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ABSTRACT
We consider reaction–diffusion systems with random rapidly oscillating
coefficient. We do not assume any Lipschitz condition for the nonlinear
function in the system, so, the uniqueness theorem for the corresponding
initial-value problem may not hold for the considered reaction–diffusion
system. Under the assumption that the random function is ergodic and
statistically homogeneous in space variables we prove that the trajectory
attractors of these systems tend in a weak sense to the trajectory attractors
of the homogenized reaction–diffusion systems whose coefficient is the
average of the corresponding term of the original systems.
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1. Introduction

This paper is devoted to investigations of the asymptotic behavior of attractors to a systemof nonlinear
differential equations in domainswithmicroinhomogeneous structure.We study aweak convergence
and effective behavior of attractors as a small parameter tends to zero. To study such phenomenon
we apply the homogenization method (cf. e.g. [1–7], for random case cf. for instance, [8–13]) as well
as a delicate analysis of trajectory and global attractors.

Attractors describe the behavior of solutions of dissipative nonlinear evolution equations as time
tends to infinity. It is also convenient to study, using attractors, the stability and instability of the
limiting structures of the corresponding dynamical systems. Attractors single out the most essential
limit sets of trajectories, which characterize the whole dynamics of the considered model described
by evolution equations (see, e.g. monographes [14–16] and the references therein).

More precisely, our interest is the asymptotic behavior of trajectory and global attractors of
reaction–diffusion systems with random terms that oscillate rapidly in space variable.

The Bogolyubov averaging principle [17] was used in the first papers [18–20] on averaging of
attractors of evolution equations with rapidly, but non-randomly oscillating terms. The averaging of
global attractors for parabolic equations with oscillating parameters has been considered in [15,21–
24]. Some problems related to the homogenization and the averaging of uniform global attractors
for dissipative wave equations has been considered in [19,25–28], in presence of time oscillations,
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and in [15,29–31], in presence of oscillations in space. Similar problems for autonomous and
non-autonomous 2D Navier–Stokes equations has been studied in [15,30,32,33]. Papers [33–37]
deal with partial differential equations containing singular oscillating terms.

In the paper [38], the authors study random attractors and inertial manifolds for scalar parabolic
equations with random terms on fast time scale. Under some spectral gap condition, it was shown
that the inertial manifolds of the fast time scale equations tend to the inertial manifold of the averaged
system when the scaling parameter tends to zero.

The method of trajectory attractors (see Figure 11 for example) for dissipative partial differential
equations was developed in [15,39,40]. This approach is very powerful in the study of the long time
behavior of solutions of evolution equations for which the uniqueness theorem of the corresponding
initial-value problem is not proved yet (e.g. for the inhomogeneous 3D Navier–Stokes system) or
does not hold (for the reaction–diffusion systems considered in the present paper). Some averaging
problem for trajectory attractors of autonomous and non-autonomous evolution equations with
rapidly oscillating terms were studied in [15,30].

In the paper we prove that the trajectory attractor Aε of the reaction–diffusion system with
randomly oscillating coefficient converges in a weak sense almost surely as ε → 0 to the trajectory
attractor A of the homogenized system in an appropriate functional space. Here, 1/ε is proportional
to the rate of oscillations.

In Section 2 we give necessary definitions of randomness and formulate the Birkhoff ergodic
theorem and related assertions. In Section 3 we define the main notions and formulate theorems
concerning the trajectory attractors of autonomous evolution equations. In Section 4 we construct
the trajectory attractor for the considered reaction–diffusion systems. Section 5 is devoted to the study
of the averaging of attractors of autonomous reaction–diffusion with randomly rapidly oscillating
terms in space variable.

Figure 1. Attractor.
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2. Preliminaries

Assume that (�,B,μ) is a probability space, i.e. the set� is endowed with a σ -algebraB of its subsets
and a σ -additive nonnegative measure μ on B such that μ(�) = 1.
Definition 2.1: A family of measurable maps Tξ : � → �, ξ ∈ Rn is called a space dynamical
system if the following properties hold:

(1) group property: Tξ1+ξ2 = Tξ1Tξ2 , ∀ξ1, ξ2 ∈ Rn; T0 = Id Id is the identity mapping on�;
(2) isometry property (the mappings Tξ preserve the measure μ on �): TξB ∈ B, μ(TξB) =

μ(B), ∀ξ ∈ Rn, ∀B ∈ B;
(3) measurability: for any measurable function ψ(ω) on �, the function ψ(Tξω) is measurable

on�× Rn and continuous in ξ .

Let Lq(�,μ) (q ≥ 1) be the space of measurable functions on � whose absolute value at the
power q is integrable with respect to the measure μ. For q = ∞ we consider the space L∞(�,μ). If
Tξ : � → � is a space dynamical system, then on the spaceLq(�,μ)wedefine a parameter dependent
group of operators {Tξ }, ξ ∈ Rn (we keep the same notation), by the formula (Tξψ)(ω) := ψ(Tξω),
ψ ∈ Lq(�,μ).

Condition (3) in Definition 2.1 implies that the group Tξ is strongly continuous, i.e. we have
limξ→0 ‖Tξψ − ψ‖Lq(�,μ) = 0 for any ψ ∈ Lq(�,μ).
Definition 2.2: Suppose thatψ(ω) is a measurable function on�. The real function ξ �→ ψ(Tξω),
ξ ∈ Rn, for fixed ω ∈ � is called the realization of the function ψ .

