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Abstract. We consider reaction–diffusion systems with random terms that

oscillate rapidly in space variables. Under the assumption that the random

functions are ergodic and statistically homogeneous we prove that the random
trajectory attractors of these systems tend to the deterministic trajectory at-

tractors of the averaged reaction-diffusion system whose terms are the average

of the corresponding terms of the original system. Special attention is given
to the case when the convergence of random trajectory attractors holds in the
strong topology.

1. Introduction. In this paper, we consider the autonomous reaction–diffusion
systems in a bounded domain D b Rd with random inhomogeneous terms of the
form

∂tu = a∆u− b
(
x,
x

ε
, ω
)
f(u) + g

(
x,
x

ε
, ω
)
, u|∂D = 0, x ∈ D, t ≥ 0, (1)
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where u = (u1(x, t), . . . , uN (x, t)) is an unknown vector function, f = (f1, . . . , fN ),
and g = (g1, . . . , gN ). Here a is an N ×N matrix with positive symmetric part and
the nonlinear vector function f(v) ∈ C(RN ;RN ) satisfies a dissipative condition
(see Sec. 4).

We consider a random rapidly oscillation coefficient b
(
x, xε , ω

)
and a vector func-

tion g
(
x, xε , ω

)
, where ω ∈ Ω is a random parameter and ε > 0 is a small parameter.

We assume that terms b
(
x, xε , ω

)
and g

(
x, xε , ω

)
are statistically homogeneous (see

Sec. 4). We study the limit behaviour of random trajectory attractors Aε(ω) of the
system (1) as ε→ 0 + .

Systems of the form (1) model, for example, complex composite chemical re-
actions in media with microinhomogeneous structure, where diffusion and cross-
diffusion of chemical components may occur (the matrix a can be non-diagonal and
non-symmetric). To study such phenomenon we apply the homogenization methods
(cf., for example, [44, 8, 4, 49, 38, 45, 14]). These methods enable to explore media
with periodic or quasiperiodic microstructure as well as with random one (see, for
instance, [15, 16, 17, 1, 18, 19]).

Attractors describe the behaviour of solutions of dissipative nonlinear evolution
equations on large time intervals and in the limit as time tends to infinity. Attrac-
tors help to single out the most essential limit sets of trajectories, which characterize
the whole dynamics of the complicated model described by evolution PDEs (see,
for examples, monographs [3, 26, 50] and the references therein). Using the attrac-
tors, it is convenient to study perturbations of trajectories (solutions) of evolution
equations.

Following the Bogolyubov averaging principle [11], the first results related to at-
tractors of evolution equations with rapidly, but non-randomly oscillating periodic
or almost periodic terms, were obtained in the papers [37, 39, 40]. The homoge-
nization of global attractors of parabolic equations with oscillating parameters has
been studied in [26, 32, 33, 34, 35]. The similar problems have been considered
in [26, 27, 29, 51] for autonomous and non-autonomous 2D Navier–Stokes systems.
Some problems related to the homogenization of uniform global attractors for dissi-
pative wave equations has been considered in [21, 30, 39, 52, 59] in presence of time
oscillations and in [26, 47, 51, 56] for oscillations in space. Papers [22, 23, 28, 29, 54]
deal with PDEs containing singular oscillating terms.

In the paper [31], the authors study random attractors and random inertial
manifolds for scalar parabolic equations with random terms on fast time scale.
Under some spectral gap condition, it was shown that the inertial manifolds of the
fast time scale equations tend to the inertial manifold of the averaged system when
the scaling parameter tends to zero.

The theory of trajectory attractors for evolution PDEs were suggested in [25, 26]
(see also the review [55]). This approach is very fruitful in the study of the long
time behaviour of solutions of evolution equations for which the uniqueness theorem
of the corresponding initial-value problem is not proved yet (e.g., for the inhomoge-
neous 3D Navier–Stokes system) or does not hold (for example, reaction-diffusion
systems with nonlinear terms that do not satisfy the Lipschitz condition, the case
considered in this paper). The trajectory attractors were constructed for a number
of important evolution equations and systems of mathematical physics, e.g. for the
3D Navier-Stokes system, various reaction-diffusion systems, the dissipative hyper-
bolic equation with arbitrary polynomial growth of nonlinear terms, for nonlinear
elliptic systems and for other equations (see [24, 26, 57, 55]). Trajectory attractors
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for non-autonomous Ginzburg-Landau complex equations have been constructed in
[53]. Some homogenization problem for trajectory attractors of evolution equation
with (non-randomly) rapidly oscillating terms were studied in [26, 51].

Paper [6] deals with homogenization of trajectory attractors for autonomous and
non-autonomous 3D Navier–Stokes systems with random external forces that oscil-
late rapidly in space variables or in time (see also [7] for weak homogenization of
reaction–diffusion systems with random terms). Paper [20] is devoted to investiga-
tions of trajectory attractors of Ginzburg–Landau equation.

In the present paper, we study reaction-diffusion systems of the form (1) with
coefficient b

(
x, xε , ω

)
and with right-hand side g

(
x, xε , ω

)
that are random functions

which oscillate rapidly with respect to the space variable, ε > 0 is a small parameter,
and 1/ε is the oscillation frequency. Here ω is an element of a standard probability
space (Ω,B, µ). We assume that the random functions b

(
x, xε , ω

)
and g

(
x, xε , ω

)
are

statistically homogeneous and ergodic with smooth realizations (see Sec. 4).
Along with the random system (1), we also consider the corresponding averaged

reaction-diffusion system with terms bhom (x) and ghom (x) that are mathematical
expectations of b

(
x, xε , ω

)
and g

(
x, xε , ω

)
. It follows from the Birkhoff ergodic the-

orem that functions bhom (x) and ghom (x) coincides almost surely in ω ∈ Ω with
space means of the functions b

(
x, xε , ω

)
and g

(
x, xε , ω

)
as ε→ 0.

In this paper we prove that the trajectory attractors Aε(ω) of the reaction-
diffusion system (1) with random rapidly oscillating terms converge ω-almost surely
as ε→ 0 to the trajectory attractor A of the averaged reaction-diffusion system with
deterministic terms bhom (x) and ghom (x) in an appropriate functional spaces.

The paper is organized as follows. In Sec. 2 we give necessary definitions of
randomness and formulate the Birkhoff ergodic theorem and related assertions. In
Sec. 3 we give the main notions and theorems concerning the trajectory attractors
of autonomous evolution equations. Sec. 4 is devoted to the study of solutions for
reaction-diffusion system. We formulate the main assumptions concerning all the
terms in (1). It is important that we do not assume any Lipschitz condition for the
nonlinear function f(u) and, thus, the uniqueness theorem for the corresponding
Cauchy problem of the system (1) may not hold. We also formulate the so-called
energy identity for solutions of the system (1) which is the main tool in the con-
struction of the strong trajectory attractors for these systems and in the study of
strong convergence of random trajectory attractors.

In Sec. 5, we construct the trajectory attractor Aε(ω) for the reaction-diffusion

system (1) in the strong topology Θs,loc
+ . In Sec. 6, we prove the main theorems

concerning the homogenization of trajectory attractors Aε(ω) of reaction–diffusion
systems with randomly rapidly oscillating terms. The first theorem states that the
trajectory attractors Aε(ω) converges with probability 1 to A as ε → 0+ in the
weak topology Θloc

+ . The second theorem states that this convergence holds in the

strong topology Θs,loc
+ for the case when the coefficient b = b (x) is not random and

g = g
(
x, xε , ω

)
is random.

To study trajectory attractors Aε(ω) for (1) and their convergence in the strong

topology Θs,loc
+ we apply the energy identity method developed in [5, 36, 46, 48]

which is very effective in the study of global and trajectory attractors for dissipative
evolution equations in unbounded, non-smooth domains, and for PDEs without
uniqueness. This method uses the energy balance for the trajectories (solutions)
and provides the strong compactness of bounded sets of trajectories.
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2. Preliminaries. Let (Ω,B, µ) be a probability space, i.e., the set Ω is endowed
with σ-algebra B of its subsets and with σ-additive nonnegative measure µ on B
such that µ(Ω) = 1.

Definition 2.1. A family of measurable maps Tξ : Ω→ Ω, ξ ∈ Rd, is called a space
dynamical system if the following properties hold:

1) the group property : Tξ1+ξ2 = Tξ1Tξ2 , ∀ξ1, ξ2 ∈ Rd; T0 = Id, where Id is the
identity mapping on Ω;

2) the isometry property (the mappings Tξ preserve the measure µ on Ω) ∀B ∈
B, TξB ∈ B, µ(TξB) = µ(B), ∀ξ ∈ Rd ;

3) the measurability : for any measurable function ψ(ω) on Ω, the function ψ(Tξω)
is measurable on Ω× Rd and continuous in ξ.

