Hamiltonian hF (ξ) = 1
2g

−1
F (ξ, ξ) of the fiberwise

metric gF .
Now we describe the relations between sub-Riemannian H-geodesics and Rie-

mannian geodesics of the metric gM on the base M and left invariant metric gF on
the group G. In the case, when the extension gQ in bi-invariant, i.e. the metric gg

is AdG invariant, they had been proved by R. Montgomery [23], Theorem 11.2.5
(the main theorem).

Lemma 20 Let gQ = gD ⊕ gF be a standard extension of a Chaplygin metric gD.
Then the Hamiltonians hQ, hF , hD Poisson commute

{hF , hD} = {hF , hQ} = 0,

and the associated Hamiltonian vector fields h⃗F , h⃗D, h⃗F commute.

Proof: A fundamental field a∗ commutes with the horizontal lift XD of a basic vector
field, see (8), and preserves the decompositions TQ = T vQ+D, T ∗Q = (T vQ)∗+D∗.
We calculate the Lie derivative of the sub-Riemannian metric gD as follows:

(La∗g
D)(XD, Y D)

= a∗ · (gD(XD, Y D))− gD([a∗, XD], Y D) + gD(XD, [a∗, Y D])
= a∗ · gM (X,Y ) = 0.

This shows that the fundamental field a∗ preserves the sub-Riemannian metric gD

and the dual cometric g−1
D . This means that

0 = La∗g
−1
D = {a∗, g−1

D } ≡ {pa∗ , g−1
D }

where pa∗ is the Hamiltonian of the fundamental field a∗. Then the Leibnitz rule for
Poisson bracket shows that {a∗⊗a∗, g−1

D } ≡ {p2a∗ , g−1
D } = 0. Hence the Hamiltonian

hF = 1
2

∑
a∗α ⊗ a∗α = 1

2

∑
(paα)

2 commute with hD = 1
2g

−1
D . �

Using the same arguments as in [23], we get

Theorem 21 i)The sub-Riemannian geodesic flow of the sub-Riemannian metric
gD is a composition exp t⃗hD = exp t⃗hQ ◦ exp(−t⃗hF ) of the Riemannian geodesic
flows of the metric gQ and the fiberwise metric gF .
ii) Denote by ga(t) ⊂ G the geodesic of the group G with the left invariant metric gF

as above with initial conditions ga(0) = e, ġa(0) = a ∈ g and by γw(t) the geodesic of
the standard metric gQ with initial conditions γ(0) = q ∈ Q, γ̇(0) = w = wv +wh ∈
TqQ. Then the curve q(t) = γw(t)ga(t) is a sub-Riemannian H-geodesic if and only
if it has horizontal velocity q̇(0) = w + a∗q = wh ∈ Dq that is ϖ(w) = −a.
iii) Horizontal geodesics of gQ are sub-Riemannian geodesics and they project to
geodesics of (M, gM ).
iv) Sub-Riemannian geodesics are horizontal lifts of the projection of geodesics γw(t)
of gQ to M .
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Proof: i) is obvious. ii) The restriction gF |Fx of gF to any fiber Fx = (x,G) is
identified with the left invariant Riemannian metric ( denoted again by gF ) on G,
defined by the metric gg.
Note that the projection of integral curves of the gQ-geodesic flow to Q are geodesics
of gQ. The projection of integral curves of exp t⃗hF to Q are geodesics of the metric
gF , hence also of gQ, since the fibers are totally geodesics, see O’Neill formulas. The
projection q(t) = τ ◦ ξ(t) to Q of the composed curves

