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On the separability probability of rank-deficient
two qubit and qubit-qutrit states

V. Abgaryan, A. Khvedelidze, I. Rogojin and A. Torosyan

We are planning on presenting numerical analysis of separability probability
of the rank-deficient random states of qubit-qubit and qubit-qutrit pairs from the
so-called Hilbert-Schmidt ensemble. With this aim two methods of generation of
a random low rank states of finite-dimensional quantum systems will be formu-
lated and applied to the separability problem. First, we describe a direct method
of generation of ensemble of random density matrices exploiting the conditional
probability density function. Since this method becomes very cumbersome for com-
posite systems larger than a pair of qubits, we elaborate an alternative method
of generation. The latter is based on the recently obtained representation for the
distribution functions of eigenvalues of density matrices of the rank-deficient states
belonging to the boundary of state space in the form of a special Wishart-Laguerre
distribution.
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Rigid body motion symmetries

Semjon Adlaj

Abstract. The Galois axis, which constitutes an axis of �generalized�
symmetry of a rigid body, is acted upon by the Klein four-group, generated
by re�ections across the principal axes, corresponding to extreme values of
moments of inertia (minimal and maximal). In particular, the direction of
the Galois axis might be reversed, prompting a remarkable duality of critical
rigid body motion. Such reversal of direction of the Galois axis might be
viewed as a composition of two distinct re�ections, each of which would
correspond to a time reversal symmetry.

The modular invariant as a symmetric function of the squares of the

three principal moments of inertia

A torque free rigid body motion is governed by equations, possessing time and
�mirror� symmetries. Several aspects of these symmetries were explored in [2, 3,
4, 5, 6, 12]. In [8], the (three) projections p, q, r of the angular velocity ω upon the
(three) principal axes of inertia, with corresponding moments of inertia A, B and
C, are calculated via the Galois alternative elliptic function with corresponding
elliptic moduli k1, k2 and k3. The alternating group A3 was shown to act on
the squares k21, k

2
2 and k23 of the (three) elliptic moduli via the transformation

τ : x ÞÑ 1 � 1{x, as further discussed in [9, 10]. Such a transformation (of order
3) would correspond to a cyclic permutation of the principal moments of inertia
pABCq, that is, putting

k2pA,B,Cq �
pA�BqpCh�m2q

pA� CqpBh�m2q
,

with k21 � k2pA,B,Cq, we must have k22 � k2pB,C,Aq and k23 � k2pC,A,Bq,
where the constants h and m2 represent twice the kinetic energy and the square
of the modulus of the angular momentum, respectively. The three elliptic moduli
would, of course, correspond to one and the same value of the modular (Klein)

9
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2 Semjon Adlaj

invariant:

j �
4pk2 � 1{k2 � 1q3

27pk2 � 1{k2 � 2q
�

4p1� k21 � 1{k21qp1� k22 � 1{k22qp1� k23 � 1{k23q

27
�

� 1�
4pk21 � k22 � k23 � 3{2q2

27
,

which is a symmetric function in the moments of inertia. It vanishes when k2

coincides with a primitive cube root of �1, that is, a �xed point of the
transformation τ . Another special value j � 1 is attained with

m2 �
CpA�Bq � 2AB

2C �A�B
h, Bh�m2 �

pC �BqpB �Aqh

2C �A�B
¥ 0, A ¤ B   C.

The rate of precession of a freely rotating rigid body as a symmetric

function of its three principal moments of inertia

A formula for the rate of precession, about the (�xed) angular momentum m,
symmetric in the moments of inertia:

9ψ �
1

m

�
h�

ph�m2{Aqph�m2{Bqph�m2{Cq

m2ω2 � h2



,

where ω is the angular speed, was presented four years ago at the PCA 2016
conference [13]. The formula demonstrates that the rate of precession is uniform
not only for permanent rotations about the axes, corresponding to extreme values
of the moments of inertia, but it is also uniform for �permanent rotations� about the
axis, corresponding to the intermediate value of the principal moments of inertia,
which we label with the letter B. The last quote was taken to emphasize that the
uniformity of the rate of precession does not necessarily imply a �usual permanent
rotation� but it (the uniformity) holds, as well, for all (critical) solutions, satisfying
h � m2{B. Yet, the (improper) integral»

8

�8

�
9ψ �

h

m



dt �: 2θpA,B,Cq,

taken with respect to time, throughout the critical motion does not vanish! For a
triaxial rigid body the multivalued function θpA,B,Cq represents an angle between
the Galois axis and a principal axis, corresponding to an extreme value of the
moments of inertia. In fact,

θpA,B,Cq � σArctan

�d
ApB � Cq

CpA�Bq

�
, σ �

#
1, if A   B   C,

�1, if A ¡ B ¡ C,1

and the sum θpA,B,Cq � θpC,B,Aq matches (modulo π) the angle π{2. A
re�ection of the Galois axis across a principal axis, corresponding to an extreme

1The sign �ip re�ects two distinct orientations of a coordinate system, �xed within a rigid body.

In particular, an orientation of a coordinate system is changed with reversing the direction of

the principal axis, corresponding to the intermediate moment of inertia.
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Rigid body motion symmetries 3

moment of inertia, would rotate it (about the center of mass) by the angle 2θ, as
calculated. Thus, such a re�ection of the Galois axis corresponds not only to a
time reversal but to a ��ip� of the intermediate axis of inertia during the critical
rigid body motion [11]. The said �mirror� re�ection of the Galois axis might also
be viewed as a reversal of a given orientation of a body-�xed coordinate system.
A right-handed coordinate system is necessarily transformed into a left-handed
system and vice versa. Such an observation is relevant to applications when the
determination of the orientation must remain error free. A geometric
interpretation of the �duality� of the Galois axis was well explained in [15],
whereas an advice for correctly determining the (multivalued) angle θ was
suggested by E. Mityushov in an email message sent to the author on February
27, 2018. It is based on an observation, concerning the Galois modulus

GpA,B,Cq :�
CpB �Aq

BpC �Aq
,

which, upon ascendingly ordering the principal moments of inertia A ¤ B  
C, coincides with the square of the scalar product of two unit vectors, directed
(respectively) along the Galois axis and the principal axis, corresponding to the
minimal value of inertia (labeled with the letter A). The (ascending) ordering
condition turns out being super�uous if one adopts an �invariant� way for de�ning
the Galois modulus as a square of a scalar product of the said unit vectors, where
the second is now aligned along a principal axis, corresponding to an extreme
value of the moments of inertia, which need not necessarily be minimal. With
this simpli�ed (and thus improved) de�nition, the Galois modulus is seen to be
the square of the scalar product of a unit vector along the Galois axis with a
unit vector along a principal axis, corresponding to an extreme moment of inertia
which we might still label with the letter A (but without further requiring A to
be minimal).2

As emphasized in [7], the MacCullagh ellipsoid of inertia would �degenerate� to an
ellipsoid of revolution whenever two of the principal moments would coincide one
with the other. The Galois axis, being an axis orthogonal to the circular sections
of such an ellipsoid would then coincide with the axis of (dynamical) symmetry.

Conclusion

The (tip of the) angular momentum pseudovector m might be viewed as a
holomorphic (orientation preserving) function, mapping time to a �xed within a
rigid body (unit) sphere. We must furthermore distinguish a �right�
pseudovector, which coordinates are given with respect to a right-handed
body-�xed coordinate system from its �mirror� re�ection, that is, a �left�
pseudovector which coordinates are given with respect to a (re�ected)
left-handed body-�xed coordinate system. Establishing such a distinction would

2A clarifying formula would be GpA,B,Cq �GpC,B,Aq � 1.

11

13



4 Semjon Adlaj

protect us from a conventional (yet erroneous) reversal of the direction of the
re�ected pseudovector. In other words, a given �parity� of a pseudovector (right
or left) cannot be altered by reversing its (preserved) direction, so we risk no
confusion since we never alter a given pseudovector aside from subjecting it to
transfomations which might (or might not) preserve its parity. Then, the
pseudovector, obtained by so re�ecting the initial (right) pseudovector m might
be regarded as an antiholomorphic (orientation reversing) map. Ignoring such an
elementary observation has apparently precluded the practical implementation of
exact rigid body motion solution, commonly substituting it with numerical
approximations. The duality rather than uniqueness of rigid body critical motion
had prompted D. Abrarov to declare, in [1], �the Dzhanibekov's top� as the
�classical analogue� of the sought after (in quantum �eld theory) �massless
particle, possessing spin 2�, that is, �the graviton�! Dzhanibekov's top appears on
a diagonal of the animation in [14]. A �dual top�, corresponding to an opposite
(initial) rotation appears on the other diagonal. Each of the Galois axes,
corresponding to these dual tops are re�ections, one of the other across a
�mirror�, orthogonal to a principal axis, corresponding to one of the two extreme
values of the moments of inertia.

This work was partially supported by the Russian Foundation for Basic Research
(Project � 19-29-14141).
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Hermitian Finite Elements for Hypercube

Galmandakh Chuluunbaatar, Alexander Gusev, Vladimir Gerdt,

Sergue Vinitsky and Lyong Le Hai

Abstract. Algorithm for analytical construction of multivariate Hermite in-
terpolation polynomials in a multidimensional hypercube is presented. In the
case of a d-dimensional cube, the basis functions are determined by products
of d Hermite interpolation polynomials depending on each of the d variables
given explicitly in the analytical form. The e�ciency of �nite element schemes,
algorithms and programs is demonstrated by benchmark calculations of the
4D Helmholtz problem.

Introduction

In this paper we present a new symbolic algorithm implemented in Maple for
constructing the Hermitian �nite elements or piece-wise multivariate Birkho� in-
terpolants in a standard d-dimensional cube that generalizes the construction and
algorithm proposed for a three and four dimensional cube [1, 2, 3, 4]. Our al-
gorithm realizes recurrence relations [5, 6] and yields explicit expressions in an
analytical form for the Hermite interpolation polynomials (HIPs) in opposite the
conventional constructions. The basis functions of �nite elements are high-order
polynomials, determined from a specially constructed set of values of the polyno-
mials themselves and their partial derivatives up to a given order at the vertices
of the hypercube. Such a choice of values allows us to construct a piecewise poly-
nomial basis continuous at the boundaries of �nite elements together with the
derivatives up to a given order. In the case of a d- dimensional cube, it is shown
that the basis functions are determined by products of d one-dimensional HIPs
depending on each of the d variables given in the analytical form with the deriva-
tives up to a given order continuous at the boundaries of �nite elements [6].The
e�ciency of �nite element schemes, algorithms and programs is demonstrated by
benchmark calculations of the 4D Helmholtz problem.

1. Algorithm for constructing Hermitian �nite elements

The HIPs ϕκr (x) ≡ ϕκ1...κi...κd
r1...ri...rd

(x1, ..., xi, ..., xd) of d variables in a d-dimensional
parallelepiped element x = (x1, ..., xi, ..., xd) ∈ [x1;min, x1;max]×...×[xd;min, xd;max]

= ∆q ⊂ Rd that are obtained on nodes xr1...ri...rd = (x1r1 , ..., xiri , ..., xdrd), xiri =
((p−ri)xi;min +rixi;max)/p; ri = 0, ..., p, i = 1, ..., d are determined by relations [1]

ϕκ1...κi...κd
r1...ri...rd

(x1r′1 , . . . , xir′i , . . . , xdr′d) = δr1r′1 ...δrir′i ...δrdr′dδκ10...δκi0...δκd0, (1)
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∂κ
′
1+···+κ′

dϕκ1...κi...κd
r1...ri...rd

(x1, . . . , xi, . . . , xd)

∂x
κ′
1

1 · · · ∂x
κ′
i
i · · ·x

κ′
d

d

∣∣∣∣∣
(x1,...,xi,...,xd)=(x1r′1

,...,xir′
i
,...,xdr′

d
)

= δr1r′1 . . . δrir′i . . . δrdr′dδκ1κ′
1
...δκiκ′

i
...δκdκ′

d
.

These HIPs of order p′ =
∏d
s=1 p

′
s are calculated as a product of one dimensional

HIPs ϕκsrs (xs): ϕ
κ
r (x) ≡ ϕκ1...κi...κd

r1...ri...rd
(x1, . . . , xi, . . . , xd)=

∏d
s=1 ϕ

κs
rs (xs), which are

calculated by the following way. For each z ≡ xs as a set of basis functions, the

1D HIPs {{ϕκr (z)}pr=0}
κmax
r −1
κ=0 of order p′ =

∑p
r=0 κ

max
r − 1 in a standard interval

z ∈ [0, 1] at the nodes zr, r = 0, . . . , p, z0 = 0, zp = 1 are constructed. The values
of the functions ϕκr (z) ∈ Cκmax−1 continuous together with their derivatives up
to order (κmax

r − 1), i.e. κ = 0, . . . , κmax
r − 1, where κmax

r is referred to as the
multiplicity [1] of the node zr, are determined by expressions (1). These 1D HIPs
are calculated analytically from the recurrence relations derived in [6]

ϕκr (z) = wr(z)

κmax
r −1∑

κ′=0

aκ,κ
′

r (z − zr)κ
′
, wr(z) =

p∏

r′=0,r′ 6=r

(
z − zr′
zr − zr′

)κmax
r′

, (2)

aκ,κ
′

r =





0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

aκ,κ
′′

r

(κ′−κ′′)!g
κ′−κ′′
r (zr), κ′ > κ,

gκr (z) =
dκwr(z)
dzκ

wr(z)
.

Below we consider only the HIPs with the nodes of identical multiplicity, κmax
r =

κmax, r = 0, ..., p, then p′ = κmax(p+ 1)−1. For example, at κmax = 2, p′ = 2p+ 1
the 1D HIPs take the form:

ϕκs=0
r (z) =


1−(z−zr)

p∑

r′=0,r′ 6=r

2

zr−z′r




p∏

r′=0,r′ 6=r

(
z−zr′
zr−zr′

)2

,

φκs=1
r (z) = (z−zr)

p∏

r′=0,r′ 6=r

(
z−zr′
zr−zr′

)2

,

for polynomials φκs=0
r (z) or φκs=1

r (z) whose value or value of �rst derivative is
equal to 1, respectively.

2. Benchmark Calculations with Hermitian Finite Elements

As benchmark calculations we solve the 4D Helmholtz problem with the edge
length π and Neumann boundary conditions. This problem has exact degenerate
spectrum: Em =0 [1] 1 [4] 2 [6] 3 [4] 4 [5] 5 [12]6 [12] 7 [4] 8 [6] 9 [16] 10 [18] 11
[12] 12 [8] 13 [16] 14 [24] 15 [12] ... , where the multiplicity of degeneracy is given
in square brackets. The results were calculated on uniform grids using FEM with
hypercube LIPs and HIPs of the third order that are obtained by product of four
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Hermitian Finite Elements for Hypercube 3

Figure 1. The discrepancy δEm = Ehm−Em of calculated eigen-
value Ehm of the Helmholtz problem for a four-dimensional cube
with the edge length π. Calculations were performed using FEM
with 3rd-order (3Ls) and 4th-order (4Ls) simplex Lagrange ele-
ments, and 3rd-order parallelepiped Lagrange (3Lp) and Hermite
(3Hp) elements. The dimension of the algebraic problem is given
in parentheses.

1D LIPs or four 1D HIPs, respectively. They are compared with simplex LIPs of
the third and the fourth order [7].

Figure 1 shows the discrepancy δEm = Ehm − Em between the numerical
eigenvalues Ehm and the exact ones Em. There is a stepwise structure of the dis-
crepancy δEm calculated with 4D hypercubic LIPs and HIPs, with the steps ap-
pearing at the values Em = 1, 4, 9, .... The structure is also due to the prevalence
of approximation errors of eigenfunctions caused by the pure partial derivatives.
For the simplex LIPs the oscillating structure of the discrepancy δEm is due to
di�erent contributions the approximation errors caused by the di�erent mixed
partial derivatives. The calculation is performed using MAPLE with 12-digit pre-
cision. As a consequence, the FEM scheme with the hypercubic LIPs and a large
length of the eigenvectors equal to 10000 demonstrates poorer performance than
the one with a smaller length due to rounding errors. The above analysis shows the
agreement the numerical and theoretical estimations of discrepancy for eigenval-
ues,

∣∣Em − Ehm
∣∣ ≤ cmh2p

′
, with respect to order p′ of FEM schemes with LIPs or

HIPs, where h is the step of the uniform grid and cm > 0 are constants independent
from h.
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4 G. Chuluunbaatar, A. Gusev, V. Gerdt, S. Vinitsky and L. L. Hai

Conclusion

The proposed algorithm allows one to construct in analytical form a piecewise
polynomial basis continuous on the boundaries of �nite elements together with
the derivatives up to the given order. It can be used to solve elliptic BVPs as
well as other problems with partial derivatives of a high order by means of the
high-accuracy �nite element method.

The talk was partially supported by RFBR and MECSS, project 20-51-44001.
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Covariance of Parametric Representations

of Orthogonal and Symplectic Matrices

Alexander G. Petrov

Abstract. Symplectic matrices are subject to certain conditions that are
inherent to the Jacobian matrices of transformations preserving the Hamil-
tonian form of di�erential equations. A formula is derived which parameterizes
symplectic matrices by symmetric matrices. An analogy is drawn between the
obtained formula and the Cayley formula that connects orthogonal and anti-
symmetric matrices. It is shown that orthogonal and antisymmetric matrices
are transformed by the covariant law when replacing the Cartesian coordinate
system. Similarly, the covariance of transformations of symplectic and sym-
metric matrices is proved. From Cayley formulas and their analog, a series
of matrix relations is obtained which connect orthogonal and symmetric ma-
trices, together with similar relations connecting symplectic and symmetric
matrices.

1. Cayley formulas. Covariance of parameterization of

orthogonal matrices.

For orthogonal matrices, the Cayley formulas are known [1]

O = (E −K)(E +K)−1, K = (E −O)(E +O)−1 (1)

They express an orthogonal matrix through an antisymmetric matrix KT = −K.
Here E the unit (identical matrix), the upper indexT means the conjugation

sign. For any antisymmetric matrix K, the matrix O satis�es the orthogonality
conditions OOT = OTO = E. For any orthogonal matrix O (the eigenvalue is not
-1), the matrix K satis�es the antisymmetry conditions.

The transition from one Cartesian system to another can be performed using
an orthogonal matrix C, CCT = E. Let the matrix O determine the conversion
of a radius vector r to a radius vector R : R = Or. In the new coordinate system
we have r′ = C r, R′ = CR. Find the transformation matrix R′ = Or′. Let's
write this transformation in the original coordinate system CR = O′Cr ⇒ R =

The research was carried out within the state assignment of FASO of Russia (state registration
� AAAA-A20-120011690138-6)
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CTO′Cr. Hence the law of transformation O = CTO′C ⇒
O′ = COCT (2)

The corresponding transformation law for the matrixK in Cayley's formula follows

K ′ = CKCT (3)

Thus, the transformations of (2) and (3) matrices O and K are both covariant.

2. Covariance of parameterization of symplectic matrices.

A matrix 2n× 2n is called symplectic if it satis�es the relation

AIAT = I, I =

(
0 En
−En 0

)
, (4)

where En identity matrix n× n.
Symplectic matrices are used in Hamiltonian mechanics. Such a matrix A

is the Jacobian transformation matrix of a system of di�erential equations that
preserves the Hamiltonian form [2, 3]. An analogy can be drawn between formulas
(1) - (3) and the corresponding formulas for symplectic matrices.

To do this, we must match the orthogonal matrix O � the symplectic matrix
and the antisymmetric matrix K to the product of the matrix I and the symmetric
matrix 1

2Ψ. Brie�y this correspondence is written as follows O → A, K → 1
2IΨ.
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This analogy is shown in Table 1. On the left of the formula for O and K, on
the right for A and 1

2IΨ.

OOT = OTO = E ⇒ det(O) = 1 AI A T = A T I A = I ⇒ det(A) = 1
KT = −K ΨT = Ψ

O = (E −K)(E +K)−1 =
= (E +K)−1(E −K)⇒
det(E +K) = det(E −K)

A =
(
E + 1

2IΨ
) (
E − 1

2IΨ
)−1

=

=
(
E − 1

2IΨ
)−1 (

E + 1
2IΨ

)
⇒

det
(
E + 1

2IΨ
)

= det
(
E − 1

2IΨ
)

K = (E −O)(E +O)−1 =
= (E +O)−1(E −O)⇒
det(E −O)/ det(E +O) = det(K)

1
2IΨ = (E +A)−1(A− E) =
= (A− E)(E +A)−1 ⇒
det(A− E)/ det(A+ E) = det

(
1
2IΨ

)

(E +K) (E +O) = 2E ⇒
(
E − 1

2IΨ
)

(E +A) = 2E ⇒
det (E ±K) det(E +O) = 22n det

(
E ± 1

2IΨ
)

det(E +A) = 22n

Table 1. Analogy of parameterization of orthogonal and sym-
plectic matrices

Table 2 in the left column shows the output of formulas for converting an
orthogonal matrix O, when orthogonal coordinates are replaced with a matrix C.
In the right column the same output of the symplectic matrix A transformation
formulas for symplectic replacement of coordinates with the matrix B.

C, CCT = E B, BIBT = I
R = Or δR = Aδr
r′ = Cr, R′ = CR δr′ = Cδr, δR′ = CδR
R′ = O′r′ δR′ = A′δr′

CR = O′Cr⇒ R = CTO′Cr BδR = O′Bδr⇒ δR = B−1A′Br
O = CTO′C ⇒ O′ = COCT A = B−1A′B ⇒ A′ = BAB−1

Table 2. Formulas for converting an orthogonal O and symplec-
tic A matrices

O′ = COC−1 A′ = BAB−1

O′ = (E +K ′)−1 (E −K ′) =

= C (E −K) (E +K)
−1
C−1

A′ =
(
E − 1

2IΨ′
)−1 (

E + 1
2IΨ′

)
=

=B
(
E + 1

2IΨ
) (
E − 1

2IΨ
)−1

B−1

(E −K ′)C (E +K) =
= (E +K ′)C (E −K)

(
E + 1

2IΨ′
)
B
(
E − 1

2IΨ
)

=(
E − 1

2IΨ′
)
B
(
E + 1

2IΨ
)

C (E +K − E +K) =
= K ′C (E −K + E +K)

B
(
E − 1

2IΨ− E − 1
2IΨ

)
=

= 1
2IΨ′B

(
−E − 1

2IΨ− E + 1
2IΨ

)

2CK = 2K ′C ⇒ K ′ = CKCT BIΨ = IΨ′B ⇒ IΨ′ = BIΨB−1

Table 3. Proof of the covariance of the matrix transformation
K and (1/2)IΨ

Here R = Or is an orthogonal conversion of the radius vector r to the radius
vector R in the original coordinate system and R′ = O′r′ the same conversion
in the other coordinate system. Accordingly δR = Aδr, δR′ = A′δr′ are local
symplectic transformations in the original and other coordinate systems.
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Finally, Table 3 presents in the left column a proof of the covariance of the
matrix transformationK that parameterizes the orthogonal transformation. In the
right column, there is a similar proof of the covariance of the transformation of
the matrix (1/2)IΨ that parameterizes the symplectic transformation.

Conclusion

Cayley formulas simplify the transformation of orthogonal matrices O → O′. Let
the matrix O be expressed as an antisymmetric matrix

K =




0 k3 −k2
−k3 0 k1
k2 −k1 0


 , k =




k1
k2
k3




by Cayley formulas O = (E −K)(E + K)−1. For orthogonal substitution with a
matrix C , the conversion formula O′ = COCT can be replaced with a vector trans-
formation k′ = Ck, to express through vector k′ antisymmetric matrix K ′ and by
Cayley formulas �nd the transformed orthogonal matrix O′ = (E−K ′)(E+K ′)−1.

Similarly, you can transform symplectic matrices A =
(
E + 1

2IΨ
) (
E − 1

2IΨ
)−1

,

expressing them through a symmetric matrix Ψ. Conversion formula A′ = BAB−1,
where B - an arbitrary symplectic matrix can be replaced with the following se-

quence of transformations IΨ′ = BIΨB−1, A′ =
(
E + 1

2IΨ′
) (
E − 1

2IΨ′
)−1

.
Table 3 also implies identities of interest for determinants:

det(E +K) = det(E −K), det(E −O)/ det(E +O) = det(K),
det (E ±K) det(E +O) = 22n.

The corresponding formulas for symplectic matrices have the form

det
(
E + 1

2IΨ′
)

= det
(
E − 1

2IΨ′
)
, det(A− E)/det(A+ E) = det

(
1
2Ψ
)
,

det
(
E ± 1

2IΨ
)

det(E +A) = 22n.

In addition, for three-dimensional matrices, we have det(E ±K) = 1 + k2,
det(E −O) = det(K) = 0.
From the last equality, it follows that the eigenvalue of an orthogonal matrix in
three-dimensional space is 1 [2, 3].
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On extensions of canonical symplectic structure

from coadjoint orbit of complex general linear group.

Mikhail Babich

Abstract. The Isomonodromic Deformation theory is closely connected with

the theory of the phase spaces of the deformation equations. These spaces are

the algebraic symplectic spaces constructed from the standard charts. The

charts are the coadjoint orbits of GL(N,C) in the Fuchsian case.

One of the directions of the development of the theory needs to extend

the chart, to extend the coadjoint orbit. There are several ways to do it. I

introduce an extension method that can be applied to the orbits made from

the matrices of arbitrary Jordan type. The method is based on the concept

of the �ag coordinates on the orbit.
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On invariant coordinate subspaces of normal form

of ODE system

Alexander Batkhin

Abstract. A system of ODEs with non-degenerate linear part near its sta-
tionary point are considered in two cases: in general case and in Hamiltonian
case. Solution of the problem of existence of an invariant coordinate subspace
in the coordinates of normal form is proposed as a resonance relation between
system's eigenvalues. Algorithms of computer algebra and q-subdiscriminant
technique are used for �nding such resonance relations.

Introduction

An approach of Poincaré for investigation of systems of nonlinear ordinary di�er-
ential equations was based on the maximal simpli�cation of the right-hand sides
of these equations by invertible transformations. This approach led to the theory
of normal forms (NF) of the general system and in particularly of the Hamiltonian
ones and was developed in works of G.D.Birkho�, T.M.Cherry, F.G.Gustavson,
C.L. Siegel, J.Moser, A.D.Bruno (see [1]).

The goal of the presented work is to investigate invariant coordinates sub-
spaces of NF of a real Hamiltonian system with non-degenerated linear part. The
existence of invariant subspace can reduce the phase �ow on the space of less di-
mension and in some cases can give information about periodic solution of the
whole system.

1. Invariant subspaces of normal form of ODE

Consider an analytical system of ODE

ẋ = f(x) (1)

near its stationary point x = 0. Let the linear part

ẋ = Ax, A = ∂f/∂x|x=0 , (2)
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of the system (1) be non-degenerated. Let matrix A has n eigenvalues at least one
of which is non-zero λ = (λ1, . . . , λn).

There exists [2] a formal invertible transformation g : x → y, x = g(y),
represented in the form of power series, which reduces the initial system (1) into
its normal form

De�nition 1. Normal form (NF) of the initial system (1) is a system of the form

ẏj = yjhj(y), j = 1, . . . , n, (3)

right-hand sides yjhj(y) of which are power series

yjhj(y) = yj
∑

q

hjqy
q, hj0 = λj , j = 1, . . . , n, (4)

containing only resonant terms with

〈q,λ〉 = 0. (5)

Here hjq are constant coe�cients and in yjhj(y) coordinate qj ≥ −1, but
others qk ≥ 0.

Coordinate subspace Let I = {i1, . . . , ik} be a set of increasing indices 1 ≤ i1,
ik ≤ n, k ≤ n. By KI we denote the coordinate subspace KI = {y : yj =
0 for all j 6∈ I}. All non-zero coordinates yj , j ∈ I, of the subspace KI we call
internal coordinates and denote them shortly by yI , others we call external coor-
dinates. The eigenvalues λj , j ∈ I, corresponding to the internal coordinates yI
we call internal eigenvalues and denote them by λI . Others λj , j 6∈ I, are called
external eigenvalues.

Problem. Which subspaces KI are invariant in the normal form (3), (4), (5)?

Theorem 1. The coordinate subspace KI of dimension k is invariant in the normal

form (3)�(5) if each external eigenvalue λj 6∈ λI satis�es the following condition

λj 6= 〈p,λI〉 , (6)

for all integer vectors p ≥ 0, p ∈ Zk.

Let consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(7)

with n degrees of freedom near its stationary point x = y = 0. The eigenvalues of
the matrix A can be reordered in a such way: λj+n = −λj , j = 1, . . . , n. Denote by
λ = (λ1, . . . , λn). There exists [3, � 12] a canonical formal transformation which
reduces the initial system (7) into its normal form

u̇ = ∂h/∂v, v̇ = −∂h/∂u (8)

de�ned by the normalized Hamiltonian h(u,v)

h(u,v) =

n∑

j=1

λjujvj +
∑

hpqu
pvq (9)
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containing only resonant terms hpqu
pvq with

〈p− q,λ〉 = 0. (10)

By LI we denote the coordinate subspace LI = {u,v : uj = vj = 0 for all j 6∈ I}.

Problem. Which subspaces LI are invariant in the normal form (8), (9), (10)?

Theorem 2. The coordinate subspace LI of dimension 2k is invariant in the Hamil-

tonian normal form if each external eigenvalue λj 6∈ λI satis�es the following

condition

λj 6= 〈p,λI〉 , (11)

for any integer vector p 6= 0, p ∈ Zk.

The principal di�erence between condition (6) in Theorem 1 and condi-
tion (11) in Theorem 2 is that any non-zero vector p is taken from the lattice
Zk in the Hamiltonian case but it is taken for 0 ≤ p ∈ Zk in the general case.

2. Resonance �nding by q-analogue of subdiscriminants

It is immediately follows from (6) and (11) that resonant relations can be deter-
mined by eigenvalues of linear part (2). Let consider an important case when all
the eigenvalues λ are either real or pure imaginary.

Here we propose the following algorithm [4] of searching for resonant relations
which essential use technique of q-subdiscriminants [5] and elimination theory. Lets
denote by q the commensurability of a pair of eigenvalues: q = λi/λj .

Step 1: Matrix A of linear system (2) is found and its characteristic polynomial
fn(λ) is computed.

Step 2: Compute the sequence of k-th q-subdiscriminants D
(k)
q (fn), 0 ≤ k ≤

n− 2, which are polynomials in coe�cients of fn and q.
Step 3a: If q-discriminant Dq(fn) as a polynomial in annulus Z[q] can be fac-

torized then it is possible to �nd out all the pairs of resonant eigenvalues.
Step 3b: If the previous step fail then a kind of a brute force algorithm can

be applied: for mutually prime pairs (r, s) of integers we check the equality
Dq(fn) = 0 for q = r/s.

Step 4: Let for a certain value q∗ ∈ Q it is true that Dq∗(fn) = 0. Then it is
possible with the help of q-subdiscriminants from the Step 2 to determine the
structure of eigenvalues with commensurability q∗ and in some cases even to
compute them.

Step 5: Having all the commensurable eigenvalues λi it is possible to check
either conditions (6), (11) take place or no.
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3. Example

Let all λj/λ1 6∈ Z, j = 2, . . . , n. Then the normal form has two-dimensional in-
variant subspace L1 = {uj = vj = 0, j 6∈ I1}, where I1 = {1}. On the subspace L1

Hamiltonian NF (9) induces a NF with one degree of freedom and the normalizing
transformation converges.

If λ1 6= 0 and is purely imagine, then for real Hamiltonian system the real
subspace L1 is a family of periodic solutions. This fact was found by A.M. Lyapunov
in 1892 and was described with the help of Hamiltonian formalism by C. Siegel [6,
��16, 17].
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The close relation between border and Pommaret

marked bases

Cristina Bertone and Francesca Cio�

Abstract. Given a �nite order ideal O, we investigate border and Pommaret
marked sets related to this order ideal. We use the framework of reduction
structures given in [3].
First, we prove that a marked set B on the border of O is a basis if and only
if the marked set on the Pommaret basis of the complementary ideal of O
contained in B is a basis and generates the same ideal as B.
As a byproduct, using a functorial description of border and Pommaret marked
bases, we obtain that the scheme parameterizing marked bases on the border
of O and the scheme parameterizing marked bases on the Pommaret basis
of the complementary ideal of O are isomorphic. We also explicitly construct
such an isomorphism.

Introduction

Consider the variables x1, . . . , xn, with x1 < · · · < xn, the set T containing the
terms in the variables x1, . . . , xn and the polynomial ring RA := A[x1, . . . , xn],
being A a Noetherian algebra over a �eld K with unit 1K .

If O ⊂ T is a �nite order ideal, we can de�ne a set F ⊂ RA of monic marked
polynomials whose head terms are the border of O, ∂O, and study the conditions
ensuring that F is a ∂O-marked basis, i.e. (F ) ⊕ 〈O〉A = RA, where 〈O〉A is the
A-module generated by O.

Border marked bases (border bases in the literature) were �rst introduced in
[9] and investigated from a numerical point of view because of their stability with
respect to perturbation of the coe�cients [10, 11]. Border bases have also attracted
interest from an algebraic point of view [7, Section 6.4], also because given a �nite
order ideal O, the border bases on O parameterize an open subset of a Hilbert
scheme (see also [5, 6]).

Since every Artinian monomial ideal in RK has a Pommaret basis, given a
�nite order ideal O, we can consider the Pommaret basis PO of the monomial ideal
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generated by T \O and construct monic marked sets and bases whose head terms
form PO.

Marked bases on strongly stable ideals were �rst introduced in [4] with the aim
to parameterize open subsets of a Hilbert scheme, in order to study it locally. This
kind of basis does not need any �niteness assumption on the underlying order ideal.
In [1] marked bases were considered only in the case of homogeneous polynomials,
but in [2] also non-homogeneous marked bases over monomial ideals having a
Pommaret basis were considered, in order to have more e�cient computational
techniques for the homogeneous case.

The goal of our work is comparing marked sets (and bases) on the border
∂O of O and on the Pommaret basis PO of the ideal (T \ O). To this aim we use
the framework of reduction structures [3], and a functorial approach to study the
schemes parameterizing these two di�erent bases. The monicity of the marked sets
we consider is crucial for the use of functors.

Observing that a set B of marked polynomials on ∂O always contains a set
P of marked polynomials on PO, we prove that B is a ∂O-marked basis if and
only if P is a PO-marked basis and generates the same ideal as B.

As a byproduct, using a functorial description of border and Pommaret
marked bases, we obtain that the scheme parameterizing ∂O-marked bases and
the scheme parameterizing PO-marked bases are isomorphic. We also explicitly
construct such an isomorphism.

1. Framework

If σ is a term in T, we denote by min(σ) the smallest variable dividing σ. A set
O of terms in T is called an order ideal if for every σ ∈ T and every τ ∈ O, if σ
divides τ , then σ belongs to O.
Given a �nite order idealO, the border ofO is ∂O := {xi·τ | τ ∈ O, i ∈ {1, . . . , n}}\
O [7, De�nition 6.4.4], and the Pommaret basis of T \ O is PO = {σ ∈ T \
O|σ/min(σ) ∈ O}. Observe that PO ⊂ ∂O.

De�nition 1. [3, De�nition 3.1] A reduction structure J in T is a 3-uple J :=
(H,L := {Lα |α ∈ H}, T := {Tα |α ∈ H}) where: H ⊆ T is a �nite set of terms;
for every α ∈ H, Tα ⊆ T is an order ideal, such that ∪α∈H{τα|τ ∈ Tα} = (H); for
every α ∈ H, Lα is a �nite subset of T \ {τα|τ ∈ Tα}.

A marked polynomial is a polynomial f ∈ RA with a speci�ed term of Supp(f),
the head term of f , denoted by Ht(f), which appears in f with coe�cient 1K .

De�nition 2. [3, De�nitions 4.2 and 4.3] Given a reduction structure J = (H,L, T ),
a set F of exactly |H| marked polynomials in RA is called a H-marked set if, for
every α ∈ H, there is fα ∈ F with Ht(fα) = α and Supp(f) ⊆ Lα.
Let OH be the order ideal given by the terms of T outside the ideal generated by
H. A H-marked set F is called a H-marked basis if (F )⊕ 〈OH〉A = RA.
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Border and marked bases

From now on, let the terms of the border ∂O be ordered by increasing degree
(terms of the same degree are ordered arbitrarily) and labelled coherently: for
every βi, βj ∈ ∂O, if i < j then βi < βj .

De�nition 3. Let O ⊂ T be a �nite order ideal.
The Pommaret reduction structure JP is the reduction structure with H = PO
and, for every α ∈ PO, Lα = O and Tα = T ∩K[x1, . . . ,min(α)].
The border reduction structure J∂O is the reduction structure with H = ∂O and,
for every βi ∈ ∂O, Lβi

= O and Tβi
= {µ ∈ T | ∀j > i, βj does not divide βiµ}.

For every reduction structure J = (H,L, T ) and every H-marked set F , it
is possible to de�ne a reduction relation on polynomials in RA, that we denote
by →F J . If B (resp. P ) is a ∂O-marked set (resp. a PO-marked set), for every
f ∈ RA there is hB ∈ 〈O〉A (resp. hP ∈ 〈O〉A) such that f →B JO hB (resp.
f →P JPO

hP ). Observe that in general hB 6= hP . In particular, both the border
reduction and the Pommaret reduction structures give Noetherian and con�uent
reduction relations. These properties ensure that (B)+ 〈O〉A = (P )+ 〈O〉A = RA.

2. Main results

Theorem 4. Let O ⊂ T be a �nite order ideal. Let B be a ∂O-marked set in RA
and we denote by P the PO-marked set contained in B. Then we have

B is a ∂O-marked basis⇔ P is a PO-marked basis and (B) = (P ).

