On integral weight spectra of the MDS codes cosets of weight 1,2 , and 3

Alexander A. Davydov*
Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences Bol'shoi Karetnyi per. 19, Moscow, 127051, Russian Federation. E-mail: adav@iitp.ru
Stefano Marcugini ${ }^{\dagger}$ and Fernanda Pambianco ${ }^{\dagger}$
Department of Mathematics and Computer Science, University of Perugia
Via Vanvitelli 1, Perugia, 06123, Italy. E-mail: \{stefano.marcugini,fernanda.pambianco\}@unipg.it

Abstract

The weight of a coset of a code is the smallest Hamming weight of any vector in the coset. For a linear code of length n, we call integral weight spectrum the overall numbers of weight w vectors, $0 \leq w \leq n$, in all the cosets of a fixed weight. For maximum distance separable (MDS) codes, we obtained new convenient formulas of integral weight spectra of cosets of weight 1 and 2 . Also, we give the spectra for the weight 3 cosets of MDS codes with minimum distance 5 and covering radius 3 .

Keywords: cosets weight distribution, MDS codes.
Mathematics Subject Classication (2010). 94B05, 51E21, 51E22

1 Introduction

Let \mathbb{F}_{q} be the Galois field with q elements, $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. Let \mathbb{F}_{q}^{n} be the space of n-dimensional vectors over \mathbb{F}_{q}. We denote by $[n, k, d]_{q} R$ an \mathbb{F}_{q}-linear code of length n, dimension k, minimum distance d, and covering radius R. If $d=n-k+1$, it is a maximum distance separable (MDS) code. For an introduction to coding theory see [2, 11, 16, 19].

[^0]A coset of a code is a translation of the code. A coset \mathcal{V} of an $[n, k, d]_{q} R$ code \mathcal{C} can be represented as

$$
\begin{equation*}
\mathcal{V}=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x}=\mathbf{c}+\mathbf{v}, \mathbf{c} \in \mathcal{C}\right\} \subset \mathbb{F}_{q}^{n} \tag{1.1}
\end{equation*}
$$

where $\mathbf{v} \in \mathcal{V}$ is a vector fixed for the given representation; see [2, 11, 16, 17, 19] and the references therein.

The weight distribution of code cosets is an important combinatorial property of a code. In particular, the distribution serves to estimate decoding results. There are many papers connected with distinct aspects of the weight distribution of cosets for codes over distinct fields and rings, see e.g. [1-7, 9, 10, 12 15, 20, 21, [8, Sect. 6.3], [11, Sect. 7], [16, Sections 5.5, $6.6,6.9]$, [17, Sect. 10] and the references therein.

For a linear code of length n, we call integral weight spectrum the overall numbers of weight w vectors, $0 \leq w \leq n$, in all the cosets of a fixed weight.

In this work, for MDS codes, using and developing the results of [5], we obtain new convenient formulas of integral weight spectra of cosets of weight 1 and 2 . The obtained formulas for weight 1 and 2 cosets, seem to be simple and expressive.

This paper is organized as follows. Section 2 contains preliminaries. In Section 3 we consider the integral weight spectrum of the weight 1 cosets of MDS codes with minimum distance $d \geq 3$. In Section 4, we obtain the integral weight spectrum of the weight 2 cosets of MDS codes with minimum distance $d \geq 5$. In Section 5, we give the spectra for the weight 3 cosets of MDS codes with minimum distance 5 and covering radius 3 .

2 Preliminaries

2.1 Cosets of a linear code

We give a few known definitions and properties connected with cosets of linear codes, see e.g. [2, 11, 16, 17, 19] and the references therein.

We consider a coset \mathcal{V} of an $[n, k, d]_{q} R$ code \mathcal{C} in the form (1.1). We have $\# \mathcal{V}=\# \mathcal{C}=q^{k}$. One can take as \mathbf{v} any vector of \mathcal{V}. So, there are $\# \mathcal{V}=q^{k}$ formally distinct representations of the form (1.1); all they give the same $\operatorname{coset} \mathcal{V}$. If $\mathbf{v} \in \mathcal{C}$, we have $\mathcal{V}=\mathcal{C}$. The distinct cosets of \mathcal{C} partition \mathbb{F}_{q}^{n} into q^{n-k} sets of size q^{k}.

