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On combinatorial optimization for dominating sets (literature survey, new models)

Mark Sh. Levin

The paper focuses on some versions of connected dominating set problems: basic problems and multi-
criteria problems. A literature survey on basic problem formulations and solving approaches is presented.
The basic connected dominating set problems are illustrated by simplified numerical examples. New
integer programming formulations of dominating set problems (with multiset estimates) are suggested.

Keywords: combinatorial optimization, connected dominating sets, multicriteria decision making,
solving strategy, heuristics, networking, multiset

1. Introduction

In recent decades, the significance of the connected dominating set problem has been increased (e.g.,
[43,60,62,66,124,149]). This problem consists in searching for the minimum sized connected dominating
set for the initial graph (e.g., [43,60,62,66]). Main applications of the problems of this kind are pointed
out in Table 1.

Table 1. Basic application domains of dominating set problems
No. Application domain Source(s)

1. Communication networks (e.g., design of virtual backbone in mobile networks, [16,30,43,48,68,108]
connected dominating set based index scheme in WSNs) [116,121,141,149]

2. Topology design for power (electricity) networked systems, electric power [31,41,67,93]
monitoring (e.g., minimum cardinality of a power dominating set)

3. Converter placement problem in optical networks [43]
4. Placement of monitoring devices (e.g., surveillance cameras, fire alarms) [70]

as total domination in graphs
5. Social networks (positive influence dominating sets) [39,97,133]
6. Multi-document summarization in information retrieval [112]

This paper describes some basic dominating set problems and connected dominating set problems (a
brief survey) and some new problem formulations (with multiset estimates). Some relations of dominating
set problems and some other well-known combinatorial optimization problems are depicted in Fig. 1.
Fig. 2 illustrates the dominating set problem (communication network application).

2. Preliminaries

Let graph G = (A,R) be a connected undirected graph, where A is a vertex/node set and R is an
edge set. A vertex subset B ⊆ A is a dominating set if every vertex not in B has a neighbor in B. The
vertices from B are called dominators. If the subgraph induced by B is connected, then B is called a
connected dominating set. Two special indices are considered: (a) domination number: γ(B) (minimum
cardinality of B); and (b) connected domination number: γc(B) (minimum cardinality of connected B).
Clearly, γc(B) ≥ γ(B).

The basic dominating set (DS) problem is the following combinatorial optimization problem:

Find the minimum sized dominating set B (i.e., min γ(B)) for the initial graph G = (A,R).

The connected dominating set (CDS) problem is:
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Find the minimum sized connected dominating set B (i.e., min γc(B)) for the initial graph G = (A,R).

The problems are proved to be NP-hard (e.g., [43,60,66]).

Fig. 1. Some relations of dominating sets and other combinatorial problems
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Evidently, the following basic requirements are examined for the problem (e.g., [43,60,62,66,124,149]):
(a) minimization of dominator set cardinality, (b) connectivity of the dominating vertices, (c) some special
properties for the connectivity and domination (e.g., as k-connectivity, m-domination).

Some simplified illustrative examples of k-connected dominating networks are shown in figures:
(a) 3-connected domination set example (3-connected dominating set is a clique, Fig. 3);
(b) 1-connected dominating set example (1-connected dominating set is a tree, Fig. 4);
(c) 2-connected dominating set example (2-connected dominating set is a ring, Fig. 5);
(d) 2-connected 3-dominating example (i.e, (2, 3)-CDS problem, 2-connected dominating set is a ring,

Fig. 6).
In addition, some special requirements are considered as well (Table 2). Note, the requirements can be

used as constraints or as criteria in multicriteria (multiobjective) problem formulations.
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Fig. 3. 3-connected domination set example
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Fig. 4. 1-connected domination set example
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Fig. 5. 2-connected domination set example
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Fig. 6. 2-connected 3-domination set example
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Table 2. Additional special requirements in dominating set problems
No. Requirement Source(s)

1. Restricted diameter on connected dominating set [22]
2. Multipoint relays [2,116,137]
3. Routing cost constraint in networks [44,45,47]
4. Demand constraints [82]
5. Capacity constraints [82]
6. Fault-tolerance of connected dominating set [154]

Two combinatorial problems are very close to the examined problems:

Close problem 1. The maximum independent set problem (e.g., [12,13,15,16,60,102,125,139]):

Find a maximum subset of vertices of an input graph (an independent or stable set) such that there is
no edges between two vertices in the subset.

