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a b s t r a c t 

The paper presents numerical experiments and some theoretical developments in prediction with expert 

advice (PEA). One experiment deals with predicting electricity consumption depending on temperature 

and uses real data. As the pattern of dependence can change with season and time of the day, the do- 

main naturally admits PEA formulation with experts having different “areas of expertise”. We consider 

the case where several competing methods produce online predictions in the form of probability distri- 

bution functions. The dissimilarity between a probability forecast and an outcome is measured by a loss 

function (scoring rule). A popular example of scoring rule for continuous outcomes is Continuous Ranked 

Probability Score ( CRPS ). In this paper the problem of combining probabilistic forecasts is considered in 

the PEA framework. We show that CRPS is a mixable loss function and then the time-independent upper 

bound for the regret of the Vovk aggregating algorithm using CRPS as a loss function can be obtained. 

Also, we incorporate a “smooth” version of the method of specialized experts in this scheme which al- 

lows us to combine the probabilistic predictions of the specialized experts with overlapping domains of 

their competence. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Probabilistic forecasts in the form of probability distributions 

ver future events have become popular in several fields, includ- 

ng meteorology, hydrology, economics, demography. Probabilistic 

redictions are used in the theory of conformal predictions, where 

 predictive distribution that is valid under a nonparametric as- 

umption can be assigned to any forecasting algorithm (see Vovk 

t al. [28] ). 

The dissimilarity between a probability forecast and an out- 

ome is measured by a loss function (scoring rule). A popular 

xample of scoring rule for continuous outcomes is Continuous 

anked Probability Score ( CRPS ). 

RPS (F , y ) = 

∫ 
(F (u ) − H(u − y )) 2 du, 

here F (u ) is a probability distribution function, y is an outcome –

 real number, and H(x ) is the Heaviside function: H(x ) = 0 for x <

 and H(x ) = 1 for x ≥ 0 (Epstein [11] , Gneiting and Raftery [15] ). 

The paper presents theoretical developments in prediction with 

xpert advice (PEA) and some numerical experiments. One exper- 

ment deals with predicting electricity consumption depending on 

emperature and uses real data. As the pattern of dependence can 
∗ Corresponding author. 
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hange with season and time of the day, the domain naturally ad- 

its PEA formulation with experts having a different “areas of ex- 

ertise”. 

We consider the case where several competing methods pro- 

uce online predictions in the form of probability distribution 

unctions. These predictions can lead to large or small losses. Our 

ask is to combine these forecasts into one optimal forecast, which 

ill lead to a relatively small possible loss in the framework of the 

vailable past information. 

We solve this problem in the PEA framework. We consider the 

ame-theoretic on-line learning model in which a learner (aggre- 

ating) algorithm has to combine predictions from a set of N ex- 

erts (see e.g. Littlestone and Warmuth [19] , Freund and Schapire 

12] , Vovk [25] , Kivinen and Warmuth [17] , Vovk [26] , Cesa-

ianchi and Lugosi [9] among others). 

In contrast to the standard PEA approach, we consider the 

ase where each expert presents probability distribution functions 

ather than a point prediction. The learner presents his forecast 

lso in the form of probability distribution function computed us- 

ng probabilistic predictions presented by the experts. 

In online setting, at each time step t each expert issues a prob- 

bility distribution as a forecast. The aggregating algorithm com- 

ines these forecasts into one aggregated forecast, which is a prob- 

bility distribution function. The effectiveness of the aggregating 

lgorithm on any time interval [1 , T ] is measured by the regret 

hich is the difference between the accumulated loss of the ag- 
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regating algorithm and the accumulated loss of the best expert 

uffered on first T steps. 

There are many papers on probabilistic predictions and on CRPS 

coring rule (some of them are Brier [4] , Bröcker and Smith [5] ,

röcker and Smith [6] , Bröcker [7] , Epstein [11] , Raftery et al. [22] ).

n some cases, experts use for their predictions probability distri- 

utions functions (data models) which are defined explicitly in an 

nalytic form. In this paper, we propose the rules for aggregation 

f such probability distributions functions. We present the exact 

ormulas for direct calculation of the aggregated probability dis- 

ribution function given probability distribution functions are pre- 

ented by the experts. 

We obtain a tight upper bound of the regret for a special case 

hen the outcomes and the probability distributions are supported 

n a finite interval [ a, b] of real line. In Section 4 we prove that

he CRPS function is mixable and then all machinery of the ag- 

regating algorithm (AA) by Vovk [26] and of the exponentially 

eighted average forecaster (WA) (see Cesa-Bianchi and Lugosi [9] ) 

an be applied. We present a method for computing online the ag- 

regated probability distribution function given the probability dis- 

ribution functions are presented by the experts and prove a time- 

ndependent bound for the regret of the proposed algorithm. 

The application we will consider below in Section 5 (which is 

he sequential forecasting of probability distribution function of 

lectricity consumption) will take place in a variant of the basic 

roblem of prediction with expert advice called prediction with 

pecialized (or sleeping) experts. At each round, only some of the 

xperts output a prediction while the other ones are inactive. Each 

xpert is expected to provide accurate forecasts mostly under given 

xternal conditions that can be known beforehand. For instance, in 

he case of the prediction of electricity consumption, experts can 

e specialized to a season, temperature forecast, and time of the 

ay. 

Each expert is trained on its specific domain. Moving from one 

omain to another, an expert which was tuned to the previous 

omain gradually loses his predictive ability. To take this into ac- 

ount, we define a smooth extension of the domain of any expert. 

hus, each expert competes with other experts working at over- 

apping intervals. The second contribution of this paper is that we 

ave incorporated a smooth generalization of the method of spe- 

ialized experts ( Sections 3 and 4.1 ) which allows us to combine 

he probabilistic predictions into the aggregating algorithm (AA) of 

he specialized experts with overlapping domains of theirs compe- 

ence. 

We demonstrate the effectiveness of the proposed methods in 

ection 5 , where the results of numerical experiments with syn- 

hetic and real data are presented. 

. Preliminaries 

In this section we present the main definitions and the auxil- 

ary results of the theory of prediction with expert advice, namely, 

earning with mixable loss functions. 

.1. Online learning 

Let � be a set of outcomes and � be a set of forecasts (deci- 

ion space). 1 We consider the learning with a loss function λ( f, y ) , 

here f ∈ � and y ∈ �. Let also, a set E of experts be given. For

implicity, we assume that E = { 1 , . . . , N} . 
In PEA approach the learning process is represented as a game. 

he experts and the learner observe past real outcomes generated 
1 In general, these sets can be of arbitrary nature. We will specify them when 

ecessary. 

T

 

m  

2 
nline by some adversarial mechanism (called nature) and present 

heir forecasts. After that, a current outcome is revealed by the na- 

ure. 

In more detail, at any round t = 1 , 2 , . . . , each expert i ∈ E

resents a forecast f i,t ∈ �, then the learner presents its forecast 

f t ∈ �, and after that, an outcome y t ∈ � is revealed. Each expert i

uffers the loss λ( f i,t , y t ) , and the learner suffers the loss λ( f t , y t ) .

he game of prediction with expert advice is presented by Proto- 

ol 1 below. 

Protocol 1 

FOR t = 1 , . . . , T 

1. Receive the experts’ predictions f i,t , where 1 ≤ i ≤ N. 

2. Present the learner’s forecast f t . 

3. Observe the true outcome y t and compute the losses 

λ( f i,t , y t ) of the experts and the loss λ( f t , y t ) of the learner.