De�nition 5. [3, Appendix A] Let O ⊂ T be a �nite order ideal and let J =
(H,L, T ) be a reduction structure with (H) = T \ O. We consider the functor

MbJ : Noeth-k-Alg −→ Sets,

that associates to every Noetherian k-Algebra A the set MbJ (A) consisting of
all the ideals I ⊂ RA generated by a H-marked basis, and to every morphism of
Noetherian k-algebras φ : A→ A′ the morphismMbJ (φ) :MbJ (A)→MbJ (A′)
that operates in the following natural way:

MbJ (φ)(I) = I ⊗A A′.
Remark 6. The monicity of marked sets and bases guarantees that marked set and
bases are preserved by extension of scalars (see also [3, Lemmas A.1 and A.2]).

If |O| = ` and |∂O| = m, we de�ne C := {Ci,j}1≤i≤m,1≤j≤`. The generic ∂O-
marked set [8, De�nition 3.1] is the set B of marked polynomials {g1, . . . , gm} ⊂
RK[C] with gi = τi −

∑`
j=1 Cijσj .

The set B contains the generic PO-marked set P. We denote by C̃ the
set of parameters not appearing in P. By Buchberger criteria for ∂O-marked
bases [7, Proposition 6.4.34] and for PO-marked bases [2, Proposition 5.6], it is
possible to prove that the functorMbJ∂O (resp.MbJPO

) is the functor of points

of Spec(K[C]/B) (resp. Spec(K[C \ C̃]/P), where B (resp. P) is generated by a

30

32



Cristina Bertone and Francesca Cio�

�nite set of polynomials in K[C] (resp. K[C \ C̃]) explicitly computed by →B,J∂O
(resp. →P JPO

). Thanks to Theorem 4, we can prove the following.

Theorem 7.

1. The schemes Spec(K[C]/B) and Spec(K[C \ C̃]/P) are isomoprhic;

2. there is a isomorphism ψ : Spec(K[C]/B) → Spec(K[C \ C̃]/P) de�ned

by computing for every β ∈ ∂O \ PO the polynomial hβ ∈ 〈O〉A such that

β →P JPO
hβ.
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The Newest Methods of Celestial Mechanics

Alexander Bruno

Abstract. Here for Hamiltonian systems we describe two of five methods
of Celestial Mechanics. Namely: method of normal forms, allowing to study
regular perturbations near a stationary solution, near a periodic solution, and
method of truncated systems, found with a help of the Newton polyhedrons,
allowing to study singular perturbations. Other three methods will be in the
full presentation.

1. Normal forms
Here and below vectors in Rn or Cn are denoted by boldface font: x = (x1, . . . , xn).

Let us consider the Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξj
, j = 1, . . . , n (1)

with n degrees of freedom in a vicinity of the stationary solution

ξ = η = 0. (2)

If the Hamiltonian function γ(ξ,η) is analytic in the point (2), then it is expanded
into the power series

γ(ξ,η) =
∑

γpqξ
pηq , (3)

where p,q ∈ Zn, p,q ≥ 0, ξp = ξp11 · · · ξpnn . Here γpq are constant coefficients.
As the point (2) is stationary, than the expansion (3) begins from quadratic

terms. They correspond to the linear part of the system (1). Eigenvalues of its
matrix are decomposed in pairs:

λj+n = −λj , j = 1, . . . , n .

Let λ = (λ1, . . . , λn). The canonical changes of coordinates

ξ,η −→ x,y (4)

preserve the Hamiltonian structure of the system.
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Theorem 1 ([1, §12]). There exists a formal canonical transformation (4), bring-
ing Hamiltonian (3) to the normal form

g(x,y) =
∑

gpqxpyq (5)

contains only resonant terms with scalar product

〈p− q,λ〉 = 0.

If λ 6= 0, then the system corresponding to the normal form (5) is equiva-
lent to a system with smaller number of degrees of freedom and with additional
parameters. The normalizing transformation (4) conserves small parameters and
linear automorphisms of the initial system (1)

ξ,η −→ ξ̃, η̃, , t→ t̃ .

For the real initial system (1), the coefficients gpq of the complex normal
form (5) satisfy to special properties of reality and after a standard canonical
linear change of coordinates x,y → X,Y Hamiltonian (5) transforms in a real
one [2, Ch. I]. There are several methods of computation of coefficients gpq of the
normal form (5). The most simple method was described in the book [3]. Normal
forms near a periodic solution, near an invariant torus and near family of them
see in [2, Chs. II, VII, VIII], [4, Part II], [5], [6]. Normal form is useful in study
stability, bifurcations and asymptotic behavior of solutions.

2. Truncated Hamiltonian functions

Let x, y and µ = (µ1, . . . , µs) be canonical variables and small parameters respec-
tively. Let a Hamiltonian function be

h(x,y,µ) =
∑

hpqrx
pyqµr (6)

where hpqr are constant coefficients and r ∈ Zs, r ≥ 0. To each term of sum (6)
we put in correspondence its vectorial power exponent Q = (p,q, r) ∈ R2n+s. Set
S of all points Q with hQ 6= 0 in sum (6) is called as support S = S(h) of the
sum (6). The convex hull Γ(S) = Γ(h) of the support S is called as the Newton
polyhedron of the sum (6). Its boundary ∂Γ(h) consists of vertices Γ

(0)
j , edges Γ

(1)
j

and faces Γ
(d)
j of dimensions d: 1 < d ≤ 2n+ s− 1. Intersection S

⋂
Γ
(d)
j = S

(d)
j is

the boundary subset of set S. To each generalized face Γ
(d)
j (including vertices and

edges) there correspond:

• normal cone U
(d)
j in space R2n+s

∗ , which is dual to space R2n+s;
• truncated sum

ĥ
(d)
j =

∑
hpqrx

pyqµr over Q = (p,q, r) ∈ S
(d)
j .
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The truncated sum is the first approximation to the sum (6), when

(log |xj |, log |yj |, log |µk|)→∞, j = 1, . . . , n, k = 1, . . . , s,

near the normal cone U
(d)
j .

So we can describe the approximate problems by truncated Hamiltonian func-
tions. Example see below in Section 3.

3. Restricted 3-body problem
Let the two bodies P1 and P2 with masses 1 − µ and µ respectively turn in
circular orbits around their common mass center with the period T . The plane
circular restricted three-body problem consists in the study of the plane motion of
the body P3 of infinitesimal mass under the influence of the Newton gravitation
of bodies P1 and P2. In the rotating (synodical) standardized coordinate system
the problem is described by the Hamiltonian system with two degrees of freedom
and with one parameter µ [2]. The Hamiltonian function has the form

h
def
=

1

2

(
y21 + y22

)
+ x2y1 − x1y2 −

1− µ√
x21 + x22

− µ√
(x1 − 1)2 + x22

+ µx1. (7)

Here the body P1 = {X,Y : x1 = x2 = 0} and the body P2 = {X,Y : x1 =
1, x2 = 0}, where X = (x1, x2), Y = (y1, y2). We consider the small values of
the mass ratio µ ≥ 0. When µ = 0 the problem turns into the two-body problem
for P1 and P3. But here the points corresponding to collisions of the bodies P2

and P3 must be excluded from the phase space. The points of collisions split in
parts solutions to the two-body problem for P1 and P3. For small µ > 0 there is
a singular perturbation of the case µ = 0 near the body P2. In order to find all
the first approximations to the restricted three-body problem, it is necessary to
introduce the local coordinates near the body P2

ξ = x1 − 1, ξ2 = x2, η1 = y1, η2 = y2 − 1

and to expand the Hamiltonian function in these coordinates. After the expansion
of 1/

√
(ξ1 + 1)2 + ξ22 in the Maclaurin series, the Hamiltonian function (7) takes

the form

h+
3

2
− 2µ

def
=

1

2
(η21 + η22) + ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22+

+f
(
ξ1, ξ

2
2

)
+ µ

{
ξ21 −

1

2
ξ22 −

1√
ξ21 + ξ22

− f
(
ξ1, ξ

2
2

)
}
,

(8)

where f is the convergent power series, where the terms of order less then three
are absent. Let for each term of sum (8) we put

p = ord ξ1 + ord ξ2, q = ord η1 + ord η2, r = ordµ.

Then support S of the expansion (8) consists of the points

(0, 2, 0), (1, 1, 0), (2, 0, 0), (k, 0, 0), (2, 0, 1), (−1, 0, 1), (k, 0, 1),
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where k = 3, 4, 5, . . . The convex hull of the set S is the polyhedron Γ ⊂ R3. The
surface ∂Γ of the polyhedron Γ consists of faces Γ

(2)
j , edges Γ

(1)
j and vertices Γ

(0)
j .

To each of the elements Γ
(d)
j there corresponds the truncated Hamiltonian ĥ

(d)
j ,

that is the sum of those terms of Series (8), the points Q = (p, q, r) of which belong
to Γ

(d)
j . Fig. 1 shows the polyhedron Γ, which is the semi-infinite trihedral prism

with an oblique base. It has four faces and six edges. Let us consider them.

Figure 1. The polyhedron Γ for the Hamiltonian function (8) in
coordinates p, q, r.

The face Γ
(2)
1 , which is the oblique base of the prism Γ, contains vertices

(0, 2, 0), (2, 0, 0), (−1, 0, 1) and the point (1, 1, 0) ∈ S To the face there corre-
sponds the truncated Hamiltonian function

ĥ
(2)
1 =

1

2

(
η21 + η22

)
+ ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22 −

µ√
ξ21 + ξ22

. (9)

It describes the Hill problem [7], which is a non-integrable one. The canonical
power transformation

ξ̃i = ξiµ
−1/3, η̃i = ηiµ

−1/3, i = 1, 2, (10)

reduces the Hamiltonian (9) to the Hamiltonian of the form (9), where ξi, ηi, µ
must be substituted by ξ̃i, η̃1, 1 respectively.

The face Γ
(2)
2 contains points (0, 2, 0), (1, 1, 0), (2, 0, 0) and (k, 0, 0) ⊂ S.

To the face there corresponds the truncated Hamiltonian function ĥ
(2)
2 , which is

obtained from the function h when µ = 0. It describes the two-body problem for
P1 and P3, which is an integrable one.

The edge Γ
(1)
1 includes points (0, 2, 0) and (−1, 0, 1) ⊂ S. The corresponding

truncated Hamiltonian function is

ĥ
(1)
1 =

1

2
(η21 + η22)−

µ√
ξ21 + ξ22

. (11)
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It describes the two-body problem for P2 and P3. The power transformation (10)
transforms Hamiltonian (11) into the Hamiltonian function of the form (11), where
ξi, ηi, µ must be substituted by ξ̃i, η̃1, 1 respectively.

The edge Γ
(1)
2 includes points (2, 2, 0), (1, 1, 0), (0, 2, 0) ⊂ S. To it there cor-

responds the truncated Hamiltonian function (9) with µ = 0. It describes the
intermediate problem (between the Hill problem and the two-body problem for
P1 and P3), which is an integrable one. This first approximation was introduced
by Hénon [8].
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Averaged indicator of classicality/quantumness
in quasiprobability representations of finite-
dimensional quantum systems

Nurlan Abbasly, Vahagn Abgaryan, Martin Bureš, Arsen
Khvedelidze, Ilya Rogojin and Astghik Torosyan

Abstract. We discuss measures of classicality/quantumness of states of finite-
dimensional quantum systems, which are based on a deviation of quasiprob-
ability distributions from true statistical distributions. Particularly, the de-
pendence of the global indicator of classicality on the assigned geometry of
a quantum state space is analysed for a whole family of Wigner quasiproba-
bility representations. General considerations are exemplified by constructing
the global indicator of classicality/quantumness for the Hilbert-Schmidt, Bu-
res, Bogoliubov-Kubo-Mori and Wigner-Yanase-Dyson ensembles of qubits
and qutrits. In the case of qutrits, by averaging over the one-parameter mod-
uli space (describing a family of unitary non-equivalent Wigner distributions),
we construct a mean indicator of classicality/quantumness which gives a rep-
resentation independent characteristic of classicality.
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Bar Code and involutiveness: Janet and Janet-like
divisions

Michela Ceria

Abstract. Involutive monomial divisions have been introduced by Janet as a
concept [11, 12, 13, 14], being formally defined by Gerdt and Blinkov [6, 7].
In this talk we focus on two such particular divisions, namely Janet and
Janet-like divisions [8, 9], treating them by means of Bar Codes, diagrams
representing properties of monomial/semigroup ideals.

Extended abstract
Involutive monomial divisions have been introduced by Janet as a concept [11, 12,
13, 14], being formally defined by Gerdt and Blinkov [6, 7] and used to compute
involutive bases, Groebner bases particularly efficient to find.

Consider the polynomial ring P := k[x1, ..., xn] and the semigroup T ⊂ P
of terms in x1, ..., xn. Let U ⊂ T be a finite set of terms. For each t ∈ U , Janet
defines a set M(t, U) ⊂ {x1, ..., xn} of multiplicative variables1 for t and calls cone
of t the set C(t, U) = {txλ1

1 · · ·xλn
n |where λj 6= 0 only if xj ∈M(t, U)}; t is called

involutive divisor for all the terms in C(t, U) and only for them.
All cones are defined to be disjoint and Janet introduces a procedure, called

completion, to enlarge U to a new set U ′ so that, called T(U) the semigroup
generated by U ,

T(U) = T(U ′) = tt∈U ′C(t, U ′).

If U = U ′, then U is complete.
For an ideal I = (f1, ..., fr) / P, we consider the set of leading terms for its

generators, namely U = {T(f1), ...,T(fr)} and set Janet division on U , supposing
U to be complete. A term t ∈ T is reducible by means of a generator fi if and
only if t ∈ C(T(fi), U). This reduction procedure is that used to compute Janet
involutive bases.

1The variables that are not multiplicative for t with respect to U form the set NM(t, U) of
non-multiplicative variables.
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Janet-like division, defined in [8, 9], is a non-involutive generalization of
Janet division, sharing many properties with the latter one. Instead of being based
on the concept of multiplicative/non-multiplicative variables, it is based on non-
multiplicative powers (NM(t, U)): the cone of a term t is given by the set of its
multiples that are not divisible by a non-multiplicative power.

Bar Codes, introduced in [1, 2] are diagrams representing finite sets of terms
and used in a series of papers in order to study the properties of monomial ideals.
They are defined as follows.

Definition 0.1 ([1, 2]). A Bar Code B is a picture composed by segments, called bars,
superimposed in horizontal rows, which satisfies conditions a., b. below. Denote by
• B

(i)
j the j-th bar (from left to right) of the i-th row (from top to bottom),

1 ≤ i ≤ n, i.e. the j-th i-bar ;
• µ(i) the number of bars of the i-th row
• l1(B(1)

j ) := 1, ∀j ∈ {1, 2, ..., µ(1)} the (1−)length of the 1-bars;
• li(B(k)

j ), 2 ≤ k ≤ n, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ µ(k) the i-length of B(k)
j , i.e. the

number of i-bars lying over B(k)
j

a. ∀i, j, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ µ(i), ∃!j ∈ {1, ..., µ(i+ 1)} s.t. B(i+1)

j
lies under

B
(i)
j

b. ∀i1, i2 ∈ {1, ..., n},
∑µ(i1)
j1=1 l1(B

(i1)
j1

) =
∑µ(i2)
j2=1 l1(B

(i2)
j2

); we will then say that
all the rows have the same length.

It is possible to associate to a finite set of terms a Bar Code and, on the other
side, a finite set of terms to every Bar Code. The association is made so that the
exponents of the terms are related to their position in the Bar Code.

In this talk, we will see how to study Janet division and Janet-like division
by means of the Bar Code.
In particular, for Janet division, we will see how to compute multiplicative vari-
ables, find the involutive divisor of a term and detect whether a given set U is
complete with respect to Janet division.

Suppose x1 < x2 < ... < xn, let U ⊂ T ⊂ k[x1, ..., xn] be a finite set of terms
and B the associated Bar Code.
First perform the following three steps:
a) ∀1 ≤ i ≤ n, put a star symbol ∗ on the right of t B(i)

µ(i);

b) ∀1 ≤ i ≤ n− 1, ∀1 ≤ j ≤ µ(i)− 1 let B(i)
j and B

(i)
j+1 be two consecutive bars

not lying over the same (i + 1)-bar; put a star symbol ∗ between these two
bars.

Proposition 0.2. [3] Let U ⊆ T be a finite set of terms and let us denote by BU its
Bar Code. For each t ∈ U xi, 1 ≤ i ≤ n is multiplicative for t if and only if the
i-bar B

(i)
j of BU , over which t lies, is followed by a star.
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Proposition 0.3. [5] Let U ⊆ T be a finite set of terms and B be its Bar Code. Let
t ∈ U , xi ∈ NM(t, U) and B

(i)
j the i-bar under t.

Let s ∈ U ; it holds s |J xit if and only if

1. s | xit
2. s lies over B

(i)
j+1 and

3. for each j′ appearing with nonzero exponent in xit
s there is a star after the

j′-bar under s.

Theorem 0.4. [5] Let U ⊆ T be a finite set of terms and B be its Bar Code. Then
U is a complete set if and only if for each t ∈ U and each xi ∈ NM(t, U), called
B
(i)
j the i-bar under t, there exists a term s ∈ U satisfying conditions 1, 2, 3 of

Proposition 0.3.

The Bar Code equipped with stars, that we employ to compute multiplicative
variables is a reformulation of Gerdt-Blinkov-Yanovich Janet tree [10], but in the
(equivalent) presentation given by Seiler [15]. We will see more in detail the relation
between the two diagrams.

For Janet-like division, we note that non-multiplicative powers are no more
than powers of Janet non-multiplicative variables; analogously to Janet division
we have

Proposition 0.5 ([4]). Let U ⊆ T be a finite set of terms and let us denote by BU
its Bar Code. Let t ∈ U , xi a Janet-nonmultiplicative variable, B(i)

l the i-bar under
t and t′ any term over B

(i)
l+1. Then for

ki = degi(t
′)− degi(t),

xkii is a non-multiplicative power for t.

Theorem 0.6 ([4]). Let U ⊂ T be a finite set of terms, B its Bar Code, t ∈ U ,
p = xkii ∈ NMP (t, U) a nonmultiplicative power and B

(i)
j the i-bar under t. Let

s ∈ U ; s | tp w.r.t. Janet-like division if and only if the following conditions hold:

1. s | pt
2. s lies over B

(i)
j+1 and

3. ∀j′ such that xj′ | pts either there is a star after the j′-bar under s or the
nonmultiplicative power w.r.t. xj′ has greater degree degj′(pts ).

Thanks to Theorem 0.6 completeness with respect to Janet-like division can
be easily detected, since being complete only means that for each t ∈ U and for
each non-multiplicative power p = xkii for t, there is a term s in U whose cone
contains pt. Theorem 0.6 essentially says that we have to look for the term s in
the next i-bar with respect that under t and check conditions 1,2,3.
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Groebner bases and error correcting codes: from
Cooper Philosophy to Degrobnerization

Michela Ceria, Teo Mora and Massimiliano Sala

Abstract. In the Late Nineties, the classical approach to decode BCH codes
based on Berlekamp’s key equation was upsetted by the application of Gröbner
bases to the problem; it appeared a series of papers which terminated with
two different proposals: Orsini-Sala general error locator polynomial [14] and
Augot et al. Newton-Based decoder [1]; both approaches payed not only the
hard pre-computation of a Gröbner basis but (mainly) the density of their
decoders.

A recent work-in-progress [4, 5, 6, 7] reconsidered the same problem
within the frame of Grobner-free Solving, an approach aiming to avoid the
computation of a Gröbner basis of a (0-dimensional) ideal J ⊂ P in favour
of combinatorial algorithms, describing instead the structure of the algebra
P/J . The consequence is a preprocessing which is quadratic (and a decoding
which is linear) on the length of the code.

Extended abstract
In 1990 Cooper [10, 11] suggested to use Gröbner bases’ computation in order
to decode cyclic codes. Let C be a binary BCH code correcting up to t errors,
s̄ = (s1, . . . , s2t−1) be the syndrome vector associated to a received word. Cooper’s
idea consisted in interpreting the error locations z1, . . . zt of C as the roots of the
syndrome equation system: fi :=

∑t
j=1 z

2i−1
j − s2i−1 = 0, 1 ≤ i ≤ t, and, conse-

quently, the plain error locator polynomial as the monic generator g(z1) of the prin-
cipal ideal

{∑t
i=1 gifi, gi ∈ F2(s1, . . . , s2t−1)[z1, . . . , zt]

}⋂
F2(s1, . . . , s2t−1)[z1],

which was computed via the elimination property of lexicographical Gröbner bases.
In a series of papers Chen et al. improved and generalized Cooper’s approach

to decoding. In particular, for a q-ary [n, k, d] cyclic code, with correction capability
t, they made two alternative proposals.

First of all, denoting, for an error with weight µ, z1, . . . , zµ the error loca-
tions, y1, . . . , yµ the error values and s1, . . . , sn−k ∈ Fqm the associated syndromes,
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they interpreted [8] the coefficients of the plain error locator polynomial as the el-
ementary symmetric functions σj and the syndromes as the Waring functions,
si =

∑µ
j=1 yjz

i
j . They suggested to deduce the σj ’s from the (known) si’s via a

Gröbner basis computation for the ideal generated by the Newton identities; a
similar idea was later developed in [1].

Alternatively, they considered [9] the syndrome variety


(s1, . . . , sn−k, y1, . . . , yt, z1, . . . , zt) ∈ (Fqm )n−k+2t : si =

µ∑

j=1

yjz
i
j , 1 ≤ i ≤ n− k





and proposed to deduce, via a Gröbner basis pre-computation in

Fq[x1, . . . , xn−k, y1, . . . , yt, z1, . . . , zt],

a series of polynomials gµ(x1, . . . , xn−k, Z), µ ≤ t such that, for any error with
weight µ and associated syndromes s1, . . . , sn−k ∈ Fqm , gµ(s1, . . . , sn−k, Z) in
Fqm [Z] is the plain error locator polynomial.

Their approach was improved in a series of papers which introduced further
applications of groebnerian technologies and which culminated with [14] which
stated

Theorem 0.1. [14] In the Gröbner basis of the ideal vanishing in each point of the
syndrome variety, there is a unique polynomial, the general error locator polyno-
mial, with shape

g = ztt +
t∑

l=1

at−l(s1, . . . , sn−k)zt−lt .

Such polynomial satisfies the following property: given a syndrome vector
s = (s1, . . . , sn−k) ∈ (Fqm)n−k corresponding to an error with weight µ ≤ t, its t
roots are the µ error locations plus zero counted with multiplicity t− µ.

For a survey of Cooper Philosophy see [13], see [3] for Sala-Orsini locator.
Recently the same problem has been reconsidered in a group of papers [4, 6, 5]

within the frame of Grobner-free Solving, an approach aiming to avoid the Gröbner
bases computation for (0-dimensional) ideals.

In particular, given the syndrome variety

Z =
{

(c+ d, c3 + d3, c, d), c, d ∈ F∗2m , c 6= d
}

of a BCH [2m − 1, 2]-code C over F2m , and denoted I(Z) the ideal of points of Z,
[4] is able with good complexity to produce, via Cerlienco-Mureddu Algorithm [2]
and Lazard Theorem, the set N := N(I(Z)) and proves that the related Gröbner
basis has the shape

G = (xn1 − 1, g2, z2 + z1 + x1, g4)

where (see [14]) g2 =
x

n+1
2

2 −x
n+1
2

1

x2−x1
= x

n−1
2

2 +
∑n−1

2
i=1

(n−1
2
i

)
xi1x

n−1
2 −i

2 and g4 = z21 −∑
t∈N ctt is Sala-Orsini general error locator polynomial. Such result allowed [4]
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to remark (applying Marinari-Mora Theorem) that, for decoding, it is sufficient to
compute the polynomial, half error locator polynomial (HELP)

h(x1, x2, z1) := z1 −
∑

t∈H
ctt where H := {xi1xj2, 0 ≤ i < n, 0 ≤ j < n− 1

2
}

which satisfies

h(c(1 + a2j+1), c3(1 + a3(2j+1)), z1) = z1 − c, for each c ∈ F∗2m , 0 ≤ j <
n− 1

2
,

the other error ca2j+1 been computable via the polynomial z2 + z1 + x1 ∈ G as
z2 := x1 − z1 = (c+ ca2j+1)− c = ca2j+1.

Such polynomial can be easily obtained with good complexity via Lundqvist
interpolation formula [12] on the set of points

{
(c+ ca2j+1, c3 + c3a3(2j+1), c), c ∈ F∗2m , 0 ≤ j <

n− 1

2

}
.

Experiments showed that, in that setting, HELP has a very sparse formula, which
has been proved (see [4]):

h(x1, x2, z1) = z1 +

n−1
2∑

i=1

aix
(4−3i) mod n
1 x

(i−1) mod n−1
2

2

where the unknown coefficient can be deduced by Lundqvist interpolation on
the set of points {(1 + a2j+1, 1 + a3(2j+1), 1), 0 ≤ j < n−1

2 } and on the terms

{x(4−3i) mod n
1 x

(i−1) mod n+1
2

2 , 1 ≤ i < n+1
2 }.

This suggested [6] to consider a binary cyclic code C over GF (2m), with length
n | 2m − 1 and primary defining set SC = {1, l}. Thus it denoted by a a primitive
(2m − 1)th root of unity so that F2m = Z2[a], α := 2m−1

n and b := aα a primitive
nth root of unity, Rn := {e ∈ F2m : en = 1} and Sn := Rn t {0}; considered the
following sets of points

Z2 := {(c+ d, cl + dl, c, d), c, d ∈ Rn, c 6= d},#Z×2 = n2 − n;
Z+ := {(c+ d, cl + dl, c, d), c, d ∈ Sn, c 6= d},#Z×+ = n2 + n,
Zns := {(c+d, cl+dl, c, d), c, d ∈ Sn}\{(0, 0, c, c), c ∈ Rn},#Z×ns = n2+n+1,
Ze := {(c+ d, cl + dl, c, d), c, d ∈ Sn},#Z×e = (n+ 1)2,

and denoted, for ∗ ∈ {e, ns,+, 2},
• J∗ := I(Z∗), the ideal of all polynomials vanishing in Z∗,
• N∗ := N(J∗) the Gröbner escalier of J∗ w.r.t. the lex ordering with x1 <
x2 < z1 < z2 and
• Φ∗ : Z∗ → N∗ a Cerlienco-Mureddu correspondence [2].

Then it assumed to know
(a). the structure of the order ideal N2, #N2 = n2 − n, i.e. a minimal basis

{t1, . . . , tr}, ti := xai1 x
bi
2 , of the monomial ideal T \ N2 = T(I(Z2)),

(b). a Cerlienco Mureddu Correspodence Φ2 : N2 → Z2
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and deduced with elementary arguments N∗ and Φ∗ for ∗ ∈ {e, ns,+}.
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Subexponential–time computation of isolated pri-
mary components of a polynomial ideal

Alexander L. Chistov

Let k be a field of arbitrary characteristic with an algebraic closure k. Let H
be a primitive subfield of the field k and H(t1, . . . , tl) be the field of rational func-
tions over H in algebraically independent variables t1, . . . , tl over H. We assume
that the field k is a finite separable extention H(t1, . . . , tl) given by its primitive
element θ over H(t1, . . . , tl) (a minimal polynomial Φ ∈ H(t1, . . . , tl)[Z] of the
element θ is also given).

Let f1, . . . , fm ∈ k[X1, . . . , Xn] be polynomials of degree at most d where d >
2 is an integer. Denote by I ⊂ k[X1, . . . , Xn] = A the polynomial ideal generated
by the polynomials f1, . . . , fm. We suggest a simple algorithm for computing all
the isolated primary components of the ideal I. At the output of his algorithm
they are given up to embedded components.

More precisely, let p be an arbitrary isolated associated prime ideal of the
ideal I and Ip be the p-primary component of the ideal I. Then for each p we
construct the field of fractions Kp of the ring A/p, and the following objects.

1) A polynomial ideal I ′p ⊂ k[X1, . . . , Xn] such that Ip is a unique isolated
primary component of I ′p. The ideal I ′p is given by its system of generators.

2) A finite dimensional Kp-algebra Kp ⊗A (A/Ip). This algebra is given by its
basis over Kp and the multiplication table. Hence Ip coincides with the kernel
of the natural homomorphism A→ Kp ⊗A (A/Ip).

Denote by V = Z(f1, . . . , fm) the algebraic variety of all common zeroes of the
polynomials f1, . . . , fm in An(k). Notice that the homomorphism A/I → Kp ⊗A
(A/Ip) for a primary ideal Ip is an analog of the generic point k[V ] → Kp of the
irreducible component Z(p) of the algebraic variety V .

The complexity of this algorithm is polynomial in dn
2

and the size of the input
data. It seems that so far there has not been explicit estimates for the complexity
of algorithms for this problem in the considered general situation.

Notice that that the varieties V (p) might be of distinct dimensions. To sub-
stantiate this algorithm we use a non–trivial estimation for the degrees of primary
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components of the ideal
∑

16i6mAfi in the case of homogeneous polynomials fi
obtained by the author earlier [1].
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Symbolic Dynamics in Analyzing the Complexity
of Trajectories of Triple Black Holes.

Ariel Chitan, Aleksandr Mylläri and Shirin Haque

Abstract. The effect of spin and distance unit on Burrau’s classic ‘problem
of three bodies’ was studied (Burrau 1913) using computer simulations and
symbolic dynamics.In 1995, Valtonen et al. re-analysed this problem by mo-
tivation of improved computing technology. Three point masses were placed
at the vertices of a 3,4,5 Pythagorean triangle such that the masses of each
of the bodies reflected the side of the triangle opposite to it. The mass unit
was then varied from 105 to 109 M� in increasing factors of ten. This set
up was recreated and in each of the cases the first black hole was selected
to be Kerr with spin vector J= [0.1 0.1 0.1], whilst the other two were kept
as non-rotating Schwarzschild black holes. These five cases were each stud-
ied with three different distance units: 0.1 parsec, 1 parsec and 10 parsecs.
Numerical orbital integration was done on FORTRAN using the algorthimic
regularization code, ARCcode provided by Prof. Seppo Mikkola with relativis-
tic corrections (pN) up to 2.5th order (Mikkola, Merritt 2008). Parameters
studied were lifetimes of the systems, number of mergers and the number of
binary encounters. It was found that with the effect of spin, the lifetimes of
the systems decreased as compared to the 1995 study and moved from the
2D planar case to the 3D one. The number of binary encounters decreased as
mass increased and the lifetimes decreased as distance unit decreased.
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Work distribution between the student and the

computer while solving tasks in distant contests.

Sergei Pozdniakov and Anton Chukhnov

Abstract. The work is devoted to distant contests held with the support of
interactive environment. While creating a task of this type one always need
to choose which activity is left fot the student and which one is left to the
computer.

1. Background.

In [?] (based on the role of the tool in the child development [?, ?] and interior-
ization mechanism [?]) is shown that students' mastering algorithms with math-
ematical objects goes through several stages. At �rst, the algorithm is executed
consciously, which corresponds to the concept of skill, then the algorithm is con-
volved, and the student, performing mental actions, actually works with the names
of the algorithms, that is, convolutions of the algorithms that are deployed in the
process of their application and remain minimized in the process of reasoning
built on their basis. The study of the mechanisms of internalization in a computer
environment is presented in the works of Papert [?] and his followers.

2. Interactive tasks in distant contests

While holding our contests (Construct, Test, Explore! and the Olympiad in Dis-
crete Mathematics) we use a method of software supported subject tasks [?]. By
subject task we mean a task with some understandable real-world statement that
does not need any speci�c knowledge to understand it and to make at least �rst
steps in the solution. By software supported we mean that a task is accompanied
with a computer tool, that demonstrates the statement and allows for searching
for a solution. Thus, such tasks have to be constructive, and a tool exposes their
constructive nature. This tool supporting teh task we call a manipulator.
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Within the framework of Olympiad in Discrete Mathematics and Theoretical
Informatics we generally use six types of constructive tasks. Each of them is sup-
ported by its own manipulator. For CTE contest a new manipulator is developed
for any new task.

For example, graph task may be formulated as �Find the minimal graph
satisfying the certain conditions�. Correctness of the constructed graph is veri�ed
automatically. The student can gain additional points for proving the minimality
in the text form.

3. Internal and external operations.

While solving research problems, the student is faced with new concepts that,
at the time of the occurrence of troubles, may not have representations known
by the student. Creating a computer environment for operating with a subject
environment allows you to hide (convolve) part of the algorithms that become a
part of the environment and are executed automatically. At the same time, other
operations are controlled by the student interacting with the environment. Thus,
it becomes possible to control the mechanism of interiorization through carrying
out the certain actions into the external environment.

4. Example of task. Network repair.

Ten buttons are somehow connected by elastic bands. Each button is removed from

this web in turn along with the elastic bands connecting it to the rest of the network.

The resulting ten meshes with nine buttons are shown at the top of the screen. Your

goal is to reconstruct the original network.

This task is related to reconstruction conjecture which states that every graph
with at least three vertices can be reconstucted by the multiset of its vertex-deleted
subgraphs (called deck).

The program interface allows not only to clearly demonstrate the solution,
but also to examine the deck obtained from its own graph along with the original
deck, track the matching subgraphs of the decks, and arrange the elements of the
deck in a convenient manner. It provides a meaningful process of experiments, not
limited to simple guessing.

In this task the concept of isomorphism plays an auxiliary role, making it
possible to quickly verify compliance with the requirements for the constructed
solution. The participant has the opportunity to use the idea of isomorphism,
moving the vertices of the subgraphs to better understand the reaction of the pro-
gram. Programs are distinguished by a tool for working with graphs. Thus, the
use of the concept of isomorphism in this task without its mathematical de�nition
is compensated by the fact that the participant is given a tool that allows ex-
perimentally checking isomorphism, turning one representation of the graph into
another.
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This possibility of convolution of some skills and �deployment� of others,
besides the possibilities of using the mechanism of interiorization, opens up possi-
bilities for a more independent presentation of various ideas of mathematics.

5. Questions

How to properly divide the student's research activities into external operations
performed by the student and internal operations performed by the computer?

Should all the algorithms that are convolved be brought outside the human
mind?

The classical view on the formation of skills (in other words, the ability
to use a set of algorithms that are not explicitly formulated, that is, in a formal
algorithmic language) statess that when building a new skill based on the previous
ones, the students should �rst master the previous skills until they are convolved
mechanically.

At the same time you can use other methods of accessing basic entities.
The latter can be immediately perceived by the learner as a real object that
has understandable properties, and then on these entities you can build skills
(algorithms) of a higher level, without reducing them to basic ones.

This happens in programming, almost none of the students can imagine the
work of the algorithm in terms of electrical signals or even in assembler instructions
but they still can use a computer and write programs.

6. Example of task. Steiner tree problem.

The task is about connecting a set of vertices on the plane by edges with possible
adding another vertices. The goal is to minmize the total length of edges.

This task could be divided in two parts: the geometrical and the topological
or graph one. The geometrical part of the solution is that the minimum is reached
when every vertice added is a Torricelli point of a triangle connected with its
vertices. The second part of the task has no e�ective algorithm to solve.

In our version of this task the geometrical part of the solution was performed
by the computer: the student should just build the optimal topological con�gu-
ration. It measn that two topologically equivalent solutions would be evaluated
equally.

7. Conclusions

In case of graph tasks the possibility of combining algorithms for working with data
in mathematical models is shown so that some operations are displayed externally,
that is, they are interface elements and are controlled by the student, while others
are presented in a minimized form, that is, these actions are performed automati-
cally by modeling program.
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Using various interpretations of mathematical concepts in simulation com-
puter models, it becomes possible to form the skills of working with some algo-
rithms. This makes it possible to more freely organize educational material when
operations with complex mathematical concepts can be completed before the com-
ponents of these concepts are studied in detail.

The use of the convolved algorithms in research problems with computer
support allows us not to focus on the insigni�cant details of the plots and to pose
new research problems that form a new mathematical intuition and which could
not be posed without using computer support.

The work was supported by the Russian Foundation for Basic Research
(Project No 18-013-01130).
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Study of the Liénard Equation by Means of

the Method of Normal Form

Victor F. Edneral

Abstract. The purpose of this report is the demonstration of searching the
�rst integral of motion by the method of normal form. For the object of this
demonstration, we chose the Liénard equation. We represented the equation
as a dynamical system and parameterized it. After a calculation of the nor-
mal forms near stationary points, we found parameter values at which the
condition of local integrability is satis�ed for all stationary points simultane-
ously. We found two such sets of parameters. For each of them, the global
integrability takes place.

Introduction

We use the approach based on the local analysis. It uses the resonance normal
form calculated near stationary points [1]. In the paper [2] it was suggested the
method for searching the values of parameters at which the dynamical system
is locally integrable in all stationary points simultaneously. Satisfying the such
local integrability conditions is a necessary condition of a global integrability. For
global integrability of autonomous planar system, it is enough to have one global
integral of motion. From its expression, you can get the solution of the system
in quadratures. That is the integrability always leads to solvability. Note, that
the converse is not true. Note also that a record of solutions via corresponding
integrals is often more compact than an expression of the solution itself.

Problem

We will check our method on the example of the Liénard equation [3]

ẍ = f(x)ẋ+ g(x) = 0, (1)

The publication has been prepared with the support of the �RUDN University Program 5-100�.
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which can be rewritten as a dynamical system. Let f(x) be a quadratic polynomial
and g(x) is polynomial of fourth order. Then equation (1) is equivalent to the
system

ẋ(t) = y(t),
ẏ(t) = [a0(t) + a1x(t) + a2x

2(t)] y(t) + b1x(t) + b2x
2(t) + b3x

3(t) + b4x
4(t),

(2)

here parameters a0, a1, a2, b1, b2, b3, b4 ∈ R, b1 6= 0.