ξ(t) = exp t⃗hF ◦ exp t⃗hQ ◦ (ξ), ξ ∈ T ∗
qQ

are curves of the form q(t) = Rg(t)γ(t) = γ(t)g(t) where γ(t) = τ ◦ exp t⃗hQ(ξ)

is a geodesic of gQ and g(t) ⊂ G is a geodesic of the metric gF on G. We may
assume that g(0) = e and ġ(0) = a ∈ g. If γ̇(0) = w, then the curve q(t) is a sub-
Riemannian geodesic if and only if its velocity vector q̇(0) = w + a∗q is horizontal,
that is ϖ(w + a∗q) = ϖ(w) + a = 0. This proves ii), which implies iii). Now iv)
follows from the remark that the transformation Rg(t) deforms the geodesic γ(t) in
vertical directions. Hence q(t) and γ(t) have the same projection to M ( which are
geodesics if and only if γ(t) is a horizontal geodesic.) �
Let (π : Q → M, gQ) be a Riemannian submersion and D ⊂ TQ a transversal to
fibers distribution. Necessary and sufficient conditions when the projection to M of
gQ-geodesics coincides with projection of geodesics of the sub-Riemannian manifold
(Q,D, g|D) are given in [22].

A sub-Riemannian geodesic q(t) = τ(ξ(t)) through a point q = q(0) is deter-
mined by the initial covector ξ(0) ∈ T ∗

qQ which may be decomposed as ξ(0) =
ξ(0)D + λ, where λ ∈ D0

q = Ann(D)q is the codistribution covector and ξ(0)D ∈
D∗

q is determined by the velocity vector q̇(0) ∈ Dq. The sub-Riemannian geodesics,

which are horizontal geodesics of gQ are characterized as geodesics with trivial
codistribution covector. Comparing theorem 21 and theorem 19, we get

Theorem 22 Let gD be a Chaplygin sub-Riemannian metric in a principal bundle
(π : Q → M,ϖ) and gQ the standard extension of the sub-Riemannian metric gD.
Then sub-Riemannian S-geodesics coincide with H-geodesics with trivial codistribu-
tion covector.

6.2.3 Bi-invariant extension of Chaplygin metric and Yang-Mills
dynamics

Assume now that gQ is a bi-invariant extension of the Chaplygin sub-Riemannian
metric gD, defined by an AdG-invariant metric gg of the Lie algebra g. Such
metric exists only when g is the Lie algebra of a compact Lie group. Then the
associated left invariant metric on the Lie group G is also right-invariant and the
metric gF (a∗, b∗) = gg(a, b) on a fiber π−1(x) and the extended Riemannian metric
gQ = gF + gD are also RG-invariant.

In this case, the geodesic Hamiltonian system with Hamiltonian hQ has a nice
physical interpretation as dynamical system, which describes the evolution of a
charged particle in the base manifold M in the presence of the Yang-Mills field,
defined by the principal connection ϖ : TQ→ g , see [41],[23].
Recall that with respect to a trivialisation Q = M ×G , the connection form may
be written as

ϖ = µ+A = (eαL +Aα
i dx

i)⊗ eα
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where (eα) is an orthonormal basis of g , (eLα) ( resp. , (e
α
L)) is the corresponding left

invariant field of frames (resp., coframes) on G and A = Aα
i (x, g)dx

i⊗ eα the Yang-
Mills potential, given by (10). The horizontal (RG-invariant) lifts of the coordinate
vector fields ∂i := ∂xi has the form ∂Di := ∂i−Aα

i e
R
α . Together with the fundamental

fields e∗α = eLα, they form a frame in Q = M × G. The sub-Riemannian metric is
characterized by the conditions gD(∂Di , ∂

D
j ) = gM (∂i, ∂j) = gij . The vertical metric

gF is defined by gF (eLα, e
L
β ) = gg(eα, eβ) = δαβ . The metric gQ = gF + gD is

RG-invariant and the fundamental fields e∗α = eLα are Killing vector fields. The
associated contravariant metric g−1

Q = g−1
F + g−1

D is defined by

g−1
F =

∑
eLα ⊗ eLα, g−1

D = gij(x)∂Di ⊗ ∂Dj = gij(∂i −Aα
i e

L
α)(∂j −Aα

j e
L
α).

Denote by (xi, pi) the local coordinates in T ∗M with T ∗M ∋ p = pidx
i and by

(gα, λα) the local coordinates in T ∗G, where gα are local coordinates in G and
T ∗
gG ∋ λ = λαe

α
L. Note that the linear forms λα ∈ T ∗

gG are identified with eLα|g.
The left invariant vector fields ∂i, ∂pi , ∂λα , e

α
L form a frame on T ∗Q = T ∗M × T ∗G.