We remind that the Hamming weight of the vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$ is the number of nonzero entries in \mathbf{x}.

Notation 2.1. For an $[n, k, d]_{q} R$ code \mathcal{C} and its coset \mathcal{V} of the form (1.1), the following notation is used:
$t=\left\lfloor\frac{d-1}{2}\right\rfloor \quad$ the number of correctable errors;
$A_{w}(\mathcal{C}) \quad$ the number of weight w codewords of the code \mathcal{C};
$A_{w}(\mathcal{V}) \quad$ the number of weight w vectors in the coset \mathcal{V};
the weight of a coset the smallest Hamming weight of any vector in the coset;
$\mathcal{V}^{(W)}$
a coset leader
$\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(W)}\right)$
$\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq W}\right)$
a coset of weight $W ; \quad A_{w}\left(\mathcal{V}^{(W)}\right)=0$ if $w<W$;
a vector in the coset of the smallest Hamming weight;
the overall number of weight w vectors in all cosets of weight W;
the overall number of weight w vectors in all cosets of weight $\leq W$.

In cosets of weight $>t$, a vector of the minimal weight is not necessarily unique. Cosets of weight $\leq t$ have a unique leader.

The code \mathcal{C} is the coset of weight zero. The leader of \mathcal{C} is the zero vector of \mathbb{F}_{q}^{n}.
Definition 2.2. Let \mathcal{C} be an $[n, k, d]_{q} R$ code and let $\mathcal{V}^{(W)}$ be its coset of weight W. Let $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(W)}\right)$ be the overall number of weight w vectors in all cosets of weight W. For a fixed W, we call the set $\left\{\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(W)}\right) \mid w=0,1, \ldots, n\right\}$ integral weight spectrum of the code cosets of weight W.

Distinct representations of the integral weight spectra $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(W)}\right)$ and values of $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq W)$ are considered in the literature, see e.g. [2, Th.14.2.2], [5,6], [15, Lem. 2.14], [16, Th. 6.22]. For instance, in [5, Eqs. (11)-(13)], for an MDS code correcting t-fold errors, the value D_{u} gives $\mathcal{A}_{u}^{\Sigma}\left(\mathcal{V}^{\leq t}\right)$.

2.2 Some useful relations

For $w \geq d$, the weight distribution $A_{w}(\mathcal{C})$ of an $[n, k, d=n-k+1]_{q} \operatorname{MDS}$ code \mathcal{C} has the following form, see e.g. [11, Th. 7.4.1], [16, Th. 11.3.6]:

$$
\begin{equation*}
A_{w}(\mathcal{C})=\binom{n}{w} \sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w-d+1-j}-1\right) \tag{2.1}
\end{equation*}
$$

In \mathbb{F}_{q}^{n}, the volume of a sphere of radius t is

$$
\begin{equation*}
V_{n}(t)=\sum_{i=0}^{t}(q-1)^{i}\binom{n}{i} \tag{2.2}
\end{equation*}
$$

The following combinatorial identities are well known, see e.g. [18, Sect. 1, Eqs. (I),(IV), Problem 9(a)]:

$$
\begin{equation*}
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& \binom{n}{m}\binom{m}{p}=\binom{n}{p}\binom{n-p}{m-p}=\binom{n}{m-p}\binom{n-m+p}{p} . \tag{2.4}\\
& \sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m} . \tag{2.5}
\end{align*}
$$

In [5, Eqs. (11)-(13)], for an $[n, k, d \geq 2 t+1]_{q}$ MDS code correcting t-fold errors, the following relations for $\mathcal{A}_{u}^{\Sigma}\left(\mathcal{V}^{\leq t}\right)$ denoted by D_{u} are given:

$$
\begin{equation*}
\mathcal{A}_{u}^{\Sigma}\left(\mathcal{V}^{\leq t}\right)=D_{u}=\binom{n}{u} \sum_{j=0}^{u-d+t}(-1)^{j} N_{j}, d-t \leq u \leq n \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{j}=\binom{u}{j}\left[q^{u-d+1-j} V_{n}(t)-\sum_{i=0}^{t}\binom{u-j}{i}(q-1)^{i}\right] \quad \text { if } 0 \leq j \leq u-d \tag{2.7}\\
& N_{j}=\binom{u}{j}\left[\sum_{w=d-u+j}^{t}\binom{n-u+j}{w} \sum_{i=0}^{w-d+u-j}(-1)^{i}\binom{w}{i}\left(q^{w-d+u-j-i+1}-1\right)\right. \tag{2.8}\\
& \left.\times \sum_{s=w}^{t}\binom{u-j}{s-w}(q-1)^{s-w}\right] \quad \text { if } u-d+1 \leq j \leq u-d+t .
\end{align*}
$$

3 The integral weight spectrum of the weight 1 cosets of MDS codes with minimum distance $d \geq 3$

In Sections 3 55, we represent the values $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(W)}\right)$ in distinct forms that can be convenient in distinct utilizations, e.g. for estimates of the decoder error probability, see [5, 6] and the references therein.

We use (with some transformations) the results of [5, Eqs. (11)-(13)] where, for an MDS code correcting t-fold errors, the value D_{u} gives the overall number $\mathcal{A}_{u}^{\Sigma}(\mathcal{V} \leq t)$ of weight u vectors in all cosets of weight $\leq t$. We cite [5, Eqs. (11)-(13)] by formulas (2.6) $-(2.8)$, respectively.

In the rest of the paper we put that a sum $\sum_{i=0}^{A} \ldots$ is equal to zero if $A<0$.
Lemma 3.1. [5, Eqs. (11)-(13)] Let $d-1 \leq w \leq n$. For an $[n, k, d=n-k+1]_{q} M D S$ code \mathcal{C} of minimum distance $d \geq 3$, the overall number $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq 1)$ of weight w vectors in all cosets of weight ≤ 1 is as follows:

$$
\begin{equation*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 1}\right)=\binom{n}{w}\left[\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left[q^{w-d+1-j}(1+n(q-1))-1-(w-j)(q-1)\right]\right. \tag{3.1}
\end{equation*}
$$

$$
\left.-(-1)^{w-d}\binom{w}{d-1}(n-d+1)(q-1)\right] .
$$

Proof. In the relations for D_{u} of [5] cited by (2.6)-(2.8), we put $t=1$ and then use (2.2). In (2.8), we have $j=u-d+1$ whence $w=1$ in all terms. Finally, we change u by w to save the notations of this paper.

Lemma 3.2. The following holds:

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{w}{j}\binom{w-j}{v}=(-1)^{m}\binom{w}{v}\binom{w-v-1}{m} \tag{3.2}
\end{equation*}
$$

Proof. In (2.4), we put $n=w, p=j, m-p=v$, and obtain

$$
\sum_{j=0}^{m}(-1)^{j}\binom{w}{j}\binom{w-j}{v}=\binom{w}{v} \sum_{j=0}^{m}(-1)^{j}\binom{w-v}{j}
$$

Now we use (2.5).
Lemma 3.3. Let $d-1 \leq w \leq n$. The following holds:

$$
\sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}=\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w+1-d-j}-1\right)-(-1)^{w-d}\binom{w-1}{d-2} .
$$

Proof. We write the left sum of the assertion as

$$
\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w+1-d-j}-1+1\right)-(-1)^{w-d}\binom{w}{d-1}
$$

By (2.5),

$$
\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}=(-1)^{w-d}\binom{w-1}{d-1}
$$

Finally, we apply (2.3).
For an $[n, k, d]_{q}$ code \mathcal{C}, we denote

$$
\begin{equation*}
\Omega_{w}^{(j)}(\mathcal{C})=(-1)^{w-d}\binom{n-j}{w-j}\binom{w-j-1}{d-j-2} . \tag{3.3}
\end{equation*}
$$

Also, we denote

$$
\begin{equation*}
\Phi_{w}^{(j)}=(-1)^{w-5}\left[\binom{q+1}{w}\binom{w-1}{3}-\binom{q+1-j}{w-j}\binom{w-1-j}{3-j}\right] \tag{3.4}
\end{equation*}
$$

Theorem 3.4. (integral weight spectrum 1)