Method

The main idea of the discussed method is a search of conditions on the system
parameters at which this system is locally integrable near its stationary points. The
local integrability means we have enough number (one here) of the local integrals
which are meromorphic near each stationary point. Local integrals can be di�erent
for each such point, but for the existence of the global integral, the local integrals
should exist in all stationary points. This is a necessary condition. We have an
algebraic condition for local integrability. It is the condition A [1, 2]. We look for
sets of parameters at which the condition A is satis�ed at all stationary points
simultaneously. Such sets of parameters are good candidates for the existence of
global integrals. These integrals we look for by other methods.

Condition of Local Integrability

The conditionA is some in�nite sequence of polynomial equations in coe�cients of
the system. Near each of the stationary points is its own equations. The condition
of global integrability is a uni�cation of these in�nite systems of polynomial equa-
tions. Any part of this in�nite system is a necessary condition of the integrability.
We solve a �nite subset of these equations. The condition A is formulated in terms
of the normal form of the system. We calculated the resonance normal form for
the system (2) near the stationary point in the origin using the MATHEMATICA
11 system and the program [4] till the 8th order. After that, we wrote down the
lowest equations (till the order of the eight) of the local integrability condition A.
We solved this �nite subsystem and got three sets of parameters.

1. a0 = 0, a1 = 0, a2 = 0;
2. a0 = 0, a1b2 = a2b1, b3 = 0, b4 = 0;
3. a0 = 0, a2 = 0, b2 = 0, b4 = 0.

Then we checked the condition of local integrabilityA near other stationary points.
The third set above does not satisfy the local condition near some of the stationary
points, so this is not a candidate for the global integrability.
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First Integrals of Motion

For searching for global integrals, we divided the left and right sides of equations
(2) into each other for each from the sets above. In result we had the �rst-order dif-
ferential equations for x(y) or y(x). Then we solved them by the MATHEMATICA
solver and got cumbersome solutions y(x). After that we calculated the integrals
from these solutions extracting the integration constants I(x(t), y(t)) = const. For
the �rst set of parameters above, we got

I1(x(t), y(t)) = 30 y(t)2 − 30 b1x
2(t)− 20 b2x

3(t)− 15 b3x
4(t)− 12 b4x

5(t). (3)

Its time derivative dI1(t)/dt = 0 along the system (2) over all phase space. So, it
is the �rst integral.

For the second set we got

I2(x(t), y(t)) = 6 b21 log[b1 + a1y(t)]− 6 a1b1y(t) + a21 x
2(t) [3 b1 + 2 b2x(t)],

b1 6= 0.
(4)

The time derivative dI2(t)/dt = 0 along the system (2). The limitation on the pos-
itivity of the argument of the logarithm can be eliminated by the representation of
integral I2 in the form I = exp(I2). Of course, later additional studying analytical
properties of this integral and the phase picture of the system should be carried .
Nevertheless, we have here the �rst integral.

Scheme

The proposed method is intended for a search of the values of parameters at which
some a polynomial autonomous dynamical system is integrable. The main steps of
the method are:

• calculation of the normal form at stationary points of the system ;
• calculation �nite subsets of equations of A condition at these points;
• the solution of these subsets of the equations in system parameters at the
one (or more) stationary points;
• verifying the ful�llment of the condition A for the found parameter sets at
the rest stationary points.
• the found parameter sets are used for searching integrals of the system by
other methods.

Of course, there are di�erent tactics. For example, in the current paper, we solved
the set of equations near the origin, then tried found integrals, and only after that
checked the condition A at other stationary points. Our practice work with planar
autonomous systems demonstrates that at such values of parameters corresponding
integrals exist for most sets of solutions of A.

Note, the proposed method of searching suitable parameters has no limitation
on a system dimension. The limitations arise on the stage of searching integrals of
motion.
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Result

We found integrability at two sets of parameters. Set (1) corresponds to equation
(1) in the form

ẍ = b1x+ b2x
2 + b3x

3 + b4x
4.

The corresponding integral is (3).
Set (2) corresponds to equation (1) in the form

ẍ = x (b1 + b2x) (1 + a x),
or
ẍ = b1x+ b2x

2 + a (b1x+ b2x
2) y,

a ≡ a1/b1, b1 6= 0.

The corresponding integral is (4).

Conclusion

We represented the Liénard equation as a dynamical system and parameterized it
in a polynomial form. For this system, we found two sets of parameters at which it
has the �rst integrals of motion and solvable. Both cases are trivial from a point of
view of studying of Liénard's equation (1). The �rst case corresponds to equality
f(x) = 0, the second one to f(x) ∼ g(x). But the workability of the method was
illustrated.

The proposed method of searching suitable parameters has no limitation on
a system dimension. The limitations arise on the stage of searching integrals of
motion.
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Implementation of algebraic algorithms for approximate pattern

matching on compressed strings

Maria Fedorkina and Alexander Tiskin

1. Pattern matching and the LCS problem

Approximate matching is a natural generalization of classical (exact) pattern matching, allowing for some
character di�erences between the pattern and a matching substring of the text. Given a pattern string p
of length m and a text string t of length n ≥ m, approximate pattern matching asks for all the substrings
of the text that are similar to the pattern. We consider the classical approach to string comparison based
on the following numerical measure of string similarity:

De�nition 1.1. Let a, b be strings. The longest common subsequence (LCS) score lcs(a, b) is the length
of the longest string that is a subsequence of both a and b. Given strings a, b, the LCS problem asks for
the LCS score lcs(a, b).

De�nition 1.2. Given strings a, b, the semi-local LCS problem asks for the LCS scores as follows:

• the whole a against every substring of b (string-substring LCS)
• every pre�x of a against every su�x of b (pre�x-su�x LCS)
• every su�x of a against every pre�x of b (su�x-pre�x LCS)
• every substring of a against the whole b (substring-string LCS)

In particular, string-substring LCS is closely related to approximate pattern matching, where a short
�xed pattern string is compared to various substrings of a long text string.

2. LCS and the sticky braid monoid

The algebraic approach to the semi-local LCS problem is based on the monoid of sticky braids.

De�nition 2.1. The sticky braid monoid (a.k.a. the 0-Hecke Monoid of the symmetric group) of order n,
denoted Tn is the monoid generated by the identity element ι and n − 1 generators g1, . . . , gn−1 de�ned
by the relations:

• g2
i = gi for all i (idempotence)

• gigj = gjgi for all i, j, j − i ≥ 2 (far commutativity)
• gigjgi = gjgigj for all i, j, j − i = 1 (braid relations)

where i, j ∈ [1 : n− 1].

The sticky braid monoid consists of n! elements, which can be represented canonically by permuta-
tions of order n. An algorithm for multiplication of sticky braids (in permutation form) in time O(n log n)
was given by the second author [4].

Intuitively speaking, the behavior of the LCS score under concatenation of strings is isomorphic to
monoid multiplication of sticky braids. Therefore, it is possible to calculate the semi-local LCS of two
strings a, b by partitioning one of the strings into two substrings and calling the algorithm recursively to
obtain the semi-local LCS scores for each substring against the other string. The semi-local LCS scores
in the subproblem and in the main problem are represented implicitly by sticky braids (in permutation
form), and the subproblems are composed by sticky braid multiplication.
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3. Grammar-compressed strings

Nowadays nearly all data used in science and technology are compressed. From an algorithmic viewpoint,
it is natural to ask whether compressed strings can be processed e�ciently without decompression. Early
examples of such algorithms were given e.g. by Amir et al. [1] and by Rytter [3]; for a recent survey on the
topic, see Lohrey [2]. E�cient algorithms for compressed strings can also be applied to achieve speedup
over ordinary string processing algorithms for plain strings that are highly compressible.

The following generic compression model is well-studied, and covers many data compression formats
used in practice.

De�nition 3.1. Let t be a string of length n. String t is said to be grammar-compressed if it is generated by
a context-free grammar. A context-free grammar of length n̄ is a sequence of n̄ statements. A statement
numbered k, 1 ≤ k ≤ n̄, has either the form tk = α where α is an alphabet character, or the form tk = titj
for some i, j, 1 ≤ i, j < k. For convenience we will also allow statements of the form tk = ε, where ε is
the empty string.

We will be discussing algorithms for the comparison of a plain (uncompressed) pattern string p of
lengthm and a text string t of length n, compressed by a context-free grammar of length n̄. The algorithm
of Section 2 can be applied to perform approximate pattern matching e�ciently in this setting.

The recursive nature of grammar compression makes it natural to apply the sticky braid approach.
Since a statement produces a string that is the concatenation of two strings produced by previous state-
ments, the calculation of the implicit semi-local LCS scores for the statement requires only multiplying the
sticky braids corresponding to the previous statements using our implementation of the algorithm. The
resulting algorithm takes O(mn̄ logm) time, as it makes n̄ calls of the sticky multiplication subroutine,
each running in time O(m logm).

4. Results

We have implemented the algorithm of [4]; to the best of our knowledge, it is the �rst existing implemen-
tation of this rather intricate algorithm. We have also implemented the algorithm of Section 3 calculating
the semi-local LCS scores of a pattern p of length m and a text t compressed by a context-free grammar
of length n̄, and examined its performance on several examples of grammar-compressed strings.

Example 4.1. The n̄-th Fibonacci string is generated by the following context-free grammar:

t1 = B t2 = A t3 = t2t1 t4 = t3t2 . . . tn̄ = tn̄−1tn̄−2

E.g. the seventh Fibonacci string is �ABAABABAABAAB�.

The length n of the n̄-th Fibonacci string grows exponentially in n̄. This suggests that our algorithm,
running in time O(mn̄ logm) independent of n, should be substantially faster than the standard dynamic
programming algorithm for calculating the LCS of two strings, running in time O(mn).

We ran several experiments to examine the performance of our algorithm. In our experiments we
generated the pattern strings randomly, drawing each character independently and equiprobably from
the subset of letters of the Latin alphabet {`A', `B', `C'}. Using our algorithm, we calculated the LCS
score for the pattern against a grammar-compressed Fibonacci string. We also calculated the LCS score
for the pattern and the uncompressed Fibonacci string using dynamic programming and compared the
resulting running times.
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LCS calculation times (ms)

Pattern
length

Compressed
text length

Uncompressed
text length

Sticky braids
(plain v. compressed)

Dynamic programming
(plain v. uncompressed)

4 16 987 1 0
16 16 987 6 1
64 16 987 23 6
256 16 987 74 18

4 24 46368 2 15
16 24 46368 7 55
64 24 46368 29 211
256 24 46368 116 819

4 32 2178309 2 673
16 32 2178309 10 2550
64 32 2178309 38 9778
256 32 2178309 173 40124

We can see that even though dynamic programming performs better on short strings, the sticky
braid algorithm starts to perform faster on longer strings. Additionally, the sticky braid algorithm keeps
working even on larger Fibonacci strings that do not �t into the computer's memory uncompressed.

Fibonacci strings are an arti�cial construct that is not often used in practice. We now consider a
more natural type of compression: the classical compression schemes LZ78 and LZW by Ziv, Lempel and
Welch [6, 5].

Example 4.2. The LZ78 and LZW compression schemes can both be represented a context-free grammar
consisting of three sections:

• in the �rst section, all statements are of the form tk = α;
• in the second section, the �rst statement is of the form tk = ε and all the following statements are
of the form tk = titj, where statement i, i < k, is from the second section, and statement j is from
the �rst section;

• in the third section, the �rst statement is of the form tk = ε and all the following statements are of
the form tk = tk−1tj, where statement k − 1 is from the third section, and statement j is from the
second section.

We call context-free grammars of this form LZ-grammars.

The LZ-grammar corresponding to LZ78 or LZW compression might not be substantially shorter
than the length of an uncompressed string. We construct a class of LZ-grammars corresponding to LZ78
compression that generates strings of length n growing quadratically in the grammar's length n̄.

Example 4.3. The LZ78max-grammar of length n̄ = 3r + 3 is an LZ-grammar de�ned as follows:

t0 = ε u0 = ε v0 = ε
t1 = α1 u1 = u0t1 v1 = v0u1

t2 = α2 u2 = u1t2 v2 = v1u2

. . . . . . . . .
tr = αn ur = ur−1tr vr = vr−1ur

where αk is the k-th character of the alphabet.

E.g. the LZ78max-grammar of length 18 = 3 · 5 + 3 generates the string �AABABCABCDABCDE� of
length 15.

We ran several experiments to examine the performance of our algorithm. In our experiments we
generated the pattern strings randomly, drawing each character independently and equiprobably from the
uppercase letters of the Latin alphabet. Using our algorithm, we calculated the LCS score for the pattern
against an LZ78max-grammar. We also calculated the LCS score for the pattern and the uncompressed
LZ78max-grammar string using dynamic programming and compared the resulting running times.
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LCS calculation times (ms)

Pattern
length

Compressed
text length

Uncompressed
text length

Sticky braids
(plain v. compressed)

Dynamic programming
(plain v. uncompressed)

4 195 2145 15 0
16 195 2145 48 2
64 195 2145 169 8
256 195 2145 687 35

4 1539 131841 94 39
16 1539 131841 339 142
64 1539 131841 1376 532
256 1539 131841 5774 2242

4 12291 8394753 763 2594
16 12291 8394753 2807 9599
64 12291 8394753 12282 35108
256 12291 8394753 49187 153342

Again, we see that even though dynamic programming performs better on short strings, the sticky
braid algorithm starts to perform faster on longer strings.

5. Conclusion and future work

Our experiments demonstrate that the algebraic string comparison approach of [4] is not only of the-
oretical interest, but can also give substantial speedups on problems of practical signi�cance, such as
approximate matching on grammar-compressed strings, which includes the classical LZ78 and LZW com-
pression schemes as a special case. Further work may involve generalising our implementation to deal
with scoring schemes other than LCS (e.g. edit distance matching), and using it for e�cient approximate
pattern matching on large compressed datasets.
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On the Moments of Squared Binomial Coe�cients

Nikita Gogin and Mika Hirvensalo

Abstract. Explicit recurrent formulas for ordinary and alternated power mo-
ments of the squared binomial coe�cients are derived in this article. Every
such moment proves to be a linear combination of the previous ones via a
coe�cient list of the relevant Krawtchouk polynomial.

Introduction

In this article, we study the sums of form

µ(n)
r =

n∑

m=0

mr

(
n

m

)2

and ν(n)r =
n∑

m=0

(−1)mmr

(
n

m

)2

, n ≥ 0 (1)

and refer them as the r-th order (where r ≥ 0 and 00 = 1 by convention) ordinary
and alternating moments of the squared binomial coe�cients.

Such sums emerge very often in di�erent theoretical and applied mathemat-
ical areas, for example, see A000984, A002457, A037966, A126869, A100071, and
A294486 in Sloane's database OEIS of integer sequences.

Unfortunately, up to the date (February 2020) not many explicit and closed
formulas for these sums are known and moreover all such formulas are limited in
order by r ≤ 4, see [2], [3], [6], and A074334.

In the present article we prove two main theorems and their corollaries (in
the Sections 3 and 4), providing the explicit recurrent formulas for obtaining the
closed forms for the aforesaid moments of any order r ≥ 0. We also give some
examples of applications of these results.

1. Introduction

In this article, we study the sums of form

µ(n)
r =

n∑

m=0

mr

(
n

m

)2

and ν(n)r =
n∑

m=0

(−1)mmr

(
n

m

)2

, n ≥ 0 (2)
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and refer them as the r-th order (where r ≥ 0 and 00 = 1 by convention) ordinary
and alternating moments of the squared binomial coe�cients.

Such sums emerge very often in di�erent theoretical and applied mathemat-
ical areas, for example, see A000984, A002457, A037966, A126869, A100071, and
A294486 in Sloane's database OEIS of integer sequences.

Unfortunately, up to the date (February 2020) not many explicit and closed
formulas for these sums are known and moreover all such formulas are limited in
order by r ≤ 4, see [2], [3], [6], and A074334.

In the present article we prove two main theorems and their corollaries (in
the Sections 3 and 4), providing the explicit recurrent formulas for obtaining the
closed forms for the aforesaid moments of any order r ≥ 0. We also give some
examples of applications of these results.

2. Preliminaries

2.1. Hadamard transform, Krawtchouk polynomials and

McWilliams duality formula

In this section, we remind to the reader some de�nitions and results from algebraic
coding theory. The proofs of the claims can be found for example in [4].

For any integer n ≥ 1, let Fn2 be an n-dimensional vector space over the
binary �eld F2 = {0, 1} and let Vn be the 2n-dimensional Euclidean vector space
of all functions f : Fn2 → R equipped with the usual scalar product (f, g) =∑

v∈Fn
2
f(v)g(v)

Every additive character of the space Fn2 can be written in a form χu(v) =
χv(u) = (−1)v·u, where the dot product is de�ned as u · v =

∑n
i=1 uivi =

|u ∩ v|, where u and v are interpreted (in the obvious way) as subsets of indices
{, , ..., n} . Note that for the vector 1 = (1, 1, . . . , 1) ∈ Vn the scalar product
(v,1) = |v ∩ {, , ..., n}| is |v|, the Hamming weight of v.

It is a well-known fact that the full set of characters forms an orthogonal
basis in the space Vn for which

(χu, χv) = 2nδu,v = 2n

{
1 if u = v
0 if u 6= v

(3)

De�nition 1. For every function f ∈ Vn we de�ne the Hadamard transform as

f̂(u) = (f, χu) =
∑

v∈Vn

(−1)|v∩u|f(v). (4)

Note that (f̂ , ĝ) = 2n(f, g) and
̂̂
f = 2nf (unitary and involutory properties

of Hadamard transform).
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De�ne now for every 0 ≤ r ≤ n the r-th weight-function

ψr(v) =

{
1 if |v| = r
0 if |v| 6= r

and let H
(n)
r be the r-th Hamming sphere in Fn2 : H

(n)
r =

{v : ψr(v) = 1}.

De�nition 2. For any f ∈ Vn the (n + 1)-tuple of real numbers S(f) = (S0(f),

S1(f), . . . Sn(f)), where Sr(f) = (f, ψr) =
∑

v∈H(n)
r

f(v) is said to be the weight

spectrum of f while S(f̂) is referred as a dual weight spectrum of f .

Due to the unitary and involutory properties of the Hadamard transform one
has:

Sr(f̂) = (f̂ , ψr) = 2−n(
̂̂
f,
̂̂
ψr) = (f, ψ̂r). (5)

Functions ψ̂r(v) depend obviously only on |v| and this gives rise to the fol-
lowing de�nition:

De�nition 3. Function

ψ̂r(v) = ψ̂r(|v|) = K(n)
r (x) =

r∑

i=0

(−1)i
(
n− x
r − i

)(
x

i

)
(6)

where x = |v| is being called as the r-th Krawtchouk polynomial of order n; 0 ≤
r = degK

(n)
r ≤ n.

Now we can easily rewrite (5) to obtain the famous MacWilliams formula for

dual spectrae: Sr(f̂) =

n∑

i=0

K(n)
r (i)Si(f).

2.2. Auxiliary lemmata

We will use these results in the sequel, but they may have independent combina-
torial interest, as well.

Lemma 1. For any nonnegative integer d, d ≥ 1 let g(v) =
(
d
|v|
)
, where v ∈ Vn.

Then ĝ(u) = K
(n+d)
d (|u|), u ∈ Vn

Lemma 2. For every integer k, 0 ≤ k ≤ d the following identity is valid:

n∑

i=0

K
(n)
i (k)K

(n+d)
d (i) = 2n

(
d

k

)
. (7)

Corollary 1.

(−2)n
n∑

i=0

( i−1
2

n

)
K

(n)
i (k) =

(
n

k

)
. (8)
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Lemma 3.
n∑

m=0

(
n

m

)2

K
(n)
j (m) =

(
n

j

)
K(2n)
n (j) (9)

for every nonnegative integer j.

Remark 1. For j = 0 we get from (9) the classical identity

µ
(n)
0 =

n∑

m=0

(
n

m

)2

=

(
2n

n

)
. (10)

3. Recurrent formula for the moments µ
(n)
j and its applications

For a �xed nonnegative integer j let
(
κ
(n,j)
r

)
0≤r≤j

be a coe�cient list of the

polynomial K
(n)
j and let µµµ = (µs)s≥0 be an umbral variable with a rule µs �

µ
(n)
s , s ≥ 0.

Remark 2. Descriptions of umbral calculus can be found in many sources. We
recommend the reader to consult [8], for instance. A more developed and formalized
treatises are available at [5] and [7].

In this article, we need only the elementary notion of umbral variable as a
linear functional→ on C[[µ]] (the formal power series over µ) de�ned as→ (µs) =

µ
(n)
s , s ≥ 0.

Theorem 1.

K
(n)
j (µµµ) =

(
n

j

)
K(2n)
n (j). (11)

Corollary 2. (Recurrent formula for µ
(n)
j )

(−2)j
j!

µ
(n)
j =

(
n

j

)
K(2n)
n (j)−

j−1∑

r=0

κ(n,j)r µ(n)
r , j ≥ 1, µ

(n)
0 =

(
2n

n

)
. (12)

For example, for j = 6 one can consecutively applying Corollary 2 �nd

µ
(n)
6 =

n3
(
n6 + 3n5 − 13n4 − 15n3 + 30n2 + 8n− 2

)

8(2n− 1)(2n− 3)(2n− 5)

(
2n

n

)
.

4. Recurrent formula for the alternating moments ν
(n)
j and their

applications

The case of the alternated moments is in general similar to the previous one but is

more subtle: Let ννν = (νs)s≥0 be an umbral variable with a rule νs � ν
(n)
s , s ≥ 0.
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Theorem 2.

K
(n)
j (ννν) =

(
n

j

)
K(2n)
n (n− j). (13)

Corollary 3. (Recurrent formula for ν
(n)
j )

(−2)j
j!

ν
(n)
j =

(
n

j

)
K(2n)
n (n− j)−

j−1∑

r=0

κ(n,j)r ν(n)r , j ≥ 1, (14)

ν
(n)
0 =

{
(−1)n

2

(
n
n/2

)
if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2)
. (15)

For example, for j = 6, one can consecutively applying corollary 3 �nd:

ν
(n)
6 =

{
(−1)n+2

2
n3(n+1)(3n−1)

8

(
n
n/2

)
if n ≡ 0 (mod 2)

(−1)
n−1
2 n2(n+1)(n3+n2−9n+3)

8

(
n

(n+1)/2

)
if n ≡ 1 (mod 2)

. (16)
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Average number of solutions and mixed sym-

plectic volume

B. Kazarnovskii

Abstract. The famous Koushnirenko-Bernstein theorem, also known as the-
orem BKK, asserts that the number of solutions of a polynomial system is
equal to the mixed volume of Newton polyhedra of polynomials. This theorem
creates the interaction platform for algebraic and convex geometries, which
is useful in both directions. Here some statement is given that we view as a
smooth version of the BKK theorem.

Introduction

Let X be an n-dimensional manifold, V1, . . . , Vn be �nite dimensional vector sub-
spaces in C∞(X,R), and let V ∗i be their dual vector spaces. We consider the
systems of equations

f1 − a1 = . . . = fi − ai = . . . = fn − an = 0, (1)

fi ∈ Vi, fi 6= 0, ai ∈ R. Let Hi = {v∗ ∈ V ∗i | v∗(fi) = ai} be an a�ne hyperplane
in V ∗i , corresponding to equation fi − ai = 0, and H = (H1, . . . ,Hn) be a tuple
of hyperplanes, corresponding to system (1). For a measure Ξ on the set of tuples
(H1, . . . ,Hn), we de�ne the average number of solutions as an integral of a number
of zeroes of (1) with respect to Ξ.

We �x smooth Banach metrics in the spaces Vi. Further, we assume that
the unit balls of these metrics are smooth and strictly convex bodies. We use
these metrics for, �rstly, to construct the measure Ξ and, secondly, to construct
the Banach convex bodies Bi in X. Banach convex body or B-body in X is a
collection B = {B(x) ⊂ T ∗xX} of centrally symmetric convex bodies in the �bers
of the cotangent bundle of X. We de�ne the mixed symplectic volume of B-bodies
and prove that the average number of zeroes is equal to the mixed symplectic
volume of B-bodies B1, . . . ,Bn.
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Main theorems

We choose the measure Ξ on the space of systems (1) equal to a product of Crofton
measures in spaces V ∗i . Recall that a translation invariant measure on the Grass-
manian of a�ne hyperplanes in Banach space is called a Crofton measure, if a
measure of a set of hyperplanes, crossing any segment, equals to its length. Under
certain smoothness conditions there exists a unique such measure.

The symplectic volume of
⋃
x∈X B(x) ⊂ T ∗X we call the volume of Banach

body B = {B(x)}. Using Minkowski sum and homotheties, we consider linear
combinations of convex sets with non-negative coe�cients. The linear combination
of B-bodies is de�ned by (

∑
i λiBi)(x) =

∑
i λiBi(x). The volume of a linear

combination vol(λ1B1 + . . .+ λnBn) is a homogeneous polynomial of degree n in
λ1, . . . , λn.

De�nition 1. The coe�cient of polynomial vol(λ1B1+. . .+λnBn) at λ1 ·. . .·λn di-
vided by n! is called the mixed volume of B-bodies and is denoted by vol(B1, . . . ,Bn).

B-body corresponding to Banach space V of smooth functions on X appears as
follows. Let B ⊂ V be a unit Banach ball. De�ne the mapping θ : X → V ∗, as
θ(x) : f 7→ f(x). Let dxθ be a di�erential of θ at x ∈ X, and let d∗xθ : V → T ∗x be
an adjoint operator. So we get a Banach body B = {B(x) = d∗xθ(B)}.

Let U ⊂ X be an open set with compact closure. Denote byM(U) the average
number of solutions of (1) in U . Let Bi be a B-body in X, corresponding to the
space of functions Vi, and let BUi be a restriction of Bi to U .
Theorem 1.

M(U) =
n!

2n
vol(BU1 , . . . ,BUn ),

where vol(BU1 , . . . ,BUn ) is a mixed volume of B-bodies.

The proof of the theorem is based on the calculations in the ring of normal densities
constructed in [AK18].

However, the Crofton measure in Banach space is quite exotic. For example,
if the unit ball in Banach space is not a zonoid, then the Crofton measure is not
everywhere positive; see [SC06, K20]. Recall that the zonotope is a polyhedron,
represented as the Minkowski sum of segments, and the zonoid is a limit of a
sequence of zonotopes converging with respect to the Hausdor� metric. If the unit
ball of the Banach metric is a zonoid, then we call this metric a zonoid metric. All
ellipsoids are zonoids and, respectively, Euclidean metrics are zonoid metrics.

The non-positivity of the measure Ξ reduces the validity of the notion of
average number of solutions. For this reason, in order to avoid the non-positivity
of Crofton meaure, we consider the averaging process under the general families
of positive measures on the manifolds of a�ne hyperplanes.

Theorem 2. Let V be a �nite dimensional vector space, and let µ be a translation
invariant countably additive smooth positive measure on the manifold of a�ne
hyperplanes in V ∗. Then there is the unique Banach metric ‖ ‖µ in V , such that
µ is a Crofton measure of the dual Banach metric in V ∗.
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Therefore, applying Theorem 1 for metrics corresponding to an arbitrary
tuple of measures µ1, . . . , µn mentioned above, we obtain a version of the BKK
theorem for a general tuple of positive smooth measures.

Remarks

Remark 1. The metric ‖ ‖µ from Theorem 2 is a zonoid metric, and the corre-
sponding B-body is a family of zonoids.

Remark 2. The case of Euclidean metrics in the spaces Vi was previously consid-
ered; see [AK18, ZK14]. In this case, the Banach bodies are ellipsoid families.

Remark 3. From Nash embedding theorem it follows that any smooth collection of
ellipsoids in the �bers of T ∗X can be obtained as B-body, corresponding to some
Euclidean space of functions. If X is a compact manifold (may be with boundary),
then from the Banach analogue of Nash theorem proved in [BI94] it follows that
any collection {B(x) : x ∈ T ∗xX} of smooth strongly convex centrally symmetric
bodies B(x) is a B-body, corresponding to some Banach space of functions on X.

Remark 4. Let µ1, . . . , µn be smooth translation invariant (not necessarily positive)
measures on the manifolds of a�ne hyperplanes in V ∗1 , . . . , V

∗
n respectively. Then

the corresponding average number of solutions is equal to the mixed symplectic
volume of some uniquely de�ned virtual Banach zonoids. Note that an arbitrary
smooth centrally symmetric convex body is a virtual zonoid.
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Eigenvalues and eigenvectors for the composition
of Lorentz boosts in concise form

Mikhail Kharinov

Abstract. This paper considers the formal eigenvalue/eigenvector problem for
Lorentz transformation L in the real four-dimensional spacetime R4. Accord-
ing to the problem statement, it is required to find a quartet of linearly inde-
pendent eigenvectors for the composition L = L1L2 of the boosts L1 and L2.
To analytically find the eigenvalues, a fourth-degree polynomial characteristic
equation is obtained and solved. The a priori expected concise expressions for
the eigenvectors are presented.

Introduction
This work completes the phase of the study of general Lorentz transformations,
begun in [1] and continued in [2]. In [1], a special case of Lorentz boost composition
was not considered. In [2], the expression for the eigenvectors of the boost compo-
sition turned out to be too cumbersome. The latter disadvantage is overcome in
this paper.

The Lorentz transformations L are defined as a linear homogeneous transfor-
mation of the spacetime vectors u, v that preserves the real inner product (u, v̄)
of one conjugated vector v̄
textrmuiv2(v, i0) − v by another vector u:

(L{u}, L{v}) = (u, v̄),

where i0 is the unit vector of unit length
√

(i0, i0) ≡ 1 along the time axis.
For brevity, only one option of ±L{u} and ±L{ū} is treated.
The transformation L involves Lorentz boost L as self-adjoint transform i.e.

in an inner product L is transferred from one vector to another. So, for any u, v
(L{u}, v) = (u, L{v}).

The problem is to obtain the quartet of eigenvectors ck for the transformation
L1L2:

L1L2{ck} = ξkck ⇔ L2{ck} = ξkL−1
1 {ck}, (1)
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where ξk is the real eigenvalue and the eigenvector serial number k ranges from 0
to 3. For simpler calculations, it is better to treat the equation located in (1) on
the right.

General statements

To solve the equation (1), the easily provable general considerations are very useful.
They are as follows:

1. The desired quartet of eigenvectors is always exist.
2. If ξ is an eigenvalue, then 1

ξ is also an eigenvalue.
3. If an eigenvalue ξ is different from 1, then it corresponds to a lightwise eigen-

vector c having a zero pseudo–length: ξ ̸= 1 ⇒ (c, c̄) = 0.

From these statements it is easy to establish without paper calculations that
the quartet of eigenvalues consists of two units and a pair of mutually inverse
values: 1, 1, ξ and 1

ξ .
The characteristic equation for ξ is:

(ξ − 1)2(ξ2 − 2ξ cosh χ + 1) = 0, (2)

where the scalar parameter χ is defined in accordance with famous cosine rule:

cosh
χ

2
= cosh

θ1

2
cosh

θ2

2
+ (n1, n2) sinh

θ1

2
sinh

θ2

2
(3)

and the scalar parameters θ1 and θ2 are the rapidities, such that the velocities v1,
v2 divided by scalar speed of light c are expressed as v1/c = n1 tanh θ1, v2/c =
n2 tanh θ2.

Note that (3) refers to the half hyperbolic angles χ
2 , θ1

2 and θ2

2 , while the
famous velocity addition is expressed via whole hyperbolic angles θ, θ1 and θ2

[4, 3].
From the above and concomitant considerations, we can conclude that the

eigenvectors c0, c1, c2, c3 form a system of pseudo-orthogonal vectors, such that
(c0, c̄0) = (c0, c̄2) = (c0, c̄3) = (c1, c̄1) = (c1, c̄2) = (c1, c̄3) = (c2, c̄3) = 0.

Eigenvectors

The eigenvectors c0, c1, c2, c3 for the composition L1L2 of Lorentz boosts L1, L2

and the corresponding eigenvalues are listed in Table 1.
In Table 1 n1 and n2 are the unit spatial vectors along the considered inter-

secting velocities, such that (n1, n1) = (n2, n2) = 1 and (n1, i0) = (n2, i0) = 0. The
cross product [n1, n2] is directed along the Wigner rotational axis ν [5], so that
[n1, n2] = ν

√
1 − (n1, n2)2. The spatial part of the eigenvectors c0 and c1 depends
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Notation Eigenvector Eigenvalue
c0 i0 − d ξ=eχ eχ

c1 i0 − d ξ=e−χ e−χ

c2 i0 − n1
coth

θ1
2 +(n1,n2) coth

θ2
2

1−(n1,n2)2
+ n2

coth
θ2
2 +(n1,n2) coth

θ1
2

1−(n1,n2)2
1

c3 [n1, n2] 1
Table 1. Eigenvectors for the composition of Lorentz boosts L1L2

on the eigenvalue ξ and, up to the sign, coincides with the unit vector dξ that is
defined as a function of eigenvalue ξ in the form:

dξ =
n1

√
ξ sinh θ1

2 + n2 sinh θ2

2√
ξ cosh θ1

2 − cosh θ2

2

. (4)

The spatial parts d ξ=eχ and d ξ=e−χ of the eigenvectors c0 and c1 are obtained
by substituting into (4) the values ξ = eχ and ξ = e−χ, respectively.

Thus, in the context of the eigenvalue/eigenvector problem, the composition
of Lorentz boosts is as elementary as a single Lorentz boost. In both cases, the
solution boils down to stretching of one basis eigenvector and reverse decreasing
of the second basis eigenvector with the remaining basis eigenvectors unchanged.

A ready-made solution of the eigenvalue/eigenvector problem for the compo-
sition of any rotation with a boost, as well as the expressions for representing the
composition L1L2 of the boosts L1, L2 as a composition of the Wigner rotation
and boost is given in [1, 2].

Conclusion

The relations (2)–(4) seem perfectly concise and quite simple to be widely pre-
sented in reference books to all whom it may concern. But these are missing. The
only obstacle to obtaining the above formulae is cumbersome calculations as in [6].
Two things are important to overcome this obstacle. To simplify the formulae it is
useful, firstly, to use hyperbolic geometry, as prescribed in [3, 4], and secondly, to
carry out calculations in terms of quaternions [7].

This paper presents a solution to the eigenvalue/eigenvector problem in the
vein of [3, 4] in coordinate–free way using the conventional cross product of four-
dimensional vectors. In fact, the formulae (2)–(4) turned out to be easier to obtain
in terms of the quaternion algebra equipped with quaternionic multiplication [8].

It’s remarkable that a modern cross product of vectors is best defined in
quaternions and generalized to the case of three arguments [9]. A triple cross
product is especially convenient for describing Lorentz transformations, which are
represented by a linear combination of orthogonal transforms and are described
by triple products of variable vector and constant vector parameters [1, 2].
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Among normalized algebras with a multiplicative unit, quaternions expand
to octonions. In this case, a cross product of vectors is also generalized to the
eight-dimensional case [8, 9, 10, 11]. Along the way, a generalization of Lorentz
transformations to eight-dimensional spacetime is anticipated. Probably in the
future it will be extremely interesting to generalize the laws of motion from the
conditions of their invariance with respect to generalized Lorentz transformations.

The concise representation and description of the Lorentz transformations via
eigenvectors may be useful for researchers who will be engaged in the mentioned
generalization.
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Emergence of geometry in quantummechanics based
on finite groups

Vladimir V. Kornyak

Abstract. In the framework of constructive quantum mechanics, we consider
the emergence of geometry from entanglement in composite quantum systems.
We specify the most general structure of the symmetry group of a quantum
system with geometry. We show that the 2nd Rényi entanglement entropy may
be useful in applying polynomial computer algebra to model metric structures
in quantum systems with geometry.

1. Introduction

In [1, 2, 3] we proposed a constructive modification of quantum mechanics that
replaces the unitary group in a Hilbert space over the field C with the unitary
representation of a finite group in a Hilbert space over an abelian extension of
Q which is a dense subfield of R or C depending on the structure of the group.
T. Banks recently [4] analyzed this modification from the point of view of real
physics and cosmology and came to the conclusion that it “can probably be a
model of the world we observe.”

In short, constructive quantum mechanics boils down to the following. We
start with the set Ω = {e1, . . . , eN } ∼= {1, . . . ,N} of “types” of primary (“ontic”)
objects on which a permutation group G acts (T. Banks showed that it suffices
to assume that G = SN in order to “encompass finite dimensional approximations
to all known models of theoretical physics”). Let ni be the number of instances of
ontic objects of the ith type. Then the set of all objects can be described by the
vector

|n〉 = (n1, . . . , nN )
T
. (1)

These “ontic” vectors form the semimodule HΩ over the semiring of natural num-
bers N = {0, 1, 2, . . .}.

The action of G on Ω determines the permutation representation P(G) in
the semimodule HΩ. For g ∈ G, the matrix of the permutation representation has
the form P(g)i,j = δig,j . Using standard mathematical procedures, the semiring
N can be extended to a field F which is a splitting field for the group G. The
field F is a subfield of `th cyclotomic field, where ` is the exponent of the group
G. Depending on the structure of G, the field F is a dense subfield of either
R or C, i.e., F is physically indistinguishable from these continuous fields. The
extension of N to F induces the extension of the ontic semimodule HΩ to the
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Hilbert space HΩ. The inner product in this Hilbert space is a natural extension of
the standard inner product in the ontic semimodule: 〈m | n〉 =

∑N
i=1mini, where

|m〉 = (m1, . . . ,mN )
T and |n〉 = (n1, . . . , nN )

T are ontic vectors. The standard
inner product is invariant under the representation P(G))

Since F is a splitting field, we can decompose the Hilbert space HΩ into
irreducible subspaces that are invariant with respect to the representation P(G):

HΩ = H1⊕H2⊕ · · ·⊕HK .
This decomposition can be constructed algorithmically by calculating the complete
set of mutually orthogonal invariant projectors: B1, B2, . . . , BK .