The quadratic in momenta Hamiltonians hM , hF , hD, hQ = hF + hD can be written
as follows

hM = 1
2g

ij(x)pipj
hF = 1

2

∑
eLαe

L
α

hD = 1
2g

ij(x)(pi −Aα
i (x)λα)(pj −Aβ

j (x)λβ).

Using formula for the Poisson structure on T ∗G, one can easily calculate the Hamil-
tonian vector fields and the geodesic equation. We consider another approach, based
on the O’Neill formulas.

Lemma 23 The angle between a geodesic γ(t) of gQ and a fundamental field a∗, a ∈
g is constant. In particular, the orthogonal projection prT vQγ̇(t) of the velocity
vector field γ̇ to vertical subbundle is the restriction to γ(t) of some fundamental
vector field a∗ and the velocity vector field can be written as

γ̇(t) = a∗(γ(t)) + ẋD(γ(t))

where ẋD(γ(t)) is the horizontal lift of the velocity vector filed ẋ(t) of the projection
x(t) of γ(t) to M .

Remark 24 Physically, the angles φα between a geodesic γ̇ and the basic funda-
mental fields e∗α characterise the charges of a particle with respect to components of
the Yang-Mills field and the conditions φα = const are called the conservation of
charges. In particular, the evolution of neutral particles is described by horizontal
geodesics.

Proof: Let γ(t) be a geodesic and x(t) = prMγ(t) its projection to M . Then ẋ(t) =
prTM (γ̇(t)) and the horizontal part of the velocity vector field is γ̇(t)h = ẋ(t)D.
Hence, we can write

γ̇(t) = ẋ(t)D + ua(t)e∗a(γ(t)).

Then
d
dtg

Q(e∗β, γ̇(t)) = u̇β(t)

= ∇γ̇g
Q(e∗β, γ̇(t))

= gQ(∇γ̇e
∗
β, γ̇(t)) + gQ(e∗β,∇γ̇ γ̇(t))

= 0,
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since the covariant derivative ∇·e
∗
β of a Killing vector field e∗β = eLβ is a skew-

symmetric operator. �

The following theorem describes the relation between geodesics of the Rieman-
nian metric gM and geodesics of its bi-invariant extension gQ.

Theorem 25 A curve γ(t) ⊂ Q with projection x(t) = prMγ(t) and velocity vector
field γ̇(t) = a∗(γ(t)) + ẋD(γ(t)) is a geodesic of gQ if and only if it satisfies the
equation

∇Q
γ̇(t)γ̇(t) = (∇M

ẋ ẋ)
D + 2A∗

ẋDa∗ = 0. (12)

Proof: Using O’Neill formulas, we calculate the covariant derivative ∇Q
γ̇ γ̇ of the

velocity field γ̇ = a∗(γ(t)) + ẋD(γ̇(t)) as follows

∇Q
γ̇ γ̇ = (∇Q

a∗a
∗)(γ(t)) +∇Q

ẋD ẋ
D + 2∇Q

(ẋ)D
a∗ = (∇M

ẋ ẋ)
D(γ(t)) + 2A∗

ẋDa∗(γ(t)).

We use the fact that geodesics of the bi-invariant metric on a Lie group G are orbits
of 1-parameter subgroups, which implies ∇Q

a∗a
∗ = ∇F

a∗a
∗ = 0. �

Recall that 2A∗
XDa∗ = −F ∗

Xλ, λ = gQ ◦ a∗ ∈ D0 where F ∗
X : g∗ → ΓD is the

linear map, dual to the map FXq : Dq → g, associated with the curvature 2-form F .
The equation (12) is equivalent to the equation

∇M
ẋ ẋ = g−1

M λbF
b
i (ẋ) (13)

where the right hand side is the vector field metrically dual to the 1-form λbF
b
i (ẋ)

and λ ∈ g∗ is a constant covector (a charge). �

The equation (13) describes the motion of a charged particle in the Yang-Mills
field ϖ with the strength tensor F . In the case when π : Q→M is a circle bundle,
the connection ϖ defines the Maxwell field (if gM has Lorentz signature) and the
equation reduces to the Lorentz equation for a charge particle in the electromagnetic
field, defined by the curvature 2-form F .

