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Abstract

In 1995 J. C. Lagarias and Y. Wang conjectured that the gen-
eralized spectral radius of a finite set of square matrices can be at-
tained on a finite product of matrices. The first counterexample
to this Finiteness Conjecture was given in 2002 by T. Bousch and
J. Mairesse and their proof was based on measure-theoretical ideas. In
2003 V. D. Blondel, J. Theys and A. A. Vladimirov proposed another
proof of a counterexample to the Finiteness Conjecture which exten-
sively exploited combinatorial properties of permutations of products
of positive matrices.

In the paper, it is proposed one more proof of a counterexample
of the Finiteness Conjecture fulfilled in a rather traditional manner
of the theory of dynamical systems. It is presented description of the
structure of trajectories with the maximal growing rate in terms of
extremal norms and associated with them so called extremal trajec-
tories. The construction of the counterexample is based on a detailed
analysis of properties of extremal norms of two-dimensional positive
matrices in which the technique of the Gram symbols is essentially
used. At last, notions and properties of the rotation number for dis-
continuous orientation preserving circle maps play significant role in
the proof.
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1 Introduction

LetA = {A1, . . . , Ar} be a finite set of realm×mmatrices, and ‖·‖ be a norm
in Rm. Associate with any finite sequence σ = {σ1, σ2, . . . , σn} ∈ {1, . . . , r}n
the matrix

Aσ = Aσn · · ·Aσ2Aσ1 ,

and define for any n ≥ 1 two quantities:

ρn(A) = max
σ∈{1,...,r}n

‖Aσ‖1/n, ρ̄n(A) = max
σ∈{1,...,r}n

ρ(Aσ)1/n.

Then there exists the limit

ρ(A) = lim sup
n→∞

ρn(A),

which does not depend on the choice of the norm ‖ · ‖. This limit is called
the joint spectral radius of the matrix set A. Analogously, there exists the
limit

ρ̄(A) = lim sup
n→∞

ρ̄n(A),

which is called the generalized spectral radius of the matrix set A. As is
shown in [2], for finite matrix sets A the quantities ρ(A) and ρ̄(A) coincide
with each other, and for any n the following inequalities hold

ρ̄n(A) ≤ ρ̄(A) = ρ(A) ≤ ρn(A).
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In [14] J. C. Lagarias and Y. Wang conjectured that the value ρ̄(A) in
fact coincides with ρ(Aσ)1/n for some n and σ ∈ {1, . . . , r}n. The first coun-
terexample to this conjecture (which got the name Finiteness Conjecture)
was proposed in [5], and the corresponding proof was essentially based on
measure-theoretical ideas. Later, another proof [3, 4] of counterexample to
the Finiteness Conjecture appeared which extensively exploited combinato-
rial properties of permutations of products of positive matrices.

In this paper, it is given one more proof of the counterexample to the
Finiteness Conjecture fulfilled in a rather traditional manner of the theory
of dynamical systems. The proof is based on the technique of the so called
extremal norms (closely related with the usage of functionals Mañé in [5])
and associated with them extremal trajectories for analysis of “the fastest
growing trajectories” generated by matrix sets. To our knowledge, it was
N. Barabanov [1] who first realized the role of extremal norms in the analysis
of properties of matrix products. At a later time, the technique of extremal
norm was used in different problems related to the investigation of properties
of matrix products (see, e.g., [15]). In this paper, we give a more detailed
analysis of the properties of extremal norms of two-dimensional positive ma-
trices in which the technique of the Gram symbols, borrowed from [5], is
essentially used. At last, in the proposed proof, the notion and proper-
ties of the rotation number for discontinuous preserving orientation circle
maps [6, 8, 9] play significant role.

2 Trajectories of Matrix Sets

One of the important problem in the study of properties of matrix sets A =
{A1, . . . , Ar} is how the joint (generalized) spectral radius ρ(A) is related
with the rate of growth of solutions of the difference inclusion

xn+1 ∈ {A1, . . . , Ar}xn, (1)

in which the value of xn+1 is chosen from the set of vectors {A1xn, . . . , Arxn}.
Notice that each solution of inclusion (1) is defined for all n ≥ 0 and, with
some choice of the index sequence {σn}, satisfies the equation

xn+1 = Aσnxn, σn ∈ {1, . . . , r}. (2)

Clearly, the converse is also true, which means that each solution of the
difference equation of the type (2) corresponding to some index sequence {σn}
is a solution of the difference equation (1). To formulate further properties of
the solutions of inclusion (1) we recall some definitions and commonly known
facts.
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In what follows solutions of inclusion (1) will be referred to as trajectories
defined by the matrix set A or simply trajectories of the matrix set A. The
set of all trajectories of the matrix set A will be denoted as T (A), the set
of all trajectories x = {xn}∞n=0 of the matrix set A satisfying the initial
condition x0 = x will be denoted as T (A, x). In general, for r > 1 the map

x 7→ T (A, x)

is set-valued, as well as plenty of other maps arising in the field of difference
inclusions. In connection with this recall some definitions and basic facts of
the theory of set-valued maps (see, e.g., [13, §18]).

Let X and Y be topological spaces and f be a map associating with each
element x ∈ X a set f(x) ⊆ Y. Then the map f is called set-valued or
multi-valued. The map f is called upper semi-continuous at a point x ∈ X if
for any open set U 3 f(x) there is an open set V 3 x such that f(V) ⊆ U .1

The graph of the map f is the set

Gr(f) = {(x, y) : x ∈ X, y ∈ f(x)} ⊆ X× Y.

The map f is called closed (compact) if for any closed (compact) set G ⊆ X
the set f(G) ⊆ Y is also closed (compact). Clearly, each compact map is
closed.

For the convenience of the reader recall without proofs some commonly
known properties of set-valued maps.

Lemma 1 Let x ∈ X 7→ f(x) ⊆ Y be a set-valued map and let the space Y
be regular.2 Then the following statements are valid:

(i) if the map f is closed and upper semi-continuous then its graph is
closed in X× Y;

(ii) if the map f is compact and its graph is closed then it is upper semi-
continuous;

(iii) the map f is compact and upper semi-continuous if and only if,
given a converging sequence {xn ∈ X}, any sequence {yn ∈ Y} satisfying
yn ∈ f(xn) is compact and the limiting elements x∗ and y∗ of the sequences
{xn} and {yn}, respectively, are bounded by the inclusion y∗ ∈ f(x∗).

Denote the set of all ordered r-tuples A = {A1, . . . , Ar} of real m × m
matrices by Mm,r. Then the set Mm,r may be identified in a natural way

1Here, the notation f(V) is used to denote the set ∪y∈Vf(y).
2A topological space X is called regular if for any its closed set G and point x 6∈ G there

are open sets U and V such that x ∈ U , G ⊂ V and U ∩ V = ∅. For example, any metric
space is regular. In particular, spaces Rm and Mm,r are regular.
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with Rrm2
if to treat entries of the matrices from A enumerated in some

predefined order as coordinates in Rrm2
. This allows to treat Mm,r as a

topological or, when needed, a metric space.
Denote the space of sequences {xn}∞n=0 endowed with the topology of

point-wise convergence by Ω(Rm). At last, the subset

Ωn = {x : ∃ x = {xn}∞n=0 ∈ Ω : xn = x}.

of Rm consisting of n-th elements of the sequences from the set Ω ⊆ Ω(Rm)
will be called the n-section of the set Ω. Point out that the set Ω is compact
in the space Ω(Rm) provided that each its section Ωn is bounded.

Now, we are able to formulate properties of the trajectories of matrix sets
needed in what follows.

Lemma 2 For any matrix set A the set of trajectories T (A) is closed in the
space Ω(Rm), and the map (A, x) 7→ T (A, x) is compact and upper semi-
continuous.

This Lemma is a simple corollary of the compactness criterium in the
sequence space Ω(Rm), so its proof is omitted.

In what follows, our prime point of interest will be so-called irreducible
matrix sets. In connection with this, recall that the matrix set A is called
irreducible if the matrices from A have no common invariant spaces except
{0} and Rm. In [10–12] such a matrix set was called quasi-controllable.
Basic properties of irreducible matrix sets in the context of the Finiteness
Conjecture will be studied later on, but now let us formulate an auxiliary
statement.

Let x ∈ Rm. Denote the n-section of the set T (A, x) by Tn(A, x). Also,
define for any n = 0, 1, 2 . . . the sets

T ∗n (A, x) =
n⋃
k=0

Tk(A, x).

Recall that in the Introduction every finite sequence σ = {σ1, σ2, . . . , σn}
∈ {1, . . . , r}n was associated with the matrix Aσ = Aσn · · ·Aσ2Aσ1 , and it
was supposed implicitly that n ≥ 1. In the sequel it will be convenient to
extend the notation Aσ on the degenerate case in which the sequence σ is
empty, i.e. consists of zero amount of elements. So, we set {1, . . . , r}0 = ∅.
In this case it is naturally to identify σ ∈ {1, . . . , r}0 with the empty set and
to denote A∅ = I.
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Lemma 3 The set T ∗n (A, x) coincides with the set of all possible vectors of
the form Aσx, where σ ∈ {1, . . . , r}k for some, possibly zero, integer k ≤ n.

If A is an irreducible set of m × m matrices and x 6= 0 then the set
T ∗n (A, x) contains at least min{n+ 1,m} linearly independent elements one
of which may be assumed to be coinciding with x.

Proof. Only the second claim of this Lemma has to be proved. Denote
the linear hull of the set T ∗n (A, x) by Ln(A, x). Then the dimension of
the subspace Ln(A, x) will be equal to the amount of linearly independent
vectors in the set T ∗n (A, x). Since, in addition, for any n ≥ 0 the inclusion
T ∗n (A, x) ⊆ T ∗n+1(A, x) holds then Ln(A, x) ⊆ Ln+1(A, x). So,

1 = dimL0(A, x) ≤ dimL1(A, x) ≤ . . . ≤ dimLn(A, x) ≤ . . . .

Consequently, Lemma 3 will be proved if we show that

dimLn(A, x) ≥ n+ 1, n = 0, 1, . . . ,m− 1. (3)

Prove inequalities (3) by induction. For n = 0 inequalities (3) hold since
the subspace L0(A, x) coincides with the linear hull of the vector x, and so
dimL0(A, x) = 1. Suppose that the assertion of Lemma 3 is valid for some
n = k < N − 1, i.e. dimLk(A, x) ≥ k + 1. Then, due to the supposition on
irreducibility of the matrix setA, the subspace Ln(A, x) can not be invariant
for all the matrices A1, . . . , Ar. Therefore, there is a matrix Ai such that
AiLn(A, x) 6⊆ Ln(A, x). Hence Lk+1(A, x) 6= Lk(A, x). From this it follows
that dimLk+1(A, x) ≥ dimLk+1(A, x) + 1 ≥ k+ 2. So, the induction step is
justified, and the proof of Lemma 3 is completed. �

3 Extremal Norms and Trajectories: General

Case

In the analysis of the properties of the joint spectral radius ideas introduced
by N. E. Barabanov in [1] play an important role. These ideas were further
developed in a number of publications amongst which we distinguish [15].

Theorem 1 (N. E. Barabanov) Let the matrix set A = {A1, . . . , Ar} be
irreducible. Then the quantity ρ is the joint (generalized) spectral radius of
A if and only if there exists a norm ‖ · ‖ in Rm such that

ρ‖x‖ = max {‖A0x‖, ‖A1x‖, . . . , ‖Arx‖} . (4)
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A norm satisfying (4) will be called an extremal norm for the matrix
set A. Remark that in Theorem 1 it is sufficient to suppose that ‖ · ‖ in
the condition (4) is not a norm but only a semi-norm. The validity of this
statement follows from the next Lemma.