This problem is often used as a preliminary one in approximation two-phase approach for the designing
the minimum connected dominating sets (e.g., [16,58,101,132]): (1) to construct a maximal independent
set for the initial network; (2) to connect the nodes in it.

Close problem 2. The maximum leaves spanning tree problem: (e.g., [10,24,54,60,83]):

Find a spanning tree of an input graph so that the number of the tree leaves is maximal.

This problem is equivalent to the problem of computing γc(G), because a vertex subset is a connected

dominating set if and only its compliment is (contained in) the set of leaves of a spanning tree (e.g., [24]).

Generally, the above-mentioned two problems belong the class of NP-hard problems as well (e.g.,
[60,66]). Thus, for the problems (i.e., minimum connecting dominating set, maximum independent set,
maximum leaves spanning tree) the following approaches are used: (1) exact enumerative methods (e.g.,
Branch-and-Bound method) (e.g., [43,54,123]); (2) approximation heuristics (e.g., [23,62,118,155]); and
(3) metaheuristics and hybrid methods (e.g., [9,16,112]). For some special cases of the problems polyno-
mial approaches are suggested: (a) polynomial algorithms (e.g., [74,87,109,113,114]), and (b) polynomial
time approximate schemes (PTAS) (e.g., [30,59,82,105,150]).

Some basic versions of connected set problems are listed in Table 3 (e.g., [43,60,62,66,124,149]).
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Table 3. Basic dominating set and connected dominating set problems, part 1
No. Problem type Source(s)

1. Basic surveys on problems and applications:
1.1. Connected dominating set: theory and applications [43]
1.2. Connected dominating sets in wireless ad hoc and sensor networks [149]
1.3. Connected dominating set in sensor networks and MANETs [21]
1.4. Connected dominating set in wireless networks [46]

2. Basic problems:
2.1. Dominating set problem, minimum dominating set problem [43,60,77]
2.2. Independent dominating sets in graphs, [61,79,98,115]

minimum independent dominating set
2.3. Dominating sets in planar graphs [50]
2.4. Connected dominating set problems (e.g., minimum connected [16,21,22,43,46,60,62,95]

dominating set, i.e., minimum cardinality of the dominating set) [102,103,108,118,119,121]
[123,125,136,139]

2.5. Connected dominating set problems in unit disk graphs [43,56,122,155]
2.6. Planar connected dominating set problem [99]

3. Dominating set problems with special kinds of connectivity
(e.g., weakly, strongly, k-connected):

3.1. Minimum size weakly-connected dominating sets [3,13,28,29,43,148]
3.2. Strongly connected dominating sets in networks with unidirectional links [42,43]
3.3. Total domination set problems [7,27,33,70–72,119]
3.4. Problems on total k-domination in graphs [19,20]
3.5. Problem on semitotal domination in graphs [73]
3.6. Problem on double domination in graphs [63–65]
3.7. Mixed domination problem in graphs [86]
3.8. k-connected m-dominating set problem ((k, m)-CDM problem) [38,56,90,120,128]
3.9. k-connected m-dominating set problem ((k, m)-CDM problem) [56,107,122]

with node weights

4. Weighted dominating set problems:
4.1. Node weighted connected dominating set problem (e.g., vertex [9,27,43,62,96,112]

importance) (minimum weight connected dominating set problem) [130,135,155]
4.2. Minimum weight k-connected m-fold dominating set [56,107,122]

(minimum weight (k, m)-CDS problem)
4.3. Optimal degree constrained minimum-weight connected dominating [5]

set problem (network backbone formation)
4.4. Weighted connected dominating set problem in unit disk graphs [43]
4.5. Minimum weight partial connected set cover problem [92]