7 Homogeneous sub-Riemannian manifolds

We consider some class of homogeneous sub-Riemannian manifolds, for which S-
geodesics coincide with H-geodesics and describe sub-Riemannian symmetric spaces.

7.1 Chaplygin system on homogeneous spaces

7.1.1 Chaplygin system of a Lie group

Let π : G → M = G/H be the principal bundle associated to a homogeneous
Riemannian manifold (M = G/H, g). A reductive decomposition g = h +m, m =
ToM, o = eH, defines a principal connection with connection form ϖ = prh ◦ µL,
which is the projection to h of the left invariant Maurer-Cartan form µL. Denote
by (D = ker ϖ, gD) the associated Chaplygin sub-Riemannian metric. Since the

stability subalgebra h is compact, it admits a bi-invariant Euclidean metric gh. We
denote by gG the associated bi-invariant extension of the sub-Riemannian metric.
It is a left G-invariant and right H-invariant metric on G.
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The distribution D := ker ϖ with D0 = m is bracket generating if and only if m
generates the Lie algebra g. The Jacobi identity shows that g′ := [m,m] + m is
a subalgebra of g. It generates a subgroup G′ ⊂ G which acts transitively in M .
Hence, changing G to G′, we may always assume that D is bracket generating.

Proposition 26 Let (M = G/H, gM ) be a homogeneous Riemannian manifold with
reductive decomposition g = h+m such that m generates g. Then the principal con-
nection ϖ := prh ◦ µL defines a Chaplygin left invariant sub-Riemannian structure

(G,D, gD) on the Lie group G with the connection ϖ. A bi-invariant metric gh

on h defines a bi-invariant extension of the sub-Riemannuian metric gD to a left
invariant Riemannian metric on G.

7.1.2 Chaplygin systems on homogeneous manifolds

Now we consider a generalisation of the above construction.
Assume that the stabilizer H of a Riemannian homogeneous manifoldM = G/H

is an almost direct product H = K · L of two compact normal subgroups and k, l
are associated Lie subalgebras. Then π : Q = G/K → M = G/K · L is an L-
principal bundle with the right action of L and M = G/H has the reductive (i.e.
AdH -invariant ) decomposition of the form

g = h+m = (k+ l) +m.

The projection ϖG = prlµ
L : TG → l of the left invariant Maurer-Cartan form µ

to l is a left invariant l-valued 1-form. The form ϖG is right K-invariant and right
L-equivariant, that is R∗

ℓϖ = Ad−1
ℓ ◦ϖ, ℓ ∈ L. Hence it projects to a G-invariant

principal connection form ϖ : TQ→ l. The principal bundle π : Q = G/K →M =
G/K ·L with the connection form ϖ : TQ→ l defines a Chaplygin sub-Riemannian
metric (D = ker ϖ, gD). As above, it admits a bi-invariant extension. We get

Proposition 27 A homogeneous Riemannian manifold (M = G/H, gM ) with non
simple stabilizer H = K · L defines an invariant sub-Riemannian Chaplygin metric
(D, gD) on the total space of the principal L-bundle π : Q = G/K →M = G/K · L
with the connection form ϖ : TQ → l, which is the projection to Q of the form
ϖG = prl ◦ µ

L on G. The sub-Riemannian metric admits a bi-invariant extension

to an invariant metric gQ on Q.