The following assertion is proved, for instance, in [5,7].
Proposition 2.1: Ifψ ∈ Lq(�,μ), thenω-almost all realizations ξ �→ ψ(Tξω) belong to Llocq (Rn). If
the sequence {ψk} ⊂ Lq(�,μ) converges in Lq(�,μ) to the functionψ , then there exists a subsequence
{ψk′ } such that ω-almost all realizations ξ �→ ψk′(Tξω) converge in Llocq (Rn) to the realization
ξ �→ ψ(Tξω).
Definition 2.3: A measurable function ψ(ω) on � is called invariant, if ψ(Tξω) = ψ(ω) for any
ξ ∈ Rn and almost all ω ∈ �.
Definition 2.4: A space dynamical system Tξ is called ergodic, if any invariant function is ω-almost
everywhere a constant.

We denote by R the natural Borel σ -algebra of subsets of Rn. Suppose that a function �(ξ) ∈
Lloc1 (R

n).
Definition 2.5: We say that the function �(ξ) has a SPACE AVERAGE, if the limit

M(�) := lim
ε→0

1
|R|

∫
. . .

∫
R

�

(x
ε

)
dx

exists for any bounded Borel set R ∈ R with positive measure and does not depend on the choice of
R. The numberM(�) is called the SPATIAL MEAN VALUE of the function �.

Equivalently, the space average is defined by

M(�) := lim
s→+∞

1
|Bs|

∫
. . .

∫
Bs

�(ξ) dξ , where Bs =
{
ξ ∈ R

n
∣∣∣∣ ξs ∈ B

}
.

From now on we make use of a generalization of the well-known Birkhoff theorem (see [41,42]
and also [5,7]). Namely, following the lines of [43, Chapter VIII, §7] it can be obtained in the form
(see, e.g. [44]):

Theorem 2.1 (Birkhoff ergodic theorem): Let P ⊂ Rn. Assume that the space dynamical system Tξ
(ξ ∈ Rn) satisfy Definition 2.1. Consider a measurable real function ψ = ψ(x,ω), x ∈ P, ω ∈ �,
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such that, for every x ∈ P, the function ψ(x, ·) ∈ Lq(�,μ) with q � 1. Then, for every x ∈ P and
for almost all ω ∈ �, the realization ψ(x, Tξω) has the space mean value M(ψ(x, Tξω)). Moreover,
the space mean valueM(ψ(x, Tξω)) is a conditional mathematical expectation of the functionψ(x,ω)
with respect to the σ -algebra of invariant subsets. Hence, M(ψ(x, Tξω)) is an invariant function and

E(ψ)(x) ≡
∫
�

ψ(x,ω) dμ =
∫
�

M(ψ(x, Tξω)) dμ.

In particular, if the space dynamical system Tξ is ergodic then, for almost all ω ∈ �, we have the
identity

E(ψ)(x) = M(ψ)(x).

Note that in the formulation of Theorem 2.1 the variable x ∈ P plays the role of the parameter. In
the next sections, we consider P = Tn.
Definition 2.6: Let P ⊂ Rn. A random function ψ(x, ξ ,ω), x ∈ P, ξ ∈ Rn, ω ∈ �, is called
statistically homogeneous for any x, if the representation ψ(x, ξ ,ω) = �(x, Tξω) is valid for some
measurable function� : P ×� → R, where Tξ is a space dynamical system in�.

The following statement can be found, for instance, in [7].
Proposition 2.2: Let P be ameasurable subset ofRn. Suppose that ameasurable function�(x, ξ), x ∈
P, ξ ∈ Rn, has a space mean value M(�)(x) in Rn

ξ for every x ∈ P and the family {�(x, x
ε

)
, : 0 < ε �

1}, x ∈ K, is bounded in L∞(K), where K is an arbitrary compact subset in P.
Then M(�)( · ) ∈ Lloc∞ (P) and we have

�
(
x, x
ε

)
⇁M(�)(x) ∗-weakly in Lloc∞ (P) as ε → 0.

3. Trajectory attractors of evolution equations

In this section we give a scheme for the construction of trajectory attractors of autonomous evolution
equations. In the next section we shall apply this scheme to the study of trajectory attractors of the
concrete evolution equations with rapidly oscillating coefficients and the corresponding averaged
equations.

To begin with we consider an abstract autonomous evolution equation

∂tu = A(u), t ≥ 0. (1)

Here A( · ) : E1 → E0 is a nonlinear operator, E1,E0 are Banach spaces and E1 ⊆ E0. For instance,
A(u) = a�u − bf (u)+ g (see Section 4).

We are going to study solutions u(s) of Equation (1) as functions of s ∈ R+ as a whole. Here s ≡ t
denote the time variable. The set of solutions of (1) is said to be a trajectory space K+ of Equation
(1). Let us describe the trajectory space K+ in greater detail.

At first, we consider solutions u(s) of (1) defined on a fixed time interval [t1, t2] from R. We
study solutions of (1) in a Banach space Ft1,t2 that depends on t1 and t2. The space Ft1,t2 consists of
functions f (s), s ∈ [t1, t2] such that f (s) ∈ E for almost all s ∈ [t1, t2], where E is a Banach space. It is
assumed that E1 ⊆ E ⊆ E0.