5. Capacitated domination problems:
5.1. Capacitated domination set problems [40,94]
5.2. Minimum capacitated dominating set problem [111]
5.3. Capacitated (soft) domination problem (minimum cardinality of DS [82]

satisfying both the capacity and demand constraints)
5.4. Capacitated b-edge dominating set problem [17]

6. Edge dominating set problems:
6.1. Edge dominating set problems [32,52,60,78,144]
6.2. 2-edge connected dominating sets of a graph [91]
6.3. b-edge dominating set problem [55]
6.4. Capacitated b-edge dominating set problem [17]
6.5. Edge total domination problems [152]
6.6. Edge weighted dominating set problem [26,53]
6.7. Edge weighted connected dominating set problem [62]

7. Multi-hop dominating set problems:
7.1. Hop domination in graphs (k-step dominating sets) [75,85]
7.2. Connected k-hop dominating set problems [34,59,104,106]

[140,145,153]
7.3. Connected dominating sets with multipoint relays [2,116,137]
7.4. Energy-efficient dominating tree (in multi-hop wireless networks) [147]
7.5. Connected dominating set for multi-hop wireless networks [126]
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Table 3. Basic dominating set and connected dominating set problems, part 2
No. Problem type Source(s)

8. Steiner weighted dominating set problems:
8.1. Steiner connected dominating set problem [6,62,101,138]
8.2. Node weighted Steiner connected dominating set problem [4,62]

(minimum weight Steiner connected dominating set problem)

9. Special dominating set problems:
9.1. k-fair domination in graphs [25]
9.2. Energy efficient stable connected dominating set [116]
9.3. Minimum connected dominating set for certain circulant networks [110]
9.4. Routing-cost constrained connected dominating set problems [47]
9.5. Highly connected multi-dominating sets problems [56]
9.6. Load balanced connected dominating set problem [68]
9.7. Dominating sets and connected dominating sets in dynamic graphs [76]
9.8. Reconfiguration of dominating sets [127]

Table 4 contains a list of basic solving approaches.

Table 4. Basic solving approaches, part 1
No. Approach Source(s)

1. Basic surveys on problems and applications:
1.1. Survey on problems and solving approaches [43]
1.2. Classification and comparison of connected DS construction algorithms [149]

2. Exact methods:
2.1. Branch-and-Bound algorithm for minimum connected dominating set problem [123]
2.2. Polynomial time algorithms for minimum paired-dominating sets (special graphs: [74,87,109]

tree, convex bipartite graph, strongly orderable graph, permutation graph) [113,114]
2.3. Enumeration algorithms for minimal dominating sets problems [35]
2.4. Exact algorithms for dominating set (exponential time algorithms, [49,94,117]

Branch and reduce algorithm)
2.5. Exact algorithm for connected red-blue dominating set [1]

3. Heuristics, approximation algorithms:
3.1. Heuristic for the minimum connected dominating set problem [23]

on ad hoc wireless networks
3.2. Extended localized algorithm for connected dominating set formation [37]

in Ad Hoc wireless networks
3.3. Approximation algorithm for minimum size weakly-connected dominating sets [28]
3.4. Efficient algorithms for the minimum connected domination on trapezoid graphs [129]
3.4. Greedy approximation for minimum connected dominating sets [118]
3.5. Approximations for minimum-weighted dominating sets [155]

and minimum-weighted connected dominating sets
3.6. Approximating minimum size weakly-connected dominating sets [28]
3.7. Approximation algorithms for 1-m-CDS and k-k-CDM problems [128]
3.8. Approximation algorithms for highly connected multi-dominating sets problems [56]
3.9. Constant-approximation for minimum-weight (connected) dominating sets [14]
3.10. Approximation for k-hop connected dominating set problem [34]
3.11. Two-phase approximation algorithms (for minimum CDS) [132]
3.12. Performance guaranteed approximation algorithm for minimum k-connected [151]

m-fold dominating set
3.13. Approximation centralized algorithm for minimum CDS [100]

constructing virtual backbones in WSNs
3.14. Approximation distributed algorithm for minimum CDS (in unit disk graphs) [58]
3.15. Simple heuristic for minimum connected dominating set in graphs [131]