7.1.3 Homogeneous contact sub-Riemannian manifolds

The above construction may be applied to homogeneous Sasaki manifolds. We
consider the case of regular compact homogeneous Sasaki manifolds, described as
follows. Let M = G/H be a flag manifold (i.e. an adjoint orbit of a compact
semisimple Lie group G) and g = ω(·, J ·) an invariant Hodge-Kähler metric on
M , where J is an invariant complex structure and ω an integer invariant sym-
plectic form (the Kähler form). Then there exists a homogeneous principal circle
bundle π : Q = G/K → M = G/H = G/K · S1 with a principal connection
ϖ : TQ → R = LieS1, whose curvature form is ω. The Kähler metric is naturally
extended to an invariant Sasaki metric gQ, such that the fundamental field Z of the
S1-bundle π is a Killing field.
This Sasaki metric gQ is the bi-invariant extension of the Chaplygin sub-Riemannian
metric (D, gD) associated to the principal bundle π : Q→M with the connectionϖ.
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From physical point of view, the principal S1-bundle π : Q → M with Sasaki
metric corresponds to Kaluza-Klein description of electromagnetic field. The pro-
jection to M of geodesics of Sasaki metric are solutions of the Lorentz equation
which describes the evolution of electric charges in the electromagnetic field ω.

7.2 Symmetric sub-Riemannian manifolds

Strichartz [30] defined the notion of sub-Riemannian symmetric space as a homo-
geneous sub-Riemannian manifold (Q = G/H,D, gD) such that the stabilizer H
contains an involutive element σ (called the sub-Riemannian symmetry) which acts
on the subspace Do at the point o = eH ∈ Q as −id.
He classified 3-dimensional sub-Riemannian symmetric spaces and stated the prob-
lem of extension of this classification to higher dimensions.
P. Bieliavsky, E. Falbel and C. Gorodski [9] classified symmetric sub-Riemannian
manifolds of contact type. W. Respondek and A.J. Maciejewski [27] describe all
integrable sub-Riemannian metrics on 3-dimensional Lie groups with integrable H-
geodesic flow. They are exhausted by sub-Riemannian symmetric spaces.
Below we recall basic properties of affine symmetric spaces and give a construc-
tion of sub-Riemannian symmetric spaces in terms of affine symmetric spaces: Any
bracket generating sub-Riemannian symmetric space is the total space M = G/K
of a homogeneous bundle π : M = G/K → S = G/H over an affine symmetric
space S = G/H, determined by a compact subgroup K of the stability group H.

7.2.1 Affine symmetric spaces

Let (M,∇) be a (connected) manifold with a linear connection ∇. A non-trivial
involutive automorphism σ = σx of (M,∇)) is called a cental symmetry with
center x ∈ M if σ preserves x and acts as −id in the tangent space TxM . The
manifold (M,∇) is called an (affine) symmetric space if any point is the center
of some central symmetry σx. A product σxσy of two central symmetries with
sufficiently closed to each other centers x, y is a shift along the geodesics, connecting
these points. This implies that the group G, generated by all central symmetries
is a transitive Lie group, called the transvection group. The manifold M is
identified with the quotient space M = G/H, where H is the stabilizer of a point
o ∈ M . Then the central symmetry σ = σo defines an involutive automorphism
s = Ad σ0 : g 7→ s(g) := σ0 ◦ g ◦ σ0 of the Lie group G, which acts trivially on
the connected component H0 of H. We denote by s also the induced involutive
automorphism of the Lie algebra g = Lie(G). Its eigenspace decomposition

g = g+ + g−, s|g±
= ±id ,

where g+ = h = Lie(H), is called the symmetric decomposition. It is charac-
terized by the conditions

[g+, g−] ⊂ g−, [g−, g−] ⊂ g+.

Moreover, if G is the transvection group, then

[g−, g−] = g+. (14)

The geodesics through the point o = eH are orbits etXo of 1-parametric sub-
groups etX ∈ G generated by elements X ∈ g−.
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The following well known result establishes a bijection between symmetric de-
composition g = g+ + g− of a Lie algebra g with (14) and simply connected affine
symmetric spaces S = G/H, where G is the simply connected transvection group
with Lie(G) = g.