Let Lq(Ω, µ) (q ≥ 1) be the space of measurable functions on Ω whose absolute
value at the power q is integrable with respect to the measure µ. If Tξ : Ω→ Ω is a
space dynamical system, then, on the space Lq(Ω, µ), we define a group of operators
{Tξ} depending on the parameter ξ ∈ Rd by the formula (Tξψ)(ω) := ψ(Tξω),
ψ ∈ Lq(Ω, µ).

Condition 3) in Definition 2.1 implies that the group {Tξ} is strongly continuous,
i.e., we have limξ→0 ‖Tξψ − ψ‖Lq(Ω,µ) = 0 for any ψ ∈ Lq(Ω, µ).

Definition 2.2. Suppose that ψ(ω) is a measurable function on Ω. The function
ξ 7→ ψ(Tξω) (ξ ∈ Rd) for a fixed ω ∈ Ω is called a realization of the function ψ.

The following assertion is proved, for instance, in [14, 38].

Proposition 1. If ψ ∈ Lq(Ω, µ), then ω-almost all realizations ξ 7→ ψ(Tξω) belong
to Llocq (Rd).

If the sequence {ψk} ⊂ Lq(Ω, µ) converges in Lq(Ω, µ) to the function ψ, then
there exists a subsequence {ψk′} such that ω-almost all realizations ξ 7→ ψk′(Tξω)
converge in Llocq (Rd) to the realization ξ 7→ ψ(Tξω).

Definition 2.3. A measurable function ψ(ω) on Ω is called invariant, if ψ(Tξω) =
ψ(ω) for any ξ ∈ Rd and almost all ω ∈ Ω.

Definition 2.4. The space dynamical system Tξ is called ergodic, if any invariant
function is a constant ω-almost everywhere.

We denote by P b1···bda1···ad = [a1, b1] × · · ·× [ad, bd] = P (ai < bi, i = 1, . . . , d), a

parallelepiped in Rd with volume |P | =
∏d
i=1(bi − ai).

Definition 2.5. Let z(ξ) be an arbitrary function from the space Lloc1 (Rd). We
say that z(ξ) has a space average, if the following limit

M(z) := lim
λ→+∞

1

|λP |

∫
· · ·
∫
λP

z(ξ) dξ.

exists for any parallelepiped P and does not depend on the choice of P . The number
M(z) is called the space mean value of the function z.

Equivalently, the space average is defined by

M(z) := lim
ε→0

1

|P |

∫
· · ·
∫
P

z
(χ
ε

)
dχ.

Throughout the paper we use the Birkhoff theorem (see [9, 2]) in the following
form (see, for instance, [14, 38]):
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Theorem 2.6 (Birkhoff ergodic theorem). Let P ⊂ Rd. Let the space dynam-
ical system Tξ satisfy Definition 2.1. Consider a measurable real function ψ =
ψ(x, ω), x ∈ P, ω ∈ Ω, such that, for every x ∈ P , the function ψ(x, ·) ∈ Lq(Ω, µ).

Then, for every x ∈ P and for almost all ω ∈ Ω, the realization ψ(x, Tξω) has the
space mean value M(ψ(x, Tξω)). Moreover, M(ψ(x, Tξω)) is an invariant function
and

E(ψ)(x) ≡
∫
Ω

ψ(x, ω) dµ =

∫
Ω

M(ψ(x, Tξω)) dµ.

In particular, if the space dynamical system Tξ is ergodic then, for almost all ω ∈ Ω,
we have the identity

E(ψ)(x) = M(ψ)(x).

Definition 2.7. Let P ⊂ Rd. A random function ψ(x, ξ, ω), ∈ P , ξ ∈ Rd, ω ∈ Ω,
is called statistically homogeneous for any x, if the representation

ψ(x, ξ, ω) = Ψ(x, Tξω),

is valid for some measurable function Ψ : P×Ω→ R, where Tξ is a space dynamical
system in Ω.

Consider some examples.

Example. Let Ω be the unit cube {ω ∈ Rm, 0 ≤ ωj ≤ 1, j = 1, . . . ,m}. We have a
space dynamical system on Ω:

Tξω = ω + ξ (mod 1), ξ ∈ Rd.

The Lebesgue measure is invariant and this space dynamical system is ergodic. The
realization of the function f(ω) ∈ Lq(Ω) has the form f(ξ + ω).

Example. Let Ω be a unit cube in Rm, µ be a Lebesgue measure on it. For ξ ∈ Rd
we set Tξω = ω + λξ (mod 1), where λ = {λij} is a m × d-matrix. Obviously the
mapping Tξ preserve the measure µ on Ω. The space dynamical system is ergodic
if and only if λijkj 6= 0 for any integer vector k 6= 0.

Thus, Lq(Ω) is the space of periodic functions of m variables, and the realizations
have the form f(ω + λξ). These realizations are called quasi-periodic functions, if
f(ω) is continuous on Ω.

The following statement can be found, for instance, in [14].

Proposition 2. Let P be a measurable subset of Rd. Let p > 1 or p =∞. Suppose
that a measurable function z(x, ξ), x ∈ P, ξ ∈ Rd, has a space mean value M(z)(x)
in Rdξ for every x ∈ P and the family {z

(
x, xε

)
| 0 < ε 6 1}, x ∈ K, is bounded in

Lp(K), where K is an arbitrary compact subset in P .

Then M(z)(·) ∈ Llocp (P ) and, for p > 1, we have

z
(
x, xε

)
⇁M(z)(x) weakly in Llocp (P ) as ε→ 0

and, for p =∞, we have

z
(
x, xε

)
⇁M(z)(x) ∗-weakly in Lloc∞ (P ) as ε→ 0.
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3. Trajectory attractors of evolution equations. In this section we give a
scheme for the construction of trajectory attractors of evolution equations. In the
next sections we shall apply this scheme to the study of trajectory attractors of
random reaction-diffusion systems with rapidly oscillating coefficients and the cor-
responding averaged systems.

Consider an abstract autonomous evolution equation

∂tu = A(u), t ≥ 0. (2)

Here A(·) : E1 → E0 is a nonlinear operator, E1, E0 are Banach spaces and E1 ⊆ E0.
For instance, A(u) = a∆u− bf(u) + g (see also Sec. 4).

We are going to study solutions u(s) of equation (2) as functions of s ∈ R+ as
a whole. Here s ≡ t denote the time variable. A set of solutions of (2) is said to
be a trajectory space K+ of equation (2). Let us describe a trajectory space K+ in
greater detail.

At first, we consider solutions u(s) of (2) defined on a fixed time segment [0,M ]
from R+. We study solutions of (2) in a Banach space F0,M that depends on M .
The space F0,M consists of functions f(s), s ∈ [0,M ] such that f(s) ∈ E for almost
all s ∈ [0,M ], where E is a Banach space. It is assumed that E1 ⊆ E ⊆ E0.

For example, F0,M can be the space C([0,M ];E), or Lp(0,M ;E), for p ∈ [1,∞],
or the intersection of such spaces (see Sec. 4). We assume that Π0,mF0,M ⊆ F0,m

and

‖Π0,mf‖F0,m
≤ ‖f‖F0,M

, ∀f ∈ F0,M , (3)

where m < M and Π0,M denotes the restriction operator onto the segment [0,M ].
Let S(h) denote the translation operator for every h ∈ R+:

S(h)f(s) = f(h+ s).

Evidently, if the argument s of a function f(·) belongs [0,M ], then the argument s
of S(h)f(·) can be taken form [0,M − h] for 0 ≤ h < M. We assume that S(h) is a
continuous map from F0,M to F0,M−h and, moreover,

‖S(h)f‖F0,M−h ≤ ‖f‖F0,M
, ∀f ∈ F0,M . (4)

This assumption is fairly natural.
We assume that if f(s) ∈ F0,M , then A(f(s)) ∈ D0,M , where D0,M is a larger

Banach space, F0,M ⊆ D0,M . The derivative ∂tf(t) is a distribution with values
in E0, ∂tf(·) ∈ D′((0,M);E0) and we assume that D0,M ⊆ D′((0,M);E0) for all
(0,M) ⊂ R+. A function u(s) ∈ F0,M is said to be a solution of (2) from the space
F0,M (on the interval (0,M)) if ∂tu(t) = A(u(t)) in the distributional sense of the
space D′((0,M);E0).

We also define the space

F loc+ = {f(s), s ∈ R+ | Π0,Mf(s) ∈ F0,M , ∀ [0,M ] ⊂ R+}. (5)

For example, if F0,M = C([0,M ];E), then F loc+ = C(R+;E) and if F0,M =

Lp(0,M ;E), then F loc+ = Llocp (R+;E).

