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1 Introduction

The problem of well-orderability of the continuum of real numbers R has been known
in set theory since the time ofCantor andHilbert. Zermelo’s axiomof choiceAC directly
postulates the existence of a well-ordering of R (and of any other set of course), but this
is far from an effective construction of a concrete, “nameable” well-ordering of R . We
refer to the famous Sinq Lettres [18] in matters of the discussion on these issues in early
set theory.

Somewhat later, using themethods of descriptive set theory, which had just emerged,
it became possible to prove that no well-ordering 4 of R could belong to the first-level
projective classes Σ1

1 , Π1
1 —and then to ∆1

1 since 𝑥 4 𝑦 iff 𝑥 = 𝑦 or 𝑦 ̸4 𝑥 . This is an easy
consequence of Luzin’s theorem [34] that sets in Σ1

1 ∪ Π1
1 are Lebesgue measurable, see

e. g. Sierpinski [37].
To shorten terminology, if Γ is a class of subsets of Polish spaces (as, e. g., any projec-

tive class ∆1
𝑛 = Σ1

𝑛 ∩ Π1
𝑛 , or effective projective class 𝛥1𝑛 = 𝛴1

𝑛 ∩ 𝛱 1
𝑛 ) then, following [3],

let Γ(WO) be the statement: there is a well-ordering, of the set R of all reals, which as a set
of pairs belongs to Γ . Then the result above is summarized as ¬ ∆1

1 (WO) .
The next key result was obtained byGödel [16]: it is true inGödel’s constructible uni-

verse L that there exists a 𝛥12 well-ordering 6L of the reals. In otherwords, the statement
𝛥12 (WO) follows from the axiom of constructibility V = L , and hence 𝛥12 (WO) is consis-
tent with the axioms of the Zermelo–Fraenkel set theory ZFC (containing the axiom of
choice AC) because the axiom of constructibility V = L itself is consistent by [16].

Addison [2] singled out an important additional property of the Gödel well-ordering
6L . Namely, a 𝛥1𝑛 -goodwell-ordering is any 𝛥1𝑛 well-ordering 4 such that for any binary
𝛥1𝑛 relation 𝑃(𝑦, 𝑥) on the reals, the relations

𝑄(𝑧, 𝑥) := ∃ 𝑦 4 𝑥 𝑃(𝑧, 𝑦) and 𝑅(𝑧, 𝑥) := ∀ 𝑦 4 𝑥 𝑃(𝑧, 𝑦)

belong to 𝛥1𝑛 as well, so that the class 𝛥1𝑛 is closed under 4-bounded quantification.
(SeeMoschovakis [36, Section 5A].) In these terms, the Gödel – Addison result then says
that 6L is a 𝛥12 -good well-ordering of the reals in L , and hence the existence of such
a well-ordering follows from V = L and is consistent with ZFC. The property of 𝛥12 -
goodness of 6L is behind many key results on projective sets in Gödel’s universe L , see
[36, Section 5A].

In the opposite direction, it was established in the early years of modern set theory
(see, e. g., Levy [33] and Solovay [38]) that the non-existence statement ¬ Σ1

∞ (WO) is
also consistent with ZFC, where Σ1

∞ =
⋃
𝑛 Σ1

𝑛 is the class of all projective sets, and
moreover a much stronger statement ¬ ROD(WO) , saying that there is no any ROD
well-ordering of the reals, is consistent as well. Here ROD is the class of all real-ordinal
definable sets, i. e., those defined by any set-theoretic formula with arbitrary reals and
ordinals as parameters; Σ1

∞ is a rather small part of ROD .
Recent studies on projective well-orderings explore such topics as

− connections with forcing axioms [5, 6];

AMS subject classification: 03E15, 03E35.
Keywords: projective classes, well-orderings, Jensen’s forcing, generic models.
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− connections with large cardinals [4, 14];
− connections with cardinal characteristics of the continuum [8, 10];
− relations to the structure and properties of projective sets [3, 9, 31, 32];

and others. The following theorem contributes to these studies.We investigate the inter-
relations between the hypotheses 𝛥1𝑛 (WO) , ∆1

𝑛 (WO) for different values of 𝑛 . Note that
𝛥1
𝑛−1 (WO) implies 𝛥1𝑛 (WO) , and ∆1

𝑛−1 (WO) implies ∆1
𝑛 (WO) . The theorem shows

that these implications are irreversible.

Theorem 1.1 Let n ≥ 3. There is a generic extension of L , the constructible universe, in
which it is true that

(i) there exists a lightface 𝛥1n -good well-ordering of the reals, of length 𝜔1;

(ii) ∆1
n−1 (WO) fails: there are no boldface ∆1

n−1 well-ordering of the reals.

Thus the lightface 𝛥1n (good WO) does not imply even the boldface ∆1
n−1 (WO) .

This theorem is the main result of this paper. It improves our earlier result in [32],
where it is established that there is a generic extension of L with a lightface 𝛥1n -good
well-ordering of the reals, but no lightface 𝛥1n−1 -good well-orderings of the reals. Thus
Theorem 1.1 strengthens this earlier result by removing the goodness in part (ii) and
extending the lightface class 𝛥1n−1 to the boldface class ∆1

n−1 also in part (ii).

2 Outline of the proof

Given n ≥ 3 , our plan is to make use of a generic extension of L , originally defined in
[30] in order to get a model where the Separation principle fails for both classes Σ1

n and
Π1
n , and then applied in [32] to prove the aforementionedweaker versionofTheorem1.1.

This extension utilizes a sequence of forcing notions P𝜉 , 𝜉 < 𝜔1 (or Π(𝜉) , as in
Section 14 below), defined in L so that the finite-support product P =

∏
𝜉 P𝜉 satisfies

CCC and adjoins a sequence of generic reals 𝑥𝜉 ∈ 2𝜔 , such that the binary relation “𝑥 ∈
2𝜔 is a real P𝜉 -generic over L” (with arguments 𝑥, 𝜉 ) is 𝛱 1

n−1 in L[𝐺] = L[⟨𝑥𝜉 ⟩𝜉<𝜔1 ] .
This will suffice to define a well-ordering satisfying Theorem 1.1(i).

Claim (ii) of Theorem 1.1 involves another crucial property: the P-forcing relation
of 𝛴1

n−1 formulas can be suitably approximated by an auxiliary forcing relation forc
invariant w.r. t. the permutations of indices 𝜉 < 𝜔1 . The P-forcing relation itself is not
permutation-invariant since all forcing notions P𝜉 are pairwise different.

Each factor forcing P𝜉 consists of perfect trees in 2<𝜔 and is a clone of Jensen’s
minimal forcing defined in [22], see also [20, Section 28A] on this forcing. The idea
of finite-support products of Jensen’s forcing, which we owe to Enayat [7], has been
exploited recently to obtain generic models with counterexamples to the separation
theorem for both Σ1

3 and Π1
3 [25], counterexamples to the axiom of choice [13], and a

model in which every non-empty 𝛴1
∞ set of reals contains a 𝛴1

∞ real but there are no
𝛴1
∞ well-orderings of the reals [31], to name a few examples.
Sections 3 and 4: perfect trees in 2<𝜔 , arboreal forcing notions, multitrees (finite

tuples of trees), and multiforcings (countable products of arboreal forcing notions) are
considered.
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Section 5: we explore the refinement relation and properties of refinements of ar-
boreal forcing notions and multiforcings. Then in Section 6 we introduce an important
property of sealing of dense sets by Jensen’s refinements, i. e., a dense set in the origi-
nal multiforcing remains pre-dense in the extended one. Then we consider some other
types of refinements, related to properties of real names, in Section 7. Some applications
of refinements with various properties to the reals in according generic extensions are
established in Section 8.

Jensen’s construction of generic refinements is introduced in Section 9. We prove in
Section 10 that it indeed gives a refinement of a givenmultiforcing, which satisfies those
extra properties considered above.

Transfinite sequences of small multiforcings, increasing in the sense of the refine-
ment relation, are considered in Section 12. We follow our earlier paper [30] in Sections
14, 15, 16 to introduce the key product forcing notion P for Theorem 1.1 by means of
a specially constructed in L refinement-increasing 𝜔1-sequence of small multiforcings.
Theorem 16.1 shows that P provides (i) of Theorem 1.1. See Remarks 9.2 and 9.3 on
some deviations from the technical construction given in [30].

After a short introduction into claim (ii) of Theorem 1.1 in Section 17, we define and
explore an auxiliary forcing relation forc in Sections 18–22. It is proved that forc is tail-
invariant (Theorem 20.1), permutation-invariant (Theorem 21.1), and approximates the
truth in P-generic extensions for 𝛴1

n−1 -formulas and below (Theorem 22.3). We also
prove that the relation forc restricted to any class 𝛴1

𝑚 or 𝛱 1
𝑚 , 𝑚 ≥ 2 , is 𝛴1

𝑚 , resp., 𝛱 1
𝑚

itself (Lemma 19.1).
The final part of the paper (Sections 23–27) contains a lengthy proof of Theorem17.1

that leads to claim (ii) of Theorem 1.1 in P-generic models. The conclusive argument
in Section 27 will show that the contrary assumption, of the existence of a Σ1

𝑛−1 well-
ordering, say < , of the reals in the extension, leads to the existence of a non-empty
set of reals which does not have a <-least element, a contradiction. This is similar to
some other theorems of this kind. (See, e. g., Theorem 25.39 in [20].) Yet here the flow of
arguments involves a lot of different details and is way more complex.

This paper is a sequel of [30] in many details, in particular the model we consider is
more or less the samemodel as defined in [30] for different purposes. However some im-
portant ajustments will be made in basic constructions, see e. g. Remark 9.2. This forces
us to present the whole construction anew in all necessary detail.

3 Arboreal forcing notions

Let 2<𝜔 be the set of all tuples (finite sequences) of numbers 0, 1 . If 𝑡 ∈ 2<𝜔 and 𝑖 = 0, 1
then 𝑡a𝑖 denotes the extension of 𝑡 by 𝑖 as the rightmost term. If 𝑠, 𝑡 ∈ 2<𝜔 then 𝑠 ⊆ 𝑡
means that 𝑡 extends 𝑠 , while 𝑠 ⊂ 𝑡 means proper extension. 1 By lh(𝑡) we denote the
length of a tuple 𝑡 , and we put 2𝑛 = {𝑡 ∈ 2<𝜔 : lh(𝑡) = 𝑛} (tuples of length 𝑛 ).

PT is the set of all perfect trees ∅ ≠ 𝑇 ⊆ 2<𝜔 . Thus a tree ∅ ≠ 𝑇 ⊆ 2<𝜔 belongs to
PT iff it has no endpoints and no isolated branches. In this case

[𝑇] = {𝑎 ∈ 2𝜔 : ∀ 𝑛 (𝑎�𝑛 ∈ 𝑇) } ⊆ 2𝜔

1 In this paper, ⊂ means a proper or strict inclusion to the expence of equality “=” in all cases, i. e., the
same as $ . The improper inclusion is ⊆ .
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is a perfect set. If 𝑠 ∈ 𝑇 ∈ PT then put

𝑇� 𝑠 = {𝑡 ∈ 𝑇 : 𝑠 ⊆ 𝑡 ∨ 𝑡 ⊆ 𝑠} ; then 𝑇� 𝑠 ∈ PT .

Definition 3.1 Trees 𝑆, 𝑇 are called incompatible, in symbol 𝑆⊥𝑇 , if [𝑆] ∩ [𝑇] = ∅ ,
and compatible (𝑆 ̸⊥𝑇 ) otherwise. Note that 𝑆⊥𝑇 is equivalent to 𝑆 ∩ 𝑇 being finite.

We call an antichain any set 𝐴 ⊆ PT of pairwise incompatible trees. �

Let an arboreal forcing be any set 𝑃 ⊆ PT such that if 𝑢 ∈ 𝑇 ∈ 𝑃 then 𝑇� 𝑢 ∈ 𝑃 . Let
AF be the set of all arboreal forcings 𝑃 . Any 𝑃 ∈ AF is:

− regular, if, for any 𝑆, 𝑇 ∈ 𝑃 , the intersection [𝑆] ∩ [𝑇] is clopen in [𝑆] or in [𝑇]
(or in both [𝑆] and [𝑇] simultaneously);

− special, if there is a finite or countable antichain 𝐴 ⊆ 𝑃 such that 𝑃 = {𝑇� 𝑠 :
𝑠 ∈ 𝑇 ∈ 𝐴} — 𝐴 is unique and 𝑃 is countable in this case.

Note that every special arboreal forcing is regular.

Lemma 3.2 Let 𝑃 be a regular arboreal forcing. Then any 𝑆, 𝑇 ∈ 𝑃 are 𝑃-compatible (that
is, there is a tree 𝑅 ∈ 𝑃 with 𝑅 ⊆ 𝑆 ∩ 𝑇 ) iff just 𝑆 ̸⊥𝑇 .

Proof By the regularity, let 𝑋 = [𝑆] ∩ [𝑇] be clopen in say [𝑇] . Then there is a tuple
𝑠 ∈ 𝑇 such that [𝑇� 𝑠] ⊆ 𝑋 . But 𝑇� 𝑠 ∈ 𝑃 as 𝑃 ∈ AF . �

Splitting. Consider pairs of the form ⟨𝑛, 𝑇⟩ , where 𝑛 < 𝜔 and 𝑇 ∈ PT . Following
[1], the set 𝜔 × PT of such pairs is ordered by a relation 4 so that ⟨𝑛, 𝑇⟩ 4 ⟨𝑚, 𝑆⟩
(reads: ⟨𝑛, 𝑇⟩ extends ⟨𝑚, 𝑆⟩ ) iff 𝑚 ≤ 𝑛 , 𝑇 ⊆ 𝑆 , and 𝑇 ∩ 2𝑚 = 𝑆 ∩ 2𝑚 . The role of
the number 𝑚 in a pair ⟨𝑚, 𝑆⟩ is to preserve the value 𝑆 ∩ 2𝑚 under 4-extensions. We
underline that this definition does not contain any explicit splitting condition. This is
why one needs the genericity requirement in Lemma 3.3 to get actual splitting.

The implication 𝑚 > 𝑛 =⇒ ⟨𝑚,𝑇⟩ 4 ⟨𝑛, 𝑇⟩ (the same 𝑇 !) always holds, but 𝑆 ⊆
𝑇 =⇒ ⟨𝑛, 𝑆⟩ 4 ⟨𝑛, 𝑇⟩ is not necessarily true: we also need 𝑇 ∩ 2𝑛 = 𝑆 ∩ 2𝑛 .

Lemma 3.3 (Fusion lemma, see [1]) Let . . . 4 ⟨𝑛2, 𝑇2⟩ 4 ⟨𝑛1, 𝑇1⟩ 4 ⟨𝑛0, 𝑇0⟩ be a
decreasing sequence in 𝜔 × PT , with 𝑛0 ≤ 𝑛1 ≤ 𝑛2 ≤ . . . → ∞ , minimally generic in the
sense that it meets every set of the form

𝐷𝑡 = {⟨𝑛, 𝑇⟩ ∈ 𝜔 × PT : 𝑡 ∉ 𝑇 ∨ ∃ 𝑠 ∈ 𝑇 (𝑡 ⊆ 𝑠 ∧ 𝑠a0, 𝑠a1 ∈ 𝑇) } , 𝑡 ∈ 2<𝜔 .

Then 𝑇 =
⋂
𝑛 𝑇𝑛 ∈ PT , and if 𝑖 < 𝜔 then we have ⟨𝑛𝑖 , 𝑇⟩ 4 ⟨𝑛𝑖 , 𝑇𝑖⟩ . �

Finite unions. To carry out splitting constructions, as in Lemma 3.3, over a forcing
𝑃 ∈ AF , we make use of a bigger forcing notion

⋃fin 𝑃 ∈ AF , that consists of all finite
unions of trees in 𝑃 . Then 𝑃 is dense in

⋃fin 𝑃 , so the forcing properties of both sets
coincide. Yet

⋃fin 𝑃 is more flexible w.r. t. tree constructions.

Lemma 3.4 Let 𝑃 ∈ AF , 𝑛 < 𝜔 , 𝑇 ∈ ⋃fin 𝑃, 𝑠0 ∈ 2𝑛 ∩ 𝑇 , and 𝑈 ⊆ 𝑇� 𝑠0 , 𝑈 ∈ 𝑃 .
There is a tree 𝑅 ∈ ⋃fin 𝑃 such that ⟨𝑛, 𝑅⟩ 4 ⟨𝑛, 𝑇⟩ and 𝑅� 𝑠0 = 𝑈 .
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6 V. Kanovei and V. Lyubetsky

Proof We let 𝑅 consist of all tuples 𝑟 ∈ 𝑇 such that either (1) lh(𝑟) ≤ 𝑛 , or (2) lh(𝑟) >
𝑛 and 𝑟�𝑛 ≠ 𝑠0 , or (3) lh(𝑟) > 𝑛 and 𝑟�𝑛 = 𝑠0 and 𝑟 ∈ 𝑈 . �

4 Multiforcings

Let amultiforcing be any map 𝝅 : |𝝅 | → AF , where |𝝅 | = dom 𝝅 ⊆ 𝜔1 . Let MF be
the collection of all multiforcings. Every 𝝅 ∈ MF can be presented as an indexed set
𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | , where 𝑃𝜉 ∈ AF for all 𝜉 ∈ |𝝅 | , so that each set 𝑃𝜉 = 𝑃𝝅

𝜉
= 𝝅(𝜉) ,

𝜉 ∈ |𝝅 | , is an arboreal forcing. Such a 𝝅 is:

− small, if both |𝝅 | and each forcing 𝝅(𝜉) = 𝑃𝝅
𝜉
, 𝜉 ∈ |𝝅 | , are countable;

− special, if each 𝝅(𝜉) = 𝑃𝝅
𝜉
is special in the sense of Section 3;

− regular, if each 𝝅(𝜉) = 𝑃𝝅
𝜉
is regular in the sense of Section 3.

Amultitree is a function 𝒑 : | 𝒑 | → PT with a finite support | 𝒑 | = dom 𝑝 ⊆ 𝜔1 .
Let MT be the set of all multitrees. We represent multitrees 𝒑 ∈ MT as indexed sets
𝒑 = ⟨𝑇 𝒑

𝜉
⟩𝜉 ∈ |𝒑 | , where 𝑇 𝒑

𝜉
= 𝒑(𝜉) ∈ PT for all 𝜉 ∈ | 𝒑 | . Put

[ 𝒑] = ∏
𝜉 ∈ |𝒑 | [𝑇

𝒑
𝜉
] = {𝑥 ∈ (2𝜔) |𝒑 | : ∀ 𝑖 ∈ | 𝒑 | (𝑥(𝑖) ∈ [𝑇 𝒑

𝜉
]) },

this is a perfect product in (2𝜔) |𝒑 | provided 𝒑 ∈ MT .
We order MT componentwise: 𝒒 6 𝒑 (𝒒 is stronger than 𝒑 ) iff | 𝒑 | ⊆ |𝒒 | and

𝑇
𝒒
𝜉
⊆ 𝑇 𝒑

𝜉
for all 𝜉 ∈ | 𝒑 | . In particular, if just 𝒑 ⊆ 𝒒 then 𝒒 6 𝒑 .

Assume that 𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | is a multiforcing. Let a 𝝅-multitree be any multitree
𝒑 ∈ MT such that | 𝒑 | ⊆ |𝝅 | , and if 𝜉 ∈ | 𝒑 | then the tree 𝒑(𝜉) = 𝑇

𝒑
𝜉
belongs to

𝑃𝜉 . The set MT(𝝅) of all 𝝅-multitrees can be identified with the finite support product∏
𝜉 ∈ |𝝅 | 𝑃𝜉 of the arboreal forcings 𝑃𝜉 involved.

Definition 4.1 Multitrees 𝒑, 𝒒 are incompatible, in symbol 𝒑⊥ 𝒒 , if there is an index
𝜉 ∈ | 𝒑 | ∩ |𝒒 | such that [𝑇 𝒑

𝜉
] ∩ [𝑇𝒒

𝜉
] = ∅ , and compatible otherwise. Any set 𝐴 ⊆ MT

of pairwise incompatible multitrees is an antichain. �

Corollary 4.2 (of Lemma 3.2) Let 𝝅 be a regular multiforcing. Then any multitrees 𝒑, 𝒒 ∈
MT(𝝅) are MT(𝝅)-compatible (i. e., there is 𝒓 ∈ MT(𝝅) with 𝒓 6 𝒑 and 𝒓 6 𝒒 ) iff
𝒑, 𝒒 are compatible in the sense of Definition 4.1. Thus a set 𝐴 ⊆ MT(𝝅) is a MT(𝝅)-
antichain (that is, a set of pairwise MT(𝝅)-incompatible trees) iff 𝐴 is an antichain as in
Definition 4.1. �

If 𝝅, ϙϙ are multiforcings then a multiforcing 𝝈 = 𝝅 ∪cw ϙϙ (the componentwise
union) is defined so that |𝝈 | = |𝝅 | ∪ | ϙϙ| and

𝝈(𝜉) =


𝝅(𝜉) in case 𝜉 ∈ |𝝅 | r | ϙϙ| ,
ϙϙ(𝜉) in case 𝜉 ∈ | ϙϙ| r |𝝅 | ,

𝝅(𝜉) ∪ ϙϙ(𝜉) in case 𝜉 ∈ | ϙϙ| ∩ |𝝅 | .
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Lemma 4.3 If 𝝅, ϙϙ coincide on the common domain 𝑑 = |𝝅 | ∩ | ϙϙ| , i. e., 𝝅� 𝑑 = ϙϙ� 𝑑 ,
then 𝝅 ∪cw ϙϙ = 𝝅 ∪ ϙϙ , the ordinary union. (This includes the case of disjoint domains
|𝝅 | ∩ | ϙϙ| = ∅ , of course.) �

Given any sequence ⃗⃗𝝅 = ⟨𝝅𝛼⟩𝛼<𝜆 of multiforcings, we similarly define the com-
ponentwise union 𝝅 =

⋃cw ⃗⃗𝝅 =
⋃cw
𝛼<𝜆 𝝅𝛼 ∈ MF so that |𝝅 | = ⋃

𝛼<𝜆 |𝝅𝛼 | and
𝝅(𝜉) = ⋃

𝛼<𝜆, 𝜉 ∈ |𝝅𝛼 | 𝝅𝛼 (𝜉) for 𝜉 ∈ |𝝅 | .