Theorem 28 Let g = g+ + g− be a symmetric decomposition with (14) associated
to an involutive automorphism s. Denote by G the simply connected Lie group with
Lie(G) = g and by H0 the connected subgroup of G, generated by h = g+. Then
S = G/H0 is a simply connected affine symmetric space. The invariant torsion free
linear connection ∇ in S is defined by the condition

∇XY
∗|o = −1

2
[X,Y ]o, X, Y ∈ g− = ToS

where Y ∗ denote the velocity vector field of a 1-parameter subgroup etY , Y ∈ g−.
The central symmetry with the center o = eH0 is defined by

σ : x = gH0 7→ σx := s(g)H0

where s is the involutive automorphism of the Lie group G generated by the auto-
morphism s of g. Moreover, any affine symmetric space, associated with the above
symmetric decomposition, has the form G/H where H is a closed subgroup such that
H0 ⊂ H ⊂ Gσ. Here Gσ is the fixed point set of σ.

7.2.2 Sub-Riemannian symmetric spaces associated with an affine
symmetric space

Let (S = G/H,∇, σ) be a simply connected affine symmetric space with the transvec-
tion group G.Without loss of generality, we may assume that the central symmetry
σ = σo belongs to the center Z(H) of the stability subgroup.Then the associated
involutive automorphism s = Ad σ of G acts trivially on H and defines a symmetric
decomposition g = g+ + g− where g+ = h = Lie(H). Let K ⊂ H be a compact
subgroup of H which contains σ.
The homogeneous manifold Q = G/K has a reductive decomposition

g = k+m = k+ (p+ g−)

where k = Lie(K) and g+ = k+p is a reductive (i.e. AdK-invariant ) decomposition
of g+. We identify m with the tangent space ToQ at the point o = eK. Then
the isotropy representation of K in ToQ is identified with AdK |m. The AdK-
invariant subspace g− of the tangent space m = ToQ is naturally extended to an
invariant distribution D ⊂ TQ. More precisely, for x = aK ∈ G/K, the subspace
Dx = (La)∗g−, where La : bK → abK is the action of G in Q = G/K.
The distribution D is invariant with respect to the action of involution σ ∈ K and
the isotropy action Ad σ|m of σ acts on g− ⊂ m as −id . Since G is the transvection
group, [g−, g−] = g+ and D is bracket generating distribution. Since the group K
is compact, there exist an AdK-invariant Euclidean metric g in g−. It is naturally
extended to an invariant sub-Riemannian metric gD in D, defined by

gDx (X,Y ) := g((L−1
a )∗X, (L

−1
a )∗Y ), a ∈ G, x = aK, X, Y ∈ TxQ = (La)∗g−.

Hence, the invariant sub-Riemannian manifold (Q = G/K,D, σ) is a sub-Riemannian
symmetric space. This proves the first claim of the following theorem.
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Theorem 29 i) Let (S = G/H,∇, σ) be a simply connected affine symmetric space
with the transvection group G and K ⊂ H a compact Lie subgroup, which contains
σ as a central element. Let g be an AdK-invariant Euclidean metric in g−. Then
the Euclidean space (g−, g) is extended to an invariant sub-Riemannian structure
(D, gD) in Q = G/K such that (Q = G/K,D, gD, σ) is a bracket generating sub-
Riemannian symmetric space.

ii) Conversely, up to a covering any bracket generating sub-Riemannian sym-
metric space can be obtained by this construction.

Proof: ii) Let (Q = G/K,D, gD, σ) be a bracket generating sub-Riemannian symmetric
space, where σ ∈ K is the sub-Riemannian symmetry with center o = eK and
s = Ad σ the associated involutive automorphism of G and g. We may chose a
reductive decomposition

g = k+m = (k+ + k−) + (m+ +m−)

of G/K which is consistent with the symmetric decomposition g = g++g−, defined
by s, such that g+ = k+ + m+, g− = k− + m−. By definition,the subspace Do =
D|o ⊂ ToQ = m belongs to m−. Since the distribution D is bracket generating,
we may assume that the subalgebra ḡ generated by ∆o coincides with g. But
ḡ = [Do, Do] + Do ⊂ g+ + D0. This implies that g = k+ + m+ + g−, and k =
k+, Do = g−,m = m+ + g− = g−. Denote by G+ the connected subgroup of G,
generated by g+, Since it commutes with σ, it is the connected component of the
group H = G+ ∪ σG+. The manifold S = G/H is an affine symmetric space with
the symmetry σ ∈ H, belonging to the center. Consider the subgroup K ′ = K ∩H
with the Lie algebra k. It also contains σ as a central element. The claim i) shows
that the space Q′ = G/K ′ has a structure of sub-Riemannian symmetric space
which is locally isomorphic to the initial sub-Riemannian symmetric space Q. �

7.2.3 Compact sub-Riemannian symmetric space associated to a
graded complex semisimple Lie algebra

We show that any flag manifold of depth > 1 admits the structure of bracket
generating symmetric sub-Riemannian manifold.