Lemma 4 Let the matrix set A be irreducible. Then any semi-norm ‖ · ‖
satisfying (4) is a norm provided that it does not equal identically to zero.

Proof. As is easy to see the kernel of the semi-norm ‖ · ‖ is a subspace L
which, due to the supposition that the semi-norm is not identically zero, does
not coincide with the whole space Rm, i.e. L 6= Rm. If additionally L 6= {0}
then from the irreducibility of the matrix set A it follows the existence of
such a vector x∗ ∈ L for which Aix∗ 6∈ L for some i. Then by the definition
of the subspace L the following two relations should be valid simultaneously:
‖x∗‖ = 0 and ‖Aix∗‖ 6= 0, which contradicts to (4). From the obtained
contradiction it follows that L = {0}, and so ‖ · ‖ is a norm. Lemma 4 is
proved. �

Note that the set of extremal norms possesses a variety of strong proper-
ties which will be shown below.

3.1 Boundedness of the Set of Extremal Norms

Let ‖ · ‖0 be a norm in Rm which will play the role of a calibrating norm, i.e.
such a norm with which all other norms in Rm are compared.

As is known, all norms in Rm are equivalent, so for any norm ‖ · ‖ there
are constants ∆, δ > 0 such that

δ‖x‖0 ≤ ‖x‖ ≤ ∆‖x‖0.

Clearly, in general, there are no universal constants ∆, δ > 0 since for any
given constants ∆, δ > 0 the multiplication of the norm ‖ · ‖ by a number
easily breaks the above inequalities. Hence, it is meaningful to compare
with ‖ · ‖0 only such norms which are calibrated beforehand, i.e. which, for
example, take the same values at a some predefined point x0 6= 0.

In this case the following question may be posed: are there constants
∆, δ > 0 for which the inequalities

δ‖x‖0 ≤
‖x‖
‖x0‖

≤ ∆‖x‖0 (5)

hold? Still, even in this case the question posed above has the negative
answer for arbitrary norms ‖ · ‖. At the same time, as it will be shown below
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if we consider only extremal norms ‖ · ‖ then there are universal constants
∆, δ > 0 for which the inequalities (5) hold. In this Section, the proof of the
existence of the required constant ∆ will be given.

Choose an arbitrary nonzero vector x0 ∈ Rm and an irreducible set of
m × m matrices A. Then, by Lemma 3, the set T ∗m−1(A, x0) contains N
linearly independent vectors x0, x1, . . . , xm−1. Then the balanced convex set3

S] = co{±x0,±x1, . . . ,±xm−1} (6)

contains the origin in its interior and so it may be treated as the unit ball in
the norm ‖ · ‖] in Rm determined by the inequality

‖x‖] = inf{t : t > 0, x ∈ tS]}, (7)

i.e. S] = {x : ‖x‖] ≤ 1}.

Lemma 5 Let ‖ ·‖] be the norm introduced in (6)–(7) and determined by an
irreducible set of m ×m matrices A and by a vector x0 6= 0. Then for any
norm ‖ · ‖ extremal with respect to the matrix set A the following estimate
holds:

‖x‖
‖x0‖

≤ (max{1, ρ(A)})m−1 ‖x‖] ∀x ∈ Rm. (8)

Proof. By Lemma 3 each of the vectors x0, x1, . . . , xm−1 in (6) may be
represented in the form

xi = Aσ(i)x0, i = 0, 1, . . . ,m− 1,

where σ(i) ∈ {1, . . . , r}ki for some, possibly zero, integer ki ≤ m− 1. There-
fore, for arbitrary norm ‖ · ‖ extremal with respect to the matrix set A the
inequalities

‖xi‖ ≤ (max{1, ρ(A)})m−1 ‖x0‖, i = 0, 1, . . . ,m− 1.

are valid. The obtained inequalities show that

S] ⊆ {x : ‖x‖ ≤ (max{1, ρ(A)})m−1 ‖x0‖}

from which the estimate (8) follows. Lemma 5 is proved. �

3Recall that a set in a linear space is called balanced if with each its element x it
contains also the element −x.
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Lemma 6 Let ‖ · ‖0 be a norm and x0 6= 0 be a vector in Rm. Let also A be
an irreducible set of m ×m matrices. Then there is a number ∆ < ∞ and
a neighborhood A of the matrix set A such that for any norm ‖ · ‖′ extremal
with respect to the matrix set A′ ∈ A the following estimate is valid

‖x‖′

‖x0‖′
≤ ∆‖x‖0 ∀x ∈ Rm. (9)

Proof. Let A = {A1, . . . , Ar}. Then by Lemma 3 the set T ∗m−1(A, x0)
contains the linearly independent vectors x0, x1, . . . , xm−1 of the form

xi = xi(A) = Aσ(i)x0, i = 0, 1, . . . ,m− 1,

where σ(i) ∈ {1, . . . , r}ki for some, possibly zero, ki ≤ m − 1. In this case,
for any matrix set A′ = {A′1, . . . , A′r} from a sufficiently small neighborhood
A of A the vectors

x′i = xi(A
′) = A′σ(i)x0, i = 0, 1, . . . ,m− 1,

are also linearly independent.
For each A′ ∈ A we denote by S](A

′) the balanced convex set

S](A
′) = co{±x0(A′),±x1(A′), . . . ,±xm−1(A′)},

which contains the origin in its interior. As it was noted above, such a set
may be treated as the unit ball in the norm ‖ · ‖′] in Rm determined by the
equation

‖x‖′] = inf{t : t > 0, x ∈ tS](A′)}.

Then from Lemma 5 it follows that

‖x‖
‖x0‖

≤ (max{1, ρ(A(λ))})m−1 ‖x‖′] ∀x ∈ Rm, ∀A′ ∈ A. (10)

To complete the proof, it remains only to note that the vectors x0(A′),
x1(A′), . . . , xm−1(A′) depend continuously on A′ and are linearly indepen-
dent at the point A′ = A. Hence the intersection of the sets S](A

′) with
A′ ∈ A has a nonempty interior to which the origin belongs. Therefore,
there exists a constant µ such that

{x : ‖x‖0 ≤ 1} ⊆ µ
⋂
A′∈A

S](A
′),

and then
‖x‖′] ≤ µ‖x‖0 ∀x ∈ Rm, ∀A′ ∈ A. (11)
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From (10) and (11) we readily obtain the statement of Lemma 6 with the
constant ∆ defined as

∆ = µ sup
A′∈A

(max{1, ρ(A′)})m−1
.

Here, one can assume that the constant ∆ is finite since the supremum in the
right hand part of the latter formula is bounded in any bounded neighborhood
of the matrix set A, while the neighborhood A is supposed to be rather small
and hence bounded. Lemma 6 is proved. �

3.2 Compactness of the Set of Extremal Norms

Let A be an irreducible matrix set. Denote by Next(A, x0), where x0 6= 0 ∈
Rm, the set of all norms ‖ · ‖ which are extremal with respect to the matrix
set A and satisfy the calibrating condition ‖x0‖ = 1. The notation Cloc(Rm)
will be used for the linear topological space of continuous functions defined
on Rm with the topology of uniform convergence on bounded subsets from
Rm.

Theorem 2 Let x0 6= 0 ∈ Rm and let A be an irreducible set of m × m
matrices. Then there exists a compact neighborhood A of A such that the
map

A′ 7→ Next(A
′, x0), A′ ∈ A (12)

is compact and upper semi-continuous.

Proof. Given a norm ‖·‖0 in Rm, define A as such a compact neighborhood
of the matrix setA whose existence has been established Lemma 6. Introduce
the set of norms

N :=
⋃
A′∈A

Next(A
′, x0),

and show that this set is compact in the space Cloc(Rm).
Indeed, by Lemma 6 for some ∆ <∞ the following estimates hold

‖x‖ ≤ ∆‖x‖0 ∀x ∈ Rm, ∀‖ · ‖ ∈ N ,

and so the values of the norms from N are uniformly bounded on each
bounded set from Rm. Besides, again by Lemma 6 we have∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ≤ ∆‖x− y‖0 ∀x, y ∈ Rm, ∀‖ · ‖ ∈ N ,

and hence the norms from N are functions satisfying a uniform Lipschitz
condition on Rm. Thus, the norms from N form a set of uniformly bounded
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and equicontinuous functions on each closed bounded set from Rm, from
which by the Arzela-Ascoli theorem the compactness of the set N in the
space Cloc(Rm) follows.

Now we prove that the graph of the map (12) is closed in the space
A × Cloc(Rm). Let {

(
A(n), ‖ · ‖(n)

)
}, where A(n) ∈ A, be a sequence of

elements belonging to the graph of the map (12) and converging to some
element

(
A∗, ν(·)

)
∈ Mm,r × Cloc(Rm). Then the compactness of A implies

the inclusion A∗ ∈ A. At the same time, we may state that the function ν(·),
being a limit in Cloc(Rm) of a sequence of norms ‖ · ‖(n), is only a semi-norm.

From the definition of the sequence {
(
A(n), ‖·‖(n)

)
} it follows that ‖·‖(n) ∈

Next(A
(n), x0) for each value of n and therefore

ρ(A(n))‖x‖(n) = max
{
‖A(n)

1 x‖(n), . . . , ‖A(n)
r x‖(n)

}
∀x ∈ Rm ,∀n. (13)

Here, due to the assumption about the irreducibility of the matrix set A,
without loss of generality, one can assume that each of the matrix sets A(n)

is also irreducible. In this case it holds (see [7]) ρ(A(n)) → ρ(A∗) and, by
passing to limit in (13), we obtain

ρ(A∗)ν(x) = max {ν(A∗0x), ν(A∗1x), . . . , ν(A∗rx)} ∀x ∈ Rm,

with ν(x0) = limn→∞ ‖x0‖(n) = 1. Hence, the semi-norm ν is extremal with
respect to the irreducible matrix set A∗ and does not equal identically to
zero. Then by Lemma 4 this semi-norm is in fact an extremal norm, i.e.
ν(·) = ‖ · ‖∗ ∈ Next(A

∗, x0), which means that the graph of the map (12) is
closed.

So, it is proved that the graph of the map (12) is closed and that the set
N is compact. From this we get by Lemma 1 the compactness and upper
semi-continuity of the map (12). Theorem 2 is proved. �

3.3 Uniform Equivalence of Extremal Norms

Now, we are able to prove the left-hand side of the inequalities (5).

Lemma 7 Given a norm ‖ · ‖0 and a vector x0 6= 0 in Rm, let A be an
irreducible set of m ×m matrices. Then there exist a number δ > 0 and a
neighborhood A of A such that for any norm ‖ · ‖′ extremal with respect to
the matrix set A′ ∈ A the following estimate hold:

δ‖x‖0 ≤
‖x‖′

‖x0‖′
∀x ∈ Rm.
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Proof. Define A as the neighborhood of the matrix set A determined by
Theorem 2. Then, supposing that Lemma 7 in not true, one may choose
matrix sets A(n) ∈ A and corresponding to them extremal norms ‖ · ‖(n) ∈
Next(A

(n), x0) as well as vectors x(n) such that ‖x(n)‖0 = 1 and

‖x(n)‖(n)

‖x0‖(n)
→ 0 as n→∞. (14)

Now, by Theorem 2 one can suppose that the sequences {A(n)} and {‖ ·
‖(n)} are convergent, i.e. A(n) → A∗ ∈ A and ‖ · ‖(n) → ‖ · ‖∗ ∈ Next(A

∗, x0).
The sequence {x(n)} also can considered as convergent: x(n) → x∗ 6= 0. Then,
by passing in (14) to limit, we obtain the equality

‖x∗‖∗

‖x0‖∗
= 0, x∗, x0 6= 0,

which is impossible since ‖ · ‖∗ is a norm. The contradiction completes the
proof of Lemma 7. �

Properties of extremal norms proven in Lemmas 6 and 7 can be easily
reformulated in a universal form which does not depend on the choice of an
auxiliary vector x0.