ENDFOR 

Let H T = 

T ∑ 

t=1 

λ( f t , y t ) be the accumulated loss of the learner and

 

i 
T 

= 

T ∑ 

t=1 

λ( f i,t , y t ) be the accumulated loss of an expert i . The dif-

erence R i 
T 

= H T − L i 
T 

is called regret with respect to an expert i ,

nd R T = H T − min i L 
i 
T 

is the regret with respect to the best expert. 

he goal of the learner is to minimize regret. 

.2. Aggregating algorithm (AA) 

The Vovk Aggregating algorithm (Vovk [25] and Vovk [26] ) is 

he base algorithm for computing the learner predictions. This al- 

orithm starting from the initial weights w i, 1 (usually w i, 1 = 

1 
N for 

ll i ) assign weights w i,t for the experts i ∈ E using the weights up-

ate rule: 

 i,t+1 = w i,t e 
−ηλ( f i,t ,y t ) for t = 1 , 2 , . . . , (1) 

here η > 0 is a learning rate. The normalized weights are de- 

ned 

 

∗
i,t = 

w i,t 

N ∑ 

j=1 

w j,t 

. (2) 

he main tool of AA is a superprediction function 

 t (y ) = − 1 

η
ln 

N ∑ 

i =1 

e −ηλ( f i,t ,y ) w 

∗
i,t . (3) 

e consider probability distributions q = (q 1 , . . . , q N ) on the set E

f the experts: 
N ∑ 

i =1 

q i = 1 and q i ≥ 0 for all i . By Vovk [26] a loss

unction is called η-mixable if for any probability distribution q on 

he set E of experts and for any predictions f = ( f 1 , . . . , f N ) of the

xperts there exists a forecast f such that 

( f, y ) ≤ g(y ) for all y, (4) 

here 

(y ) = − 1 

η
ln 

N ∑ 

i =1 

e −ηλ( f i ,y ) q i . (5) 

e fix some rule for calculating a forecast f and write 

f = Subst (f , q ) . (6) 

he function Subst is called the substitution function. 

As follows from (4) and (5) , if a loss function λ( f, y ) is η-

ixable, then the loss function cλ( f, y ) is η -mixable for any c > 0 .
c 
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The upper bound H T ≤
T ∑ 

t=1 

g t (y t ) ≤ L i 
T 

+ 

ln N 
η for any expert i is

btained in A.1 . Therefore, there is a strategy for the learner that 

uarantees the time-independent upper bound for the regret R T ≤
ln N 
η for all T regardless of which sequence of outcomes is observed. 

.3. Exponentially concave loss functions 

Assume that all forecasts form a linear space. In this case, the 

ixability is a generalization of the notion of exponentially con- 

avity. A loss function λ( f, y ) is called η-exponentially concave if 

or each y the function exp (−ηλ( f, y )) is concave in f (see Kivinen 

nd Warmuth [17] , Cesa-Bianchi and Lugosi [9] ). For exponentially 

oncave loss function the inequality (4) holds for all y by defini- 

ion if the forecast of the learner is computed using the weighted 

verage (WA) of the experts predictions: 

f = 

N ∑ 

i =1 

q i f i , (7) 

here q = (q 1 , . . . , q N ) is a probability distribution on the set of

xperts, and f 1 , . . . , f N are theirs forecasts. 

For exponentially concave loss function and the game defined 

y Protocol 1, where the learner’s forecast is computed by (7) , we 

lso have the time-independent bound (A.1) for the regret. 

.4. Square loss function 

The important special case is � = { 0 , 1 } and � = [0 , 1] . The

quare loss function λ(γ , ω) = (γ − ω ) 2 is η-mixable loss function 

or any 0 < η ≤ 2 , where γ ∈ [0 , 1] and ω ∈ { 0 , 1 } . 2 In this case, at

ny step t , the corresponding forecast f t (in Protocol 1) can be de- 

ned as 

f t = Subst (f t , w 

∗
t ) = 

1 

2 

− 1 

2 η
ln 

∑ N 
i =1 w 

∗
i,t 

e −ηλ( f i,t , 0) ∑ N 
i =1 w 

∗
i,t 

e −ηλ( f i,t , 1) 
, (8) 

here f t = ( f 1 ,t , . . . , f N,t ) is the vector of the experts’ forecasts and

 

∗
t = (w 

∗
1 ,t 

, . . . , w 

∗
N,t 

) is the vector of theirs normalized weights

efined by (1) and (2) . We refer the reader for details to Vovk

25] , Vovk [26] , and Vovk [27] . 

The square loss function λ( f, ω) = ( f − ω) 2 is η-exponential 

oncave for any 0 < η ≤ 1 
2 (see Cesa-Bianchi and Lugosi [9] ). 

Note that the larger the learning rate, the faster the weights 

pdate rule (1) adapts to the changing predictive abilities of the 

xperts. 

. AA For experts with confidence 

In the experiments, which will be presented below in 

ection 5.2 , the specialized experts will be used, where each ex- 

ert is associated with specific type of domain (time interval). 

We define a smooth extension of the domain of any expert. The 

cope of each expert will be determined by its confidence values. 

nside the area for which the expert was tuned, its confidence val- 

es are equal to 1, and outside this area they decrease with time 

inearly from 1 to 0. 

The method of specialized experts was first proposed by Freund 

t al. [13] and further developed by Chernov and Vovk [8] , Devaine 

t al. [10] , Gaillard et al. [14] , Kalnishkan et al. [16] . With this ap-

roach, at each step t , a set of specialized experts E t ⊆ { 1 , . . . , N}
e given. A specialized expert i issues its forecasts not at all steps 

 = 1 , 2 , . . . , but only when i ∈ E t . At any step, the aggregating al-

orithm uses forecasts of only “active (non-sleeping)” experts. 
2 In what follows ω t denotes a binary outcome. 

f  

r

r

3 
We consider a more general case. At each time moment t , any 

xpert’s forecast f i,t is supplied by a confidence level which is a 

eal number p i,t ∈ [0 , 1] . 

In particular, p i,t = 1 means that the forecast of the expert i is 

sed in full, whereas in the case of p i,t = 0 it is not taken into

ccount at all (the expert sleeps). In cases where 0 < p i,t < 1 , the

xpert’s forecast is partially taken into account. For example, when 

oving from one season to another, an expert tuned to the previ- 

us season gradually loses his predictive ability. Confidence value 

an be set by the expert itself or by the learner. 

The dependence of p i,t on values of exogenous parameters can 

e predetermined by a specialist in the domain or can be con- 

tructed using regression analysis on historical data. 

The setting of prediction with experts that use confidence val- 

es as numbers in the interval [0,1] was studied (for Hedge algo- 

ithm) by Blum and Mansour [2] and Gaillard et al. [14] . We mod-

fy this approach for AA algorithm. 

Let λ( f, y ) be an η-mixable loss function. At each time moment 

the forecasts f t = ( f 1 ,t , . . . f N,t ) of the experts and confidence lev-

ls p t = (p 1 ,t , . . . , p N,t ) of these forecasts are revealed. 

In this section we modify AA for the experts with confidence. 