Let $d-1 \leq w \leq n$. Let \mathcal{C} be an $[n, k, d=n-k+1]_{q} M D S$ code of minimum distance $d \geq 3$.
(i) For the code \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)$ of weight w vectors in all weight 1 cosets is as follows:

$$
\begin{align*}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)=\binom{n}{w}(q-1)\left[n \sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}+(-1)^{w-d} w\binom{w-2}{d-3}\right] \tag{3.5}\\
& =n(q-1)\left[\binom{n}{w} \sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}+\Omega_{w}^{(1)}(\mathcal{C})\right] \tag{3.6}\\
& =n(q-1)\left[\binom{n}{w} \sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w+1-d-j}-1\right)-\Omega_{w}^{(0)}(\mathcal{C})+\Omega_{w}^{(1)}(\mathcal{C})\right] \tag{3.7}\\
& =n(q-1)\left[A_{w}(\mathcal{C})-\Omega_{w}^{(0)}(\mathcal{C})+\Omega_{w}^{(1)}(\mathcal{C})\right] \tag{3.8}\\
& =n(q-1)\left[A_{w}(\mathcal{C})-(-1)^{w-d}\left(\binom{n}{w}\binom{w-1}{d-2}-\binom{n-1}{w-1}\binom{w-2}{d-3}\right)\right] . \tag{3.9}
\end{align*}
$$

(ii) Let the code \mathcal{C} be $a[q+1, k, d=q+2-k]_{q} M D S$ code of length $n=q+1$ and minimum distance $d \geq 3$. For \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)$ of weight w vectors in all weight 1 cosets is as follows

$$
\begin{align*}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)=\binom{q+1}{w}(q-1)\left[q^{w+2-d}-\sum_{i=0}^{w-d}(-1)^{i}\left(\binom{w}{i+1}-\binom{w}{i}\right) q^{w+1-d-i}\right. \tag{3.10}\\
& \left.-(-1)^{w-d}\left(\binom{w}{d-1}-w\binom{w-2}{d-3}\right)\right], d-1 \leq w \leq q+1
\end{align*}
$$

(iii) Let the code \mathcal{C} be a $[q+1, q-3,5]_{q} M D S$ code of length $n=q+1$ and minimum distance $d=5$. For \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)$ of weight w vectors in all weight 1 cosets is as follows

$$
\begin{equation*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)=\left(q^{2}-1\right)\left[A_{w}(\mathcal{C})-\Phi_{w}^{(1)}\right], 4 \leq w \leq q+1 . \tag{3.11}
\end{equation*}
$$

Proof. (i) By the definition of $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 1}\right)$, see Notation 2.1, for the code \mathcal{C} of Lemma 3.1, we have

$$
\begin{equation*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)=\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 1}\right)-A_{w}(\mathcal{C}) . \tag{3.12}
\end{equation*}
$$

We subtract (2.1) from (3.1) that gives

$$
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)=\binom{n}{w}(q-1)\left[-(-1)^{w-d}\binom{w}{d-1}(n-d+1)\right.
$$

$$
\begin{aligned}
& \left.+\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w-d+1-j} n-w+j\right)\right] \\
& =\binom{n}{w}(q-1)\left[n \sum_{j=0}^{w-d+1}(-1)^{j}\binom{w}{j} q^{w-d+1-j}-\sum_{j=0}^{w-d+1}(-1)^{j}\binom{w}{j}(w-j)\right] .
\end{aligned}
$$

Here some simple transformations are missed out. Now, for the 2-nd sum $\sum_{j=0}^{w-d+1} \ldots$, we use Lemma 3.2 and obtain (3.5).

To form (3.6) from (3.5), we change $w\binom{n}{w}$ by $n\binom{n-1}{w-1}$, see (2.4). To obtain (3.7) from (3.6), we apply Lemma 3.3, For (3.8), we use (2.1). Finally, (3.9) is (3.8) in detail.
(ii) We substitute $n=q+1$ to (3.5) that implies (3.10) after simple transformations.
(iii) We substitute $n=q+1$ and $d=5$ to (3.9) that gives (3.11).