A function u(s) ∈ F loc+ is called a solution of (2) from F loc+ if Π0,Mu(s) ∈ F0,M

and this function is a solution of (2) for every segment [0,M ] ⊂ R+.
We denote by K+ a given fixed set of solutions of (2) from F loc+ . Notice, that K+

is not necessarily the set of all solutions from F loc+ . The elements of K+ are called
trajectories and the set K+ is called the trajectory space of the equation (2).
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We assume that the trajectory space K+ is translation invariant in the following
sense: if u(s) ∈ K+, then u(h + s) ∈ K+ for every h ≥ 0. This is a very natural
assumption for solutions of autonomous equations.

We now consider the translation operators S(h) in F loc+ :

S(h)f(s) = f(s+ h), h ≥ 0.

It is clear that the mappings {S(h), h ≥ 0} form a semigroup in F loc+ , that is,

S(h1)S(h2) = S(h1 + h2) ∀h1, h2 ≥ 0

and S(0) is the identity operator. We change the variable h into the time variable t.
The semigroup {S(t), t ≥ 0} is called the translation semigroup. By our assumption
the translation semigroup maps the trajectory space K+ to itself:

S(t)K+ ⊆ K+, ∀t ≥ 0. (6)

We shall study attracting properties of the translation semigroup {S(t)} acting
on the trajectory space K+ ⊂ F loc+ . We define a topology in the space F loc+ .

Let a metrics ρ0,M (·, ·) be defined on F0,M for all [0,M ] ⊂ R+. Similar to (3)
and (4) we assume that

ρ0,m (Π0,mf,Π0,mg) ≤ ρ0,M (f, g) , ∀f, g ∈ F0,M , m ≤M,

ρ0,M−h(S(h)f, S(h)g) ≤ ρ0,M (f, g), ∀f, g ∈ F0,M , 0 ≤ h ≤M.

Denote by Θ0,M the corresponding metric spaces on F0,M . For example, ρ0,M can be
the metrics associated with the norm ‖ · ‖F0,M

of the Banach space F0,M . However,
frequently in application ρ0,M generate the topologies Θ0,M that are weaker than
the strong convergence topology of the Banach spaces F0,M .

The inductive limit of the spaces Θ0,M defines the topology Θloc
+ in F loc+ , i.e., by

definition, a sequence {fn(s)} ⊂ F loc+ converges to f(s) ∈ F loc+ as n→∞ in Θloc
+ if

ρ0,M (Π0,Mfn,Π0,Mf)→ 0 as n→∞ for each M > 0. It is not hard to prove that
the topology Θloc

+ is metrizable using, for example, the Fréchet metrics

ρ+(f1, f2) :=
∑
m∈N

2−m
ρ0,m(f1, f2)

1 + ρ0,m(f1, f2)
. (7)

If it is known that all metric spaces Θ0,M are complete, then the space Θloc
+ is also

complete.
We claim that the translation semigroup {S(t)} is continuous in Θloc

+ . This as-

sertion follows directly from the definition of the topological space Θloc
+ .

We also consider the following Banach space

Fb+ := {f(s) ∈ F loc+ | ‖f‖ Fb+ < +∞}, (8)

where the norm
‖f‖Fb+ := sup

h≥0
‖Π0,1f(h+ s)‖F0,1

. (9)

For example, if F loc+ = C(R+;E), then the space Fb+ = Cb(R+;E) with norm

‖f‖Fb+ = suph≥0 ‖f(h)‖E and if F loc+ = Llocp (R+;E), then Fb+ = Lbp(R+;E) with

norm ‖f‖Fb+ =
(

suph≥0

∫ h+1

h
‖f(s)‖pEds

)1/p

.

Recall that Fb+ ⊆ Θloc
+ . We require the Banach space Fb+ only to define bounded

subsets in the trajectory space K+. To construct a trajectory attractor in K+, we do
not consider the corresponding uniform convergence topology of the Banach space
Fb+. Instead, we utilize the local convergence topology Θloc

+ which is much weaker.
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We suppose that K+ ⊆ Fb+, i.e., every trajectory u(s) ∈ K+ of equation (2) has
a finite norm (9). Let us define an attracting set and a trajectory attractor of the
translation semigroup {S(t)} acting on K+.

Definition 3.1. A set P ⊆ Θloc
+ is called an attracting set of the semigroup {S(t)}

acting on K+ in the topology Θloc
+ if for any bounded in Fb+ set B ⊆ K+ the set

P attracts S(t)B as t → +∞ in the topology Θloc
+ , i.e., for any ε-neighbourhood

Oε(P) in Θloc
+ there exists t1 ≥ 0 such that S(t)B ⊆ Oε(P) for all t ≥ t1.

It is clear that the attracting property of P can be formulated in the following
equivalent form: for any set B ⊆ K+ bounded in Fb+ and for each M > 0

distΘ0,M
(Π0,MS(t)B,Π0,MP)→ 0 (t→ +∞),

where distM(X,Y ) := supx∈X distM(x, Y ) = supx∈X infy∈Y ρM(x, y) is the Haus-
dorff semidistance from a set X to a set Y in a metric space M.

Definition 3.2 (see [26]). A set A ⊆ K+ is called the trajectory attractor of the
translation semigroup {S(t)} on K+ in the topology Θloc

+ , if (i) A is bounded in

Fb+ and compact in Θloc
+ , (ii) the set A is strictly invariant with respect to the

semigroup: S(t)A = A for all t ≥ 0, and (iii) A is an attracting set for {S(t)} on
K+ in the topology Θloc

+ , that is, for each M > 0

distΘ0,M
(Π0,MS(t)B,Π0,M A)→ 0 (t→ +∞).

Remark 1. Using the terminology from [3] one can say that the trajectory attractor
A is the global (Fb+,Θloc

+ )-attractor of the translation semigroup {S(t)} acting on

the trajectory space K+, that is, A attracts S(t)B as t→ +∞ in the topology Θloc
+

for any bounded (in Fb+) set of trajectories B from K+ :

distΘloc+
(S(t)B,A)→ 0 (t→ +∞).

We now formulate the central result on the trajectory attractor for equation (2).

Theorem 3.3. Assume that the trajectory space K+ corresponding to equation (2)
is contained in Fb+ and (6) holds. Suppose that the translation semigroup {S(t)}
has an attracting set P ⊆K+ which is bounded in Fb+ and compact in Θloc

+ . Then
the translation semigroup {S(t), t ≥ 0} acting on K+ has the trajectory attractor
A ⊆ P. The set A is bounded in Fb+ and compact in Θloc

+ .

Sketch of the proof. Indeed, the semigroup {S(t)} is continuous on K+ in the
metric space Θloc

+ . The set P is (Fb+,Θloc
+ )-attracting, compact in the space Θloc

+ ,

and bounded in Fb+. Then the semigroup {S(t)} has the global (Fb+,Θloc
+ )-attractor

A which is evidently the trajectory attractor (see [3, 25, 26] for the complete proof).
This attractor can be constructed from the set P by the standard formula

A = ω(P) :=
⋂
h≥0

⋃
t≥h

S(t)P


Θloc+

.

We now describe the structure of the trajectory attractor A of equation (2) in
terms of complete trajectories of this equation.

Consider the equation (2) on the entire time axis

∂tu = A(u), t ∈ R. (10)
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We have defined the trajectory space K+ of equation (10) on R+. We now extend
this definition on R. If a function f(s), s ∈ R, is defined on the entire time
axis, then the translations S(h)f(s) = f(s + h) are also defined for negative h. A
function u(s), s ∈ R is called a complete trajectory of equation (10) if Π+S(h)f(s) =
Π+u(s + h) ∈ K+ for all h ∈ R. Here Π+ = Π0,∞ denotes the restriction operator
to the semiaxis R+.

We have introduced the spaces F loc+ ,Fb+, and Θloc
+ . We now define spaces F loc,Fb,

and Θloc in the same way:

F loc := {f(s), s ∈ R | Π0,MS(h)f(s) ∈ F0,M ∀h ∈ R, M > 0};

Fb := {f(s) ∈ F loc | ‖f‖ Fb < +∞},

where

‖f‖Fb := sup
h∈R
‖Π0,1f(h+ s)‖F0,1

. (11)

The topological space Θloc coincides (as a set) with F loc and, by definition, fn(s)→
f(s) in Θloc if Π0,MS(h)fn(s)→ Π0,MS(h)f(s) (n→∞) in Θ0,M for every M > 0
and for all h ∈ R. It is clear that Θloc is a complete metric space as well as Θloc

+ .

Definition 3.4. The kernel K in the space Fb of equation (10) is the union of all
complete trajectories u(s), s ∈ R, of equation (10) that are bounded in the space
Fb with respect to the norm (11):

‖Π0,1u(h+ s)‖F0,1 ≤ Cu, ∀h ∈ R. (12)

Theorem 3.5. Assume that the hypotheses of Theorem 3.3 holds. Then

A = Π+K, (13)

the set K is compact in Θloc and bounded in Fb.