Remark 4.4 Any arboreal forcing 𝑃 ∈ AF is considered as a forcing notion (if 𝑇 ⊆ 𝑇 ′
then 𝑇 is a stronger condition); such a forcing adds a real in 2𝜔 .

Accordingly any forcing notion of the form MT(𝝅) , where 𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | ∈ MF ,
adjoins a generic sequence ⟨𝑥𝜉 ⟩𝜉 ∈ |𝝅 | , each 𝑥𝜉 = 𝑥𝜉 [𝐺] ∈ 2𝜔 being a 𝑃𝜉 -generic real.
Reals of the form 𝑥𝜉 [𝐺] are principal generic reals in V[𝐺] . �

5 Refinements

The following definition reminds the notions related to density in the forcing context.

Definition 5.1 If 𝑃 ⊆ 𝑅 ⊆ PT then the set 𝑃 is

— dense in 𝑅 iff ∀𝑇 ∈ 𝑅 ∃ 𝑆 ∈ 𝑃 (𝑆 ⊆ 𝑇) ,
— open dense in 𝑅 iff in addition ∀𝑇 ∈ 𝑅 ∀ 𝑆 ∈ 𝑃 (𝑇 ⊆ 𝑆 =⇒ 𝑇 ∈ 𝑃) ,
— pre-dense in 𝑅 iff the set 𝑃′ = {𝑇 ∈ 𝑅 : ∃ 𝑆 ∈ 𝑃(𝑇 ⊆ 𝑆) } is dense.

In the case of multitrees, if 𝑷 ⊆ 𝑹 ⊆ MT then similarly the set 𝑷 is

— dense in 𝑹 iff ∀ 𝒒 ∈ 𝑅 ∃ 𝒑 ∈ 𝑷 ( 𝒑 6 𝒒) ,
— open dense in 𝑹 iff in addition ∀ 𝒒 ∈ 𝑹 ∀ 𝒑 ∈ 𝑷 ( 𝒑 6 𝒒 =⇒ 𝒒 ∈ 𝑷) ,
— pre-dense in 𝑹 iff the set 𝑷′ = {𝒒 ∈ 𝑹 : ∃ 𝒑 ∈ 𝑷(𝒒 6 𝒑) } is dense. �

Now let 𝑃,𝑄 ∈ AF be arboreal forcings. We say that 𝑄 is a refinement of 𝑃 (in
symbol 𝑃 @ 𝑄 ) if

(1) the set 𝑄 is dense in 𝑃 ∪𝑄 : if 𝑇 ∈ 𝑃 then ∃𝑄 ∈ 𝑄 (𝑄 ⊆ 𝑇) ;
(2) if 𝑇 ∈ 𝑄 then 𝑇 ⊆fin ⋃ 𝑃 , that is, there is a finite set 𝐷 ⊆ 𝑃 such that 𝑇 ⊆ ⋃

𝐷 , or
equivalently [𝑇] ⊆ ⋃

𝑆∈𝐷 [𝑆] ;
(3) if 𝑇 ∈ 𝑄 and 𝑆 ∈ 𝑃 then [𝑆] ∩ [𝑇] is clopen in [𝑆] and 𝑆 ̸⊆ 𝑇 .

Lemma 5.2 (i) If 𝑃 @ 𝑄 and 𝑆 ∈ 𝑃 , 𝑇 ∈ 𝑄 , then [𝑆] ∩ [𝑇] is meager in [𝑆] , therefore
𝑃 ∩𝑄 = ∅ and 𝑄 is open dense in 𝑃 ∪𝑄 ;

(ii) if 𝑃 @ 𝑄 @ 𝑅 then 𝑃 @ 𝑅 , thus @ is a strict partial order on AF ;

(iii) if ⟨𝑃𝛼⟩𝛼<𝜆 is a @-increasing sequence in AF and 0 < 𝜇 < 𝜆 then 𝑃 =
⋃
𝛼<𝜇 𝑃𝛼 @

𝑄 =
⋃
𝜇≤𝛼<𝜆 𝑃𝛼 ;

(iv) if ⟨𝑃𝛼⟩𝛼<𝜆 is a @-increasing sequence in AF and each 𝑃𝛼 is special then 𝑃 =⋃
𝛼<𝜆 𝑃𝛼 ∈ AF , 𝑃 is regular, and all 𝑃𝛾 are pre-dense in 𝑃.
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8 V. Kanovei and V. Lyubetsky

Proof (i) Otherwise there is a string 𝑢 ∈ 𝑆 such that 𝑆� 𝑢 ⊆ [𝑇] ∩ [𝑆] . But 𝑆� 𝑢 ∈ 𝑃 ,
which contradicts to (3) above.

To prove (ii) it suffices to verify (3). Let 𝑆 ∈ 𝑃 and 𝑇 ∈ 𝑅 . By (2) for 𝑄 @ 𝑅 , there
is a finite 𝐷 ⊆ 𝑄 such that 𝑇 ⊆ ⋃

𝐷 . If 𝑈 ∈ 𝐷 then [𝑆] ∩ [𝑈] is clopen in [𝑈] , so
[𝑆]∩[⋃𝐷] is clopen in [⋃𝐷] .We conclude that [𝑆]∩[𝑇] is clopen in [𝑇] .Moreover,
if 𝑈 ∈ 𝐷 then [𝑈] ∩ [𝑇] is meager in [𝑈] while [𝑆] ∩ [𝑈] is meager in [𝑆] , by (i).
Thus [𝑆] ∩ [𝑇] is meager in [𝑆] .

To prove (iii) in part (3), let 𝑆 ∈ 𝑃 and 𝑇 ∈ 𝑄 , so that 𝑆 ∈ 𝑃𝛼 and 𝑇 ∈ 𝑄𝛾 ,
𝛼 < 𝜇 ≤ 𝛾 . But then 𝑃𝛼 @ 𝑃𝛾 .

(iv) To check the regularity, let 𝑆 ∈ 𝑃𝛼 , 𝑇 ∈ 𝑃𝛽 , 𝛼 ≤ 𝛽 . If 𝛼 = 𝛽 then, as 𝑃𝛼 is
special, the trees 𝑆, 𝑇 either satisfy 𝑆⊥𝑇 or are ⊆-comparable. If 𝛼 < 𝛽 then [𝑆] ∩ [𝑇]
is clopen in [𝑇] by (3) above.

To check the pre-density of 𝑃𝛾 , let 𝑆 ∈ 𝑃𝛼 , 𝛼 ≠ 𝛾 . If 𝛼 < 𝛾 then by (1) above there
is a tree 𝑇 ∈ 𝑃𝛾 , 𝑇 ⊆ 𝑆 . Now let 𝛾 < 𝛼 . Then 𝑆 ⊆fin ⋃ 𝑃𝛾 by (2), hence there is a tree
𝑇 ∈ 𝑃𝛾 such that [𝑆] ∩ [𝑇] ≠ ∅ . However [𝑆] ∩ [𝑇] is clopen in [𝑆] by (3) above.
Therefore 𝑆� 𝑢 ⊆ 𝑇 for a string 𝑢 ∈ 𝑆 . Finally 𝑆� 𝑢 ∈ 𝑃𝛼 since 𝑃𝛼 ∈ AF . �

In the case ofmultiforcings, amultiforcing ϙϙ is a refinementof 𝝅 (in symbol 𝝅 @ ϙϙ)
if |𝝅 | ⊆ | ϙϙ| and 𝝅(𝜉) @ ϙϙ(𝜉) in AF for all 𝜉 ∈ |𝝅 | .

Corollary 5.3 (of Lemma 5.2(ii)) @ is a strict partial order on MF . �

Lemma 5.4 If 𝝅′ ⊆ 𝝅 @ ϙϙ ⊆ ϙϙ′ are multiforcings then 𝝅′ @ ϙϙ′ .

Proof By definition, |𝝅′ | ⊆ |𝝅 | ⊆ | ϙϙ| ⊆ | ϙϙ′ | holds, and if 𝜉 ∈ |𝝅′ | then 𝝅′ (𝜉) =
𝝅(𝜉) @ ϙϙ(𝜉) = ϙϙ(𝜉′) . �

Lemma 5.5 Let ⟨𝝅𝛼⟩𝛼<𝜆 be a @-increasing sequence of special multiforcings, and 0 < 𝜇 <
𝜆 . Then the componentwise union 𝝅 =

⋃cw
𝛼<𝜆 𝝅𝛼 is a regular multiforcing, each MT(𝝅𝛼) is

pre-dense in MT(𝝅) , and we have ⋃cw
𝛼<𝜇 𝝅𝛼 = 𝝅<𝜇 @ 𝝅≥𝜇 =

⋃cw
𝜇≤𝛼<𝜆 𝝅𝛼 .

Proof If 𝜉 ∈ ⋃𝛼<𝜆 |𝝅𝛼 | then 𝝅(𝜉) = ⋃
𝛼<𝜆, 𝜉 ∈ |𝝅𝛼 | 𝝅𝛼 (𝜉) is a regular arboreal forc-

ing by Lemma 5.2(iv). The pre-density claim also follows from Lemma 5.2(iv). To prove
the last claim make use of Lemma 5.2(iii). �

6 Sealing dense sets

A key property of Jensen’s refinement constructon is that it allows to seal dense sets, i. e.,
keep them to be still pre-dense after a refinement is ajoined. In the easier case of arboreal
forcings this is based on the following definition.

Definition 6.1 Let 𝑃,𝑄 ∈ AF and 𝐷 ⊆ 𝑃 . Say that 𝑄 seals 𝐷 over 𝑃 , symbolically
𝑃 @𝐷 𝑄 , if 𝑃 @ 𝑄 holds and every tree 𝑆 ∈ 𝑄 satisfies 𝑆 ⊆fin ⋃𝐷 , that is, 𝑆 ⊆ ⋃

𝐷′

for a finite subset 𝐷′ ⊆ 𝐷 . �
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Aswe’ll see now, a sealed set is pre-dense after the refinement. The additional impor-
tance of sealing refinements lies in the fact that, once established, it is preserved under
further simple refinements, as in (ii) of the following lemma:

Lemma 6.2 (i) If 𝑃 @𝐷 𝑄 , 𝐷 ⊆ 𝑃 , then 𝐷 is pre-dense in 𝑃 ∪𝑄 ;

(ii) if ⟨𝑃𝛼⟩𝛼<𝜆 is a @-increasing sequence in AF, 0 < 𝜇 < 𝜆 , and 𝑃 =
⋃
𝛼<𝜇 𝑃𝛼 @𝐷 𝑃𝜇 ,

then 𝑃 @𝐷 𝑄 =
⋃
𝜇≤𝛼<𝜆 𝑃𝛼 .

Proof (i) Let 𝑇0 ∈ 𝑃 ∪ 𝑄 . By (1) in Section 5, there is a tree 𝑇 ∈ 𝑄 , 𝑇 ⊆ 𝑇0 . Then
𝑇 ⊆fin ⋃𝐷 , in particular, there is a tree 𝑆 ∈ 𝐷 with 𝑋 = [𝑆] ∩ [𝑇] ≠ ∅ . However 𝑋 is
clopen in [𝑇] by (3) in Section 5. Therefore there is a tree 𝑇 ′ ∈ 𝑄 with [𝑇 ′] ⊆ 𝑋 , thus
𝑇 ′ ⊆ 𝑆 ∈ 𝐷 and 𝑇 ′ ⊆ 𝑇 ⊆ 𝑇0 . We conclude that 𝑇0 is compatible with 𝑆 ∈ 𝐷 in 𝑃∪𝑄 .

To prove (ii) on the top of Lemma 5.3, let 𝑇 ′ ∈ 𝑄 . Then 𝑇 ′ ⊆fin ⋃
𝑃𝜇 , but each

𝑇 ∈ 𝑃𝜇 satisfies 𝑇 ⊆fin ⋃𝐷 . �

In the case ofmultiforcings, wemodify the above definitions as follows. Fist of all, if
𝒖 is a multitree and 𝑫 a collection of multitrees, then 𝒖 ⊆fin ∨ 𝑫 will mean that there
is a finite set 𝑫′ ⊆ 𝑫 satisfying 1) |𝒗 | = |𝒖 | for all 𝒗 ∈ 𝑫′ , and 2) [𝒖] ⊆ ⋃

𝒗∈𝑫′ [𝒗] .
(See Section 4 on [𝒖] .)

Definition 6.3 Let 𝝅, ϙϙ be multiforcings. Say that ϙϙ seals a set 𝑫 ⊆ MT(𝝅) over 𝝅 ,
symbolically 𝝅 @𝑫 ϙϙ , if 𝝅 @ ϙϙ and the following holds:

(∗) if 𝒑 ∈ MT(𝝅) , 𝒖 ∈ MT( ϙϙ) , |𝒖 | ⊆ |𝝅 | , |𝒖 |∩ | 𝒑 | = ∅ , then there is 𝒒 ∈ MT(𝝅) such
that 𝒒 6 𝒑 , still |𝒒 | ∩ |𝒖 | = ∅ , and 𝒖 ⊆fin ∨

𝑫 |𝒖 |𝒒 , where 𝑫 |𝒖 |𝒒 = {𝒖′ ∈ MT(𝝅) :
|𝒖′ | = |𝒖 | and 𝒖′ ∪ 𝒒 ∈ 𝑫 } . �

Lemma 6.4 Let 𝝅, ϙϙ,𝝈 be multiforcings and 𝑫 ⊆ MT(𝝅) . Then:

(i) if 𝝅 @𝑫 ϙϙ then 𝑫 is pre-dense in MT(𝝅 ∪cw ϙϙ) ;
(ii) if 𝝅 is regular, 𝝅 @𝑫𝑖 ϙϙ for 𝑖 = 1, . . . , 𝑛 , all sets 𝑫𝑖 ⊆ MT(𝝅) are open dense in

MT(𝝅) , and 𝑫 =
⋂
𝑖 𝑫𝑖 , then 𝝅 @𝑫 ϙϙ ;

(iii) if ⟨𝝅𝛼⟩𝛼<𝜆 is a @-increasing sequence of special multiforcings, 0 < 𝜇 < 𝜆 , 𝝅<𝜇 =⋃cw
𝛼<𝜇 𝝅𝛼 , 𝑫 is open dense in MT(𝝅<𝜇) , and 𝝅<𝜇 @𝑫 𝝅𝜇 , then 𝝅<𝜇 @𝑫 𝝅≥𝜇 =⋃cw
𝜇≤𝛼<𝜆 𝝅𝛼 .

Proof (i) Let 𝒓 ∈ MT(𝝅 ∪cw ϙϙ) . Due to the product character of the multiforcing
MT(𝝅 ∪cw ϙϙ) , we can assume that |𝒓 | ⊆ |𝝅 | . Let

𝑋 = {𝜉 ∈ |𝒓 | : 𝑇𝒓
𝜉 ∈ MT( ϙϙ) } , 𝑌 = {𝜉 ∈ |𝒓 | : 𝑇𝒓

𝜉 ∈ MT(𝝅) } .

Then 𝒓 = 𝒖 ∪ 𝒑 , where 𝒖 = 𝒓�𝑋 ∈ MT( ϙϙ) , 𝒑 = 𝒓�𝑌 ∈ MT(𝝅) . As ϙϙ seals 𝑫 , there
is a multitree 𝒒 ∈ MT(𝝅) such that 𝒒 6 𝒑 , |𝒒 | ∩ |𝒖 | = ∅ , and 𝒖 ⊆fin ∨

𝑫 |𝒖 |𝒒 . Easily
there is a multitree 𝒖′ ∈ 𝑫 |𝒖 |𝒒 compatible with 𝒖 in MT( ϙϙ) ; let 𝒘 ∈ MT( ϙϙ) , 𝒘 6 𝒖 ,
𝒘 6 𝒖′ , |𝒘 | = |𝒖′ | = |𝒖 | . Then the multitree 𝒓′ = 𝒘 ∪ 𝒒 ∈ MT(𝝅 ∪cw ϙϙ) satisfies
𝒓′ 6 𝒓 and 𝒓′ 6 𝒖′ ∪ 𝒒 ∈ 𝑫 .
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(ii) Let 𝒑 ∈ MT(𝝅) , 𝒖 ∈ MT( ϙϙ) , |𝒖 | ⊆ |𝝅 | , |𝒖 | ∩ | 𝒑 | = ∅ . Iterating (∗) for 𝑫𝑖 ,
𝑖 = 1, . . . , 𝑛 , we find amultitree 𝒒 ∈ MT(𝝅) such that 𝒒 6 𝒑 , the equality |𝒒 |∩|𝒖 | = ∅
holds, and 𝒖 ⊆fin ∨ (𝑫𝑖) |𝒖 |𝒒 for all 𝑖 , where

(𝑫𝑖) |𝒖 |𝒒 = {𝒖′ ∈ MT(𝝅) : |𝒖′ | = |𝒖 | and 𝒖′ ∪ 𝒒 ∈ 𝑫𝑖 } .

Thus there exist finite sets 𝑈𝑖 ⊆ (𝑫𝑖) |𝒖 |𝒒 such that [𝒖] ⊆ ⋃
𝒗∈𝑈𝑖 [𝒗] for all 𝑖 . Using

the regularity assumption, we get a finite set 𝑊 ⊆ MT(𝝅) such that |𝒘 | = |𝒖 | for all
𝒘 ∈ 𝑊 , the equality

⋂
𝑖

⋃
𝒗∈𝑈𝑖 [𝒗] =

⋃
𝒘∈𝑊 [𝒘] holds, and if 𝑖 = 1, . . . , 𝑛 and 𝒘 ∈ 𝑊

then [𝒘] ⊆ [𝒗] for some 𝒗 ∈ 𝑈𝑖 — hence 𝒘 ∪ 𝒒 ∈ 𝑫𝑖 . We conclude that if 𝒘 ∈ 𝑊
then 𝒘 ∪ 𝒒 ∈ 𝑫 , hence 𝒘 ∈ 𝑫 |𝒖 |𝒒 . Thus𝑊 ⊆ 𝑫 |𝒖 |𝒒 . However [𝒖] ⊆ ⋃

𝒘∈𝑊 [𝒘] by the
choice of 𝑊 . Thus 𝒖 ⊆fin ∨ 𝑫 |𝒖 |𝒒 .

(iii) Both 𝝅<𝜇 and 𝝅≥𝜇 are regular multiforcings by Lemma 5.5. To check that 𝝅≥𝜇
seals 𝑫 over 𝝅<𝜇 , let 𝒖 ∈ MT(𝝅≥𝜇) , |𝒖 | ⊆ |𝝅 |<𝜇 , 𝒑 ∈ MT(𝝅<𝜇) , |𝒖 |∩| 𝒑 | = ∅ . There
is a finite set 𝑈 ⊆ MT(𝝅𝜇) , such that |𝒗 | = |𝒖 | for all 𝒗 ∈ 𝑈 , and [𝒖] ⊆ ⋃

𝒗∈𝑈 [𝒗] .
As 𝝅<𝜇 @𝑫 𝝅𝜇 , by iterated application of Definition 6.3(∗) we get a multitree 𝒒 ∈
MT(𝝅<𝜇) such that 𝒒 6 𝒑 , |𝒒 | ∩ |𝒖 | = ∅ , and if 𝒗 ∈ 𝑈 then 𝒗 ⊆fin ∨ 𝑫 |𝒖 |𝒒 , where

𝑫 |𝒖 |𝒒 = {𝒗′ ∈ MT(𝝅) : |𝒗′ | = |𝒗 | = |𝒖 | ∧ 𝒗′ ∪ 𝒒 ∈ 𝑫 } .

And finally 𝒖 ⊆fin ∨𝑈 by construction, hence 𝒖 ⊆fin ∨ 𝑫 |𝒖 |𝒒 as well. �

7 Sealing real names

In this section we present another extension of the refinement technique, discovered in
[30], related to the structure of real names, i. e., names of reals in 2𝜔 in the context of
forcing notions of the form MT(𝝅) .

Let a real name be any set c ⊆ MT × (𝜔 × 2) such that the sets 𝐾c
𝑛𝑖 = { 𝒑 ∈ MT :

⟨ 𝒑, 𝑛, 𝑖⟩ ∈ c} satisfy the following: if 𝑛 < 𝜔 and 𝒑 ∈ 𝐾c
𝑛0 , 𝒒 ∈ 𝐾c

𝑛1 , then themultitrees
𝒑, 𝒒 are incompatible in the sense of Definition 4.1.