For $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq 1)$, we give a formula alternative to (3.1).
Corollary 3.5. Let $V_{n}(1)$ be as in (2.2). Let \mathcal{C} be an $[n, k, d=n-k+1]_{q} M D S$ code of minimum distance $d \geq 3$. Then for \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq 1)$ of weight w vectors in all cosets of weight ≤ 1 is as follows:

$$
\begin{equation*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 1}\right)=A_{w}(\mathcal{C}) \cdot V_{n}(1)-(-1)^{w-d} n(q-1) \sum_{j=0}^{1}(-1)^{j}\binom{n-j}{w-j}\binom{w-j-1}{d-j-2} . \tag{3.13}
\end{equation*}
$$

Proof. We use (3.12) and (3.9).

4 The integral weight spectrum of the weight 2 cosets of MDS codes with minimum distance $d \geq 5$

As well as in Lemma [3.1, we use the results of [5] with some transformations.
Lemma 4.1. [5, Eqs. (11)-(13)] Let $d-2 \leq w \leq n$. Let $V_{n}(t)$ be as in (2.2). For an $[n, k, d=n-k+1]_{q} M D S$ code \mathcal{C} of minimum distance $d \geq 5$, the overall number $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq 2)$ of weight w vectors in all cosets of weight ≤ 2 is as follows:

$$
\begin{align*}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 2}\right)=\binom{n}{w}\left[\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left[q^{w-d+1-j} \cdot V_{n}(2)-V_{w-j}(2)\right]\right. \tag{4.1}\\
& \left.-(-1)^{w-d} \frac{(n-d+1)(q-1)}{2}\left(\binom{w}{d-1}[2+(q-1)(n+d-2)]-\binom{w}{d-2}(n-d+2)\right)\right] .
\end{align*}
$$

Proof. In the relations for D_{u} of (5] cited by (2.6) -(2.8), we put $t=2$ that gives, in (2.8), $j=u-d+1$ and $j=u-d+2$, whence $w=1,2$ and $w=2$, respectively. Then we do simple transformations. Finally, we change u by w to save the notations of this paper.

For an $[n, k, d]_{q}$ code \mathcal{C}, we denote

$$
\begin{align*}
\Delta_{w}(\mathcal{C}) & =(-1)^{w-d}\binom{n}{w}\binom{w}{d-2}\binom{n-d+2}{2}(q-1) \tag{4.2}\\
\Delta_{w}^{\star}(\mathcal{C}) & =\frac{\Delta_{w}(\mathcal{C})}{\binom{n}{2}(q-1)^{2}}
\end{align*}
$$

Lemma 4.2. The following holds:

$$
\begin{equation*}
\Delta_{w}^{\star}(\mathcal{C})=(-1)^{w-d}\binom{n-d+2}{n-w}\binom{n-2}{d-2} \frac{1}{q-1} \tag{4.3}
\end{equation*}
$$

Proof. By (2.4), we have

$$
\begin{aligned}
& \binom{n}{w}\binom{w}{d-2}=\binom{n}{d-2}\binom{n-d+2}{w-d-2}=\binom{n}{d-2}\binom{n-d+2}{n-w}, \\
& \binom{n}{d-2}\binom{n-d+2}{2}=\binom{n}{d}\binom{d}{d-2}=\binom{n}{d}\binom{d}{2}=\binom{n}{2}\binom{n-2}{d-2} .
\end{aligned}
$$

Theorem 4.3. (integral weight spectrum 2)

Let $d-2 \leq w \leq n$. Let \mathcal{C} be an $[n, k, d=n-k+1]_{q} M D S$ code of minimum distance $d \geq 5$. Let $\Omega_{w}^{(j)}(\mathcal{C})$ and $\Phi_{w}^{(j)}$ be as in (3.3) and (3.4).
(i) For the code \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)$ of weight w vectors in all weight 2 cosets is as follows:

$$
\begin{gather*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)=\binom{n}{w}(q-1)^{2}\left[\binom{n}{2} \sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}+(-1)^{w-d}\binom{w}{2}\binom{w-3}{d-4}\right] \tag{4.4}\\
+\Delta_{w}(\mathcal{C}) . \\
=\binom{n}{2}(q-1)^{2}\left[\binom{n}{w} \sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}+\Omega_{w}^{(2)}(\mathcal{C})\right]+\Delta_{w}(\mathcal{C}) . \tag{4.5}\\
=\binom{n}{2}(q-1)^{2}\left[\binom{n}{w} \sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w+1-d-j}-1\right)-\Omega_{w}^{(0)}(\mathcal{C})+\Omega_{w}^{(2)}(\mathcal{C})\right]+\Delta_{w}(\mathcal{C}) \tag{4.6}\\
=\binom{n}{2}(q-1)^{2}\left[A_{w}(\mathcal{C})-\Omega_{w}^{(0)}(\mathcal{C})+\Omega_{w}^{(2)}(\mathcal{C})\right]+\binom{n}{2}(q-1)^{2} \Delta_{w}^{\star}(\mathcal{C}) \tag{4.7}
\end{gather*}
$$

$$
\begin{align*}
& =\binom{n}{2}(q-1)^{2}\left[A_{w}(\mathcal{C})-(-1)^{w-d}\left(\binom{n}{w}\binom{w-1}{d-2}-\binom{n-2}{w-2}\binom{w-3}{d-4}\right)\right] \tag{4.8}\\
& +(-1)^{w-d}\binom{n}{2}(q-1)\binom{n-d+2}{n-w}\binom{n-2}{d-2}
\end{align*}
$$

(ii) Let the code \mathcal{C} be a $[q+1, q-3,5]_{q} M D S$ code of length $n=q+1$ and minimum distance $d=5$. For \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)$ of weight w vectors in all weight 1 cosets is as follows

$$
\begin{align*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)= & \binom{q+1}{2}(q-1)^{2}\left[A_{w}(\mathcal{C})-\Phi_{w}^{(2)}+(-1)^{w-5} \frac{1}{3}\binom{q-2}{w-3}\binom{q-2}{2}\right] \tag{4.9}\\
& 3 \leq w \leq q+1
\end{align*}
$$

Proof. (i) By the definition of $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 2}\right)$, see Notation 2.1, for the code \mathcal{C} of Lemma 4.1, we have

$$
\begin{equation*}
\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)=\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 2}\right)-\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 1}\right) \tag{4.10}
\end{equation*}
$$

We subtract (3.1) from (4.1) that gives

$$
\begin{aligned}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)=\binom{n}{w}\left[\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w+1-d-j}\binom{n}{2}(q-1)^{2}-\binom{w-j}{2}(q-1)^{2}\right)\right. \\
& \left.+(-1)^{w+1-d}\binom{w}{d-1} \frac{1}{2}(n-d+1)(q-1)^{2}(n+d-2)\right]+\Delta_{w}(\mathcal{C}) \\
& =\binom{n}{w}(q-1)^{2}\left[\binom{n}{2} \sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}-\sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\binom{w-j}{2}\right. \\
& \left.-(-1)^{w-d}\binom{w}{d-1}\left(\frac{1}{2}(n-d+1)(n+d-2)+\binom{n}{2}-\binom{n}{2}\right)\right]+\Delta_{w}(\mathcal{C}) .
\end{aligned}
$$

Applying Lemma 3.2 to the 2-nd sum $\sum_{j=0}^{w-d} \ldots$, after simple transformations we obtain

$$
\begin{aligned}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)=\binom{n}{w}(q-1)^{2}\left[\binom{n}{2} \sum_{j=0}^{w+1-d}(-1)^{j}\binom{w}{j} q^{w+1-d-j}-(-1)^{w-d}\binom{w}{2}\binom{w-3}{w-d}\right. \\
& \left.+(-1)^{w-d}\binom{w}{d-1}\binom{d-1}{2}\right]+\Delta_{w}(\mathcal{C}) .
\end{aligned}
$$

Due to (2.4) and (2.3), we have

$$
\binom{w}{d-1}\binom{d-1}{2}=\binom{w}{2}\binom{w-2}{d-3}=\binom{w}{2}\left[\binom{w-3}{d-4}+\binom{w-3}{d-3}\right] .
$$

Also, $\binom{w-3}{w-d}=\binom{w-3}{d-3}$. Now we can obtain (4.4). Moreover, by (2.4), we have

$$
\binom{n}{w}\binom{w}{2}=\binom{n}{2}\binom{n-2}{w-2}
$$

that gives (4.5).
To obtain (4.6) from (4.5), we apply Lemma 3.3. For (4.7), we use (2.1). Finally, (4.8) is (4.7) in detail.
(ii) We substitute $n=q+1$ and $d=5$ to (4.8) that gives (4.9).