The complete proof can be found in [25, 26].
Theorem 3.3 shows that for the construction of the trajectory attractor we require

an attracting set P compact in Θloc
+ and bounded in Fb+. Usually in application, a

large ball BR = {‖f‖Fb+ ≤ R} in Fb+ (R� 1) can be taken as such an attracting (or

even absorbing) set and the existence of such ball BR follows from the inequality of
the form

‖S(t)u‖Fb+ ≤ Q(‖u‖Fb+)e−γt +R0, ∀t ≥ 0, (γ > 0) (14)

holding for each trajectory u(·) of equation (2). Here, Q(y) depends on y, while R0

and γ do not depend on a trajectory u. Inequality (14) follows usually from a priori
estimates for solutions of equations (2).

In various applications, to prove that a ball in Fb+ is compact in Θloc
+ the following

lemma is useful. Let E0 and E1 be Banach spaces such that E1 ⊂ E0. We consider
the following Banach spaces

Wp1,p0(0,M ;E1, E0) = {ψ(s), s ∈ (0,M) | ψ ∈ Lp1(0,M ;E1), ψ′ ∈ Lp0(0,M ;E0)} ,
W∞,p0(0,M ;E1, E0) = {ψ(s), s ∈ (0,M) | ψ ∈ L∞(0,M ;E1), ψ′ ∈ Lp0(0,M ;E0)} ,
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(where p1 ≥ 1 and p0 > 1) with norms

‖ψ‖Wp1,p0
:=

 M∫
0

‖ψ(s)‖p1E1
ds

1/p1

+

 M∫
0

‖ψ′(s)‖p0E0
ds

1/p0

,

‖ψ‖W∞,p0 := ess sup {‖ψ(s)‖E1
| s ∈ [0,M ]}+

 M∫
0

‖ψ′(s)‖p0E0
ds

1/p0

.

Lemma 3.6 (Aubin–Lions–Simon, see [10]). Assume that E1 b E ⊂ E0.Then the
following embeddings are compact:

Wp1,p0(0,M ;E1, E0) b Lp1(0,M ;E), (15)

W∞,p0(0,M ;E1, E0) b C([0,M ];E). (16)

In the next section we study evolution equations and their trajectory attractors
depending on a small parameter ε > 0.

Definition 3.7. We say that the trajectory attractors Aε converge to the trajectory
attractor A as ε→ 0 in the topological space Θloc

+ if for any neighborhood O(A) in

Θloc
+ there is an ε1 > 0 such that Aε ⊆ O(A) for any ε < ε1, that is, for each M > 0

distΘ0,M
(Π0,MAε,Π0,MA)→ 0 (ε→ 0).

4. Reaction-diffusion systems with random terms. We consider the reaction-
diffusion system (RD-system) in a bounded domain D b Rd with rapidly oscillating
random terms of the form

∂tu = a∆u− b
(
x,
x

ε
, ω
)
f(u) + g

(
x,
x

ε
, ω
)
, u|∂D = 0, (17)

where x ∈ D b Rd, u = u(x, t), u = (u1, . . . , uN ), f = (f1, . . . , fN ), and g =
(g1, . . . , gN ). Here a is an N ×N matrix with positive symmetric part: 1

2 (a+a∗) ≥
βI, where β > 0, and the real function b(x, ξ, ω) ∈ C(D×Rd) is positive for almost
every ω ∈ Ω. The Laplace operator ∆ := ∂2

x1
+ . . .+ ∂2

xd
acts in the x-space.

Remark 2. In application usually, nonlinear interaction functions f j(u) are poly-
nomials with respect to u. The functions gj model inhomogeneous external actions
and can be interpreted as flux of light, radiation, etc. Note that the complex
Ginzburg–Landau equation can also be written in the form (17) (see [28, 53]).

We note that all the results can also be applied to the systems with nonlin-
ear terms of the form

∑m
j=1 bj

(
x, xε , ω

)
fj(u),where bj are positively defined matri-

ces and fj(u) are vector functions. For brevity, we consider the case m = 1 and
b1
(
x, xε , ω

)
= b

(
x, xε , ω

)
I, where I is the identity matrix and b is a positive real

function.
We assume that the vector function f(v) ∈ C(RN ;RN ) satisfies the following

inequalities:

N∑
i=1

|f i(v)|
pi
pi−1 ≤ C0

(
N∑
i=1

|vi|pi + 1

)
, (18)

N∑
i=1

γi|vi|pi − C ≤
N∑
i=1

f i(v)vi, ∀v ∈ RN , (19)
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where γi > 0 for i = 1, . . . , N. For definiteness, we assume that pN ≥ pN−1 ≥
. . . ≥ p1 ≥ 2. Inequality (18) is related to the fact that, in real-life RD-systems, the
functions f i(u) are polynomials with possibly different degrees. Inequality (19) is
called the dissipativity condition for the RD-system (17). The simple case pi ≡ p
for i = 1, . . . , N reduces (18) and (19) to the following inequalities:

|f(v)| ≤ C0

(
|v|p−1 + 1

)
, γ|v|p − C ≤ f(v)v, ∀v ∈ RN . (20)

Notice that we do not assume that the function f(v) satisfies the Lipschitz con-
dition with respect to v.

We introduce the spaces H := [L2(D)]N and V := [H1
0 (D)]N . The norms in these

spaces are denoted, respectively, by

‖v‖2 :=

∫
D

N∑
i=1

|vi(x)|2dx and ‖v‖21 :=

∫
D

N∑
i=1

|∇vi(x)|2dx.

As usual, V′ := [H−1(D)]N denotes the dual space of V.
Let Tξ, ξ ∈ Rd, be an ergodic space dynamical system in Ω.
We assume that the random function b(x, xε , ω) is statistically homogeneous, that

is,
b(x, ξ, ω) = B(x, Tξω),

where B : D × Ω→ R is a measurable function.
We also assume that B(x, ω) ∈ Cb(D) for almost all ω ∈ Ω and

0 < β0 ≤ B(x, ω) ≤ β1, ∀x ∈ D. (21)

Due to Birkhoff ergodic theorem the function b (x, ξ, ω) = B(x, Tξω) has the
space mean value

bhom(x) := M(b)(x) = E(B)(x)

for every x ∈ D. It is clear that the function bhom(x) also satisfies the inequality

0 < β0 ≤ bhom(x) ≤ β1, ∀x ∈ D.
It follows from Proposition 2 (p =∞), that almost surely in ω ∈ Ω∫

D

b
(
x,
x

ε
, ω
)
ϕ(x)dx→

∫
D

bhom (x)ϕ(x)dx (ε→ 0+), ∀ϕ ∈ L1(D). (22)

For the random vector function g(x, xε , ω), we also assume that it is statistically
homogeneous, i.e.

g(x, ξ, ω) = G(x, Tξω),

where G : D×Ω→ RN is a measurable function and the following inequality holds
almost surely in Ω:

|G (x, ω) | 6 φ(x) for almost all x ∈ D (23)

and the positive majorant φ(·) ∈ L2(D).
Birkhoff ergodic theorem implies that the function g(x, ξ, ω) = G(x, Tξω), has

the space mean value

ghom(x) := M(g)(x) = E(G)(x)

for every x ∈ D. It follows from (23) that

|ghom(x)| 6 φ(x) for almost all x ∈ D
and therefore ghom(·) ∈ H.
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Inequalities (23) imply that the vector function g
(
x, xε , ω

)
belongs to the space

H and is uniformly (w.r.t. ε ∈ (0, 1]) bounded in this space.
Therefore, Proposition 2 is applicable with P = D and p = 2 and we obtain that,

almost surely in ω ∈ Ω for any ϕ ∈ H,∫
D

〈
g
(
x,
x

ε
, ω
)
, ϕ(x)

〉
dx −→

∫
D

〈
ghom (x) , ϕ(x)

〉
dx (ε→ 0+). (24)

Let qi = pi/(pi − 1), 1/pi + 1/qi = 1, 1 < qi ≤ 2, i = 1, . . . , N. We shall use the
following vector notations p = (p1, . . . , pN ) and q = (q1, . . . , qN ) and we consider
the spaces

Lp(D) := Lp1(D)× . . .× LpN (D),

Lp(0,M ; Lp(D)) := Lp1(0,M ;Lp1(D))× . . .× LpN (0,M ;LpN (D)).

We also consider the Banach space

L(0,M) := L2(0,M ; V′) + Lq(0,M ; Lq(D)) (see [43]).