Let 𝐾c
𝑛 = 𝐾

c
𝑛0 ∪ 𝐾c

𝑛1 ; then 𝐾c
𝑛 ⊆ MT .

A real name c is small if each 𝐾c
𝑛 is at most countable — then the set |c| =⋃

𝑛

⋃
𝒑∈𝐾c

𝑛
| 𝒑 | , and c itself, are countable, too.

Now let 𝝅 be a multiforcing. A real name c is 𝝅-complete if the set

𝐾c
𝑛↑𝝅 = { 𝒑 ∈ MT(𝝅) : ∃ 𝒒 ∈ 𝐾c

𝑛 ( 𝒑 6 𝒒) }

is dense in MT(𝝅) for each 𝑛 . (We do not require here that c ⊆ MT(𝝅) × (𝜔 × 2) , or
equivalently, 𝐾c

𝑛 ⊆ MT(𝝅) , ∀ 𝑛 .) In this case, if a set (a filter) 𝐺 ⊆ MT(𝝅) is MT(𝝅)-
generic over the family of all sets 𝐾c

𝑛↑𝝅 , 𝑛 < 𝜔 , then we define a real c[𝐺] ∈ 2𝜔 so
that c[𝐺] (𝑛) = 𝑖 iff 𝐺 ∩ (𝐾c

𝑛↑𝝅) ≠ ∅ .

Example 7.1 Assume that 𝜉 < 𝜔1 . Define a real name •𝒙 𝜉 ∈ L such that each set 𝐾
•
𝒙𝜉
𝑛𝑖

consists of a single multitree 𝑷𝜉
𝑛𝑖
, where |𝑷𝜉

𝑛𝑖
| = {𝜉 } (the domain), 𝑷𝜉

𝑛𝑖
(𝜉) = 𝑇𝑛𝑖 , and

𝑇𝑛𝑖 = {𝑠 ∈ 2<𝜔 : lh(𝑠) ≤ 𝑛 ∨ 𝑠(𝑛) = 𝑖} .
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We leave it as a routine exercise to prove that, in L , •𝒙 𝜉 is a small real name, 𝝅-
complete for any multiforcing 𝝅 , and if a set 𝐺 ⊆ MT(𝝅) is MT(𝝅)-generic over L ,
then the real •𝒙 𝜉 [𝐺] is identic to 𝑥𝜉 [𝐺] defined as inRemark 4.4. Thus •𝒙 𝜉 is a canonical
name for the generic real 𝑥𝜉 [𝐺] . �

Direct forcing. Assume that c is a real name. Say that a multitree 𝒑 :

• directly forces c(𝑛) = 𝑖 , where 𝑛 < 𝜔 and 𝑖 = 0, 1 , iff there is a multitree 𝒒 ∈ 𝐾c
𝑛𝑖

such that 𝒑 6 𝒒 ;
• directly forces 𝑠 ⊂ c , where 𝑠 ∈ 2<𝜔 , iff for all 𝑛 < lh(𝑠) , 𝒑 directly forces c(𝑛) = 𝑖 ,
where 𝑖 = 𝑠(𝑛) ;

• directly forces c ∉ [𝑇] , where 𝑇 ∈ PT , iff there is a string 𝑠 ∈ 2<𝜔 r 𝑇 such that 𝒑
directly forces 𝑠 ⊂ c .

The definition of direct forcing is not explicitly associated with any concrete forcing
notion, but in fact it is compatible with any multiforcing.

Lemma 7.2 Assume that 𝝅 is a multiforcing, c is a 𝝅-complete real name, and 𝒑 ∈ MT(𝝅) .
If 𝑛 < 𝜔 then there exists 𝑖 = 0, 1 and a multitree 𝒒 ∈ MT(𝝅) , 𝒒 6 𝒑 , which directly
forces c(𝑛) = 𝑖 . If 𝑇 ∈ PT then there exists 𝑠 ∈ 𝑇 and a multitree 𝒒 ∈ MT(𝝅) , 𝒒 6 𝒑 ,
which directly forces c ∉ [𝑇� 𝑠] .

Proof To prove the first claim use the density of sets 𝐾c
𝑛↑𝝅 by the definition of com-

pleteness. To prove the second claim, pick 𝑛 such that 𝑇∩2𝑛 contains at least two strings.
By the first claim, there is a multitree 𝒒 ∈ MT(𝝅) , 𝒒 6 𝒑 , and a string 𝑡 ∈ 𝑇 ∩ 2𝑛 such
that 𝒒 directly forces 𝑡 ⊂ c . Now take any 𝑠 ∈ 𝑇 ∩ 2𝑛 , 𝑠 ≠ 𝑡 . �

Sealing names. The next definition extends Definition 6.3 to real names.

Definition 7.3 Assume that 𝝅, ϙϙ are multiforcings, c is a real name, and 𝝅 @ ϙϙ . Say
that ϙϙ seals c over 𝝅 , symbolically 𝝅 @c ϙϙ , if ϙϙ seals, over 𝝅 , each set 𝐾c

𝑛↑𝝅 =

{ 𝒑 ∈ MT(𝝅) : ∃ 𝒒 ∈ 𝐾c
𝑛 ( 𝒑 6 𝒒) } . �

Non-principal names. The following definition presents conditions which will
work towards a given real name c being NOT a name of a real of the form 𝑥𝜉 [𝐺] in the
context of Remark 4.4.

Definition 7.4 Let 𝝅 be a multiforcing, 𝜉 ∈ |𝝅 | . A real name c is non-principal over 𝝅
at 𝜉 , if the following set is open dense in MT(𝝅) :

𝑫𝝅
𝜉 (c) = { 𝒑 ∈ MT(𝝅) : 𝜉 ∈ | 𝒑 | ∧ 𝒑 directly forces c ∉ [𝑇 𝒑

𝜉
] } .

Let ϙϙ be another multiforcing, and 𝝅 @ ϙϙ . Say that ϙϙ avoids a real name c over 𝝅 at 𝜉 ,
in symbol 𝝅 @c

𝜉
ϙϙ , if for each 𝑄 ∈ ϙϙ(𝜉) , ϙϙ seals the set

𝑫 (c, 𝑄, 𝝅) = { 𝒓 ∈ MT(𝝅) : 𝜉 ∈ |𝒓 | ∧ 𝒓 directly forces c ∉ [𝑄] } ,

over 𝝅 in the sense of Definition 6.3 — that is formally 𝝅 @𝑫 (c,𝑄,𝝅) ϙϙ . �
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8 Consequences for generic extensions

We first prove a lemma on adequately representation of reals in MT(𝝅)-generic ex-
tensions by real names. Then Theorem 8.2 will show corollaries for non-principal
names.

Lemma 8.1 Suppose that 𝝅 is a regular multiforcing. If MT(𝝅) is a CCC forcing notion,
𝐺 ⊆ MT(𝝅) is MT(𝝅) -generic over the ground set universe V , and 𝑥 ∈ V[𝐺] ∩ 2𝜔 , then
there is a small 𝝅-complete real name c ∈ V , c ⊆ MT(𝝅) × 𝜔 × 2 , such that 𝑥 = c[𝐺] .

Proof It is an instance of a general forcing theorem that there is a (not necessarily
small) 𝝅-complete real name d ∈ V , d ⊆ MT(𝝅) × 𝜔 × 2 , such that 𝑥 = d[𝐺] . To get
a small name, extend each set 𝐾d

𝑛 ⊆ MT(𝝅) to an open dense set

𝐾d
𝑛↑𝝅 = { 𝒑 ∈ MT(𝝅) : ∃ 𝒒 ∈ 𝐾d

𝑛 ( 𝒑 6 𝒒) } ,

choose maximal (countable by CCC) antichains 𝐴𝑛 ⊆ 𝐾d
𝑛↑𝝅 in those sets, and then let

𝐴𝑛𝑖 = { 𝒑 ∈ 𝐴𝑛 : ∃ 𝒒 ∈ 𝐾d
𝑛𝑖 ( 𝒑 6 𝒒) } and c = {⟨ 𝒑, 𝑛, 𝑖⟩ : 𝒑 ∈ 𝐴𝑛𝑖 } . �

Theorem 8.2 Let 𝝅 be a regular multiforcing and 𝜉 ∈ |𝝅 | . Then

(i) if MT(𝝅) is CCC, a set 𝐺 ⊆ MT(𝝅) is MT(𝝅) -generic over the ground set universe V ,
and 𝑥 ∈ V[𝐺] ∩ 2𝜔 , 𝑥 ≠ 𝑥𝜉 [𝐺] , then, in V , there is a small 𝝅-complete real name
c ⊆ MT(𝝅) × (𝜔 × 2) , non-principal over 𝝅 at 𝜉 and such that 𝑥 = c[𝐺] ;

(ii) if c ⊆ MT(𝝅) × (𝜔×2) is a 𝝅-complete real name, ϙϙ is a multiforcing, 𝝅 @c
𝜉
ϙϙ , and a

set 𝐺 ⊆ MT(𝝅 ∪cw ϙϙ) is MT(𝝅 ∪cw ϙϙ) -generic over V, then c[𝐺] ∉ ⋃
𝑄∈ ϙϙ( 𝜉 ) [𝑄] .

Proof (i) Let 𝑥 ≠ 𝑥𝜉 [𝐺] . By Lemma 8.1, there is a 𝝅-complete real name c such
that 𝑥 = c[𝐺] and MT(𝝅) forces that c ≠ 𝑥𝜉 [𝐺] . It remains to show that c is a
non-principal name over 𝝅 at 𝜉 , that is, the set

𝑫𝝅
𝜉 (c) = { 𝒑 ∈ MT(𝝅) : 𝜉 ∈ | 𝒑 | ∧ 𝒑 directly forces c ∉ [𝑇 𝒑

𝜉
] } .

is open dense in MT(𝝅) . The openness is clear, let us prove the density. Consider any
𝒒 ∈ MT(𝝅) . Then 𝒒 MT(𝝅)-forces c ≠ 𝑥𝜉 [𝐺] by the choice of c , hence we can
assume that, for some 𝑛 , c(𝑛) ≠ 𝑥𝜉 [𝐺] (𝑛) is MT(𝝅)-forced by 𝒒 . Then by Lemma 7.2
there is a multitree 𝒑 ∈ MT(𝝅) , 𝒑 6 𝒒 , and 𝑠 ∈ 𝜔𝑛+1, such that 𝒑 directly forces
𝑠 ⊆ c . Now it suffices to show that 𝑠 ∉ 𝑇 𝒑

𝜉
. Suppose otherwise: 𝑠 ∈ 𝑇 𝒑

𝜉
. Then the tree

𝑇 = 𝑇
𝒑
𝜉
� 𝑠 still belongs to MT(𝝅) . Therefore the multitree 𝒓 defined by 𝑇𝒓

𝜉
= 𝑇 and

𝑇𝒓
𝜉 ′ = 𝑇

𝒑
𝜉 ′ for each 𝜉

′ ≠ 𝜉 , belongs to MT(𝝅) and satisfies 𝒓 6 𝒑 6 𝒒 . However 𝒓

directly forces both c(𝑛) and 𝑥𝜉 [𝐺] (𝑛) to be equal to one and the same value ℓ = 𝑠(𝑛) ,
which contradicts to the choice of 𝑛 .

(ii) Suppose towards the contrary that 𝑄 ∈ ϙϙ(𝜉) and c[𝐺] ∈ [𝑄] . By definition, ϙϙ
seals, over 𝝅 , the set

𝑫 (c, 𝑄, 𝝅) = { 𝒓 ∈ MT(𝝅) : 𝜉 ∈ |𝒓 | ∧ 𝒓 directly forces c ∉ [𝑄] } .
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Therefore 𝑫 (c, 𝑄, 𝝅) is pre-dense in MT(𝝅 ∪cw ϙϙ) by Lemma 6.4(i), and hence 𝐺 ∩
𝑫 (c, 𝑄, 𝝅) ≠ ∅ , i. e., there is a multitree 𝒓 ∈ MT(𝝅) which directly forces c ∉ [𝑄] .
Then c[𝐺] ∉ [𝑄] , which is a contradiction. �

9 Refinement construction by Jensen

The splitting/fusion construction was originally invented as a method to obtain perfect
sets in Polish spaces. Jensen modified it in [22] in order to get refinements of arboreal
forcing notions. The definition below in this Section, taken from [30], introduces essen-
tially a product version of Jensen’s refinements. As we deal with finite support products,
the standard technique in the theory of countable-support Sacks products, as e. g. in [17]
or [24], is not fully applicable. The notion of a system in the next definition will be the
key instrument. That finite-support products of Jensen-style forcing notions are CCC,
preserve cardinals (unlike finite-support Sacks products), and admit a suitable version
of splitting/fusion technique, was demonstrated in [26].

9A. Systems. Suppose that 𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | is a multiforcing. Let a 𝝅-system be any
map 𝜑 defined on a finite set |𝜑| ⊆ 𝜔 × |𝝅 | such that if ⟨𝜉, 𝑘⟩ ∈ |𝜑 | then 𝜑(𝜉, 𝑘) =〈
𝑛
𝜑

𝜉 𝑘
, 𝑇

𝜑

𝜉 𝑘

〉
∈ 𝜔 ×⋃fin 𝑃𝜉 , where

⋃fin 𝑃𝜉 consists of all finite unions of trees in 𝑃𝜉 ,
as above. A system 𝜑 is antichain-like if for any two different pairs of indices ⟨𝜉, 𝑘⟩ ≠
⟨𝜂, 𝑚⟩ in |𝜑| we have 𝑇 𝜑

𝜉 𝑘
⊥𝑇 𝜑𝜂𝑚 .

We order the set Sys(𝝅) of all 𝝅-systems componentwise: 𝜑 4 𝜓 (𝜑 extends 𝜓 ) iff
|𝜓 | ⊆ |𝜑 | and

〈
𝑛
𝜑

𝜉 𝑘
, 𝑇

𝜑

𝜉 𝑘

〉
4
〈
𝑛
𝜓

𝜉 𝑘
, 𝑇
𝜓

𝜉 𝑘

〉
for all ⟨𝜉, 𝑘⟩ ∈ |𝜓 | in 𝜔 × PT (Section 3).

A set Δ ⊆ Sys(𝝅) is dense if for any 𝜓 ∈ Sys(𝝅) there is 𝜑 ∈ Δ with 𝜑 4 𝜓 .

Lemma 9.1 If 𝝅 is a multiforcing and 𝜑 ∈ Sys(𝝅) then there is an antichain-like system
𝜓 ∈ Sys(𝝅) such that |𝜓 | = |𝜑| and 𝜓 4 𝜑 .

Proof If 𝑆, 𝑇 ∈ PT then there are ⊂-incomparable tuples 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑇 . Then the
trees 𝑆′ = 𝑆� 𝑢 , 𝑇 ′ = 𝑇� 𝑣 satisfy 𝑆′ ⊥𝑇 ′ . Moreover if 𝑆 ∈ 𝑃 and 𝑇 ∈ 𝑄 , where 𝑃,𝑄
are arboreal forcings, then still 𝑆′ ∈ 𝑃 and 𝑇 ′ ∈ 𝑄 . We get an antichain-like system
𝜓 4 𝜑 by consecutive shrinking trees in 𝜑 . �

Remark 9.2 This definition of systems somewhat differs from the one considered in
[30, Definition 7.1]. The difference is that the version of [30] requires that all numbers
𝑛
𝜑

𝜉 𝑘
are equal to one and the same number 𝑛 = 𝑛𝜑 . Call such a system uniform and let

Sysunif (𝝅) ⊆ Sys(𝝅) be the set of all strong systems. We may note that Sysunif (𝝅) is
dense in Sys(𝝅) : if 𝜓 ∈ Sys(𝝅) then there is a system 𝜑 ∈ Sysunif (𝝅) , 𝜑 4 𝜓 . (This
is because clearly ⟨𝑛, 𝑇⟩ 4 ⟨𝑚,𝑇⟩ for any tree 𝑇 in case 𝑛 > 𝑚 .) Therefore each 𝔐-
generic sequence ˘ of systems in Sys(𝝅) contains a 𝔐-generic infinite subsequence
˘′ in Sysunif (𝝅) . The version developed here will allow us to use product-generic
arguments in the proof of Theorem 26.1 below, ineffective in the Sysunif version. �

9B. A power-free subtheory. Let ZFC−1 be the theory ZFC with with the powerset
axiom removed, the collection scheme in place of the replacement scheme, the version
of the axiom of choice which states that every set can be well-ordered, plus the axiom

2022/09/23 08:01



14 V. Kanovei and V. Lyubetsky

“𝒫(𝜔) exists”. 2 Using the “𝒫(𝜔) existence” principle (which accounts for the index 1),
ZFC−1 proves that continualobjects, such as 𝜔𝜔 , 𝜔1 , PT ,MT , sMF (smallmultiforcings)
do exist as sets.

9C. Generic sequences of systems. Let 𝔐 be a countable transitive model (CTM)
of ZFC−1 . Suppose that 𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | ∈ 𝔐 is a multiforcing.

(I) As 𝔐 is countable, there is a 4-decreasing sequence ˘ = ⟨𝜑 𝑗⟩ 𝑗<𝜔 of systems 𝜑 𝑗 ∈
Sys(𝝅) , 𝔐-generic in the sense that it intersects every set Δ ∈ 𝔐 , Δ ⊆ Sys(𝝅) ,
dense in Sys(𝝅) . (See Subsection 9A on the density.)

Fix any such an 𝔐-generic 4-decreasing sequence ˘ of systems in Sys(𝝅) .

(II) By definition, we have 𝜑 𝑗 = ⟨
〈
𝑛
𝜑 𝑗

𝜉 𝑘
, 𝑇

𝜑 𝑗

𝜉 𝑘

〉
⟩⟨ 𝜉 ,𝑘⟩∈ |𝜑 𝑗 | for all 𝑗 , where |𝜑 𝑗 | ⊆ |𝝅 | × 𝜔

is finite, and each tree 𝑇 𝜑 𝑗
𝜉 𝑘

belongs to
⋃fin 𝑃𝜉 . We have 𝑛𝜑 𝑗

𝜉 𝑘
→ ∞ with 𝑗 → ∞

monotonously for each 𝜉, 𝑘 .

(III) Let 𝜉 ∈ |𝝅 | , 𝑘 < 𝜔 . By the genericity assumption, there is a number 𝑗 (𝜉, 𝑘) such
that if 𝑗 ≥ 𝑗 (𝜉, 𝑘) then ⟨𝜉, 𝑘⟩ ∈ |𝜑 𝑗 | , hence the tree 𝜑 𝑗 (𝜉, 𝑘) = 𝑇

𝜑 𝑗

𝜉 𝑘
∈ ⋃fin 𝑃𝜉 is

defined, and we have

. . . 4
〈
𝑛
𝜑 𝑗 (𝜉 ,𝑘)+2
𝜉 𝑘

, 𝑇
𝜑 𝑗 (𝜉 ,𝑘)+2
𝜉 𝑘

〉
4
〈
𝑛
𝜑 𝑗 (𝜉 ,𝑘)+1
𝜉 𝑘

, 𝑇
𝜑 𝑗 (𝜉 ,𝑘)+1
𝜉 𝑘

〉
4
〈
𝑛
𝜑 𝑗 (𝜉 ,𝑘)
𝜉 𝑘

, 𝑇
𝜑 𝑗 (𝜉 ,𝑘)
𝜉 𝑘

〉
,

with 𝑛𝜑 𝑗 (𝜉 ,𝑘)
𝜉 𝑘

≤ 𝑛𝜑 𝑗 (𝜉 ,𝑘)+1
𝜉 𝑘

≤ 𝑛𝜑 𝑗 (𝜉 ,𝑘)+2
𝜉 𝑘

≤ . . .→∞ , by (II) above.

(IV) Then it follows by Lemma 3.3 that each intersection 𝑸˘
𝜉 𝑘 =

⋂
𝑗≥ 𝑗 ( 𝜉 ,𝑘 ) 𝑇

𝜑 𝑗

𝜉 𝑘
is a tree

in PT (not necessarily in 𝑃𝜉 ), and〈
𝑛
𝜑 𝑗 (𝜉 ,𝑘)
𝜉 𝑘

,𝑸˘
𝜉 𝑘

〉
4
〈
𝑛
𝜑 𝑗 (𝜉 ,𝑘)
𝜉 𝑘

, 𝑇
𝜑 𝑗

𝜉 𝑘

〉
holds for all 𝑗 ≥ 𝑗 (𝜉, 𝑘) . We put Q˘

𝜉
= {𝑸˘

𝜉 𝑘� 𝑠 : 𝑘 < 𝜔 ∧ 𝑠 ∈ 𝑸
˘
𝜉 𝑘 } .

(V) We put ϙϙ = lim[˘] := ⟨Q˘
𝜉
⟩𝜉 ∈ |𝝅 | ; then 𝝅 ∪cw ϙϙ = ⟨𝑃𝜉 ∪ Q˘

𝜉
⟩𝜉 ∈ |𝝅 | . If ϙϙ = lim[˘]

is obtained from an 𝔐-generic sequence ˘ as in (I)–(V) above, then ϙϙ is called an
𝔐-generic refinement of 𝝅 .