Let g =
∑d

i=−d gi be a fundamentally graded complex semisimple Lie algebra
of depth d ≥ 2 ( s.t. g−1 generates g−) and p :=

∑
i≥0 gi the associated parabolic

subalgebra. The associated ( complex compact simply connected) homogeneous
manifold F = G/P , where G ⊃ P are the Lie groups associated to Lie algebras
g ⊃ p, is called a flag manifold.
Denote by τ the anti-linear involution of g, which defines the compact real form gτ

s.t. gτ = gτ0 +
∑

i>0mi, mi := (g−i + gi)
τ .

The Lie algebra gτ has the symmetric decomposition

gτ = gτev + gτodd = (gτ0 +
∑

i≡0(mod2)

mi) +
∑

i≡1(mod2)

mi.

We denote by s the associated involution of the Lie algebra gτ and the corresponding
simply connected compact Lie group Gτ . Denote by H ⊂ G the connected compact
subgroup generated by h = gτ0 . The group G

τ acts transitively on the flag manifold
F with stability subgroup H and has the reductive decomposition

gτ = h+m = gτ0 +
∑
i>0

mi.
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The involutive automorphism s acts by σ|h = id , σ|mi
= (−1)iid .

Denote by D ⊂ TF the ( bracket generating) invariant distribution generated by m1

and by gD the invariant sub-Riemannian metric in D defined by an AdH -invariant
metric in m1. Then (D, gD) is an invariant sub-Riemannian metric of F = G/H.
Moreover, (F = Gτ/H,D, gD) is a sub-Riemannian symmetric space, where the
symmetry, defined by the involutive automorphism s.

This implies

Theorem 30 Let g =
∑k

i=−k gi be a fundamental depth k > 1 gradation of a
complex semisimple Lie algebra and let F = G/P be the associated flag manifold.
Denote by

gτ = h+m = h+

k∑
i=1

mi, h = gτ,0 mi = (g−i + gi)
τ

the associated decomposition of the compact real form gτ and by gm1 an adh-

invariant Euclidean metric in m1.
Then the pair (m1, g

m1) defines an invariant bracket generating sub-Riemannian
metric (D, gD) on the flag manifold F = Gτ/H considered as a homogeneous man-
ifold of the compact real form Gτ of G. Moreover, the sub-Riemannian manifold
(F = Gτ/H,D, gD) is a sub-Riemannian symmetric space with the symmetry defined
by the involutive automorphism s of g, associated with the symmetric decomposition
gτ = gτev + gτodd.

Example Let

g = g−2 + g−1 + g9 + g0 + g1 + g2, dim g±2 = 1

be the contact gradation of a complex simple Lie algebra g , i.e. the eigenspace
decomposition of adHµ where Hµ is the coroot associated to the maximal root µ of
g. Then the symmetric space Gτ/Gτ

ev is the quaternionic Kähler symmetric space
( the Wolf space ) and the flag manifold F = Gτ/H, where Lie(H) = hτ0 , is the
associated twistor space. The distribution D is the holomorphic contact distribution
and gD is the unique (up to scaling ) invariant sub-Riemannian metric on D ( for
g ̸= sln(C) ). It is the restriction of the invariant Kähler-Einstein metric on F .
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[15] A. Čap, J. Slovak, V. Zadnik, On Distinguished Curves in Parabolic Geome-
tries, Transf. Groups,9(2004)143-166.

[16] B. Doubrov, I. Zelenko, Geometry of curves in generalized flag varieties,
Transf.Groups,18(2013)361-383.
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