To take into account confidence levels, we use the fixed point 

ethod by Chernov and Vovk [8] . We associate with any confi- 

ence level p i,t a probability distribution p i,t = (p i,t , 1 − p i,t ) on a

wo element set. Define the auxiliary probabilistic forecast: 

˜ f i,t = 

{
f i,t with probability p i,t , 
f t with probability 1 − p i,t , 

here f t is a forecast of the learner. 

First, we provide a justification of the algorithm presented be- 

ow. Our goal is to define the forecast f t such that 

 

−ηλ( f t ,y ) ≥
N ∑ 

i =1 

E p i,t [ e 
−ηλ( ̃ f i,t ,y ) ] w 

∗
i,t (9) 

or each y , where w 

∗
t = (w 

∗
1 ,t 

, . . . , w 

∗
N,t 

) is the vector of normalized

eights defined by (1) and (2) . 

Here E p i,t is the mathematical expectation with respect to the 

robability distribution p i,t . We rewrite inequality (9) in a more 

etailed form: 

 

−ηλ( f t ,y ) ≥
N ∑ 

i =1 

E p i,t [ e 
−ηλ( ̃ f i,t ,y ) ] w 

∗
i,t = (10) 

N 
 

i =1 

p i,t w 

∗
i,t e 

−ηλ( f i,t ,y ) + e −ηλ( f t ,y ) 

( 

1 −
N ∑ 

i =1 

p i,t w 

∗
i,t 

) 

(11) 

or all ω. Therefore, the inequality (9) is equivalent to the inequal- 

ty 

 

−ηλ( f t ,y ) ≥
N ∑ 

i =1 

w 

p 
i,t 

e −ηλ( f i,t ,y ) , (12) 

here 

 

p 
i,t 

= 

p i,t w 

∗
i,t ∑ N 

j=1 p j,t w 

∗
j,t 

= 

p i,t w i,t ∑ N 
j=1 p j,t w j,t 

. (13) 

ccording to the rule (6) for computing the forecast of AA, de- 

ne f t = Subst (f t , w 

p 
t ) . Then (12) and its equivalent (10) are valid.

ere Subst is the substitution function, w 

p 
t = (w 

p 
i, 1 

, . . . , w 

p 
i,N 

) and 

 t = ( f 1 ,t , . . . f i,N ) .. Let us refine Protocol 1 in the form of Algo-

ithm 1a which is the algorithm AA with confidence. This algo- 

ithm presents a strategy for the learner in Protocols 1. 
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Algorithm 1a 

FOR t = 1 , . . . , T 

1. Receive the experts’ predictions f i,t and confidence levels 

p i,t , where 1 ≤ i ≤ N. 

2. Present the learner’s forecast f t = Subst (f t , w 

p 
t ) , where nor- 

malized weights w 

p 
t = (w 

p 
1 ,t 

, . . . , w 

p 
N,t 

) are defined by (13) . 

3. Observe the true outcome y t and compute the losses l i,t = 

λ( f i,t , y t ) of the experts and the loss λ( f t , y t ) of the learner.

4. Update the weights (of the virtual experts) by the rule 

w i,t+1 = w i,t e 
−η(p i,t λ( f i,t ,y t )+(1 −p i,t ) λ( f t ,y t )) (14) 

ENDFOR 

Let l i,t = λ( f i,t , y t ) be the loss of an expert i and h t = λ( f t , y t )

e the loss of the learner at step t . Define the estimated loss of an

xpert i as ˜ l i,t = λ( ̃  f i,t , y t ) and 

ˆ l i,t = E p i,t [ ̃
 l i,t ] be its expectation. By

he virtual expert i we mean the expert which suffers the loss ˆ l i,t . 

Since by definition 

ˆ l i,t = p i,t l i,t + (1 − p i,t ) h t , we have h t − ˆ l i,t =
p i,t (h t − l i,t ) . We call the last quantity discounted excess loss with

espect to an expert i at a time moment t and we will measure the 

erformance of our algorithm by the cumulative discounted excess 

oss with respect to any expert i . 

heorem 1. For any 1 ≤ i ≤ N , the following upper bound for the cu- 

ulative excess loss (discounted regret) holds true: 

T 
 

t=1 

p i,t (h t − l i,t ) ≤
ln N 

η
(15) 

or all T . 

Proof . By convexity of the exponent the inequality (9) implies 

 

−ηλ( f t ,y ) ≥
N ∑ 

i =1 

e −ηE p i,t [ λ( ̃ f i,t ,y )] w 

∗
i,t = 

N ∑ 

i =1 

e −ηˆ l i,t w 

∗
i,t . (16) 

ewrite the update rule (14) as w i,t+1 = w i,t e 
−ηˆ l i,t . Using the regret

nalysis for AA in A.1 , we obtain 

T 
 

t=1 

h t ≤
T ∑ 

t=1 

ˆ l i,t + 

ln N 

η

or any i . Since h t − ˆ l i,t = p i,t (h t − l i,t ) , the inequality

15) follows. �

. Aggregation of probability forecasts 

Let the set of outcomes in Protocol 1 be an interval � = [ a, b]

f the real line for some a < b and the set of forecasts � be a set

f all probability distribution functions F : [ a, b] → [0 , 1] . 3 

The quality of the prediction F in view of the actual outcome y 

s often measured by the continuous ranked probability score (loss 

unction) 

RPS (F , y ) = 

∫ b 

a 

(F (u ) − H(u − y )) 2 du, (17) 

here H(x ) is the Heaviside function: H(x ) = 0 for x < 0 and

(x ) = 1 for x ≥ 0 (Epstein [11] , Matheson and Winkler [21] , etc). 

For simplicity, we consider in this definition integration over a 

nite interval. Such definition is closer to practical applications and 
3 A probability distribution function is a non-decreasing function F (y ) defined on 

his interval such that F (a ) = 0 and F (b) = 1 . Also, it is right-continuous and has 

he left limit at each point. 

i

r

c

4 
llows a more elementary theoretical analysis. More general defi- 

ition includes a density μ(u ) and integration over the real line: 

RPS (F , y ) = 

∫ + ∞ 

−∞ 

(F (u ) − H(u − y )) 2 μ(u ) du. (18)

he definition (17) is a special case of this definition (up to a fac- 

or), where μ(u ) = 

1 
b−a 

for u ∈ [ a, b] and μ(u ) = 0 otherwise. It can

e proved that the function (18) is η-mixable for 0 < η ≤ 2 and η- 

xponentially concave for 0 < η ≤ 1 
2 (see Korotin et al. [18] ). 

The CRPS score measures the difference between the forecast F 

nd a perfect forecast H(u − y ) which puts all mass on the verifi- 

ation y . The lowest possible value 0 is attained when F is concen- 

rated at y , and in all other cases CRPS (F , y ) will be positive. 

We consider a game of prediction with expert advice, where the 

orecasts of the experts and of the learner are (cumulative) prob- 

bility distribution functions. At any step t of the game each ex- 

ert i ∈ { 1 , . . . , N} presents its forecast – a probability distribution 

unction F i,t (u ) and the learner presents its forecast F t (u ) . 4 After

n outcome y t ∈ [ a, b] have been revealed and the experts and the

earner suffer losses CRPS (F i,t , y t ) and CRPS (F t , y t ) . 

The corresponding game of probabilistic prediction is defined 

y the following protocol. 

Protocol 2 

FOR t = 1 , . . . , T 

1. Receive the experts’ predictions – the probability distribu- 

tion functions F i,t (u ) for 1 ≤ i ≤ N. 