Theorem 3 For any irreducible set of m ×m matrices A there are neigh-
borhood A of A and constants 0 < δ ≤ ∆ < ∞ such that for any pair of
norms ‖ · ‖′ and ‖ · ‖′′ extremal for the matrix sets A′,A′′ ∈ A, respectively,
the following estimates

δ2

∆2

‖x‖′′

‖y‖′′
≤ ‖x‖

′

‖y‖′
≤ ∆2

δ2

‖x‖′′

‖y‖′′
∀x, y 6= 0 ∈ Rm,

are valid.

This theorem is a direct corollary of Lemmas 6 and 7, so its proof is
omitted.

Note in conclusion that in addition to topological properties formulated
above, extremal norms possess also some algebraic structure.

Lemma 8 Let ‖ · ‖′ and ‖ · ‖′′ be extremal norms corresponding to a matrix
set. Then ‖x‖ = max

{
‖x‖′, ‖x‖′′

}
is also an extremal norm corresponding

to the same matrix set.

Proof of this Lemma is evident.
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3.4 Extremal Trajectories and Their Generators

Introduce some notions. A trajectory {xn} of the matrix set A will be called
characteristic if there are constants 0 < c1 ≤ c2 <∞ such that

c1 ≤ ρ−n(A)‖xn‖ ≤ c2 ∀n.

Remark that the definition of a characteristic trajectory does not depend
on the choice of the norm ‖ · ‖ in Rm. An important particular case of
characteristic trajectories are so-called extremal trajectories. A trajectory
{xn} of the matrix set A will be called extremal if in some extremal norm
‖ · ‖ the following identities hold:

ρ−n(A)‖xn‖ ≡ const. (15)

In contrast to the definition of characteristic trajectories the definition of
extremal trajectories depends on the choice of the extremal norm. So, a
trajectory extremal in one norm may be not extremal in another. Neverthe-
less, as will be shown below in Lemma 10 for an irreducible matrix set one
can always find extremal trajectories which are universal in the that such
trajectories are extremal in each extremal norm.

Now we prove that the set of extremal trajectories, and consequently the
corresponding set of characteristic trajectories is not empty in the case when
the matrix set A is irreducible.

Lemma 9 For any vector x 6= 0 ∈ Rm and any extremal norm ‖ · ‖ there is
an extremal trajectory {xn} satisfying x0 = x.

Proof. Construct recursively the trajectory {xn} of the matrix set A sat-
isfying x0 = x. Suppose that the element xn is already found. Then, by the
definition of the extremal norm, the following equality is valid:

ρ(A)‖xn‖ = max {‖A0xn‖, ‖A1xn‖, . . . , ‖Arxn‖} .

Hence, there exists an index σn for which ρ(A)‖xn‖ = ‖Aσnxn‖. So, in order
to satisfy conditions (1), (15) it is sufficient to define the element xn+1 by
the equality xn+1 = Aσnxn. Lemma 9 is proved. �

Corollary 1 If the matrix set A is irreducible then the set of its extremal
trajectories as well as the set of its characteristic trajectories is nonempty.

The proof of this Corollary immediately follows from Theorem 1 assert-
ing that for an irreducible matrix set the set of extremal norms is not empty,
and from Lemma 9 according to which in this case the set of corresponding
extremal trajectories is also nonempty. �
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Lemma 10 For any irreducible matrix set A there are trajectories which are
extremal with respect to any norm extremal for the matrix set A.

Proof. Let {xn} be a trajectory of the matrix set A which is extremal in
some extremal norm ‖ · ‖0. Consider the sequence of “shifted” trajectories

xk = {x(k)
n } defined as follows

x(k)
n = ρ−kxn+k, n = 0, 1, 2, . . . .

Then for each fixed n = 0, 1, . . . the set of elements {x(k)
n } is uniformly

bounded

‖x(k)
n ‖0 = ‖ρ−kxn+k‖0 = ρn‖x0‖, k = 0, 1, . . . ,

where ρ = ρ(A). Hence, by Lemma 2 the sequence of trajectories xk is
compact in the space Ω(Rm). Therefore, without loss of generality one may
suppose that for each n = 0, 1, . . . there exists the limit

x∗n = lim
k→∞

x(k)
n = lim

k→∞
ρ−kxn+k. (16)

Note that by Lemma 2 the set of all trajectories of the matrix set A is closed
in the space Ω(Rm), and so the limiting sequence x∗ = {x∗n}∞n=0 is also a
trajectory of the matrix set A.

At last, show that the trajectory x∗ = {x∗n}∞n=0 is extremal in any extremal
norm of the matrix setA. Fix an arbitrary norm ‖·‖∗ extremal for the matrix
set A. Then, by the definition of an extremal norm, for the trajectory {xn}
the following inequalities hold

‖x0‖∗ ≥ ρ−1‖x1‖∗ ≥ ρ−2‖x2‖∗ ≥ . . . ≥ ρ−n‖xn‖∗ ≥ . . . ≥ c1 > 0.

Hence, the sequence {ρ−n‖xn‖∗} monotonously decreases and consequently
there exists limit

lim
n→∞

ρ−n‖xn‖∗ = ω ≥ c1 > 0.

Together with (16) the latter relation implies

ρ−n‖x∗n‖∗ = lim
k→∞

ρ−(n+k)‖xn+k‖∗ = ω, n = 0, 1, . . . .

So, the trajectory x∗ = {x∗n}∞n=0 is extremal in the norm ‖ · ‖∗. Lemma 10 is
proved. �

Denote by E(A, x) the set of all extremal trajectories {xn}∞n=0 of the
matrix set A satisfying the initial condition x0 = x 6= 0.

14



Theorem 4 Let X ⊂ Rm be a compact set which does not contain the origin
and let A be an irreducible set of m×m matrices. Then there is a compact
neighborhood A of A such that the map(

A′, x
)
7→ E(A′, x), A′ ∈ A, x ∈ X , (17)

is compact and upper semi-continuous.

Proof. Let A be such a closed neighborhood of the matrix set A whose
existence is asserted by Lemma 6. Consider the sets

E =
⋃
A′∈A

⋃
x∈X

E(A′, x), T =
⋃
A′∈A

⋃
x∈X

T (A′, x),

and observe that the set E , being a subset of a compact by Lemmas 1 and 2
the set T ⊆ Ω(Rm), is also compact in the space Ω(Rm).

Now we show that the graph of the map (17) is closed in A×X ×Ω(Rm).
Choose a sequence of elements

(
A(k), x(k),x(k)

)
with A(k) ∈ A and x(k) ∈ X

belonging to the graph of the map (17) and converging to some element(
A∗, x∗,x∗

)
∈ A×X ×Ω(Rm). Then the sequence

(
A(k), x(k),x(k)

)
belongs

also to the graph of the map T (A, x). In this case, due to the compactness
and upper semi-continuity of the map T (A, x) (see Lemma 2), the limiting
element

(
A∗, x∗,x∗

)
also belongs to the graph of the map T (A, x):

x∗ ∈ T (A∗, x∗).

Hence, x∗ is a trajectory of the matrix set A∗ ∈ A satisfying the initial
condition x∗ ∈ X . It remains only to prove that the trajectory x∗ is extremal.

By construction, x(k) = {x(k)
n } is a trajectory of the matrix set A(k) which

is extremal in some matrix norm ‖ · ‖(k). Then

‖x(k)
0 ‖(k) = ρ−1(A(k))‖x(k)

1 ‖k = . . . = ρ−n(A(k))‖x(k)
n ‖(k) = . . . , (18)

where by Theorem 2 one may assume that the sequence of extremal norms
‖·‖(k) converges to some extremal norm ‖·‖∗ of the matrix setA∗. Therefore,
taking the limit in (18) we obtain4:

‖x∗0‖∗ = ρ−1(A∗)‖x∗1‖∗ = . . . = ρ−n(A∗)‖x∗n‖∗ = . . . .

The obtained relations justify that the trajectory x∗ = {x∗n} of the matrix
set A∗ is extremal in the extremal norm ‖ · ‖∗.

4Remark that ρ(A(k))→ ρ(A∗) as k →∞ since the generalized spectral radius depends
continuously [7] on the irreducible matrix set.
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So, it is proved that the graph of the map (17) is closed and that the
set E is compact. By Lemma 1 this implies the compactness and upper
semi-continuity of the map (17). Theorem 4 is proved. �

In order to describe completely an extremal trajectory x = {xn} one
should know not only the information about the sequence {xn} but also the
information about the related index sequence {σn}. Below, it will be pro-
posed a construction which determines extremal trajectories as all possible
trajectories of some set-valued nonlinear dynamical system. Such a con-
struction will allow us to avoid the necessity to describe explicitly the index
sequence {σn}.

Let ρ = ρ(A) and let ‖ · ‖∗ be an extremal norm for the matrix set
A = {A1, . . . , Ar}. Denote for each x ∈ Rm the map g(x) by setting

g(x) := {w : ∃i ∈ {1, . . . , r} for which w = Aix, with ‖Aix‖∗ = ρ‖x‖∗}.

By the definition of an extremal norm the set g(x) for each x ∈ Rm is not
empty and consists of no more than m elements. Note also that each map
g(x) has a closed graph and for it the following identity is valid

‖g(x)‖∗ ≡ ρ‖x‖∗. (19)

Lemma 11 The sequence x = {xn} is extremal for the matrix set A in the
extremal norm ‖ · ‖∗ if and only if it satisfies the inclusions

xn+1 ∈ g(xn) ∀n.

The proof of this Lemma immediately follows from the definitions of
the extremal norm and the map g. �

According to Lemma 11 each trajectory of the set-valued map g(·) is
extremal in the norm ‖ · ‖∗. This motivates us to call the map g(·) as the
generator of extremal trajectories. In general, the map g(·) can not be de-
scribed explicitly. Nevertheless, in Section 5 for the sets of 2× 2 matrices we
will be able to obtain a rather detailed description of the properties of the
generators of extremal trajectories.