Remark 9.3 A somewhat stronger notion of genericity was considered in [30]. Let HC
be the set of all hereditarily countable sets; 𝑋 ∈ HC iff the transitive closure TC (𝑋)
is at most countable. Let 𝔐+ be the set of all sets 𝑋 ⊆ HC definable in HC by an ∈-
formula with sets 𝑥 ∈ 𝔐 as parameters; clearly𝔐 $ 𝔐+ . The notion of an 𝔐+-generic
sequence of systems in Sys(𝝅) is introduced similarly to (I), with the condition of non-
empty intersection with every dense set Δ ∈ 𝔐+ , as well as the ensuing definition of an
𝔐+-generic refinement similar to (V).

Yet it will be demonstrated below that the 𝔐-genericity suffices to infer all crucial
consequences of the stronger 𝔐+-genericity obtained in [30]. �

2 It is known that without the powerset axiom, the collection and replacement schemes are not equivalent
and neither are the various forms of the axiom of choice equivalent over ZF . See more in [15] on power-free
subtheories of ZFC .
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Lemma 9.4 If 𝔐 |= ZFC−1 is a CTMand 𝝅 ∈ 𝔐 is a multiforcing, then there exists an𝔐-
generic sequence ˘ of systems in Sys(𝝅) as in (I), and hence there is a 𝔐-generic refinement
ϙϙ of 𝝅 as in (V).

Proof Use the countability of 𝔐 . �

10 Jensen’s construction indeed yields a refinement

It is not immediately clear that the construction of 𝔐-generic refinements indeed re-
sults in refinements in the sense of Section 5. This is a subject of the next theorem, proved
in [30] under the stronger assumption of 𝔐+-genericity.

Theorem 10.1 Assume that 𝔐 |= ZFC−1 is a CTM, 𝝅 = ⟨𝑃𝜉 ⟩𝜉 ∈ |𝝅 | ∈ 𝔐 is a regular
multiforcing, ˘ = ⟨𝜑 𝑗⟩ 𝑗<𝜔 is a 𝔐-generic 4-decreasing sequence of systens in Sys(𝝅) , as
in (I) of Section 9, and ϙϙ = lim[˘] = ⟨Q𝜉 ⟩𝜉 ∈ |𝝅 | is an 𝔐-generic refinement of 𝝅 , as in (V)
of Section 9. Then in the notation of items (I)–(V) of Section 9 we have:

(i) ϙϙ is a small special multiforcing, | ϙϙ| = |𝝅 | , and 𝝅 @ ϙϙ ;

(ii) if pairs ⟨𝜉, 𝑘⟩ ≠ ⟨𝜂, ℓ⟩ belong to |𝝅 | × 𝜔 then [𝑸˘
𝜉 𝑘] ∩ [𝑸

˘
𝜂ℓ] = ∅ ;

(iii) if 𝜉 ∈ |𝝅 | , 𝑆 ∈ Q𝜉 and 𝑇 ∈ 𝑃𝜉 then [𝑆] ∩ [𝑇] is clopen in [𝑆] and 𝑇 ̸⊆ 𝑆 , in
particular, Q𝜉 ∩ 𝑃𝜉 = ∅ ;

(iv) if 𝜉 ∈ |𝝅 | then the set Q𝜉 is open dense in Q𝜉 ∪ 𝑃𝜉 ;

(v) if 𝜉 ∈ |𝝅 | and 𝐷 ∈ 𝔐 , 𝐷 ⊆ 𝑃𝜉 is pre-dense in 𝑃𝜉 then 𝑃𝜉 @𝐷 Q𝜉 ;

(vi) if in addition 𝝅 =
⋃cw
𝛼<𝜆 𝝅𝛼 , the ordinal 𝜆 < 𝜔1 is limit, and ⟨𝝅𝛼⟩𝛼<𝜆 ∈ 𝔐 is a

@-increasing sequence of small special multiforcings, then 𝝅𝛼 @ ϙϙ for all 𝛼 < 𝜆 , and
| ϙϙ| = ⋃

𝛼<𝜆 |𝝅𝛼 | ;

(vii) if 𝑫 ∈ 𝔐 , 𝑫 ⊆ MT(𝝅) , and 𝑫 is open dense in MT(𝝅) , then 𝝅 @𝑫 ϙϙ , and hence 𝑫
is pre-dense in MT(𝝅 ∪cw ϙϙ) by Lemma 6.4;

(viii) if c ∈ 𝔐 is a 𝝅-complete real name then 𝝅 @c ϙϙ .

(ix) if 𝜂 ∈ |𝝅 | and c ∈ 𝔐 is a 𝝅-complete real name non-principal over 𝝅 at 𝜂 , then 𝝅 @c
𝜂 ϙϙ .

Proof We argue in the notation of items (I)–(V) of Section 9.
(ii) By Lemma 9.1, the set 𝐷 of all antichain-like systems 𝜑 ∈ Sys(𝝅) , such that

|𝜑 | contains both ⟨𝜉, 𝑘⟩ and ⟨𝜂, ℓ⟩ , is dense in Sys(𝝅) , and obviously 𝐷 ∈ 𝔐 . Thus
𝜑 𝑗 ∈ 𝐷 for some 𝑗 < 𝜔 . Then 𝑇 𝜑 𝑗

𝜉 𝑘
⊥𝑇 𝜑 𝑗

𝜂ℓ
since 𝜑 𝑗 is antichain-like. But 𝑸˘

𝜉 𝑘 ⊆ 𝑇
𝜑 𝑗

𝜉 𝑘
,

𝑸˘
𝜂ℓ ⊆ 𝑇

𝜑 𝑗

𝜂ℓ
by construction.

(iii) Let 𝑘 < 𝜔 and 𝑆 = 𝑸˘
𝜉 𝑘 . To prove the clopenness claim, note that the set 𝐷 (𝑇)

of all systems 𝜑 ∈ Sys(𝝅) , such that

⟨𝜉, 𝑘⟩ ∈ |𝜑 | , and if 𝑠 ∈ 𝑈𝜑 = 2𝑛
𝜑

𝜉𝑘 ∩ 𝑇 𝜑
𝜉 𝑘

then either 𝑇 𝜑
𝜉 𝑘
� 𝑠 ⊆ 𝑇 or 𝑇 𝜑

𝜉 𝑘
� 𝑠 ⊥𝑇,

2022/09/23 08:01



16 V. Kanovei and V. Lyubetsky

is dense in Sys(𝝅) , and obviously 𝐷 (𝑇) ∈ 𝔐 . Thus 𝜑 𝑗 ∈ 𝐷 (𝑇) for some 𝑗 < 𝜔 . Then
the disjoint sets

𝑈+ = {𝑠 ∈ 𝑈𝜑 𝑗 : 𝑇
𝜑

𝜉 𝑘
� 𝑠 ⊆ 𝑇 } and 𝑈− = {𝑠 ∈ 𝑈𝜑 𝑗 : 𝑇

𝜑

𝜉 𝑘
� 𝑠 ⊥𝑇 }

satisfy 𝑈+ ∪𝑈− = 𝑈𝜑 𝑗 , and obviously the set [𝑇
𝜑

𝜉 𝑘
] ∩ [𝑇] = ⋃

𝑠∈𝑈+ [𝑇
𝜑

𝜉 𝑘
� 𝑠] is clopen

in [𝑇 𝜑
𝜉 𝑘
] . However 𝑸˘

𝜉 𝑘 ⊆ 𝑇
𝜑 𝑗

𝜉 𝑘
by construction.

To prove 𝑇 ̸⊆ 𝑆 , note that the set 𝐷′ (𝑇) ∈ 𝔐 of all systems 𝜑 ∈ Sys(𝝅) , such that
⟨𝜉, 𝑘⟩ ∈ |𝜑 | and 𝑇 ̸⊆ 𝑇 𝜑

𝜉 𝑘
, is dense. Then argue as above.

(iv) The openness easily follows from (iii). To prove the density, let 𝑇 ∈ 𝑃𝜉 . The set
Δ(𝑇) of all systems 𝜑 ∈ Sys(𝝅) , such that ⟨𝜉, 𝑘⟩ ∈ |𝜑 | and 𝑇 𝜑

𝜉 𝑘
= 𝑇 for some 𝑘 < 𝜔 ,

belongs to 𝔐 and is dense in Sys(𝝅) .
(i) By construction, the sets ϙϙ(𝜉) = Q˘

𝜉
are special arboreal forcings, and hence ϙϙ is

a small special multiforcing, and | ϙϙ| = |𝝅 | . To establish 𝝅 @ ϙϙ , let 𝜉 ∈ |𝝅 | . The relation
𝑃𝜉 @ Q𝜉 follows from (iv) and (iii).

(v) Assume that 𝜉 ∈ |𝝅 | , 𝑘 < 𝜔 , 𝐷 ∈ 𝔐 is pre-dense in 𝑃𝜉 . Then the set 𝐷′ =
{𝑇 ∈ P𝜉 : ∃ 𝑆 ∈ 𝐷 (𝑇 ⊆ 𝑆) } is open dense in 𝑃𝜉 , and hence the set Δ ∈ 𝔐 of all
systems 𝜑 ∈ Sys(𝝅) , such that ⟨𝜉, 𝑘⟩ ∈ |𝜑 | and 𝑇 𝜑

𝜉 𝑘
� 𝑠 ∈ 𝐷′ for all 𝑠 ∈ 2𝑛 ∩ 𝑇 𝜑

𝜉 𝑘
, is

dense in Sys(𝝅) . Thus 𝜑 𝑗 ∈ Δ for some 𝑗 , and this implies 𝑸˘
𝜉 𝑘 ⊆ 𝑇

𝜑 𝑗

𝜉 𝑘
⊆fin ⋃𝐷 .

(vi)We have to prove that 𝝅𝛼 (𝜉) @ ϙϙ(𝜉) whenever 𝜉 ∈ |𝝅𝛼 | . By (iv) and (iii) already
established, it suffices to show that 𝑸˘

𝜉 𝑘 ⊆fin
⋃

𝝅𝛼 (𝜉) for any 𝑘 . Note that the set
𝝅𝛼 (𝜉) ∈ 𝔐 is pre-dense in 𝝅(𝜉) = 𝑃𝜉 by Lemma 5.2. We conclude that the set 𝐷 =

{𝑇 ∈ 𝑃𝜉 : ∃ 𝑆 ∈ 𝝅𝛼 (𝜉) (𝑇 ⊆ 𝑆) } ∈ 𝔐 is open dense in 𝑃𝜉 . This implies that if 𝑆 ∈⋃fin 𝑃𝜉 and 𝑚 < 𝜔 then there is a tree 𝑇 ∈ ⋃fin 𝑃𝜉 satisfying ⟨𝑚,𝑇⟩ 4 ⟨𝑚, 𝑆⟩ and
such that if 𝑢 ∈ 𝑇 ∩ 2𝑚 then 𝑇� 𝑢 ∈ 𝐷 , and hence overall 𝑇 ⊆fin ⋃

𝐷 . It follows
that the set Δ ∈ 𝔐 of all systems 𝜑 ∈ Sys(𝝅) , such that ⟨𝜉, 𝑘⟩ ∈ |𝜑| and 𝑇 𝜑

𝜉 𝑘
⊆fin⋃

𝐷 , is dense in Sys(𝝅) . Therefore 𝑸˘
𝜉 𝑘 ⊆fin

⋃
𝐷 by construction, and then obviously

𝑸˘
𝜉 𝑘 ⊆fin

⋃
𝝅𝛼 (𝜉) , as required.

(vii) Suppose that 𝒑 ∈ MT(𝝅) , 𝒖 ∈ MT( ϙϙ) , |𝒖 | ∩ | 𝒑 | = ∅ , as in (∗) of Defini-
tion 6.3; the extra condition |𝒖 | ⊆ |𝝅 | holds automatically as | ϙϙ| = |𝝅 | . We have to find
a multitree 𝒒 which witnesses 6.3(∗) for 𝒖 .

Each term 𝑇𝒖
𝜉
of 𝒖 (𝜉 ∈ |𝒖 | ) is equal to some 𝑸˘

𝜉 ,𝑘𝜉
� 𝑡𝜉 , where 𝑘 𝜉 < 𝜔 and 𝑡𝜉 ∈

𝑸˘
𝜉 ,𝑘𝜉

. We w. l.o.g. assume that just 𝑡𝜉 = Λ , so 𝑇𝒖
𝜉
= 𝑸˘

𝜉 ,𝑘𝜉
, ∀ 𝜉 .

Let Sys𝒖 (𝝅) be the set of all systems 𝜑 ∈ Sys(𝝅) such that ⟨𝜉, 𝑘 𝜉 ⟩ ∈ |𝜑| for all 𝜉 ∈
|𝒖 | , and 𝑇 𝜑

𝜉 𝑘
� 𝑡 ∈ 𝑃𝜉 = 𝝅(𝜉) (not just ∈ ⋃fin 𝑃𝜉 !) for all ⟨𝜉, 𝑘⟩ ∈ |𝜑| and all 𝑡 ∈ 𝑇 𝜑𝜉 𝑘

with lh(𝑡) = 𝑛𝜑
𝜉 𝑘

. If 𝜑 ∈ Sys𝒖 (𝝅) then let S𝜑𝒖 consist of all multituples s = ⟨𝑠𝜉 ⟩𝜉 ∈ |𝒖 |
such that 𝑠𝜉 ∈ 𝑇 𝜑𝜉 ,𝑘𝜉 and lh(𝑠𝜉 ) = 𝑛𝜑𝜉 ,𝑘𝜉 for all 𝜉 ∈ |𝒖 | . If s = ⟨𝑠𝜉 ⟩𝜉 ∈ |𝒖 | ∈ S𝜑𝒖 then

define a multitree 𝒗𝜑s ∈ MT(𝝅) by |𝒗𝜑s | = |𝒖 | and 𝑇𝒗
𝜑
s
𝜉

= 𝑇
𝜑

𝜉 ,𝑘𝜉
� 𝑠𝜉 for all 𝜉 ∈ |𝒖 | .

Now assume that 𝒓 ∈ MT(𝝅) and |𝒓 | ∩ |𝒖 | = ∅ . Consider the set Δ𝒓 ∈ 𝔐 of all
systems 𝜑 ∈ Sys𝒖 (𝝅) , such that there is a multitree 𝒒 ∈ MT(𝝅) satisfying 𝒒 6 𝒓 , still
|𝒖 | ∩ |𝒒 | = ∅ , and

(†) if s ∈ S𝜑𝒖 then 𝒗𝜑s ∪ 𝒒 ∈ 𝑫 .
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Lemma 10.2 Under the assumptions of the theorem, if 𝒓 ∈ MT(𝝅) , |𝒓 | ∩ |𝒖 | = ∅ , then
the set Δ𝒓 belongs to 𝔐 and is dense in Sys(𝝅) . �

Proof Δ𝒓 ∈ 𝔐 follows from 𝝅 ∈ 𝔐 |= ZFC−1 .
To prove the density, let 𝜓 ∈ Sys(𝝅) . Find a system 𝜑 ∈ Δ𝒓 , 𝜑 4 𝜓 . We w. l.o.g.

assume that 𝜓 ∈ Sys𝒖 (𝝅) . (If not then adjoin each ⟨𝜉, 𝑘 𝜉 ⟩ ∉ |𝜑 | to |𝜓 | and define
𝑇
𝜓

𝜉 ,𝑘𝜉
∈ 𝑃𝜉 arbitrarily. If ⟨𝜉, 𝑘⟩ ∈ |𝜓 | and 𝑡 ∈ 𝑇𝜓

𝜉 𝑘
, lh(𝑡) = 𝑛

𝜓

𝜉 𝑘
, but 𝑇𝜓

𝜉 𝑘
� 𝑡 ∈⋃fin 𝑃𝜉 r 𝑃𝜉 , then shrink 𝑇

𝜓

𝜉 𝑘
� 𝑡 to a tree in 𝑃𝜉 .)

Let s = ⟨𝑠𝜉 ⟩𝜉 ∈ |𝒖 | ∈ S𝜓𝒖 . Consider the multitree 𝒗𝜓s ∈ MT(𝝅) . As 𝑫 is dense, there
are multitrees 𝒓′, 𝒗 ∈ MT(𝝅) such that |𝒗 | = |𝒖 | , 𝒗 6 𝒗𝜓s , |𝒓′ | ∩ |𝒖 | = ∅ , 𝒓′ 6 𝒓 ,
and 𝒗 ∪ 𝒓′ ∈ 𝑫 . Define a system 𝜓′ ∈ Sys(𝝅) with |𝜓′ | = |𝜓 | extending 𝜓 , by
putting 𝑛𝜓

′

𝜉 𝑘
= 𝑛

𝜓

𝜉 𝑘
for all ⟨𝜉, 𝑘⟩ ∈ |𝜓 | , and shrinking each tree 𝑇𝜓

𝜉 ,𝑘𝜉
� 𝑠𝜉 to 𝑇

𝒗
𝜉
, so that

𝑇
𝜓′

𝜉 ,𝑘𝜉
� 𝑠𝜉 = 𝑇𝒗

𝜉
, but 𝑇𝜓

′

𝜉 ,𝑘𝜉
� 𝑡 = 𝑇

𝜓

𝜉 ,𝑘𝜉
� 𝑡 for all 𝑡 ∈ 𝑇𝜓𝜉 ,𝑘𝜉 such that lh(𝑡) = 𝑛𝜓

𝜉 ,𝑘𝜉
and

𝑡 ≠ 𝑠𝜉 , and finally 𝑇𝜓
′

𝜂𝑘
= 𝑇

𝜓

𝜂𝑘
if ⟨𝜂, 𝑘⟩ ∈ |𝜓 | does not have the form ⟨𝜉, 𝑘 𝜉 ⟩ , where

𝜉 ∈ |𝒖 | . Then 𝜓′ 4 𝜓 and S𝜓
′

𝒖 = S𝜓𝒖 by construction.
This construction can be iterated, so that all strings s ∈ S𝜓𝒖 are considered consecu-

tively one by one. This results in a system 𝜑 ∈ Sys(𝝅) , such that |𝜑| = |𝜓 | , 𝜑 4 𝜓 , and
S𝜑𝒖 = S𝜓𝒖 , and a multitree 𝒒 ∈ MT(𝝅) with 𝒒 6 𝒓 and still |𝒒 | ∩ |𝒖 | = ∅ , such that
if s ∈ S𝜓𝒖 then the multitree 𝒗𝜓s satisfies 𝒗𝜓s ∪ 𝒒 ∈ 𝑫 . Thus (†) holds and 𝒒 witnesses
that 𝜑 ∈ Δ𝑟 . This completes the proof of the lemma. �

Coming back to (vii) of the theorem, we have 𝜑 = 𝜑 𝑗 ∈ Δ𝒑 for some 𝑗 by the
lemma and the genericity of the sequence of systems 𝜑 𝑗 . This is witnessed by some
𝒒 ∈ MT(𝝅) , so that 𝒒 6 𝒑 , |𝒖 | ∩ |𝒒 | = ∅ , and (†) of Lemma 10.2 holds for 𝜑 . Then
[𝒖] ⊆ ⋃

s∈S𝜑𝒖 [𝒗
𝜑
s ] . Yet 𝒗𝜑s ∈ 𝑫 |𝒖 |𝒒 , ∀ s , by (†).

(viii) Each set 𝐾c
𝑛↑𝝅 belongs to 𝔐 (as so do c and 𝝅 ) and is open dense in MT(𝝅) ,

so it remains to apply (vii) already established.
(ix) Let 𝑄 ∈ ϙϙ(𝜂) ; we have to prove that ϙϙ seals the set 𝑫 (c, 𝑄, 𝝅) over 𝝅 . By

construction 𝑄 = 𝑸˘
𝜂𝐾 � 𝑠 for some 𝐾 < 𝜔 and 𝑠 ∈ 𝑸˘

𝜂𝐾 ; it suffices to consider
only the case 𝑄 = 𝑸˘

𝜂𝐾 . Following the proof of Theorem 10.1(vii), we suppose that
𝒑 ∈ MT(𝝅) , 𝒖 ∈ MT( ϙϙ) , |𝒖 | ∩ | 𝒑 | = ∅ , and 𝑇𝒖

𝜉
= 𝑸˘

𝜉 ,𝑘𝜉
, for each 𝜉 ∈ |𝒖 | . We

have to find a multitree 𝒒 which witnesses 6.3(∗) for 𝒖, 𝒑, 𝑫 = 𝑫 (c, 𝑄, 𝝅) . In the
remainder of the proof, we use the notation in the proof of (vii) of Theorem 10.1, in
particular, Sys𝒖 (𝝅) , S𝜑𝒖 , 𝒗

𝜑
s , 𝑘 𝜉 .

Note that 𝜂 may ormay not belong to the set |𝒖 | , and even if 𝜂 ∈ |𝒖 | , so 𝑘𝜂 is defined
(with 𝑇𝒖

𝜂 = 𝑸˘
𝜂,𝑘𝜂

), then 𝐾 may or may not be equal to 𝑘𝜂 .
Assume that 𝒓 ∈ MT(𝝅) , |𝒓 | ∩ |𝒖 | = ∅ . Consider the set Δ𝒓 ∈ 𝔐 of all systems

𝜑 ∈ Sys𝒖 (𝝅) , such that ⟨𝜂, 𝐾⟩ ∈ |𝜑 | , and there is a multitree 𝒒 ∈ MT(𝝅) satisfying
𝒒 6 𝒓 , still |𝒖 | ∩ |𝒒 | = ∅ , and

(†′) if s ∈ S𝜑𝒖 and 𝑡 ∈ 𝑇 𝜑
𝜂𝐾
∩ 2𝑛

𝜑

𝜂𝐾 then 𝒗𝜑s ∪ 𝒒 directly forces c ∉ [𝑇 𝜑
𝜂𝐾
� 𝑡 ] .
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Condition (†′) is somewhat similar to (†) of Lemma 10.2, and will play the same role.
The direct forcing of c ∉ [𝑄] cannot be used in (†′) as 𝑄 is not necessarily an element
of 𝔐 , but c ∉ [𝑇 𝜑

𝜂𝐾
] will be an effective replacement.