2. Present the learner’s forecast – the probability distribution 

function F t (u ) . 

3. Observe the true outcome y t and compute the scores 

CRPS (F i,t , y t ) = 

∫ b 
a (F i,t (u ) − H(u − y t )) 

2 du of the experts 1 ≤
i ≤ N and the score CRPS (F t , y t ) = 

∫ b 
a (F t (u ) − H(u − y t )) 

2 du

of the learner. 

ENDFOR 

The goal of the learner is to predict in such a way that indepen-

ently of which outcomes are revealed and the experts’ predictions 

re presented, its accumulated loss H T = 

T ∑ 

t=1 

CRPS (F t , y t ) is asymp- 

otically less than the loss L i 
T 

= 

T ∑ 

t=1 

CRPS (F i,t , y t ) of the best expert

 up to some regret and H T − min i L 
i 
T 

= o(T ) as T → ∞ . 

First, we show that CRPS loss function (and the corresponding 

ame) is mixable. 

heorem 2. The continuous ranked probability score CRPS (F , y ) is 
2 

b−a 
-mixable loss function. The corresponding learner’s forecast F (u ) 

iven the forecasts F i (u ) of the experts 1 ≤ i ≤ N and a probability 

istribution q = (q 1 , . . . , q N ) on the set of all experts can be computed

y the rule 5 

 (u ) = 

1 

2 

− 1 

4 

ln 

∑ N 
i =1 q i e 

−2(F i (u )) 2 ∑ N 
i =1 q i e 

−2(1 −F i (u )) 2 
, (19) 

roof. We approximate any probability distribution function F (u ) 

y a piecewise-constant function that takes a finite number of val- 

es on a uniform grid of arguments. Accordingly, the forecasts of 

he experts and of the learner will take the form of d-dimensional 

ectors, where d is a positive integer number. We apply AA to the 

-dimensional forecasts, then we consider the limit d → ∞ . 
4 For simplicity of presentation, we consider the case where the set of the experts 

s finite. In case of infinite E, the sums by i should be replaced by integrals with 

espect to the corresponding probability distributions on the set of experts. In this 

ase the choice of initial weights on the set of the experts is a non-trivial problem. 
5 Ii is easy to verify that F (u ) is a probability distribution function. 
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6 This also means that in numerical experiments, when calculating forecasts of 

the learner, we can use the same learning rate, regardless of the accuracy of the 

presentation of expert forecasts. 
Adamskiy et al. [1] generalize the AA for the case of d- 

imensional forecasts, where d is a positive integer number. Let 

n η-mixable loss function λ( f, y ) be given, where η > 0 , f ∈ �

nd y ∈ �. Let f = ( f 1 , . . . , f d ) ∈ �d be a d-dimensional forecast

nd y = (y 1 , . . . , y d ) ∈ �d be a d-dimensional outcome. The gener-

lized loss function is defined λ(f , y ) = 

d ∑ 

s =1 

λ( f s , y s ) ; we call λ( f, y )

ts source function. 

The corresponding (generalized) game can be presented by Pro- 

ocol 1 where at each step t the experts and the learner present 

-dimensional forecasts: at any round t = 1 , 2 , . . . each expert i ∈
 1 , . . . , N} presents a vector of forecasts f i,t = ( f 1 

i,t 
, . . . , f d 

i,t 
) and the

earner presents a vector of forecasts f t = ( f 1 t , . . . , f 
d 
t ) . After that,

 vector y t = (y 1 t , . . . , y 
d 
t ) of outcomes will be revealed and the

xperts and the learner suffer losses λ(f i,t , y t ) = 

d ∑ 

s =1 

λ( f s 
i,t 

, y s t ) and

(f t , y t ) = 

d ∑ 

s =1 

λ( f s t , y 
s 
t ) . 

Adamskiy et al. [1] proved that the generalized loss function 

game) is mixable. �

emma 1. The generalized loss function λ(f , y ) is η
d 

-mixable if the 

ource loss function λ( f, y ) is η-mixable. 

We reproduce the proof in A.2 for completeness of presentation. 

We now turn to the proof of Theorem 2 . We approximate 

ny probability distribution function F (y ) by piecewise-constant 

unctions F d (y ) , where d = 1 , 2 , . . . . Any such function F d is de-

ned by the points z 0 , z 1 , z 2 , . . . , z d and the values f 0 = F (z 0 ) , f 1 =
 (z 1 ) , f 2 = F (z 2 ) , . . . , f d = F (z d ) , where a = z 0 < z 1 < z 2 < . . . <

 d = b and 0 = f 0 ≤ f 1 ≤ f 2 ≤ · · · ≤ f d = 1 . By definition F d (y ) = f i 
or z i −1 < y ≤ z i , where 1 ≤ i ≤ d. Also, assume that z i +1 − z i = �

or all 0 ≤ i < d. By definition � = 

b−a 
d 

. Since F (u ) ≤ F d (u ) for all

 , 

| CRPS (F , y ) − CRPS (F d , y ) | ≤
∫ y 

a 

(F 2 d (u ) − F 2 (u )) du 

+ 

∫ b 

y 

((1 − F (u )) 2 − (1 − F d (u )) 2 ) du (20) 

or any y ∈ [ a, b] . Let z k −1 < y ≤ z k , where 1 ≤ k ≤ d. Then 

 y 

a 

(F 2 d (u ) − F 2 (u )) du ≤
k −1 ∑ 

i =0 

∫ z i +1 

z i 

(F 2 d (u ) − F 2 (u )) du ≤

�
k −1 ∑ 

i =0 

F 2 d (z i +1 ) − F 2 d (z i ) = �(F 2 d (z k ) − F 2 d (a )) ≤ �. 

he second integral in (20) is also bounded by �. Hence, 

 

CRPS (F , y ) − CRPS (F d , y ) | ≤ 2�. (21) 

Define an auxiliary representation of y , which is a binary vari- 

ble ω y,s = 1 z s ≥y ∈ { 0 , 1 } for 1 ≤ s ≤ d and ω y = (ω y, 1 , . . . , ω y,d ) ,

here 1 z s ≥y = H(z s − y ) . 

Consider any y ∈ [ a, b] . It is easy to see that for each 1 ≤ s ≤
the uniform measure of all u ∈ [ z s −1 , z s ] such that 1 z s ≥y 	 = 1 u ≥y 

s less or equal to � if y ∈ [ z s −1 , z s ] and 1 z s ≥y = 1 u ≥y for all u ∈
 z s −1 , z s ] otherwise. Since 0 ≤ f s ≤ 1 for all s , this implies that ∣∣∣∣∣CRPS (F d , y ) − �

d ∑ 

s =1 

( f s − ω y,s ) 
2 

∣∣∣∣∣ = 

∫ z k 

z k −1 

( f k − 1 u ≥y ) 
2 du − �( f k − ω y,k ) 

2 

∣∣∣∣ ≤

�
∣∣ f 2 k − ( f k − 1) 2 

∣∣ = �| 2 f k − 1 | ≤ �, (22) 
5 
here y ∈ (z k −1 , z k ] . Let us study the generalized loss function 

(f , ω ) = �
d ∑ 

s =1 

( f s − ω s ) 
2 , (23) 

here f = ( f 1 , . . . , f d ) , ω = (ω 1 , . . . , ω d ) and ω s ∈ { 0 , 1 } for 1 ≤ s ≤
. 