4 Extremal Norms: the Case of a Pair of

Two-dimensional Matrices

In this Section, for the case when the set A consists of two 2 × 2 matrices
some additional properties of extremal norms and extremal trajectories are
established.
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4.1 Definition and Properties of the Matrix Set

Consider the pair of matrices

A0 = α

∥∥∥∥ a b
0 1

∥∥∥∥ , A1 = β

∥∥∥∥ 1 0
c d

∥∥∥∥ , (20)

where α, β > 0 and
bc ≥ 1 > a, d > 0. (21)

In this case, iterations of an arbitrary point under the action of the matrix
A0 tend to the subspace L0 = {(x0, x1) : bx1 = (1−a)x0}, and iterations of an
arbitrary point under the action of the matrix A1 tend to the subspace L1 =
{(x0, x1) : (1−d)x1 = cx0} (see. Fig. 1). In the case when bc > (1−a)(1−d),
and all the more when conditions (21) are fulfilled, the limiting subspaces
L0 and L1 differ from each other and their mutual disposition is such as in
Fig. 1.

x0

x1

A0

A1

L bx -a x0 1 0= { = (1 ) }

L x x1 1 0= { = }(1 )-d c

x

j

1

1

c c/(1+ )

1/(1+ )b

j x1( )

j x0( )

Figure 1: Action of matrices A0, A1 Figure 2: Plots of functions ϕ0(ξ),
ϕ1(ξ)

Associate the ray t(x0, x1), t > 0, passing the point (x0, x1) 6= 0, x0, x1 ≥
0, with the number ξ = x1/(x0 + x1) ∈ [0, 1]. Under such association the
semi-axis of abscisses, i.e. the ray t(1, 0), is represented by the number
ξ = 0, while the semi-axis of ordinates, i.e. the ray t(0, 1), is represented by
the number ξ = 1. Then the matrix A0 maps the ray with the coordinate ξ
at the ray with the coordinate ϕ0(ξ), where

ϕ0(ξ) =
ξ

a(1− ξ) + bξ + ξ
, (22)
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while the matrix A1 maps the ray with the coordinate ξ at the ray with the
coordinate ϕ1(ξ):

ϕ1(ξ) =
c(1− ξ) + dξ

c(1− ξ) + dξ + 1− ξ
. (23)

Under the condition bc ≥ 1, for any 0 ≤ ξ, ζ ≤ 1 the inequalities ϕ1(ξ) ≥
ϕ0(ζ) hold. Moreover, the function ϕ0(ξ) strictly increases when a > 0 while
the function ϕ1(ξ) strictly increases when d > 0. Hence, under conditions
(21) the graphs of the functions ϕ0(ξ) and ϕ1(ξ) look like those plotted in
Fig. 2.

Consider also the pair of matrices conjugate to the matrices A0 and A1:

A′0 = α

∥∥∥∥ a 0
b 1

∥∥∥∥ , A′1 = β

∥∥∥∥ 1 c
0 d

∥∥∥∥ .
In this case the iterations of an arbitrary point under the action of the matrix
A′0 tend to the axis {x0 = 0}, and the iterations of an arbitrary point under
the action of the matrix A′1 tend to the axis {x1 = 0} (see. Fig. 3).

The subspace {x0 = 0} is mapped by the matrix A′1 in the subspace
L′1 = {(x0, x1) : cx1 = dx0}, while the subspace {x1 = 0} is mapped by the
matrix A′0 in the subspace L′0 = {(x0, x1) : ax1 = bx0}. Such disposition of
the spaces which plotted in Fig. 3 is achieved when bc > ad and all the more
when conditions (21) are fulfilled.

x0

x1

A0

A1

L cx dx1 1 0= { = }

L x bx0 1 0= { = }a

x

y

1

1

b a b/( + )

d c d/( + )

y x0( )

y x1( )

Figure 3: Action of matrices A′0, A′1 Figure 4: Plots of functions ψ0(ξ),
ψ1(ξ)

The matrix A′0 maps the ray with the coordinate ξ at the ray with the
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coordinate ψ0(ξ), where

ψ0(ξ) =
b(1− ξ) + ξ

a(1− ξ) + b(1− ξ) + ξ
,

while the matrix A′1 maps the ray with the coordinate ξ at the ray with the
coordinate ψ1(ξ):

ψ1(ξ) =
dξ

1− ξ + cξ + dξ
.

Graphs of the functions ψ0(ξ) and ψ1(ξ) are plotted in Fig. 4.

4.2 Boundary of the Unit Ball of the Extremal Norm

Denote byM] ⊂M2,2 the set of all matrix sets A consisting of the matrices
A0 and A1 of the form (20) satisfying conditions (21). From the description of
the invariant spaces for the matrices A0 and A1 it follows that each matrix set
A ∈M] is irreducible. Given some extremal norm ‖ · ‖ in R2 corresponding
to A, denote by S the unit ball in the norm ‖ · ‖. Recall that the linear
functional l(x), x ∈ R2 is called the support functional for the unit ball S if

sup
x∈S
|l(x)| ≤ 1, and ∃ u∗ ∈ S : l(u∗) = 1.

By the Khan-Banach theorem for any point u∗ ∈ S, ‖u∗‖ = 1, there is a
support functional l∗ for which l∗(u∗) = 1. Remark that each functional l(x)
can be represented by a linear form:

l(x) ≡ 〈l, x〉 := l0x0 + l1x1, where l = (l0, l1), x = (x0, x1) ∈ R2,

and so, the values l0, l1 may be treated as the coordinates of the functional
l(x).

Lemma 12 Let ‖ · ‖ be an extremal norm for the matrix set A ∈ M].
Then for any vector u ∈ S, ‖u‖ = 1, with non-negative coordinates the
support functional l(x) = 〈l, x〉 satisfying l(u) = 1 is also has non-negative
coordinates. In other words, the unit ball in the norm ‖·‖ in the first quadrant
has the form like that presented in Fig. 5.

Proof. Let ‖ · ‖ be an extremal norm for the matrix set A ∈ M] and let
u∗ = (0, u∗,1) be a point lying on the boundary of the ball S = {x : ‖x‖ = 1},
i.e. ‖u∗‖ = 1. Show that in this case for any point x = (x1, x2) ∈ S lying in
the first quadrant (i.e. such that x0, x1 ≥ 0) the following relation holds

x1 ≤ u∗,1.
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x0

x1

u

II I

III IV

l x( )=1

{ }n: n ? u

Figure 5: The unit ball of an extremal norm

Suppose the contrary, i.e. that there are points un = (un,0, un,1), ‖un‖ =
1, for which un,1 > u∗,1. Denote by l0(x) the support functional to the ball
S satisfying l0(u∗) = 1. Then by the definition of the points un the following
relation will be valid

l0(un) ≤ l0(u∗) = 1, (24)

and since the ball S contains a neighborhood of the origin then

l0(u) ≤ l0(u∗) = 1 ∀u : ‖u‖ is sufficiently small. (25)

From (24), (25) it follows that the support line l0 is parallel to a line lying in
the first quadrant. Therefore, all the vectors un − u∗ belong to the interior
of the first quadrant.

Now, note that ρ = ρ(A) ≥ ρ(A1) = β, and since A1u∗ = βdu∗ then
‖A1u∗‖ < ρ‖u∗‖. Then from the definition of an extremal norm we get the
equality

ρ‖u∗‖ = max{‖A0u∗‖, ‖A1u∗‖} = ‖A0u∗‖.
Hence the vector v = ρ−1A0u∗ belongs to the boundary of the ball S (see
Fig. 6) and v1 = ρ−1βu∗,1 ≤ u∗,1.

Denote by l1(x) the support functional to the ball S satisfying l1(v) = 1.
Then by the definition of the point u∗

l1(u∗) ≤ l1(v) = 1, (26)

and since the ball S contains a neighborhood of the origin then

l1(u) ≤ l0(v) = 1 ∀u : ‖u‖ is sufficiently small. (27)
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Figure 6: Boundary of the unit ball: impossible case

From (26), (27) it follows that the set {x : l1(x) > 1} contains the sector
formed by the ray originated from the point v = ρ−1A0u∗ and directed par-
allel to the positive half-axis of abscisses and by the ray tv, t ≥ 1 (see the
dark-gray sector in Fig. 6).

Now, consider the sequence of the points un → u∗, ‖un‖ = 1 for which
un,1 > u∗,1. According to the definition of an extremal norm

ρ‖un‖ = max{‖A0un‖, ‖A1un‖}. (28)

Since here un → u∗ then ‖A1un‖ → ‖A1u∗‖ < ρ, and (28) implies ρ =
ρ‖un‖ = ‖A0un‖ or, what is the same,

‖ρ−1A0un‖ = 1 for all sufficiently large n. (29)

On the other hand, as was shown above the vector un − u∗ belongs to the
interior of the first quadrant. Then simple calculations show that the vector
A0(un−u∗) belongs to the interior of the sector formed by the positive semi-
axis of abscisses and by the ray tv = tA0u∗. In this case the vectors

ρ−1A0un = ρ−1A0u∗ + ρ−1A0(un − u∗)

should belong to the sector marked in Fig. 6 by dark-gray color which contra-
dicts to (29). The obtained contradiction proves impossibility of the situation
plotted in Fig. 6.

At last, consider the vector v∗ = (v∗,0, 0), ‖v∗‖ = 1. Then, analogously to
what has been done above, one can prove that the intersection of the ball S
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with the first quadrant lays entirely to the left from the vertical line passing
the point v∗ = (v∗,0, 0) (see Fig. 5). From this the assertion of Lemma 12
immediately follows. �

From Lemma 12 an important corollary follows. Call the norm ‖·‖ mono-
tone (with respect to the cone of the vectors with non-negative coordinates) if
for any pair of vectors u and v the relations v ≥ u ≥ 0, where the inequalities
are understood coordinate-wise, imply the inequality ‖v‖ ≥ ‖u‖.

Lemma 13 Any extremal norm for a matrix set A ∈M] is monotone.

The proof of this Lemma immediately follows from the description of
the structure of the boundary of the unit ball of the extremal norm given in
Lemma 12, and from Fig. 5 on which mutual disposition of the point sets
{v : v ≥ u} and {x : ‖x‖ ≤ ‖u‖} is plotted. �

Define the sets

X0 = {x : ‖A0x‖ = ρ‖x‖}, X1 = {x : ‖A1x‖ = ρ‖x‖}. (30)

Each of these sets is closed, conic (i.e. contains any vector tx along with the
vector x 6= 0), and by the definition of an extremal norm X0 ∪X1 = R2.

The set Θ = X0 ∩ X1 will be called the switching set of the extremal
norm ‖ · ‖. To analyze the structure of the sets X0, X1 and Θ we will need
additional data.

4.3 The Gram Symbol

Given a pair of vectors x, y ∈ R2 and a pair of linear functionals

u(w) = 〈u,w〉, v(w) = 〈v, w〉, u, v, w ∈ R2.

Then the Gram symbol of the ordered four-tuple {u, v, x, y} is the expression{
u x
v y

}
:= u(x)v(y)− u(y)v(x) ≡ 〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉. (31)

Lemma 14 {
u x
v y

}
= 0 ⇐⇒ u = tv or x = ty,

and {
u x
v y

}
≥ 0 if x = u, y = v, (32){

u x
v y

}
≤ 0 if x = v, y = u. (33)
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Proof. By the definition (31), the Gram symbol of the four-tuple {u, v, x, y}
vanishes if and only if

〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉 = 〈u, x〈v, y〉 − y〈v, x〉〉 = 0.

If here x〈v, y〉−y〈v, x〉 = 0 then x = ty, and Lemma 14 is proved. Therefore,
we will suppose that w = x〈v, y〉 − y〈v, x〉 6= 0. Then

〈u,w〉 = 0, w 6= 0, (34)

and besides,
〈v, w〉 = 〈v, x〈v, y〉 − y〈v, x〉〉 ≡ 0. (35)

Clearly, in a two-dimensional space the equalities (34), (35) with nonzero w
may be valid only in the case when u = tv.

The inequalities (32) and (33) immediately follow from the following re-
lations {

u u
v v

}
= −

{
u v
v u

}
= 〈u, u〉〈v, v〉 − 〈u, v〉2 ≥ 0.

Lemma 14 is proved. �

Lemma 14 implies that, under non-degenerate deformations of ordered
pairs of the vectors {u, v} and {x, y} satisfying u 6= tv and x 6= ty, the sign
of the Gram symbol does not change. Moreover, each ordered pair of the
vectors {u, v} and {x, y} may be deformed either at the ordered pair of the
vectors {e1, e2}, or at the pair {e2, e1}, where

e1 = (1, 0), e2 = (0, 1).