Lemma 10.3 If 𝒓 ∈ MT(𝝅) , |𝒓 | ∩ |𝒖 | = ∅ , then Δ𝒓 is dense in Sys(𝝅) .

Proof Following the proof of Lemma 10.2, let 𝜓 ∈ Sys(𝝅) . We wlog assume that
𝜓 ∈ Sys𝒖 (𝝅) (see Lemma 10.2), so ⟨𝜉, 𝑘 𝜉 ⟩ ∈ |𝜓 | for all 𝜉 ∈ |𝒖 | and 𝑇𝜓𝜉 𝑘� 𝑡 ∈ 𝑃𝜉 for

all ⟨𝜉, 𝑘⟩ ∈ |𝜓 | and 𝑡 ∈ 2𝑛
𝜓

𝜉𝑘 ∩ 𝑇𝜓
𝜉 𝑘

, and ⟨𝜂, 𝐾⟩ ∈ |𝜓 | as well.
We have to define a system 𝜑 ∈ Sys(𝝅) such that 𝜑 4 𝜓 and 𝜑 ∈ Δ𝑟 . As in the proof

of Lemma 10.2, it suffices to fulfill (†′) for one particular pair of s = ⟨𝑠𝜉 ⟩𝜉 ∈ |𝒖 | ∈ S𝜓𝒖
and 𝑡 ∈ 𝑇𝜓

𝜂𝐾
∩ 2𝑛

𝜓

𝜂𝐾 ; the final goal is then achieved by simple iteration through all such
pairs. We have two cases.

Case 1: 𝜂 ∈ |𝒖 | , 𝐾 = 𝑘𝜂 , 𝑡 = 𝑠𝜂 . Consider the multitree 𝒗𝜓s ∈ MT(𝝅) . The set
𝑫𝝅
𝜂 (c) , as in Definition 7.4, is dense by the non-principality of c . It follows that there

are multitrees 𝒒, 𝒗 ∈ MT(𝝅) such that |𝒗 | = |𝒖 | , 𝒗 6 𝒗𝜓s , |𝒒 | ∩ |𝒖 | = ∅ , 𝒒 6 𝒓 , and
𝒗 ∪ 𝒒 ∈ 𝑫𝝅

𝜂 (c) . Therefore 𝒗 ∪ 𝒒 directly forces c ∉ [𝑇𝒒
𝜂 ] . Define a system 𝜑 ∈ Sys(𝝅)

with |𝜑 | = |𝜓 | , from 𝜓 by:

(a) shrinking each tree 𝑇𝜓
𝜉 ,𝑘𝜉
� 𝑠𝜉 (𝜉 ∈ |𝒖 | ) to 𝑇𝒗

𝜉
, so that 𝑇 𝜑

𝜉 ,𝑘𝜉
� 𝑠𝜉 = 𝑇𝒗

𝜉
,

(b) in particular, shrinking 𝑇𝜓
𝜂𝐾
� 𝑡 to 𝑇𝒗

𝜂 , so that 𝑇
𝜑

𝜂𝐾
� 𝑡 = 𝑇

𝒗
𝜂 ,

and no other changes. We have ⟨𝑛, 𝜑⟩ 4 ⟨𝑛, 𝜓⟩ , 𝒗𝜑s = 𝒗 , and 𝑇 𝜑
𝜂𝐾
� 𝑡 = 𝑇𝒗

𝜂 by
construction. Thus 𝒗𝜑s ∪ 𝒒 directly forces c ∉ [𝑇 𝜑

𝜂𝐾
� 𝑡 ] , and (†′) holds.

Case 2: not Case 1. By Lemma 7.2, there exist multitrees 𝒒, 𝒗 ∈ MT(𝝅) and a tree
𝑇 ∈ 𝑃𝜂 such that 𝑇 ⊆ 𝑇𝜓

𝜂𝐾
� 𝑡 , |𝒗 | = |𝒖 | , 𝒗 6 𝒗𝜓s , |𝒒 | ∩ |𝒖 | = ∅ , 𝒒 6 𝒓 , and 𝒗 ∪ 𝒒

directly forces c ∉ [𝑇] . Define a system 𝜑 ∈ Sys(𝝅) with |𝜑 | = |𝜓 | , that extends 𝜓 , by
(a) above and

(c) shrinking 𝑇𝜓
𝜂𝐾
� 𝑡 to 𝑇 , so that 𝑇

𝜑

𝜂𝐾
� 𝑡 = 𝑇 ,

and no other changes. Note that (a) and (c) do not contradict each other since ⟨𝜂, 𝑇, 𝑡⟩ ≠
⟨𝜉, 𝑘 𝜉 , 𝑠𝜉 ⟩ for all 𝜉 ∈ 𝒖 by the Case 2 hypothesis. We have 𝜑 4 𝜓 , 𝒗𝜑s = 𝒗 , and
𝑇
𝜑

𝜂𝐾
� 𝑡 = 𝑇

𝒗
𝜂 by construction. In particular, 𝒗𝜑s ∪ 𝒒 directly forces c ∉ [𝑇 𝜑

𝜂𝐾
� 𝑡 ] , thus

(†′) holds. This completes the proof of the lemma. �

Come back to (ix) of the theorem. As Δ𝒑 ∈ 𝔐 , we have 𝜑 = 𝜑 𝑗 ∈ Δ𝒑 for some
𝑗 by the lemma. Let this be witnessed by a multitree 𝒒 ∈ MT(𝝅) , so that 𝒒 6 𝒑 ,
|𝒖 | ∩ |𝒒 | = ∅ , and (†′) holds for 𝜑 = 𝜑 𝑗 . In particular, as 𝑇 𝜑

𝜂𝐾
=
⋃
𝑡∈𝑇𝜑

𝜂𝐾
∩2𝑛 𝑇

𝜑

𝜂𝐾
� 𝑡 ,

where 𝑛 = 𝑛
𝜑

𝜉 𝑘
, the multitree 𝒗𝜑s ∪ 𝒒 directly forces c ∉ [𝑇 𝜑 𝑗

𝜂𝐾
] whenever s ∈ S𝜑𝒖 ,

hence directly forces c ∉ [𝑄] as well, because 𝑄 = 𝑸˘
𝜂𝐾 ⊆ 𝑇

𝜑

𝜂𝐾
by construction. Thus

if s ∈ S𝜑𝒖 then 𝒗𝜑s ∪ 𝒒 ∈ 𝑫 (c, 𝑄, 𝝅) , and hence 𝒗𝜑s ∈ 𝑫 (c, 𝑄, 𝜑) |𝒖 |𝒒 . On the other hand,
[𝒖] ⊆ ⋃

s∈S𝜑𝒖 [𝒗
𝜑
s ] , so that 𝒖 ⊆fin

∨
𝑫 (c, 𝑄, 𝝅) |𝒖 |𝒒 , as required. �
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11 Combining refinement types

Here we summarize the properties of generic refinements considered above. The next
definition combines the refinement types @𝐷 , @𝑫 , @c , @c

𝜉
.

Definition 11.1 Suppose that 𝝅 @ ϙϙ are multiforcings and 𝔐 is any set. Let 𝝅 @@∗
𝔐
ϙϙ

mean that ϙϙ is a 𝔐-generic refinement of 𝝅 .
Let 𝝅 @@𝔐 ϙϙ mean that the four following requirements hold:

(1) if 𝜉 ∈ |𝝅 | , 𝐷 ∈ 𝔐 , 𝐷 ⊆ 𝝅(𝜉) , 𝐷 is dense in 𝝅(𝜉) , then 𝝅(𝜉) @𝐷 ϙϙ(𝜉) ;
(2) if 𝑫 ∈ 𝔐 , 𝑫 ⊆ MT(𝝅) , 𝑫 is open dense in MT(𝝅) , then 𝝅 @𝑫 ϙϙ;
(3) if c ∈ 𝔐 is a 𝝅-complete real name then 𝝅 @c ϙϙ;
(4) if 𝜉 ∈ |𝝅 | and c ∈ 𝔐 is a 𝝅-complete real name, non-principal over 𝝅 at 𝜉 , then

𝝅 @c
𝜉
ϙϙ , that is, 𝝅 @𝑫 (c,𝑄,𝝅) ϙϙ for all 𝑄 ∈ ϙϙ(𝜉) . �

Corollary 11.2 If 𝔐 |= ZFC−1 is a CTM, 𝝅 ∈ 𝔐 is a small multiforcing. Then 𝝅 @@∗
𝔐
ϙϙ

implies 𝝅 @@𝔐 ϙϙ .

Proof We have (1), (2), (3), (4) of Definition 11.1 by resp. (v), (vii), (viii), (ix) of
Theorem 10.1. �

Corollary 11.3 Assume that 𝔐 |= ZFC−1 is a CTM, ⟨𝝅𝛼⟩𝛼<𝜆 is a @-increasing sequence
in MF, 0 < 𝜇 < 𝜆 , 𝝅<𝜇 =

⋃cw
𝛼<𝜇 𝝅𝛼 , and 𝝅<𝜇 @@𝔐 𝝅𝜇 , then 𝝅<𝜇 @@𝔐 𝝅≥𝜇 =⋃cw

𝜇≤𝛼<𝜆 𝝅𝛼 .

Proof We have (1), (2) of Definition 11.1 for the relation 𝝅<𝜇 @@𝔐 𝝅≥𝜇 by resp.
Lemma 6.2(ii) and Lemma 6.4(iii). This also implies (3) of Definition 11.1 since this
is a particular case of (2), see the proof of Theorem 10.1(viii). It remains to establish
(4) of Definition 11.1. Thus assume that 𝜉 ∈ |𝝅<𝜇 | and c ∈ 𝔐 is a 𝝅<𝜇-complete
real name, non-principal over 𝝅<𝜇 at 𝜉 ; we have to prove that 𝝅<𝜇 @c

𝜉
𝝅≥𝜇 , that is,

𝝅<𝜇 @𝑫 (c,𝑆,𝝅<𝜇 ) 𝝅≥𝜇 for any tree 𝑆 ∈ 𝝅≥𝜇 (𝜉) .
Then there is a finite set {𝑄1, . . . , 𝑄𝑚} ⊆ 𝝅𝜇 (𝜉) such that 𝑆 ⊆ 𝑄1 ∪ · · · ∪ 𝑄𝑚 .

We have 𝝅<𝜇 @𝑫 (c,𝑄𝑖 ,𝝅<𝜇 ) 𝝅𝜇 for all 𝑖 since 𝝅<𝜇 @@𝔐 𝝅𝜇 . It follows that 𝝅<𝜇 @𝐷
𝝅𝜇 by Lemma 6.4(ii), where 𝐷 =

⋂
𝑖 𝑫 (c, 𝑄𝑖 , 𝝅<𝜇) , and further 𝝅<𝜇 @𝐷 𝝅≥𝜇 by

Lemma 6.4(iii). However 𝐷 ⊆ 𝑫 (c, 𝑆, 𝝅<𝜇) because 𝑆 ⊆
⋃
𝑖 𝑄𝑖 . We conclude that

𝝅<𝜇 @𝑫 (c,𝑆,𝝅<𝜇 ) 𝝅≥𝜇 , as required. �

12 Increasing sequences of multiforcings

Recall that MF is the set of all multiforcings. Let

spMF = {𝝅 ∈ MF : 𝝅 is a special, hence small multiforcing}.

Thus a multiforcing 𝝅 ∈ MF belongs to spMF if |𝝅 | ⊆ 𝜔1 is (at most) countable and if
𝜉 ∈ |𝝅 | then 𝝅(𝜉) is a special forcing in AF (see Sections 3,4).
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• If 𝜅 ≤ 𝜔1 then let
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅 be the set of all @-increasing sequences

⃗⃗
𝝅 = ⟨𝝅𝛼⟩𝛼<𝜅 of

multiforcings 𝝅𝛼 ∈ spMF , of length dom( ⃗⃗𝝅) = 𝜅 , domain-continuous so that if
𝜆 < 𝜅 is a limit ordinal then |𝝅𝜆 | =

⋃
𝛼<𝜆 |𝝅𝛼 | .

• Let
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF =

⋃
𝜅<𝜔1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅 (@-increasing sequences of countable length).

The set
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF∪

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 is ordered by the relations ⊆ , ⊂ of the extension of sequences.

Lemma 12.1 Assume that
⃗⃗
𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 , 𝜅 < 𝜔1 , 𝝅 =

⃗⃗
𝝅(𝜅) (the last term), and 𝜉 < 𝜔1 .

Then there is a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 such that

⃗⃗ ⃗⃗
ϙϙ � 𝜅 =

⃗⃗
𝝅 � 𝜅 , 𝝅 ⊆

⃗⃗⃗⃗
ϙϙ(𝜅) , and |

⃗⃗⃗⃗
ϙϙ(𝜅) | =

|𝝅 | ∪ {𝜉 } .

Proof If 𝜉 ∈ |𝝅 | then put
⃗⃗ ⃗⃗
ϙϙ =
⃗⃗
𝝅 . If 𝜉 ∉ |𝝅 | then define ϙϙ =

⃗⃗ ⃗⃗
ϙϙ(𝜅) by | ϙϙ| = |𝝅 | ∪ {𝜉 } ,

ϙϙ(𝜂) = 𝝅(𝜂) for 𝜂 ≠ 𝜉 , and ϙϙ(𝜉) = Pcoh , where Pcoh (Cohen’s forcing) consists of all
trees [𝑠] = {𝑡 ∈ 2<𝜔 : 𝑠 ⊂ 𝑡 ∨ 𝑡 ⊆ 𝑠} , 𝑠 ∈ 2<𝜔 . �

Definition 12.2 Assume that 𝔐 |= ZFC−1 is a CTM, sequences ⃗⃗𝝅,
⃗⃗ ⃗⃗
ϙϙ belong to

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF ,

and 𝝅 =
⋃cw ⃗⃗𝝅 =

⋃cw
𝛼<𝜅

⃗⃗
𝝅(𝛼) . We define:

⃗⃗
𝝅 ⊂𝔐

⃗⃗ ⃗⃗
ϙϙ, if ⃗⃗𝝅 ⊂

⃗⃗⃗⃗
ϙϙ and 𝝅 @@𝔐

⃗⃗ ⃗⃗
ϙϙ(𝜅) , where 𝜅 = dom( ⃗⃗𝝅) < dom(

⃗⃗⃗⃗
ϙϙ) ≤ 𝜔1 , (note

that
⃗⃗ ⃗⃗
ϙϙ(𝜅) is the first term in

⃗⃗ ⃗⃗
ϙϙ missing in ⃗⃗𝝅 );⃗⃗

𝝅 ⊂∗
𝔐

⃗⃗ ⃗⃗
ϙϙ, if ⃗⃗𝝅 ⊂

⃗⃗⃗⃗
ϙϙ and 𝝅 @@𝔐

⃗⃗ ⃗⃗
ϙϙ(𝜅) , where 𝜅 = dom( ⃗⃗𝝅) < dom(

⃗⃗⃗⃗
ϙϙ) . �

We observe that ⃗⃗𝝅 ⊂∗
𝔐

⃗⃗ ⃗⃗
ϙϙ implies ⃗⃗𝝅 ⊂𝔐

⃗⃗ ⃗⃗
ϙϙ by Corollary 11.2.

Theorem 12.3 If 𝔐 |= ZFC−1 is a CTM, 𝜅 < 𝜆 ≤ 𝜔1 , and
⃗⃗
𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅 ∩𝔐 , then there is

a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆 with

⃗⃗
𝝅 ⊂∗

𝔐

⃗⃗ ⃗⃗
ϙϙ .

Proof We define terms
⃗⃗ ⃗⃗
ϙϙ(𝛼) of the sequence

⃗⃗ ⃗⃗
ϙϙ required by induction.

Naturally put
⃗⃗ ⃗⃗
ϙϙ(𝛼) = ⃗⃗𝝅(𝛼) for each 𝛼 < 𝜅 .

To define
⃗⃗ ⃗⃗
ϙϙ(𝜅) , let ϙϙ be an 𝔐-generic refinement ϙϙ of 𝝅 =

⋃cw
𝛼<𝜅 𝝅𝛼 ; such a ϙϙ

exists by Lemma 9.4. Corollary 11.2 implies 𝝅 @@𝔐 ϙϙ . By Theorem 10.1(vi), adding
ϙϙ as the last term to ⃗⃗𝝅 , results in a sequence

⃗⃗ ⃗⃗
ϙϙ � (𝜅 + 1) ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 satisfying ⃗⃗𝝅 ⊂⃗⃗⃗⃗

ϙϙ � (𝜅 + 1) .
Assume that 𝜅 < 𝛽 < 𝜆 , all terms

⃗⃗ ⃗⃗
ϙϙ(𝛼) , 𝛼 < 𝛽 , are defined, and the sequence⃗⃗ ⃗⃗

ϙϙ � 𝛽 = ⟨
⃗⃗⃗⃗
ϙϙ(𝛼)⟩𝛼<𝛽 satisfies (

⃗⃗⃗⃗
ϙϙ � (𝜅 + 1)) ⊂ (

⃗⃗⃗⃗
ϙϙ � 𝛽) . Pick any CTM 𝔑 |= ZFC−1

containing
⃗⃗ ⃗⃗
ϙϙ � 𝛽 . By Lemma 9.4, there is an 𝔑-generic refinement ϙϙ of 𝝅 =

⋃cw
𝛼<𝜅 𝝅𝛼 .

By Theorem 10.1(vi), adding ϙϙ as the last term to
⃗⃗ ⃗⃗
ϙϙ � 𝛽 , yields a sequence

⃗⃗ ⃗⃗
ϙϙ � (𝛽 + 1) ∈⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

MF 𝛽+1 with
⃗⃗ ⃗⃗
ϙϙ � 𝛽 ⊂

⃗⃗⃗⃗
ϙϙ � (𝛽 + 1) .

This construction results in a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆 satisfying ⃗⃗𝝅 ⊂

⃗⃗⃗⃗
ϙϙ and

⃗⃗ ⃗⃗
ϙϙ(𝜅) = ϙϙ .

Then we have ⃗⃗𝝅 ⊂∗
𝔐

⃗⃗ ⃗⃗
ϙϙ by the choice of ϙϙ . �

13 The key sequence

The forcing notion to prove Theorem 1.1, defined (modulo minor details) in our earlier
paper [30], will be introduced in the next section. It will have the form MT(Π) , for a
certain multiforcing Π ∈ L with |Π| = 𝜔1 in L . The multiforcing Π itself will be
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equal to the componentwise union of terms of a certain sequence
⃗⃗ ⃗
Π ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 which we

present in Definition 13.6.
Recall that HC is the set of all hereditarily countable sets; HC = L𝜔1 in L . We use

𝛴HC
𝑛 , 𝛱HC

𝑛 , 𝛥HC𝑛 (note slanted 𝛴 , 𝛱 , 𝛥 ) for classes of lightface definability in HC (no
parameters allowed), and Σ𝑛 (HC) , Π𝑛 (HC) , ∆𝑛 (HC) for boldface definability in HC
(parameters in HC allowed).

Lemma 13.1 (Lemma 25.25 in [20]) If 𝑛 ≥ 1 and 𝑋 ⊆ 2𝜔 then

𝑋 ∈ 𝛴HC
𝑛 ⇐⇒ 𝑋 ∈ 𝛴1

𝑛+1 , and 𝑋 ∈ Σ𝑛 (HC) ⇐⇒ 𝑋 ∈ Σ1
𝑛+1 ,

and the same for 𝛱 , Π , 𝛥 , ∆ . �

Definition 13.2 (in L) Let ZFL– be the theory ZFC−1 , as in Subsection 9B, with the
axiom of constructibility V = L added.

If 𝑥 ∈ HC then let 𝔏(𝑥) be the least CTM of ZFL– containing 𝑥 and satisfying
𝑥 ∈ (HC)𝔏(𝑥 ) . It necessarily has the form 𝔏(𝑥) = L𝜇 for some 𝜇 = 𝜇𝑥 < 𝜔1 .

An ordinal 𝜉 < 𝜅 is a ∗crucial ordinal of a sequence ⃗⃗𝝅 = ⟨𝝅𝛼⟩𝛼<𝜅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅 if⃗⃗

𝝅 � 𝜉 ⊂∗
𝔏( ⃗⃗𝝅 � 𝜉 )

⃗⃗
𝝅 holds, that is, (1) ⃗⃗𝝅(𝜉) is an 𝔏( ⃗⃗𝝅 � 𝜉)-generic refinement of 𝝅 =⋃cw

𝜂<𝜉

⃗⃗
𝝅(𝜂) , and hence (2) 𝝅 @@𝔏( ⃗⃗𝝅 � 𝜉 )

⃗⃗
𝝅(𝜉) by Corollary 11.2. �

The superscript ∗ is added in the notion of ∗crucial ordinal to distinguish it from the
notion of a crucial ordinal in [30, Definition 14.3], where it was required that, somewhat
weaker, ⃗⃗𝝅 � 𝜉 ⊂𝔏( ⃗⃗𝝅 � 𝜉 )

⃗⃗
𝝅 .