1 An arbitrary
invariant subspace Hα ≤ HΩ is a direct sum of irreducible ones:

Hα = ⊕
k′∈α
Hk′ , α ⊆ {1, . . . ,K} .

Accordingly, the projection operator in Hα has the form Bα =
∑
k′∈α

Bk′ .

In any invariant subspace Hα, an independent quantum system can be con-
structed, since the results of both unitary evolutions and projective measurements
applied to any vector belonging to the subspace Hα will remain in this subspace.

The inner product for the projections |ϕ〉 = Bα |m〉 and |ψ〉 = Bα |n〉 of ontic
vectors takes the form 〈ϕ | ψ〉α = 〈m |Bα|n〉 . In terms of ontic vectors, a pure
state in the subspace Hα can be represented as the unit vector |ψ〉 = Bα|n〉√

〈n|Bα|n〉

or as the density matrix ρ = Bα|n〉〈n|Bα

〈n|Bα|n〉 . Operators of unitary evolution in the
subspace Hα have the form Uα,g = BαP(g) .

2. Symmetry Group of Composite Quantum System

The Hilbert space of an N -component quantum system has the form

H̃ = ⊗
x∈X
Hx . (2)

where X ∼= N = {1, . . . , N} . A Hilbert space that can be decomposed into a tensor
product of spaces of smaller dimensions is a special case of a general Hilbert space,
so it is natural to assume that structures like (2) arise as approximations. This is
consistent with the general “holistic” view that the partition of the system as a
whole into subsystems is always conditional and approximate.

We make the following assumptions:
• The set X of indices of “local” Hilbert spaces Hx has symmetries that form

the group G.
• The local Hilbert spaces are isomorphic, i.e., Hx ∼= H for any x ∈ X, where
H is a representative of the equivalence class of spaces Hx.

1We have developed and implemented an efficient algorithm for such calculations [5].
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• In the local space H, the unitary representation acts, which is a subrepre-
sentation of the permutation representation of the group F acting on the set
V ∼= M = {1, . . . ,M} , that is, the set V is the basis of the permutation
representation.

The set X can be interpreted as a “geometric space”, and the group G as a group of
“spatial” symmetries. The group F is interpreted as a group of “local” symmetries.

Based on the natural properties that a geometric space must have, we can
show that the group W̃ , which combines spatial and local symmetries, belongs to
an equivalence class of group extensions of the form

W̃

1 FX G 1

W̃ ′

��

��

Φ//

????

��

//
??

, (3)

where FX is a group of F -valued functions on the space X, and Φ : W̃ → W̃ ′ is a
group isomorphism that provides the commutativity of the diagram.

The set of elements of W̃ can be identified with the Cartesian product of
the sets FX and G, i.e., the elements of W̃ can be represented as pairs (f(x) , g),
where f(x) ∈ FX , g ∈ G. Explicit calculations lead to the following:
• The equivalence classes of extensions (3) are parameterized by antihomo-
morphisms of the space group, that is, by functions µ : G → G such that
µ(ab) = µ(b)µ(a) for any a, b ∈ G.
• An isomorphism of equivalent extensions has the form

Φ : (f(x) , g) 7→ (f(xϕ(g)) , g) ,

where ϕ : G→ G is an arbitrary function.
• The main group operations have the following explicit form:

v(x) (f(x) , g) = v(xµ(g)) f(xϕ(g)) , (4)

(f(x) , g) (f ′(x) , g′) =
(
f
(
xϕ(gg′)

−1
µ(g′)ϕ(g)

)
f ′
(
xϕ(gg′)

−1
ϕ(g′)

)
, gg′

)
, (5)

(f(x) , g)
−1

=

(
f
(
xϕ
(
g−1

)−1
µ(g)

−1
ϕ(g)

)−1

, g−1

)
, (6)

where (4) is the action of (f(x) , g) ∈ W̃ on the function v(x) ∈ V X ,
(5) is the group multiplication in W̃ , and (6) is the group inversion.

There are two universal (i.e., existing for any group, regardless of its specific prop-
erties) antihomomorphisms: µ(g) = 1 and µ(g) = g−1. The choice of µ(g) = 1

leads to the trivial extension, i.e., to the direct product W̃ ∼= FX ×G. The antiho-
momorphism (in fact, antiisomorphism) µ(g) = g−1 leads to a semidirect product
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of the groups FX and G, which is called the wreath product of the groups F and
G:

W̃ = F oG ∼= FX oG. (7)

As for the arbitrary function ϕ, we use two options in the implementation of our
algorithms : ϕ(g) = g−1 and ϕ(g) = 1. In these cases, expressions (4) – (6) for
group operations are more or less compact:

ϕ(g) = g−1 ϕ(g) = 1

v(x) (f(x) , g) = v
(
xg−1

)
f
(
xg−1

)
v
(
xg−1

)
f(x)

(f(x) , g) (f ′(x) , g′) = (f(x) f ′(xg) , gg′)
(
f
(
xg′−1

)
f ′(x) , gg′

)

(f(x) , g)
−1

=
(
f
(
xg−1

)−1
, g−1

) (
f(xg)

−1
, g−1

)

The unitary representations of the group (7) in the whole Hilbert space (2) de-
scribe the quantum properties of the system as a whole. To calculate invariant
projectors and decompose permutation representations of wreath products into
irreducible components, we developed an algorithm [6], whose C implementation
splits representations having dimensions and ranks up to 1016 and 109, respectively.

3. Emergence of Geometry From Entanglement

The natural idea is to determine the distances between points in the space X in
terms of quantum correlations: the greater the correlation, the less the distance.
Quantitatively, quantum correlations are described by measures of entanglement.
The problems of constructing metrics and topology in entangled quantum systems
are considered, in particular, in [7, 8, 9].

Denote by D
(
H̃
)
the set of all states (density matrices) in the Hilbert space

(2). The set of separable states DS

(
H̃
)
consists of states ρ ∈ D

(
H̃
)
that can be

represented as weighted sums of tensor products of states of components:

ρ =
∑

k

wk ⊗
x∈X

ρkx, wk ≥ 0,
∑

k

wk = 1, ρkx ∈ D(Hx) .

The set of entangled states DE

(
H̃
)
is defined as the complement of DS

(
H̃
)
in the

set of all states: DE

(
H̃
)

= D
(
H̃
)
\ DS

(
H̃
)
.

Let ρAB denote the density matrix for a composite quantum system consist-
ing of components A and B. The statistics of observations of subsystem A are
reproduced by the reduced density matrix ρA = trB (ρAB) , where the partial trace
trB over subsystem B is defined by the relation

trB (|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2| tr (|b1〉 〈b2|) ,
which must hold for any vectors |a1〉 , |a2〉 ∈ HA and |b1〉 , |b2〉 ∈ HB .
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The constructions considered below depend on “the quantum state of the
universe”

ρX ∈ H̃ . (8)
There are a variety of entanglement measures [10]. A typical measure of entangle-
ment for the pair of points {x, y} ⊆ X is the mutual information

I(x, y) = S(ρx) + S(ρy)− S(ρxy) , (9)

where ρx = trX\{x} ρX , ρy = trX\{y} ρX , and ρxy = trX\{x,y} ρX . The function
S(ρ) is called entanglement entropy. The entanglement entropy is usually defined
as the von Neumann entropy S(ρ) = − tr(ρ log ρ) , which is the quantum version
of the Shannon entropy

H(p1, . . . , pn) = −
n∑

k=1

pk log pk , (10)

where p1, . . . , pn is a probability distribution.
From a general point of view, entropy is a function on probability distri-

butions that satisfies some natural postulates. A. Rényi proved [11] that such
functions form the following family

Hq(p1, . . . , pn) =
1

1− q log

n∑

k=1

pqk , (11)

where q ≥ 0 and q 6= 1. The function Hq is called the Rényi entropy of order q.
The Shannon entropy (10) is a limiting case of (11): H ≡ H1 = lim

q→1
Hq. Note

that the Shannon entropy has better statistical properties compared to the Renyi
entropies with q 6= 1, for which, in particular, expression (9) can take negative
values. The entropy H2(p1, . . . , pn) = − log

∑n
k=1 p

2
k is called the collision entropy.

The quantum Rényi entropy is the quantum analogue of (11):

Sq(ρ) =
1

1− q log tr(ρq) .

We will use the 2nd quantum Rényi entropy (quantum collision entropy)

S2(ρ) = − log tr
(
ρ2
)

(12)

as the entanglement entropy for the following reasons.
Gleason’s theorem provides a one-to-one correspondence between probability

measures on subspaces of a Hilbert space and quantum states in this space. More
specifically, the most general expression for the Born probability has the form
P = tr(ρOρS) , where ρO and ρS are quantum states of the “observer” and the
“observed system”, respectively. Since the Born rule is the only fundamental source
of probability in quantum theory, it is natural to associate a single state ρ with
some Born probability. The probability P = tr

(
ρ2
)
– “the system observes itself”

– is such a choice, and its logarithm is precisely the 2nd Rényi entropy (12).
In models of emergent space, the geodesic distance between local quantum

subsystems is determined by a certain monotonic function of the entanglement
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measure [9]. Such a “scaling” function should, at least approximately, tend to zero
for maximally entangled pairs of local subsystems, tend to infinity for separable
pairs, and satisfy the usual distance properties, such as the triangle inequality, etc.
Using the 2nd Rényi entropy as the entanglement entropy, we can get rid of the
logarithms in computer algebra calculations by replacing the mutual information
(9) with the expression

P (x, y) = exp(−I(x, y)) =
tr
(
ρ2
xy

)

tr
(
ρ2
x

)
tr
(
ρ2
y

) . (13)

For a separable pair {x, y}, we have ρxy = ρx⊗ ρy and, therefore, P (x, y) = 1 .

For a maximally entangled pair P (x, y) = (dimH)
2
, where H is the local Hilbert

space. ρxy 6= ρx⊗ ρy implies P (x, y) 6= 1, so expression (13) can quantify the
quantum correlation between x and y. For the pure state (8), expression (13) is a
combination of polynomials in the coordinates of the ontic vector (1).
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Teleportation of the Bell states on IBM Q 5 York-

town quantum computer

Vladimir P. Gerdt and Ekaterina A. Kotkova

Abstract. In this talk, we present realization of a protocol of two-qubit state
teleportation on the 5-qubit quantum IBM quantum computer Yorktown and
compare its results with those obtained with the Maple-based simulator called
Feynman. We compare error rates for implementations on the IBM Q York-
town achieved in our previous studies to actual error rates for the same quan-
tum circuits and the circuits reduced after IBM Q Yorktown modi�cation.
Our experiments show the technical improvement of IBM quantum hardware
over the past year.

Noisy Intermediate-Scale Quantum (NISQ) technology is rapidly developing
over last years. The near-term quantum computers with 50-100 qubits are able
to perform tasks which surpass the capabilities of today's classical digital com-
puters. However, noisy qubits and quantum gates lead to limitation of the size of
quantum circuits that can be executed reliably. In the given talk we present our
results partially taken from [1] on implementation on the IBM Q 5 Yorktown quan-
tum computer (Fig. 1), and other 5-qubit computers accessible via the IBM cloud
(https://www.ibm.com/quantum-computing/technology/experience/), the proto-
col [2] of quantum teleportation of Bell (EPR) states. We adopt the original version
of this protocol to set of gates built-in IBM Q which includes one-qubit gate

U2(φ, λ) =

(
1√
2

− exp iλ√
2

exp iφ√
2

exp i(λ+φ)√
2

)
, ⊕ =

(
0 1
1 0

)
, λ, φ ∈ [0, 2π], H = U2(0, π),

the measurement gate and the 2-qubit control-⊕ (CNOT) gate (Fig. 2).
The Bell states are the maximally entangled 2-qubit states. They are created

in the lower left corner of the circuit if the input qubits q3 and q4 are in the classical
states

|q0〉 = |x〉 , |q1〉 = |y〉 −→ |βxy〉 =
1√
2
(|0, y〉+ (−1)x |1, 1− y〉) , x, y ∈ {0, 1}.

The bell states |βxy〉 are transported to the states of qubits q1 and q2. Then they
are measured in the classical basis on the output. The results of the measurement
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shown in Fig. 3. Because of the noise, the obtained probabilities are substantially
di�erent of the expected ones shown in Fig. 4. These expected probability values
were computed by using Feynman [3], the classical simulator written in Maple.
Since it does the related computations exactly, i.e. without noise, its output 2-qubit
state is exactly equal to the input Bell state.

Thus, for applicability of IBM quantum computers even to small (w.r.t. the
number of qubits needed) problems, one has to decrease the hardware errors.

Figure 1. Quantum computer IBM Q 5 Yorktown

Figure 2. Quantum circuit
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a) b)

c) d)

Figure 3. Results of teleportation of the Bell states on the IBM
Q Yorktown with readout in the classical basis. a) state |β00〉, b)
state |β01〉, c) state |β10〉, d) state |β11〉.
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Figure 4. Classical simulation with Feynman
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Tropical algebra solution of a project scheduling
problem

N. Krivulin and M. Petrakov

Introduction
Time-constrained project scheduling problems constitute an integral part of project
management. These problems are to find an optimal schedule for a project that
consists of a set of activities operating in parallel under various temporal con-
straints, including start-start, start-finish, finish-start, release time, deadline, due-
dates and other constraints. As optimization criteria to minimize, one can take
the project makespan, the maximum deviation from due dates, the maximum
flow-time, the maximum deviation of start or finish times [1, 2].

Many time-constrained scheduling problems can be formulated as linear, inte-
ger, or mixed-integer linear programs, graph and network optimization problems,
and then solved using appropriate computational algorithms. This approach usu-
ally allows one to obtain a numerical solution of the problem, but cannot provide
a complete analytical solution in an explicit form.

In this paper, we consider a project, in which activities are performed under
temporal constraints in the form of start-start precedence relationships, release
start and release end times. The scheduling problem of interest is to find the
start times of activities to provide the minimum deviation of start times. Such an
optimality criterion can arise when the schedule has to provide a common start
time for all activities in the project.

We represent the problem in terms of tropical mathematics, which deals with
the theory and applications of algebraic systems with idempotent operations [3,
4, 5]. To solve the project scheduling problem, we apply methods and results of
tropical optimization [6, 7, 8], and then obtain a new complete solution, which
provides the result in an explicit analytical form, ready for further analysis and
numerical implementation.

This work was supported in part by the Russian Foundation for Basic Research, Grant No.
20-010-00145.
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1. A time-constrained project scheduling problem

Consider a project that consists of n activities operating under start-start, release
start and release end temporal constraints. For each activities i = 1, . . . , n we
denote the start time by xi. Let gi and hi be release start and release end times,
which specify the earliest and latest allowed time for activity i to start. Let bij be
the minimum allowed time lag between the start of activity i and the start of j.

Suppose that the optimal schedule has to minimize the maximum deviation
of start times xi over all activities i. The project scheduling problem is formulated
as follows: given the parameters gi, hi and bij , find the start times xi for all
i = 1, . . . , n to solve the minimization problem

max
1≤i≤n

xi + max
1≤i≤n

(−xi)→ min,

max
1≤j≤n

(xj + bij) ≤ xi,

gi ≤ xi ≤ hi, i = 1, . . . , n.

(1)

2. Elements of tropical algebra

Let X be a set endowed with two associative and commutative operations: ⊕
(addition) and ⊗ (multiplication ), and equipped with additive and multiplicative
neutral elements: O (zero) and 1 (unit). Addition is idempotent, which yields
x⊕x = x for each x ∈ X. Multiplication distributes over addition and is invertible
to provide each nonzero x ∈ X with its inverse x−1 such that x−1 ⊗ x = 1. The
algebraic structure (X,O,1,⊕,⊗) is normally called the idempotent semifield.

Let Xm×n be the set of matrices consisting of m rows and n columns with
elements from X. Matrix addition and multiplication and multiplication by scalars
are performed according to the usual rules with replacement of arithmetic addition
and multiplication by the operations ⊕ and ⊗.

Consider the set Xn×n of square matrices of order n. A matrix with 1 on the
diagonal and O elsewhere is the identity matrix denoted I. The power notation with
nonnegative integer exponents serves to represent iterated products of matrices as
follows: A0 = I and Ap = Ap−1A for any matrix A and integer p > 0.

The trace of a matrix A = (aij) is calculated as trA = a11 ⊕ · · · ⊕ ann.
Furthermore, we introduce the function

Tr(A) = trA⊕ · · · ⊕ trAn.

If Tr(A) ≤ 1, we define a matrix, which is usually called the Kleene star
matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Let Xn denote the set of column vectors of dimension n. A vector containing
all elements as 0 is the zero vector. A vector without zero components is called
regular. A vector with all elements equal to 1 is denoted by 1 = (1, . . . ,1)T .

87

89



Tropical algebra solution of a project scheduling problem

For any nonzero vector x = (xi) ∈ Xn, its multiplicative conjugate transpose
is the row vector x− = (x−i ), where x

−
i = x−1

i if x−i > O, and x−i = O otherwise.
An example of the idempotent semifield under consideration is the real semi-

field Rmax,+ = (R ∪ {−∞},max,+,−∞, 0), in which the addition ⊕ is defined as
maximum, and the multiplication ⊗ is as ordinary addition, with the zero O given
by −∞, and the identity 1 by 0. Each number x ∈ R has the inverse x−1 equal to
the opposite number −x in the conventional notation. For all x, y ∈ R, the power
xy is well-defined and coincides with the arithmetic product xy.

In the algebraic expressions below, the multiplication sign ⊗ is omitted to
save writing: x⊗ y = xy.

3. Representation and solution of project scheduling problem
Consider problem (1) and represent it in terms of the semifield Rmax,+. The con-
straints in the problem take the form

n⊕

j=1

bijxj ≤ xi, gi ≤ xi ≤ hi, i = 1, . . . , n.

Next, we introduce the matrix-vector notation B = (bij), g = (gi) and h =
(hi) to represent the constraints in the vector form

Bx ≤ x,

g ≤ x ≤ h,

and note that the inequalities Bx ≤ x and g ≤ x are equivalent to the inequality
Bx⊕ g ≤ x.

In terms of the semifield Rmax,+, the objective function becomes
⊕

1≤i≤n
xi
⊕

1≤j≤n
x−1
j = 1Txx−1 = x−11Tx.

By combining the objective function with constraints, we obtain the tropical
optimization problem

x−11Tx→ min,

Bx⊕ g ≤ x,

x ≤ h.

(2)

The following result offers a complete solution to the problem.

Theorem 1. Let B be a matrix, g be a vector, and h be a regular vector such that
Tr(B)⊕ h−B∗g ≤ 1. Then the minimum in problem (2) is equal to

θ =
n−1⊕

i=0

1TBi(I ⊕ gh−)(I ⊕B)n−1−i1, (3)
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and all regular solutions are given by

x = (θ−111T ⊕B)∗u, g ≤ u ≤ (h−(θ−111T ⊕B)∗)−. (4)

If Tr(B)⊕ h−B∗g > 1, then there are no regular solutions.

4. A numerical example
Let us examine a project that involves n = 4 activities under constraints given by
the matrix and the vectors

B =




0 2 3 1
O 0 6 7
O O 0 3
O O O 0


 , g =




1
2
3
4


 , h =




20
15
10
10


 .

We start with the verification of existence conditions for regular solutions in
Theorem 2. We obtain

B∗ =




0 2 8 11
O 0 6 9
O O 0 3
O O O 0


 , h−B∗g = −2, TrB = 0.

Since TrB ⊕ h−B∗g = 0, the problem has regular solutions. As the next
step, we find the minimum value θ by application of (3). We have

θ = 11.

To describe the solution set defined by (4), we obtain

(θ−111T ⊕B)∗ =




0 2 8 11
−2 0 6 9
−8 −6 0 3
−11 −9 −3 0


 , (h−(θ−111T ⊕B)∗)− =




17
15
9
6


 .

With (4), all solutions x to the problem are given by

x =




0 2 8 11
−2 0 6 9
−8 −6 0 3
−11 −9 −3 0


u,




1
2
3
4


 ≤ u ≤




17
15
9
6


 .
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Surface electromagnetic waves

Oleg Bikeev, Oleg Kroytor and Mikhail Malykh

Abstract. In the report we discuss surface electromagnetic waves propagating
along the boundary of isotropic and anisotropic media. We show how these
waves can be investigated in CAS Sage.

In the 1980s, surface waves were discovered that propagate along the interface
between two dielectrics without loss [1, 2]. In [3, 4] the �rst analytical expressions
were obtained manually for solutions that are waves propagating along the inter-
face of an anisotropic medium with permittivity

ε = diag(εo, εo, εe).

and isotropic medium with constant permittivity ε.
For de�niteness, let the plane x = 0 serve as the interface. The �eld in the

anisotropic medium (x < 0) is sought in the form

~E =
(
ao ~Eoe

pox + ae ~Eee
pex
)
eikyy+ikzz−iωt,

~H =
(
ao ~Hoe

pox + ae ~Hee
pex
)
eikyy+ikzz−iωt.

Here ω is the circular frequency of the wave, k0 = ω/c is the wave number,
~k⊥ = (0, ky, kz) is its wave vector, ao, ae is the amplitude of two partial waves,
and positive numbers po, pe characterize the rate of wave decay in the anisotropic
medium. Maxwell's equations give

p2o = k2y + k2z − εok
2
0

p2e = k2y +
εe
εo
k2z − εek

2
0

and for the vectors ~Eo, . . . , ~He, explicit expressions are obtained, which we will
not present here.

For the isotropic medium (x > 0) the �eld is described by similar formulas

~E =
(
bo ~E

′
o + be ~E

′
e

)
e−pxeikyy+ikzz−iωt,

~H =
(
bo ~H

′
o + be ~H

′
e

)
e−pxeikyy+ikzz−iωt,
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but now the constant p, which characterizes the decrease in the �eld in the isotropic
medium, turns out to be the same:

p2 = k2y + k2z − εk20.

The conditions for matching electromagnetic �elds at the interface lead to a system
of homogeneous linear equations for the amplitudes ao, ae, bo, be. The condition of
zero determinant of this system gives the equation
(
(k2z − εk20)po + (k2z − εok

2
0)p
) (

(k2z − εk20)εope + (k2z − εok
2
0)εp

)
= (εo − ε)2k2yk

2
zk

2
0

(1)

Thus, we manage to reduce the study of the existence of surface waves to a
purely algebraic problem: if in the domain of variation of �ve variables kykzpopep,
in the region speci�ed by the inequalities

po > 0, pe > 0, p > 0,

the system of algebraic equations




p2o = k2y + k2z − εok
2
0

p2e = k2y +
εe
εo
k2z − εek

2
0

p2 = k2y + k2z − εk20

together with Eq. (1) has a solution, then this solution corresponds to a �eld satis-
fying Maxwell's equations, matching conditions at the interface, and exponentially
decreasing with distance from the interface.

It is possible to eliminate k0 from this system by assuming

p = k0q, po = k0qo, pe = k0qe

and

ky = k0β, kz = k0γ.

Then the system of equations is written in the form




q2o = β2 + γ2 − εo

q2e = β2 +
εe
εo
γ2 − εe

q2 = β2 + γ2 − ε
(
(γ2 − ε)qo + (γ2 − εo)q

) (
(γ2 − ε)εoqe + (γ2 − εo)εq

)
= (εo − ε)2β2γ2.

(2)

This system de�nes a curve in the space βγqqoqe and we are interested to know
whether this curve falls within the region

q > 0, qo > 0, qe > 0.

The following observation allowed us to move forward: this curve can be
described relatively simply if we consider its projection not on the β, γ plane,
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which we tried to do �rst of all, but on the qoqe plane. It turned out that the curve
has genus zero and all variables are expressed in radicals through the value

t = qe/qo.

The talk will be devoted to the study of this curve in the Sage computer algebra
system.

We believe that the use of computer algebra methods will make it possible
to investigate the essentially algebraic question of the existence of surface waves
as completely as it deserves due to its obvious applied signi�cance [4].
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On the calculation of a generalized inverse matrix

in a domain

Gennadi Malaschonok and Ihor Tchaikovsky

Abstract. We examined the well-known algorithms for calculating the gen-
eralized inverse matrix and proposed another algorithm that avoids the ac-
cumulation of errors when rounding numbers. Therefore, it is attractive for
large matrices.

Introduction

The Moore-Penrose generalized inverse matrix [1]-[3] has many applications in
physics, computer science and other �elds.

the matrix A+ is called the generalized inverse of the matrix A if the following
4 equalities hold:

A+ = A+AA+, A = AA+A, (A+A)T = A+A, (AA+)T = AA+. (1)

Let a matrix A ∈ Fn×m be decomposed as follows: A = B · C, B ∈ Fn×k,
C ∈ F k×m, rank(A) = rank(B) = rank(C). It is easy to check that matrix

A+ = CT (CCT )−1(BTB)−1BT , (2)

is the generalized inverse matrix for the matrix A. In the case of complex numbers
we have to use in (1) and (2) the operation of conjugation:A+ = C∗(CC∗)−1(B∗B)−1B∗.

There are many possibilities to obtain the decomposition (2,). For example,
you can used the QR decomposition or LU decomposition. This idea was �rst
expressed by Vera Kublanovskaya in 1965 [4].

1. SVD algorithm

We can evaluate the complexity of Kublanovskaya algorithm. In total, 5 matrix
multiplications, two matrix inversions, and one more decomposition are required.
The total number of operations does not exceed ∼ 8max(n,m)3.
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Unfortunately, classical Gaussian inversion and LU decomposition are not
numerically stable for large matrices due to the accumulation of rounding errors.

Today the most popular known computational method used singular value
decomposition. This method consists of two stages. In the �rst stage, due to the
Householder re�ections (or Givens rotations)[5-7], an initial matrix is reduced to
the upper bidiagonal form (the Golub-Kahan bidiagonalization algorithm).

The second stage is known as the Golub-Reinsch algorithm [8]. This is an
iterative procedure which with the help of the Givens rotations generates a se-
quence of bidiagonal matrices converging to a diagonal form. This allows to obtain
an iterative approximation to the singular value decomposition of the bidiagonal
matrix.

In the paper [9] was presented a new �nite recursive numerical algorithm
for obtaining explicit rational expressions for the generalized inverse of bidigonal
matrix. This rational algorithm has less number of operations. But the problem of
stability is the main problem here.

2. New approach

We propose a di�erent approach for calculating the generalized inverse matrix.
It guarantees the stability of rational computing. Our approach is based on LDU
matrix decomposition [10],[11]. As in the LU decomposition, we can use equality
(2). The main di�erence is that at each step we operate with some elements of
the commutative ring, which are the minors of the original matrix. Therefore, all
operations are performed accurately.

Moreover, we can refuse to use the expression (2) if we use the algorithm [11],
which, in addition to the factors L, D, U , calculates their inverse matrices M and
W : We denote by D the weighted truncated permutation matrix. The truncated
permutation matrix E can be obtain from the matrix D by replacing each non-sero
element by unit element. ID - is a diagonal matrix with unit elements which stand
at the non-zero rows of matrix D. JD - is a diagonal matrix with unit elements
which stand at the non-zero columns of matrix D. The generalized inverse matrix
D+ can be obtain by transposition of matrix D and inverse each of the non-zero
element of DT . Each of these matrices has rank the same as matrix A. We denote
by the signˆthe full rank matrices which obtained by replacing zero block by unit
block. So we can write the equalities: IDD̂ = D, DJD = D and like these.

With these denotes we can write generalized inverse of matrix A as follows:

A+ = U−1D+L−1 = WÊT D̂D+D̂ÊTM = WÊTDÊTM

AA+A = LDD+DU = A,

A+AA+ = WÊT D̂D+DD+D̂ÊTM = A+

AA+ = LDD+L−1 = LTDL
−1 = ID - is a diagonal matrix with unit elements

which stand at the non-zero rows of matrix D.
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A+A = U−1D+DU = U−1JDU = JD - is a diagonal matrix with unit
elements which stand at the non-zero columns of matrix D.

Everybody can use Math Partner cloud mathematical service [12],[13]. This
is a program, which can demonstrate our algorithm :

SPACE = Z[];A = [[2, 3], [4, 6]];R = \LDUWK(A); f = \elementOf(R);

W = f_{4};D = f_{2};M = f_{6};GI = W ∗D ∗M ;Ch = A ∗GI ∗A;

Matrix GI is the generalise inverse matrix for A and matrix Ch must be equals A.

3. Algorithm of dichotomious LDU decomposition

This is a short dexcription of dichotomious block-recursive algorithm in commu-
tative domain:

(L,D,U,M,W, ÎD, ĴD, det) = LDU(A,α).

Let matrix A has size n×n, n = 2p. If n=1 then if(A=0) return (1, 0, 1, 1, 1, 1, 1, α)
else return (A,A−1, A, α, α,A−1, A−1, A).

For the case n ≥ 2 we can get 4 equal blocks of matrix: A =

(
A11 A12

A21 A22

)
,

Let us compute decomposition of the block A11:

(L11, , D11U11,M11,W11, ÎD11, ĴD11, det11) = LDU(A11, α),

then compute the blocks A′′12, A
′′
21 and obtain their decomposition

A′′12 = Ī11M11A12, A
′′
21 = A21W11J̄11,

(L12, , D12, U12,M12,W12, ÎD12, ĴD12, det12) = LDU(A′′12, det11)

(L21, , D21, U21,M21,W21, ÎD21, ĴD21, det21) = LDU(A′′21, det11)

A′22 = A22 − α−2A21W11E11(Ī11 + ÎD11M11)A12

αs = det12det21/det11, A
′′′
22 = αsĪ21M21A

′
22W12J̄12

And now we calculate the decomposition of the block A′′′22:

(L22, , D22U22,M22,W22, ÎD22, ĴD22, det22) = LDU(A′′′22, αs)

Then L =

(
L11L12 0
L3 L21L22

)
,D =

(
D11 D12

D21 D22

)
, U =

(
U21U11 U2

0 U22U12

)
,

with L3 = A21W11I11 +A22W12I12 and U2 = J21M21A22 + J11M11A12,

ÎD =

(
ÎD12ÎD11 0

0 ÎD22ÎD21

)
,M =

(
M12M11 0
M3 M22M21

)

W =

(
W11W21 W2

0 W12W22

)
, ĴD =

(
ĴD11ĴD21 0

0 ĴD12ĴD22

)

With W2 = −(W21JD21M21A
′
22 +W11JD11M11A12)W12W22

and M3 = −M22M21(A21W11ÎD11M11 +A′22W12ÎD12M12).
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Dynamic systems with quadratic integrals

Ali Baddour, Mikhail Malykh, Leonid Sevastianov and Yu Ying

Abstract. In the report we discuss the problems of constructing difference
schemes that mimic the properties of dynamic systems. We show how these
problems can be solved in systems with quadratic integrals and how a many-
body problem can be reduced to such systems.

One of the most widespread mathematical models is a dynamic system de-
scribed by an autonomous system of ordinary differential equations, i.e., the system
of the form

dxi
dt

= fi(x1, . . . , xn), i = 1, 2, . . . n, (1)

where t is an independent variable, commonly interpreted as time, and the vari-
ables x1, . . . , xn depending on it as coordinates of a point of several points. In
applications the sight-hand sides fi are often rational or algebraic functions of the
coordinates x1, . . . , xn or can be reduced to such form using a certain change of
variables. As a rule, from physical reasons a few integrals of motion are known,
but they are not sufficient to reduce the system of differential equations to Abel
quadratures.

For example, the classical problem of n bodies [1] consists in finding solutions
to the autonomous system of ordinary differential equations

mi~̈ri =

n∑

j=1

γ
mimj

r3ij
(~rj − ~ri) , i = 1, . . . , n (2)

Here ~ri is the radius vector of the i-th body and rij is the distance between the
i-th and j-th body. This dynamic system is a Hamiltonian system of the order
2 · 3 · n. For reducing it to quadratures using the Liouville method it is necessary
to find 3 ·n algebraic integrals of motion in involution [2]. At the time of Liouville,
only ten independent algebraic integrals of the many-body problem were known,
which were called classical. In the 1880s, Bruns proved that every other algebraic
integral of this problem is expressed in terms of these ten [2, 3]. This means that the
many-body problem cannot be reduced to quadratures by the Liouville method.
The question of whether it can be reduced to Abelian quadratures in another way
was formulated by Bruns himself and resolved negatively [3, n. 23].
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Classical explicit difference schemes, including explicit Runge-Kutta schemes,
do not preserve these integrals. However, among implicit difference schemes there
are schemes that preserve some classes of integrals of motion. The most studied are
symplectic Runge-Kutta schemes that preserve all quadratic integrals of motion.
For example, for a linear oscillator or a system of several coupled oscillators, these
schemes allow organizing the calculation of the approximate solution in such a way
that all the integrals of this system are preserved. In this case, the approximate
solution mimics the periodicity of the exact solution, for example, you can choose
a time step so that the approximate solution is a periodic sequence [4].

The construction of such mimetic schemes in the case of nonlinear dynamical
systems is complicated by the appearance of non-quadratic integrals. For example,
in the classical many-body problem by the Bruns theorem, there are 10 indepen-
dent algebraic integrals, of which 9 are quadratic and therefore are preserved using
any symplectic scheme. The first finite-difference scheme for the many-body prob-
lem, preserving all classical integrals of motion, was proposed in 1992 by Greenspan
[5, 6] and independently in somewhat different form by J.C. Simo and O. González
[7, 8]. The Greespan scheme is a kind of combination of the midpoint method and
discrete gradient method.

In other site the standard symplectic schemes will preserve all integrals if
we introduce the new variables such a way that all classical integrals are qua-
dratic with respect of new variables. This approach is close to the invariant energy
quadratization method (IEQ method) which was first proposed by Yang et al. [9]
and used by Hong Zhang et al. [10] to conserve the energy at discretization of
Hamiltonian systems including Kepler two-body problem. We applicate the same
idea in many body problem.

First of all, we get rid of irrationality by introducing new variables rij , related
to the coordinates by the equation

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = 0

Then we eliminate the denominators in the energy integral by introducing new
variables ρij , related to the already introduced ones by the equations

rijρij = 1.

Note that this relation is quadratic again, so that after introducing additional
variables this relation will turn into an additional quadratic integral.

For the sake of brevity let us denote the velocity components of the i-th
body as ẋi = ui, ẏi = vi, and żi = w and combine them into vector ~vi. From the
many-body problem we pass to a system that consists of three coupled subsystems,
namely, the system for coordinates

~̇ri = ~vi, i = 1, . . . , n (3)

the system for velocities

mi~̇vi =

n∑

j=1

γ
mimjρij
r2ij

(~rj − ~ri) , i = 1, . . . , n (4)
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the system for distances

ṙij =
1

rij
(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j. (5)

and the system for inverse distances

ρ̇ij = −
ρij
r2ij

(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j. (6)

This system possesses 10 classical integrals of the many-body problem and addi-
tional integrals

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = const, i 6= j (7)

and
rijρij = const, i 6= j. (8)

The autonomous system of differential equations (3)-(6), involving n(n− 1) addi-
tional variables rij and ρij , has the following properties:
1. this system has quadratic integrals of motion (7) and (8), that allow express-

ing the additional variables rij and ρij in terms of the coordinates of the
bodies,

2. if the constants in these integrals are chosen such that

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = 0 and rijρij = 1,

the solutions of the new system coincide with the solutions of the original
one,

3. the new system has quadratic integrals of motion, which, with the relation
between the additional variables and the coordinates of the bodies taken into
account, turn into 10 classical integrals of the many-body problem.
Since all the classical integrals of the many-body problem, as well as the

additional integrals in the new variables are quadratic, any symplectic Runge-
Kutta difference scheme, including the simplest of them, the midpoint scheme,
preserves all these integrals for sure.

Moreover, the autonomous system of differential equations (3)-(6) preserves
the symmetry of the original problem with respect to permutations of bodies and
time reversal, as, for example, the midpoint scheme.

At each step of the midpoint scheme, new values will be determined not only
for the coordinates and velocities of the bodies, but also for auxiliary quantities
rij and ρij . If at the initial moment of time only the coordinates and velocities
were specified, and the auxiliary variables were defined by equalities

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, ρij =
1

rij
,

then these equalities are preserved exactly (maybe up to the radical’s signs) due
to the fact that the auxiliary integrals (7) and (8) are quadratic and are preserved
exactly when using the midpoint scheme; therefore, the quantities rij and ρij do
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not lose their original meaning of the distances between the bodies and the inverse
distances between the bodies.

Therefore, the midpoint scheme written for the system (3) - (6) preserves all
its algebraic integrals exactly and is invariant under permutations of bodies and
time reversal.

The report will present the results of numerical experiments with a midpoint
scheme with an emphasis on its mimetic character, see also [11].

It should also be emphasized that the many-body problem has been reduced
to the problem, all of whose integrals are quadratic. Another classical mechanical
problem, the gyroscope rotation problem, has the same properties. The same prob-
lems arise when introducing classical transcendental functions elliptic and Abelian.
Therefore, we intend to investigate in more detail dynamical systems with qua-
dratic integrals.
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Growth in groups and the number of curves
and knots

Andrei Malyutin

Abstract. We use results of Vershik, Nechaev, and Bikbov on growth of
random heaps to improve known lower bounds on the rate of growth of the
number of knots with respect to the crossing number.