If u(x, t) ∈ Lp(0,M ; Lp(D)), then it follows from the condition (18) that the
function f(u(x, t)) ∈ Lq(0,M ; Lq(D)) and

N∑
i=1

‖f i(u(·))‖qiLqi (0,M ;Lqi )
≤ C0

(
N∑
i=1

‖u(·)‖piLpi (0,M ;Lpi )
+ |D|

)
. (25)

Moreover, due to (21), b
(
x, xε , ω

)
(f(u(x, t)) ∈ Lq(0,M ; Lq(D)) and the estimate

(25) implies

N∑
i=1

‖b(·)f i(u(·))‖qiLqi (0,M ;Lqi )
≤ C1

(
N∑
i=1

‖u(·)‖piLpi (0,M ;Lpi )
+ |D|

)
, (26)

where C1 is independent of ε. At the same time, if u(x, t) ∈ L2(0,M ; V), then
a∆u(x, t) + g

(
x, xε , ω

)
∈ L2(0,M ; V′).

Definition 4.1. A function u(x, t), x ∈ Ω, t ∈ (0,M) is called a weak solution of
the system (17) if u(x, t) ∈ Lp(0,M ; Lp(D))∩L2(0,M ; V) and for any test function
ϕ ∈ Lp(D) ∩V the following identity holds

d

dt

∫
D

u(x, t) · ϕ(x)dx+

∫
D

{a∇u(x, t) · ∇ϕ(x) + bε (x) f(u(x, t)) · ϕ(x)} dx

=

∫
D

gε(x) · ϕ(x)dx, (27)

where bε (x) = b
(
x, xε , ω

)
and gε(x) = g

(
x, xε , ω

)
. Here y1 · y2 denotes the scalar

products of vectors y1, y2 ∈ RN .

It follows from (27) that a weak solution of (17) satisfies (in a distribution sense)
the belonging ∂tu(x, t) ∈ L(0,M).

By the Sobolev embedding theorem, we have

L(0,M) ⊂ Lq

(
0,M ; H−r(D)

)
, (28)

where the space H−r(D) := H−r1(D) × . . . ×H−rN (D), r = (r1, . . . , rN ), and the
values ri := max {1, d(1/qi − 1/2)} for i = 1, . . . , N. Therefore, for a weak solution
u(x, t) of (17) we have ∂tu(x, t) ∈ Lq (0,M ; H−r(D)) .

For brevity we shall write sometimes u(t) instead u(x, t).
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If u(t) is a weak solution of (17), then u(·) ∈ C([0,M ]; H−r(D)). Moreover, if
u(·) ∈ L∞([0,M ]; H), then, according to the Lions–Magenes lemma (see, e.g., [42,
43]), we have that u(·) ∈ Cw([0,M ]; H). Therefore, we can consider the following
initial data for the system (17):

u|t=0 = u0, where u0 ∈ H. (29)

Using the standard Galerkin method (see, e.g., [43, 3, 50, 26]), we prove fee following
assertion.

Proposition 3. For any u0 ∈ H, the system (17) possesses a weak solution

u(t) ∈ Lp(0,M ; Lp(D)) ∩ L2(0,M ; V) ∩ L∞([0,M ]; H),

satisfying the initial data (29).

Remark 3. A weak solution of the problem (17), (29) is not necessarily unique
because the function f(v) satisfies conditions (18), (19) and is not assumed to be
Lipschitz. The uniqueness theorem holds under, e.g., the additional assumption
that f(v) ∈ C1(RN ;RN ) and the Jacobian J(v) = ∂f

∂v (v) satisfies the inequality

J(v) + αI ≥ 0, ∀v ∈ RN ,

for some α > 0 (see [3, 50, 26]). However, this condition is very restrictive, we do
not impose it in this work, and we do not need it to construct the strong trajectory
attractor for the system (17).

In [26], it is proved that under the assumptions (18), (19) any weak solution
u(t), t ∈ (0,M), of the system (17) is strongly continuous in the space C([0,M ]; H).
Moreover, the real function ‖u(t)‖2, t ∈ [0,M ], is absolutely continuous and the
following differential equality holds:

1

2

d

dt
‖u(t)‖2 +

∫
D

{a∇u(x, t) · ∇u(x, t) + bε (x) f(u(x, t)) · u(x, t)} dx

=

∫
D

gε(x) · u(x, t)dx. (30)

We call this equality the energy identity for the system (17).
The identity (30) implies that any weak solution u(t) of (17) satisfies the following

inequalities:

‖u(t)‖2 ≤ ‖u(0)‖2e−λ1βt +R2
1, (31)

β

∫ t+1

t

‖u(s)‖21ds+ 2

N∑
i=1

γi

∫ t+1

t

‖u(s)‖piLpids ≤ ‖u(t)‖2 +R2
2, (32)

where λ1 is the first eigenvalue of the scalar operator −∆ with Dirichlet bound-
ary conditions. The positive values R1 and R2 depend on ‖φ‖ (see (23)) and is
independent of u(0) and ε. For the proof see [26].

5. Trajectory attractors for RD-systems. To construct the trajectory attrac-
tor for the RD-system (17), we apply the scheme described in Sec. 3. The system
(17) has the form (2) if we set E1 = Lp(D) ∩ V, E0 = H−r(D), E = H and
A(u) = a∆u− bε(·)f(u) + gε(·).

We now describe the trajectory space K+
ε = K+

ε (ω) for the system (17). We fixe
ω ∈ Ω. In this section for brevity, we shall omit random parameter ω.
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Following the general framework of Sec. 3, we define the Banach spaces for every
M > 0

F0,M := Lp(0,M ; Lp(D))∩L2(0,M ; V)∩L∞([0,M ]; H)∩{v | ∂tv ∈ L(0,M)} (33)

with norm

‖v‖F0,M
:= ‖v‖Lp(0,M ;Lp(D)) + ‖v‖L2(0,M ;V) + ‖v‖L∞([0,M ];H) + ‖∂tv‖L(0,M). (34)

It is clear that the condition (3) holds for the norm (34) and the translation semi-
group {S(h)} satisfies (4).

Setting D0,M = Lq (0,M ; H−r(D)) we have that F0,M ⊆ D0,M and if u(s) ∈
F0,M , then A(u(s)) ∈ D0,M . We can consider weak solutions of the system (17) (see
Definition 4.1) as solutions of equation in the general scheme of Sec. 3.

Defining the space (5) we see that

F loc+ = Llocp (R+; Lp(D))∩Lloc2 (R+; V)∩Lloc∞ (R+; H)∩
{
v | ∂tv ∈ Lloc(R+)

}
. (35)

Definition 5.1. The trajectory space K+
ε of the system (17) consists of all functions

u(s), s ≥ 0, such that u(t), t ∈ (0,M) is a weak solution of (17) for every M > 0.

It follows from Proposition 3 that for any u0 ∈ H there exist at least one tra-
jectory u(·) ∈ K+

ε such that u(0) = u0. Therefore, the trajectory space K+
ε of the

system (17) is not empty and is wide enough.
It is obvious that K+

ε ⊂ F loc+ and the trajectory space K+
ε is translation invariant,

that is, if u(s) ∈ K+
ε , then u(h+ s) ∈ K+

ε for all h ≥ 0. Therefore,

S(h)K+
ε ⊆ K+

ε , ∀h ≥ 0.

We now define metrics ρ0,M (·, ·) on the spaces F0,M using the norms of the spaces
L2(0,M ; H), that is,

ρ0,M (u, v) =

(∫ M

0

‖u(s)− v(s)‖2ds

)1/2

, ∀u(·), v(·) ∈ F0,M .

These metrics generates the topology Θloc
+ in F loc+ . Recall that a sequence {vn} ⊂

F loc+ converges to v ∈ F loc+ as n→∞ in Θloc
+ if ‖vn(·)−v(·)‖L2(0,M ;H) → 0 (n→∞)

for each M > 0. The topology Θloc
+ is metrizable (see (7)) and the corresponding

metric space is complete. We consider this topology in the trajectory space K+
ε of

(17). The translation semigroup {S(t)} acting on K+
ε is continuous in the consid-

ering topology Θloc
+ .

Following the general scheme of Sec. 3, we define bounded sets in K+
ε using the

Banach space Fb+ (see (8)). We clearly have

Fb+ = Lbp(R+; Lp(D)) ∩ Lb2(R+; V) ∩ L∞(R+; H) ∩
{
v | ∂tv ∈ Lb(R+)

}
(36)

and Fb+ is a subspace of F loc+ . Recall that

‖v‖Lbp(R+;E) = sup
h≥0
‖v‖Lp(h,h+1;E).

Consider the translation semigroup {S(t)} on K+
ε , S(t) : K+

ε → K+
ε , t ≥ 0.