For example,Ft1,t2 can be the spaceC([t1, t2];E), orLp(t1, t2;E), for p ∈ [1,∞], or the intersection
of such spaces (see Section 4). We assume that�t1,t2Fτ1,τ2 ⊆ Ft1,t2 and

‖�t1,t2 f ‖Ft1,t2
≤ C(t1, t2, τ1, τ2)‖f ‖Fτ1,τ2

, ∀f ∈ Fτ1,τ2 , (2)

where [t1, t2] ⊆ [τ1, τ2] and �t1,t2 denotes the restriction operator onto the interval [t1, t2]. The
constant C(t1, t2, τ1, τ2) is independent of f .
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Let S(h) for h ∈ R denote the translation operator

S(h)f (s) = f (h + s).

Evidently, if the argument s of f ( · ) belongs to [t1, t2], then the argument s of S(h)f ( · ) can be taken
form [t1 − h, t2 − h] for h ∈ R.We assume that the mapping S(h) is an isomorphism from Ft1,t2 to
Ft1−h,t2−h and

‖S(h)f ‖Ft1−h,t2−h = ‖f ‖F t1,t2 , ∀f ∈ Ft1,t2 . (3)

This assumption is fairly natural.
We assume that if f (s) ∈ Ft1,t2 , then A(f (s)) ∈ Dt1,t2 , where Dt1,t2 is a larger Banach space,

Ft1,t2 ⊆ Dt1,t2 . The derivative ∂t f (t) is a distribution with values in E0, ∂t f (s) ∈ D′((t1, t2);E0) and
we assume that Dt1,t2 ⊆ D′((t1, t2);E0) for all (t1, t2) ⊂ R. A function u(s) ∈ Ft1,t2 is said to be a
solution of (1) from the space Ft1,t2 (on the interval (t1, t2)) if ∂tu(s) = A(u(s)) in the distributional
sense of the space D′((t1, t2);E0).

We also define the space

F loc+ = {f (s), s ∈ R+ | �t1,t2 f (s) ∈ Ft1,t2 , ∀ [t1, t2] ⊂ R+}. (4)

For example, if Ft1,t2 = C([t1, t2];E), then F loc+ = C(R+;E) and if Ft1,t2 = Lp(t1, t2;E), then
F loc+ = Llocp (R+;E).

A function u(s) ∈ F loc+ is called a solution of (1) from F loc+ if�t1,t2u(s) ∈ Ft1,t2 and this function
is a solution of (1) for every [t1, t2] ⊂ R+.

We denote byK+ a set of solutions of (1) fromF loc+ . Notice, thatK+ is not necessarily the set of all
solutions from F loc+ . The elements of K+ are called trajectories and the set K+ is called the trajectory
space of the Equation (1).

We assume that the trajectory space K+ is translation invariant in the following sense: if u(s) ∈
K+, thenu(h+s) ∈ K+ for everyh ≥ 0.This is a verynatural assumption for solutions of autonomous
equations.

We now consider the translation operators S(h) in F loc+ :

S(h)f (s) = f (s + h), h ≥ 0.

It is clear that the mappings {S(h), h ≥ 0} form a semigroup in F loc+ : S(h1)S(h2) = S(h1 + h2) for
h1, h2 ≥ 0 and S(0) is the identity operator. We change the variable h into the time variable t.
The semigroup {S(t), t ≥ 0} is called the translation semigroup. By our assumption the translation
semigroup maps the trajectory space K+ to itself:

S(t)K+ ⊆ K+, ∀t ≥ 0. (5)

We shall study attracting properties of the translation semigroup {S(t)} acting on the trajectory
space K+ ⊂ F loc+ .We define a topology in the space F loc+ .

Let a metrics ρt1,t2(·, ·) be defined on Ft1,t2 for every [t1, t2] ⊂ R. Similar to (2) and (3) we assume
that

ρt1,t2
(
�t1,t2 f ,�t1,t2g

) ≤ D(t1, t2, τ1, τ2)ρτ1,τ2
(
f , g
)
, ∀f , g ∈ Fτ1,τ2 , [t1, t2] ⊆ [τ1, τ2],

ρt1−h,t2−h(S(h)f , S(h)g) = ρt1,t2(f , g), ∀f , g ∈ Ft1,t2 , [t1, t2] ⊂ R, h ∈ R.

Denote by �t1,t2 the corresponding metric spaces on Ft1,t2 . For example, ρt1,t2 can be the metric
associated with the norm ‖ · ‖Ft1,t2

of the Banach space Ft1,t2 . However, usually in application ρt1,t2
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generates the topology�t1,t2 that is weaker than the strong convergence topology of the Banach space
Ft1,t2 .

The inductive limit of the spaces �t1,t2 defines the topology �loc+ in F loc+ , i.e. by definition, a
sequence {fn(s)} ⊂ F loc+ converges to f (s) ∈ F loc+ as n → ∞ in�loc+ if ρt1,t2(�t1,t2 fn,�t1,t2 f ) → 0 as
n → ∞ for each [t1, t2] ⊂ R+. It is not hard to prove that the topology�loc+ is metrizable using, for
example, the Frechet metric

ρ+(f1, f2) :=
∑
m∈N

2−m ρ0,m(f1, f2)
1 + ρ0,m(f1, f2)

. (6)

If it is known that all metric spaces �t1,t2 are complete, then clearly the metric space �loc+ is also
complete.