The key observation is that the deterioration of the learning 

ate for the generalized loss function (it gets divided by the dimen- 

ion d of vector-valued forecasts) is exactly offset by the decrease 

n the weight of each component of the vector-valued prediction 

s the grid-size decreases. 

Since the square loss function λ( f, ω) = (γ − ω) 2 is 2-mixable, 

here f ∈ [0 , 1] and ω ∈ { 0 , 1 } , by results of Section 2 the cor-

esponding generalized loss function 

∑ d 
s =1 ( f s − ω 

s ) 2 is 2 
d 

-mixable 

nd then the loss function (23) is 2 
d�

= 

2 
b−a 

-mixable independently 

f what grid-size is used. 6 

Let F i (u ) be the probability distribution functions presented by 

he experts 1 ≤ i ≤ N and f i = ( f i, 1 , . . . , f i,d ) , where f i,s = F i (z s ) for

 ≤ s ≤ d. By (A.4) 

 

− 2 
(b−a ) 

λ(f , ω ) ≥
N ∑ 

i =1 

e −
2 

b−a 
λ(f i , ω ) q i (24) 

or each ω ∈ { 0 , 1 } d (including ω = ω y for any y ∈ [ a, b] ), where the

orecast f = ( f 1 , . . . , f d ) can be defined as 

f s = 

1 

2 

− 1 

4 

ln 

∑ N 
i =1 q i e 

−2( f i,s ) 
2 ∑ N 

i =1 q i e 
−2(1 − f i,s ) 2 

(25) 

or each 1 ≤ s ≤ d. 

By letting the grid-size � → 0 (or, equivalently, d → ∞ ) in (22),

24) , where ω = ω y , and in (21) , we obtain for any y ∈ [ a, b] , 

 

− 2 
(b−a ) 

CRPS (F,y ) ≥
N ∑ 

i =1 

e −
2 

b−a 
CRPS (F i ,y ) q i , (26) 

here F (u ) is the limit form of (25) defined by 

 (u ) = 

1 

2 

− 1 

4 

ln 

∑ N 
i =1 q i e 

−2(F i (u )) 2 ∑ N 
i =1 q i e 

−2(1 −F i (u )) 2 

or each u ∈ [ a, b] . 

The inequality (26) means that the loss function CRPS (F , y ) is 
2 

b−a 
-mixable. �
Let us refine the protocol 2 of the game with probabilistic pre- 

ictions for the case when the rule (19) for AA is used. This algo-

ithm presents a strategy for the learner in Protocol 2. 

Algorithm 3 

Define w i, 1 = 

1 
N for 1 ≤ i ≤ N. 

FOR t = 1 , . . . , T 

1. Receive the expert predictions – the probability distribution 

functions F i,t (u ) , where 1 ≤ i ≤ N. 

2. Present the learner forecast – the probability distribution 

function F t (u ) : 

F t (u ) = 

1 

2 

− 1 

4 

ln 

∑ N 
i =1 w 

∗
i,t 

e −2(F i,t (u )) 2 ∑ N 
i =1 w 

∗
i,t 

e −2(1 −F i,t (u )) 2 
, (27) 

where w 

∗
i,t 

= 

w i,t ∑ N 
j=1 w j,t 

. 

3. Observe the true outcome y t and compute the score 

CRPS (F i,t , y t ) for the experts 1 ≤ i ≤ N and the score 

CRPS (F t , y t ) for the learner. 
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4. Update the weights of the experts 1 ≤ i ≤ N

w i,t+1 = w i,t e 
− 2 

b−a 
CRPS (F i,t ,y t ) (28) 

ENDFOR 

The performance bound of Algorithm 3 is presented in the fol- 

owing theorem. 

heorem 3. For each T , 

T 
 

t=1 

CRPS (F t , y t ) ≤ min 

1 ≤i ≤N 

T ∑ 

t=1 

CRPS (F i,t , y t ) + 

b − a 

2 

ln N. (29) 

roof. The bound (29) is a direct corollary of the regret analysis of 

.1 and the bound (A.1) . �
The square loss function is also η-exponentially concave for 0 < 

≤ 1 
2 (see Cesa-Bianchi and Lugosi [9] ). In this case (27) can be 

eplaced with the forecast WA 

 t (u ) = 

N ∑ 

i =1 

w 

∗
i,t F i,t (u ) , (30) 

here w 

∗
i,t 

= 

w i,t 
N ∑ 

j=1 

w j,t 

are normalized weights. The corresponding 

eights are computed recursively 

 i,t+1 = w i,t e 
− 1 

2(b−a ) 
CRPS (F i,t ,y t ) . (31) 

sing Lemma 1 and Theorem 3 , we conclude that in this case the

ound (29) can be replaced with 

T 
 

t=1 

CRPS (F t , y t ) ≤ min 

1 ≤i ≤N 

T ∑ 

t=1 

CRPS (F i,t , y t ) + 2(b − a ) ln N. 

he proof is similar to the proof of Theorem 3 . �

.1. Aggregation of probabilistic predictions with confidence 

In Section 5.2 (below), we present results of numerical experi- 

ents with the real data and when probabilistic predictions of the 

xperts are supplied with the levels of confidence. In this case we 

se Algorithm 3a as a strategy of the learner, that is a modification 

f Algorithm 3. 

At each round, only some of the experts output a prediction 

hile the other ones are inactive. Each expert is expected to pro- 

ide accurate forecasts mostly under given external conditions that 

an be known beforehand, namely, the experts are specialized to a 

eason, temperature forecast, and time of the day. 

We define a smooth extension of the domain of any expert. 

hus, each expert competes with other experts working at over- 

apping intervals. 

The aggregating algorithms AA and WA allow us to combine 

he probabilistic predictions of the specialized experts with over- 

apping domains of theirs competence. 

Algorithm 3a (Strategy for the learner) 

Define w i, 1 = 

1 
N for 1 ≤ i ≤ N. 

FOR t = 1 , . . . , T 

1. Receive the expert predictions – the probability distribution 

functions F i,t (u ) and confidence levels p i,t , where 1 ≤ i ≤ N. 

2. Present the learner forecast – the probability distribution 

function F t (u ) which is defined by the rule 

F t (u ) = 

1 

2 

− 1 

4 

ln 

∑ N 
i =1 w 

p 
i,t 

e −2(F i,t (u )) 2 ∑ N 
i =1 w 

p 
i,t 

e −2(1 −F i,t (u )) 2 
(32) 

for AA or by the rule 

F t (u ) = 

N ∑ 

i =1 

w 

p 
i,t 

F i,t (u ) (33) 
6 
for WA, where w 

p 
i,t 

= 

p i,t w i,t ∑ N 
j=1 p j,t w j,t 

. 

3. Observe the true outcome y t and compute the score 

CRPS (F i,t , y t ) for the experts 1 ≤ i ≤ N and the score 

CRPS (F t , y t ) for the learner. 

4. Update the weights of the (virtual) experts 1 ≤ i ≤ N

w i,t+1 = w i,t e 
−η(p i,t CRPS (F i,t ,y t )+(1 −p i,t ) CRPS (F t ,y t )) , (34) 

where η = 

2 
b−a 

for AA and η = 

1 
2(b−a ) 

for WA. 

ENDFOR 

The performance of the algorithm is presented by the inequality 

15) of Theorem 1 , where h t = CRPS (F t , y t ) , l i,t = CRPS (F i,t , y t ) and

= 

2 
b−a 

if the rule (32) for computing the learner’s forecast was 

sed and η = 

1 
2(b−a ) 

if the rule (33) was used. 