(approximation algorithm)
3.16. Approximation algorithm as distributed construction of connected dominating set [81]

(unit disk graphs)
3.17. Efficient randomized distributed greedy algorithm for constructing small [80]

dominating sets (approximation)
3.18. Approximation algorithms for k-connected m-dominating set problems [107]
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Table 4. Basic solving approaches, part 2
No. Approach Source(s)

4. Metaheuristics:
4.1. Efficient mathheuristic for the minimum-weight dominating set problem. [9]
4.2. Hybrid metaheuristic algorithms for minimum weight dominating set [112]
4.3. Enhanced ant colony optimization metaheuristic (minimum dominating set problem) [77]
4.4. Two stage efficient centralized algorithm for connected dominating set [51]

on wireless networks

5. Evolutionary methods:
5.1. Hybrid genetic algorithm for minimum dominating set problem [69]
5.2. Hybrid GA for minimum weight connected dominating set problem [36]
5.3. Effective hybrid memetic algorithm for the minimum weight dominating set problem [96]
5.4. Memetic algorithm for finding positive influence dominating sets in social networks [97]

6. Linear time algorithms:
6.1. Linear time algorithm for optimal k-hop dominating set problem [75,85]

(for tree, for bipartite permutation graphs)
6.2. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs [11]
6.3. Linear-time exact algorithm for tree (positive influence dominating set in social networks) [39]
6.4. Linear time algorithms for generalized edge dominating set problems [18]
6.5. Dynamic programming style linear time algorithm for k-power domination [31]

problem in weighted trees

7. Polynomial time approximation schemes:
7.1. PTAS for minimum connected dominating set in ad hoc wireless networks [30]
7.2. PTAS for minimum connected dominating set in 3-dimensional WSNs [150]
7.3. PTAS for minimum d-hop connected dominating set in growth-bounded graphs [59]
7.4. PTAS for the minimum dominating set problem in unit disk graphs [105]
7.5. PTAS for minimum connected dominating set with routing cost constraint in WSNs [44,45]
7.6. PTAS for routing-cost constrained minimum connected dominating set [142]

(in growth bounded graphs)
7.7. PTAS for capacitated domination problem on trees [82]
7.8. PTAS for the minimum weighted dominating set in growth bounded graphs [134]

8. Special approaches:
8.1. Search tree technique for dominating set on planar graphs [8]
8.2. Distributed algorithm for efficient construction and maintenance [145]

of connected k-hop dominating set
8.3. Distributed learning automata approach for weakly connected dominating set [3]
8.4. Adaptive algorithms for connected dominating sets [57]

3. Integer programming formulations of dominating set problems

The considered dominating set problem formulations are listed in Table 5.

3.1. Basic models

The minimum dominating set problem consists in finding the minimum dominating set B ⊆ A in
graph G = (A,R), where A = {a1, ..., ai, ..., an}, R = {r1, ..., rj , ..., rq}. The following binary variable xi

(i = 1, n) is used: ∀ai ∈ A xi = 1 if a is selected for B (i.e., a ∈ B) and xi = 0 otherwise. Thus, the
solution of the dominating set problems is defined by binary vector x = (x1, ..., xi, ..., xn). The following
optimization models can be considered:

Model 1. The integer programming formulation of the basic minimum dominating set problem is:

min γ(b) = min

n∑

i=1

xi

s.t. ∀aζ1
∈ (A\B) ∃aζ2

∈ B (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.
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Model 2. The integer programming formulation of the basic minimum connected dominating set
problem is (here Bc ⊆ A is the connected dominating set):

min γc(b) = min

n∑

i=1

xi

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ path l(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >,

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

In addition, vertex weights are considered: w(ai) > 0 (∀ai ∈ A).