We claim that the translation semigroup {S(t)} is continuous in �loc+ . This assertion follows
directly from the definition of the topological space�loc+ .

We also consider the following Banach space

Fb+ := {f (s) ∈ F loc+ | ‖f ‖Fb+ < +∞}, (7)

where the norm
‖f ‖Fb+ := sup

h≥0
‖�0,1f (h + s)‖F0,1 . (8)

For example, if F loc+ = C(R+;E), then the space Fb+ = Cb(R+;E) with norm ‖f ‖Fb+ =
suph≥0 ‖f (h)‖E and ifF loc+ = Llocp (R+;E), thenFb+ = Lbp(R+;E)with norm ‖f ‖Fb+ =

(
suph≥0

∫ h+1
h

‖f (s)‖pEds
)1/p

.

Recall that Fb+ ⊆ �loc+ . We require the Banach space Fb+ only to define bounded subsets in the
trajectory spaceK+. To construct a trajectory attractor inK+, we do not consider the corresponding
uniform convergence topology of the Banach space Fb+. Instead, we utilize the local convergence
topology�loc+ which is much weaker.

We suppose that K+ ⊆ Fb+, i.e. every trajectory u(s) ∈ K+ of Equation (1) has a finite norm (8).
Let us define an attracting set and a trajectory attractor of the translation semigroup {S(t)} acting on
K+.
Definition 3.1: A set P ⊆ �loc+ is called an attracting set of the semigroup {S(t)} acting on K+ in
the topology�loc+ if for any bounded in Fb+ set B ⊆ K+ the set P attracts S(t)B as t → +∞ in the
topology�loc+ , i.e. for any ε-neighborhoodOε(P) in�loc+ there exists t1 ≥ 0 such that S(t)B ⊆ Oε(P)
for all t ≥ t1.

It is clear that the attracting property ofP can be formulated in the following equivalent form: for
any set B ⊆ K+ bounded in Fb+ and for eachM > 0

dist�0,M (�0,MS(t)B,�0,MP) → 0 (t → +∞),

where
distM(X,Y) := sup

x∈X
distM(x,Y) = sup

x∈X
inf
y∈Y ρM(x, y)

is the Hausdorff semidistance from a set X to a set Y in a metric space M.
Definition 3.2: (see [15]) A set A ⊆ K+ is called the trajectory attractor of the translation
semigroup {S(t)} on K+ in the topology �loc+ , if (i) A is bounded in Fb+ and compact in �loc+ ,
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(ii) the set A is strictly invariant with respect to the semigroup: S(t)A = A for all t ≥ 0, and (iii) A
is an attracting set for {S(t)} on K+ in the topology�loc+ , that is, for eachM > 0

dist�0,M (�0,MS(t)B,�0,MA) → 0 (t → +∞).

Remark 3.1: Comparingwith [14] one can say that the trajectory attractorA is the global (Fb+,�loc+ )-
attractor of the translation semigroup {S(t)} acting on K+, that is, A attracts S(t)B as t → +∞ in
the topology�loc+ for any bounded (in Fb+) set B from K+ :

dist�loc+ (S(t)B,A) → 0 (t → +∞).

We now formulate the main result on the trajectory attractor for Equation (1).

Theorem 3.1 (see [14,15,39]): Assume that the trajectory space K+ corresponding to Equation (1)
is contained in Fb+ and (5) holds. Suppose that the translation semigroup {S(t)} has an attracting set
P ⊆K+ which is bounded in Fb+ and compact in �loc+ . Then the translation semigroup {S(t), t ≥ 0}
acting on K+ has the trajectory attractor A ⊆ P . The set A is bounded in Fb+ and compact in�loc+ .

We now describe the structure of the trajectory attractor A of Equation (1) in terms of complete
trajectories of this equation. Consider the Equation (1) on the entire time axis

∂tu = A(u), t ∈ R. (9)

We have defined the trajectory space K+ of Equation (9) on R+. We now extend this definition
on the entire R. If a function f (s), s ∈ R, is defined on the entire time axis, then the translations
S(h)f (s) = f (s+h) are also defined for negative h. A functionu(s), s ∈ R is called a complete trajectory
of Equation (9) if�+u(s+ h) ∈ K+ for all h ∈ R.Here�+ = �0,∞ denotes the restriction operator
to the semiaxis R+.

We have introduced the spaces F loc+ ,Fb+, and �loc+ .We now define spaces F loc ,Fb, and �loc in
the same way:

F loc := {f (s), s ∈ R | �t1,t2 f (s) ∈ Ft1,t2 ∀ [t1, t2] ⊆ R};
Fb := {f (s) ∈ F loc | ‖f ‖Fb < +∞},

where
‖f ‖Fb := sup

h∈R

‖�0,1f (h + s)‖F0,1 . (10)

The topological space �loc coincides (as a set) with F loc and, by definition, fn(s) → f (s) (n → ∞)

in �loc if �t1,t2 fn(s) → �t1,t2 f (s) (n → ∞) in �t1,t2 for each [t1, t2] ⊆ R. It is clear that �loc is a
metric space as well as�loc+ .
Definition 3.3: The kernelK in the spaceFb of Equation (9) is the union of all complete trajectories
u(s), s ∈ R, of Equation (9) that are bounded in the space Fb with respect to the norm (10):

‖�0,1u(h + s)‖F0,1 ≤ Cu, ∀h ∈ R.