The proposed rules (32) for AA and (33) for WA can be used 

hen the probability distributions presented by the experts are 

iven in the closed form (i.e., distributions given by analytical for- 

ulas). For this case, numerical methods can be used to calculate 

he integrals ( CRPS ) with any degree of accuracy given in advance 

see also Footnote 6). 

. Experiments 

In this section we apply our proposed algorithm on synthetic 

ata and on electricity consumption data, and compare its perfor- 

ance for several predictive models. We use Algorithm 3 in the 

xperiments with synthetic data and Algorithm 3a for the electric- 

ty consumption data. 

To optimize the losses in our mixing schemes, we used the mix- 

ng past posteriors modification of Algorithms 3 and 3a, see A.3 . 

The algorithms and the data are presented at GitHub: 

ttps://github.com/VladimirVyugin , Project “Online-Aggregation- 

f-Probability-Forecasts -With-Confidence”

.1. Synthetic data 

In this section we present the results of experiments with AA 

nd WA on synthetic data. The data for experiments were obtained 

y sampling from a mixture of the three distinct probability distri- 

utions with the triangular densities. The time interval is made up 

f several segments of the same length, and the weights of the 

omponents of the mixture depend on time. We use two methods 

f mixing of the three distinct initial probability distributions. By 

ethod 1, only one generating probability distribution is a leader 

t each segment (i.e., its weight is equal to one). By Method 2, the 

eights of the mixture components vary smoothly over time (as 

hown in section B of Fig. 1 ). 

Fig. 1 shows the main stages of data mixing (Method 1 – left, 

ethod 2 - right) and the results of aggregation of the experts 

odels. Section A of the figure shows the realizations of the tra- 

ectories of the three data generating distributions. The diagram in 

ection B displays the actual prior probabilities (relative weights) 

hat were used for mixing of the probability distributions. Section 

 shows the result of sampling from the mixture distribution. 

There are three experts i = 1 , 2 , 3 , which assume that the time

eries under study is obtained as a result of sampling from the 

robability distribution with the fixed triangular density with 

iven peak and base. Each expert evaluates the similarity of the 

esting point of the series with its distribution using CRPS score. 

We also compare two rules of aggregation of the experts’ fore- 

asts, AA (27) and the weighted average WA (30) . The diagrams of 

ections D and E of Fig. 1 show the weights of the experts assigned

y the corresponding algorithm in the online aggregating process 

sing rules (27) and (30) . 

https://github.com/VladimirVyugin
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Fig. 1. The stages of numerical experiments and the results of experts’ aggregation for two initial synthetic data mixing methods (Method 1 – left, Method 2 - right). (A) 

Realizations of the trajectories for the three initial data generating distributions; (B) weights of the distributions assigned by the data mixing method; (C) sequence sampled 

from the distributions defined by Method 1 and Method 2; (D) weights of the experts assigned online by AA using the rule (28) ; (E) weights of the experts assigned online 

by WA using the rule (31) . . 

Fig. 2. The accumulated losses of the experts (lines 1–3) and of the aggregating algorithm for both initial data mixing methods (Method 1 – left, Method 2 - right) and for 

both methods of computing aggregated forecasts: line 4 – for WA (the rule (30) ) and line 5 – for AA (the rule (27) ). We note an advantage of AA over WA in the case of 

data generating Method 1, in which there is a rapid change in leadership of the data generating distributions. 
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Fig. 2 shows the accumulated losses of the experts and the 

ccumulated losses of the aggregating algorithm for both data 

enerating methods (Method 1 – left, Method 2 - right) and for 

oth methods of computing the aggregated forecasts – by the rule 

27) and by the rule (30) . We note an advantage of rule (27) over

he rule (30) in the case of data generating Method 1, in which 

here is a rapid change in leadership of the data generating mod- 

ls. 

Fig. 3 shows in 3D format the empirical distribution functions 

btained online by Algorithm 3 for both data generating models 

nd the rule (27) . 

.2. Probabilistic forecasting of electrical loads 

The second group of numerical experiments on probabilistic 

orecasting were performed with the data of the 2014 (GEFCOM 

014,Track Load, Hong et al. [23] ). The time series were divided 

nto training (about 5 years) and testing (about 1 year) samples. 
7 
The main unit of the training sample includes data on hourly 

lectrical load and data on hourly temperature measurements for 

ll days of training period. 

The training sample shows the dependence of electrical loads 

n temperature which looks differently during different seasons 

nd time of the day. Therefore, each expert is trained on its specific 

omain where the specific relationship between temperature and 

lectrical load is observed. We use the corresponding point clouds 

f “temperature–loads” to define the probability distribution func- 

ion of the expert. 

The scatter diagrams “Load - Temperature” for several sets of 

alendar parameters (four seasons of the year and four consecu- 

ive intervals of the day, each for 6 hours) are presented in Fig. 4 .

he diagrams are constructed according to the training part of the 

ample. 

Fig. 4 shows the nature of the relationship between potential 

redictors and response. These data show the dependence of elec- 

rical loads on temperature. For each of the scattering diagrams 
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Fig. 3. Empirical distribution functions obtained online as a result of aggregation of the distributions of three experts by the rule (27) for both data generating methods. 

Fig. 4. Scatter plots of hourly temperature and electrical loads for all days of training period: Left figure – all data marked by seasons; Right figure – data grouped by 

seasons (Winter, Spring, Summer, Autumn) and time of the day marked in color (Night, Morning, Day, Evening). 
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resented, two or three temperature intervals can be distinguished 

n such a way that within each interval the point cloud has a sim- 

le ellipsoidal shape. This provides the basis for using a mixture of 

ormal distributions for the probabilistic forecast of the expected 

lectrical load according to the short-term temperature forecast. 

Scatter patterns on Fig. 4 can serve as the basis for determin- 

ng the pool of the experts. Each of them learns (a predictive 

robabilistic model) at sample points related to a predefined cal- 

ndar segment, for example, “Winter & Morning”, etc. These seg- 

ents should cover all possible combinations of calendar indica- 

ors present in the data. 

A set of 21 specialized experts is defined by dividing the calen- 

ar space into domains where the relationship between tempera- 

ure and electrical load can be described by a simple and relatively 

niform dependence. To define an expert, a combined sample of 

istorical data consisting of the initial sample of “temperature–

oad” ensemble, as well as its competence area (season, time of 

he day) was determined. Each expert represents the temperature 

ependence of the probabilistic distribution of the magnitude of 

he electrical load within a certain domain. These domains rep- 

esent four daily periods (morning, afternoon, evening, night) for 
8 
ach season (winter, spring, summer, autumn). There are 16 such 

xperts in total, they have numbers 6–21. 

The anytime Expert 1 corresponds to the left part of Fig. 4 , 

xperts 2–5 correspond to four seasons (see right part of Fig. 4 ). 

xperts 6–21 correspond to the colored parts of the plots on the 

ight part of Fig. 4 . To construct the probability distribution of any 

xpert, we use the method of Gaussian Mixture Models (GMM), 

hich is applied to the corresponding ensemble of “temperature–

oad”. This probabilistic model of any expert is presented as a mix- 

ure of normal distributions. The number of components in a Gaus- 

ian mixture is preselected (from 1 to 3) depending on the com- 

lexity of the scattering cloud shape for “temperature–load” pair 

onstructed from the training sample. 