So, the geometrical sense of the Gram symbol is that the ordered pair of
the vectors {x, y} has the same orientation as the ordered pair of the vectors
{u, v} if and only if the Gram symbol of the corresponding ordered four-tuple
of the vectors {u, v, x, y} is positive.

4.4 Structure of the Switching Set

Let S be the unit ball of an extremal norm ‖ · ‖ and let

S′ = {u ∈ R2 : sup
x∈S
|〈u, x〉| ≤ 1}.

Denote by K+ the cone of vectors in R2 with the non-negative coordinates.
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Lemma 15 Let ‖ · ‖′ be the norm the unit ball of which coincides with S′.
Then

|〈u, x〉| ≤ ‖x‖‖u‖′. (36)

Moreover, for each vector x 6= 0 there is a vector u 6= 0 such that 〈u, x〉 =
‖x‖ · ‖u‖′, and furthermore, if x ∈ K+ then u ∈ K+.

Proof. The inequality (36) is a well known fact in the theory of topological
vector spaces and it directly follows from the definition of the dual norm
‖u‖′. The fact that the equality 〈u, x〉 = ‖x‖ · ‖u‖′ with x ∈ K+ is valid for
some u ∈ K+ follows from Lemma 12. �

Now, let x, y 6= 0 be a pair of the vectors satisfying x ∈ X0 ∩ K+, y ∈
X1 ∩K+. Then due to the non-negativity of entries of the matrices A0 and
A1,

A0x ∈ K+, ‖A0x‖ = ρ‖x‖, A1y ∈ K+, ‖A1y‖ = ρ‖y‖,

and by Lemma 15 such vectors u, v ∈ K+ can be found for which

〈u,A0x〉 = ‖u‖′‖A0x‖ = ρ‖u‖′‖x‖, (37)

〈v, A1y〉 = ‖v‖′‖A1y‖ = ρ‖v‖′‖y‖. (38)

On the other hand, (36) and the definition of an extremal norm imply

〈u,A0y〉 ≤ ‖u‖′‖A0y‖ = ρ‖u‖′‖y‖, (39)

〈v, A1x〉 ≤ ‖v‖′‖A1x‖ = ρ‖v‖′‖x‖. (40)

From (37), (38), (39) and (40) we get

〈u,A0x〉〈v,A1y〉 = ρ2‖u‖′‖v‖′‖x‖′‖y‖ ≥ 〈u,A0y〉〈v, A1x〉.

Then {
A′0u x
A′1v y

}
= 〈A′0u, x〉〈A′1v, y〉 − 〈A′0u, y〉〈A′1v, x〉 ≥ 0. (41)

So, we have proved the following

Lemma 16 Let x, y 6= 0 be a pair of the vectors satisfying x ∈ X0 ∩ K+,
y ∈ X1 ∩ K+. Then there are such nonzero vectors u, v ∈ K+ for which
relation (41) is valid.

This Lemma is a key point in the analysis of the structure of the sets
X0 ∩K+ and X1 ∩K+.

24



Theorem 5 Let A = {A0, A1} be the matrix set defined by equalities (20)
and satisfying conditions (21), and let ‖·‖ be an extremal norm of the matrix
set A. Then each of the sets X0 ∩K+ and X1 ∩K+ is a sector located as is
shown in Fig. 7, and the intersection of these sectors is the ray

Θ = X0 ∩X1 ∩K+ = {tϑ : t ∈ R+} (42)

passing a nonzero vector ϑ ∈ K+, ‖ϑ‖ = 1. The vector ϑ belongs to the
sector formed in K+ by the straight lines

L0 = {(x0, x1) : bx1 = (1− a)x0} L1 = {(x0, x1) : (1− d)x1 = cx0}.

Moreover, the vector ϑ is a single solution to the system of equations

‖A0x‖ = ‖A1x‖, ‖x‖ = 1, x ∈ K+, (43)

and it continuously depends on the matrices A0, A1 and the norm ‖ · ‖.

x0

x1

Q

X K1 +?

X K0 +?

L x x1 1 0= { = }(1 )-d c

L bx -a x0 1 0= { = (1 ) }

Figure 7: Location of the sectors X0 ∩K+ and X1 ∩K+

Proof. By Lemma 16 for a pair of nonzero vectors x ∈ X0∩K+, y ∈ X1∩K+

non-proportional to each other there are such nonzero vectors u, v ∈ K+ for
which the Gram symbol of the four-tuple {A′0u,A′1v, x, y} is non-negative.
This means that the ordered pair of vectors {x, y} has the same orientation
as the pair {A′0u,A′1v}. On the other hand, under conditions (21) for the
pair of matrices A0, A1 the ordered pair of vectors {A′0u,A′1v}, as is seen
from Fig 3, is always oriented negatively, i.e. the vector A′1v can be obtained
by rotating the vector A′0u counter clockwise on the angle not exceeding π
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and by appropriate stretching or contracting. Therefore, the ordered pair of
vectors {x, y} should also be oriented negatively.

So, any ordered pair of nonzero vectors x ∈ X0 ∩K+, y ∈ X1 ∩K+ not
proportional to each other is negatively oriented. Since in addition, the sets
X0∩K+ and X1∩K+ are closed and conic, i.e. contain with each its nonzero
element the whole ray passing this element, then they should be such as it is
asserted in Theorem 5.

Now, chose a nonzero vector x∗ from the set K+ ∩ L0. Then x∗ is an
eigenvector of the matrix A0 corresponding to its eigenvalue αa, i.e. A0x∗ =
αax∗. Therefore,

‖A0x∗‖ = αa‖x∗‖ < ρ‖x∗‖,
since due to (21) a < 1 and ρ = ρ(A) ≥ ρ(A0) = α. From this it follows,
due to the definition of the extremal norm ‖ · ‖, that x∗ 6∈ X0. Therefore,
x∗ ∈ X1, and so

K+ ∩ L0 ⊂ X1. (44)

Analogously, one can obtain that each nonzero vector x∗ from the set K+∩L1

should belong to the set X0, i.e.

K+ ∩ L1 ⊂ X0. (45)

The assertion of Theorem 5 that the vector ϑ belongs to the sector formed
in the cone K+ by the straight lines L0 and L1 follows now from inclusions
(44) and (45).

The fact that the vector ϑ is the only solution of the system of equations
(43) directly follows from the definitions (30), (42) of the sets X0, X1, Θ and
from the fact that the set Θ is a ray. Therefore, to complete the proof of
Theorem 5 we need only show that the vector ϑ depends continuously on the
matrices A0, A1 and the extremal norm ‖ · ‖.

Let {A(n)
0 }, {A

(n)
1 } be sequences of the matrices (20) satisfying (21), and

let {‖·‖(n)} be a sequence of extremal norms corresponding to these matrices.
Suppose that

A
(n)
0 → A

(0)
0 , A

(n)
1 → A

(0)
1 , ‖ · ‖(n) → ‖ · ‖(0),

where convergence of the norms is understood as convergence in the space
Cloc(Rm). Denote by {ϑ(n)} the sequence of vectors satisfying the system of
equations

‖A(n)
0 ϑ(n)‖(n) = ‖A(n)

1 ϑ(n)‖(n), ‖ϑ(n)‖(n) = 1, ϑ(n) ∈ K+, (46)

To prove that ϑ(n) → ϑ(0) it is sufficient to show that any limiting point
ϑ∗ of the sequence {ϑ(n)} coincides with the element ϑ(0). But it is really so,
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since by passing to limit in (46) one can be convinced readily that ϑ∗ satisfies
the equations

‖A(0)
0 x‖(0) = ‖A(0)

1 x‖(0), ‖x‖(0) = 1, x ∈ K+.

Since the only solution of the latter system is, by the definition, the vector
ϑ(0) then ϑ∗ = ϑ(0).

So, the continuous dependance of the vector ϑ on the matrices A0, A1

and the extremal norm ‖ · ‖ is established, and the proof of Theorem 5 is
completed. �

5 Frequency Properties of Extremal Trajec-

tories: the Case of Two-dimensional Ma-

trices

In this Section, the analysis of the properties of the extremal trajectories of
the matrix sets A = {A0, A1} ∈ M] will be continued. Our prime goal will
be to prove the following statement.

Theorem 6 (on the switching frequency) For any extremal trajectory
{xn} of the matrix set A = {A0, A1} ∈ M] determined by the equation

xn+1 = Aσnxn, n = 0, 1, . . . ,

it is defined the frequency (the switching frequency of the trajectory)

σ = lim
n→∞

∑n
i=1 σi
n

of applying the matrix A1 in the process of computation of the trajectory
{xn}.

The frequency σ does not depend on the choice of the extremal trajectory
{xn} or on the index sequence {σn}, and so, it may be denoted as σ(A).
In addition, σ(A) depends continuously on matrices of the matrix set A and
takes rational values if and only if the matrix set A has an extremal trajectory
corresponding to a periodic index sequence {σn}.

To prove Theorem 6, we will need auxiliary statements and constructions.
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5.1 Generator of Extremal Trajectories

Fix in R2 a norm ‖ · ‖ extremal for the matrix set A, and denote by X0

and X1 the sets (30) determined by this norm. In this case, the generator
of extremal trajectories g(·) (see the definition in Section 3.4) will take the
form

g(x) =


ρ−1A0x, if x ∈ X0\X1,
ρ−1A1x, if x ∈ X1\X0,

{ρ−1A0x, ρ
−1A1x}, if x ∈ X0 ∩X1.

(47)

where ρ = ρ(A).
Let us study the structure of the map g(·) in the first quadrant, i.e. in

the cone K+ := {x = (x1, x2) : x1, x2 ≥ 0}, in more details. Introduce in
K+ the coordinate system (λ, ξ) by setting

λ(x) = ‖x‖, ξ(x) =
x2

x1 + x2

, x 6= 0 ∈ K+. (48)

As was noted above (see (19)), for the map g(·) the identity ‖g(x)‖∗ ≡
‖x‖∗ is valid. Besides, by Theorem 5 the sets X0 ∩K+, X1 ∩K+ and X0 ∩
X1 ∩ K+ are transferred by the map ξ(·) in the intervals [θ, 1], [0, θ] and a
point θ, respectively, i.e.

ξ(X1 ∩K+) = [0, θ], ξ(X0 ∩K+) = [θ, 1], ξ(X0 ∩X1 ∩K+) = θ.

Then in the coordinate system (λ, ξ) the map f takes the form of a map with
separable variables

f : (λ, ξ) 7→ (λ, Φ), (49)

where

Φ = Φθ(ξ) =


ϕ1(ξ), if ξ ∈ [0, θ),

{ϕ0(θ), ϕ1(θ)} if ξ = θ,
ϕ0(ξ), if ξ ∈ (θ, 1].

(50)

Here the functions ϕ0(ξ) and ϕ1(ξ) are defined by (22) and (23), and have
the appearance plotted in Fig 2. The graph of the set-valued function Φθ(ξ)
is presented in Fig. 8.

Remark that the coordinate λ(x) characterizes “remoteness” of the vector
x from the origin of coordinates, while the coordinate ξ(x) characterizes the
“direction” of the vector x. In accordance with this, Φθ(ξ) can be treated as
the direction function of the generator of extremal trajectories.

From Lemma 11, Theorem 5 and the representation (49), (50) of the map
g(·) one can get the following description of the extremal trajectories.
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Figure 8: Graph of the direction function Φθ(ξ)

Lemma 17 A nonzero trajectory {xn} ⊆ K+ is extremal for the matrix set
A = {A0, A1} in the extremal norm ‖ · ‖ if and only if its elements in the
coordinate system (λ, ξ) can be represented in the form xn = (λn, ξn), where
λn ≡ λ0, and {ξn} is a trajectory of the set-valued map Φθ(·), i.e.