Theorem 3.2: Assume that the hypotheses of Theorem 3.1 holds. Then

A = �+K,

the set K is compact in�loc and bounded in Fb.

The complete proof can be found in [15,39].
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In various applications, to prove that a ball inFb+ is compact in�loc+ the following lemma is useful.
Let E0 and E1 be Banach spaces such that E1 ⊂ E0.We consider the Banach spaces

Wp1,p0(0,M;E1,E0) = {
ψ(s), s ∈ 0,M | ψ( · ) ∈ Lp1(0,M;E1), ψ ′( · ) ∈ Lp0(0,M;E0)

}
,

W∞,p0(0,M;E1,E0) = {
ψ(s), s ∈ 0,M | ψ( · ) ∈ L∞(0,M;E1), ψ ′( · ) ∈ Lp0(0,M;E0)

}
,

(where p1 ≥ 1 and p0 > 1) with norms

‖ψ‖Wp1,p0
:=
(∫ M

0
‖ψ(s)‖p1E1ds

)1/p1
+
(∫ M

0
‖ψ ′(s)‖p0E0ds

)1/p0
,

‖ψ‖W∞,p0
:= ess sup

{‖ψ(s)‖E1 | s ∈ [0,M]}+
(∫ M

0
‖ψ ′(s)‖p0E0ds

)1/p0
.

Lemma 3.1 (Aubin–Lions–Simon, [45]): Assume that E1 � E ⊂ E0.Then the following embeddings
are compact:

Wp1,p0(0,T;E1,E0) � Lp1(0,T;E), (11)
W∞,p0(0,T;E1,E0) � C([0,T];E). (12)

In the next section we study evolution equations and their trajectory attractors depending on a
small parameter ε > 0.
Definition 3.4: We say that the trajectory attractors Aε converge to the trajectory attractor A as
ε → 0 in the topological space �loc+ if for any neighborhood O(A) in �loc+ there is an ε1 ≥ 0 such
that Aε ⊆ O(A) for any ε < ε1, that is, for eachM > 0

dist�0,M (�0,MAε ,�0,MA) → 0 (ε → 0).

4. Reaction-diffusion systems and their trajectory attractors

We consider a reaction–diffusion system with randomly oscillating coefficient of the form

∂tu = a�u − b
(
x,

x
ε
,ω
)
f (u)+ g

(
x
)
, u|∂D = 0, (13)

where x ∈ D � Rn, u = (u1, . . . , uN ), f = (f 1, . . . , f N ), and g = (g1, . . . , gN ). Here a is an
N × N matrix with positive symmetric part: 1

2 (a + a∗) ≥ βI , where β > 0, and the real function
b(x, ξ ,ω) ∈ C(D×Rn) is positive for almost everyω ∈ �. The Laplace operator� := ∂2x1 +· · ·+∂2xn
acts in the x-space.

We note that all the results can also be applied to the systems with nonlinear terms of the form∑m
j=1 bj

(
x, x
ε
,ω
)
fj(u),where bj are matrices and fj(u) are polynomial vectors with respect to u. For

brevity, we consider the casem = 1 and b1
(
x, x
ε
,ω
) = b

(
x, x
ε
,ω
)
I , where I is the identity matrix.

For the simplicity we assume that the vector function f (v) ∈ C(RN ; RN ) satisfies the following
inequalities:

f (v) · v ≥ γ |v|p − C, |f (v)| ≤ C1
(|v|p−1 + 1

)
, p ≥ 2. (14)

APPLICABLE ANALYSIS 263



Other conditions are also admissible, for example, the inequalities with different degrees p =
(p1, . . . , p2) of the form

f (v) · v ≥ γ

N∑
i=1

|vi|pi − C,

N∑
i=1

|f i(v)|
pi

pi−1 ≤ C1

( N∑
i=1

|vi|pi + 1

)
, pk ≥ 2, ∀v ∈ R

N .

Notice that we do not assume that the nonlinear vector function f (v) satisfies the Lipschitz
condition with respect to v.

Let Tξ , ξ ∈ Rn, be an ergodic space dynamical system in a probability space (�,B,μ).
We assume that the function b(x, x

ε
,ω) is statistically homogeneous, that is

b(x, ξ ,ω) = B(x, Tξω),

where B : D ×� → R is measurable.
We also assume that B(x,ω) ∈ Cb(D) for almost all ω ∈ � and

0 < β0 ≤ B(x,ω) ≤ β1, ∀x ∈ D. (15)

Birkhoff ergodic theorem implies that the function b
(
x, ξ ,ω

) = B(x, Tξω) has the space mean
value

bhom(x) := M(b)(x) = E(B)(x)
for every x ∈ D. It is clear that the function bhom(x) also satisfies the inequality

0 < β0 ≤ bhom(x) ≤ β1, ∀x ∈ D.