Table 5. Integer programming formulations of dominating set problems
No. Model

I. Basic models:
Model 1 Integer programming formulation of the basic minimum dominating set problem
Model 2 Integer programming formulation of the basic minimum connected dominating set problem
Model 3 Integer programming formulation of the minimum node weighted dominating set problem
Model 4 Integer programming formulation of the minimum vertex weighted connected

dominating set problem

II. Basic multicriteria models:
Model 5 Multicritiria (multiobjective) minimum node weighted dominating set problem
Model 6 Multicriteria (multiobjective) minimum node weighted connected dominating set problem

III. Models of k-connected dominating set problems:
Model 7 Integer programming formulation of the basic minimum k connected dominating set problem
Model 8 Integer programming formulation of the minimum vertex weighted k-connected connected

dominating set problem
Model 9 Multicriteria (multiobjective) minimum node weighted k-connected dominating set problem

IV. Models of k-connected m-dominating set problems:
Model 10 Integer programming formulation of the basic minimum k-connected m-dominating set problem
Model 11 Integer programming formulation of the minimum vertex weighted k-connected connected

m-dominating set problem
Model 12 Multicriteria (multiobjective) minimum node weighted k-connected m-dominating set problem

V. Dominating problems with multiset estimates:
Model 13 Minimum node weighted dominating set problem with multiset estimates

(the objective function is based on “generalized median”)
Model 14 Minimum node weighted connected dominating set problem with multiset estimates

(the objective function is based on “generalized median”)
Model 15 Multicriteria (multiobjective) minimum node weighted k-connected dominating set problem

with multiset estimates (the objective function is based on “generalized median”)
Model 16 Multicriteria (multiobjective) minimum node weighted k-connected m-dominating set problem

with multiset estimates (the objective function is based on “generalized median”)

Model 3. The integer programming formulation of the minimum node weighted dominating set
problem is:

min γw(b) = min

n∑

i=1

w(ai) xi

s.t. ∀aζ1
∈ (A\B) ∃aζ2

∈ B (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 4. The integer programming formulation of the minimum vertex weighted connected dominat-
ing set problem is (here Bc ⊆ A is the connected dominating set):

min γw
c (b) = min

n∑

i=1

w(ai) xi
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s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ path l(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >,

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

3.2. Basic multicriteria models

Further, vertex weight vectors can be considered: w(ai) = (w(a1
i ), ..., w

κ(ai), ..., w
µ(ai)) (wκ(ai) >

0 ∀κ = 1, µ, ∀ai ∈ A). The following multicriteria (multiobjective) models can be examined (here the
Pareto-efficient solutions are searched for):

Model 5. Multicritiria (multiobjective) minimum node weighted dominating set problem:

min

n∑

i=1

w1(ai) xi, ...,min

n∑

i=1

wκ(ai) xi, ...,min

n∑

i=1

wµ(ai) xi,

s.t. ∀aζ1
∈ (A\B) ∃aζ2

∈ B (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 6. Multicriteria (multiobjective) minimum node weighted connected dominating set problem:

min

n∑

i=1

w1(ai) xi, ...,min

n∑

i=1

wκ(ai) xi, ...,min

n∑

i=1

wµ(ai) xi,

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ path l(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >,

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

3.3. Models of k-connected dominating set problems

In the case of k-connected dominating set the models are extended by an additional constraint for
k-connectivity of dominating set:

Model 7. The integer programming formulation of the basic minimum k connected dominating set
problem is (here Bc ⊆ A is the k-connected dominating set):

min γc(b) = min

n∑

i=1

xi

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 8. The integer programming formulation of the minimum vertex weighted k-connected con-
nected dominating set problem is (here Bc ⊆ A is the k-connected dominating set):

min γw
c (b) = min

n∑

i=1

w(ai) xi

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.
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Model 9. Multicriteria (multiobjective) minimum node weighted k-connected dominating set problem:

min

n∑

i=1

w1(ai) xi, ...,min

n∑

i=1

wκ(ai) xi, ...,min

n∑

i=1

wµ(ai) xi,

s.t. ∀aζ′ , aζ′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′ >;

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

3.4. Models of k-connected m-dominating set problems

In the case of k-connected m dominating set the models are extended by an additional constraints for
k-connectivity and m-dominating:

Model 10. The integer programming formulation of the basic minimum k-connected m-dominating
set problem is (here Bc ⊆ A is the k-connected dominating set):

min γc(b) = min

n∑

i=1

xi

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃ m vertices a1

ζ1
, ..., am

ζ1
∈ Bc (i.e., xa1

ζ1

= 1, ..., xam
ζ1

= 1)

such that (aζ1
, a1

ζ1
) ∈ R, ..., (aζ1

, am
ζ1

) ∈ R.