Definition 13.3 A sequence ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF blocks a set 𝑊 if either ⃗⃗𝝅 ∈ 𝑊 (positive block) or

there is no
⃗⃗ ⃗⃗
ϙϙ ∈ 𝑊 extending ⃗⃗𝝅 (negative block). �

Theorem 13.4 (in L) Let n ≥ 3 . There exists a sequence
⃗⃗ ⃗
Π = ⟨Π𝛼⟩𝛼<𝜔1 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1

satisfying |⋃cw ⃗⃗ ⃗Π | = 𝜔1 and the following requirements:

(i) the sequence
⃗⃗ ⃗
Π belongs to the definability class 𝛥HCn−2 ;

(ii) if n ≥ 4 and𝑊 ⊆
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is a boldface Σn−3 (HC) set then there is an ordinal 𝛾 < 𝜔1 such

that the sequence
⃗⃗ ⃗
Π �𝛾 blocks 𝑊 ;

(iii) there is a closed unbounded set C ⊆ 𝜔1 such that every 𝛾 ∈ C is a limit ordinal and a
∗crucial ordinal for

⃗⃗ ⃗
Π in the sense of Definition 13.2.

Proof We argue under V = L. If n ≥ 4 then let unn (𝑝, 𝑥) be a canonical universal
𝛴n−3 formula, so that the family of all Σn−3 (HC) sets 𝑋 ⊆ HC is equal to the family of
all sets Υn (𝑝) = {𝑥 ∈ HC : HC |= unn (𝑝, 𝑥) } , 𝑝 ∈ HC .

Claim 13.5 If n ≥ 4 then the following set 𝐵𝑛 is 𝛥HCn−2 :

𝐵𝑛 = {⟨
⃗⃗
𝝅, 𝑝⟩ : ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF∧𝑝 ∈ HC ∧ ⃗⃗𝝅 blocksΥn (𝑝) }.

�
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Proof We skip a routine check that
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is 𝛥HC1 . If ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and 𝑝 ∈ HC then for ⃗⃗𝝅 to

block Υn (𝑝) it is necessary and sufficient that
⃗⃗
𝝅 ∈ Υn (𝑝)︸       ︷︷       ︸

𝛴HC
n−3

∨ ¬ ∃
⃗⃗⃗⃗
ϙϙ
( ⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF∧

⃗⃗⃗⃗
ϙϙ extends ⃗⃗𝝅︸                        ︷︷                        ︸
𝛥HC1

∧
⃗⃗⃗⃗
ϙϙ ∈ Υn (𝑝)︸       ︷︷       ︸

𝛴HC
n−3

)
︸                                                        ︷︷                                                        ︸

𝛱 HC
n−3

,

so this is a disjunction of 𝛴HC
n−3 and 𝛱

HC
n−3 , hence, 𝛥

HC
n−2 . �

For 𝛼 < 𝜔1 , define a sequence
⃗⃗
𝝅[𝛼] ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF by induction as follows.

We let ⃗⃗𝝅[0] = ∅ , the empty sequence.
Step 𝛼 → 𝛼 + 1. Suppose that ⃗⃗𝝅[𝛼] ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is defined, 𝜅 = dom ⃗⃗𝝅[𝛼] , 𝝅[𝛼] =⋃cw ⃗⃗𝝅[𝛼] = ⋃cw

𝛾<𝛼

⃗⃗
𝝅[𝛼] (𝛾) ,𝔐 = 𝔏( ⃗⃗𝝅[𝛼]) , and 𝑝𝛼 is the 𝛼-th element of HC = L𝜔1

in the sense of the Goedel well-ordering 6L .
By Lemma 9.4, there exists an 𝔐-generic sequence ˘ of systems in Sys(𝝅[𝛼]) . We

let ˘[𝛼] be the 6L-least of them. Then ϙϙ = lim[˘[𝛼]] is an 𝔐-generic refinement of
𝝅[𝛼] , and by Theorem 10.1(i),(vi), adjoining ϙϙ to 𝝅[𝛼] as the last term results in the
sequence ⃗⃗𝝉 =

⃗⃗
𝝅[𝛼]a ϙϙ ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 satisfying ⃗⃗𝝅[𝛼] ⊂∗

𝔐

⃗⃗
𝝉 . By Lemma 12.1, there is a

sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+2 satisfying

⃗⃗
𝝉 ⊂
⃗⃗⃗⃗
ϙϙ and 𝛼 ∈ |

⃗⃗⃗⃗
ϙϙ(𝜅 + 1) | . Finally if n ≥ 4 then there

is a sequence ⃗⃗𝝅[𝛼 + 1] ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF satisfying

⃗⃗ ⃗⃗
ϙϙ ⊂ ⃗⃗𝝅[𝛼 + 1] and blocking the set Υn (𝑝𝛼) ,

while if n = 3 then put ⃗⃗𝝅[𝛼 + 1] =
⃗⃗ ⃗⃗
ϙϙ . To conclude the step, we have:

(‡) ⃗⃗𝝅[𝛼] ⊂∗
𝔐

⃗⃗
𝝅[𝛼 + 1] , 𝜅 + 1 < dom ⃗⃗𝝅[𝛼 + 1] , 𝛼 ∈ | ⃗⃗𝝅[𝛼 + 1] (𝜅 + 1) | , and if n ≥ 4

then ⃗⃗𝝅[𝛼 + 1] blocks Υn (𝑝𝛼) .

Note that the axiom V = L is a sine qua non of this construction since otherwise the
6L -least choice of ˘[𝛼] would not be necessarily possible.

Limit step. If 𝜆 < 𝜔1 is limit then we naturally define ⃗⃗𝝅[𝜆] = ⋃
𝛼<𝜆

⃗⃗
𝝅[𝛼] .

Overall, we have 𝛼 < 𝛽 =⇒ ⃗⃗
𝝅[𝛼] ⊂ ⃗⃗𝝅[𝛽] by construction. It follows that

⃗⃗ ⃗
Π =⋃

𝛼

⃗⃗
𝝅[𝛼] ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 . This completes the construction.

To prove (i), note first of all that the relation

𝑅(𝝅,𝔐,˘) := “˘ is an 𝔐-generic sequence in Sys(𝝅) ”

is absolute for all transitive models of ZFC−1 , hence 𝑅 is 𝛥HC1 . Easily the assignment⃗⃗
𝝅 ↦→ 𝔏( ⃗⃗𝝅) is 𝛥HC1 as well. And “to block Υn (𝑝) ” is a 𝛥HCn−2 relation by Claim 13.5. On
the other hand, it is known that, under V = L , choosing the 6L -least element in every
non-empty section of a 𝛥HC

𝑘
set, 𝑘 ≥ 1 , results in a set (transversal) of the same class

𝛥HC
𝑘

. This allows to routinely complete the verification of (i).
To check |⋃cw ⃗⃗ ⃗Π | = 𝜔1 , note that 𝛼 ∈ |

⋃cw ⃗⃗𝝅[𝛼 + 1] | by construction.
To check (ii) (n ≥ 4), note that any boldface Σn−3 (HC) set 𝑊 ⊆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is equal to

Υn (𝑝𝛼) for some 𝛼 < 𝜔1 , so 𝛾 = dom ⃗⃗𝝅[𝛼 + 1] is as required.
(iii) The set C = {dom ⃗⃗𝝅[𝛼] : 𝛼 < 𝜔1} is closed unbounded by the limit step of

the construction. Moreover if 𝛾 = dom ⃗⃗𝝅[𝛼] ∈ C then
⃗⃗ ⃗
Π �𝛾 =

⃗⃗
𝝅[𝛼] , and hence 𝛾 is

∗crucial for
⃗⃗ ⃗
Π by construction. This ends the proof of Theorem 13.4. �
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Definition 13.6 (in L) From now on we fix a number n ≥ 3 as in Theorem 1.1. We
also fix a sequence

⃗⃗ ⃗
Π = ⟨Π𝛼⟩𝛼<𝜔1 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 satisfying Theorem 13.4 for this n . In

particular,
⋃
𝛼 |Π𝛼 | = 𝜔1 , and conditions (i), (ii), (iii) (with an according club C) of

Theorem 13.4 hold. We call this fixed
⃗⃗ ⃗
Π ∈ L the key sequence. �

Corollary 13.7 If n ≥ 4 and 𝑊 ⊆
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is a Σn−3 (HC) set dense in

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF then there is an

ordinal 𝛾 < 𝜔1 such that
⃗⃗ ⃗
Π �𝛾 ∈ 𝑊 .

Proof By conctruction,
⃗⃗ ⃗
Π satisfies (ii) of Theorem 13.4, hence there is an ordinal 𝛾 <

𝜔1 such that
⃗⃗ ⃗
Π �𝛾 blocks 𝑊 . The negative block is impossible by the density of 𝑊 ,

hence in fact
⃗⃗ ⃗
Π �𝛾 ∈ 𝑊 . �

Remark 13.8 Theorem 13.4 just proved is a clone of Theorem 15.3 in [30]. In fact it is a
bit stronger, because of the stronger relation ⊂∗ , instead of ⊂ as in [30], in the notion of
a ∗crucial ordinal. Therefore all consequences of the choice of

⃗⃗ ⃗
Π by [30, Theorem 15.3]

remain valid in our setting here. �

14 The key forcing notion

The following definition introduces some derived notions.

Definition 14.1 (in L) Using the key sequence
⃗⃗ ⃗
Π = ⟨Π𝛼⟩𝛼<𝜔1 as in Definition 13.6,

we define:
— the multiforcing Π =

⋃cw
𝛼<𝜔1

Π𝛼 ∈ MF , and
— the forcing notion P = MT(Π) = MT(

⃗⃗ ⃗
Π) .

If 𝜉 < 𝜔1 then, following the equality
⋃
𝛼 |Π𝛼 | = 𝜔1 in Definition 13.6, let 𝛼(𝜉) < 𝜔1

be the least ordinal 𝛼 satisfying 𝜉 ∈ |Π𝛼 | . Thus a forcing notion Π𝛼 (𝜉) ∈ AF is de-
fined whenever 𝛼 satisfies 𝛼(𝜉) ≤ 𝛼 < 𝜔1 , and ⟨Π𝛼 (𝜉)⟩𝛼( 𝜉 )≤𝛼<𝜔1 is a @-increasing
sequence of special forcings in AF , hence Π(𝜉) = ⋃

𝛼( 𝜉 )≤𝛼<𝜔1 Π𝛼 (𝜉) ∈ AF . �

Note that Π(𝜉) = ⋃
𝛼( 𝜉 )≤𝛼<𝜔1 Π𝛼 (𝜉) by construction.

In the remainder, Π will be referred to as the key multiforcing, whereas the set P =

MT(Π) will be our key forcing notion.

Corollary 14.2 (in L) Π is a regular multiforcing and |Π| = 𝜔1 , thus P =
∏
𝜉<𝜔1 Π(𝜉)

(with finite support). �

Corollary 14.3 (in L) The sequence of ordinals ⟨𝛼(𝜉)⟩𝜉<𝜔1 and the array of forcings
⟨Π𝛼 (𝜉)⟩𝜉<𝜔1 , 𝛼( 𝜉 )≤𝛼<𝜔1 are 𝛥

HC
n−2 .

Proof By construction the following double equivalence holds:

𝛼 < 𝛼(𝜉) ⇐⇒ ∃ 𝝅(𝝅 = Π𝛼 ∧ 𝜉 ∈ dom 𝝅) ⇐⇒
⇐⇒ ∀ 𝝅(𝝅 = Π𝛼 =⇒ 𝜉 ∈ dom 𝝅) .
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However 𝝅 = Π𝛼 is a 𝛥HCn−2 relation byTheorem13.4(i). It follows that so is the sequence
⟨𝛼(𝜉)⟩𝜉<𝜔1 . The second claim is similar. �

Corollary 14.4 (in L , of Lemma 5.2(iv)) If 𝜉 < 𝜔1 and 𝛼(𝜉) ≤ 𝛼 < 𝜔1 then the set
Π𝛼 (𝜉) is pre-dense in Π(𝜉) and in Π . �

In spite of Corollary 14.2, the sets |Π<𝛾 | can be quite arbitrary (countable) subsets of
𝜔1 . However we get the next corollary:

Corollary 14.5 (in L , of Corollary 14.2) C′ = {𝛾 < 𝜔1 : |Π<𝛾 | = 𝛾} is closed unbounded
in 𝜔1 . �

To prove the CCC property, we’ll need the following result.

Lemma 14.6 (in L) If 𝑋 ⊆ HC = L𝜔1 then the set 𝒪𝑋 of all ordinals 𝛾 < 𝜔1 , such that
⟨L𝛾 ; 𝑋∩L𝛾⟩ is an elementary submodel of ⟨L𝜔1 ; 𝑋⟩ and 𝑋∩L𝛾 ∈ 𝔏(

⃗⃗ ⃗
Π �𝛾) , is stationary,

hence unbounded in 𝜔1 .

Proof Let 𝐶 ⊆ 𝜔1 be a club. Let 𝑀 be a countable elementary submodel of L𝜔2

containing 𝐶, 𝜔1 , 𝑋 ,
⃗⃗ ⃗
Π , and such that 𝑀 ∩ L𝜔1 is transitive. Let 𝜙 : 𝑀

onto−→ L𝜆 be the
Mostowski collapse, and 𝛾 = 𝜙(𝜔1) . Then

𝛾 < 𝜆 < 𝜔1, 𝜙(𝑋) = 𝑋 ∩ L𝛾 , 𝜙(𝐶) = 𝐶 ∩ 𝛾, 𝜙(
⃗⃗ ⃗
Π) =

⃗⃗ ⃗
Π �𝛾

by the choice of 𝑀 . It follows that ⟨L𝛾 ; 𝑋∩L𝛾 , 𝐶∩𝛾,
⃗⃗ ⃗
Π �𝛾⟩ is an elementary submodel

of ⟨L𝜔1 ; 𝑋,𝐶,
⃗⃗ ⃗
Π⟩ , so 𝛾 ∈ 𝒪𝑋 .Moreover, 𝛾 is uncountable in L𝜆 , hence L𝜆 ⊆ 𝔏(

⃗⃗ ⃗
Π �𝛾) .

(See Definition 13.2 on models 𝔏( ⃗⃗𝝅) |= ZFL– .) We conclude that 𝑋 ∩ L𝛾 ∈ 𝔏(
⃗⃗ ⃗
Π �𝛾)

since 𝑋 ∩L𝛾 ∈ L𝜆 by construction. On the other hand, 𝐶 ∩ 𝛾 is unbounded in 𝛾 by the
elementarity, therefore 𝛾 ∈ 𝐶 , as required. �

Corollary 14.7 (in L) The forcing P satisfies CCC. Therefore P-generic extensions of L
preserve cardinals.

Proof Suppose that 𝐴 ⊆ P = MT(
⃗⃗ ⃗
Π) is a maximal antichain. By 13.6 and

Theorem 13.4(iii), there is a closed unbounded set C ⊆ 𝜔1 such that every 𝛾 ∈ C is a
∗crucial ordinal for

⃗⃗ ⃗
Π . By Lemma 14.6, there is an ordinal 𝛾 ∈ C such that 𝐴′ = 𝐴∩P<𝛾

is a maximal antichain in P<𝛾 = MT(
⃗⃗ ⃗
Π �𝛾) and 𝐴′ ∈ 𝔏(

⃗⃗ ⃗
Π �𝛾) . It follows that the set

𝐷 (𝐴′) = { 𝒑 ∈ P<𝛾 : ∃ 𝒒 ∈ 𝐴 (𝑝 6 𝑞) } ∈ 𝔏(
⃗⃗ ⃗
Π �𝛾) is open dense in P<𝛾 .

Yet 𝛾 is a ∗crucial ordinal for
⃗⃗ ⃗
Π , therefore by Lemma 6.4(iii) both the set 𝐷 (𝐴′) , and

hence 𝐴′ itself as well, remain pre-dense in the whole set P = MT(
⃗⃗ ⃗
Π) . We conclude

that 𝐴 = 𝐴′ is countable. �

Corollary 14.8 (in L) If a set 𝐷 ⊆ P is pre-dense in P then there is an ordinal 𝛾 < 𝜔1
such that 𝐷 ∩P<𝛾 is already pre-dense in P .
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Proof We can assume that 𝐷 is dense. Let 𝐴 ⊆ 𝐷 be a maximal antichain in 𝐷 ; then
𝐴 is a maximal antichain in P because of the density of 𝐷 . Then 𝐴 ⊆ P<𝛾 for some
𝛾 < 𝜔1 by Corollary 14.7. But 𝐴 is pre-dense in P . �

15 The key model

Our final goal will be to prove Theorem 1.1 by means of P-generic extensions of L .
These extensions we’ll call key models.

From now on, we’ll typically argue in L and in 𝜔L
1-preserving generic extensions L ,

in particular, in P-generic extensions (see Theorem 14.7). Thus it will always be the case
that 𝜔L

1 = 𝜔1 . This allows us to think that |Π| = 𝜔1 (rather than 𝜔L
1 ).

Definition 15.1 Let a set 𝐺 ⊆ P be generic over the constructible set universe L . If
𝜉 < 𝜔1 , then following Remark 4.4 at the end of Section 4,

— we define 𝐺 (𝜉) = {𝑇 𝒑
𝜉
: 𝒑 ∈ 𝐺 ∧ 𝜉 ∈ | 𝒑 | } ⊆ Π(𝜉) ;

— we let 𝑥𝜉 = 𝑥𝜉 [𝐺] ∈ 2𝜔 be the only real in
⋂
𝑇∈𝐺 ( 𝜉 ) [𝑇] ;

— we let 𝑿 [𝐺] = ⟨𝑥𝜉 [𝐺]⟩𝜉<𝜔1 = {⟨𝜉, 𝑥𝜉 [𝐺]⟩ : 𝜉 < 𝜔1} .

Thus P adjoins an array 𝑿 [𝐺] of reals to L , where each 𝑥𝜉 = 𝑥𝜉 [𝐺] ∈ 2𝜔 ∩ L[𝐺] is
a Π(𝜉)-generic real over L , and L[𝐺] = L[𝑿 [𝐺]] . �

Theorem 15.2 Let 𝐺 ⊆ P be P-generic over L . Then, in L[𝐺] , 𝑿 [𝐺] is a set of
definability class 𝛱HC

n−2 , hence, also of class 𝛱
1
n−1 by Lemma 13.1.

Proof Assume that 𝜉 < 𝜔1 , and 𝑥 ∈ L[𝐺] ∩ 2𝜔 . The following are equivalent:

(1) 𝑥 = 𝑥𝜉 [𝐺] ; (2) 𝑥 is Π(𝜉)-generic over L ;
(3) 𝑥 ∈ ⋂𝛼( 𝜉 )≤𝛼<𝜔1

⋃
𝑇∈Π𝛼 ( 𝜉 ) [𝑇] .

Indeed (1) =⇒ (2) is a routine (see Remark 4.4). To check (2) =⇒ (3) recall that each
set Π𝛼 (𝜉) is pre-dense in Π(𝜉) by Lemma 5.2(iv).

It remains to establish (3) =⇒ (1) . Suppose that (1) fails, that is, 𝑥 ≠ 𝑥𝜉 [𝐺] . By
Theorem 8.2(i) there is a small (recall that P = MT(Π) is CCC by Corollary 14.7) Π-
complete real name c ∈ L , such that c ⊆ P × 𝜔 × 2 , 𝑥 = c[𝐺] , and c is non-principal
over Π at 𝜉 , meaning that the set

𝑫Π
𝜉 (c) = { 𝒑 ∈ P = MT(Π) : 𝜉 ∈ | 𝒑 | ∧ 𝒑 directly forces c ∉ [𝑇 𝒑

𝜉
] } .

is open dense in P = MT(Π) . By the smallness of c and Corollary 14.8, there is an
ordinal 𝛾 < 𝜔1 such that c is a Π<𝛾-complete real name and 𝑫Π

𝜉 𝑘
(c) ∩ P<𝛾 is pre-

dense in P , therefore, open dense in P<𝛾 — and then c is non-principal over Π<𝛾 at
𝜉 . We can further assume that c ∈ 𝔏(

⃗⃗ ⃗
Π �𝛾) . (If not then take a bigger 𝛾 .) Finally, we

can assume that 𝛾 belongs to the set C of Theorem 13.4(iii) because C is a club. Then
𝛾 is ∗crucial for ⃗⃗𝝅 , that is, Π<𝛾 @@∗

𝔏(
⃗⃗⃗⃗
Π � 𝛾)

Π𝛾 . It follows that Π<𝛾 @@∗
𝔏(
⃗⃗⃗⃗
Π � 𝛾)

Π≥𝛾 by

Corollary 11.3. Then Π<𝛾 @c
𝜉

Π≥𝛾 holds as well by Corollary 11.2, since c ∈ 𝔏(
⃗⃗ ⃗
Π �𝛾)

and because of the non-principality of c . Now Theorem 8.2(ii) with 𝝅 = Π<𝛾 and ϙϙ =
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Π≥𝛾 (note that 𝝅 ∪cw ϙϙ = Π) implies 𝑥 = c[𝐺] ∉
⋃
𝑄∈Π≥𝛾 ( 𝜉 ) [𝑄] , in particular,

𝑥 ∉
⋃
𝑄∈Π𝛾 ( 𝜉 ) [𝑄] . In other words, (3) fails as well.