It follows from Proposition 2.2, that almost surely in ω ∈ �∫
D
b
(
x,

x
ε
,ω
)
ϕ(x)dx →

∫
D
bhom

(
x
)
ϕ(x)dx (ε → 0 + ) ∀ϕ ∈ L1(D). (16)

We introduce the spaces H := [L2(D)]N , V := [H1
0 (D)]N , and Lp := [Lp(D)]N . The norms in

these spaces are denoted, respectively, by

‖v‖2 :=
∫
D

N∑
i=1

|vi(x)|2dx, ‖v‖21 :=
∫
D

N∑
i=1

|∇vi(x)|2dx, ‖v‖pLp :=
∫
D

N∑
i=1

|vi(x)|pdx.

Recall that V′ := [H−1(D)]N and Lq are the dual spaces of V and Lp, where q = p/(p − 1).
As in [15,46] we study weak solutions of the system (13), that is, the functions

u(x, s) ∈ Lloc∞ (R+;H) ∩ Lloc2 (R+;V) ∩ Llocp
(
R+; Lp

)
which satisfy the system (13) in the distributions sense.

If u(x, t) ∈ Lp(0,M; Lp), then it follows from the condition (14) that f (u(x, t)) ∈ Lq(0,M; Lq).
Inequality (15) implies that b

(
x, x
ε
,ω
)
f (u(x, t)) ∈ Lq(0,M; Lq) as well. At the same time, if u(x, t) ∈

L2(0,M;V), then a�u(x, t) + g
(
x, x
ε
,ω
) ∈ L2(0,M;V′). Therefore, for an arbitrary weak solution

u(x, s) of the system (13) we have

∂tu(x, t) ∈ Lq(0,M; Lq)+ L2(0,M;V′).
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The Sobolev embedding theorem implies that

Lq(0,M; Lq)+ L2(0,M;V′) ⊂ Lq
(
0,M;H−r) ,

where the space H−r := [H−r(D)]N and r = max
{
1, n(1/2 − 1/p)

}
. Hence, for any weak solution

u(x, t) of (13) we have ∂tu(x, t) ∈ Lq
(
0,M;H−r) .

For every u0 ∈ H there exists at least one weak solution u(x, s) of the system (13) such that
u(0) = u0 (see [14,46]). This solution is not necessarily unique because we do not assume the
Lipschitz condition for f (v) with respect to v.

We now apply the scheme described in Section 3 to construct the trajectory attractor for the
system (13), which has the form (1) if we set E1 = Lp ∩ V, E0 = H−r , E = H and A(u) =
a�u − bε( · )f (u)+ gε( · ).

To describe the trajectory space K+
ε for the system (13), we follow the general framework of

Section 3 and define the Banach spaces for every [t1, t2] ∈ R

Ft1,t2 := Lp(t1, t2; Lp) ∩ L2(t1, t2;V) ∩ L∞(t1, t2;H) ∩ {v | ∂tv ∈ Lq
(
t1, t2;H−r)} (17)

with norm

‖v‖Ft1,t2
:= ‖v‖Lp(t1,t2;Lp) + ‖v‖L2(t1,t2;V) + ‖v‖L∞(0,M;H) + ‖∂tv‖Lq(t1,t2;H−r

). (18)

It is clear that the condition (2) holds for the norm (18) and the translation semigroup {S(h)}
satisfies (3).

Setting Dt1,t2 = Lq
(
t1, t2;H−r) we have that Ft1,t2 ⊆ Dt1,t2 and if u(s) ∈ Ft1,t2 , then A(u(s)) ∈

Dt1,t2 .We can consider a weak solutions of the system (13) as a solution of equation in the general
scheme of Section 3.

Defining the space (4) we obtain that

F loc+ = Llocp (R+; Lp) ∩ Lloc2 (R+;V) ∩ Lloc∞ (R+;H) ∩
{
v | ∂tv ∈ Llocq (R+;H−r)

}
.

We denote by K+
ε the set of all weak solutions of the system (13). Recall that for any u0 ∈ H there

exist at least one trajectory u( · ) ∈ K+
ε such that u(0) = u0. Therefore, the trajectory space K+

ε of
the system (13) is not empty and is sufficiently large.

It is clear thatK+
ε ⊂ F loc+ and the trajectory spaceK+

ε is translation invariant, that is, if u(s) ∈ K+
ε ,

then u(h + s) ∈ K+
ε for all h ≥ 0. Therefore,

S(h)K+
ε ⊆ K+

ε , ∀h ≥ 0.

We now define metrics ρt1,t2(·, ·) on the spaces Ft1,t2 using the norms of the spaces L2(t1, t2;H):

ρ0,M(u, v) =
(∫ M

0
‖u(s)− v(s)‖2ds

)1/2

, ∀u( · ), v( · ) ∈ F0,M .

These metrics generates the topology �loc+ in F loc+ . Recall that a sequence {vn} ⊂ F loc+ converges to
v ∈ F loc+ as n → ∞ in �loc+ if ‖vn( · ) − v( · )‖L2(0,M;H) → 0 (n → ∞) for each M > 0. The
topology �loc+ is metrizable (see (6)) and the corresponding metric space is complete. We consider
this topology in the trajectory space K+

ε of (13). The translation semigroup {S(t)} acting on K+
ε is

continuous in the considering topology�loc+ .
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Following the general scheme of Section 3, we define bounded sets in K+
ε using the Banach space

Fb+ (see (7)). We clearly have

Fb+ = Lbp(R+; Lp) ∩ Lb2(R+;V) ∩ L∞(R+;H) ∩
{
v | ∂tv ∈ Lbq(R+;H−r)

}
(19)

and Fb+ is a subspace of F loc+ .