5 The integral weight spectrum of the weight 3 cosets of MDS codes with minimum distance $d=5$ and covering radius $R=3$

Theorem 5.1. (integral weight spectrum 3)
Let $d-2 \leq w \leq n$. Let \mathcal{C} be an $[n, n-4,5]_{q} 3$ MDS code of minimum distance $d=5$ and covering radius $R=3$. Let $V_{n}(t)$, $\Phi_{w}^{(j)}$, $\mathcal{A}_{w}^{\Sigma}(\mathcal{V} \leq 2)$, and $\Delta_{w}(\mathcal{C})$ be as in (2.2), (3.4), (4.1), and (4.2), respectively. Let $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)$ and $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)$ be as in Theorems 3.4 and 4.3, respectively.
(i) For the code \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{3}\right)$ of weight w vectors in all cosets of weight 3 is as follows:

$$
\begin{align*}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(3)}\right)=\binom{n}{w}(q-1)^{w}-\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{\leq 2}\right) \tag{5.1}\\
& =\binom{n}{w}(q-1)^{w}-\left[A_{w}(\mathcal{C})+\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(1)}\right)+\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(2)}\right)\right] \tag{5.2}\\
& =\binom{n}{w}(q-1)^{w}-\left[\binom{n}{w} \sum_{j=0}^{w-5}(-1)^{j}\binom{w}{j}\left[q^{w-4-j} \cdot V_{n}(2)-V_{w-j}(2)\right]\right. \tag{5.3}\\
& \left.-(-1)^{w-5} \frac{(n-4)(q-1)}{2}\left(\binom{w}{4}[2+(q-1)(n+3)]-\binom{w}{3}(n-3)\right)\right] .
\end{align*}
$$

(ii) Let the code \mathcal{C} be a $[q+1, q-3,5]_{q} 3 M D S$ code of length $n=q+1$, minimum distance $d=5$, and covering radius $R=3$. For \mathcal{C}, the overall number $\mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(3)}\right)$ of weight w vectors
in all weight 3 cosets is as follows

$$
\begin{align*}
& \mathcal{A}_{w}^{\Sigma}\left(\mathcal{V}^{(3)}\right)=\binom{q+1}{w}(q-1)^{w}-\left[\binom{q+1}{w} \sum_{j=0}^{w-5}(-1)^{j}\binom{w}{j}\left[q^{w-4-j} \cdot V_{q+1}(2)-V_{w-j}(2)\right]\right. \tag{5.4}\\
& \left.-(-1)^{w-5} \frac{(q-3)(q-1)}{2}\left(\binom{w}{4}\left(q^{2}+3 q-2\right)-\binom{w}{3}(q-2)\right)\right] \\
& =\binom{q+1}{w}(q-1)^{w}-\left[V_{q+1}(2) A_{w}(\mathcal{C})-\left(q^{2}-1\right) \Phi_{w}^{(1)}-\binom{q+1}{2}(q-1)^{2} \Phi_{w}^{(2)}-\Delta_{w}(\mathcal{C})\right] . \tag{5.5}
\end{align*}
$$

Proof. (i) Due to covering radius 3 , in \mathcal{C} there are not cosets of weight >3; therefore for \mathcal{C} we have (5.1) where $\binom{n}{w}(q-1)^{w}$ is the total number of weight w vectors in \mathbb{F}_{q}^{n}.

The relation (5.2) follows from (5.1), (3.12), and (4.10).
To form (5.3), we substitute (4.1) to (5.1) with $d=5$.
(ii) We substitute $n=q+1$ to (5.3) and obtain (5.4).

To obtain (5.5) from (5.2), we use (3.11), (4.9), (4.2), and (4.3) with $n=q+1, d=5$.