The main parameter of any expert’s model (algorithm) is the 

emperature forecast. Therefore, the predictive performance of our 

lgorithm extends as far as the temperature forecast allows. 

In the experiments, which are presented in Figs. 5–8 , a partic- 

lar forecasting problem is considered, that is the short-term fore- 

asting of a probability distribution function for one hour in ad- 

ance. We use the current temperature as its forecast on one hour 

head. 
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Fig. 5. Left part: confidence levels for Experts 2–5 (season experts) and 6–21 (“season & time of the day”). Right part: enlarged fragment. Each block is the result of overlaying 

the confidence levels of the corresponding easonal expert with the confidence levels of the day experts. The horizontal axis displays time, the blocks are vertically spaced. 

Fig. 6. Discounted regret curves for AA (left) and WA (right) with respect to each of 21 specialized experts. The dotted lines above represent the theoretical bounds for the 

regret. 
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7 
Each expert is trained on its specific domain of time interval. 

he scope of each expert is determined by its confidence values. 

oving from one domain to another, an expert, which was tuned 

o the previous domain, gradually loses his predictive abilities. To 

ake this into account, when forecasting, we define a smooth ex- 

ension of the domain of any expert. Inside the area for which the 

xpert was tuned, its confidence values are equal to 1, and outside 

his area they decrease linearly from 1 to 0; moreover, the area of 

ecrease for a seasonal expert is equal to half of the duration of 

he season, and the area of decrease for a daily expert is equal to 

wo hours (the specific domain of any daily expert is equal to six 

ours). 

Confidence levels of Seasonal Experts 2–5, as well as corre- 

ponding Experts 6–21, are presented as blocks on Fig. 5 . Each 

lock is the result of overlaying the confidence levels of the cor- 
9 
esponding seasonal expert with the confidence levels of the ex- 

erts. 7 

The constructed experts and methods of their aggregation were 

ested on the testing sample. Temperature and hourly electrical 

oads for the testing period are presented on Fig. 7 . 

When forecasting, the smooth areas of expert competence 

re chosen wider than those areas in which these experts were 

rained. Thus, each expert competes with other experts working at 

verlapping intervals using the corresponding algorithm for com- 

ining experts with confidence levels from Section 4.1 , like it was 

one for computing the pointwise forecasts by V’yugin and Trunov 

29] . 
These values are simply multiplied. 
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Fig. 7. Temperature (top graph) and hourly electrical loads (bottom graph) for the 

testing period. The left vertical axis is the load value, the right vertical axis is the 

temperature in Fahrenheit scale. There is a jump of consumption between 50 0 0 and 

60 0 0 hours of testing period, which is then reflected in the results of the forecast- 

ing algorithms. 
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The regret curves T → 

T ∑ 

t=1 

p i,t (h t − l i,t ) for AA and WA with re-

pect to each of 21 specialized experts are presented in Fig. 6 . The

otted lines above represent the theoretical bounds for the regret 

see the inequality (15) ). 

Two ways of aggregation of the experts by AA and WA were 

ested. In the first method of aggregation, confidence levels of all 

xperts were equal to 1. In the second way, algorithms AA and WA 

se specialized experts, where theirs confidence levels are set ex- 

ernally. Non-zero confidences correspond to the training intervals 

f specialized experts, but are somewhat wider and monotonically 

ecrease to zero outside these intervals (see example in Fig. 5 ). 

To justify the role of confidence parameters, the comparative 

xperiments were conducted. Their results are presented in Fig. 8 . 

he accumulated losses and their time averages are presented in 

ig. 8 . These curves show that specialized experts, which were 

rained only for certain types of data, quickly lose their effective- 

ess in other types of data areas and generally suffer large losses. 
ig. 8. Comparative study of learning with/without specialization of the experts. Accu

orking any time (there is some difference with curves on Fig. 6 , where the discounted re

 and 3 – results of aggregation by WA and AA, where confidence levels of the experts ar

verlapping smooth confidence levels; 6–7 – the same for the case where the expertise ar

lightly outperforms WA. 

10 
n exception is Expert 1, which was trained on all types of data, 

ut the aggregating algorithms AA and WA with confidence essen- 

ially outperform it. 

Other experiments study the effects of smooth and constant 

onfidence levels. During the first experiment, all confidence values 

or each expert were equal to 1: curves 2 and 3 (in Fig. 8 ) repre-

ent results of their aggregation by AA and WA, where confidence 

evels of the experts are set to 1. In the second experiment, AA 

nd WA algorithms used the experts predictions within the levels 

f their confidence: curves 4–5 represent results of aggregation by 

A and AA algorithms using non-trivial overlapping smooth confi- 

ence levels. 

We also test the binary case, where confidence levels of the ex- 

erts take only values 0 or 1 (sleeping and non-sleeping experts): 

urves 6–7 represent results of aggregation by WA and AA for the 

inary case where the expertise areas of the experts do not over- 

ap. 

The results of the experiments show that the use of smooth 

onfidence levels of specialized experts increases the efficiency of 

he process of online adaptation compared to those cases where 

onfidence values are binary or when they are not used at all 

when they are always equal to 1). 

These results also show that AA in all experiments outperforms 

A. 

. Conclusion 

In this paper, the problem of aggregating the probabilistic fore- 

asts is considered. In this case, Continuous Ranked Probability 

core ( CRPS ) is a popular among practitioners example of proper 

coring rule for continuous outcomes. We incorporate this loss 

unction in PEA framework and present its theoretical analysis. We 

ave proved that the CRPS loss function is mixable. This implies 

hat all machinery of the Vovk aggregating algorithm can be ap- 

lied to this loss function. Basing on mixability of CRPS , we ana- 

yze two methods for calculating the predictions using the aggre- 

ating algorithm (AA) and the weighted average of forecasts of the 

xperts (WA). The time-independent upper bounds for the regret 

ere obtained for both methods. 

We illustrate the theoretical results with computer experiments. 

n Section 5.1 we test the performance of two methods of aggre- 

ation, AA and WA, on synthetic data. We use three probabilis- 
mulated losses (left) and their time averages (right): of all 21 specialized experts 

grets are presented); 1– losses of the anytime expert trained on the entire sample; 

e set to 1; 4–5 – results of aggregation by WA and AA algorithms using non-trivial 

eas of the experts do not overlap (sleeping and non-sleeping experts). AA is always 
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Subst (e t , w t ) for each s = 1 , . . . , d, where e t = ( f 
1 ,t 

, . . . , f 
N,t 

) . �
ic models for generating data. The same models are used as ex- 

erts. Our experiments show how quickly the mixing algorithms 

an adapt to the data generation strategy (see Fig. 1 ). 

These results show that two methods of computing forecasts AA 

nd WA lead to similar empirical cumulative losses while the rule 

27) for AA results in four times less regret bound than (30) for 

A. We note a significantly better performance of method AA over 

ethod WA (30) in the case where there is a rapid change in lead-

rship of the data generating models. 

We have incorporated a smooth generalization of the method of 

pecialized experts into the aggregating algorithm, which allows us 

o combine the probabilistic predictions of the specialized experts 

ith overlapping domains of theirs competence. 

This paper applies our approach to a popular problem of pre- 

icting electricity consumption using Gaussian mixture models as 

xperts. We propose a technology for developing specialized ex- 

erts and learning their probability distributions using ensembles 

f learning samples. 