Thus the equivalence (1) ⇐⇒ (2) ⇐⇒ (3) is established.
We conclude that the following holds in L[𝐺] : ⟨𝜉, 𝑥⟩ ∈ 𝑿 [𝐺] iff

∀𝛼 < 𝜔1 ∃𝑇 ∈ Π𝛼 (𝜉)
(
𝛼(𝜉) ≤ 𝛼 =⇒ 𝑥 ∈ [𝑇]

)
,

which can be re-written as

∀𝛼 < 𝜔1 ∀ 𝜇 < 𝜔1 ∀𝑌 ∃𝑇 ∈ 𝑌
(
𝜇 = 𝛼(𝜉) ∧ 𝑌 = Π𝛼 (𝜉) ∧ 𝜇 ≤ 𝛼 =⇒ 𝑥 ∈ [𝑇]

)
.

Here the equality 𝜇 = 𝛼(𝜉) is 𝛥HCn−2 by Corollary 14.3, and so is the equality 𝑌 = Π𝛼 (𝜉)
byCorollary 14.3. It follows that thewhole relation is 𝛱HC

n−2 , since the quantifier ∃𝑇 ∈ 𝑌
is bounded. �

16 𝛥1n-good well-orderings in the key model

The next theorem proves that the key model satisfies (i) of Theorem 1.1. The reals in
Theorem 1.1 are treated here as points of the Cantor space 2𝜔 .

Theorem 16.1 If 𝐺 ⊆ P is P-generic over L then it holds in L[𝐺] that there is a 𝛥1n -good
well-ordering of 2𝜔 of length 𝜔1 .

Proof We argue in L[𝐺] . Let 𝑿 = 𝑿 [𝐺] . If 𝛾 < 𝜔1 then let 𝑿�𝛾 = ⟨𝑥𝜉 [𝐺]⟩𝜉<𝛾 .
The map 𝛾 ↦→ 𝑿�𝛾 is 𝛱HC

n−2 in L[𝐺] by Proposition 15.2 since

𝑌 = 𝑿�𝛾 ⇐⇒ 𝑌 is a function on 𝛾 ∧ ∀ 𝜉 < 𝛾 (⟨𝜉,𝑌 (𝜉)⟩ ∈ 𝑿) .

Now if 𝑥 ∈ 2𝜔 (in L[𝐺] ) then 𝑥 ∈ L[𝑿�𝛾] for some 𝛾 < 𝜔1 by Proposition 15.2,
hence we let 𝛾(𝑥) be the least 𝛾 < 𝜔1 such that 𝑥 ∈ L[𝑿�𝛾] , and 𝜈(𝑥) < 𝜔1 be the
index of 𝑥 in the canonical 𝛥HC1 ({𝑿�𝛾}) well-ordering ≤𝑿 � 𝛾 of 2𝜔 in L[𝑿�𝛾] (by
Gödel). We claim that the maps 𝑥 ↦→ 𝛾(𝑥) and 𝑥 ↦→ 𝜈(𝑥) are 𝛥HCn−1 . Indeed,

𝛾 = 𝛾(𝑥) ⇐⇒ ∃𝑌
(
𝑌 = 𝑿�𝛾 ∧ 𝑥 ∈ L[𝑌 ] ∧ ∀ 𝛾′ < 𝛾 (𝑥 ∉ L[𝑌�𝛾′])

)
⇐⇒ ∀𝑌

(
𝑌 = 𝑿�𝛾 =⇒ 𝑥 ∈ L[𝑌 ] ∧ ∀ 𝛾′ < 𝛾 (𝑥 ∉ L[𝑌�𝛾′]

)
.

This easily yields the result for the map 𝑥 ↦→ 𝛾(𝑥) . The result for the other map follows
by a similar rather routine estimation.

Now let 4 be thewell-ordering of the set 2𝜔∩L[𝐺] according to the lexicographical
well-ordering of the triples ⟨max{𝛾(𝑥), 𝜈(𝑥) }, 𝛾(𝑥), 𝜈(𝑥)⟩ . It easily follows from the
results for maps 𝑥 ↦→ 𝛾(𝑥) and 𝑥 ↦→ 𝜈(𝑥) that 4 is 𝛥HCn−1 , hence 𝛥

1
n by Lemma 13.1.

Finally to check the 𝛥1n -goodness, it remains to prove that, given a 𝛥1n set
𝑃 ⊆ 2𝜔 × 2𝜔 , the set 𝑄 = {⟨𝑧, 𝑥⟩ : ∀ 𝑦 4 𝑥 ¬ 𝑃(𝑧, 𝑦) } has to be 𝛥1n too. The class 𝛱 1

n
is obvious as 4 is already shown to be 𝛥1n . Thus we have to verify the class 𝛴1

n , or
equivalently, class 𝛴HC

n−1 , for 𝑄 . But this is true as 𝑄(𝑧, 𝑥) is equivalent to

for all 𝛾′, 𝜈′ ≤ max{𝛾(𝑥), 𝜈(𝑥) } , if the triple ⟨max{𝛾′, 𝜈′}, 𝛾′, 𝜈′⟩ non-strictly
precedes ⟨max{𝛾(𝑥), 𝜈(𝑥) }, 𝛾(𝑥), 𝜈(𝑥)⟩ lexicographically, then there is a real
𝑦 ∈ 2𝜔 such that 𝛾′ = 𝛾(𝑦) , 𝜈′ = 𝜈(𝑦) , and ¬ 𝑃(𝑧, 𝑦) .
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However the quoted formula is essentially 𝛴HC
n−1 since the bounded quantifiers

∀ 𝛾′, 𝜈′ ≤ max{𝛾(𝑥), 𝜈(𝑥) } do not destroy 𝛴 -classes over HC . �

17 Non-existence of Σ1
n−1 well-orderings in the key model

We begin here a lengthy proof of the claim that the key model also satisfies (ii) of
Theorem 1.1. This amounts to the following theorem.

Theorem 17.1 If n ≥ 4 and a set 𝐺 ⊆ P is P-generic over L then it holds in L[𝐺] that
there is no Σ1

n−1 well-orderings of the reals, and even more, there is no Σ1
n−1 binary relation

which well-orders the set {𝑥𝜉 [𝐺] : 𝜉 < 𝜔L
1 } .

The theorem leaves aside the case n = 3 in (ii) of Theorem 1.1 which thereby needs
a separate consideration to justify the assumption 𝑛 ≥ 4 .

Case n = 3.We claim that (ii) of Theorem 1.1 holds in the key model L[𝐺] , where
𝐺 is P-generic over L . Suppose to the contrary that (ii) of Theorem 1.1 fails, so that
(as n = 3) there is a ∆1

2 well-ordering of the reals (even not necessarily good) in L[𝐺] .
Then by Theorem 25.39 in [20] there is a real 𝑥 ∈ 2𝜔 ∩ L[𝐺] such that 2𝜔 ⊆ L[𝑥] in
L[𝐺] . But this is definitely not the case for the key model L[𝐺] we consider.

Indeed, arguing in L[𝐺] , suppose to the contrary that a real 𝑥 ∈ 2𝜔 ∩ L[𝐺] =

L[⟨𝑥𝜉 [𝐺]⟩𝜉<𝜔1 ] satisfies 2𝜔 ∩L[𝐺] ⊆ L[𝑥] . It follows by Corollary 14.7 that there is
an ordinal 𝜆 < 𝜔1 = 𝜔L

1 such that 𝑥 ∈ L[⟨𝑥𝜉 [𝐺]⟩𝜉<𝜆] . However the real 𝑦 = 𝑥𝜆 [𝐺]
does not belong to L[⟨𝑥𝜉 [𝐺]⟩𝜉<𝜆] by the product forcing theory. Therefore 𝑦 ∉ L[𝑥] ,
contrary to the choice of 𝑥 . �(Case n = 3)

The proof of Theorem 17.1 involves several technical definitions and results from
[30], introduced in sections 18 to 22. Beginning the proof, our plan will be to infer a
contradiction from the following contrary assumption.

Assumption 17.2 Assume to the contrary that a set 𝐺 ⊆ P is P-generic over L , and
it holds in L[𝐺] that there is a Σ1

n−1 binary relation which strictly well-orders the set
𝑨[𝐺] = {𝑥𝜉 [𝐺] : 𝜉 < 𝜔L

1 } — so that there is a 𝛴1
n−1 parameterfree formula ˘(·, ·, ·) ,

and a parameter 𝑢 ∈ 2𝜔 ∩ L[𝐺] such that the relation <𝑢˘ iff ˘(𝑥, 𝑦, 𝑢) , strictly well-
orders 𝑨[𝐺] . �

Under this assumption, Theorem 8.1 implies that, in L , there exist:

− a small Π-complete real name c ∈ L , c ⊆ P × 𝜔 × 2 , such that 𝑢 = c[𝐺] ,
− a condition p ∈ 𝐺 which P-forces, over L , that:

“the relation <c[𝐺 ]˘ , defined by 𝑥 <c[𝐺 ]˘ 𝑦 iff ˘(𝑥, 𝑦, c[𝐺]) , well-orders the set
{𝑥𝜉 [𝐺] : 𝜉 < 𝜔L

1 } in L[𝐺] ”.
− limit ordinals ¸, ˛ < 𝜔L

1 such that p ∈ MT(
⃗⃗ ⃗
Π(¸)) , c ⊆ MT(

⃗⃗ ⃗
Π �¸) × 𝜔 × 2 , and

|
⃗⃗ ⃗
Π(¸) | ⊆ ˛ , so that |c| ∪ |p| ⊆ ˛ .
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We fix c,p, ¸, ˛ henceforth.We’ll work towards a contradiction. The contradiction will
be obtained in the form of a non-empty subset 𝑋 ′ of the set 𝑨[𝐺] as above, containing
no <c[𝐺 ]˘ -least real, see Section 27.

18 An auxiliary forcing relation

Here we introduce an auxiliary forcing relation, not explicitly connected with any
particular forcing notion, in particular, with the key forcing P .

We argue in L. Consider the language of 2nd order arithmetic, with variables
𝑘, 𝑙, 𝑚, 𝑛, . . . of type 0 over 𝜔 and variables 𝑎, 𝑏, 𝑥, 𝑦, . . . of type 1 over 2𝜔 , whose
atomic formulas are those of the form 𝑥(𝑘) = 𝑛 . Let ℒ be the extension of this lan-
guage, which allows to substitute variables of type 0 with natural numbers and variables
of type 1 with small real names (see Section 7) c ∈ L . We consider the natural classes
ℒ𝛴1

𝑛 ,ℒ𝛱 1
𝑛 (𝑛 ≥ 1) of ℒ-formulas. Letℒ(𝛴𝛱 )11 be the closure ofℒ𝛴1

1 ∪ℒ𝛱 1
1 under

¬,∧,∨ and quantifiers over 𝜔 .
A relation 𝒑 forc ⃗⃗𝝅 𝜑 between multitrees 𝒑 , sequences ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , and closed ℒ-

formulas 𝜑 in ℒ(𝛴𝛱 )11 or ℒ𝛴1
𝑛 ∪ℒ𝛱 1

𝑛 , 𝑛 ≥ 2 , was defined in [30, § 22] by induction
on the complexity of 𝜑 as follows. Inductive steps 2◦ and 3◦ demonstrate similarities
with various conventional forcing notions.

1◦. Let ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT (not necessarily 𝒑 ∈ MT( ⃗⃗𝝅) ), and 𝜑 is a closed ℒ(𝛴𝛱 )11

formula. We define 𝒑 forc ⃗⃗𝝅 𝜑 iff there is a CTM 𝔐 |= ZFL– (recall Definition 13.2
on ZFL– ), an ordinal 𝜗 < dom ⃗⃗𝝅 , and a multitree 𝒑0 ∈ MT( ⃗⃗𝝅 �𝜗) , such that

(1) 𝒑 6 𝒑0 (meaning: 𝒑 is stronger),
(2) 𝔐 contains ⃗⃗𝝅 �𝜗 (then contains MT( ⃗⃗𝝅 �𝜗) and 𝒑0 as well),
(3) every name c in 𝜑 belongs to 𝔐 and is ( ⃗⃗𝝅 �𝜗)-complete,
(4) ⃗⃗𝝅 �𝜗 ⊂𝔐

⃗⃗
𝝅 in the sense of Section 12, and

(5) 𝒑0 MT( ⃗⃗𝝅 �𝜗)-forces 𝜑[𝐺] over 𝔐 in the usual sense.

2◦. If 𝜑(𝑥) is aℒ𝛱 1
𝑛 formula, 𝑛 ≥ 1 , then 𝒑 forc ⃗⃗𝝅 ∃ 𝑥 𝜑(𝑥) iff there is a small real name

c such that 𝒑 forc ⃗⃗𝝅 𝜑(c) .

3◦. If 𝜑 is a closedℒ𝛱 1
𝑛 formula, 𝑛 ≥ 2 , then 𝒑 forc ⃗⃗𝝅 𝜑 iff there is no sequence ⃗⃗𝝉 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF

and multitree 𝒑′ ∈ MT( ⃗⃗𝝉) such that ⃗⃗𝝅 ⊆ ⃗⃗𝝉 , 𝒑′ 6 𝒑 , and 𝒑′ forc ⃗⃗𝝉 𝜑− , where 𝜑−
is the result of the canonical transformation of ¬ 𝜑 to a ℒ𝛴1

𝑛 form.

It is not immediately clear that the definition is consistent in part 1◦, i. e., it is impos-
sible that both 𝒑 forc ⃗⃗𝝅 𝜑 and 𝒑 forc ⃗⃗𝝅 ¬ 𝜑 hold via two different triples of 𝜗, 𝒑0,𝔐 .
This will be subject of Corollary 18.5.

Remark 18.1 The condition “ 𝒑0 MT( ⃗⃗𝝅 �𝜗)-forces 𝜑[𝐺] over 𝔐 ” in 1◦ does not de-
pend on the choice of a CTM𝔐 containing ⃗⃗𝝅 �𝜗 and 𝜑 , since if 𝜑 isℒ(𝛴𝛱 )11 then all
transitive models agree on the formula 𝜑[𝐺] by the Mostowski absoluteness theorem
[20, Theorem 25.4]. �

The following lemma discovers the monotone character of forc .
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Lemma 18.2 (in L) If sequences
⃗⃗
𝝅 ⊆
⃗⃗⃗⃗
ϙϙ belong to

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒒 6 𝒑 are multitrees, 𝜑 is a closed

formula in ℒ(𝛴𝛱 )11 or in ℒ𝛴1
𝑛 , ℒ𝛱 1

𝑛 (𝑛 ≥ 2), and 𝒑 forc ⃗⃗𝝅 𝜑 , then 𝒒 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 .

Proof If 𝜑 is a closed ℒ(𝛴𝛱 )11 formula and 𝒑 forc ⃗⃗𝝅 𝜑 is witnessed by 𝔐 , 𝜗 , 𝒑0 as
in 1◦, then the same 𝔐 , 𝜗 , 𝒑0 witness 𝒒 forc ⃗⃗ ⃗⃗

ϙϙ
𝜑 .

The induction step ∃ , as in 2◦, is pretty elementary.
If 𝜑 is a ℒ𝛱 1

𝑛 -formula, 𝑛 ≥ 2 , and 𝒒 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 fails, then by 3◦ there is a sequence⃗⃗ ⃗⃗

ϙϙ
′ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and multitree 𝒒′ ∈ MT(

⃗⃗⃗⃗
ϙϙ
′) such that

⃗⃗ ⃗⃗
ϙϙ ⊆
⃗⃗⃗⃗
ϙϙ
′ , 𝒒′ 6 𝒒 , and 𝒒′ forc ⃗⃗ ⃗⃗

ϙϙ ′ 𝜑
− .

Then ⃗⃗𝝅 ⊆
⃗⃗⃗⃗
ϙϙ
′ and 𝒒′ 6 𝒑 , so 𝒑 forc ⃗⃗𝝅 𝜑 fails by 3◦. �

The next lemma presents a useful connection with the usual forcing.

Lemma 18.3 (in L) Assume that
⃗⃗
𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT( ⃗⃗𝝅) , 𝜑 is a formula in ℒ(𝛴𝛱 )11 ,⃗⃗

𝝅 ⊆
⃗⃗⃗⃗
ϙϙ ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF∪

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 , 𝒑 forc ⃗⃗𝝅 𝜑 , and 𝔑 |= ZFL– is a TM containing

⃗⃗ ⃗⃗
ϙϙ, 𝜑 . Then 𝒑

MT(
⃗⃗⃗⃗
ϙϙ)-forces 𝜑[𝐺] over 𝔑 in the usual sense .

Proof By definition there is an ordinal 𝜗 < dom ⃗⃗𝝅 , a multitree 𝒑0 ∈ MT( ⃗⃗𝝅 �𝜗) ,
and a CTM 𝔐 |= ZFL– satisfying (1)–(5) above. Let’s first consider the case 𝔐 ⊆ 𝔑 .
Suppose that 𝐺 ⊆ MT(

⃗⃗⃗⃗
ϙϙ) is a set MT(

⃗⃗⃗⃗
ϙϙ)-generic over 𝔑 , and 𝒑 ∈ 𝐺 — then 𝒑0 ∈ 𝐺 ,

too. We have to prove that 𝜑[𝐺] is true in 𝔑[𝐺] .
We claim that the set𝐺′ = 𝐺∩MT( ⃗⃗𝝅 �𝜗) isMT( ⃗⃗𝝅 �𝜗)-generic over𝔐 . Indeed, let

a set 𝑫 ∈ 𝔐 , 𝑫 ⊆ MT( ⃗⃗𝝅 �𝜗) , be open dense in MT( ⃗⃗𝝅 �𝜗) . Then, as ⃗⃗𝝅 �𝜗 ⊂𝔐
⃗⃗ ⃗⃗
ϙϙ , it

follows by Lemma 6.4 and Theorem 10.1(vii) that 𝑫 is pre-dense in MT(
⃗⃗⃗⃗
ϙϙ) . Moreover

𝑫 ∈ 𝔐 ⊆ 𝔑 . We conclude 𝐺 ∩𝑫 ≠ ∅ by the choice of 𝐺 . It follows that 𝐺′ ∩𝑫 ≠ ∅ .
Now if c is a name in 𝜑 then c ∈ 𝔐 and c is ⃗⃗𝝅 �𝜗-complete, hence c[𝐺′] ∈ 2𝜔

is defined. Therefore c[𝐺] = c[𝐺′] , because 𝐺′ ⊆ 𝐺 . Thus 𝜑[𝐺] coincides with
𝜑[𝐺′] . Note also that 𝒑0 ∈ 𝐺′ . We conclude that 𝜑[𝐺′] holds in 𝔐 [𝐺′] as 𝒑0 forces
𝜑[𝐺] over 𝔐 . The same formula 𝜑[𝐺] is holds 𝔑[𝐺] by the Mostowski absoluteness
theorem [20, Thm 25.4], as required.

Now suppose that 𝔐 ̸⊆ 𝔑 . Then 𝔑 ⊆ 𝔐 . By the part already established, 𝒑
MT(
⃗⃗⃗⃗
ϙϙ)-forces 𝜑[𝐺] over 𝔐 in the usual sense. Assume towards the contrary that 𝒑

does not MT(
⃗⃗⃗⃗
ϙϙ)-force 𝜑[𝐺] over 𝔑 . Then there is a condition 𝒒 ∈ MT(

⃗⃗⃗⃗
ϙϙ) , 𝒒 6 𝒑 ,

whichMT(
⃗⃗⃗⃗
ϙϙ)-forces ¬ 𝜑[𝐺] over𝔑 . Consider an arbitrary set 𝐺 ⊆ MT(

⃗⃗⃗⃗
ϙϙ) ,MT(

⃗⃗⃗⃗
ϙϙ)-

generic over 𝔐 – then over 𝔑 as well since 𝔑 ⊆ 𝔐 , and containing 𝒒 , hence, 𝒑 too.
Then the same formula 𝜑[𝐺] is true in𝔐 [𝐺] (as 𝒑 ∈ 𝐺 ) but false in 𝔑[𝐺] (as 𝒒 ∈ 𝐺 ).
But this contradicts the Mostowski absoluteness theorem. �

Lemma 18.4 (in L) Assume that
⃗⃗
𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT( ⃗⃗𝝅) , 𝜑 is a formula in ℒ(𝛴𝛱 )11 ,

𝔐 |= ZFL– is a TM containing
⃗⃗
𝝅 , each name c in 𝜑 belongs to 𝔐 and is

⃗⃗
𝝅-complete, and

𝒑 MT( ⃗⃗𝝅)-forces 𝜑[𝐺] over 𝔐 . Then there exists a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF such that

⃗⃗
𝝅 ⊂𝔐

⃗⃗ ⃗⃗
ϙϙ

and 𝒑 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 .

Proof Theorem 12.3 yields a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF such that ⃗⃗𝝅 ⊂𝔑

⃗⃗ ⃗⃗
ϙϙ . Then the triple of

𝔐 , 𝜗 = dom(
⃗⃗⃗⃗
ϙϙ) , 𝒑0 = 𝒑 witnesses that 𝒑 forc ⃗⃗ ⃗⃗

ϙϙ
𝜑 by 1◦. �
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Corollary 18.5 (in L) Let
⃗⃗
𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT( ⃗⃗𝝅) , 𝜑 be a formula in ℒ(𝛴𝛱 )11 or ℒ𝛴1

𝑛 ,
𝑛 ≥ 2 . Then 𝒑 forc ⃗⃗𝝅 𝜑 and 𝒑 forc ⃗⃗𝝅 𝜑− cannot hold together.