Consider the translation semigroup {S(t)} on K+
ε , S(t) : K+

ε → K+
ε , t ≥ 0.

Let Kε be the kernel of the system (13) that consists of all weak complete solutions u(s),∈ R, of
the system bounded in the space

Fb = Lbp(R; Lp) ∩ Lb2(R;V) ∩ L∞(R;H) ∩
{
v | ∂tv ∈ Lbq(R;H−r)

}
Proposition 4.1: Under the hypotheses (14) and (15) the system (13) has the trajectory attractorsAε
in the topological space �loc+ . The set Aε is almost surely uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb+
and compact in�loc+ . Moreover,

Aε = �+Kε ,

the kernel Kε is non-empty and uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb.
The proof of this proposition almost coincides with the proof given in [15] for a particular case.
We note that

Aε ⊂ B0(R), ∀ε ∈ (0, 1),
where B0(R) is a ball in Fb+ with a sufficiently large radius R. Lemma 3.1 implies that

B0(R) � Lloc2 (R+;H1−δ), (20)

B0(R) � Cloc(R+;H−δ), 0 < δ ≤ 1. (21)

Inclusion (20) follows from (11), where we set E0 = H−r , E = H1−δ , E1 = H1 = V, and p1 = 2,
p0 = q, and from the compact embedding V � H1−δ. Inclusion (20) follows from (12) and from the
compact embeddingsH � H−δ , if we set E0 = H−r(D), E = H−δ , E1 = H1 = V, and p0 = q.

Using compact inclusions (20) and (21), we strengthen the attraction to the constructed trajectory
attractor.
Corollary 4.1: For any set B ⊂ K+

ε bounded in Fb+ we have

distL2(0,M;H1−δ)
(
�0,MS(t)B,�0,MKε

) → 0 (t → ∞),
distC([0,M];H−δ)

(
�0,MS(t)B,�0,MKε

) → 0 (t → ∞),

where M is an arbitrary positive number.

5. Homogenization of attractors for reaction–diffusion systems

In this section, we study the limit behavior of trajectory attractors Aε of random reaction–diffusion
systems (13) as ε → 0+ and their relation to the trajectory attractor of the corresponding homoge-
nized system.

Along with the system (13) we consider the homogenized system

∂t ū = a�ū − bhom
(
x
)
f (ū)+ g

(
x
)
, ū|∂D = 0. (22)

Clearly the system (22) also has trajectory attractor A in the trajectory space K+ corresponding to
the system (22) and
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A = �+K
where K is the kernel of system (22) in Fb.

Let us formulate the main theorem concerning the reaction–diffusion system.
Theorem 5.1: The following limit holds almost surely in the topological space�loc+

Aε → A as ε → 0 + . (23)

Moreover, almost surely
Kε → K as ε → 0 + in�loc. (24)

Proof: It is clear that (24) implies (23). Therefore it is sufficient to prove (24), that is, for every
neighborhood O(K) in�loc there are exists ε1 = ε1(O) > 0 such that almost surely

Kε ⊂ O(K) for ε < ε1. (25)

Suppose that (25) is not true. Consider the corresponding subset �′ ⊂ � with μ(�′) > 0 and (25)
does not hold for all ω ∈ �′. Then, for each ω ∈ �′, there exists a neighbourhood O′(K) in �loc , a
sequence εn → 0 + (n → ∞), and a sequence uεn( · ) = uεn(ω, s) ∈ Kεn such that

uεn /∈ O′(K) for all n ∈ N,ω ∈ �′. (26)

For each ω ∈ �′, the function uεn(s), s ∈ R is the solutions to the system

∂tuεn = a�uεn − b
(
x,

x
εn

,ω
)
f (uεn)+ g

(
x
)
, uεn |∂D = 0 (27)

on the entire time axis t ∈ R.Moreover the sequence {uεn(s)} is bounded inFb for each ω ∈ �′, that
is,

‖uεn‖Fb = sup
t∈R

‖uεn(t)‖

+ sup
t∈R

(∫ t+1

t
‖uεn(s)‖21ds

)1/2

+ sup
t∈R

(∫ t+1

t
‖uεn(s)‖pLpds

)1/p

+ sup
t∈R

(∫ t+1

t
‖∂tuεn(s)‖qH−rds

)1/q

≤ C for all n ∈ N. (28)

Hence there exists a subsequence {uε′n(s)} ⊂ {uεn(s)} which we label the same such that

uεn(s) → ū(s) as n → ∞ in�loc , (29)

where ū(s) ∈ Fb and ū(s) satisfies (28) with the same constant C. Due to (28) we can also assume
that uεn(s)⇀ū(s) (n → ∞)weakly in Lloc2,w(R;V), weakly in Llocp,w