We study the structure and statistical characteristics of the set of classical
knots (see [M15, M18, M18b, M19, BM19] and references therein). A particular
point of this study is the growth rate of the number of knots with respect to
various complexity measures on the set of knots. Historically, the crossing num-
ber is considered as the most natural knot complexity measure. The growth rate
of the number of knots with respect to the crossing number is studied in par-
ticular in [ES87, W92, STh98, Th98, St04, Ch18]. Being applied to the sequence
(K1,K2,K3, ...), where Kn denote the number of knots of n crossings,

results of [ES87] imply that1

2.13... ≤ lim inf
n→∞

n
√
Kn;

results of [W92] imply that

lim sup
n→∞

n
√
Kn ≤ 13.5;

results of [STh98] imply that

lim sup
n→∞

n
√
Kn ≤ 101 +

√
21001

20
= 12.29...;

The research was partially supported by the Foundation for the Advancement of Theoretical
Physics and Mathematics “BASIS” and by RFBR according to the research project n. 20-01-
00070.
1The lower bound 2.68 ≤ lim infn→∞ n

√
Kn given in [W92] as an interpretation of results ob-

tained in [ES87] seems to be a typo.
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and results of [St04] imply that

lim sup
n→∞

n
√
Kn ≤ 91 +

√
13681

20
= 10.39...

Thus, the record asymptotic estimates, presented in the literature, for the
growth rate of Kn are

2.13... ≤ lim inf
n→∞

n
√
Kn ≤ lim sup

n→∞
n
√
Kn ≤ 10.39...

For some reasons explained in [M18] it would be useful to find bounds a and
b such that

a ≤ lim inf
n→∞

n
√
Kn ≤ lim sup

n→∞
n
√
Kn ≤ b

and
a3 > b2.

It turns out that a new lower bound

4 ≤ lim inf
n→∞

n
√
Kn

is implied by the results of [V00, VNB00] on the growth rate of locally free semi-
groups (heaps). To obtain this bound, we construct embeddings of locally free
semigroups into the set of knots. Furthermore, passing to more complex semi-
groups with weighted elements, we show that

4.45 ≤ lim inf
n→∞

n
√
Kn.

Moreover, we have the same lower bound for the case of alternating prime
knots.
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Visualization uniform discrete subgroup of the SO(3)
group

Mityushov E. and Misyura N.

Abstract. The problem of generating uniform deterministic samples on a ro-

tation group SO(3) is fundamental for many �elds, such as computational

structural biology, robotics, computer graphics, astrophysics. In this paper,

we propose a method for constructing uniform discrete subgroups of a group

SO(3) using the coordination of vertices of regular four-dimensional polyhe-

dra. In particular, an algorithm for �nding a uniform distribution of 60 points

in a ball of radius π identi�ed with elements uniform discrete subgroup of a

group SO(3) is presented.

1. Equations

As is known, the group of unit quaternions Sp(1) covers the rotation group SO(3)
in two sheets. Each quaternion q = [q0, q1, q2, q3] ∈ Sp(1) corresponds to a point
on the sphere S3 ⊂ R4 :

q2
0 + q2

1 + q2
2 + q2

3 = 1.

Since the same element of the group SO(3) corresponds to quaternions q and −q,
discarding the diametrically opposite points of the sphere S3, we can �nd the
coordinates of all elements of the group SO(3).

The obtaining uniform discrete subgroup of a group Sp(1) is proved by the
existence of �ve centrosymmetric regular four-dimensional polyhedra inscribed in
the unit hypersphere S3 ⊂ R4. These polyhedra are (the number of vertices is
indicated in parentheses): tesseract (16), 16 - cell (8), 24 � cell (24), 120 - cell
(600), 600 - cell (120).

The Cartesian coordinates of the vertices of regular polyhedra in are deter-
mined by the following groups of permutations:

Tesseract

The coordinates of its 16 peaks are all sorts of permutations (± 1
2 ;± 1

2 ;± 1
2 ;± 1

2 ).
16 - cell
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The coordinates of its 8 peaks are all sorts of permutations (±1, 0, 0, 0).

24 - cell

The coordinates of its 8 peaks are all sorts of permutations (±1, 0, 0, 0).

The coordinates of the 16 peaks are all sorts of permutations (± 1
2 ;± 1

2 ;± 1
2 ;± 1

2 ).

120 - cell

The coordinates of 24 of its vertices are all sorts of permutations The coor-
dinates of the 16 peaks are all sorts of permutations (0; 0± 1√

2
;± 1√

2
)

The coordinates of 64 vertices are all sorts of permutations (± 1√
8
;± 1√

8
;± 1√

8
;±
√

5
8 )

The coordinates of 64 vertices are all sorts of (±Φ−2
√

8
;± Φ√

8
;± Φ√

8
;± Φ√

8
), where

Φ = 1+
√

5
2 is the ratio of the golden section.

The coordinates of 64 vertices are all sorts of permutations (±Φ−1
√

8
;±Φ−1

√
8

;±Φ−1
√

8
;±Φ−2

√
8

).

The coordinates of 96 vertices are all sorts of even permutations (0;±Φ−2
√

8
; 1√

8
;±Φ2

√
8
).

The coordinates of 96 vertices are all sorts of even permutations (0;±Φ−1
√

8
; Φ√

8
;±
√

5
8 ).

The coordinates of the remaining 192 peaks - all sorts of clear permutations

(±Φ−1
√

8
;± 1√

8
;± Φ√

8
;± 1√

2
).

600 - cell

The coordinates of its 8 peaks are all sorts of permutations (±1, 0, 0, 0).

The coordinates of the 16 peaks are all sorts of permutations (± 1
2 ;± 1

2 ;± 1
2 ;± 1

2 ).

The coordinates of the remaining 96 vertices are all sorts of even regular

polyhedra permutations (±Φ
2 ;± 1

2 ;±Φ−1

2 ; 0).

By discarding diametrically opposite vertices, we �nd that four-dimensional
regular polyhedra generate �ve uniform �nite subgroups of a group SO(3) with
four, eight, twelve, sixty and three hundred elements.

As an example, consider the construction uniform subgroup of a group SO(3)
generated by a 600-cell, The corresponding elements of this group, expressed in
terms of the coordinates of individual quaternions, are given in Table 1.

To visualize a uniform discrete subgroup of group SO(3), we use the

f : S3 → D,S3 ⊂ R4, D : |r| ≤ π, r ⊂ R3.

The law of mapping into a ball with radius π de�ned by the equalities

x
(k)
1 =

2q
(k)
1 arccos(q

(k)
0 )√

1−
(
q

(k)
0

)2
, x

(k)
2 =

2q
(k)
2 arccos(q

(k)
0 )√

1−
(
q

(k)
0

)2
, x

(k)
3 =

2q
(k)
3 arccos(q

(k)
0 )√

1−
(
q

(k)
0

)2
.

Examination shows that part of the points goes beyond the ball (Fig. 1).

For elements that go beyond the radius, the sign is changed for the corre-
sponding quaternions. As a result, all points are inside the ball (Fig. 2).

An analysis of the distribution of point patterns of elements uniform discrete
subgroup of a group SO(3) inside a ball of radius shows that the corresponding
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points are located on four spheres with radii π5 ,
π
3 ,

2π
5 and π. These points are lo-

cated at the vertices inscribed in these spheres of the icosahedrons, dodecahedron,
and icosododecahedron (Fig. 3).

2. Tables and Figures

Table 1. Element uniform subgroup of a group generated by a 600-cell.

Figure 1. Distribution of distances from the center of the ball
to point images of elements uniform subgroup of the group SO(3)
.
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Figure 2. Distribution of distances from the center of the ball
to point images of elements uniform discrete subgroup of a group
SO(3) inside a ball of radius π.

Figure 3. The diametrically opposite points at the vertices of
the icosododecahedron de�ne the same elements of group SO(3)
.
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Numerical Symbolic Dynamics and Complexity of

Individual Trajectories

Mylläri Aleksandr, Mylläri Tatiana, Myullyari Anna and Vassiliev

Nikolay

Abstract. We analyze complexity of trajectories in the free-fall equal-mass
three-body problem using �nite symbolic sequences received as a result of the
numerical integration of equations of motion. Binary approaches are used to
construct symbolic sequences. Di�erent methods and measures of complexity
of �nite sequences are used and compared: Shannon and Markov entropies
and Kolmogorov complexity. Selection of initial conditions for orbits with
high values of the entropies was done. Examples of orbits from this selection
are presented.

Introduction

Description of the problem and some history can be found in [6], [7] and [8]. Here,
we study complexity of individual trajectories by analysing complexity of �nite
sequences received as a result of the numerical integration of equations of motion.
Binary approaches are used to construct symbolic sequences. We use Shannon
entropy, family of Markov entropies (see e.g. [3]) and Kolmogorov complexity to
analyse complexity of the sequences constructed.

The equal mass free-fall three-body problem is convenient for study since
it reduces drastically dymension of the initial conditions space and allows easy
visualization of initial con�guration: if we place two bodies in the points (−0.5; 0)
and (0.5; 0), then all possible con�gurations will be covered if we place the third
body inside region D bounded by two straight line segments and with the arc of
the unit circle centered at (−0.5, 0) (Fig. 1) [1]. This region is used in the following
visualizations.

We used symplectic code by Seppo Mikkola (Tuorla Observatory, University
of Turku) [5] for numerical simulations.
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M3

-0.4 -0.2 0.2 0.4
ξ

0.2

0.4

0.6

0.8

η

Figure 1. Region D of initial conditions.

1. Complexity of �nite sequences

We construct symbolic sequences using binary encounters. We detect the minimum
distance between two bodies, and the corresponding symbol is the number of the
distant body. Some systems disrupt fast, forming a binary moving in one direction
while third body escapes in the opposite direction. In this case end of the sequence
consists of repeating symbol - number of the escaping body. Thus, our symbols are
from the alphabet {1, 2, 3}. To have a reasonable computing time, we constructed
symbolic sequences of length 256. In previous study, we were interested in the
analysis of active three-body interactions, so as one approach we considered sub-
sequences of each of these sequences, increasing the length step-by-step, calculating
Shannon entropy for each of these sub-sequences, and �nding maximum value of
these entropies. Maximum values (and moment of time/length of the sub-sequence)
correspond to the stage of active interaction between bodies [2]. Here, we analyse
a whole sequence (making it cyclic when needed - e.g., for calculating Markov
entropies). We used the length of the archive of the sequence as an estimate of
Kolmogorov complexity. Family of Markov entropies can be de�ned as ([3])

H l = −
∑

i

pi

∑

j

q
(l)
ij ln q

(l)
ij

where pi is frequency of symbol i in the sequence, q
(l)
ij - frequency of transitions from

i to j with lag l. We calculate values of H l for each sequence with l = 1, 2, . . . 255
and chooze maximum value (we call it Markov Max entropy). We also consider
standard Markov entropy (l = 1):

H1 = −
∑

i

pi

∑

j

qij log qij

where qij is frequency of transitions from i to j.

2. Trajectories with high complexity.

It is no surprise that four measures of complexity of the symbolic sequences that
we are using demonstrate high correlation (see Table 1).

111

113



Complexity of Trajectories

Sh H1 H l
Max K

Sh 1. 0.857774 0.997759 0.873823
H1 0.857774 1. 0.870351 0.970332

H l
Max 0.997759 0.870351 1. 0.886194
K 0.873823 0.970332 0.886194 1.

Table 1. Correlation of the complexity measures.

Shannon entropy (Sh) and Markov Max entropy (H l
Max), and Markov H1

entropy and Kolmogorov complexity (K) have higher correlations. It can be seen
also on the histograms (Fig. 2).

Figure 2. Histograms of complexity measures. Left to right:
Shannon entropy, Markov H1 entropy, Markov Max entropy and
Kolmogorov complexity.

For each of the four complexity measures we consider, we have selected appr.
5500 orbits with highest values of the corresponding measure. Initial conditions
for these selections are shown in Fig. 3.

Figure 3. Initial conditions of selected orbits with high complex-
ity. Left to right: Shannon entropy, Markov H1 entropy, Markov
Max entropy and Kolmogorov complexity.

Comparing Fig. 3 with life-time of the systems (Fig. 4) one can see that
selected orbits avoid regions for short-living systems. Out of 14076 individual orbits
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selected this way, there are 416 trajectories that were selected by all four criteria.
Initial conditions of these trajectories are shown in Fig. 5.

Figure 4. Life-time of the systems. Blue corresponds to the
short-living systems, yellow - long-living.
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Figure 5. Initial conditions of orbits with high complexity se-
lected by all four criteria.

We traced early evolution of some of the orbits that were selected by all four
entropy measures. Orbit demonstrate typical behaviour of metastable systems -
after some active interactions they approach neighborhood of some periodic (Fig-
ure Eight, Shubart, etc.) orbit, spend some time in this neighborhood, then move
to the neighborhood of another periodic orbit, and so on [4].
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Tensor Networks for Quantum Systems

Yuri Palii

Description of quantum many body systems involves tensors of high rank and
large dimensions. Approximation of a tensor by a set of lower rank tensors called
tensor network (TN) makes calculations feasible [1] . In the last three decades lots
of numerical algorithms based on the TN-methods were developed in condensed
matter, quantum chemistry, high energy physics. Nowadays lattice gauge theories
(LGT) are a general approach to nonlinear phenomena in quantum systems [2].
TN-methods were applied to low dimensional LGT with remarkable success [3].
Quantum entanglement lies in the core of TN-representation of the state vec-
tor and Hamiltonian for a system. Moreover every quantum circuits represent a
kind of a tensor network [4]. On the other side it seems that quantum comput-
ers and simulators are the most suitable devices for the implementation of the
TN-algorithms [5].

The use of the notion of Tensor Networks in study of quantum systems we
can see on the simplest example of two one-half spins. The state vector |Ψ〉 of this
system has the explicit form

|Ψ〉 =
1∑

s1,s2=0

Ts1,s2 |s1, s2〉 = t00|0, 0〉+ t01|0, 1〉+ t10|1, 0〉+ t11|1, 1〉 (1)

where |0, 0〉 represent a state with both spins down, |0, 1〉 represent a state with
the �rst spin down and the second spin up and so on.

We prepare the singular value decomposition (SVD) of the matrix Ts1,s2

Ts1,s2 =

χ∑

a,a′=1

Us1,aΛa,a′V
∗
a′,s2 , (2)

where the matrices U and V are unitary. The real matrix Λ is diagonal with ordered
elements λ1 > λ2 > . . . > λχ. The positive integer number χ is called the Schmidt
rank of the matrix T and λa, a = 1, . . . , χ are called the Schmidt numbers. The
product of three matrices U, V and Λ used for the representation of the matrix
Ts1,s2 is an example of the tensor networks. The indices a, a′ do not relate to the
Hilbert space H in contrast to the indices s1, s2. In the new basis formed by the
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vectors

|u〉a =
1∑

s1=0

Us1a|s1〉, |v〉a =
1∑

s2=0

V ∗as2 |s2〉, (3)

the state vector |Ψ〉 can be written as a linear combination

|Ψ〉 =

χ∑

a=1

λa|u〉a|v〉a. (4)

From the point of view of quantum information science, the Schmidt decomposi-
tion (4) exposes quantum correlations between two spins, s1 and s2, or quantum
entanglement between them. The so called entanglement entropy

S = −2

χ∑

a=1

λ2a lnλa,

χ∑

a=1

λ2a = 1, (5)

serves as a quantitative measure of the entanglement.

On the language of linear algebra, the Schmidt decomposition (4) of a state
is nothing then singular value decomposition (SVD) of a matrix. The Schmidt
numbers λa form the singular value spectrum and the dimension of the spectrum
is the rank of the matrix. The SVD gives the optimal lower rank approximation
of a matrix. Namely, with a given matrix M of the rank χ, the task is to �nd a
rank χ̃ matrix M ′ that minimizes the distance D in the matrix space

D = |M −M ′| =
√∑

ss′

(Mss′ −M ′ss′)2. (6)

The optimal solution, for which we use TN-algorithms, is given by the SVD

M ′ss′ =

χ′−1∑

a=0

Us,aΛa,a′V
∗
s′,a. (7)

The error of the approximation of M by M ′ is given by

ε =

√√√√
χ−1∑

a=χ′

λa.

Using the operation of reshaping of tensors [6] one can implement the truncation
procedure for a tensor of the arbitrary rank. This become indispensible when one
has deal with tensors of high rank and large ranges of tensor indices.

We generalize the example above to present a sample of TN which is especially
e�ective for quantum many-body systems spreaded in one space dimension (for
example, spin chains). Let us consider a system of N spins described by the state
vector |Ψ〉 in the Hilbert space H. We de�ne |Ψ〉 using the N -th order tensor T
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given by its coe�cients Ts1,...,sN in a chosen basis (the product of eigenstates of
each individual spin),

|Ψ〉 =

d1,...,dN∑

s1,...,sN=1

Ts1,...,sN |s1, . . . , sN 〉, (8)

where each (physical) index si runs from 1 to di, i = 1, . . . , N . The numbers di are
called the bond dimensions and are equal 2Si + 1 where Si is the spin of the i-th
component of the system. If we neglect completely the entanglement property in
the system then the tensor T can be presented as a direct product of the small
rank tensors called Matrix Product State (MPS):

Ts1,...,sN =
∑

a1,...,aN

A[1]
s1,a1A

[2]
s2,a1a2 . . . A

[N−1]
sN−1,aN−2aN−1

A[N ]
sN ,aN−1aN (9)

with open boundary conditions (OBC), or with periodic boundary conditions
(PBC):

Ts1,...,sN =
∑

a1,...,aN

A[1]
s1,aNa1A

[2]
s2,a1a2 . . . A

[N−1]
sN−1,aN−2aN−1

A[N ]
sN ,aN−1aN (10)

The indices ai are called the geometrical or virtual indices. A graphical represen-
tations of these MPS is given in the �gure 1 taken from [4] (left - OBC, right -
PBC).

Figure 1. Matrix Product State.
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Fair and envy-free necklace splittings

Gaiane Panina (by a joint work with Du²ko Joji¢ and Rade T.
�ivaljevi¢.)

Assume that r thieves have stolen a necklace and wish to divide it by cutting
into pieces and distributing the pieces fairly.

There exist two natural ways to formalize what a "fair division" is:
(1) Assume that the necklace (= a segment) carries n probability measures

describing the distribution of n kinds of precious gemstones. Each thief should be
treated fairly and receive an equal value of the necklace, as evaluated by each of
the measures.

The Splitting Necklace Theorem of Noga Alon states that n(r − 1) cuts is
su�cient for a fair partition. This is one of the best known early results of topo-
logical combinatorics where the methods of equivariant algebraic topology were
applied with great success.

(2) The �rst approach does not take into account personalities of the thieves.
Assume now that there are no measures, but for each partition of the necklace
each of the thieves prefers one or several of the pieces. Di�erent thieves may prefer
di�erent pieces. We wish to divide the necklace such that each thief can have
his(her) most preferred piece. That is, no person should be envious of another's
share.

David Gale's theorem states that envy-free division with r− 1 cuts is always
possible.

We shall discuss the combination of these two settings: there are n measures
on the necklace that should be divided evenly, and also each of the thieves has his
own preferences.

The research is partially Supported by the RFBR grant 20-01-00070 �Geom-
etry of metric spaces and its applications to the dynamical systems theory and
topology�.
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Polynomial coefficients as traces and applications
to graph colorings

Alexey Gordeev, Zhiguo Li, Fedor Petrov and Zeling Shao

Abstract. Let G = Cn × Cm be a toroidal grid (that is, 4-regular graph),
where nm is even. We prove that this graph G is 3-choosable. We also prove
some more general results about list colorings of direct products. The proofs
are algebraic, the starting point is Alon–Tarsi application of Combinatorial
Nullstellensatz, and the main difficulty is to prove that the corresponding
coefficient of the graph polynomial is non-zero.

Let F be a field, x = (x1, . . . , xn) a set of variables. For A ⊂ F and a ∈ A
denote

D(A, a) :=
∏

b∈A\a
(a− b).

For a multi-index d = (d1, . . . , dn) ∈ Zn>0 denote |d| = d1+. . .+dn, xd =
∏n
i=1 x

di
i .

For a polynomial f ∈ F[x] denote by [xd]f the coefficient of monomial xd in
polynomial f .

Choose arbitrary subsets Ai ⊂ F, |Ai| = di + 1 for i = 1, . . . , n. Denote
A = A1 ×A2 × . . .×An.

Recall the formula version of Combinatorial Nullstellensatz (it appeared in
this form in quite recent papers [6, 8, 11], but essentially already in [5], see [7] for
a modern exposition of the algebraic geometry behind this formula):

[
xd
]
f =

∑

a=(a1,...,an)∈A

f(a)∏n
i=1D(Ai, ai)

(1)

for any polynomial f ∈ F[x] such that deg f 6 |d|.
In particular, if [xd]f 6= 0, then (1) yields the existence of a ∈ A for which

f(a) 6= 0. This is Combinatorial Nullstellensatz [1], which has numerous applica-
tions.

Alon and Tarsi [2] suggested to use it for list graph colorings. Namely, if
G = (V,E) is a non-directed graph with the vertex set V = {v1, . . . , vn} and the
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edge set E, we define its graph polynomial in n variables x1, . . . , xn as

FG(x) =
∏

(i,j)∈E
(xj − xi).

Here each edge corresponds to one linear factor xj−xi, so the whole FG is defined
up to a sign. Assume that each vertex vi has a list Ai consisting of di + 1 colors,
which are real numbers. A proper list coloring of G subordinate to lists {Ai}16i6n
is a choice of colors a = (a1, . . . , an) ∈ A1 × . . .×An = A for which neighbouring
vertices have different colors: ai 6= aj whenever (i, j) ∈ E. In other words, a proper
list coloring is a choice of a ∈ A for which FG(a) 6= 0. If |d| = |E|, the existence
of a proper list coloring follows from [xd]FG 6= 0.

Define the chromatic number χ(G) of the graph G as the minimal m such
that there exists a proper list coloring of G subordinate to equal lists of size m:
Ai = {1, . . . ,m}. Define the list chromatic number ch(G) of the graph G as the
minimal m such that for arbitrary lists Ai, |Ai| > m, there exists a proper list
coloring of G subordinate to these lists. Define the Alon–Tarsi number AT (G) of
the graph G as the minimal k for which there exists a monomial xd such that
max(d1, . . . , dn) = k − 1 and [xd]FG 6= 0.

From above we see that the list chromatic number does not exceed the Alon–
Tarsi number:

ch(G) 6 AT(G). (2)
Further we consider the Alon–Tarsi numbers for the graphs which are direct

products G1�G2 of simpler graphs G1 = (V1, E1) and G2 = (V2, E2). Recall that
the vertex set of G1�G2 is V1×V2 and two pairs (v1, v2) and (u1, u2) are joined by
an edge if and only if either v1 = u1 and (v2, u2) ∈ E2 or v2 = u2 and (v1, u1) ∈ E1.

It is well known (Lemma 2.6 in [10]) that χ(G1�G2) = max(χ(G1), χ(G2)).
Much less is known about the list chromatic number (and the Alon–Tarsi number)
of the Cartesian product of graphs. Borowiecki, Jendrol, Král, and Miškuf [3] gave
the following bound:

Theorem 1 ([3]). For any two graphs G and H,

ch(G�H) 6 min(ch(G) + col(H), col(G) + ch(H))− 1.

Here col(G) is the coloring number of G, i.e. the smallest integer k for which
there exists an ordering of vertices v1, . . . , vn of G such that each vertex vi is
adjacent to at most k − 1 vertices among v1, . . . , vi−1.

Our first result [9] concerns the toroidal grid Cn�Cm (here Cn is a simple
cycle with n edges)

Theorem 2. AT(Cn�C2k) = 3.

[9] the right hand side of (1) in the necessary case was treated as a trace
of the (2k)-th power of a certain matrix which for some lucky choice of the sets
Ai’s appeared to be Hermitian that almost immediately yields the result. This
last phenomenon looks bit mysterious for us. We do not know whether it works
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for other interesting classes of graphs. The different way to work with these traces
was proposed in [4]. It allowed to prove the following rather technical but general
result.

Definition. We call a coefficient
[
xξ
]
FG(x) of the graph polynomial FG central, if

ξi = degG(vi)/2 for all i, and almost central, if |ξi − degG(vi)/2| 6 1 for all i.

Theorem 3. Let G be a graph, all vertices in which have even degree. Suppose that
the graph polynomial FG has at least one non-zero almost central coefficient. Then
for H = G�C2k the central coefficient is non-zero. In particular, H is (degH /2 +
1)-choosable and

ch(H) 6 AT(H) 6 ∆(H)

2
+ 1 =

∆(G)

2
+ 2.

Note that Theorem 1 gives the bound ch(H) 6 min(ch(G) + 2, col(G) +
1) under the same conditions. When ch(G) (or col(G)) is small, this bound is
stronger. But it can also be weaker when ch(G) and col(G) are close to ∆(G). For
example, if G = C2l+1 is an odd cycle, then FG obviously has a non-zero almost
central coefficient, so, by Theorem 3, ch(C2l+1�C2k) 6 3 (so this reproves the
main result of [9] by a different argument). On the other hand, Theorem 1 gives
only ch(C2l+1�C2k) 6 4.

The talk was partially supported by RFBR grant 19-31-90081.

References
[1] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8

(1999), no. 1-2, 7–29.
[2] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), no. 2,

125–134. MR1179249
[3] M. Borowiecki, S. Jendrol, D. Král, and J. Miškuf, List coloring of Cartesian products of

graphs, Discrete Mathematics 306 (2006), no. 16, 1955–1958.
[4] A. Gordeev and F. Petrov, Alon – Tarsi numbers of direct products, arXiv preprint

arXiv:2007.07140 (2020).
[5] K. G. Jacobi, Theoremata nova algebraica circa systema duarum aequationum inter duas

variabiles propositarum, J. Reine Angew. Math. 14 (1835), 281–288.
[6] R. N. Karasev and F. V. Petrov, Partitions of nonzero elements of a finite field into pairs,

Israel J. Math. 192 (2012), no. 1, 143–156.
[7] E. Kunz and M. Kreuzer, Traces in strict Frobenius algebras and strict complete intersec-

tions, J. Reine Angew. Math. 381 (1987), 181–204.
[8] M. Lasoń, A Generalization of Combinatorial Nullstellensatz, The Electronic Journal of

Combinatorics 17 (2010), no. 1.
[9] Z. Li, Z. Shao, F. Petrov, and A. Gordeev, The Alon–Tarsi Number of A Toroidal Grid,

arXiv preprint arXiv:1912.12466 (2019).
[10] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canadian

Journal of Mathematics 9 (1957), 515–525.
[11] U. Schauz, Algebraically Solvable Problems: Describing Polynomials as Equivalent to Ex-

plicit Solutions, The Electronic Journal of Combinatorics 15 (2008), no. 1.

123

125



REFERENCES

Alexey Gordeev
Euler International Mathematical Institute
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of
Sciences
St. Petersburg, Russia

Zhiguo Li
School of Science
Hebei University of Technology
Tianjin, China
e-mail: zhiguolee@hebut.edu.cn

Fedor Petrov
Department of Mathematics and Computer Science
St. Petersburg State University
St. Petersburg, Russia
e-mail: f.v.petrov@spbu.ru

Zeling Shao
School of Science
Hebei University of Technology
Tianjin, China
e-mail: zelingshao@163.com

124

126



The interaction of algorithms and proofs in

the discrete mathematics course for future

engineers

Sergei Pozdniakov and Elena Tolkacheva

Abstract. The paper discusses the possibility of basing the introduction of
new concepts, the deducing of their properties and the proof of theorems,
based on an analysis of the algorithms associated with these concepts and
theories. In this case, activity with an object comes �rst, which is one of the
essential component of technical thinking (it can be considered as conceptual-
shapely-active thinking in accordance with the work of T. V. Kudryavtsev [1]),
which is not su�ciently taken into account in teaching mathematics in techni-
cal universities. It is shown that Papert's thesis to base teaching mathematics
on a student's personal thinking can be applied to computer use not only at
school, but also at a technical university. An example is given of two topics
(�Diophantine equations� and �Continuous fractions�), which can be studied
as a single section, considering di�erent interpretations of the extended Eu-
clidean algorithm. Based on the theoretical analysis of the given example, it is
shown that when setting out the course of mathematics in technical universi-
ties it is advisable to focus on the algorithmic representation of the material.
This will naturally connect the material with the activities of the program-
mer and thereby increase the applied character of teaching mathematics. The
work was supported by the RFBR grant No. 19-29-14141

Introduction

One of the urgent problems of teaching mathematics in technical universities is
the harmonization of methods of teaching mathematics with the goals of training
engineers and taking into account changes in the information environment both in
the student's educational environment and in the structure of the engineer's pro-
fessional activity. The most entrenched tradition of building a mathematics course
in a technical university is to copy the style of teaching mathematics to future
mathematicians. An indicative is how most of lecturers of technical universities
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see the role of examples in reading a course of mathematics. Such a lecturer will
�rst give an abstract de�nition of a concept, then he will prove its formal proper-
ties, then he will prove theorems and ONLY AT THE END will give an example
linking a new concept with existing ideas, well-known concepts and applications.
Thus, instead of giving a tool for work (�like an ax for a carpenter� according to
academician Krylov [2]), the teacher builds a magni�cent building of mathematics,
demonstrating all its small details and admiring the logical beauty of the structure.
At the same time, teachers of mathematics who work with future engineers unani-
mously note that the presentation of material through algorithms for actions with
subject objects meets an incomparably greater response from the audience. Critics
of this approach to the course of mathematics will �rst criticize it for the lack of
a strictly logical structure and neglect of evidence. Here are a few arguments that
justify this approach and show the inconsistency of such comments.

1. Substantiation of concepts

We consider one of the important arguments presented in the articles [3] by Semour
Papert about changing the object basis of ideas that are formed in people's brains
under the in�uence of the information environment. He denies the uniqueness
of basing the modern mathematical culture of schoolchildren on such traditional
objects as numbers and fractions and shows how studying the control algorithms
for a turtle and other computer objects allows not only to form concepts using
other basic ideas, but also to use them to prove statements. We will try to show
that the analysis of simple algorithms can provide no less proofness than traditional
sequence of theorems not related to algorithms.

2. About algorithm analysis as proof

This problem is especially interesting from the point of view of the potential ability
to base reasoning not so much on formal premises as on algorithm Most theorems
of mathematics are formulated in a constructive form, thereby they already give an
algorithm, often far from the most e�ective, but which students can realize using
a simple example for protocol or program for general cases. As a rule, constructive
proofs are associated with cyclic (recursive or iterative) algorithms. In this case,
introducing the concept of an invariant of a cycle, we can write an algorithm
as a special form of writing evidence by the method of mathematical induction,
and the proof of the correctness of the algorithm will actually be determined
by its structure. As an example, we consider the use of the Euclidean algorithm
for decomposing an ordinary fraction into a continuous one and then deriving the
properties of convergents. This example is interesting in that the topic �Continuous
fractions� is usually set out separately and requires a certain lecture time, while
the algorithm for generating convergents is only distinguished by signs from the
intermediate operations of the extended extended Euclidean algorithm. This allows
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not only more compactly presenting the topic, but, most importantly, showing how
the same algorithm solves di�erent problems, increasing the degree of connectivity
of the material presented. The Euclidean algorithm can be written as rn−1 = rn ·
qn+1+rn+1 or rn+1 = rn−1−rn·qn+1 where r−2 = a, r−1 = b, and d = GCD(a; b) =
rn for n such as rn+1 = 0. It can also be written in the form rn−1/rn = qn+1 +
1/(rn/rn+1), which indicates the possibility of representing the fraction a/b as
an ordered set of quotients [q0; q1, ..., qn] which called continuous fraction. The
extended Euclidean algorithm �nds a particular solution to the equation a·x+b·y =
d. It can be naturally obtained from the previous algorithm, considering recurrence
as a vector formula Rn+1 = Rn−1 − Rn · qn+1, where Rn = (xn; yn), R−2 =
(1; 0), R−1 = (0; 1). The invariant of the cycle is the condition a · xk + b · yk = rk.
At the nth step, the GCD(a; b) and its linear representation will be calculated:
a · xn + b · yn = rn = d. The next step is two numbers x′ and y′: a · x′ + b ·
y′ = rn+1 = 0, from which we get a/b = −y′/x′. Thus, the extended Euclidean
algorithm can be considered as an algorithm for �folding� a continuous fraction
[q0; q1, ..., qn] - converting it to a regular fraction −y′/x′. It is easy to notice and
prove the alternation of signs in the sequence (xn; yn), that is, in the formula
Rn+1 = Rn−1 − Rn · qn+1, the addition of either positive or negative numbers
always occurs. This allows the �folding� algorithm by substituting the subtraction
in the extended Euclidean algorithm for addition: Fn+1 = Fn−1 + Fn · qn+1, Fn =
(Qn;Pn), F−2 = (1; 0), F−1 = (0; 1). The fractions Pn/Qn are called convergents
for the fraction a/b. The extended Euclidean algorithm in terms of convergents
will look like this: Pn+1 = Pn−1 + Pn · qn+1, Qn+1 = Qn−1 + Qn · qn+1, P−2 =
0, P−1 = 1, Q−2 = 1, Q−1 = 0. Let us prove that all convergents are irreducible.
From the equalitya · xn + b · yn = rn = d, where d = GCD(a; b), it follows that
xn and yn are coprime, that is, the fraction Pn/Qn is irreducible. But then the
previous convergent Pn−1/Qn−1 will be irreducible, since it can be considered as
the penultimate one in the decomposition of Pn / Qn into a continuous fraction.
Thus, we have shown that the extended Euclidean algorithm can be considered
as an algorithm for reducing fractions. As mentioned above, the signs xn and yn
alternate, which can be written exactly as xn = (−1)n · Qn, yn = (−1)n+1 · Pn.
We apply the extended Euclidean algorithm to Pn+1/Qn+1 : since Pn and Qn are
coprime, we obtain the equality Pn+1 ·xn+Qn+1 ·yn = 1 or Pn+1 ·(−1)nQn+Qn+1 ·
(−1)n+1Pn = 1, which is equivalent to Pn+1 · Qn − Qn+1 · Pn = (−1)n, whence
the formula for the di�erence of neighboring convergents is obtained Pn+1/Qn+1−
Pn/Qn = (−1)n/(Qn ·Qn+1). Other properties of convergents are obtained in the
usual way from this formula. increases.

3. About the role of examples

Papert's book [3] draws attention to the term "personal thinking". We will in-
terpret it as "relying on those ideas that the learner owns". Why does solving
problems (not exercises) have such a positive e�ect on mathematical development?
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Because this is a direct path to initiating the student's own judgments based on
his OWN IDEAS. How to make the presentation understandable to everyone?
Examples are a good tool for that. Firstly, they connect two di�erent interpreta-
tions of a new idea (in this case, formal with a concrete one), and as you know,
images based on internal connections are stored in memory. Secondly, they open
the way for independent activity. Finally, and most importantly, they are a way
of using the mechanism of internalization [4]. The independent �discovery� by the
student of the various patterns outlined above can be supported by the structuring
of his activities in the process of constructing and analyzing the protocols of the
algorithm.

Conclusion

The report shows that when setting out the course of mathematics in technical uni-
versities it is advisable to focus on the algorithmic representation of the material.
This will naturally connect the material with the activities of the programmer and
thereby increase the applied character of the presentation. It is also shown that an
analysis of algorithms can become an adequate replacement for the traditions of
presenting material in a non-constructive style in the form of a series of theorems.
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On some matrices whose entries

are character sums

N.V. Proskurin

Abstract. Given a �nite �eld Fq of order q, we de�ne some (q + 1)× (q + 1) -
matrices whose entries are classical character sums. That are Kloosterman,
twisted Kloosterman, Salie, Birch sums. All the matrices considered are either
symmetric unitary or hermitian unitary or real symmetric orthogonal ones.

1. Preliminaries

Given prime p, let Fq be the �nite �eld with q = pl elements and with prime sub�eld
Fp = Z/pZ. We write F?q for the multiplicative group of Fq. Let eq : Fq → C?
be a non-trivial additive character. By multiplicative characters of Fq we mean
homomorphisms χ : F?q → C? extended to Fq by setting χ(0) = 0. To each such
character χ one attach the Gauss sum

G(χ) =
∑

x∈F?
q

χ(x)eq(x).

For basic of the theory see [1], [2]. Consider the set Fq ∪ {o} of q + 1 elements
obtained by adding some point o to the �eld Fq (do not mix this o with zero 0).
All the matrices we deal with in this paper are (q + 1)× (q + 1) � matrices whose
rows and columns are numerated by elements of the set Fq ∪{o}. We write det for
the determinant and E for the identity matrix.

2. Kloosterman sums

Given c ∈ Fq, let
Kl(c) =

∑

x∈F?
q

eq(x
−1 + cx).
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That are classical Kloosterman sums. Let Zq =
(
zc,d
)
be the matrix whose entries

zc,d with c, d ∈ Fq ∪ {o} are as follows:

z0,0 = 1− 1

q
and zc,d =

1

q
Kl(cd) for all other pairs c, d ∈ Fq,

zo,o = 0 and zc,o = zo,d =
1√
q

for all c, d ∈ Fq.

Theorem. The matrix Zq is a real symmetric orthogonal matrix. The trace of Zq is
equal to the number of square roots of −1 in Fq. One has Z2

q = E. The eigenvalues

of Zq are just ±1.

3. Twisted Kloosterman sums

Given c ∈ Fq and a non-trivial multiplicative character χ of Fq, let

Kl(c;χ) =
∑

x∈F?
q

χ(x)eq(x
−1 + cx).

That are twisted Kloosterman sums. Let Vq =
(
vc,d
)
be the matrix whose entries

vc,d with c, d ∈ Fq ∪ {o} are as follows:

vo,o =
1

q
G(χ), vc,d =

1

q
Kl(cd;χ),

vc,o =
1√
q
χ(c), and vo,d =

1√
q
χ(d) for all c, d ∈ Fq.

Theorem. The matrix Vq is a symmetric unitary matrix. One has Vq Vq = E,
| detVq | = 1 and |t| = 1 for each eigenvalue t of Vq.