ξn+1 ∈ Φθ(ξn), n = 0, 1, . . . ,

whose parameter θ satisfies the estimates θ∗ ≤ θ ≤ θ∗ with constants θ∗, θ
∗ ∈

(0, 1) defined by the equalities θ∗ = ϕ0(θ∗) and θ∗ = ϕ1(θ∗).
In addition, the trajectory {xn} satisfies the equation

xn+1 = Aσnxn, n = 0, 1, . . . ,

with some index sequence {σn} if and only if the trajectory {ξn} satisfies the
equation

ξn+1 = ϕσn(ξn), n = 0, 1, . . . .

Remark that in spite of the fact that the extremal norm ‖ · ‖∗ is, in
general, not known explicitly, the direction function Φθ(ξ) of the generator
of extremal trajectories is “defined rather unambiguously” which means that
according to (50) it is uniquely defined by the triplet (ϕ0, ϕ1, θ) with the only
unknown parameter θ.

When it will be needed to emphasize the dependance of the function Φθ(ξ)
on the triplet (ϕ0, ϕ1, θ), we will use the notation

Φθ(ξ) = Φ[ϕ0, ϕ1, θ](ξ). (51)
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In its turn, the triplet (ϕ0, ϕ1, θ) depends on the choice of the matrix set A
and the corresponding extremal norm ‖·‖. Therefore, consider in more details
the question on how the direction function Φθ(ξ) depends on the matrix set
A = {A0, A1} and the related extremal norm ‖ · ‖.

According to (22) and (23), the function ϕ0 is uniquely determined by
entries of the matrix A0, while the function ϕ1 is completely determined
by entries of the matrix A1. To point out this dependance we will use the
notation

ϕ0(ξ) = ϕ0[A0](ξ), ϕ1(ξ) = ϕ1[A1](ξ).

At the same time, by Theorem 5 and relations (47), (50) the parameter θ is
a single-valued function of the matrix set A and the related extremal norm
‖ · ‖, i.e.

θ = θ[A, ‖ · ‖]. (52)

From (51), (52) one can see that the direction function Φθ(ξ) is deter-
mined, in the long run, by the matrix set A = {A0, A1} and by the extremal
norm ‖ · ‖ corresponding to this set; in the cases when we need stress this
dependance it will be used the notation

Φθ(ξ) = Φ[A, ‖ · ‖](ξ).

As will be shown in Lemma 18 below, the direction function Φ[A, ‖·‖] depends
continuously on the matrix set A and the extremal norm ‖ · ‖. To make
said above meaningful, define first the notion of closeness between set-valued
functions on the interval [0, 1].

Denote by F = F([0, 1]) the set of all set-valued functions f : [0, 1] 7→ 2R

with the closed graphs. In this case the graph Gr(f) of the function f is a
closed bounded subset of the set [0, 1] × R ⊂ R2, and hence, for any pair of
functions f, g ∈ F it is defined and finite the value

χ(f, g) = max
{

sup
x∈Gr(f)

inf
y∈Gr(g)

|x− y|, sup
y∈Gr(g)

inf
x∈Gr(f)

|x− y|
}
,

where | · | is some norm in R2. The value χ is called the Hausdorff distance
between the graphs of the maps f and g, it is a metric in the space F . In its
turn, the space F , being equipped with the metric χ, is complete.

Lemma 18 Let x0 ∈ R2 be a nonzero vector. Then for any pair
(
A, ‖ · ‖

)
,

where A ∈M] and ‖ · ‖ ∈ Next(A, x0), the map(
A, ‖ · ‖

)
7→ Φ[A, ‖ · ‖], (53)

is uniquely defined and continuous by the metric of the space F .
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Proof. The fact that the map (53) is defined uniquely by the pair
(
A, ‖·‖

)
,

directly follows from (51), (52).
Remark now that by the definition (50) of the direction function Φ, conti-

nuity of the map (53) will be established if we show that both of the functions
ϕ0 = ϕ0[A0] and ϕ1 = ϕ1[A1] depend continuously on the matrices A0 and
A1 in the metric of the space C[0, 1], while the parameter θ = θ[A, ‖ · ‖]
depends continuously on A and ‖ · ‖.

Continuous dependance of the functions ϕ0 = ϕ0[A0] and ϕ1 = ϕ1[A1] on
defining them matrices immediately follows from the definitions (22), (23).
Besides, continuous dependency of the parameter θ = θ[A, ‖ · ‖] on A and
‖ · ‖ follows from the fact that θ is the ξ-coordinate (see (48)) of the vector
ϑ defined in Theorem 5, which depends continuously on A and ‖ · ‖ by
Theorem 5.

So, the map (53) is continuous, and the proof of Lemma 18 is completed.
�

Properties of maps, graphs of which are like those presented in Fig. 8, are
studied below in more details.

5.2 Orientation Preserving Discontinuous Circle Maps

Maps of the interval [0, 1) in itself is convenient to treat as maps of the circle
S ≡ R/Z. Below, we will study, primarily, discontinuous maps of the interval
[0, 1). Such maps were studied by different authors (see, e.g., [6, 8, 9] and
the bibliography therein), but unfortunately no one of results, known to the
author, can be immediately applied to the analysis of the properties of the
map Φθ(ξ). For example, in [6] main results are established for the set-valued
maps with connected images while in [8, 9] properties of the single-valued
discontinuous maps are investigated, whereas in our case Φθ(ξ) is a set-valued
map with disconnected images. In connection with this, in what follows we
will recall basic facts of the theory of orientation preserving discontinuous
circle maps, following primarily to the work [6], and then deduce from these
results properties of the map Φθ(ξ) needed below.

Let η : [0, 1)→ [0, 1) be some, in general, discontinuous, set-valued func-
tion. The function h : R→ R is called the lift of η if it satisfies conditions

h(ξ + 1) ≡ h(ξ) + 1, (54)

and
η(ξ) = h(ξ) (mod 1) ξ ∈ [0, 1). (55)

As is easy to see, each circle map has a lift, and conversely, each map h of
the straight line in itself satisfying (54) is a lift of the circle map η(·) defined
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by the equality (55). Note that there is a plenty of properties of the circle
maps which are more convenient to formulate in terms of corresponding lifts
than in terms of the original circle maps.

The map η : [0, 1) → [0, 1), treated as a map of the circle S ≡ R/Z in
itself, will be called orientation preserving if it has a strictly increasing lift5.
A strictly increasing lift h of the map η will be called standard if it satisfies
h(0) = η(0). The orientation preserving map η : [0, 1)→ [0, 1) will be called
closed or connectedly closed if it has a strictly increasing lift with the closed
graph, or the graph of some of its strictly increasing lift is a connected and
closed set, respectively.

To illustrate notions introduced above, associate with the strictly increas-
ing lift h of the map η the auxiliary maps

h+(ξ) = lim
ξ̄↓ξ

h(ξ̄), h−(ξ) = lim
ξ̄↑ξ

h(ξ̄),

where notations ξ̄ ↓ ξ and ξ̄ ↑ ξ are used to denote convergence of the variable
ξ̄ to ξ strictly from above or from below, correspondingly. Define also the
maps

h∗(ξ) = {h−(ξ), h+(ξ)} , hc(ξ) = [h−(ξ), h+(ξ)] .

Directly from the definitions of the maps h+(ξ), h−(ξ), h∗(ξ) and hc(ξ) it
follows that all these maps are strictly increasing. The maps h+(ξ) and h−(ξ)
are single-valued, and the map h+(ξ) is continuous from the right at each
point, while the map h−(ξ) is continuous from the left at each point. The
maps h∗(ξ) and hc(ξ) are, in general, set-valued and their values coincide
with the values of the map h(ξ) at the points, in which the map h(ξ) is
single-valued and continuous. In all other points the values of h∗(ξ) consist
of exactly two points while the values of hc(ξ) consist of closed intervals.
Besides, the graphs of the both maps h∗(ξ) and hc(ξ) are closed. It should
be noted also that

h+(ξ), h−(ξ) ∈ h∗(ξ) ⊆ hc(ξ) ∀ξ.

In addition, if the graph of the map h(ξ) is closed then h∗(ξ) ⊆ h(ξ) ⊆ hc(ξ).
Therefore, it is natural to call the map h∗(ξ) the minimal closure of the map
h(ξ) while the map hc(ξ) can be called the connected or maximal closure of

5Remark that the lift of a circle map is determined non-uniquely. Nevertheless, just as
is in the case of continuous lifts of the circle homeomorphisms, any two strictly increasing
lifts of the same circle map (provided that they exist) can differ from each other only on
an integer constant [9, Lemma 2]. A detailed description of the structure of single-valued
discontinuous orientation preserving circle maps and their lifts can be found in [8,9]. The
role of the demand of strict increasing of a lift is discussed in Remark 1.

32



the map h(ξ). Respectively, the map h(ξ) will be called minimally closed if
h(·) = h∗(·), and it will be called connectedly or maximally closed if h(·) =
hc(·).

Theorem 7 (see [6]) Let η : [0, 1) → [0, 1) be an orientation preserving
circle map with a connectedly closed lift h. Let {ξn} be a trajectory of the
map h, i.e.

ξn+1 ∈ h(ξn), n = 0, 1, . . . . (56)

Then the following assertions are valid:

(i) there is a number τ , not depending on the initial value ξ0, for which
the estimates hold ∣∣∣∣ξnn − τ

∣∣∣∣ ≤ 1

n
, n = 1, 2, . . . ,

and hence

τ = lim
n→∞

ξn
n

;

(ii) if the number τ is rational of the form τ = p/q with coprime p and q
then the map η(·) has a periodic point of period q, and any trajectory
(56) converges to a periodic trajectory of period q as n→∞;

(iii) if the number τ is irrational then all the trajectories (56) have the
same limiting set which is either coincide with the whole circle or is the
Cantor set;

(iv) the number τ depends continuously on the graph of the map h in the
Hausdorff metric6.

According to this Theorem the number τ is uniquely determined by the
map h and does not depend neither on the choice of the initial point ξ0 of
the trajectory {ξn} nor on arbitrariness in the construction of the trajectory
{ξn} by formula (56). So, it is reasonable to denote the number τ by τ(h);
this number is called the rotation number of the lift h. The value τ(h) is
often called also the rotation number of the circle map η. One should only
bear in mind that the rotation number for a circle map is defined modulo

6The statement means that for any orientation preserving circle map η̂ with a connect-
edly closed lift ĥ the values of τ̂ tend to τ when the graph of the map ĥ tends to the graph
of the map h by the Hausdorff metric. Point out that due to condition (54) the Hausdorff

distance between the maps h and ĥ is defined correctly in spite of the fact that the graphs
of these maps are not bounded.
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integer additives since lifts of the circle map are also defined modulo inte-
ger additives. Therefore, sometimes the rotation number of a circle map is
defined as τ(h) (mod 1).

Remark 1 An orientation preserving circle map was defined above as such
a circle map which has a strictly increasing lift. Theorem 7 will be no longer
valid if to omit the requirement that the corresponding lift increases strictly.

Proof. Validity of Remark follows from the fact that a circle map with
a non-decreasing lift may have simultaneously periodic points of different
coprime periods as is plotted in Fig. 9 and 10. �

1

10

h x( )

x x0 2=x1

1

10

h x( )

x x0 3=x1 x2

Figure 9: Periodic point of period 2 Figure 10: Periodic point of period 3

The next Remark shows that in Theorem 7 the requirement of the con-
nectedness of the graph of the lift h is not essential. What is important is
the closeness of the graph.

Remark 2 All the statements of Theorem 7 continue to be valid for any
circle map possessing a strictly increasing closed lift.