Inequalities (31) and (32) imply

Proposition 4. The space K+
ε belongs to Fb+ and for any trajectory u(·) ∈ K+

ε

‖S(t)u(·)‖2Fb+ ≤ C2‖u(0)‖2e−σt +R2
3, ∀t ≥ 0, (37)

where σ = βλ1 and R3 depend on ‖φ‖ (see (23)) and is independent of u(0) and ε.
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For the complete proof see [26]. It follows from inequality (37) that the ball

B0 =
{
u ∈ Fb+ | ‖u(·)‖Fb+ ≤ 2R3

}
is absorbing for the translation semigroup {S(t)} in K+

ε , that is, for any set B ⊂ K+
ε

bounded in Fb+, there exists a number t1 = t1(B) such that S(t)B ⊆ B0 for all t ≥ t1.
Consider the set

Pε = B0 ∩ K+
ε .

It is clear that Pε ⊆ K+
ε is also absorbing, that is

S(t)Pε ⊆ Pε, ∀t ≥ 0.

and the sets Pε are uniformly (w.r.t. ε) bounded in Fb+.
Using Lemma 3.6 for E1 = V, E0 = H−r(D), E = H and p1 = 2, p0 = qN , we

obtain

Proposition 5. The set Pε is compact in the topology Θloc
+ and uniformly bounded

in the norm Fb+ .

Consider the kernel Kε of the system (17) that consists of all weak complete
solutions u(s),∈ R, of the system that are bounded in the space

Fb = Lbp(R; Lp(D)) ∩ Lb2(R; V) ∩ L∞(R; H) ∩
{
v | ∂tv ∈ Lb(R)

}
. (38)

Due to Propositions 4 and 5, Theorems 3.3 and 3.5 are applicable and we have

Theorem 5.2. The RD-system (17) has the trajectory attractor Aε in the topo-
logical space Θloc

+ = Lloc2 (R+; H). The set Aε is ω-almost surely uniformly (w.r.t.

ε ∈ (0, 1)) bounded in Fb+ and compact in Θloc
+ . Moreover,

Aε = Π+Kε, (39)

the kernel Kε is non-empty, uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb, and com-
pact in the space Θloc.

Notice that the trajectory attractors Aε ⊂ F loc+ are uniformly (w.r.t. ε ∈ (0, 1))

bounded in Fb+. We now prove that the constructed above trajectory attractor Aε
in the “weak” topology Θloc

+ = Lloc2 (R+; H) in fact is the trajectory attractor in the
stronger local topology generated by the spaces F0,M .

Let Θs,loc
+ denotes the topology in F loc+ generated by the metrics of the spaces

F0,M . That is, by definition, a sequence {vn} ⊂ F loc+ converges to v ∈ F loc+ as

n→∞ in Θs,loc
+ if ‖vn(·)− v(·)‖F0,M

→ 0 for each M > 0 (see (34)).

Theorem 5.3. The trajectory attractor Aε is compact in the topology Θs,loc
+ and

attracts bounded sets of trajectories from K+
ε in this topology, that is, Aε is the

trajectory attractor in the strong topology Θs,loc
+ .

Proof. We fix ε > 0 and ω ∈ Ω. It is sufficient to prove that the set S(1)Pε is
compact in the strong topology of the space Lp(0,M ; Lp(D))∩L2(0,M ; V) for any
M > 0. We note that Lp(0,M ; Lp(D)) = Lp(D × [0,M ]).

Thus, let us show that any sequence {un(s)} ⊂ Pε has a subsequence that strong-
ly converges in the space Lp(D × [1,M ]) ∩ L2(1,M ; V) for each M > 0.

The set Pε is bounded in the space Fb+, therefore, {un(s)} is bounded in the
spaces Lp(D × [0,M ]) and L2(0,M ; V). Passing to a subsequence that we denote
the same, we can assume that un(·) ⇁ û(·) as n→∞ weakly in the spaces Lp(D×
[0,M ]) and L2(0,M ; V), where û(s) is a solution of the system (17) belonging to
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Pε. The Lions–Magenes lemma (see, e.g., [42, 43]) implies that un(t) ⇁ û(t) weakly
in H for each t ∈ [0,M ]. Moreover, according to the standard embedding theorem,
un(·)→ û(·) strongly in the space L2(D× [0,M ]) and un(x, s)→ û(x, s) for almost
all (x, t) ∈ D × [0,M ].

We note that, if a sequence χn ⇁ χ̂ weakly in a Banach space X, then

‖χ̂‖X ≤ lim inf
n→∞

‖χn‖X

(see, e.g., [58]). Hence, for a weakly convergent sequence {un(·)}, we have the
following limit relations:

‖û(M)‖ ≤ lim inf
n→∞

‖un(M)‖, (40)∫ M

0

∫
D

s(a∇û · ∇û)dxds ≤ lim inf
n→∞

∫ M

0

∫
D

s(a∇un · ∇un)dxds, (41)∫ M

0

∫
D

sbε(x)|ûi|pidxds ≤ lim inf
n→∞

∫ M

0

∫
D

sbε(x)|uin|pidxds, i = 1, 2, . . . , N, (42)

where, for brevity, we denote un = un(x, s) and û = û(x, s). The norms in (41) and
(42) correspond to the weight spaces L2,s(0,M ; V) and Lp,sbε(x)(D × [0,M ]) with

weights s and sbε(x), respectively. Here, the quadratic form ay · y with y ∈ RN
is equivalent to the standard norm of the vector y in RN since the matrix a has
a positive symmetric part. Therefore, the quadratic form

∫
D

(a∇v(x) · ∇v(x))dx is
equivalent to the norm of v(·) in the space V. It is clear, that weak convergence
un(·) ⇁ û(·) holds in the weight spaces as well.

Consider the continuous scalar function

F (v) =

N∑
i=1

f i(v)vi −
N∑
i=1

γi|vi|pi , v ∈ RN .

Then, clearly sbε (x)F (un(x, s)) → sbε (x)F (û(x, s)) as n → ∞ for almost all
(x, t) ∈ D × [0,M ] since the function F (v) is continuous. We claim that∫ M

0

∫
D

sbε (x)F (û(x, t))dxds ≤ lim inf
n→∞

∫ M

0

∫
D

sbε (x)F (un(x, t))dxds. (43)

The prove of this inequality uses the inequalities F (v) + C1 ≥ 0, bε(·) ≥ 0 (see
(19) and (21)), the convergence of the sequence {un(x, s)} for almost all (x, s) ∈
D× [0,M ] and the Fatou lemma on bounds for integrals of convergent sequences of
non-negative functions (see, e.g. [58]).

Recall that weak solutions un(·) and û(·) of the system (17) satisfy the energy
identity (30). Multiplying this identity by t, integrating the result over [0,M ], and
using the definition of the function F (·), we obtain the equalities

1

2
‖un(M)‖2 +

∫ M

0

∫
D

s(a∇un · ∇un)dxds+

N∑
i=1

γi

∫ M

0

∫
D

sbε (x) |uin|pidxds

+

∫ M

0

∫
D

sbε (x)F (un)dxds =
1

2

∫ M

0

∫
D

|un|2dxds+

∫ M

0

∫
D

gε(x) · undxds,

(44)
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1

2
‖û(M)‖2 +

∫ M

0

∫
D

s(a∇û · ∇û)dxds+

N∑
i=1

γi

∫ M

0

∫
D

sbε (x) |ûi|pidxds

+

∫ M

0

∫
D

sbε (x)F (û)dxds =
1

2

∫ M

0

∫
D

|û|2dxds+

∫ M

0

∫
D

gε(x) · ûdxds. (45)

Recall that un(·)→ û(·) strongly in the space L2(D×[0,M ]), therefore, the right-
hand side of equation (44) tends to that of equation (45). Hence, the left-hand side
of (44) also converges to the left-hand side of (45).

It follows from the inequalities (40) – (43) that the four real number sequences
on the right-hand sides have limits as n → ∞ and these limits coincides with the
corresponding quantities on the left-hand sides of (40) – (43). In particular we have

lim
n→∞

∫ M

0

∫
D

s(a∇un · ∇un)dxds =

∫ M

0

∫
D

s(a∇û · ∇û)dxds,

lim
n→∞

∫ M

0

∫
D

sbε(x)|uin|pidxds =

∫ M

0

∫
D

sbε(x)|ûi|pidxds, i = 1, 2, . . . , N.

It is known, in a uniformly convex Banach space X, the weak convergence χn ⇁
χ̂ of vectors and convergence ‖χn‖X → ‖χ̂‖X of their norms implies the strong
convergence ‖χn − χ̂‖X → 0 as n→∞ (this assertion follows the Mazur theorem,
see [58]). The weight spaces L2,s(0,M ; V) and Lp,sbε(x)(D × [0,M ]) are uniformly

convex. Therefore, the weak convergence of the sequences of functions uin(·) to
û(·) and the convergence of their norms in the space L2,s(0,M ; V) ∩ Lp,sbε(x)(D ×
[0,M ]) implies the strong convergence un(·) → û(·) in the space L2,s(1,M ; V) ∩
Lp,sbε(x)(D × [1,M ]) which is, obviously, equivalent to the space L2(1,M ; V) ∩
Lp(D × [1,M ]) (without weights).