4. Salie sums

Assuming q ≡ 1(mod 2), denote by κ a unique quadratic multiplicative character
of Fq. The Salie sums

Sl(c) =
∑

x∈F?
q

κ(x)eq(x
−1 + cx), c ∈ Fq,

are just the twisted Kloosterman sums Kl(c;κ), see [3], [4]. We have the complex
symmetric unitary matrix Vq attached to these sums as above. In the meantime, the
quadratic case di�ers signi�cantly from all others and we can change the general
de�nition of Vq to obtain real matrix. The Salie sums can be evaluated explicitly
as follows:

Sl(0) = G(κ),

Sl(c) = 0, if κ(c) = −1, c ∈ F?q ,
Sl(c) = {eq(2r) + eq(−2r)}G(κ), if c = r2, r ∈ F?q .
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In particular, we see that Sl(c)/G(κ) ∈ R for all c ∈ Fq. The quadratic Gauss sum
G(κ) equals either ±√q or ±i√q according to κ(−1) equals either 1 or −1. Let
us consider the matrix

Xq =
1√
q

(
xc,d

)
,

where the entries xc,d with c, d ∈ Fq ∪ {o} are as follows:

xo,o = 1 , xc,d = Sl(cd)/G(κ),

xc,o = κ(c), and xo,d = κ(d) for all c, d ∈ Fq.

Theorem. The matrixXq is a real symmetric orthogonal matrix. Its trace is equal to

0. The eigenvalues of Xq are just ± 1. One has X2
q = E and detXq = (−1)(q+1)/2.

5. The cubic case

Assume q ≡ 1(mod 3) and denote by ψ someone of two cubic multiplicative charac-
ters of Fq. It was shown by H. Iwaniec and W. Duke [5] that the cubic Kloosterman
sum can be represented by the Birch sum. It is convenient to write their result as
in [7]. That is

Kl(h;ψ) = ψ(h)C(h) with C(h) =
∑

z∈Fq
eq

(z3
h
− 3z

)
∈ R, h ∈ F?q .

Let Uq =
(
uc,d

)
be the matrix whose entries uc,d with c, d ∈ Fq∪{o} are as follows:

uo,o = u0,0 = 0,

u0,o =
1

q
G(ψ), uo,0 =

1

q
G(ψ),

uc,d =
1

q
C(cd) for all c, d ∈ F?q ,

uo,n = un,0 =
1√
q
ψ(n),

un,o = u0,n =
1√
q
ψ(n) for n ∈ F?q .

Theorem. The matrix Uq is an hermitian and unitary matrix. Its trace is equal to

the number of square roots of 3 in Fq. One has U2
q = E. The eigenvalues of Uq are

just ± 1.
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6. Commentary

Given multiplicative characters µ, ν of Fq and a, b ∈ F?q , let ρ = µν and c = a− b.
One has the formula

1

q

∑

n∈F?
q

Kl(an;µ)Kl(bn; ν) ρ(n) +
1

q
G(a;µ)G(b; ν) = G(c; ρ)

proved by the author [6]. Its special case with trivial characters µ, ν is given in [8].
Here G denotes the Gauss sum,

G(m;χ) =
∑

x∈F?
q

χ(x)eq(mx)

for all multiplicative characters χ of Fq and all m ∈ Fq. With this formula, we
evaluate inner products of the rows of our matrices. We choose the (c, o) and (o, d)
entries to reach orthogonality of the rows.

Just by the de�nitions of the matrices above, we have character sums expressions
for their traces. Say, for the cubic case, we have

trace(Uq) =
1

q

∑

m∈F?
q

C(m2)

and the computation is as follows. The sum over m equals

∑

m∈F?
q

∑

z∈Fq
eq

( z3
m2
− 3z

)
.

Contribution of the terms with z = 0 equals q − 1, so that

trace(Uq) = 1− 1

q
+

1

q
R with R =

∑

z∈F?
q

eq(−3z)
∑

m∈F?
q

eq

( z3
m2

)
.

We take m = z/h with h ∈ F?q and continue the computation as follows.

R =
∑

z∈F?
q

eq(−3z)
∑

h∈F?
q

eq(zh
2) =

∑

h∈F?
q

∑

z∈F?
q

eq
(
z(h2 − 3)

)
.

If h2 = 3, then the sum over z equals q − 1. Otherwise, it equals −1. It follows,

trace(Uq) = ] {h ∈ F?q |h2 = 3},

as desired. We �nd further that the trace equals 1 if Fq is a �eld of characteristic
2, and it equals either 2 or 0 for all other characteristics.

The computation of traces of other matrices is similar but a little bit more involved.
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Say, for the matrix Xq, the computation leads to

trace(Xq) = 1 +
∑

y∈Fq
κ(y2 + 1),

and then we �nd (see [2], ch. 1, �2) that the right-hand side equals 0. A similar
formula, involving χ instead of κ, takes place for trace(Vq).
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Some problems on character sums in �nite �elds

N.V. Proskurin

Abstract. For polynomial character sums in �nite �elds, it is constructed some

analogue to the known conjecture on uniform distribution of the Kloosterman

sums values with respect to the Sato-Tate measure.

1. Kloosterman sums and Sato-Tate measure

Given prime p, consider the �eld Z/pZ of order p and some non-trivial additive
character ep : Z/pZ→ C?. Then

Klp(c) =
∑

t∈Z/pZ\{0}
ep(t

−1 + ct) with c ∈ Z

are Kloosterman sums. According to Weil (1948), one has |Klp(c)| ≤ 2
√
p and one

may look on distribution of the points

Klp(c)

2
√
p

in the interval [−1, 1] ⊂ R.

On this interval, one has Sato -Tate probability measure

[u, v] 7→ 2

π

v∫

u

√
1− t2 dt

for all [u, v] ⊂ [−1, 1]. It is expected, that

lim
x→∞

1

π(x)
]
{
p ≤ x

∣∣∣ Klp(c)
2
√
p
∈ [u, v]

}
=

2

π

v∫

u

√
1− t2 dt

for all [u, v] ⊂ [−1, 1], c ∈ Z. Hereafter π(x) denotes the number of all prime p ≤ x.
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Writing ϑ(p, c) for a unique number in [0, π] with Klp(c) = 2
√
p cosϑ(p, c), we get

an equivalent conjecture:

lim
x→∞

1

π(x)
]
{
p ≤ x

∣∣∣ θ(p, c) ∈ [u, v]
}

=
2

π

v∫

u

sin2 t dt

for all [u, v] ⊂ [0, π] and c ∈ Z. For this problem we refer to J.-P. Serre (Asterisque
41�42, 1977) and to N. M. Katz (Ann. of Math. St. 116, 1988).

2. Elliptic curves

Originally, the Sato -Tate measure is related to elliptic curves. By Hasse theorem,
if Ep is an elliptic curve over Z/pZ, then the number of its points equals

p+ 1 +Rp with Rp satisfying |Rp | ≤ 2
√
p.

Now, let E be an elliptic curve de�ned over Q. For almost all p, its reduction Ep
modulo p is an elliptic curve over Z/pZ. The Sato -Tate conjecture states

lim
x→∞

1

π(x)
]
{
p ≤ x

∣∣∣ Rp
2
√
p
∈ [u, v]

}
=

2

π

v∫

u

√
1− t2 dt

for all [u, v] ⊂ [−1, 1]. (For exceptional p, take Rp = 0.) After R. Taylor (2007), one
knows the conjecture holds for non-CM curves with a non-integral j-invariants.

3. Polynomial character sums

Given polynomials a, b over Z and a multiplicative character χp of Z/pZ (extended
by χp(0) = 0), let

Sp =
∑

t∈Z/pZ
χp(a(t)) ep(b(t)). (1)

We intend to consider possible analogues of the Sato -Tate type conjectures for the
polynomial character sums like (1).

Notice that the Kloosterman sums with p 6= 2 can be written as in (1) with a
unique quadratic character χp of Z/pZ.
Under some general assumptions, the Artin L-function attached to a, b, χp, Sp
can be written as the product

L(z; a, b) =

k∏

j=1

(1− ωjz) with ω1, . . . , ωk ∈ C, and

Sp = −
k∑

j=1

ωj , where k = n+m− 1,

n is the degree of b mod p, and radical of a mod p is a polynomial of degree m.
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Character sums

For the zeros of the Artin L-functions we have |ωj | =
√
p for all j. That is an

analoq of the Riemann hypotheses. It has been proved by Weil (1948).
As a consequence, we have the fundamental estimate for the character sums:

|Sp | ≤ (n+m− 1)
√
p. (2)

We refer to J.-P. Serre (Asterisque 41�42, 1977) for review of general theory and
to S. A. Stepanov for monography on arithmetic of algebraic curves (1991).

4. Choice of characters

To study distribution of the sums (1) in dependence of p and to state something like
the Sato -Tate conjecture, we need a natural and fruitful agreement on the choice
of characters χp and ep. There is no problem with choice of additive characters ep.
Just take any non-zero f ∈ Z and take ep(x) = exp (2πif x/p) for all x ∈ Z. Also,
there is no problem with sums Sp attached to trivial and quadratic characters χp.
That is so, because of uniqueness of such characters for each prime p. The case of
higer order characters χp is entirely di�erent. To deal with the sums Sp attached
to the characters χp of order h ≥ 3 we suggest the following construction.

Fix some `auxiliary' l ∈ Z and w ∈ C, which is degree h primitive root of 1.

Let Ωl be the set of all prime p ≡ 1 (mod h) under the condition: there exists
a unique order h character χp of the �eld Z/pZ, such that χp(l) = w.

Here p ≡ 1 (mod h) is a necessary and su�cient condition for existence of order
h characters χp. The uniqueness can be restated as follows: h is coprime with
the index of l relative to some generator of the multiplicative group of Z/pZ. In
particular, for prime h, that means l is not h-th degree in Z/pZ.
Let πl(x) = ]

{
p ∈ Ωl

∣∣ p ≤ x
}
for any x ∈ R. Assume, the sums Sp are majorized

as in (2). Let D ⊂ C be the circle of radius n+m− 1 with center at 0.

We suggest the following statement as an adequate analog or generalization of the
conjecture above for the Kloosterman sums.

For any (good) measurable set V ⊂ D, we expect

lim
x→∞

1

πl(x)
]
{
p ∈ Ωl

∣∣∣ p ≤ x, Sp/
√
p ∈ V

}
=

∫

V

C(z) dz,

where C : D → R is a measurable function, depending on parameters a, b, w, l
only. This function should be determined. In the case Sp ∈ R for all p ∈ Ωl, it is
reasonable to replace D with the interval D∩R and to treat V as intervals ⊂ D∩R.

N.V. Proskurin

St. Petersburg Department of Steklov Institute of Mathematics RAS

191023, Fontanka 27, St. Petersburg, Russia
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�� ��� ������� �����0
����� 
�� λ 
� ���� ���
��� ���
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∆2 = (xi − xj)
2

+ (yi − yj)
2

+ (zi − zj)
2

�:�

xj = rj (cos (uj) cos (Ωj) − sin (uj) sin (Ωj) cos (ij)) �;�

yj = rj (cos (uj) sin (Ωj) + sin (uj) cos (Ωj) cos (ij)) �/�

zj = rj sin (uj) sin (ij) �#�

uj = λj − Ωj , λj = νj + Ωj + ωj �<�

����� ωj � Ωj � ej � ij 0 ��� ��� ���
���
�� ��	������ ��� ���	
���� �
 ���
������
�	 ����� �������
�
�� ��� ��� 
���
���
�� �
 ��� =��� ��� ������ ��5�����
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�
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���� 

∆2
s = r2

3∑

i=1

(ci cos(λ) + bi sin(λ))
2

�?�

c1 = cos2 (Ω1) + sin2 (Ω1) cos(i1)−
− cos2 (Ω2) + sin2 (Ω2) cos(i2) �,�

b2 = sin2 (Ω1) + cos2 (Ω1) cos(i1)−
− sin2 (Ω2) + cos2 (Ω2) cos(i2) �(.�

c2 = sin (Ω1) cos (Ω1) (1 − cos(i1))−
− sin (Ω2) cos (Ω2) (1 − cos(i2)) �((�

b1 = sin (Ω1) cos (Ω1) (1 − cos(i1))−
− sin (Ω2) cos (Ω2) (1 − cos(i2)) �()�

c3 = − sin (Ω1) sin (i1) + sin (Ω2) sin (i2) �(:�

b3 = cos (Ω1) sin (i1) − cos (Ω2) sin (i2) �(;�
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An Effectively Computable Projective Invariant

Alexandr V. Seliverstov

Abstract. We consider a projective invariant of hypersurfaces over a field
of characteristic zero. The invariant can be computed in polynomial time
with generalized register machines. It has been computed for certain low-
dimensional hypersurfaces. One can effectively recognize some plane cubic
curves as well as some cubic surfaces. Our method allows to recognize some
cubic hypersurfaces with reducible Hessian.

The aim of this work is to introduce an effectively computable projective
invariant of hypersurfaces over the field of complex numbers. The simplest case of
hypersurface is a plane curve. Every plane cubic curve is projectively equivalent
to a curve whose affine part is given by a Weierstrass equation y2 = x3 + px+ q.
This curve is singular iff the discriminant of the right-hand univariate polynomial
vanishes, that is, −4p3− 27q2 = 0. Classification of cubic surfaces is more compli-
cated. A cubic surface is cyclic when there exists a Galois cover of degree 3 over
projective plane. A cyclic cubic surface is projectively equivalent to a surface de-
fined by a form of the type x30+x31+x32+x33+px1x2x3, where p is a parameter [1].
The general cubic surface depends on four parameters. It can be defined by the
Emch normal form [2]. But this normal form has been found earlier [3, 4].

Let us consider generalized register machines over a field of characteristic zero
(K, 0, 1,+,−,×). Each register contains an element of K. There exist index regis-
ters containing nonnegative integers. The running time is said polynomial, when
the total number of operations performed before the machine halts is bounded by a
polynomial in the number of registers occupied by the input. Initially, this number
is placed in the zeroth index register [5]. If a polynomial serves as an input, then
its coefficients are written into registers.

For n ≥ 2, let us consider a square-free form f(x0, . . . , xn) of degree d ≥ 2.
Let us fix a point U with homogeneous coordinates (u0 : · · · : un). Every straight
line passing through the point U consists of points with homogeneous coordinates
((x0−u0)t+u0s : · · · : (xn−un)t+uns), where (s : t) are homogeneous coordinates
inside the line. The restriction of the form f is a binary form denoted by r(s, t).
Let us denote by D[f, U ] the discriminant of the binary form r(s, t). If x0 = 1, then
the discriminant is a inhomogeneous polynomial in affine coordinates xk. In the
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general case, its degree is equal to d2− d. If a straight line either is tangent to the
hypersurface or passes through a singular point, then the discriminant of the form
r(t, s) vanishes. So, if the point U is not any singular point of the hypersurface,
then the polynomial D[f, U ](x1, . . . , xn) defines a cone with U as a vertex. If U is
singular, then D[f, U ] vanishes identically.

The set of polynomials of the type D[f, U ] for all points U generates a linear
subspace Wf of the ambient linear space of all inhomogeneous polynomials of
degree d2− d in n variables. The dimension of the ambient linear space is equal to

w(n, d) =
(n+ d2 − d)!
n!(d2 − d)! .

For every irreducible form f , the dimension dimWf is projectively invariant. If
d ≥ 3 and n is sufficiently large, then dimWf < w(n, d), that is, Wf is a proper
subspace of the ambient linear space. If the rank of a quadratic form f is equal
to n, then the equality dimWf = w(n, 2) holds. For given n and d, the dimension
dimWf considered as a function of coefficients of f is lower semi-continuous [6].
Thus, if there exists a form f(x0, . . . , xn) of degree d such that dimWf = w(n, d),
then for almost every form f(x0, . . . , xn) of degree d, the equality dimWf = w(n, d)
holds too.

Let be given a square-free polynomial f(x1, . . . , xn). In accordance with [6],
in the expansion of the polynomial D[f, U ] in powers of coordinates of the point U ,
each coefficient belongs to the linear subspace Wf . These polynomials in variables
x1,. . . , xn span whole linear subspace Wf . Thus, there exists a polynomial time
algorithm to compute the dimension of the linear subspace Wf .

It is sufficient to calculate the rank of a matrix whose order equals w(n, d). It
requires O(wω) multiplications, where ω denotes the matrix multiplication expo-
nent [7, 8]. In small dimensions, the rank can be calculated with computer algebra
system software.

We have computed dimWf for certain plane curves (n = 2). In this case, the
linear subspace Wf can be improper. But it is small for the Fermat type curves,
where F2 = xd0 + xd1 + xd2.

d 2 3 4 5 6 7 8 9 10
w(2, d) 6 28 91 231 496 946 1653 2701 4186
dimWF2 6 26 82 207 446 856 1506 2477 3862

If f(x0, x1, x2) defines a singular curve, then the strict inequality dimWf < w(2, d)
holds. For almost every f of degree d ≤ 7, the equality dimWf = w(2, d) holds.
For all d ≤ 7, the equality max

f(x0,x1,x2)
dimWf = w(2, d) holds. In particular, the

equality holds at forms of the type f = xd0 + xd1 + xd2 + (x0 + x1 + x2)
d. We guess

that it holds for every larger degree too.
Let us consider cubic forms of the Fermat type Fn = x30 + · · · + x3n. The

polynomial D[Fn, U ](x1, . . . , xn) is equal to the discriminant of a binary form of
the type at3+bt2s+pts2+qs3 whose coefficients are sums of univariate polynomials,
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that is, a = a1(x1)+· · ·+an(xn), b = b1(x1)+· · ·+bn(xn), p = p0+p1x1+· · ·+pnxn,
and q is a constant. So, every monomial of D[Fn, U ] depends on at most four
variables. Thus, dimWFn = O(n4).

For n ≤ 9, the equation dimWFn = 1
4n

4 + 5
6n

3 + 9
4n

2 + 8
3n+ 1 holds.

We have also computed dimWf for certain cubic hypersurfaces. For n ≤ 3,
this result found by symbolic computations with parameters, where every param-
eter can be considered as a transcendental number.
For n ≥ 4, dimWf was only computed for certain cubic forms. They provide
the lower bound on the maximum value of dimWf for given n. For cubic forms
f(x0, . . . , xn), we guess that the maximum dimension is

max
f

dimWf = n+ dimWFn =
1

12
(n+ 1)(3n3 + 7n2 + 20n+ 12)

n 2 3 4 5 6 7 8 9
w(n, 3) 28 84 210 462 924 1716 3003 5005

maxf dimWf 28 75 ≥ 169 ≥ 336 ≥ 608 ≥ 1023 ≥ 1625
dimWFn

26 72 165 331 602 1016 1617 2455

Let us consider cubic curves. In the general case, dimWf = 28 except the
Fermat type curves and all singular curves. We computed the determinant of a
matrix composed by coefficients of polynomials generating the linear space Wf .
For the Weierstrass normal form f = x22x0 + x31 + px1x

2
0 + qx30, the determinant is

proportionate to the expression p4(4p3+27q2)8. If p = 0 and q 6= 0, then the curve
is projectively equivalent to a curve of the Fermat type. If 4p3+27q2 = 0, then the
curve is singular, else it is smooth. For the Fermat cubic curve, dimWF2

= 26. In
this case, the Hessian curve is the union of three straight lines. For an irreducible
cubic curve with a node, dimWf = 25. For a cubic curve with a cusp, dimWf = 21.
Therefore, one can distinguish between nodal and cuspidal curves.

For the general cubic surface, dimWf = 75. For the general cyclic cubic
surface, dimWf = 74. For the Fermat cubic surface, dimWF3 = 72. So, if the
Hessian surface contains a plane, then dimWf is small. These results found by
symbolic computations with parameters, where every parameter can be considered
as a transcendental number. For some singular surfaces, the equality dimWf = 75
holds too. For example, it holds for f = x30+px

2
0x1+x

3
1+x0x

2
2+(x20+x

2
1+x

2
2)x3,

where p is transcendental; the point (0 : 0 : 0 : 1) is singular. Therefore, the
approach does not allow one to decide whether a given cubic surface is smooth.

If f = x30 + px20x1 + x31 + x0x
2
2 + x1x2x3, where p is transcendental, then

dimWf = 73; the point (0 : 0 : 0 : 1) is singular too. If f = x30 + px20x1 + x31 +
x0x

2
2 + x20x3, where p is transcendental, then dimWf = 48; the point (0 : 0 : 0 : 1)

is singular too.
Conjecture. For every cubic form g with reducible Hessian, the inequality

holds dimWg < maxf dimWf . Moreover, the more factors exists in Hessian, the
more gap is between two values dimWg and maxf dimWf .

The computational results show that one can easily verify smoothness of
almost every plane quartic curve as well as almost every quartic surface in P3 by
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means of computing dimWf . The method is also applicable to other plane curves.
On the other hand, the same problem for cubic surfaces is hard enough because the
proposed projective invariant is useless in this case. Nevertheless, one can recognize
singularities of some types. We also assume that our method allows to recognize
cubic hypersurfaces with reducible Hessian in deterministic polynomial time.
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1 What has been done.

The idea that the arbitrary natural transformations of superpositions of dis-
tinguished functors (such as tensor product ⊗ : K × K → K and internal
hom-functor −↪↩ : Kop × K → K) can be described if tensor unit I is a gen-
erating object in the category K was first explored in [5] and studied further
in [1].

More precisely, the question is formulated as follows. LetK be some category
with additional structure including distinguished functors and natural transfor-
mations (distinguished objects may be seen as constant functors). Canonical
natural transformations are those obtained from distinguished natural transfor-
mations by application of functors and composition.1 Is it possible to describe
arbitrary natural transformations between superpositions of distinguished func-
tors in terms of canonical natural transformations with parameters?

The main results below are obtained in the situation when tensor unit I is a
generator. One of typical examples where all these results hold is the category
of finitely generated projective modules over a commutative ring I with unit.

1.1 SMC and CC Categories

How we may proceed is illustrated by some of the results of [5].
For example, the structure of a symmetric monoidal closed (SMC) category

K contains two distinguished functors ⊗ : K ×K → K and −↪↩ : Kop×K → K.
(Tensor product and internal hom-functor in typical cases.)

There are also the distinguished object I (tensor unit), the distinguished
natural isomorphisms aXY Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), bX : X ⊗ I →
X, cXY : X ⊗ Y → Y ⊗ X, and the (generalized) natural transformations

1Composition of natural transformations and (since the category of functors and natural
transformations is 2-category) composition with distinguished functors as well. The latter
may be seen as substitution of functorial expressions for variables, e.g., if commutativity of
tensor product cXY : X ⊗ Y → Y ⊗ X is distinguished natural transformation (thus it is
canonical) then c(X⊗Y )Z : (X ⊗ Y )⊗ Z → Z ⊗ (X ⊗ Y ) is canonical as well.

1

145

147



dXY : X → Y −↪↩ X ⊗ Y , eXY : (X −↪↩ Y ) ⊗ X → Y . They must satisfy
certain equations. Using these natural transformations, also the adjunctions
πXY Z : Hom(X⊗Y, Z)→ Hom(X,Y −↪↩Z)) and its inverse π−1 may be defined.2

(See [4], [5] for detailed definitions.)
One may recall that I ∈ Ob(K) is a generator iff for any f 6= g : X → Y ∈

Mor(K) there exists h : I → X such that f ◦ h 6= g ◦ h. For example, in the
category of sets any non-empty set is a generator. In the category of modules
over a ring I, I is a generator.

The key technical lemma in [5] (lemma 2.1) stated that if I is a generator in
K then an arbitrary generalized natural transformation fX : (X −↪↩ I)⊗X → I
(in the category of functors over K) is the composition

(X −↪↩ I)⊗X eXI→ I
h→ I

for some endomorphism h : I → I.
Let F,G be superpositions of distinguished functors represented by formulas

in appropriate syntax. Some variables in F,G may be identified; the schema
of this identification was called graph in [4]. For each occurrence in F,G its
variance is defined as usual. The expression F → G is called the type of a
natural transformation f : F → G. For ordinary natural transformations,
each variable occurs once in F and once in G (with the same variance). For
generalized natural transformations (see, e.g., [4] or [5]) two more cases are
admitted: a variable may occur either twice in F or twice in G, with opposite
variances (cf. eXY and dXY above). The type F → G is balanced iff each
variable occurs exactly twice (with the same variances when its occurrences lie
at the opposite sides of the arrow, and with opposite variances otherwise).

An SMC category K is compact closed (CC) category if there are two more
distinguished natural isomorphisms: sX : (X −↪↩ I) −↪↩ I → X and tXY : X −↪↩
Y → (X −↪↩ I)⊗Y (their inverses are canonical natural transformations of SMC
category, in CC-case they must be isomorphisms).

Let K be compact closed. If the type F → G is balanced and contains
variables X1, ..., Xn then every generalized natural transformation g : F → G
in K can be obtained from some natural transformation

f(X1...Xn) : ((X1 −↪↩ I)⊗X1)⊗ ...((Xn −↪↩ I)⊗Xn)→ I

by composition with canonical natural transformations and applications of ad-
junctions π and π−1. (For the sake of certainty we assume that ⊗, as well as
⊕ below, associate to the left.) It may be described as application of some
operator Φ depending only on type F → G to f , i.e., g = Φ(f). Using lemma
2.1 of [5] we prove that f is equal to the following composition

(X1 −↪↩ I)⊗X1 ⊗ ...(Xn −↪↩ I)⊗Xn

eX1I⊗...eXnI−→ I ⊗ ...I bI⊗...I−→ ...
bI→ I

f0→ I

and g(X1...Xn) = Φ(f0 ◦ bI ◦ ... ◦ bI⊗...I ◦ (eX1I ⊗ ...eXnI)). (Cf. Th. 3.10 of [5].)

2It is possible also other way round: if π and π−1 are considered as basic, e and d may be
derived.
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Remark 1.1 Further modifications of this representation are possible. For f :
X → Y , the linear multiplication by an endomorphism h : I → I (denoted h ·f)
is defined as the composition

X
b−1
X−→ I ⊗X h⊗f−→ I ⊗ Y bY−→ Y.

Using adjunctions and isomorphisms in a slightly different way, we may show
that g = Φ′(f) where f : X1 ⊗ ... ⊗ Xn → X1 ⊗ ... ⊗ Xn. Moreover f =
h · 1X1⊗...⊗Xn . If we take X1 = ... = Xn = I, there exist unique isomorphisms
φ : I → F (I, ..., I), ψ−1 : G(I, ..., I)→ I, and h = ψ−1 ◦g(I, ..., I)◦φ. (We shall
note this composition g∗(I).)

It implies also genericity in another sense. When the type F → G is balanced
the equality of two natural transformations g1, g2 : F → G may be checked on
I only: g1 = g2 ⇐⇒ g∗1(I) = g∗2(I). (Th. 3.12 of [5].)

In [5] the case of CC categories with biproduct ⊕ was studied as well, and
some results about arbitrary natural transformations f : F → G where F,G
may contain ⊕ were proved. The description, however, was partial. The results
were subject to some constraints concerning the structure of F,G. For example
these results did not cover the case of tensor powers that were not balanced, as
X ⊗X → X ⊗X.

1.2 SM Categories with Biproduct

In a more recent work [1] our aim was to obtain full description of natural
transformations for arbitrary superpositions of ⊗ and ⊕ (without constraints
such as balancedness).

That is, Symmetric Monoidal (SM) Categories K with ⊗ (tensor) and ⊕
(biproduct called also direct sum) as distinguished functors were considered.
Respectively, there were 2 distinguished objects, tensor unit I and zero-object
0. Distinguished natural transformations for ⊗ were the same as before. Distin-
guished natural transformations for ⊕ included canonical projections (for ⊕ as
product), injections (for ⊕ as sum), natural transformations that characterize
0 as zero-object, diagonal and codiagonal maps ∆,5. Distributivity isomor-
phisms for ⊗ over ⊕ in this setting are derived.

Notice that the sum f + g of morphisms f, g : X → X can be defined as

X
∆−→ X ⊕X f⊕g−→ X ⊕X 5−→ X

(in fact K is semi-additive).
In absence of internal hom-functor a slightly modified notion of generation

called tensor − generation was necessary. The unit I was called tensor −
generator iff given any pair of unequal maps

X1 ⊗ ...⊗Xn

f //
g

// X
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there is a map ki : I → Xi such that

X1 ⊗ ...⊗ I...⊗Xn
1⊗...ki⊗...1 // X1 ⊗ ...⊗Xi...⊗Xn

f //
g

// X

are also unequal. That is 1 ⊗ ... ⊗ ki... ⊗ 1 distinguishes f from g. (If internal
hom-functor −↪↩ is present as well, I is tensor-generator iff I is generator in
ordinary sense because of adjointness of ⊗ and −↪↩.)

Now (proposition 2.3 of [1]) every natural transformation

f(X1, ..., Xn) : X1 ⊗ ...⊗Xn → Xσ(1) ⊗ ...⊗Xσ(n)

may be represented as f∗(I) · σ where

σ : X1 ⊗ ...⊗Xn → Xσ(1) ⊗ ...⊗Xσ(n)

is the canonical natural transformation determined by the permutation σ (i.e.
obtained from natural associativity and commutativity of ⊗) and f∗(I) is

I
b−1
I−→ I ⊗ I

b−1
I⊗I−→ ...I ⊗ ...⊗ I f(I,...,I)−→ I ⊗ ...⊗ I... bI⊗I−→ I ⊗ I bI−→ I.

Let F,G be tensor powers (tensor products of variables). The type F → G
was called in [1] multibalanced if the number of occurrences of each variable in
F is the same as in G. In K as described above (with biproducts and 0) each
natural transformation f : F → G where F → G is not multibalanced is zero.
(See [1], proposition 4.10.)

Let now F → G be some type. The type F ′ → G′ is called its generalization
if F → G may be obtained from F ′ → G′ by identification of some variables.
Let F1 → G1, ..., Fk → Gk be balanced generalizations of a multibalanced type
F → G, and τ1, ..., τk denote the corresponding identifications of variables (sub-
stitutions), i.e., τi(Fi → Gi) = F → G.

Theorem 1.2 In the conditions described above, with F → G multibalanced,
every natural transformation f : F → G is the sum τ1(f1) + ... + τk(fk) where
f1, ..., fk are some natural transformations of F1 → G1, ..., Fk → Fk respectively.
If F → G is not multibalanced then f is zero.

This theorem is a slightly reformulated version of the extraction theorem
(theorem 4.2) of [1]. And fi when I is tensor-generating are of the form

Fi
hi·σi // Gi

with σi canonical natural transformations determined by Fi → Gi and hi : I → I
endomorphisms of I. Moreover, hi = f∗i (I) (it can be computed using the I-
component of fi).
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Example 1.3 Let f : X⊗X → X⊗X. There are two balanced types X⊗Y →
Y ⊗X and X ⊗ Y → X ⊗ Y that produce X ⊗X → X ⊗X by identification of
variables. Then f = h1 · cXX + h2 · 1X⊗X . If K is the CC category of finitely
dimensional vector spaces, h1 and h2 may be seen merely as scalar coefficients.

Remark 1.4 Let Xk denote X ⊗ ...⊗X (k times). Up to natural associativity
and commutativity each multibalanced type F → G without ⊕ may be seen as
Xk1

1 ⊗ ... ⊗ Xkl
l → Xk1

1 ⊗ ... ⊗ Xkl
l . If we “deidentify” the variables of each

cluster Xki
i in a standard way (take at the left Xi1⊗ ...⊗Xiki and at the right all

possible permutations of the same variables) we obtain altogether n = k1! · ... ·kl!
different balanced types that produce F → G by identification. Then f is equal
to the following composition:

F → Xk1
1 ⊗ ...⊗Xkl

l

∑n
i=1 hi·τ(σi)−→ Xk1

1 ⊗ ...⊗Xkl
l → G.

(Here τ merely identifies back all deidentified variables like in the example above,
so it is the same for all i.)

If ⊕ occurs in F → G then by distributivity there exist natural isomorphisms
φ : F1 ⊕ ... ⊕ Fk → F and ψ−1 : G → G1 ⊕ ... ⊕ Gl where F1, ..., Fk, G1, ..., Gl
are tensor products of variables. Thus f : F → G is ψ ◦ g ◦ φ−1 for some
g : F1 ⊕ ...⊕Fk → G1 ⊕ ...⊕Gl. Because ⊕ is biproduct, g may be represented
by the matrix (gij) where gij = pj ◦ g ◦ qi : Fi → Gj (1 ≤ i ≤ k, 1 ≤ j ≤ l), and
each natural transformation gij : Fi → Gj is described as in theorem 1.2 and
remark 1.4.

2 New Advancements

R. Houston proved [3] that if a compact closed category has finite products or
finite coproducts then it in fact has finite biproducts, and so is semi-additive.
This result shows that in fact CC categories with finite biproducts are much
more common than we expected when [5] and [1] were written and incites us
to consider more closely what can be obtained if we combine the results of our
earlier works.

Let us consider first an arbitrary natural transformation f : F → G where
F,G do not contain ⊕. If F → G is not multibalanced then f is zero. If it is,
using composition with canonical natural isomorphisms of the CC-structure and
adjunctions π, π−1, f may be represented as Ψ(f0) where f0 : Xk1

1 ⊗ ...⊗Xki
i →

Xk1
1 ⊗ ...⊗Xki

i . The natural transformation f0 may be described as in section
1.2, i.e., it is either zero or the sum of f∗0 (I) · σ.

In CC categories with biproduct not only ⊗ distributes over ⊕ but also
there exists canonical isomorphism X ⊕ Y −↪↩ I ↔ (X −↪↩ I) ⊕ (Y −↪↩ I). Using
canonical isomorphisms, for any natural transformation f : F → G one obtains
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the following commutative diagram

F
f //

φ

��

G

F1 ⊕ ...⊕ Fk
g // G1 ⊕ ...⊕Gl

ψ−1

OO

where vertical arrows represent appropriate canonical isomorphisms and F1, ..., Fk,
G1, ..., Gl do not contain ⊕.

The natural transformation g may be represented by the matrix (gij) where
gij : Fi → Gj . In its turn, gij is either the sum

∑nij

m=1 τij(gijm) if Fi → Gj is
multibalanced or zero otherwise, as in section 1.2. The proof uses the extraction
technique of [1] based on properties of biproducts.

The gijm : Fim → Gjm are natural transformations of balanced generaliza-
tions of Fi → Gj obtained by deindentification of variables (1 ≤ m ≤ n, where n
is given by factorial expression similar to that considered in remark 1.4). Each
gijm may be described as hijm · σijm where hijm = g∗ijm(I) : I → I and σijm
is unique canonical natural transformation of the type Fim → Gjm (here the
results of [5] are used). The operator τij identifies back the variables.
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Power geometry in solving system of nonlinear poly-
nomial equations

Akhmadjon Soleev

Abstract. Here we present basic ideas and algorithms of Power Geometry and
give a survey of some of its applications. We present a procedure enabling us
to distinguish all branches of a space curve near the singular point and to
compute parametric of them with any degree of accuracy. Here for a specific
example we show how this algorithm works.

Introduction

Many problems in mathematics, physics, biology, economics and other sciences are
reduced to nonlinear polynomial equations or to systems of such equations. The
solutions of these equations and systems subdivide into regular and singular ones.
Near a regular solution the implicit function theorem or its analogs are applicable,
which gives a description of all neighboring solutions. Near a singular solution the
implicit function theorem is inapplicable, and until recently there had been no
general approach to analysis of solutions neighboring the singular one. Although
different methods of such analysis were suggested for some special problems.
We offer an algorithm for calculating branches of nonlinear polynomial systems of
equations based on Power Geometry [?, ?, ?]. Here we will consider only to compute
local and asymptotic expansions of solutions to nonlinear equations of algebraic
classes. As well as to systems of such equations.But it can also be extended to
other classes of nonlinear equations for such as differential, functional, integral,
integro-differential, and so on [?, ?, ?].

1. Ideas and algorithms

are common for all classes of equations. Computation of asymptotic expansions of
solutions consists of 3 following steps (we describe them for one equation f=0).
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1. Isolation of truncated equations f̂
(d)
j = 0 by means of generalized faces of the

convex polyhedron Γ(f) which is a generalization of the Newton polyhedron. The
first term of the expansion of a solution to the initial equation f = 0 is a solution
to the corresponding truncated equation f̂

(d)
j = 0.

2. Finding solutions to a truncated equation f̂
(d)
j = 0 which is quasi homogenous.

Using power and logarithmic transformations of coordinates we can reduce the
equation f̂

(d)
j = 0 to such simple form that can be solved. Among the solutions

found we must select appropriate ones which give the first terms of asymptotic
expansions.
3. Computation of the tail of the asymptotic expansion. Each term in the expansion
is a solution of a linear equation which can be written down and solved.

Elements of plane Power Geometry were proposed by Newton for algebraic
equation (1670). Space Power Geometry for a nonlinear autonomous system of
ODEs were proposed by Bruno (1962) [?].

2. System of algebraic equations [?, ?]
Let an algebraic curve F be defined in Cn by the system of polynomial equations

fi(X)
def
=

∑
aiQXQ = 0, Q = (q1, . . . , qn) ∈ Di, i = 1, . . . , n − 1, (1)

where Di
def
= D(fi) = {Q : aiQ ̸= 0}. Let X = (x1, . . . , xn) = 0 be a singular point

of F , i.e. all fi(0) = 0 and rank(∂fi/∂xj) < n−1 in X = 0. Then several branches
of F pass through the X = 0. Each branch has its own local uniformization of the
form

xi =
∞∑

k=1

biktpik , i = 1, . . . , n (2)

where exponents pik are integers, 0 > pik > pik+1, and coefficients bik are complex
numbers, series converge for large |t|, i.e. X → 0 for t → ∞. We propose an
algorithm for finding any initial parts of the expansion (2) for all branches of F .