Proof. Let the circle map η(ξ) has a strictly increasing closed lift h(ξ).
Consider the connected closure hc(ξ) of the map h(ξ). Then from the inclu-
sions h(ξ) ⊆ hc(ξ) valid for any ξ ∈ R it follows that each trajectory {ξn}
of the map h(ξ) is also a trajectory of the map hc(ξ). Hence, the rotation
number τ(h) of the map h is correctly defined and coincides with τ(hc), and

34



besides, the limiting set of the trajectory {ξn} does not depend on the choice
of the trajectory in the case when τ(h) is irrational.

If the number τ(h) is rational then the trajectory {ξn} of the map h,
being at the same time a trajectory of the map hc, by assertion (iii) of
Theorem 7 converges to some periodic trajectory of the map hc. But in view
of closeness of the graph of the map h the corresponding limiting trajectory
will be a trajectory of the map h, from which assertion (iii) of Theorem 7 for
the map h follows.

At last, assertion (iv) of Theorem 7 for the map h follows from the already
established identity τ(h) ≡ τ(hc) and from the remark that for any two
strictly increasing maps h and ĥ with the closed graphs the Hausdorff distance
between their graphs coincide with the Hausdorff distance between the graphs
of the maps hc and ĥc. �

One of weak points in the definition of the rotation number τ(η) for
the circle map η(·) is that one need perform intermediate steps (such as to
construct the lift h(·) and to build the trajectory {ξn} of the map h(·)) to
calculate the limit τ(η) = limn→∞ ξn/n. It is desirable to find a method to
calculate the rotation number τ(η) directly in terms of the map η and its
trajectories. To do it, we first investigate in more details properties of the
orientation preserving circle maps (cf. [9, Lemma 1]).

Lemma 19 Let η be a closed orientation preserving circle map and let h be
its standard lift. Then for any ξ ∈ [0, 1) and any pair of elements ηξ ∈ η(ξ),
hξ ∈ h(ξ) satisfying ηξ = hξ (mod 1) the following relation is valid:

hξ = ηξ + ν(ηξ), (57)

where

ν(ξ) =

{
1 if 0 ≤ ξ < ω,
0 if ω ≤ ξ < 1,

(58)

with ω = min{y : y ∈ η(0)} (see Fig. 11)7.
Conversely, if for a pair of elements ηξ ∈ η(ξ) and hξ relation (57) holds

then hξ ∈ h(ξ).

Proof. Fix a point ξ ∈ [0, 1) and choose a pair of elements ηξ ∈ η(ξ)
and hξ ∈ h(ξ) satisfying the relation ηξ = hξ (mod 1). Since, by Lemma’s
conditions, h(·) ia a standard lift of the map η(·) then h(0) = η(0) ∈ [0, 1).

7Remark that the function ν(ξ) is identically equal to zero if ω = 0. In this case
h(ξ) ≡ η(ξ) on the interval [0, 1), and so, the function η(ξ) strictly increases on [0, 1).
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Figure 11: Orientation preserving closed circle map η(ξ) and its standard lift
h(ξ).

Then from the fact that the map h(·) is strictly increasing we obtain the
estimates

0 ≤ η(0) = h(0) ≤ hξ < h(1) = h(0) + 1 = η(0) + 1 < 2, ξ ∈ [0, 1),

i.e. hξ ∈ [0, 2).
If hξ ∈ [0, 1) then the equality ηξ = hξ (mod 1) implies ηξ = hξ, and by

monotony of the function h(·)

ω = min{y : y ∈ η(0)} = min{y : y ∈ h(0)} ≤ hξ = ηξ < 1.

Hence, in this case ν(ηξ) = 0 from which we obtain that hξ = ηξ + ν(ηξ).
But if hξ ∈ [1, 2) then the equality ηξ = hξ (mod 1) implies ηξ = hξ − 1.

In this case by monotony of the function h(·) the following relations take
place

0 ≤ ηξ = hξ − 1 < min{y : y ∈ h(1)} − 1 = min{y : y ∈ h(0) + 1} − 1 =

= min{y : y ∈ h(0)} = min{y : y ∈ η(0)} = ω.
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Hence ν(ηξ) = 1 which again implies hξ = ηξ + ν(ηξ). So, in one direction
Lemma 19 is proved.

Now, let ηξ ∈ η(ξ) and hξ be elements for which relation (57) is fulfilled.
By the definition of the lift of a circle map, the sets η(ξ) and h(ξ) satisfy
the relation η(ξ) = h(ξ) (mod 1). Consequently, the set h(ξ) contains such
an element h∗ that ηξ = h∗ (mod 1). But then, due to the already proven
first part of Lemma, the relation h∗ = ηξ + ν(ηξ) should be valid. But by
supposition, for the elements ηξ and hξ the analogous relation (57) is also
true, i.e. hξ = ηξ + ν(ηξ), from which we immediately obtain hξ = h∗ ∈ h(ξ).
Lemma 19 is completely proved. �

At last, we are able to present the definition of the rotation number of the
circle map η(·) directly in terms of the map η(·) (to be precise, the definition
of the rotation number of the standard lift h(·) of the map η(·)).

Theorem 8 Let η : [0, 1) → [0, 1) be an orientation preserving circle map
with the closed standard lift h. Let {ζn} be a trajectory of the map η, i.e.

ζn+1 ∈ η(ζn), n = 0, 1, . . . .

Then the uniform estimates hold∣∣∣∣∑n
i=1 ν(ζi)

n
− τ(h)

∣∣∣∣ ≤ 2

n
, n = 1, 2, . . . , (59)

and so,

τ(h) = lim
n→∞

∑n
i=1 ν(ζi)

n
.

Proof. Define the sequence {ξn}∞n=0 by setting ξ0 = ζ0 and

ξn = ζn +
n∑
i=1

ν(ζi), n = 1, 2, . . . .

Prove by induction that {ξn} satisfies the inclusions

ξn+1 ∈ h(ξn), n = 0, 1, . . . , (60)

and so, it is a trajectory of the map h.
Indeed, by the definition, ξ1 = ζ1 + ν(ζ1), where ζ1 ∈ η(ζ0). Therefore,

by Lemma 19 ξ1 ∈ h(ζ0) = h(ξ0), and the statement of Theorem 8 is true for
n = 0.
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Perform the step of induction. Suppose that the statement of Theorem 8
is valid for n = k ≥ 0 and show that this imply its validity for n = k+ 1. By
the definition of the element ξk+1,

ξk+1 = ζk+1 +
k+1∑
i=1

ν(ζi)

or, what is the same,

ξk+1 −
k∑
i=1

ν(ζi) = ζk+1 + ν(ζk+1).

Since here, by the definition of the trajectory {ζn}, the inclusion ζk+1 ∈ η(ζk)
with ζk ∈ [0, 1) holds, then by Lemma 19 ζk+1 + ν(ζk+1) ∈ h(ζk). Hence,

ξk+1 −
k∑
i=1

ν(ζi) ∈ h(ζk)

or, what is the same,

ξk+1 ∈ h(ζk) +
k∑
i=1

ν(ζi) = h(ζk +
k∑
i=1

ν(ζi)).

Here, by the supposition of induction, the argument of the function h in the
right-hand part coincides with ξk which implies ξk+1 ∈ h(ξk).

So, the step of induction is justified and inclusions (60) are proved. To
complete the proof of Theorem 8 it remains to note only that by Theorem 7
and Remark 2 for the trajectory {ξn} the estimates hold∣∣∣∣ξnn − τ(h)

∣∣∣∣ ≤ 1

n
, n = 1, 2, . . . ,

while by the definition of trajectory {ξn} it is valid the equality

ξn
n

=
ζn
n

+

∑n
i=1 ν(ζi)

n
,

where ζn ∈ [0, 1). Estimates (59) now directly follow from the latter relations.
Theorem 8 is proved. �
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5.3 Frequency Properties of the Direction Function

In this Section, we make use of the properties of the circle maps obtained
in Section 5.2 to analyze the properties of the direction function Φθ of the
generator of extremal trajectories introduced in Section 5 (see (50)).

Note that the function Φθ(ξ) differs from a function representing an ori-
entation preserving circle map only in that it is defined on the closed interval
[0, 1] but not on the semiopen one [0, 1) as is the case for a circle map. Let
us show that the indicated difference is not essential, and for the function
Φθ(ξ) the notion of the rotation number can be defined with all the “good”
properties intrinsical to the rotation number of the circle maps.

Theorem 9 Let A = {A0, A1} ∈ M] be the set of 2× 2 matrices (20) satis-
fying conditions (21), let Φθ be the direction function (50) of some generator
of extremal trajectories for the matrix set A and let ν(·) be the function de-
fined by the equality (58). Then for any trajectory {ξn}∞n=0 of the map Φθ
there are valid the non-equalities ξn 6= 0, 1, where n ≥ 1, and there is defined
the frequency

τ = lim
n→∞

∑n
i=1 ν(ξi)

n
(61)

with which the elements of the trajectory {ξn} hit the interval [0, ω), where
ω = ϕ0(1).

The frequency τ does not depend neither on the choice of the trajectory
{ξn} nor on the choice of the function Φθ. So the frequency τ may be denoted
as τ(A). In addition, for τ(A) assertions (i)–(iii) of Theorem 7 are valid,
and besides, τ(A) depends continuously on the matrices of the set A.

Proof. Construct the map ηθ(·) of the semiopen interval [0, 1) in itself with
the help of following equalities

ηθ(ξ) =


ϕ1(0) ∪ ϕ0(1), if ξ = 0,

ϕ1(ξ), if ξ ∈ (0, θ],
ϕ0(ξ), if ξ ∈ [θ, 1).

This map can be treated as an orientation preserving circle map with the
closed graph since it has the strictly increasing lift with a closed graph hθ(·)
defined for ξ ∈ [0, 1) by the relation8

hθ(ξ) =


ϕ1(0) ∪ ϕ0(1), if ξ = 0,

ϕ1(ξ), if ξ ∈ (0, θ],
ϕ0(ξ) + 1, if ξ ∈ [θ, 1).

8The lift hθ(·) can be extended on other values of ξ ∈ R with the preservation of the
identity hθ(ξ + 1) ≡ hθ(ξ) + 1.
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Point out that the map ηθ(·) takes two values at each of the points ξ = 0, θ.
Now, let {ξn} be a trajectory of the map Φθ, i.e.

ξn+1 ∈ Φθ(ξn), n = 0, 1, . . . . (62)

By Lemma 17 for the parameter θ of the map Φθ(ξ) the estimates θ∗ ≤ θ ≤ θ∗

hold in which θ∗ and θ∗ are some numbers from the interval (0, 1). Then, as
can be seen, e.g., from Fig. 8, the values of the function Φθ(ξ) are separated
from 0 and 1, i.e. one can find such µ > 0 for which for all the elements
of the trajectory {ξn} will be valid the estimates µ ≤ ξn ≤ 1 − µ, except
maybe for the element ξ0. From here and from (62), and taking into account
that the values of the functions Φθ(ξ) and ηθ(ξ) coincide with each other
for 0 < ξ < 1, we deduce that the trajectory {ξn} satisfies the inclusions
ξn+1 ∈ ηθ(ξn) for n = 1, 2, . . .. Defining now the sequence {ζn} by setting

ζn =

{
ξ0 (mod 1), if n = 0,
ξn, if n ≥ 1,

one can easily verify that this sequence satisfies the inclusions ζn+1 ∈ ηθ(ζn)
for n = 1, 2, . . .. From here by Theorem 8 it follows the existence of such a
number τ for which the estimates hold∣∣∣∣∑n

i=1 ν(ξi)

n
− τ
∣∣∣∣ =

∣∣∣∣∑n
i=1 ν(ζi)

n
− τ
∣∣∣∣ ≤ 2

n
, n = 1, 2, . . . , (63)

where the function ν(·) by Lemma 19 has the form

ν(ξ) =

{
1 if 0 ≤ ξ < ω,
0 if ω ≤ ξ < 1.