Thus, we have proved the compactness of the set S(1)Pε in the strong topology
of the space Llocp (R+; Lp(D)) ∩ Lloc2 (R+; V).

The compactness of the corresponding set of derivatives ∂tu(·) in the strong
topology of the space Lloc(R+) = Lloc2 (R+; V′) + Llocq (R+; Lq(D)) follows directly
from the equation (17) and from the continuity of the Nemytskii operator u 7→ f(u),
which, by virtue of (18) acts from Lp(D× [0,M ]) to Lq(D× [0,M ]) (see [41]) and,
hence, bε (·) f(un(x, s)) → bε (·) f(û(·)) strongly in Llocq (R+; Lq(D)). At the same

time, it is clear that a∇un(·) → a∇û(·) strongly in Lloc2 (R+; V′). Therefore, from
the equation (17) we conclude that ∂tun(·)→ ∂tû(·) strongly in Lloc(R+).

It is remains to note that Pε belongs to Cloc(R+; H) (this fact follows from the
energy identity (30)) and the set S(1)Pε is compact in the space Cloc(R+; H). The
last assertion follows from the continuity of the embedding

L2(0,M ; V) ∩ Lp(0,M ; Lp(D)) ∩ {∂tv ∈ L(0,M)} ⊂ C([0,M ]; H)

which was proved in, e.g. [26]. This completes the proof of Theorem 5.3.

Along with random system (17) we consider the averaged deterministic system

∂tū = a∆ū− bhom (x) f(ū) + ghom (x) , ū|∂D = 0, (46)
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where the deterministic functions bhom (x) and ghom (x) are averages of the random
functions b

(
x, xε , ω

)
and g(x, xε , ω) as ε→ 0+. Recall that almost surely in ω ∈ Ω

b
(
x,
x

ε
, ω
)

= B
(
x, T x

ε
ω
)
⇁ bhom (x) (ε→ 0+) ∗-weakly in L∞(D),

g
(
x,
x

ε
, ω
)

= G
(
x, T x

ε
ω
)
⇁ ghom(x) (ε→ 0+) weakly in H.

Clearly system (46) also has trajectory attractor A in the trajectory space K+

corresponding to the system (46) and

A = Π+K

where K is the kernel of system (46) in Fb. The set A is bounded in Fb+ and compact

in the space Θs,loc
+ .

6. Homogenization of trajectory attractors for RD-systems. In this sec-
tion, we study the limit behaviour of trajectory attractors Aε(ω) of random RD-
systems (17) as ε → 0+ and their relation to the trajectory attractor A of the
deterministic averaged system (46).

To begin with, we consider the “weak” topology Θloc
+ = Lloc2 (R+; H).

Theorem 6.1. The following limit holds ω-almost surely in the topological space
Θloc

+

Aε(ω)→ A as ε→ 0 + . (47)

Moreover, ω-almost surely

Kε(ω)→ K as ε→ 0 + in Θloc. (48)

Proof. It is clear that (48) implies (47). Therefore it is sufficient to prove (48), that
is, for every neighbourhood O(K) in Θloc there are exists ε1 = ε1(O) > 0 such that
almost surely

Kε(ω) ⊂ O(K) for ε < ε1. (49)

Suppose that (49) is not true. Consider the corresponding subset Ω′ ⊂ Ω with
µ(Ω′) > 0 and (49) does not hold for all ω ∈ Ω′. Then, for each ω ∈ Ω′, there exists
a neighbourhood O′(K) in Θloc, a sequence εn → 0+, and a sequence uεn(·) =
uεn(ω, s) ∈ Kεn(ω) such that

uεn /∈ O′(K) for all n ∈ N, ω ∈ Ω′. (50)

For each ω ∈ Ω′, the function uεn(s), s ∈ R is a weak solution of the system

∂tuεn = a∆uεn − b
(
x,

x

εn
, ω

)
f(uεn) + g

(
x,

x

εn
, ω

)
, uεn |∂D = 0 (51)

on the entire time axis t ∈ R. Moreover the sequence {uεn(s)} is bounded in Fb,
that is,

‖uεn‖Fb =sup
t∈R
‖uεn(t)‖+sup

t∈R

(∫ t+1

t

‖uεn(s)‖21ds
)1/2

+sup
t∈R
‖uεn(·)‖

Lp(t,t+1;Lp(D))

+sup
t∈R
‖∂tuεn(·)‖L(t,t+1) ≤ C for all n ∈ N. (52)

Hence there exists a subsequence {uε′n(s)} ⊂ {uεn(s)} which we label the same such
that

uεn(s)→ ū(s) as n→∞ in Θloc, (53)
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where ū(·) ∈ Fb and ū(s) satisfies (52) with the same constant C. Due to (52)
we can also assume that uεn(s) ⇁ ū(s) (n → ∞) weakly in Lloc2,w(R; V), weakly

in Llocp,w (R; Lp(D)) , ∗-weakly in Lloc∞,∗w(R+; H) and ∂tuεn(s) ⇁ ∂tū(s) (n → ∞)

weakly in Lloc(R+). We claim that ū(s) ∈ K. We have already proved that ‖ū‖Fb ≤
C. So we have to establish that ū(·) is a weak solution of (46). Using (52), (24),
and (28) we obtain that

∂tuεn − a∆uεn − g
(
x,

x

εn
, ω

)
→ ∂tū− a∆ū− ghom (x) as n→∞ (54)

in the space D′ (R; H−r(D)) because the derivative operators are continuous in the
space of distributions. Let us prove that

b

(
x,

x

εn
, ω

)
f(uεn) ⇁ bhom (x) f(ū) as n→∞ (55)

weakly in Llocq,w (R;Lq(D)). We fix an arbitrary number M > 0. The sequence
{uεn(s)} is bounded in Lp (]−M,M [; Lp(D)) (see (52)). Hence by (18) the se-
quence {f(uεn(s))} is bounded in the space Lq (]−M,M [; Lq(D)) . Since {uεn(s)}
is bounded in the space L2

(
]−M,M [;

(
H1

0 (D)
)N)

and {∂tuεn(s)} is bounded in

Lq (]−M,M [; H−r(D)) we can assume that

uεn(s)→ ū(s) strongly in L2

(
]−M,M [; (L2(D))

N
)

= (L2 (D×]−M,M [))
N

(see lemma 3.6) and therefore

uεn(x, s)→ ū(x, s) as n→∞ a.e. in (x, s) ∈ D×]−M,M [.

Since the function f(v) is continuous with respect to v ∈ RN we conclude that

f(uεn(x, s))→ f(ū(x, s)) as n→∞ a.e. in (x, s) ∈ D×]−M,M [. (56)

We have

b

(
x,

x

εn
, ω

)
f(uεn)− bhom (x) f(ū)

= b

(
x,

x

εn
, ω

)
(f(uεn)− f(ū)) +

(
b

(
x,

x

εn
, ω

)
− bhom (x)

)
f(ū). (57)

Let us show that both summand in the right-hand side of (57) converges to zero
as n → ∞ weakly in the space Lq (]−M,M [; Lq(D)) = Lq (D × ]−M,M [) . The

sequence b
(
x, xεn , ω

)
(f(uεn)− f(ū)) tends to zero as n→∞ almost everywhere in

(x, s) ∈ D × ]−M,M [ (see (56)) and is bounded in Lq (D × ]−M,M [) (see (21)).
Therefore Lemma 1.3 from [43, Chap. 1, Sec. 1] implies that

b

(
x,

x

εn
, ω

)
(f(uεn)− f(ū)) ⇁ 0 as n→∞

weakly in the space Lq (D × ]−M,M [) . The sequence
(
b
(
x, xεn , ω

)
− bhom (x)

)
f(ū)

approaches zero as n → ∞ weakly in Lq (D × ]−M,M [) because, due to (22),

b
(
x, xεn , ω

)
⇁ bhom (x) as n → ∞ ∗-weakly in L∞,∗w (]−M,M [;L2(D)) and

f(ū) ∈ Lq (D × ]−M,M [) . We have proved (55). Using (54) and (55) we pass
to the limit in the equation (51) as n → ∞ in the space D′ (R+; H−r(D)) and we
obtain that the function ū(x, s) satisfies the equation

∂tū = a∆ū− bhom (x) f(ū) + ghom (x) , ū|∂D = 0, t ∈ R.
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Consequently, ū ∈ K. We proved above that uεn(s) → ū(s) as n → ∞ in Θloc.
The hypotheses uεn(s) /∈ O′(K) implies that ū /∈ O′(K) and moreover ū /∈ K for all
ω ∈ Ω′. We came to the contradiction. The theorem is proved.