3. Objects and algorithms of Power Geometry
Let us consider the finite sum of monomials

f(X) =
∑

aQXQ (3)

without similar terms and aQ ∈ C.
The set D = {Q : aQ ̸= 0} is called the support of f . We assume that

D ⊂ Zn, and we enumerate all points of D as Q1, . . . , Ql. At first with a help
of Newton polyhedrons and its normal cones of polynomials fi, we find a list of
truncated systems [?]

f̂i(X)
def
=

∑
aiQXQ = 0, Q ∈ D

(di)
ij (fi), i = 1, . . . , n − 1. (4)
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Each of them is the first approximation of (1). By the power transformation

yi = xαi1
1 . . . xαin

n , i = 1, . . . , n (5)

we reduce the number of variables in the truncated system(3). The power trans-
formation (4) resolves (only partly) the singularity X = 0 of the system (1). In the
transformed system (1), we find all points Y 0 corresponding to the point X = 0 of
F . We translate each Y 0 into the origin and repeat the procedure described above.
After a finite number of such steps, we come to a system having unique local branch
and we uniforms it by means of the Implicit Function Theorem. Returning to the
initial coordinate X by inverse transformations we receive the branch in the form
(2). Analogously we uniforms all other branches of the curve F near the origin
X = 0 and all branches going to infinity and real branches of a real curve as well.

4. Computation of branches of solutions of the specific system (1)
consists of the following 8 stages:

1. For each coordinate singular point X0 we do parallel-transfer X −X0, write the
system in the form (1) and make following stages for each such system separately.
We shall describe them for system (1).

2. For each fi compute the Newton polyhedron Mi, all its faces Γ
(di)
ij , and

normal cones N
(di)
ij and sets D

(di)
ij .

3. Find all nonempty intersections N
(d1)
1j ∩ · · · ∩ N

(dn−1)
n−1j with all di > 0 and,

for each of them, write the corresponding truncated system (9).
4. For each such system (9), compute vectors Ti and the matrix α by Theorem

3.1 and make corresponding transformations of (1) and (3) into (17) and (16).
5. Find all roots of (4) and, by computation of the matrix G = (∂gi/∂yj)

separate simple roots Y 0 of (17).
6. By Implicit Function Theorem, compute an initial part of expansions for

the branch corresponding to the simple root Y 0 of (17).
7. For each non-simple root Y 0 of (17), compute the new system (19) and

repeat the procedure until a full isolation of all branches.
8. By inverse transformations, write all branches in initial coordinates X.
Stages 1–4 were programmed in PC. Stages 5, 6, and 8 are essentially non-

linear but can be done by standard programs.
Here we want to note that the complexity of the truncated system (9) is de-

fined to be the (n− 1)-dimensional Minkowski mixed volume of the corresponding
parallel-transfer faces.

So we got the following result: If we perform calculations for 1-4 using this
procedure , then at each step we find all the roots of the corresponding truncated
system of equations , and find all the curves of the roots of the truncated sys-
tem of equations, we obtain a local description of each component in the small
neighborhood of the starting point X = 0, in the form of expansions (3).
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Forecasting Bitcoin-US Dollar Trend using ANN

K. S. Senthilkumar1 and Naresh Gopal2

Abstract. Bitcoin has gained an amazing popularity and much attention in
various research �elds. Due to the self-regulation of the availability of the coin,
the price of the Bitcoin is mostly dependent on direct factors like lag price,
volatility, and volume. This paper aims on predicting the Bitcoin's trend for
the next day based on the variables including Bitcoins trading volume, M2
(Money Supply), Price Volatility and Bitcoin lag price using an Arti�cial
Neural Network. Arti�cial Neural Networks (ANN), one of the data mining
technique widely accepted in the business arena due to its ability to learn and
detect relationships among nonlinear variables.

Introduction

Bitcoin is a cryptocurrency currently used for Electronic Financial Transactions
all over the world, created in 2008 by Satoshi Nakamoto. It is traded by individuals
with cryptographic keys and the records are not managed by a bank or agency,
but all transactions are recorded in the blockchain and contain records of each
transaction that takes place. Bitcoin a�ects the world economic constancy and
has experienced a tremendous volatility over the last few years hence a precise
prediction of bitcoin exchange rate with respect to the US dollar has become vital.
The Bitcoin value has reached $20, 000 on 16th of December 2017 and then it
has seen a steep decline at the beginning of 2018. Measurement, prediction, and
modelling of BCC price volatility found an important area of research in recent
days. Arti�cial Neural Networks are highly complex composite functions providing
the ability of computing non-linear and non-stationary problems like this.

1. Literature

There is dearth of research on the valuation of �nancial assets and techniques
adopted. However, Bitcoin is generally labelled as a virtual currency, which sug-
gests both that it is intangible and innovative. It is therefore necessary to review
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the literature on the techniques adopted, its validation and their determinants.
Currency exchange rates and stock prices are time series data that is a series
of discrete data in time order. Many experimental researches combining technical
analysis with computational intelligent techniques have been conducted to improve
the modelling and predicting performance for di�erent application in time series
data. In the recent past notable amounts of research have been devoted to develop
an e�cient predictive model using machine learning to assist the traders in making
wise investment decisions, including the Simple Moving Average (SMA) for clas-
si�cation tasks [3, 2]. The speculators favour always price �uctuations to pro�t
by predicting which direction prices are headed. Generally, such trading activity
has an irrational component translated into prices. The unpredictability of asset
prices is a cause for concern because of the adverse e�ects it has on the traders.
To gauge this volatility, GARCH class of models is the most appropriate model to
estimate the volatility of the returns of groups of stocks with large number of ob-
servations. The analysis of ARCH and GARCH models and their many extensions
catered many theories of asset pricing and portfolio analysis [5]. Sean et al. used
more complex Neural Network structures such as Recurrent Neural Networks and
Long Short-Term Memory Networks. They have shown Long Short-Term Memory
Network performed the best achieving a prediction accuracy of 52% [4]. Khuat et
al. investigated and compared the e�ectiveness of Fuzzy logic and ANN, to tackle
the �nancial time series stock forecasting problem. The proposed approaches were
tested on the historical price data collected from Yahoo Finance with di�erent
companies [1].

2. Proposed Model

It has been proven that a Multi-layer feed forward fully connected network is able
to approximate any non-linear function and therefore should be a suitable tool to
solve this problem. The input data was normalized in order to avoid over ?tting,
improve the prediction performance, and correct scaling since mean square error
(MSE) training is used here. The formula used for normalizing the data is given
in equation (1).

Scalled data =
x − min(x)

max(x) − min(x)
(1)

The formula above changes the values of all inputs SxS from R to [0,1]. In the for-
ward propagation phase, we walk through the network and compared the received
results with those we expected and are essential to prove how good the model is.
In the backpropagation phase, we aim to make the network learn from its mistake
by starting with the end in mind and working through the system in reverse or-
der. This feedback process gives new, more accurate weights to the initial layer of
arti�cial neurons. Repeating the cycle back and forth number of times (epochs),
makes the prediction accurate enough that it can't be improved any further. The
network is initialized with randomly chosen weights. The gradient of the error
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function is computed and used to correct the initial weights. In a network, using
Bias (b) the output of the neuron is shifted by B. Every node in the neural network
has a weight (w1, . . . , wn) associated with it. If the input to a neuron is x1, . . . , xn,
then the output it produces is given in the following equation (2).

z = b +
n∑

k=1

wkxk (2)

An activation function enables the neuron to convert an input to an output value.
Activation Function is also referred to as Transfer Function. Activation functions
are an extremely important feature of the arti�cial neural networks. They basically
decide whether a neuron should be activated or not. We used logistic sigmoid
function (Range: (0,1); slow convergence) for activation function and is given in
the equation (3).

f(x) =
1

1 + e−x
(3)

The most signi�cant part of an ANN is the dataset. Therefore, in this study, the
historical daily prices of Bitcoin from July 2010 to Feb 2019 is selected and used
for the experiment. The data contains 446 samples. The dependent variable is
the daily price of Bitcoin and the independent variables are trading volume, M2
(Money Supply), volatility and Lag price (previous day price). In this study, 350
samples were used for training the model, 96 samples were used for validating and
50 samples were used for testing. After every iteration the cost function of the
network is used in the update process. The cost function is application dependent.
We used MSE as our cost function in this model.

MSE =

∑n
i=1(Actual output-Target output)

2

n
(4)

Where n is the number of samples, actual output is the network output and target
output is the known value in the data set. After choosing the weights of the net-
work randomly, the backpropagation algorithm is used to compute the necessary
corrections. The algorithm is stopped when the value of the error function becomes
su�ciently small.

3. Results and Discussion

We have done some experiments to �nd the best speci�cation for our model. The
graphs depicted in �gure 1a, 1b and �gure 2a, 2b shows the comparison results for
having single hidden layer and two hidden layers. We have chosen two hidden layers
with nine neurons. The algorithm was stopped at 25000 epochs and the value of
the error function was su�ciently small 0.00039419. For the validation purpose we
used 96 unknown samples and for testing purposes we used 50 samples. The actual
output from the network and the target output comparison graph for validation is
depicted in �gure 3a and for testing depicted in �gure 3b. Accuracy of the network
in the validation phase was 0.86048 and testing phase was 0.94521.
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Conclusion

In this work, we proposed a multi-layer Neural Network model for forecasting the
Bitcoin price so that the traders could bene�t. The computing platform for the
entire experiments was done using MATLAB (MATrix LABoratory) program. The
accuracy of the ANN is convincing. Therefore, Bitcoin traders could look at the
indicators like Volatility, Money Supply, Trading Volume and the Bitcoin lag prices
to forecast the Bitcoin price. We would like to extend this work by introducing
di�erent activation function with hybrid techniques in the ANN model in future.

Figure 1. Single hidden layer with di�erent number of neurons
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Integer divisibility onQ, quantifier elimination and
one Weispfenning’s remark

Mikhail R. Starchak

Abstract. In 1999 V. Weispfenning presented a quantifier elimination proce-
dure for the elementary theory of the structure

〈
R; 0, 1,+,−, [ ],=, <, {n |}n∈N

〉
,

where [ ] is the unary integer part operation, and therefore proved decidability
of this theory. For the integer divisibility relation x | y ⇔ ∃z(Int(z)∧y = z ·x)
on R, he proved undecidability of the elementary theory of the structure
〈R; 0, 1,+,−, [ ],=, <, |〉 and that the theory does not admit quantifier elim-
ination. As a remark, Weispfenning asked whether the positive existential
theory of the same structure is decidable.

A decidability proof for this existential theory is the first result of this
note. We also sketch a proof of the fact that for every positive existential for-
mula of the first-order language with the signature

〈
0, 1,+,−, {c·}c∈Q ,=, 6=,⊥

〉

there is an equivalent in the rationals Q quantifier-free formula of the same
language. Here c· is a unary functional symbol for multiplication by a rational
constant c and x ⊥ y ⇔ Int(x) ∧ Int(y) ∧GCD(x, y) = 1.

Introduction
Let LPrA be the first-order language of the signature 〈0, 1,+,−,=, <, 2 |, 3 |, 4 |, ...〉.
V. Weispfenning [4] considered a natural generalization of Presburger Arithmetic
(PrA) and proved that after adjoining the unary integer part operation [ ] to the
signature of LPrA (this extended language was named L′), for every positive ex-
istential formula we can construct an equivalent in the real numbers R positive
quantifier-free formula [4, Theorem 3.1]. As a corollary, we get decidability of the
elementary theory of the structure 〈R; 0, 1,+,−, [ ],=, <, 2 |, 3 |, 4 |, ...〉 and also a
characterization of the relations, definable in this structure.

If we introduce unary functional symbols c· for multiplication by rational
constants c, we get a quantifier elimination procedure for the elementary theory
of the structure

〈
R; 0, 1,+,−, [ ], {c·}c∈Q ,=, <

〉
. The corresponding language was

named L′′ and let σ′′ be the signature of this language. Then V. Weispfenning
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writes: «By way of contrast, quantifier elimination definitely breaks down if one
admits scalar multiplication by a real parameter or integer divisibility in the lan-
guage. In the latter case the elementary theory of real is in fact undecidable».
Simultaneously with the integer divisibility x | y ⇔ ∃z(Int(z) ∧ y = z · x) it was
also considered the relation x ‖ y 
 Int(x) ∧ Int(y) ∧ x | y. For the structures
〈R; 0, 1,+,−, [ ],=, |〉 and 〈R; 0, 1,+,−, [ ],=, ‖〉 he proved undecidablity of the el-
ementary theories and decidability of the existential theory of the first structure
(it follows from the the Bel’tyukov-Lipshitz theorem [1, 2]). After this proof there
is a remark saying that «We do not know whether a corresponding theorem holds
in the analogous language L′

div», where L′
div is the first-order language of the

signature 〈0, 1,+,−, [ ],=, |〉. We prove that the theory is decidable in section 1.
If we assume that x ⊥ y 
 GCD(x, y) = 1, then for rational numbers x and y

their coprimeness means that these numbers are coprime integers. The elementary
theory of the structure 〈Q;σ〉 admits quantifier elimination (see [4, Corollary 3.5]).
Extend σ′′ by the coprimeness relation ⊥ and dis-equality 6=; exclude the order
relation and the integer part operation. Denote the resulting signature σ⊥. In
section 2 we sketch the proof of the fact that for every positive existential Lσ⊥ -
formula there is an equivalent in Q quantifier-free Lσ⊥ -formula. Note that 〈Q;σ⊥〉
has undecidable elementary theory as a corollary of the undecidability result for
the elementary theory of the structure 〈Z; 0, 1,+,−,=,⊥〉 proved by D. Richard
in [3].

1. One Weispfenning’s remark

Theorem 1. The existential theory of the structure 〈R; 0, 1,+,−, [ ],=, <, |〉 is de-
cidable.

Proof. To prove the theorem we reduce it to the decidable positive existential the-
ory of the structure 〈Q; 0, 1,+,−,=, <, |〉. Its decidability follows from Bel’tyukov-
Lipshitz theorem on decidability of ∃Th〈Z; 1,+, <, |〉. In the first step of the proof
we apply some syntactic transformations of a given formula. For example, using
the formula y =

[
y
x

]
x+

{
y
x

}
x we can define x - y by a positive existential formula

in 〈R; 0, 1,+,−,=, <, |〉. Then we have to prove that this formula is true in R iff
it is true in Q.

Let the formula

ϕ(x) 

∧

i=1..k

gi(x) = 0 ∧
∧

i=k+1..l

fi(x) | gi(x) ∧
∧

i=l+1..m

gi(x) < 0,

be satisfiable in R, where x is a list of variables x1, ..., xn; gi(x) for i ∈ [1..m] and
fj(x) for j ∈ [k + 1..l] are linear polynomials with integer coefficients.

Suppose this formula is true for some real values α1, ..., αn. Then let for
i = k+1..k′ we have gi(α1, ..., αn) = 0 and gj(α1, ..., αn) 6= 0 for every j ∈ [k′+1..l].
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Now define the formula

ϕ′(x) 

∧

i=1..k′

gi(x) = 0∧
∧

i=k′+1..l

fi(x) | gi(x)∧
∧

i=k′+1..l

σi·gi(x) < 0∧
∧

i=l+1..m

gi(x) < 0,

where σi = 1 if gi(α1, ..., αn) < 0 and σi = −1 if gi(α1, ..., αn) > 0 for i = k′+1..l.
Consider the system of linear equations with integer coefficients

∧
i=1..k′

gi(x) =

0. Let Ay + b be a solution set of the system for some rational matrix A, rational
vector b and fresh variables y = y1, ..., yt. Substitute Ay + b for x and get an
equisatisfiable over the reals system of linear inequalities and divisibilities with
rational coefficients

ϕ′′(y) 

∧

i=k′+1..l

f̃i(y) | g̃i(y) ∧
∧

i=k′+1..l

σi · g̃i(y) < 0 ∧
∧

i=l+1..m

g̃i(y) < 0,

such that for every rational solution of ϕ′′(y) we can get a rational solution of
ϕ′(x) and thus of ϕ(x).

Let β1, ..., βt be some real satisfying assignment of ϕ′′(y) Let also the real
numbers {1, γ1, ..., γs} for some s ≤ t be a basis of the linear space over Q generated
by the reals {1, β1, ..., βt}. Each element βi is uniquely represented as ci,0 · 1 +
ci,1 · γ1 + ... + ci,s · γs for i = 1..t, where all ci,j ∈ Q. Define χi(z1, ..., zs) =
ci,0+ ci,1z1+ ...+ ci,szs for i = 1..t, substitute χi(z1, ..., zs) for yi in ϕ′′(y) and get
a new formula

ψ(z) = ϕ′′(χ1(z), ..., χt(z)).

Thus for every rational satisfying assignment of the formula ψ(z) one can get a
rational satisfying assignment of ϕ′′(y), and moreover ψ(γ1, ..., γs) holds.

Rewrite ψ(z) in the following form:
∧

i=1..l′

˜̃
fi(z) | ˜̃gi(z) ∧

∧

i=1..m′

˜̃gi(z) < 0

for some l′ ≤ m′. Consider independently each divisibility ˜̃f(z) | ˜̃g(z) in ψ(z) for
˜̃
f(z) = a0+a1z1+...+aszs and non-zero polynomial ˜̃g(z) = b0+b1z1+...+bszs. We

will show that, actually, ˜̃g(z) is an integer multiple of ˜̃f(z) and thus the divisibility
holds for every values of z.

For some integer w we have w · f(γ1, ..., γs) = g(γ1, ..., γs). Let γ0 = 1,
then assuming that w · aiγi 6= biγi for some i ∈ [0..s], we get that γi(w · ai −
bi) =

∑
j=0..s∧j 6=i

γj(bj − w · aj). But this is impossible since 1, γ1, ..., γs are linearly

independent over Q.
Thus every solution of the subsystem of linear inequalities

∧
i=1..m′

˜̃gi(z) <
0 with rational coefficients is also a solution of ψ(z), and since the system is
consistent in R, there is some rational solution. �
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2. Integer divisibility on Q and quantifier elimination
Theorem 2. For every positive existential Lσ⊥-formula one can construct an equiv-
alent in Q quantifier-free Lσ⊥-formula.

As GCD(x, y) = d⇔ x
d ⊥

y
d , we can consider linear polynomials with rational

coefficients in expressions of the form GCD(f(x), g(x)) = d, f(x) = 0 and f(x) 6= 0.
Elimination of an existential quantifier is based on the following lemma.

Lemma 1. For the system
∧

i∈[1..m]

GCD(ai, bi + x) = di with ai, bi, di ∈ Q and

ai 6= 0, di > 0 for every i ∈ [1..m], we define for every prime p the integer
Mp = max

i∈[1..m]
vp(di) and the index sets Jp = {i ∈ [1..m] : vp(di) =Mp} and Ip =

{i ∈ Jp : vp(ai) > Mp}. Then the system has a solution in Q iff the following
conditions simultaneously hold:
(i)

∧
i∈[1..m]

di | ai
(ii)

∧
i,j∈[1..m]

GCD(di, dj) | bi − bj
(iii)

∧
i,j∈[1..m]

GCD(ai, dj , bi − bj) | di
(iv) For every prime p ≤ m and every I ⊆ Ip such that |I| = p there are such

i, j ∈ I, i 6= j that vp(bi − bj) > Mp.

In our case in place of ai and bi there will be some linear polynomials with
rational coefficients.

As a corollary, we get that the relation x 6⊥ y is not positively existentially
definable in this structure as otherwise the theory Th〈Q; 0, 1,+,−,=,⊥〉 is decid-
able.

Conclusion
It is natural to ask for the following generalization of both Weispfenning’s main
theorem and Theorem 2. How the signature σ =

〈
0, 1,+,−, [ ], {c·}c∈Q ,=, <,⊥

〉

can be extended with some predicates, positively existentially definable in 〈Q;σ〉,
such that for every positive existential formula there is some equivalent in this
structure quantifier-free formula?
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Symmetric polynomials, exterior power
of the polynomial ring in one variable

Timur R. Seifullin

Abstract. We consider the r-th exterior power of the polynomial ring in one
variable as a module over a ring of symmetric polynomials in r variables.
It was obtained expliit expressions of symmetric polynomials via elementary
symmetric polynomials.

Mathematics Subject Classification (2000). 15A69,15A75,15A72,13B25.

Keywords. Grassmann algebra, symmetric polynomial, elementary symmetric
polynomial.

Let R be a commutative ring, x be a variable. R[x]⊗r is a commutative algebra
over R as tensor product of commutative algebras over R.

There is an isomorphism of algebras over R

ν : R[xi|i=1,r] → R[x]⊗r, xi 7→ 1⊗(i−1)⊗x⊗1⊗(r−i) for i=1, r.

The isomorphism ν induces the isomorphisms of algebras over R

tsr(R[xi|i=1,r]) → TSr(R[x]).

Here

tsr(R[xi|i=1,r]) is the set of all symmetric polynomials in R[xi|i=1,r],

TSr(R[x]) is the set of all symmetric tensors in R[x]⊗r.
∧r

(R[x]) is a modules over TSr(R[x]).

Then by the isomorphism ν
∧r

(R[x]) is a module over tsr(R[xi|i=1,r]),

Elementary symmetric polynomials σp(xi|i=1,r) are coefficients of the polynomial
r∏
i=1

(x−xi) =
r∑
p=0

σp(xi|i=1,r)·xr−p.
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Theorem 1. Let ∆=2, r=3, d=r−1,

hi(x) =
d+∆∑
δ=0

hi,δ·xδ for i=1, r,

S(x1, x2, x3) = det

∥∥∥∥∥∥∥∥∥∥

σ0 h1,4 h2,4 h3,4

σ1 σ0 h1,3 h2,3 h3,3

σ2 σ1 h1,2 h2,2 h3,2

σ3 σ2 h1,1 h2,1 h3,1

σ3 h1,0 h2,0 h3,0

∥∥∥∥∥∥∥∥∥∥

.

Then

S(x⊗1⊗1, 1⊗x⊗1, 1⊗1⊗x)·(x2∧x1∧x0) = h1(x)∧h2(x)∧h3(x).

The last is equivalent to

S(x1, x2, x3)·det

∥∥∥∥∥∥

x2
1 x1

1 x0
1

x2
2 x1

2 x0
2

x2
3 x1

3 x0
3

∥∥∥∥∥∥
= det

∥∥∥∥∥∥

h1(x1) h2(x1) h3(x1)
h1(x2) h2(x2) h3(x2)
h1(x3) h2(x3) h3(x3)

∥∥∥∥∥∥
.

Theorem 2. Let ∆=2, r=3, d=r−1,

S(x1, x2, x3) ∈ tsr(R[(xi)
≤∆|i=1,r]).

If

S(x⊗1⊗1, 1⊗x⊗1, 1⊗1⊗x)·(x2∧x1∧x0) =
∑

(hq1(x)∧hq2(x)∧hq3(x)|q∈Q),

where

hqi (x) =
d+∆∑
δ=0

hqi,δ·xδ for i=1, r, for q∈Q,

then

S(x1, x2, x3) =
∑
q∈Q

det

∥∥∥∥∥∥∥∥∥∥

σ0 hq1,4 hq2,4 hq3,4
σ1 σ0 hq1,3 hq2,3 hq3,3
σ2 σ1 hq1,2 hq2,2 hq3,2
σ3 σ2 hq1,1 hq2,1 hq3,1

σ3 hq1,0 hq2,0 hq3,0

∥∥∥∥∥∥∥∥∥∥

.

The first is equivalent to

S(x1, x2, x3)·det

∥∥∥∥∥∥

x2
1 x1

1 x0
1

x2
2 x1

2 x0
2

x2
3 x1

3 x0
3

∥∥∥∥∥∥
=
∑
q∈Q

det

∥∥∥∥∥∥

hq1(x1) hq2(x1) hq3(x1)
hq1(x2) hq2(x2) hq3(x2)
hq1(x3) hq2(x3) hq3(x3)

∥∥∥∥∥∥
.

Thus tsr(R[(xi)
≤∆|i=1,r]) ⊆ tsr(R[(xi)

≤1|i=1,r])
∆.
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Theorem 3. Let ∆=3, r=3, d=3,

hi(x) =
d+∆∑
δ=0

hi,δ·xδ for i=1, r.

Then

h1(x)∧h2(x)∧h3(x)

= det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ0 h1,6 h2,6 h3,6

σ1 −1 h1,5 h2,5 h3,5

σ2 −1 σ0 h1,4 h2,4 h3,4

σ3 −1 σ1 σ0 h1,3 h2,3 h3,3

−1 σ2 σ1 h1,2 h2,2 h3,2

σ3 σ2 h1,1 h2,1 h3,1

σ3 h1,0 h2,0 h3,0

∧ x3 x2 x1 x0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Thus
∧r

(R[x]≤d+∆) ⊆ tsr(R[(xi)
≤∆|i=1,r])·

∧r
(R[x]≤d).

Denote by ∇(x1, x2;x)∗ a map R[x] → R[x1, x2] ' R[x]⊗R[x] such that

(x1−x2)·(∇(x1, x2;x)∗ F (x)) = F (x1)−F (x2).

Then ∇(x1, x2;x)∗ is a cocommutative and coassociative coproduct. By a coasso-
ciativity of the the coproduct ∇(x1, x2;x)∗ it determines the coproduct

∇(xi|i=1,r;x)∗: R[x] → R[xi|i=1,r] ' R[x]⊗r.

Lemma 1. Let x be a variable, F (x) be a polynomial. Then

1. (∇(xi|i=1,r;x)∗ F (x))·det
∥∥xr−ji

∥∥i=1,r

j=1,r
= det

∥∥F (xi) xr−ji

∥∥i=1,r

j=2,r−1
.

2. det
∥∥xr−ji

∥∥i=1,r

j=1,r
=

r−1∏
k=1

(
r∏

i=k+1

(xi−xk)) =
∏

i,k:i>k

(xi−xk).

Let xi = 1⊗(i−1)⊗x⊗1⊗(r−i) for i = 1, r, then 1 of lemma 1 is equivalent to

(∇(xi|i=1,r;x)∗ F (x))·(
r∧
j=1

xr−j) = F (x)∧(
r∧
j=2

xr−j).
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Let d=3, r=4, ∆=r−1,

x1 = x⊗1⊗1⊗1, x2 = 1⊗x⊗1⊗1, x3 = 1⊗1⊗x⊗1, x4 = 1⊗1⊗1⊗x,

F (x) =
d+∆∑
δ=0

Fδ·xδ,

then 1 of lemma 1 is equivalent to

(∇(x1,x2,x3,x4;x)∗ F (x))·(x3∧x2∧x1∧x0) = F (x)∧x2∧x1∧x0,

and by of theorem 1

∇(x1, x2, x3, x4;x)∗ F (x)

= det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ0 F6

σ1 σ0 F5

σ2 σ1 σ0 F4

σ3 σ2 σ1 F3

σ4 σ3 σ2 F2 1
σ4 σ3 F1 1

σ4 F0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= det

∥∥∥∥∥∥∥∥

σ0 F6

σ1 σ0 F5

σ2 σ1 σ0 F4

σ3 σ2 σ1 F3

∥∥∥∥∥∥∥∥
.

Timur R. Seifullin
V. M. Glushkov Institute of Cybernetics
National Academy of Sciences of Ukraine
e-mail: timur sf@mail.ru
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On probability distributions for the boundary states
of the Hilbert-Schmidt ensemble of qudits

Vahagn Abgaryan, Arsen Khvedelidze, Ilya Rogojin and Astghik
Torosyan

Let H be an n−dimensional Hilbert space and unitary group U(H) acts on it
preserving the standard Hermitian product. The setPn of density states % of an n−
dimensional quantum system is distinguished in the cone of non-negatively defined
operators on H by the equation Tr(%) = 1 and can be regarded as embedded in
the dual u∗(n) of the Lie algebra u(n).

It is known that the space Pn of quantum states is not a differential manifold
with smooth boundary. It is a stratified space, the union of different strata Pk

n

labelled by the rank k = 1, 2, . . . n of the quantum state, dim(Pk
n) = 2nk− k2− 1

[1]. However, from the standpoint of dynamics of closed quantum system, it is
often important to consider decomposition of the state space Pn according to the
unitary evolution. In this case a natural decomposition of the state space Pn based
on the coadjoint action of the unitary group U(H) is relevant. The (co)adjoint
action of the group U(H) in u∗(n) induces a corresponding non-transitive action
on Pn and thus different dimension if k > 1. Since the interior of the state space
Pn is a submanifold of the affine subspace of Hermitian operators of a unit trace,
non-trivial differential structures in this stratification pattern appear only for the
boundary ∂Pn, consisting of those density states % for which det(%) = 0.

In the present report, we will describe generic features of a geometry of the
boundary ∂Pn, particularly, its Riemannian characteristics in relation with the
probability distributions of random states from the Hilbert-Schmidt ensemble of
n-dimensional states, i.e., qudits.

An introduction of the notion of a distance between quantum states allows
one to endow a quantum state space P with a metric structure and thus consider
P as a Riemannian manifold. This enables us to relate geometrical concepts to a
physical ones and use these concepts for studies of statistical properties of quantum
systems [2]. The aim of our studies is a derivation of the probability distributions
on the boundary ∂Pn, starting from the flat Hilbert-Schmidt metric on u∗(n) [3].
It will be shown that an inherited metric on subsets Pk

n gives rise to the joint
probability density of a random rank-deficient states % ∈ Pk

n, k < n, with real
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eigenvalues 1 > λ1 > λ2 > · · · > λk > 0 of the so-called β- Wishart-Laguerre
ensemble [4, 5]:

Pα,βn (λ1, λ2, . . . , λk) = Cn,α,β |∆k({λ})|β
k∏

s=1

λαs e
− 1

2βλs ,

where Cn,α,β is a normalization factor, ∆k({λ}) is the Vandermonde determinant.
The equation defining parameters α and β as function of the stratumPk

n is derived
considering the induced metric on the degenerate unitary orbits O% ∈ Pk

n .
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Waring Problem as an Issue of
Polynomial Computer Algebra

Nikolai Vavilov

Abstract. In its original XVIII century form the classical Waring problem
consisted in finding for each natural k the smallest such s “ gpkq that all
natural numbers n can be written as sums of s non-negative k-th powers,
n “ xk

1 ` . . . ` xk
s . In the XIX century the problem was modified as the

quest of finding such minimal s “ Gpkq that almost all n can be expressed
in this form. In the XX century this problem was further specified, as for
finding such Gpkq and the precise list of exceptions. In the present talk I
sketch the key steps in the solution of this problem, with a special emphasis
on algebraic and computational aspects. I describe various connections of
this problem, and its modifications, such as the rational Waring problem, the
easier Waring problem, etc., with the current research in polynomial computer
algebra, especially with identities, symbolic polynomials, etc. and promote
several outstanding computational challenges.

Introduction
In this talk I plan to describe the status of the classical Waring problem, its
versions and variants. The XVIII century Waring problem has been mostly solved.
Not by Hilbert in 1909, of course, as many people misguidedly believe, but mostly
by Dickson in 1936 (the outstanding small cases k “ 6, 5, 4 were then settled in
1940, 1964 and 1984, respectively, see § 1 and § 6 for details). But already its
XIX century version suggested by Jacobi, not to say all other major XIX and XX
century variations, are widely open, as of today.

My objective is to attract attention to some algebraic and computational
aspects of the Waring problem in the spirit of reconnecting with the goddess
Namakkal, as described in [40]. Here I focus mostly on the related polynomial and
rational identities, conjectural answers, and explicit lists of exceptions, many more
details and further aspects can be found in [41, 42].

The present work was supported by the RFBR project N.19-29-14141.
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1. Waring problem
Here we take a quick glance at some facets of what is known as the Waring problem.
There are many further aspects to be featured in a more systematic treatment,
as well as oodles of various generalisations and related problems, some of them
mentioned towards the end of the present abstract and discussed in [41, 42].

1.1. Original Waring problem
Guided by the analogy with Lagrange’s four squares theorem and scarce numerical
evidence in 1770–1772 Waring and J. A. Euler (= Euler jr.) proposed what later
became known as the [classical] Waring problem, see [14].

‚ Waring problem. Find for each natural k the smallest s “ gpkq such that
every natural number n can be expressed as the sum of k-th powers of non-negative
integers

n “ xk1 ` . . .` x
k
s ,

with s summands.
Actually, Waring conjectured that gp3q “ 9 and gp4q “ 19, while J. A. Euler

made similar prediction for all values of gpkq:

gpkq “ 2k ` q ` 2,

where 3k “ q ¨ 2k ` r, 1 ď r ď 2k ´ 1, = the ideal Waring theorem.
In this form Waring problem was essentially solved in 1909–1984.
‚ In 1909 Wieferich [48] established that gp3q “ 9, gaps in his proof were

later filled up by Kempner [24] in 1912 and by Dickson in 1927.
‚ For k ě 7 the problem was solved by Dickson [15, 16] and Pillai in 1936,

modulo the Pillai conjecture that q` r ď 2k. They also compute the precise value
of gpkq when Pillai conjecture fails. But there is every reason to believe that Pillai
conjecture holds for all k. Firstly, it may fail at most for finitely many values of k.
Secondly, it holds for all k ă 5 ¨ 108. And there is much more compelling evidence
than that.

‚ The three remaining values gp6q “ 73, gp5q “ 37 and gp4q “ 19 were com-
puted by Pillai [28] in 1940, by Chen Jing-run [5] in 1964, and by Balasubramanian,
Deshouillers and Dress [1] in 1984, respectively.

1.2. Asymptotic Waring problem
However, in XIX–XX centuries this problem was remodeled as follows.

‚ Asymptotic Waring problem. Find for each natural k the smallest s such
that almost all natural numbers n can be expressed as the sum of k-th powers of
non-negative integers n “ xk1 ` . . .` x

k
s , with s summands.

Clearly, the specific purport of this problem depends on the precise meaning
of the expression almost all . The two most common interpretations are as follows:

‚ According to Jacobi as “all, except a finite number” = “all starting from a
certain value”. The corresponding minimal s is denoted by Gpkq.
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‚ According to Hardy—Littlewood in the sense of natural density . There
can be inifinitely many exceptions, but they become progressively more rare, their
number grows as opnq. The corresponding minimal s is denoted by G`pkq.

However apart from the case of squares G`p2q “ Gp2q “ gp2q “ 4 that was already
known to Lagrange, and a few more values such as Gp4q “ 16, G`p4q “ 15, as
of today, the asymptotic Waring problem is very far from being solved in either
sense.

1.3. Algorithmic Waring problem
However, with the advent of computers this problem was reformulated once again
as something terribly much more ambitious.

‚ Waring problem, XX century version. Find Gpsq as above and the ex-
plicit list of exceptions. Construct an algorithm that for a given n finds a shortest
expression of n as the sum of k-th powers (or, preferably, all such expressions).

In this form the problem seems to be quite recalcitrant. The only non-trivial
case, for which Waring problem is fully solved in this form is that of biquadrates,
see § 6. The only other case, for which the problem is fully stated in this form is
that of cubes. However, for cubes we are nowhere near its solution and even the
statement itself required thumping calculations, see § 5. For fifth powers it seems
we are not even close to being able to state the problem in this form, see § 7.

1.4. Easier Waring problem
In the 1930-ies several mathematicians started to systematically consider the fol-
lowing version of Waring problem, which turned out to be much harder than the
original Waring problem and is still unsolved even today.

‚ Easier Waring problem. Find for each natural k the smallest s “ vpkq such
that all natural numbers n can be expressed as sums/differences of k-th powers of
integers

n “ ˘xk1 ˘ x
k
2 ˘ . . .˘ x

k
s .

This is what Hardy and Wright call “sums affected with signs” and what
Habsieger renamed signed Waring problem. They prove an obvious bound vpkq ď
2k ` pk!q{2, [21], Theorems 400 and 401. There is a much better upper bound
vpkq ď Gpkq ` 1, of course. However, the explicit value of vpkq is not known even
for k “ 3.

1.5. Rational Waring problem
Actually, there are further versions of Waring problem, also known since the early
XIX century.

‚ Rational Waring problem. Find for each natural k the smallest s “ ρpkq
such that every rational number x can be expressed as sums/differences of k-th
powers of rational numbers n “ ˘xk1 ˘ . . .˘ xks .
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‚ Positive rational Waring problem. Find for each natural k the smallest s
such that every positive rational number x can be expressed as the sum of k-th
powers of non-negative rational numbers x “ xk1 ` . . .` x

k
s .

These problems are closely related to another classical problem.

‚Waring problem at zero. Find for each natural k the smallest s “ θpkq such
that 0 can be non-trivially expressed as sums/differences of k-th powers of integers
˘xm1 ˘ x

k
2 ˘ . . .˘ x

k
s “ 0.

The existence of Pythagorean triples implies that θp2q “ 3. The great Fermat
theorem is the claim that θpkq ě 4 for all k ě 3. Using the geometry of elliptic
curves, Fermat and Euler have proven that indeed Fermat equations x3 ` y3 “ z3

and x4 ` y4 “ z4 have no non-trivial solutions, and thus θp3q “ 4 (Plato’s cubes!)
and θp4q ě 4. Euler even made a much stronger claim that θpkq ě k` 1, but that
turned out to be both wrong and false. In particular, already θp4q “ 4. Similarly,
4 ď θp5q ď 5, but it is unknown, whether the precise value is 4 or 5.

2. Polynomial identities in the classical Waring problem

Here we display some assorted classical identities used to estimate gpkq. In my
view, they deserve a serious further scrutiny, and with the tools of polynomial
computer algebra we can now start a systematic search for new such identities.

2.1. Tardy type identities
Already in Euclid’s “Elements” one can find the identity 4xy “ px`yq2´px´yq2,
later reproduced by Diophantus. Gauss generalised it to cubes

24xyz “ px` y ` zq3 ´ px` y ´ zq3 ´ px´ y ` zq3 ` px´ y ´ zq3.