Here ω = min{hθ(0)} = Φθ(1) which means that in a formal sense the number
ω depends on θ. But since by Lemma 17 the number θ satisfies the inclusion
θ ∈ (0, 1) then Φθ(1) ≡ ϕ0(1). Therefore, in fact the number ω, as well as
the function ν(·), does not depend on θ.

Estimates (63) imply the existence of the limit (61). Note that for a given
direction function Φθ the number τ by Theorem 8 does not depend on the
choice of the trajectory {ξn}, and so, τ is a function of the only argument θ,
i.e. τ = τ(θ). Show that in fact the number τ does not depend on θ, too,
but it is uniquely determined by the matrix set A, i.e. τ = τ(A).

Let Φθ1(ξ) and Φθ2(ξ) be the direction functions of some generators of
extremal trajectories g1(x) and g2(x) corresponding to different extremal
norms ‖ · ‖1 and ‖ · ‖2. Then by Lemma 10 there is a trajectory {xn} of the
matrix set A which is extremal as in the norm ‖ · ‖1 as in the norm ‖ · ‖2. By
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the definition of a generator of extremal trajectories, this trajectory should
satisfy as the inclusions

xn+1 ∈ g1(xn), n = 0, 1, 2, . . . ,

as the inclusions

xn+1 ∈ g2(xn), n = 0, 1, 2, . . . .

Then, by the definition of the direction function, the sequence {ξn} defined
by

ξn =
x1,n

x1,n + x2,n

, n = 0, 1, 2, . . . ,

should satisfy as the inclusions

ξn+1 ∈ Φθ1(ξn), n = 0, 1, 2, . . . , (64)

as the inclusions

ξn+1 ∈ Φθ2(ξn), n = 0, 1, 2, . . . . (65)

We can use now formula (61) to calculate the number τ(θ1) for the se-
quence {ξn} treating the latter as the sequence satisfying (64). Analogously,
we can use the same formula (61) to calculate the number τ(θ2) for the same
sequence {ξn} but this time treating it as the sequence satisfying (65). Since
in the both cases the calculations (61) are performed with the same sequence
{ξn} then we conclude that τ(θ1) = τ(θ2), from which independence of the
number τ from θ follows.

Validity of assertions (i)–(iii) for τ(A) follows from the definition of the
number τ(A) and from Theorem 7. Therefore, to complete the proof of
Theorem 9 it remains only to establish the continuous dependance of the
function τ(A) on the matrix set A. Let {A(n) ∈ M]} be a sequence of
matrix sets converging to the matrix set A∗ ∈M]. Fix a vector x0 6= 0 ∈ R2

and choose for each n an extremal norm ‖ · ‖(n) ∈ Next(A
(n), x0), and then

build the direction function Φθ(n) of the generator of extremal trajectories
corresponding to the matrix set A(n) and the norm ‖ · ‖(n).

By Theorem 2 one can suppose that the sequence {‖·‖(n)} converges in the
space Cloc(Rm) to some extremal norm ‖ · ‖∗ of the matrix set A∗. Then by
Lemma 18 the sequence {Φθ(n)} converges by the metric of the space F to the
direction function Φθ∗ of the generator of extremal trajectories corresponding
to the matrix set A∗ and the norm ‖ · ‖∗. Hence

τ(A(n)) = τ(Φθ(n))→ τ(Φθ∗) = τ(A∗). (66)
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Here, convergence of the numerical sequence {τ(Φθ(n))} to τ(Φθ∗) follows from
convergence of the sequence of functions {Φθ(n)} to the function Φθ∗ by the
metric of the space F (i.e. in the sense of convergence of the graphs of these
functions in the Hausdorff metric) and from Theorems 7 and 8. Equalities
in (66) follows from the already proven fact that the number τ(A) does not
depend on the choice of the direction function of the generator of extremal
trajectories of the matrix set A.

Thus, continuous dependance of the number τ(A) on the matrix set A is
proved, and so the proof of Theorem 9 is completed. �

5.4 Switching Frequency for Extremal Trajectories and
Construction of the Counterexample

Now all is ready to prove Theorem 6. Let {xn} be an extremal trajectory of
the matrix set A = {A0, A1} ∈ M] and let {σn} be the corresponding index
sequence, i.e. the sequences {xn} and {σn} satisfy the equalities xn+1 =
Aσnxn for n = 0, 1, . . .. Then by Lemma 17 the numerical sequence ξn =
ξ(xn), where the function ξ(·) is defined by the equality (48), satisfies the
relations

ξn+1 = ϕσn(ξn) ∈ Φθ(ξn), n = 0, 1, . . . ,

with some direction function Φθ. At the same time, by Theorem 9 there is
defined the frequency

τ = lim
n→∞

∑n
i=1 ν(ξi)

n
,

and besides, ξn 6= 0, 1 for n ≥ 1. Therefore, for n ≥ 1 the value ξn+1 ∈ (0, 1)
is obtained from ξn ∈ (0, 1) by the formula ξn+1 = ϕ0(ξn) if and only if 0 <
ξn+1 < ϕ0(1) or, what is the same, if and only if ν(ξn+1) = 1. Consequently,
σn = 1− ν(ξn+1) for n ≥ 1 and by Theorem 9 there is the limit

σ(A) = lim
n→∞

∑n
i=1 σi
n

= 1− lim
n→∞

∑n
i=1 ν(ξi+1)

n
= 1− τ(A).

Now, all the assertions of Theorem 6 follow from analogous assertions of
Theorem 9. �

At last, start constructing the counterexample to the Finiteness Conjec-
ture.

Lemma 20 (on unattainability of the generalized spectral radius)
Let the matrix set A = {A0, A1} ∈ M] be such that the number σ(A) is
irrational. Then for any finite sequence of indices σk ∈ {0, 1}, k = 1, 2, . . . , n,
the strict inequality ρ(AσnAσn−1 · · ·Aσ1) < ρn(A) is valid.
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Proof. Since the matrices A0 and A1 are non-negative then by the Perron-
Frobenius theorem there is a vector x0 with non-negative coordinates such
that

ρnx0 = AσnAσn−1 · · ·Aσ1x0, (67)

where ρ = ρ(AσnAσn−1 · · ·Aσ1).
Extend the finite index sequence {σk}nk=1 to the infinite periodic one with

period n and then consider the corresponding sequence {xk}∞k=0:

x1 = Aσ1x0, . . . , xn−1 = Aσn−1xn−2, xn = Aσnxn−1, . . . .

Then from (67) we get xn = ρnx0, and in any extremal norm ‖·‖ the following
inequalities will be valid

‖x1‖ ≤ ρ(A)‖x0‖, . . . , ‖xn‖ = ρn‖x0‖ ≤ ρ(A)‖xn−1‖, . . . , (68)

from which ρ ≤ ρ(A). Here, the equality ρ = ρ(A) may take place only in the
case when each of inequalities (68) is in fact equality, i.e. when the sequence
{xn} is extremal in the norm ‖ · ‖. However, by Theorem 9 periodicity of the
index sequence of at least one of the extremal trajectories of the matrix setA
implies the rationality of the number σ(A) which contradicts the condition
of Theorem. The obtained contradiction is caused by the supposition that
ρ = ρ(AσnAσn−1 · · ·Aσ1) = ρ(A). Lemma 20 is proved. �

From Lemma 20 it follows that in order to construct the counterexample
to the Finiteness Conjecture it is sufficient to prove the existence of at least
one of the matrix set A = {A0, A1} ∈ M] for which σ(A) is irrational.

Lemma 21 For any set of parameters a, b, c, d satisfying conditions (21)
there are positive numbers γ∗ = γ∗(a, b, c, d) and γ∗ = γ∗(a, b, c, d) such that
for the corresponding matrix set A = {A0, A1} ∈ M] the relations are valid

σ(A) =

{
0 if α/β > γ∗,
1 if α/β < γ∗.

Proof. Denote by K the set (cone) of all vectors from the first quadrant
lying between the straight lines L0 = {(x0, x1) : bx1 = (1 − a)x0} and L1 =
{(x0, x1) : (1− d)x1 = cx0}, i.e.

K :=

{
(x0, x1) : x0, x1 ≥ 0,

1− a
b

x0 ≤ x1 ≤
c

1− d
x0

}
.

Then the direct verification shows that

A0K ⊆ K, A1K ⊆ K. (69)

43



Fix now some set of parameters a, b, c, d satisfying conditions (21) and a
number γ > 1, and show that for sufficiently large values of the quotient α/β
the following relation is valid

A0x > γA1x, x 6= 0 ∈ K, (70)

where the inequality is understood coordinate-wise.
Indeed, the vector inequality (70) is equivalent to two scalar inequalities

α(ax0 + bx1) > γβx0, αx1 ≥ γβ(cx0 + dx1), x 6= 0 ∈ K,

or, what is the same,

α

β
> γ sup

x 6=0∈K

{
x0

ax0 + bx1

,
cx0 + dx1

x1

}
. (71)

But as is easy to see, the supremum in the right-hand part of the inequality
(71) is finite, from which follows the validity of the vector inequality (70) for
sufficiently large values of the quotient α/β.

Finalize now the proof of Lemma. Let ‖ · ‖ be an arbitrary extremal
norm for the matrix set A, let x∗ be a nonzero vector from the cone K, and
let the parameters α and β be such that the inequality (70) holds. Then by
Lemma 9 there is an extremal trajectory {x(n)}∞n=0 of the matrix set A which
starts from the point x∗, i.e.

x(0) = x∗ 6= 0 ∈ K, x(n+1) = Aσnx
(n), n = 0, 1, . . . ,

and from (69) it follows that x(n) ∈ K for n = 0, 1, . . .. Show that in this
case for the index sequence {σn} the identity σn ≡ 0 takes place.

Indeed, in the opposite case σn0 = 1 for some n0. Then by the definition
of the extremal trajectory

‖x(n0+1)‖ = ‖A1x
(n0)‖ = ρ‖xn0‖, (72)

where ρ = ρ(A), and at the same time the following inequality

‖A0x
(n0)‖ ≤ ρ‖xn0‖, (73)

should be valid. But by Lemma 13 the extremal norm ‖ · ‖ is monotone and
then by (70)

‖A0x
(n0)‖ ≥ ‖γA1x

(n0)‖,

where γ > 1, which contradicts to the relations (72) and (73).

44



So, it is shown that σn ≡ 0, from which by Theorem 6 σ(A) = 0. For
small values of the quotient α/β the proof of this Lemma can be accomplished
analogously. Lemma 21 is proved. �

Complete the construction of the counterexample to the Finiteness Con-
jecture. Fix some set of numbers a, b, c, d satisfying conditions (21), and
consider the family of the matrix sets A depending on α and β as on param-
eters. Then by Lemma 21 σ(A) = 0 for large values of α/β and σ(A) = 1 for
small values of α/β. But by Theorem 6 the value σ(A) depends continuously
on the matrix set A, and then on α and β. Hence, σ(A) takes all the inter-
mediate values between 0 and 1 when α and β vary. In particular, for some
α and β the number σ(A) takes an irrational value. Then by Lemma 20 for
such α and β the generalized spectral radius ρ(A) can not be attained on
finite products of matrices from the set A.
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