(
R; Lp

)
, ∗-weakly in Lloc∞,∗w(R+;H)

and ∂tuεn(s)⇀∂t ū(s) (n → ∞) weakly in Llocq,w
(
R;H−r) .We claim that ū(s) ∈ K.We have already

proved that ‖ū‖Fb ≤ C. So we have to establish that ū(s) is a weak solution of (22). Using (28), we
obtain that

∂tuεn − a�uεn − g
(
x
) −→ ∂t ū − a�ū − g

(
x
)
as n → ∞ (30)

in the spaceD′ (R;H−r) because the derivative operators are continuous in the space of distributions.
Let us prove that

b
(
x,

x
εn

)
f (uεn)⇀bhom

(
x
)
f (ū) as n → ∞ (31)
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weakly in Llocq,w
(
R; Lq

)
. We fix an arbitrary number M > 0. The sequence {uεn(s)} is bounded in

Lp
(−M,M; Lp

)
(see (28)). Hence by (14) the sequence {f (uεn(s))} is bounded in Lq

(−M,M; Lq
)
.

Since {uεn(s)} is bounded in L2
(−M,M;V) and {∂tuεn(s)} is bounded in Lq

(−M,M;H−r) we can
assume that uεn(s) → ū(s) as n → ∞ strongly in L2

(−M,M;H) = L2
(
D × (− M,M)

)N and
therefore

uεn(x, s) → ū(x, s) as n → ∞ a.e. in (x, s) ∈ D × (− M,M).

Since the function f (v) is continuous with respect to v ∈ RN we conclude that

f (uεn(x, s)) → f (ū(x, s)) as n → ∞ a.e. in (x, s) ∈ D × (− M,M). (32)

We have

b
(
x,

x
εn

,ω
)
f (uεn)− bhom

(
x
)
f (ū) = b

(
x,

x
εn

,ω
) (

f (uεn)− f (ū)
)

+
(
b
(
x,

x
εn

,ω
)

− bhom
(
x
))

f (ū). (33)

Let us show that both summand in the right-hand side of (33) converges to zero as n → ∞ weakly
in the space Lq

(−M,M; Lq
) = Lq

(
D × (− M,M)

)N . The sequence b
(
x, x
εn
,ω
) (

f (uεn)− f (ū)
)

tends to zero as n → ∞ almost everywhere in (x, s) ∈ D × ( − M,M) (see (32)) and is bounded in
Lq
(
D × (− M,M)

)N (see (15)). Therefore Lemma 1.3 from [47, Chapter 1, Section 1] implies that

b
(
x,

x
εn

,ω
) (

f (uεn)− f (ū)
)
⇀0 as n → ∞

weakly in the space Lq
(
D × (− M,M)

)N
. The sequence

(
b
(
x, x
εn
,ω
)

− bhom
(
x
))

f (ū) also ap-

proaches zero as n → ∞ weakly in Lq
(
D × (− M,M)

)N because, by the proved property (16)
b
(
x, x
εn
,ω
)
⇀bhom

(
x
)
asn → ∞∗-weakly inL∞,∗w

(−M,M; L2
)
and f (ū) ∈ Lq

(
D × (− M,M)

)N
.

We have proved (31). Using (30) and (31) we pass to the limit in the Equation (27) as n → ∞ in the
space D′ (R+;H−r) and we obtain that the function ū(x, s) satisfies the equation

∂t ū = a�ū − bhom
(
x
)
f (ū)+ g

(
x
)
, ū|∂D = 0, t ∈ R.

Consequently, ū ∈ K.We have proved above that uεn(s) → ū(s) as n → ∞ in�loc for each ω ∈ �′.
The hypotheses uεn(s) /∈ O′(K) implies that ū /∈ O′(K) and moreover ū /∈ K for all ω ∈ �′. We
came to the contradiction. The theorem is proved.

Using the compact inclusions (20) and (21), we can strengthen the convergence (23).
Corollary 5.1: For every 0 < δ ≤ 1 and for any M > 0

distL2([0,M];H1−δ)
(
�0,MAε ,�0,MA

)
→ 0, (34)

distC([0,M];H−δ)
(
�0,MAε ,�0,MA

)
→ 0 (ε → 0 + ). (35)

To prove (34) and (35), we just repeat the proof of Theorem 5.1 replacing the topology�loc with
Lloc2 (R+;H1−δ) or Cloc(R+;H−δ).
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Finally we consider the reaction diffusion systems for which the uniqueness theoremof theCauchy
problem takes place. It is sufficient to assume that the nonlinear term f (u) in the Equation (13) satisfies
the condition (

f (v1)− f (v2), v1 − v2
) ≥ −C|v1 − v2|2 for v1, v2 ∈ R

N . (36)

(see [15,46]). In [46] it was proved that if (36) holds, then Equations (13) and (22) generate the
dynamical semigroups in H which have the global attractors Aε and A bounded in the space V =(
H1
0 (D)

)N (see also [14,16]). We have

Aε = {u(0) | u ∈ Aε}, A = {u(0) | u ∈ A}.

Convergence (35) implies
Corollary 5.2: Under the assumptions of Theorem 5.1, the following limit holds almost surely:

distH−δ
(
Aε ,A

) → 0 (ε → 0 + ).

Note

1. The image of the attractor of evolutionary equation was taken from the internet https://fr.wikipedia.org/wiki/
Attracteur.
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