References

[1] E.F. Assmus, Jr., H.F. Mattson, Jr., The weight-distribution of a coset of a linear code, IEEE Trans. Inform. Theory 24(4), 497 (1978) https ://doi.org/10.1109/tit.1978.1055903
[2] R.E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, Reading, 1984
[3] A. Bonnecaze, I.M. Duursma, Translates of linear codes over \mathbf{Z}_{4}, IEEE Trans. Inform. Theory 43(4), 1218-1230 (1997) https : //doi.org/10.1109/18.605585
[4] P. Charpin, T. Helleseth, V. Zinoviev, The coset distribution of triple-error-correcting binary primitive BCH codes. IEEE Trans. Inform. Theory, 52(4), 1727-1732 (2006) https : //doi.org/10.1109/TIT.2006.871605
[5] K.-M. Cheung, More on the decoder error probability for Reed-Solomon codes. IEEE Trans. Inform. Theory 35(4), 895-900 (1989) https ://doi.org/10.1109/18.32169
[6] K.-M. Cheung, On the decoder error probability of block codes. IEEE Trans. Commun. 40(5), 857-859 (1992) https : //doi.org/10.1109/26.141450
[7] P. Delsarte, Four fundamental parameters of a code and their combinatorial significance. Inform. Control 23, 407-438 (1973) https : //doi.org/10.1016/s0019 - 9958(73)80007 - 5
[8] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory. Philips Res. Repts. Suppl. 10, 1973.
[9] P. Delsarte, V.I. Levenshtein, Association schemes and coding theory. IEEE Trans. Inform. Theory 44(6), 2477-2504 (1998) https : //doi.org/10.1109/18.720545
[10] T. Helleseth, The weight distribution of the coset leaders of some classes of codes with related parity-check matrices, Discrete Math. 28, 161-171 (1979) https : //doi.org/10.1016/0012 - 365X(79)90093 - 1
[11] W.C. Huffman, V.S. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003
[12] R. Jurrius, R. Pellikaan, The coset leader and list weight enumerator. In: G. Kyureghyan, G.L. Mullen, A. Pott, Eds., Contemporary Math. vol. 632, Topics in Finite Fields (2015) 229-251. Corrected version (2019) https : //www.win.tue.nl/~ruudp/paper/71.pdf
[13] K. Kaipa, Deep Holes and MDS Extensions of ReedSolomon Codes, IEEE Trans. Inform. Theory 63 (8) (2017) 4940 - 4948. https ://doi.org/10.1109/TIT.2017.2706677
[14] T. Kasami, S. Lin, On the Probability of Undetected Error for the Maximum Distance Separable Codes, IEEE Trans. Commun. 32(9), 998-1006 (1984) https : //doi.org/10.1109/TCOM.1984.1096175
[15] F.J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. J. 42(1), 79-94 (1963) https : //doi.org/10.1002/j.1538 - 7305.1963.tb04003.x
[16] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, third ed., NorthHolland, Amsterdam, The Netherlands, 1981
[17] V.S. Pless, W.C. Huffman, R.A. Brualdi, An Introductiom to Algebraic Codes, In: V.S. Pless, W.C. Huffman, R.A. Brualdi, (eds.) Handbook of Coding Theory, Chapter I, pp. 3-139, Elsevier, Amsterdam, The Netherlands, 1998
[18] J. Riordan, Combinatorial Identities, Willey, New York, 1968
[19] R.M. Roth, Introduction to Coding Theory, Cambridge, Cambridge Univ. Press, 2007
[20] J.R. Schatz, On the Weight Distributions of Cosets of a Linear Code. American Math. Month. 87(7), 548-551 (1980) https : //doi.org/10.1080/00029890.1980.11995087
[21] J. Zhang, D. Wan, K. Kaipa, Deep Holes of Projective Reed-Solomon Codes. IEEE Trans. Inform. Theory 66(4), 2392-2401 (2020) https : //doi.org/10.1109/TIT.2019.2940962

[^0]: *The research of A.A. Davydov was done at IITP RAS and supported by the Russian Government (Contract No 14.W03.31.0019).
 ${ }^{\dagger}$ The research of S. Marcugini and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) (No U-UFMBAZ-2017000532, 28.11.2017) and by University of Perugia (Project: Curve, codici e configurazioni di punti, Base Research Fund 2018, No 46459, 15.06.2018).