We note that Lemma 3.6 implies that

B0 b Lloc2 (R+; H1−δ), (58)

B0 b Cloc(R+; H−δ), 0 < δ ≤ 1. (59)

Inclusion (58) follows from (15), where we set E0 = H−r(D), E = H1−δ, E1 =

H1 = V, and p1 = 2, p0 = qN , and from the compact embedding V b H1−δ.
Inclusion (59) follows from (16) and from the compact embeddings H b H−δ, if we
set E0 = H−r(D), E = H−δ, E1 = H1 = V, and p0 = qN .

Using compactness of inclusions (40) and (41), we can strengthen the convergence
(47).

Corollary 1. For every 0 < δ ≤ 1 and for any M > 0 with probability 1 in ω ∈ Ω

distL2([0,M ];H1−δ)

(
Π0,MAε(ω),Π0,MA

)
→ 0, (60)

distC([0,M ];H−δ)

(
Π0,MAε(ω),Π0,MA

)
→ 0 (ε→ 0+). (61)

To prove (60) and (61), we just repeat the proof of Theorem 6.1 replacing the
topology Θloc with Lloc2 (R+; H1−δ) or Cloc(R+; H−δ).

A natural question arise: is it possible to take δ = 0 in the limit relations (60)
and (61)? The answer is: YES, at least for the case of RD-systems (17) with
deterministic coefficient b(·) independent of ω and ε and with random function gε(·)
that depends on ω and ε.

In fact, we have the following result on convergence of trajectory attractors of

the system (17) in the strong topology Θs,loc
+ , where we just construct the trajectory

attractors (see Theorem 5.3).

Theorem 6.2. Let the coefficient b = b(x) is deterministic, i.e., it does not depend
on ω ∈ Ω and ε, while the function g = g(x, xε , ω) is random and statistically
homogeneous. Then, ω-almost surely we have the following convergence in the strong

topology Θs,loc
+

Aε(ω)→ A as ε→ 0 + . (62)

Moreover, ω-almost surely

Kε(ω)→ K as ε→ 0 + in Θs,loc. (63)

Proof. Repeating the reasoning from the proof of Theorem 6.1 we find a bounded
in Fb sequence {uεn(s), s ∈ R} of complete solutions of systems (51) that converges
in the topology Θloc as εn → 0+ to a function ū(s) which is a bounded complete
solution of the averaged equation (46).

We claim that uεn(s) converges to ū(s) in the strong topology Θs,loc
+ . To prove

this, we use the method of energy identities from the proof of Theorem 5.3. It
is sufficient to show that the sequence {uεn(s)} has a subsequence that strongly
converges to ū(s) in the space Lp(D× [−M + 1,M ])∩L2(−M + 1,M ; V) for each
M > 0. For an arbitrary fixed M, shifting the time s = −M+s′, we can assume that
the functions {uεn(s′)} and ū(s′) are defined on the interval [0,M ′], M ′ = 2M and
we seek a subsequence that converges strongly in Lp(D × [1,M ′]) ∩ L2(1,M ′; V).
For brevity, we omit the primes in s′ and M ′.
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Since {uεn(s)} is bounded in the spaces Lp(D× [0,M ]) and L2(0,M ; V), we can
assume that uεn(·) ⇁ ū(·) as εn → 0+ weakly in the spaces Lp(D × [0,M ]) and
L2(0,M ; V). We can also assume that uεn(M) ⇁ ū(M) as εn → 0+ weakly in H.

Similar to (40)–(42), we have

‖u(M)‖ ≤ lim inf
n→∞

‖uεn(M)‖, (64)∫ M

0

∫
D

s(a∇ū · ∇ū)dxds ≤ lim inf
n→∞

∫ M

0

∫
D

s(a∇uεn · ∇uεn)dxds, (65)∫ M

0

∫
D

sb(x)|ûi|pidxds ≤ lim inf
n→∞

∫ M

0

∫
D

sb(x)|uiεn |
pidxds, i = 1, 2, . . . , N, (66)

where, for brevity, we denote uεn = uεn(x, s) and ū = ū(x, s).
Similar to (43), we obtain∫ M

0

∫
D

sb (x)F (ū(x, t))dxds ≤ lim inf
n→∞

∫ M

0

∫
D

sb (x)F (uεn(x, t))dxds (67)

(recall that in the considered case, the coefficient b (x) is independent of ε).
We now apply the energy identities for the functions uεn(s) and ū(·) and obtain

similar to (44) and (45) the following equalities:

1

2
‖uεn(M)‖2+

∫ M

0

∫
D

s(a∇uεn ·∇uεn)dxds+

N∑
i=1

γi

∫ M

0

∫
D

sb (x) |uiεn |
pidxds

+

∫ M

0

∫
D

sb(x)F (uεn)dxds=
1

2

∫ M

0

∫
D

|uεn |2dxds+

∫ M

0

∫
D

gεn(x)·uεn dxds, (68)

1

2
‖ū(M)‖2 +

∫ M

0

∫
D

s(a∇ū · ∇ū)dxds+

N∑
i=1

γi

∫ M

0

∫
D

sb (x) |ūi|pidxds

+

∫ M

0

∫
D

sb (x)F (ū)dxds =
1

2

∫ M

0

∫
D

|ū|2dxds+

∫ M

0

∫
D

ghom(x) · ū dxds. (69)

Consider the difference∣∣∣∣∣
∫ M

0

∫
D

gεn(x) · uεn dxds−
∫ M

0

∫
D

ghom(x) · ū dxds

∣∣∣∣∣
=

∣∣∣∣∣
∫ M

0

∫
D

gεn(x) · (uεn − ū) dxds+

∫ M

0

∫
D

(
gεn(x)− ghom(x)

)
· ū dxds

∣∣∣∣∣
≤‖gεn(·)‖L2

‖uεn − ū‖L2
+

∣∣∣∣∣
∫ M

0

∫
D

(
gεn(x)− ghom(x)

)
· ū dxds

∣∣∣∣∣ (70)

Recall that uεn(·)→ ū(·) strongly in the space L2(D× [0,M ]) and gεn(·) ⇁ ghom(·)

weakly in L2(D × [0,M ]) (see (24)) and, hence, gεn(·) is uniformly bounded in
L2(D×[0,M ]). Therefore, both summands in (70) approach zero and, consequently,∫ M

0

∫
D

gεn(x) · uεn dxds→
∫ M

0

∫
D

ghom(x) · ū dxds as εn → 0 + . (71)

Thus, the right-hand side of equation (68) tends to that of equation (69), that is,
the left-hand side of (68) also converges to the left-hand side of (69). Combining
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this observation with inequalities (64)–(67) we conclude that

lim
n→∞

‖uεn(M)‖2 = ‖ū(M)‖2,

lim
n→∞

∫ M

0

∫
D

s(a∇uεn · ∇uεn)dxds =

∫ M

0

∫
D

s(a∇ū · ∇ū)dxds,

lim
n→∞

∫ M

0

∫
D

sb(x)|uiεn |
pidxds =

∫ M

0

∫
D

sb(x)|ūi|pidxds, i = 1, 2, . . . , N,

lim
n→∞

∫ M

0

∫
D

sb(x)F (uεn)dxds =

∫ M

0

∫
D

sb (x)F (ū)dxds.

To complete the proof, we use the reasonings as in the end of the proof of The-
orem 5.3 and obtain that uεn(·) → ū(·) strongly in the space Lp(D × [0,M ]) ∩
L2(0,M ; V)∩C([0,M ]; H) and ∂tuεn(·)→ ∂tū(·) strongly in L(0,M) as εn → 0 + .
Thus, we have proved (63) and (62).

Finally we consider the reaction-diffusion systems for which the uniqueness theo-
rem of the Cauchy problem takes place. It is sufficient to assume that the nonlinear
term f(u) in the equation (17) satisfies the condition

(f(v1)− f(v2), v1 − v2) ≥ −C|v1 − v2|2 for v1, v2 ∈ RN . (72)

(see [24, 26]). In [24] it was proved that if (72) holds, then equations (17) and

(46) generate the dynamical semigroups in H = (L2(D))
N
, which have the global

attractors Aε(ω) and A bounded in the space V =
(
H1

0 (D)
)N

(see also [3], [50]).
We have

Aε(ω) = {u(0) | u ∈ Aε(ω)}, A = {u(0) | u ∈ A}.
Convergence (62) implies

Corollary 2. Under the assumptions of Theorem 6.2, the following limit holds
ω-almost surely:

distH
(
Aε(ω),A

)
→ 0 (ε→ 0+). (73)
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