In 1851 Tardy observed a similar identity for biquadrates

192xyzw “ px` y ` z ` wq4 ´ px` y ` z ´ wq4 ´ px` y ´ z ` wq4

´ px´ y ` z ` wq4 ` px` y ´ z ´ wq4 ` px´ y ` z ´ wq4

` px´ y ´ z ` wq4 ´ px´ y ´ z ´ wq4

and all further powers, and thus gave the first solution of the [cheap] rational
Waring problem. This was clearly the starting point for Liouville and all subse-
quent development (Tardy was his student in Paris). Tardy identities were then
rediscovered by Boutin in 1910.

2.2. Liouville type identities
The first non-trivial estimate for gpkq for any k ě 3 in Waring problem was
obtained by Liouville some time before 1859, who proved that gp4q ď 53. His
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proof begins with the following identity. Let 2n “ x2 ` y2 ` z2 ` w2, then

6n2 “ x4 ` y4 ` z4 ` w4 `

´

px` y ` z ` wq{2
¯4

`

´

px` y ` z ´ wq{2
¯4

`

´

px` y ´ z ` wq{2
¯4

`

´

px` y ´ z ´ wq{2
¯4

`

´

px´ y ` z ` wq{2
¯4

`

´

px´ y ` z ´ wq{2
¯4

`

´

px´ y ´ z ` wq{2
¯4

`

´

px´ y ´ z ´ wq{2
¯4

.

Later, Hurwitz and Venkov gave an interpretation of this identity in terms of
integral quaternions, whereas Lucas has rewritten it in the form

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4,

where both sums in the right-hand-side are taken over all 1 ď i ă j ď 4. Clearly,
Lucas identity readily generalises:

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4 ´ 2

ÿ

x4h,

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5 ` x

2
6

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4 ´ 4

ÿ

x4h,

and similarly for any m, where the sums are taken over 1 ď i ă j ď m, 1 ď h ď m.

2.3. Maillet and Wieferich identities
To give a first non-trivial estimate of gp3q Maillet used the following identity:

6xpx2`y2`z2`w2q “ px`yq3`px´yq3`px`zq3`px´zq3`px`wq3`px´wq3.

He himself derived this identity differently, but retrospectively, it is simply the
derivative of the Liouville identity in Lucas form. Later, Linnik has used a more
general identity

4px31 ` y
3
1 ` x

3
2 ` y

3
2 ` x

3
3 ` y

3
3q “ px1 ` y1q

3 ` px2 ` y2q
3 ` px3 ` y4q

3`

3
`

px1 ` y1qpx1 ´ y1q
2 ` px2 ` y2qpx2 ´ y2q

2 ` px3 ` y3qpx3 ´ y3q
2
˘

.

in his proof of the seven cube theorem.
Later, Maillet obtained a similar estimate for fifth powers, and Wieferich [47]

explicitly produced the corresponding identity

2x
´

22 ¨ 3 ¨ 5p43x2 ` y2 ` z2 ` w2q2 ´ 22 ¨ 1579x4
¯

“

p8x` yq5 ` p8x´ yq5 ` p8x` zq5 ` p8x´ zq5 ` p8x` wq5 ` p8x´ wq5`

px` y ` z ` wq5 ` px` y ` z ´ wq5 ` px` y ´ z ` wq5 ` px´ y ` z ` wq5`

px` y ´ z ´ wq5 ` px´ y ` z ´ wq5 ` px´ y ´ z ` wq5 ` px´ y ´ z ´ wq5.

In the same paper Wieferich used also a similar identity for seventh powers, which
we do not reproduce here.
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2.4. Fleck, Hurwitz and Schur identities
In 1907 Fleck came up with a similar identity for the 6-th powers,

60px2 ` y2 ` z2 ` w2q3 “ 36px6 ` y6 ` z6 ` w6q`

2
`

px` yq6 ` px´ yq6 ` . . .` pz ` wq6 ` pz ´ wq6
˘

`

px` y ` zq6 ` px´ y ` zq6 ` px` y ´ zq6 ` px´ y ´ zq6 ` . . .` py ´ z ´ wq6,

there are 12 summands in the second line (the choice of a pair, and a sign), and
16 summands in the third line (the choice of a triple and two independent choices
of signs), 32 summands in total.

The same year Hurwitz has discovered the identity for 8-th powers,

5040px2 ` y2 ` z2 ` w2q4 “ 6
`

p2xq8 ` p2yq8 ` p2zq8 ` p2wq8
˘

`

60
`

px` yq8 ` px´ yq8 ` . . .` pz ` wq8 ` pz ´ wq8
˘

`

p2x`y`zq8`p2x´y`zq8`p2x`y´zq8`p2x´y´zq8` . . .`p´y´z`2wq10`

6
`

px` y ` z ` wq8 ` px` y ` z ´ wq8 ` . . .` px´ y ´ z ´ wq8
˘

.

and conjectured the existence of such similar identities expressing [some multiple
of] px2` y2` z2`w2qk as the sum of 2k-th powers of linear forms in x, y, z, w for
all k. The next such identity was indeed constructed the same year by Schur,

22680px2 ` y2 ` z2 ` w2q5 “ 9
`

p2xq10 ` p2yq10 ` p2zq10 ` p2wq10
˘

`

180
`

px` yq10 ` px´ yq10 ` . . .` pz ` wq10 ` pz ´ wq10
˘

`

p2x`y`zq10`p2x´y`zq10`p2x`y´zq10`p2x´y´zq10`. . .`p´y´z`2wq10`

9
`

px` y ` z ` wq10 ` px` y ` z ´ wq10 ` . . .` px´ y ´ z ´ wq10
˘

,

Observe that these identities have 12 summands in the second line (the choice of
a pair and a sign), 48 summands in the third line (the choice of one position out
of four for the coefficient 2, the choice of one of the three remaining positions for
the coefficient 0 and two independent choices of signs), and, finally, 8 summands
in the last line (three independent choices of signs for all positions other than the
first one), 72 summands in total.

2.5. Hilbert type identities
In 1909 Hilbert [22] solved a cheap version of the classical Waring problem =
mere finiteness of gpkq, without computing the actual value, or actually providing
any estimate of gpkq. As part of his solution, Hilbert verified the above Hurwitz
conjecture. In fact, he has proven that there exist identities expressing k-th power
of the sum of m squares as positive linear combinations of q “

`

2k`1
m

˘

expressions
which are p2kq-th powers of linear forms :

apx21 ` . . .` x
2
mq

k
“ a1pb11x1 ` . . .` b1mxmq

2k
` . . .`aqpbq1x1 ` . . .` bqmxmq

2k
,

where a, ai P N and bij P Z, for 1 ď i ď q, 1 ď j ď m.
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Actually in his solution of the cheap Waring problem Hilbert only used the
identities for m “ 5, but his method is quite general and allows to prove the
existence of similar identities Hilbert identities for arbitrary m and k. His proof
is a pure existence proof and, in its original form, does not give any estimate on
the size of the coefficients.

A posteriori, many further such identities were explicitly written. Say, by
Kürschak [25] in 1911, for k “ 2 and m ” 1 pmod 3q:

60
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5 ` x

2
6 ` x

2
7

˘2
“
ÿ

pxi ˘ xj ˘ xhq
4,

672
`

x21 ` x
2
2 ` x

2
3 ` . . .` x

2
9 ` x

2
10

˘2
“
ÿ

pxi ˘ xj ˘ xh ˘ xlq
4,

etc. By Kempner [24] in 1912, for m “ 4 and k “ 6, 7. Note also the next Fleck
identity

60
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5

˘3
“
ÿ

pxi ˘ xj ˘ xhq
6 ` 36

ÿ

x6l ,

and the like. Some estimates on the size of coefficients in Hilbert identities were
later produced by Rieger, Pollack and Nesterenko [35, 29, 27] in the process of
effectivisation of Hilbert’s proof, but they have not attempted to come up with
the actual coefficients.

The following problem seems to be extremely significant not just as a direct
mathematical and computational challenge, but also as a methodological, historical
and philosophical issue.

Problem 1. Can one solve the original Waring problem with Hilbert’s approach?

If mathematics is what we think it is, this should be possible. Personally, I
would feel very disappointed should Wieferich [48] proof of the equality gp3q “ 9
and the estimate gp4q ď 30 Dress [17] remain the best and only partial solutions
obtained along these lines.

However, it will be by no means easy.

Problem 2. Implement a systematic computer search of Hilbert type and similar
identities with small coefficients.

3. Polynomial identities in the easier and rational Waring problems
Identities that allow to give estimates of vpkq and ρpkq are shorter and [in a sense]
easier, but much less understood, than the identities used to estimate gpkq.

3.1. Richmond identity, Norrie identity, and beyond
Actually, Tardy identities and all such further uniform series of identities give
vastly exaggerated upper bounds for ρpkq in the rational Waring problem. So
far, getting the best possible estimate required separate clever identities in each
individual case.
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Below we reproduce two such classical identities, stemming from 1920-ies,
Richmond identity for cubes

x “

ˆ

x3 ´ 36

32x2 ` 34x` 36

˙3

`

ˆ

´x3 ` 35x` 36

32x2 ` 34x` 36

˙3

`

ˆ

33x2 ` 35x

32x2 ` 34x` 36

˙3

and Norrie identity for biquadrates

x “

ˆ

a2pa8 ´ b8 ` 2xq

2pa8 ´ b8q

˙4

´

ˆ

a2pa8 ´ b8 ´ 2xq

2pa8 ´ b8q

˙4

`

ˆ

2a4x´ b4pa8 ´ b8q

2abpa8 ´ b8q

˙4

´

ˆ

2a4x` b4pa8 ´ b8q

2abpa8 ´ b8q

˙4

.

There were similar identities for k “ 5, 6, 7, 8, 9, but they are constructed ad hoc,
and there is no clear pattern as to their shape. Compare, in particular, Choudhry
or Reynya [6, 7, 8, 33, 34].

3.2. Rao and Vaserstein identities, and beyond
However, the works by Habsieger [19, 20] give some hope. Imitating the classical
Rao identity for sixth powers,

12abcdpc4 ´ d4qpa24 ´ b24qx “

pa5c` bdxq6 ` pa5d´ bcxq6 ` pb5c´ adxq6 ` pb5d` acxq6

´ pa5c´ bdxq6 ´ pa5d` bcxq6 ´ pb5c` adxq6 ´ pb5d´ acxq6.

Vaserstein [38] discovered a similar identity for eighth powers. Habsieger [20] has
rewritten Vaserstein identity in the following more symmetric form:

16puvwq6pu48v64 ` v48w64 ` w48u64 ´ u48w64 ´ v48u64 ´ w48v64qy “

pu7v10 ` u5w6yq8 ` pu7w10 ´ u5v6yq8 ` pv7w10 ` v5u6yq8

` pu7u10 ´ v5w6yq8 ` pw7u10 ` w5v6yq8 ` pw7v10 ´ w5u6yq8

´ pu7v10 ´ u5w6yq8 ´ pu7w10 ` u5v6yq8 ´ pv7w10 ´ v5u6yq8

´ pu7u10 ` v5w6yq8 ´ pw7u10 ´ w5v6yq8 ´ pw7v10 ` w5u6yq8

At this point the link to the representation theory of finite groups becomes obvious,
and Habsieger [19, 20] is able to construct many similar symmetric identities.

Problem 3. Is it possible to construct series of rational identities of all degrees that
would give correct bound in the easier Waring problem and in the rational Waring
problem?

3.3. Becker type identities
In 1979 Becker [2] constructed analogues of Hilbert identities

pxl1 ` . . .` x
l
mq

k
“ f1px1, . . . , xmq

lk
` . . .` fqpx1, . . . , xmq

lk
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for arbitrary k, l,m. However, for l ě 4 the fj ’s here have to be rational functions
rather than polynomials. If they had been polynomials, they are bound to be linear
forms, which immediately leads to a contradiction.

I plan to demonstrate some such explicit identities in my talk.

3.4. Frolov type identities
There are another type of identities that were used in the easier Waring problem,
which come from the solution of Prouhet—Tarry—Escott problem, and which
oftentimes lead to better bounds for vpkq, than the bounds obtained via the above
symmetric identities.

Recall that, given natural numbers s and k with s ą k, the Prouhet—Tarry—
Escott problem (or simply PTE for short) asks, whether there are distinct multisets
of integers, say X “ rx1, . . . , xss and Y “ ry1, . . . , yss, such that

xi1 ` . . .` x
i
s “ yi1 ` . . .` y

i
s, j “ 1, . . . , k.

Hosts of special/partial solutions to this problem were constructed in the late XIX
century and in the early XX century.

The relevance of PTE resides in the fact that every such solution leads to the
corresponding Frolov identity

pt` x1q
k ` . . .` pt` xsq

k “ pt` y1q
k ` . . .` pt` ysq

k.

These and similar identities were extensively used by Demianenko, Revoy
[31, 32] and others to obtain sharper bounds in the easier Waring problem.

4. Vinogradov’s method
In the early 1920-ies Hardy and Littlewood considered the generating function

fkpzq “ 1` z1
k

` z2
k

` z3
k

` . . .

Then the coefficient rk,spnq of zn in the series

fkpzq
s “ 1`

8
ÿ

n“1

rk,spnqz
n

equals the number of representations of n as the sum of k-th powers of s non-
negative integers. In particular, the original Waring conjecture is equivalent to the
claim that r3,9pnq ‰ 0, that r4,19pnq ‰ 0, that r5,37pnq ‰ 0, etc., for all natural n.
Side remark. Actually, Hardy and Littlewood considered a slightly different gen-
erating function, namely fkpzq “ 1 ` 2z1

k

` 2z2
k

` 2z3
k

` . . . But this is pure
fetishism, explained by the fact that for k “ 2 such a choice of the generating
function leads to the Jacobi theta-function, and explicit computation of r2,spnq.
We do not know, what could be a correct choice of the coefficients in the gener-
ating function that would produce a similar theory for higher degrees. If we do
not attempt to calculate explicit values, but are interested only in the asymptotic
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behaviour of rk,spnq, the specific choice of the generating function does not play
any role anyway.

As a function of the complex variable z P C this series converges inside the
unit disk, but the circle |z| “ 1 consists entirely of singular points. The idea of the
circle method is to use the Cauchy formula

rk,spnq “
1

2πi

ż

C

fkpzq
s

zn`1
dz,

where C is the circle of radius 0 ă ρ ă 1, and then to estimate this integral when
ρ ÝÑ 1, using the character of singularities on the unit circle.

In the late 1920-ies Vinogradov proposed a radical simplification of this
method. Namely, he noticed that if we are interested in the number of repre-
sentations of a specific n as the sum of s non-negative k-th powers, then we do
not have to look at the whole generating function, as Hardy and Littlewood did.
In fact, the whole infinite tail of the generating function does not play any role,
we can limit ourselves with the polynomial

fk,N pzq “ 1` z1
k

` z2
k

` . . .` zN
k

.

Then the coefficient rNk,spnq of z
n in the polynomial

fk,N pzq
s “ 1`

sN
ÿ

n“1

rNk,spnqz
n

equals the number of representations of n as the sum of k-th powers of ď s integers
1 ď m ď N .

Clearly, the integers m such that mk ą n cannot occur in such a represen-
tation. Thus, for any N ě k

?
n one has rNk,spnq “ rk,spnq. Thus, in Vinogradov’s

method the passage to limits still occurs, but now we can from the onset assume
that ρ “ 1 and calculate the limit as N ÝÑ 8, which is a dramatic technical
simplification.

It was precisely this idea that allowed to improve bounds on Gpkq from ex-
ponential in k to polynomial in k (and, eventually, to almost linear in k). It was
precisely the huge gap between the expected exponential bound for gpkq and the
polynomial bound for Gpkq that allowed to apply Dickson’s ascent.

Problem 4. Can one solve the original Waring problem as a problem of polynomial
computer algebra by directly verifying that for any k and n and any N ě k

?
n there

exists an s such that rNk,spnq ‰ 0?

The idea is to try to explicitly process fk,N as symbolic polynomials in the
fashion of Steven Watt [43, 44, 45, 46].

5. Algorithmic Waring problem for cubes
In 1909 Landau proved by the methods of elementary analytic number theory
that Gp3q ď 8, in other words, almost all positive integers are sums of ď 8 positive
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cubes. Indeed, in 1939 Dickson established that the only positive integers that
require 9 cubes are 23 and 239. In 1943 Linnik proved his famous seven cubes
theorem asserting that Gp3q ď 7. A few years ago this result was made explicit.

5.1. Experimental evidence for cubes.
Based on extensive computer calculations, asymptotics in the Hardy—Littlewood
theory, and probabilistic trials Romani stated the following conjectures [36].

‚ Problem of seven cubes. There are exactly 15 natural numbers that can
be expressed as sums of eight , but not of seven non-negative cubes, the largest of
them being 454.

‚ Problem of six cubes. There are exactly 121 natural numbers that can be
expressed as sums of seven, but not of six non-negative cubes, the largest of them
being 8042.

‚ Problem of five cubes. There are exactly 3922 natural numbers that can be
expressed as sums of six , but not of five non-negative cubes, the largest of them
being 1290740.

As a further evidence for that in 1999 Bertault, Ramaré and Zimmerman [3]
established that all integers between 1290740 and 3.375 ¨ 1012 can be expressed as
sums of five cubes, which by Dickson’s ascent implies that all integers between 455
and 2.5 ¨1026 can be expressed as sums of seven cubes. The same year Deshouillers,
Hennecart and Landreau [11] extended these calculations to 1016.

The largest natural number known today that requires exactly five cubes
is 7373170279850. In 1999 Deshouillers, Hennecart and Landreau [11] stated the
following conjecture (l. c., Conjectures 1 and 2):

‚ Problem of four cubes. There are exactly 113936676 natural numbers that
can be expressed as sums of five, but not of four non-negative cubes, the largest
of them being 7373170279850.

5.2. Problem of seven cubes.
In 2005 Ramaré published yet another effectivisation of Linnik’s theorem: all in-
tegers

n ě e205000 « 2.3377074809 ¨ 1089030.

can be expressed as sums of seven cubes. The improvement was based on the
Bombieri identity

2pu6v6 ` u6w6 ` v6w6qa3 ` 6au2v2w2px2 ` y2 ` z2q “

pu2v2a` wxq3 ` pu2v2a´ wxq3 ` pu2w2a` vyq3`

pu2w2a´ vyq3 ` pv2w2a` uzq3 ` pv2w2a´ uzq3,

In 2007 Ramaré [30] further dramatically improved the bound to

n ě e524 « 3.71799 ¨ 10227,

after which it became clear that a complete solution was close.
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In 2008–2009 Boklan and Elkies [4] proved the seven cube conjecture for
numbers divisible by 4, and in 2010 Elkies [18] proved it for all even integers. These
results essentially used both the Ramaré upper bound, and the Deshouillers—
Hennecart—Landreau lower bound. Finally, in 2015 Siksek announced a complete
solution of the problem, which was published in 2016 in [37]. The only numbers
which cannot be presented in such a form are

15, 22, 23, 50, 114, 167, 175, 186, 212, 231, 238, 239, 303, 364, 420, 428, 454.

Among other things, this work relies on dozens of thousands hours of computer
time.

However, the problems of six, five and four cubes are still wi[l]d[e]ly open!

6. Algorithmic Waring problem for biquadrates
Dickson’s estimate gp4q ď 35 has not been improved for almost 40 years. How-
ever, in 1970–1971 Dress had a happy idea to return to the elementary approach
with new techniques. In particular, using new polynomial identities that occurred
in the solution of the easier Waring problem, and some computer calculations,
he improved the bound to gp4q ď 30 by elementary methods. After that things
accelerated, see [41] for a detailed description.

6.1. Nineteen biquadrates.
In 1985 Deshouillers announces a complete solution of the original Waring problem
in the last remaining case of biquadrates. Observe the ě 125 year gap between the
Liouville breakthrough (who proved not mere finiteness of gp4q, but established
a realistic estimate!), and the final solution of the Waring problem gp4q “ 19, as
stated by Waring himself.

In 1985 Balasubramanian, Deshouillers and Dress [1] announce the general
plan of such a solution. In [1] it is claimed that all integers n ě 10367 are sums of
19 biquadrates, the details were then published in [9]. Moreover in [1] the authors
describe a calculation that shows that all natural numbers n ď 10378 are also sums
of 19 biquadrates. Later in [10] this computation is even extended to n ď 10448.
Thus, the upper and lower domains overlap by 80 orders of magnitude!

6.2. Sixteen biquadrates.
In 1939 Davenport has proven that Gp4q “ 16. Now we know that 13792 is the
largest integer that requires more than 16 biquadrates, all n ě 13793 are in fact
sums of 16 biquadrates. This was shown in 1999–2005 by Deshouillers, Hennecart,
Kawada, Landreau and Wooley.

Namely, in [13] it is proven that all integers n ě 10216 not divisible by 16, are
sums of 16 biquadrates. The proof of this result uses new polynomial identities.
Also, the authors had to rework the estimates in and around the circle method
from scratch and with explicit constants. On the other hand, in 2000 Deshouillers,
Hennecart and Landreau [12] established that all 13793 ď n ď 10245 are sums of 16
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biquadrates. Thus, again the upper and lower domains overlap and for biquadrates
we can give a complete answer to Waring problem. There are exactly 96 natural
numbers that are not sums of 16 biquadrates, here they are:

47, 62, 63, 77, 78, 79, 127, 142, 143, 157, 158, 159, 207, 222, 223, 237,

238, 239, 287, 302, 303, 317, 318, 319, 367, 382, 383, 397, 398, 399, 447,

462, 463, 477, 478, 479, 527, 542, 543, 557, 558, 559, 607, 622, 623, 687,

702, 703, 752, 767, 782, 783, 847, 862, 863, 927, 942, 943, 992, 1007, 1008,

1022, 1023, 1087, 1102, 1103, 1167, 1182, 1183, 1232, 1247, 1248, 1327,

1407, 1487, 1567, 1647, 1727, 1807, 2032, 2272, 2544, 3552, 3568, 3727,

3792, 3808, 4592, 4832, 6128, 6352, 6368, 7152, 8672, 10992, 13792

for each one of them it is very easy to determine, whether it requires 17, 18 or 19
biquadrates.

7. The big computational challenge
As we’ve seen above, k “ 4 is the only case (apart from that of k “ 2, known to
Lagrange back in 1770), when Waring problem has been completely solved in the
XX century sense. Even in the case k “ 3 there is a huge uncertainty 4 ď Gp3q ď 7
as to the actual value of Gp3q — not to say the explicit list of exceptions!

To give some idea of the computational immensity of the problem, below
we reproduce the table of values of gpkq, 5 ď k ď 15, as confronted with the
conjectural values of Gpkq — with the known upper estimates of Gpkq, coming
mostly from the work of Vaughan and Wooley (see, for instance, [39]) somewhere
in between.

k 5 6 7 8 9 10 11 12 13 14 15
gpkq 37 73 143 279 548 1079 2132 4223 8384 16673 33203

Gpkq ď 17 24 33 42 50 59 67 76 84 92 100
Gpkq “ 6 9 8 32 13 12 12 16 14 15 16

Table 1. Conjectured values of Gpkq for 5 ď k ď 15

It would be a rather ambitious project simply to repeat with the use of
computers what Dickson has accomplished by hand back in the 1930-ies. But of
course, today we should set much higher goals, namely, to try to document the
explicit lists of exceptions that require more than Gpkq non-negative k-th powers.

Can we do this? Say for the cases 5 ď k ď 20, with which Dickson started?
For instance, gp5q “ 37, while Gp5q “ 6, as everybody believes, so that we have to
verify one by one all values s “ 37, 36, . . . , 7 and towards the end of this list the
possible exceptions are bound to occur well into 10hundreds. So here is the warm
up problem, which would show, where we are, as far as the computational power.
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Problem 5. Compute for each s “ 37, . . . , 7 the explicit list of natural n which can
be expressed as sums of s non-negative fifth powers, and cannot be expressed as
shorter such sums.

If we can do this, about what I have some doubts, we could proceed to higher
powers, and see where we have to stop. It seems to me, that the XX century form
of Waring problem is well beyond our current grasp — or what’s the metaphor.

Conclusion
Poincaré used to say “Il n’y a pas de problèmes résolus, il n’y a que des problèmes
plus ou moins résolus”. Waring problem is certainly one of the kind. Despite the
egregious efforts of many generations of mathematicians, even the XVIII century
Waring problem is only 99.9999% solved, and in the meantime we were able to
fully solve the XIX–XX century forms of the problem (with an explicit list of
exceptions) for a single new case, Gp4q “ 16.

Here are my principles — well, problems — if you don’t like them, I have
other[s]. One can ask the same questions for other fields and rings, in particular,
for number rings other than Z, for polynomial rings, fields of rational fractions,
etc. (compare the recent papers by Im Bo-Hae, Larsen, and Nguyen Dong Quan
Ngoc [23, 26] for a whole new look at Waring type problems, in the context of
algebraic groups). There are simultaneous sums of powers, Euler problem, taxicab
numbers, PTE and variants, etc. Not to say, the mixed Waring problems, the re-
stricted Waring problems, the Waring—Goldbach problems of all sorts, the Kamke
type problems, etc. And, of course, we are still not anywhere close to doing for
cubes what Jacobi has done for squares, the explicit formulas for the number of
representations.
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Numerations of the partially ordered sets and

generalized Coxeter groups

Anatoly Vershik

We discuss a project in which combinatorics of the posets are studied to-
gether with some class of groups
Distributive lattices L(P ) of ideals of poset P . Hasse diagram of L(G), Exam-
ple: Young graph. Finite (countable) Coxeter group G(P) associated with �nite
(resp.countable) poset (P) Problem: When G(P) is isomorphic to a classical Cox-
eter group? A classi�cation of the posets dependently of classi�cation of the central
measures on L(P ). Concrete problems and conjectures.

This work was carried out as part of a project supported by an RFBR grant
17-01-00433
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Nearly Optimal Univariate Polynomial Root-
finding: Old and New Algorithms

Victor Y. Pan

keywords: Polynomial root-finding, Subdivision, Sparse polynomials, Root-
counting, Functional iterations, Deflation, Real roots
2000 Math. Subject Classification: 65H05, 26C10, 30C15

Extended Abstract

We first review the State of the Art and then outline our progress and state some
major research challenges. Further details can be found in arXiv:1805.12042

1. The problem and three celebrated approaches. Univariate polynomial root-
finding has been the central problem of mathematics and computational mathe-
matics for four millennia, since Sumerian times (see [5], [10], [11]). Interest to it
has been revived due to the advent of modern computers and applications to sig-
nal processing, control, financial mathematics, geometric modeling, and computer
algebra. The problem remains the subject of intensive research. Hundreds of effi-
cient polynomial root-finders have been proposed, and new ones keep appearing
(see [6], [7]).

Two known root-finders are nearly optimal. The algorithm of [9] and [13],
proposed in 1995 and extending the previous progress in [15] and [8], first computes
numerical factorization of a polynomial into the product of its linear factors and
then readily approximate the roots.1 In the case of inputs of large size the algorithm
solves both problems of numerical factorization and root-finding in record low
and nearly optimal Boolean time, that is, it approximates all linear factors of a
polynomial as well as all its roots, respectively, almost as fast as one can access
the input coefficients with the precision required for these tasks.2 The algorithm,
however, is quite involved and has never been implemented.

1Numerical polynomial factorization has various important applications to modern computa-
tions, besides root-finding, in particular to time series analysis, Wiener filtering, noise variance
estimation, co-variance matrix computation, and the study of multichannel systems.
2For an input polynomial of degree d the bounds on the required input precision and Boolean
time are greater by a factor of d for root-finding than that for numerical factorization.
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2 Victor Y. Pan

Recently Becker et al in [1] proposed the second nearly optimal polynomial
root-finder, by extending the previous advances of [14] and [12] for the classical
subdivision iterations. The algorithm has been implemented in 2018 and promises
to become practical, but so far the root-finder of user’s choice is the package
MPSolve, devised in 2000 [2] and revised in 2014 [3]. It implements Ehrlich’s
iterations of 1967, rediscovered by Aberth in 1973. Currently subdivision root-
finder performs slightly faster than MPSolve of [3] for root-finding in a disc on the
complex plain containing a small number of roots but is noticeably inferior for the
approximation of all roots of a polynomial.3

2. Representation of an input polynomial. The algorithms of [9], [13], and [1]
involve the coefficients of an input polynomial p = p(x), relying on its representa-
tion in monomial basis:

p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x− xj), pd 6= 0, (1)

where we may have xk = xl for k 6= l. In contrast Ehrlich’s and various other func-
tional root-finding iterations such as Newton’s and Weierstrass’s can be applied to
a more general class of black box polynomials – those represented by a black box
subroutine for their evaluation, e.g., those represented in Bernstein’s bases and
sparse polynomials such as Mandelbrot’s (cf. [2, Eqn.16]).

3. Our progress. Having reviewed the State of the Art, we significantly accel-
erate subdivision and Ehrlich’s iterations by means of properly combining them
with known and novel root-finding techniques. Moreover we extend subdivision
iterations to black box polynomials, enabling their dramatic acceleration in the
case of sparse input polynomials. Next we itemize our progress.

• We dramatically accelerate root-counting for a polynomial in a disc on the
complex plain, which is a basic ingredient of subdivision iterations.4

• Even stronger we accelerate exclusion test: it verifies that a disc contains no
roots and is the other key ingredient of subdivision iterations.

• We extend our fast exclusion test to proximity estimation, that is, estimation
of the distance from a complex point to a closest root of p(x).5

• We accelerate subdivision iterations by means of decreasing the number of
required exclusion tests,

• We accelerate subdivision iterations by means of deflation of small degree
factors whose root sets are well-isolated from the other roots of p.

• We accelerate real polynomial root-finding by means of nontrivially extending
all our progress with subdivision iterations.

3The computational cost of root-finding in [9], [13], and [1] decreases at least proportionally to
the number of roots in a region of interest such as a disc on the complex plain, while MPSolve
approximates the roots in such regions almost as slow as all complex roots.
4We count m times a root of multiplicity m.
5Proximity estimation for p′(x) is critical in path-lifting polynomial root-finders [4].
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Nearly Optimal Univariate Polynomial Root-finding 3

• Our simple but novel deflation algorithm supports accurate approximation
of all roots of a polynomial of extremely high degree.
• We accelerate Ehrlich’s iterations by means of incorporation of the Fast Mul-

tipole Method (FMM).

4. Further details of root-counting and exclusion test. The previous accel-
eration of the known root-counting in [1] was justly claimed to be their major
algorithmic novelty versus their immediate predecessors of [14] and [12], but we
enhance that progress: our root-counting is performed at a smaller computational
cost under milder assumptions about the isolation of the boundary circle of a disc
from the roots of p(x). We can counter the decrease of the root isolation by a
factor of f by means of increasing the number of evaluation points just by a fac-
tor of log(f). Compared to the common recipe of root-squaring this has similar
arithmetic cost but avoids coefficient growth. Even if we do not know how well the
boundary circle is isolated from the roots we just recursively double the number
of evaluation points until correctness of the root count is confirmed. For heuristic
confirmation we can stop where the computed root count approximates an integer,
and we propose additional verification recipes. The same algorithm enables fast ex-
clusion test for a fixed disc, but by perfroming some simple low cost computations
we decrease the need for exclusion tests.

5. Three major research challenges. We hope that our work will motivate
further research effort towards synergistic combination of some efficient techniques,
both well- and less-known for polynomial root-finding.

Devising practical and nearly optimal algorithms for numerical factorization
of a polynomial is still a challenge – both Ehrlich’s and subdivision iterations are
slower for that task by at least a factor of d than the nearly optimal solution in
[9] and [13], which is quite involved and not practically competitive.

Our root-finders accelerate the known nearly optimal ones and promise to
become user’s choice. Their implementation, testing and refinement are major
challenges. This work, just initiated, already shows that our improvement of the
known algorithms is for real.
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Compact Monomial Involutive Bases

Vladimir P. Gerdt and Yury A. Blinkov

Abstract. Based on the minimal Gröbner basis G of a monomial ideal I in
the commutative polynomial ring K[x1, x2, . . . , xn] over a field K and a to-
tal monomial ordering �, we define another monomial ordering �G such that
pairwise involutive partition of variables {x1, . . . , xn} for monomials in I gen-
erated by �G yields more compact involutive basis than that generated by �.
In particular, for �alex, the antigraded lexicographic ordering, the involutive
basis for �alexG and n � 1 is much more compact then involutive basis for
�alex. We illustrate this by computer experiments.

The notion of involutive monomial division introduced in our paper [1] is a
cornerstone of theory of involutive bases and their algorithmic construction. The
basic idea behind this notion goes back to Janet [2] and consists in a proper par-
tition of variables for every element in a finite monomial set into the two subsets
called multiplicative and nonmultiplicative. Given a polynomial set and an admis-
sible monomial order, the partition of variables is defined in terms of the leading
monomial set. Each such partition generates a monomial division [3] called invo-
lutive, if it is defined for an arbitrary monomial set and satisfies the axioms given
in Definition 1 [1]. For more definitions and proofs see [3] and book [4]).

Definition 1. [9] An involutive division L is defined on M if for any nonempty set
U ⊂ M and for any u ∈ U a subset ML(u, U) ⊆ X is defined that generates
submonoid L(u, U) ⊂M of power products in ML(u, U) and the following holds

1. v ∈ U ∧ uL(u, U) ∩ vL(v, U) 6= ∅ =⇒ u ∈ vL(v, U) ∨ v ∈ uL(u, U) ,
2. v ∈ U ∧ v ∈ uL(u, U) =⇒ L(v, U) ⊆ L(u, U) ( transitivity ) ,
3. u ∈ V ∧ V ⊆ U =⇒ L(u, U) ⊆ L(u, V ) ( filter axiom ) .

Variables in ML(u, U) are L-multiplicative for u and those in NML(u, U) = X \
ML(u, U) are L-nonmultiplicative. If w ∈ uL(u, U), then u is L-(involutive) divisor
of w (denotation: u |L w).

In an involutive algorithm the nonmultiplicative variables of a polynomial are
used for its prolongation, that is, for the multiplication by these variables, whereas
the multiplicative variables of other polynomials in the set are used for reduction
of the nonmultiplicative prolongations. An involutive basis is a polynomial set
such that all its nonmultiplicative prolongations are multiplicatively reducible to
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zero. If an involutive algorithm terminates it outputs an involutive basis which is
a Gröbner basis of the special structure determined by properties of underlying
involutive division. In our approach, a reduced Gröbner basis is always a well
defined subset of the involutive basis and can be extracted from the last one
without any extra computation [3].

In the talk we consider pair divisions introduced in [5] which are pairwise
generated by total monomial orderings and studied in [6] - [9]. They are called ≺
−divisions, where ≺ is a total monomial ordering compatible with multiplication,
i.e. a � b → m · a � m · b for all m. In [9], from this class of divisions we singled
out the �alex-division generated the antigraded lexicographic ordering �alex and
shown, by computer experimentation, that in the vast majority of cases �alex-
division yields much more compact monomial involutive bases than Janet division
which is pairwise generated by the pure lexicographic ordering �lex.

Definition 2. [9]. Let U be a finite set of monomials in K[x1, . . . , xn], ≺ a total
monomial ordering compatible with multiplication and σ a permutation of vari-
ables x1, . . . , xn. Then a (pairwise) �-division is defined as

( ∀u ∈ U ) [ NML(u, U) =
⋃

v∈U\{u}
NML(u, {u, v}) ] , (1)

where

NML(u, {u, v}) :=

{
if u � v or (u ≺ v ∧ v | u) then ∅
else {xσ(i)}, i = min{j | degσ(j)(u) < degσ(j)(v)} . (2)

Definition 3. For a monomial u ∈ U and a total monomial ordering �, the element
v ∈ G where G(U) is the reduced Gröbner basis of U is said to be an ancestor of
u in U w.r.t. � (denotation: v = anc�(u)) if

v := max
�
{w ∈ G(U) | w | u } .

Given a ≺ −division defined in (1)-(2) and a finite monomial set U , one can
further compactify its involutive basis if to define the total ordering �G of elements
in the monomial ideal I generated by U as follows

u �alexG
v if anc�(u) � anc�(v) or (anc�(u) = anc�(v) and u � w) (3)

and to use Eqs. (1)-(2) for the involutive completion of G.
Another possibility of the compactification of ≺ −divisions is to use the total

orderings

u �G v if deg(anc�(u)) � deg(anc�(v))

or (deg(anc�(u)) = deg(anc�(v)) and u � w) . (4)

For several pairwise divisions, we generated randomly monomial sets for dif-
ferent numbers of variables and averaged the cardinalities of their involutive bases
over the permutations σ of variables occurring in Eq. (2). Clearly, Gröbner bases
for Eqs. (3)-(4) are much more compact and computed much faster then those for
≺ −divisions.
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Figure 1. Cardinality growth with the number of variables

References

[1] V.P.Gerdt and Yu.A.Blinkov. Involutive Bases of Polynomial Ideals. Mathematics
and Computers in Simulation, 45, 519–542, 1998; Minimal Involutive Bases, ibid.
543–560.
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Parallel Computation of Involutive and Gröbner

Bases Using the Tableau Representation of Poly-

nomials

Denis A. Yanovich

Abstract. For the work with polynomials such data representations as lists of

terms, geobuckets, and heaps are usually used. In this talk an attempt for us-

ing new representation of polynomials for parallel computing involutive and

Gröbner bases of systems of nonlinear polynomial equations will be made.

Using the proposed data structure makes it possible to compute complex and

memory-hungry tasks on the cluster of computers utilizing MPI technolo-

gie. In-depth explanation of the new table-based data structure and various

benchmarks of parallel and sequental computations will be presented.
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