Model 11. The integer programming formulation of the minimum vertex weighted k-connected con-
nected m-dominating set problem is (here Bc ⊆ A is the k-connected dominating set):

min γw
c (b) = min

n∑

i=1

w(ai) xi

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃ m vertices a1

ζ1
, ..., am

ζ1
∈ Bc (i.e., xa1

ζ1

= 1, ..., xam
ζ1

= 1)

such that (aζ1
, a1

ζ1
) ∈ R, ..., (aζ1

, am
ζ1

) ∈ R.

Model 12. Multicriteria (multiobjective) minimum node weighted k-connected m-dominating set
problem:

min
n∑

i=1

w1(ai) xi, ...,min
n∑

i=1

wκ(ai) xi, ...,min
n∑

i=1

wµ(ai) xi,

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃ m vertices a1

ζ1
, ..., am

ζ1
∈ Bc (i.e., xa1

ζ1

= 1, ..., xam
ζ1

= 1)

such that (aζ1
, a1

ζ1
) ∈ R, ..., (aζ1

, am
ζ1

) ∈ R.
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3.5. Problems with multiset estimates

3.5.1. Interval multiset estimates

The fundamentals of the multiset theory are presented in [84,143]. Here a brief description of interval
multiset estimates from [88] is described. The approach consists in assignment of elements (1, 2, 3, ...)
into an ordinal scale [1, 2, ..., l]. In the obtained multi-set based estimate, a basis set involves all levels
of the ordinal scale: Ω = {1, 2, ..., l} (the levels are linear ordered: 1 � 2 � 3 � ...) and the assessment
problem (for each alternative/object under assessment) consists in selection of a multiset over set Ω while
taking into account two conditions:

1. cardinality of the selected multiset equals a specified number of elements η = 1, 2, 3, ... (i.e., multisets
of cardinality η are considered);

2. “configuration” of the multiset is the following: the selected elements of Ω cover an interval over
scale [1, l] (i.e., “interval multiset estimate”).

An estimate e for an alternative/object a (e.g., a ∈ A ) is (scale [1, l], position-based form or position
form): e(a) = (η1, ..., ηι, ..., ηl), where ηι corresponds to the number of elements at the level ι (ι = 1, l),

or e(a) = {

η1

︷ ︸︸ ︷

1, ..., 1,

η2

︷ ︸︸ ︷

2, ...2,

η3

︷ ︸︸ ︷

3, ..., 3, ...,

ηl
︷ ︸︸ ︷

l, ..., l}. The number of multisets of cardinality η, with elements taken
from a finite set of cardinality l, is called the “multiset coefficient” or “multiset number” ([84,143]):

µl,η = l(l+1)(l+2)...(l+η−1)
η! . This number corresponds to possible estimates (without taking into account

interval condition 2). In the case of condition 2, the number of estimates is decreased. The certain
assessment problem based on interval multiset estimates can be denoted as the following: P l,η.

In addition, basic operations over multiset estimates are used: integration, vector-like proximity, aggre-
gation, and alignment [88]. Integration of estimates (mainly, for composite systems) is based on summa-
rization of the estimates by components (i.e., positions). Let us consider n estimates (position form): es-
timate e1 = (η1

1 , ..., η1
ι , ..., η1

l ), ..., estimate eκ = (ηκ
1 , ..., ηκ

ι , ..., ηκ
l ), ..., estimate en = (ηn

1 , ..., ηn
ι , ..., ηn

l ).
The integrated estimate is: estimate eI = (ηI

1 , ..., ηI
ι , ..., ηI

l ), where ηI
ι =

∑n

κ=1 ηκ
ι ∀ι = 1, l. In fact, the

operation
⊎

is used for multiset estimates: eI = e1
⊎

...
⊎

eκ
⊎

...
⊎

en.
The vector-like proximity of two multiset based estimates e(a1), e(a2) (e.g., a1, a2 ∈ A) is:

δ(e(A1), e(A2)) = (δ−(A1, A2), δ
+(A1, A2)),

where vector components are: (i) δ− is the number of one-step changes: element of quality ι + 1 into
element of quality ι (ι = 1, l − 1) (this corresponds to “improvement”); (ii) δ+ is the number of one-step
changes: element of quality ι into element of quality ι+1 (ι = 1, l − 1) (this corresponds to “degradation”).
It is assumed: |δ(e(A1), e(A2))| = |δ−(A1, A2)| + |δ+(A1, A2)|.

For aggregation (as an analogue of summarization) of the specified set of multiset based estimates
E = {e1, ..., eκ, ..., en}, two types of medians are considered. Here E corresponds to the the set of all
possible multiset based estimates (E ⊆ E). The median estimates are:

(a) “generalized median”: M g = arg min
M∈E

∑n

κ=1 |δ(M, eκ)|;
(b) “set median”: M s = arg minM∈E

∑n

κ=1 |δ(M, eκ)|.

3.5.2. Models with multiset estimates

Here vertex weight vectors w(ai) = (w(a1
i ), ..., w

κ(ai), ..., w
µ(ai)) (wκ(ai) > 0 ∀κ = 1, µ, ∀ai ∈ A) is

transformed (compressed) into multiset based estimate e(ai). The following models can be considered:

Model 13. Minimum node weighted dominating set problem with multiset estimates (the objective
function is based on “generalized median”):

min Mg = arg min
M∈E

n∑

κ=1

|δ(M, eκ)|;

s.t. ∀aζ1
∈ (A\B) ∃aζ2

∈ B (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 14. Minimum node weighted connected dominating set problem with multiset estimates (the
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objective function is based on “generalized median”):

min Mg = arg min
M∈E

n∑

κ=1

|δ(M, eκ)|;

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ path l(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >,

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 15. Multicriteria (multiobjective) minimum node weighted k-connected dominating set prob-
lem with multiset estimates (the objective function is based on “generalized median”):

min Mg = arg min
M∈E

n∑

κ=1

|δ(M, eκ)|;

s.t. ∀aζ′ , aζ′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′ >;

∀aζ1
∈ (A\Bc) ∃aζ2

∈ Bc (i.e., xaζ2
= 1) such that (aζ1

, aζ2
) ∈ R.

Model 16. Multicriteria (multiobjective) minimum node weighted k-connected m-dominating set
problem with multiset estimates (the objective function is based on “generalized median”):

min Mg = arg min
M∈E

n∑

κ=1

|δ(M, eκ)|;

s.t. ∀aζ′ , aζ′′ ∈ Bc ∃ k vertex disjoint paths

l1(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >, ..., lk(aζ′ , aζ′′) =< aζ′ , ..., aζ′′ >;

∀aζ1
∈ (A\Bc) ∃ m vertices a1

ζ1
, ..., am

ζ1
∈ Bc (i.e., xa1

ζ1

= 1, ..., xam
ζ1

= 1)

such that (aζ1
, a1

ζ1
) ∈ R, ..., (aζ1

, am
ζ1

) ∈ R.

4. Conclusion

In the paper, a brief survey on dominating set problems is presented. The integer programming
formulations of dominating set problems are described. Some new multicriteria models and models based
on multiset estimates are considered as well.

It may be reasonable to point out the following future research directions: (1) consideration of other
application domains for the dominating set problems; (2) examination of multistage solving strategies;
(3) further examination of various k-connected m-dominating set problems; (4) additional study of the
described combinatorial models and their various versions (including studies of domination structures as
trees, etc.); (5) special future studies of multi-hop dominating set problems on various graphs (including
applications in networking); (6) design of a special software package (i.e., decision support system) for
the dominating set problems (including descriptions of problems, descriptions of applied domains, solving
methods/procedures, examples); and (7) using the described optimization models for dominating set
problems in education (e.g., student projects).

The author states that there is no conflict of interest.
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