A set of 21 specialized experts is defined by dividing the calen- 

ar space into domains where the relationship between tempera- 

ure and electrical load can be described by a simple and relatively 

niform dependence. The main parameter of any expert’s model 

algorithm) is the temperature forecast. Therefore, the predictive 

erformance of our algorithm extends as far as the temperature 

orecast allows. The problem of predicting temperature for several 

ours in advance is beyond the scope of this study and is a sepa-

ate problem that may be the subject of future research. 

The results of these experiments show that the use of smooth 

onfidence levels of specialized experts increases the efficiency of 

he process of online adaptation compared to those cases where 

onfidence values are binary or when they are not used at all. 

The proposed methods are closely related to the so called en- 

emble forecasting (Thorey et al. [24] ). In practice, the output of 

hysical process models are usually not probabilities, but rather 

nsembles. Ensemble forecasts are based on a set of physical mod- 

ls. Each model may have its own physical formulation, numerical 

ormulation and input data. An ensemble is a collection of model 

rajectories generated using different initial conditions of model 

quations. Consequently, the individual ensemble members repre- 

ent likely scenarios of the future physical system development, 

onsistent with the currently available incomplete information. It 

s possible to apply the aggregation methods developed directly to 

he data represented in the form of ensembles. 
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ppendix A. Auxiliary results 

1. Regret analysis for AA 

Assume that a loss function λ( f, y ) is η-mixable. Let w 

∗
t = 

w 

∗
1 ,t 

, . . . , w 

∗
N,t 

) be the normalized weights and f t = ( f 1 ,t , . . . , f N,t )
11 
e the experts’ forecasts at step t . Define in Protocol 1 the learner’s 

orecast f t = Subst (f t , w 

∗
t ) . By (4) λ( f t , y t ) ≤ g t (y t ) for all t , where

 t (y ) is defined by (3) . 

Let H T = 

T ∑ 

t=1 

λ( f t , y t ) be the accumulated loss of the learner and

 

i 
T 

= 

T ∑ 

t=1 

λ( f i,t , y t ) be the accumulated loss of an expert i . By defi-

ition g t (y t ) = − 1 
η ln 

W t+1 
W t 

, where W t = 

N ∑ 

i =1 

w i,t and W 1 = 1 . By the

eight update rule (1) , we obtain w i,t+1 = 

1 
N e 

−ηL i t . 

By telescoping, we obtain the time-independent bound 

 T ≤
T ∑ 

t=1 

g t (y t ) = − 1 

η
ln W T +1 ≤ L i T + 

ln N 

η
(A.1) 

or any expert i regardless of which sequence of outcomes is ob- 

erved. 

2. Proof of lemma 1 

roof. Let the forecasts c i = (c 1 
i 
, . . . , c d 

i 
) of the experts 1 ≤ i ≤ N

nd a probability distribution p = (p 1 , . . . , p N ) on the set of the ex-

erts be given. 

Since the loss function λ( f, y ) is η-mixable, we can apply the 

ggregation rule to each s th column e s = (c s 
1 
, . . . , c s 

N 
) of coordinates

eparately: define f s = Subst (e s , p ) for 1 ≤ s ≤ d. Rewrite the in-

quality (4) : 

 

−ηλ( f s ,y ) ≥
N ∑ 

i =1 

e −ηλ(c s 
i 
,y ) p i (A.2) 

or 1 ≤ s ≤ d and for any y . 

Let y = (y 1 , . . . , y d ) be a vector of outcomes. Multiplying the in-

qualities (A.2) for s = 1 , . . . , d and y = y s , we obtain 

 

−η
∑ d 

s =1 λ( f s ,y s ) ≥
d ∏ 

s =1 

N ∑ 

i =1 

e −ηλ(c s 
i 
,y s ) p i . (A.3) 

The generalized Hölder inequality says that 

 G 1 G 2 · · · G d ‖ r ≤ ‖ G 1 ‖ q 1 ‖ G 2 ‖ q 2 · · · ‖ G d ‖ q d , 

here 1 
q 1 

+ · · · + 

1 
q d 

= 

1 
r , q s ∈ (0 , + ∞ ) and G s ∈ L q s for 1 ≤ s ≤ d

Lo’eve [20] ). Let q s = 1 for all 1 ≤ s ≤ d, then r = 1 /d. Let G s (i ) =
 

−ηλ(c s 
i 
,y s ) for s = 1 , . . . , d and ‖ G s ‖ 1 = E i ∼p [ G s (i )] = 

N ∑ 

i =1 

G s (i ) p i .

hen using the inequality (A.3) , we obtain 

 

−η
∑ d 

s =1 λ( f s ,y s ) ≥
( 

N ∑ 

i =1 

e 
−η 1 

d 

d ∑ 

s =1 

λ(c s 
i 
,y s ) 

p i 

) d 

. 

r, equivalently, 

 

− η
d 
λ(f , y ) ≥

N ∑ 

i =1 

e −
η
d 
λ(c i , y ) p i (A.4) 

or all y = (y 1 , . . . , y d ) , where f = ( f 1 , . . . , f d ) . 

The inequality (A.4) means that the generalized loss function 

(f , y ) is η
d 

-mixable. 

By (1) , the weights update rule for generalized loss function in 

rotocol 1 is 

 i,t+1 = w i,t e 
− η

d 
λ(f i,t , y t ) for t = 1 , 2 , . . . , 

here η > 0 is a learning rate for the source function. The nor- 

alized weights w 

∗
t = (w 

∗
i,t 

, . . . , w 

∗
i,t 

) are defined by (2) . At any

ound t , the learner forecast f t = ( f 1 t , . . . , f 
d 
t ) is defined as f s t =

s ∗ s s s 
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Table A.1 

Some values of the parameter α and the corresponding accumulated losses of Algo- 

rithm 3, when the first synthetic data generation model (Method 1) was used. The 

values of the losses are normalized relative to the losses of the algorithm WA for 

α = 0 . 

α 0 0.0 0 01 0.001 0.005 0.01 0.05 0.1 0.2 

AA 0.984 0.596 0.542 0.513 0.508 0.564 0.657 0.824 

WA 1.000 0.958 0.869 0.759 0.728 0.816 0.957 1.115 
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3. Mixing past posteriors 

We have used mixing past posteriors modification of Algo- 

ithms 3 and 3a (see Fig. 1 and mixing scheme Fixed Share Up- 

ate (to start vector) on Table 1 by [3] ), where the rules (28) and

34) are replaced with 

 i,t+1 = 

α

N 

+ (1 − α) 
˜ w i,t ∑ N 

j=1 ˜ w j,t 

, where 

˜ w i,t = w i,t e 
−η(p i,t CRPS (F i,t ,y t )+(1 −p i,t ) CRPS (F t ,y t )) . 

he value of parameter α was not optimized. Some values of the 

arameter α and the corresponding accumulative losses of Algo- 

ithm 3 for the first synthetic data generation model (Method 1) 

re presented on Table A.1 

The loss values given in the table show that in this particu- 

ar case, a significant decrease in losses occurs already at the first 

onzero value of the parameter α. There is a jump in losses at 

he first nonzero tested value α = 0 . 0 0 01 , after which their change

as insignificant. We have chosen the value α = 0 . 001 within the 

nterval of relative stabilization of the corresponding losses. Opti- 

ization of the parameter value α can serve as a subject for fur- 

her research. 
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