Proof Let 𝜑 ∈ ℒ(𝛴𝛱 )11 . If both 𝒑 forc ⃗⃗𝝅 𝜑 and 𝒑 forc ⃗⃗𝝅 𝜑− then, by Lemma 18.3, 𝒑
MT( ⃗⃗𝝅)-forces both 𝜑[𝐺] and 𝜑− [𝐺] over a large enough CTM 𝔐 , a contradiction. If
𝜑 ∈ ℒ𝛴1

𝑛 then the result follows by 3◦. �

19 Definability of the auxiliary forcing

If 𝐾 is one of the classes ℒ(𝛴𝛱 )11 , ℒ𝛴1
𝑛 , ℒ𝛱 1

𝑛 (𝑛 ≥ 2), then let FORC[𝐾] consist of
all triples ⟨ ⃗⃗𝝅, 𝒑, 𝜑⟩ such that ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT , 𝜑 is a formula in 𝐾 , and 𝒑 forc ⃗⃗𝝅 𝜑 .

Note that FORC[𝐾] is a subset of HC .

Lemma 19.1 (in L) FORC[ℒ(𝛴𝛱 )11] ∈ 𝛥HC1 , whereas if 𝑛 ≥ 2 then FORC[ℒ𝛴1
𝑛]

belongs to 𝛴HC
𝑛−1 and FORC[ℒ𝛱 1

𝑛 ] belongs to 𝛱HC
𝑛−1 . �

Proof Relations like ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , “being a formula in ℒ(𝛴𝛱 )11 , ℒ𝛴1

𝑛 , ℒ𝛱 1
𝑛 ”, 𝒑 ∈

MT( ⃗⃗𝝆) , forcing over a CTM, etc. are definable in HC by bounded formulas, hence 𝛥HC1 .
Moreover, themodel𝔐 can be tied by both ∃ and ∀ in 1◦, see Remark 18.1. This wraps
up the 𝛥HC1 estimation for ℒ(𝛴𝛱 )11 .

The inductive step by 2◦ is quite simple.
Now the step by 3◦. Assume that 𝑛 ≥ 2 , and it is already established that

FORC[ℒ𝛴1
𝑛] ∈ 𝛴HC

𝑛−1 . Then ⟨
⃗⃗
𝝅, 𝒑, 𝜑⟩ ∈ FORC[ℒ𝛱 1

𝑛 ] iff
⃗⃗
𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT , 𝜑 is

a closed ℒ𝛱 1
𝑛 formula, and, by 3◦, there exist no triple ⟨ ⃗⃗𝝉, 𝒑′, 𝜓⟩ ∈ FORC[ℒ𝛴1

𝑛] such
that ⃗⃗𝝉 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , ⃗⃗𝝅 ⊆ ⃗⃗𝝉 , 𝒑′ ∈ MT( ⃗⃗𝝉) , 𝒑′ 6 𝒑 , and 𝜓 is 𝜑− . We easily get the required

estimation 𝛱HC
𝑛−1 of FORC[ℒ𝛱 1

𝑛 ] . �

20 Tail invariance

Invariance theorems are rather typical for all kinds of forcing. We present here an in-
variance theorem on the auxiliary forcing forc . It deals with the tail invariance, and
it is considerably stronger than a tail invariance theorem established in [30]. Another
invariance theorem (Section 21 below) explores the permutational invariance.

Arguing in L , if ⃗⃗𝝅 = ⟨𝝅𝛼⟩𝛼<𝜆 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and 𝛾 < 𝜆 = dom ⃗⃗𝝅 , then let the 𝛾-tail⃗⃗

𝝅 �≥𝛾 be the restriction ⃗⃗𝝅 � [𝛾, 𝜆) to the semiinterval [𝛾, 𝜆) = {𝛼 : 𝛾 ≤ 𝛼 < 𝜆}.
in 𝜔1 . Thus essentially

⃗⃗
𝝅 �≥𝛾 is a @-increasing sequence of length 𝜆 − 𝛾 (= the only

ordinal 𝛽 with 𝛾 + 𝛽 = 𝜆 ), whose domain is shifted to the right in 𝜔1 . In this case the
set MT( ⃗⃗𝝅 �≥𝛾) =

⋃cw
𝛾≤𝛼<𝜆

⃗⃗
𝝅(𝛼) is open dense in MT( ⃗⃗𝝅) .

Therefore it can be expected that if
⃗⃗ ⃗⃗
ϙϙ is another sequence of length 𝜇 = dom

⃗⃗ ⃗⃗
ϙϙ , and

𝛿 < 𝜇 is such that 𝜇 − 𝛿 = 𝜆 − 𝛾 and the according restriction
⃗⃗ ⃗⃗
ϙϙ �≥ 𝛿 is shift-equal to⃗⃗

𝝅 �≥𝛾 in the sense that
⃗⃗ ⃗⃗
ϙϙ �≥ 𝛿 (𝛿 + 𝛼) =

⃗⃗
𝝅 �≥𝛾 (𝛾 + 𝛼) for all 𝛼 < 𝜇 − 𝛿 = 𝜆 − 𝛾 , then

the according dense setsMT( ⃗⃗𝝅 �≥𝛾) andMT(
⃗⃗⃗⃗
ϙϙ �≥ 𝛿) coinside, and we can expect that

the relations forc ⃗⃗𝝅 and forc ⃗⃗ ⃗⃗
ϙϙ
coincide too. And indeed this turns out to be the case.

2022/09/23 08:01



𝛥1𝑛 well-orderings of the reals do not imply ∆1
𝑛−1 well-orderings 31

Theorem 20.1 (in L) Assume that
⃗⃗
𝝅,
⃗⃗ ⃗⃗
ϙϙ are sequences in

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝛾 < 𝜆 = dom ⃗⃗𝝅 , 𝛿 <

𝜇 = dom
⃗⃗ ⃗⃗
ϙϙ ,
⃗⃗ ⃗⃗
ϙϙ �≥𝛾 is shift-equal to

⃗⃗
𝝅 �≥ 𝛿 , 𝒑 ∈ MT , 𝑛 ≥ 2 , and 𝜑 is a formula in

ℒ𝛱 1
𝑛 ∪ℒ𝛴1

𝑛+1 . Then 𝒑 forc ⃗⃗𝝅 𝜑 iff 𝒑 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 .

Proof Part 1: the ℒ𝛱 1
2 case. Let 𝜓(𝑥) be a ℒ𝛴1

1 formula. Suppose that
𝒑 forc ⃗⃗ ⃗⃗

ϙϙ
∀ 𝑥 𝜓(𝑥) fails, so there is

⃗⃗ ⃗⃗
ϙϙ
′ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and a multitree 𝒒 ∈ MT(

⃗⃗⃗⃗
ϙϙ
′) such that⃗⃗ ⃗⃗

ϙϙ ⊆
⃗⃗⃗⃗
ϙϙ
′ , 𝒒 6 𝒑 , and 𝒒 forc ⃗⃗ ⃗⃗

ϙϙ ′ ∃ 𝑥 𝜓− (𝑥) . We can assume that 𝒒 ∈ MT(
⃗⃗⃗⃗
ϙϙ
′�≥ 𝛿) . By

definition there is a small real name c such that 𝒒 forc ⃗⃗ ⃗⃗
ϙϙ ′ 𝜓

− (c) .
Let 𝜇′ = dom

⃗⃗ ⃗⃗
ϙϙ
′ . Define a sequence ⃗⃗𝝅 ′ so that dom ⃗⃗𝝅 ′ = 𝜆′ = 𝜆+(𝜇′−𝜇) , ⃗⃗𝝅 ⊆ ⃗⃗𝝅 ′ ,

and ⃗⃗𝝅 ′ (𝜆 + 𝛼) =
⃗⃗ ⃗⃗
ϙϙ
′ (𝜇 + 𝛼) for all 𝛼 < 𝜇 − 𝛿 = 𝜆 − 𝛾 , so that ⃗⃗𝝅 ′�≥𝜆 is shift-equal

to
⃗⃗ ⃗⃗
ϙϙ
′�≥𝜇 . Then

⃗⃗
𝝅 ′�≥𝛾 is shift-equal to

⃗⃗ ⃗⃗
ϙϙ
′�≥ 𝛿 either, hence 𝒒 ∈ MT( ⃗⃗𝝅 ′�≥𝛾) ⊆

MT( ⃗⃗𝝅 ′) .
Consider any CTM 𝔑 |= ZFL– containing 𝜓 , c , ⃗⃗𝝅 ′ ,

⃗⃗ ⃗⃗
ϙϙ
′ . Then 𝒒 MT(

⃗⃗⃗⃗
ϙϙ
′)-forces

𝜓− (c) [𝐺] over 𝔑 by Lemma 18.3. Yet the forcing notions MT( ⃗⃗𝝅 ′) , MT(
⃗⃗⃗⃗
ϙϙ
′) con-

tain one and the same dense set MT( ⃗⃗𝝅 ′�≥𝛾) = MT(
⃗⃗⃗⃗
ϙϙ
′�≥ 𝛿) . Thus 𝒒 also MT( ⃗⃗𝝅 ′)-

forces 𝜓− (c) [𝐺] over 𝔑 . By definition 𝒒 forc ⃗⃗𝝅 ′ 𝜓− (c) and 𝒒 forc ⃗⃗𝝅 ′ ∃ 𝑥 𝜓− (𝑥) , hence
𝒑 forc ⃗⃗𝝅 ∀ 𝑥 𝜓(𝑥) fails, as required.

Part 2: the step ℒ𝛱 1
𝑛 → ℒ𝛴1

𝑛+1 , 𝑛 ≥ 2 . Let 𝜑(𝑥) be a formula in ℒ𝛱 1
𝑛 . Assume

that 𝒑 forc ⃗⃗𝝅 ∃ 𝑥 𝜑(𝑥) . By definition (see 2◦ in Section 18), there is a small real name c
such that 𝒑 forc ⃗⃗𝝅 𝜑(c) . Then we have 𝒑 forc ⃗⃗ ⃗⃗

ϙϙ
𝜑(c) by the inductive hypothesis, thus

𝒑 forc ⃗⃗ ⃗⃗
ϙϙ
∃ 𝑥 𝜓(𝑥) .

Part 3: the step ℒ𝛴1
𝑛 → ℒ𝛱 1

𝑛 , 𝑛 ≥ 3 . Assume that 𝜑 is a ℒ𝛱 1
𝑛 formula, and

𝒑 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 fails. Then by 3◦ of Section 18, there is a sequence

⃗⃗ ⃗⃗
ϙϙ
′ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and a multitree

𝒑′ ∈ MT(
⃗⃗⃗⃗
ϙϙ
′) such that

⃗⃗ ⃗⃗
ϙϙ ⊆
⃗⃗⃗⃗
ϙϙ
′ , 𝒑′ 6 𝒑 , and 𝒑′ forc ⃗⃗ ⃗⃗

ϙϙ ′ 𝜑
− . As

⃗⃗ ⃗⃗
ϙϙ
′ is @-increasing,

there is a multitree 𝒓 ∈ MT(
⃗⃗⃗⃗
ϙϙ
′�≥𝛾) , 𝒓 6 𝒑′ . Then 𝒓 6 𝒑 and 𝒓 forc ⃗⃗ ⃗⃗

ϙϙ ′ 𝜑
− . Define

a sequence ⃗⃗𝝅 ′ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF as in Part 1 so that ⃗⃗𝝅 ⊆ ⃗⃗𝝅 ′ , and ⃗⃗𝝅 ′�≥𝜆 is shift-equal to

⃗⃗ ⃗⃗
ϙϙ
′�≥𝜇 .

Then 𝒓 ∈ MT( ⃗⃗𝝅 ′�≥𝛾) , 𝒓 6 𝒑 , and also 𝒓 forc ⃗⃗𝝅 ′ 𝜑− by the inductive hypothesis. We
conclude that 𝒑 forc ⃗⃗𝝅 𝜑 fails as well. �

Let 𝝅 be a multiforcing in spMF (not a sequence of multiforcings). Theorem 20.1
allows us to meaningfully define 𝒑 forc𝝅 𝜑 iff 𝒑 forc ⃗⃗𝝅 𝜑 , where

⃗⃗
𝝅 = ⟨𝝅⟩ ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is a

one-term sequence defined by dom( ⃗⃗𝝅) = 1 and ⃗⃗𝝅(0) = 𝝅 .

Corollary 20.2 (in L) Let
⃗⃗
𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , dom ⃗⃗𝝅 = 𝜆 + 1 , 𝝅 =

⃗⃗
𝝅(𝜆) , 𝒑 ∈ MT(𝝅) , 𝑛 ≥ 2 , 𝜑

is a formula in ℒ𝛱 1
𝑛 ∪ℒ𝛴1

𝑛+1 . Then 𝒑 forc ⃗⃗𝝅 𝜑 iff 𝒑 forc𝝅 𝜑 . �

21 Permutation invariance

Arguing in L , let PERM be the set of all permutations of indices, that is, all @ bijections
←−
aut

𝒉 : 𝜔1
onto−→ 𝜔1 , such that 𝒉 = 𝒉−1 and the non-identity domain NI(𝒉) = {𝜉 : 𝒉(𝜉) ≠ 𝜉 }

←−
abk

is at most countable. Elements of PERM are called permutations.
Let 𝒉 ∈ PERM. We extend the action of 𝒉 as follows.

• if 𝒑 is a multitree then 𝒉 𝒑 is a multitree, |𝒉 𝒑 | = 𝒉 ”| 𝒑 | = {𝒉(𝜉) : 𝜉 ∈ | 𝒑 | } , and
(𝒉 𝒑) (𝒉(𝜉)) = 𝒑(𝜉) whenever 𝜉 ∈ | 𝒑 | ;
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• if 𝝅 ∈ MT is a multiforcing then 𝒉 ·𝝅 = 𝝅 ◦ (𝒉−1) is a multiforcing, |𝒉 ·𝝅 | = 𝒉 ”𝝅
and (𝒉 ·𝝅) (𝒉(𝜉)) = 𝝅(𝜉) whenever 𝜉 ∈ |𝝅 | ;

• if c ⊆ MT × (𝜔 × 𝜔) is a real name, then put 𝒉c = {⟨𝒉 𝒑, 𝑛, 𝑖⟩ : ⟨ 𝒑, 𝑛, 𝑖⟩ ∈ c} , thus
easily 𝒉c is a real name as well;

• if ⃗⃗𝝅 = ⟨𝝅𝛼⟩𝛼<𝜅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , then 𝒉

⃗⃗
𝝅 = ⟨𝒉 ·𝝅𝛼⟩𝛼<𝜅 , still a sequence in

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF;

• if 𝜑 := 𝜑(c1, . . . , c𝑛) is a ℒ-formula (with all names explicitly indicated), then 𝒉𝜑
is 𝜑(𝒉c1, . . . , 𝒉c𝑛) .

Many notions and relations defined above are clearly PERM-invariant, e. g., 𝒑 ∈
MT(𝝅) iff 𝒉 𝒑 ∈ MT(𝒉 ·𝝅) , 𝝅 @ ϙϙ iff 𝒉 ·𝝅 @ 𝒉 · ϙϙ , et cetera. The invariance also takes
place with respect to the relation forc itself.

Theorem 21.1 (in L) Assume that
⃗⃗
𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , 𝒑 ∈ MT( ⃗⃗𝝅) , 𝒉 ∈ PERM , 𝑛 ≥ 2 , and

𝜑 ∈ ℒ𝛱 1
𝑛 ∪ℒ𝛴1

𝑛+1 . Then 𝒑 forc ⃗⃗𝝅 𝜑 iff (𝒉 𝒑) forc𝒉 ⃗⃗𝝅 (𝒉𝜑) .

Proof Let
⃗⃗ ⃗⃗
ϙϙ = 𝒉

⃗⃗
𝝅 , 𝒒 = 𝒉 𝒑 .

Part 1: the ℒ𝛱 1
2 case. Assume that 𝜑(𝑥) is a ℒ𝛴1

1 formula, 𝜓(𝑥) := 𝒉𝜑(𝑥) , and
𝒒 forc ⃗⃗ ⃗⃗

ϙϙ
∀ 𝑥 𝜓(𝑥) fails. Then by definition (3◦ and 2◦ in Section 18) there is a sequence⃗⃗ ⃗⃗

ϙϙ
′ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF , a multitree 𝒒′ ∈ MT(

⃗⃗⃗⃗
ϙϙ
′) , and a small real name d , such that

⃗⃗ ⃗⃗
ϙϙ ⊂

⃗⃗⃗⃗
ϙϙ
′ ,

𝒒′ 6 𝒒 , and 𝒒′ forc ⃗⃗ ⃗⃗
ϙϙ ′ 𝜓

− (d) . The sequence ⃗⃗𝝅 ′ = 𝒉−1
⃗⃗ ⃗⃗
ϙϙ
′ then satisfies ⃗⃗𝝅 ⊂

⃗⃗⃗⃗
ϙϙ , the

multitree 𝒑′ = 𝒉−1𝒒′ belongs to MT( ⃗⃗𝝅 ′) , 𝒑′ 6 𝒑 , and c = 𝒉−1d is a small real name.
However we cannot claim immediately that 𝒑′ forc ⃗⃗𝝅 ′ 𝜑− (c) , since the existence of 𝔐
and 𝜗 as in 1◦ in Section 18 is not necessarily preserved by the action of 𝒉−1 or 𝒉 .

To circumwent this difficulty, we make use of two lemmas above. Let 𝔐 |= ZFL–
be a CTM containing ⃗⃗𝝅 ′ ,

⃗⃗ ⃗⃗
ϙϙ
′ , 𝒉 , c, d and (all names in) 𝜑, 𝜓 . Then 𝒒′ MT(

⃗⃗⃗⃗
ϙϙ
′)-forces

𝜓− (d) [𝐺] over 𝔐 by Lemma 18.3. Then 𝒑′ MT( ⃗⃗𝝅 ′)-forces 𝜑− (c) [𝐺] over 𝔐 , by
the standard theorems of forcing. Lemma 18.4 yields a sequence ⃗⃗𝝉 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF with ⃗⃗𝝅 ′ ⊂ ⃗⃗𝝉 ,

such that 𝒑′ forc ⃗⃗𝝉 𝜑− (c) , hence 𝒑′ forc ⃗⃗𝝉 ∃ 𝑥 𝜑− (𝑥) by 2◦. However
⃗⃗
𝝅 ⊂ ⃗⃗𝝅 ′ ⊂ ⃗⃗𝝉 and

𝒑′ 6 𝒑 . Thus 𝒑 forc ⃗⃗𝝅 ∀ 𝑥 𝜑(𝑥) fails by 3◦, as required.
Part 2: the step ℒ𝛱 1

𝑛 → ℒ𝛴1
𝑛+1 , 2 ≤ 𝑛 . Let 𝜑(𝑥) be a formula in ℒ𝛱 1

𝑛 and
𝜓(𝑥) := 𝒉𝜑(𝑥) . Assume that 𝒑 forc ⃗⃗𝝅 ∃ 𝑥 𝜑(𝑥) . By definition (2◦ in Section 18), there is
a small real name c such that 𝒑 forc ⃗⃗𝝅 𝜑(c) . Then we have 𝒒 forc ⃗⃗ ⃗⃗

ϙϙ
𝜓(d) by inductive

assumption, where d = 𝒉c is a small real name itself. Thus 𝒒 forc ⃗⃗ ⃗⃗
ϙϙ
∃ 𝑥 𝜓(𝑥) .

Part 3: the step ℒ𝛴1
𝑛 → ℒ𝛱 1

𝑛 , 𝑛 ≥ 3 . Let 𝜑 be a formula in ℒ𝛱 1
𝑛 , and 𝒒 forc ⃗⃗ ⃗⃗

ϙϙ
𝜓

fails, where 𝒒 = 𝒉 𝒑 ,
⃗⃗ ⃗⃗
ϙϙ = 𝒉

⃗⃗
𝝅 , and 𝜓 is 𝒉𝜑 , as above. By 3◦, there is a sequence

⃗⃗ ⃗⃗
ϙϙ
′ ∈⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

MF and a multitree 𝒒′ ∈ MT(
⃗⃗⃗⃗
ϙϙ
′) such that

⃗⃗ ⃗⃗
ϙϙ ⊆
⃗⃗⃗⃗
ϙϙ
′ , 𝒒′ 6 𝒒 , and 𝒒′ forc ⃗⃗ ⃗⃗

ϙϙ ′ 𝜓
− . Now

let 𝒑′ = 𝒉−1𝒒′ and ⃗⃗𝝅 ′ = 𝒉−1
⃗⃗ ⃗⃗
ϙϙ
′ , so that 𝒑′ 6 𝒑 and ⃗⃗𝝅 ⊆ ⃗⃗𝝅 ′ . We have 𝒑′ forc ⃗⃗𝝅 ′ 𝜑−

by inductive assumption. We conclude that 𝒑 forc ⃗⃗𝝅 𝜑 fails, as required. �

22 Forcing inside the key sequence

Theorem 22.3 below shows that the forcing relation forc ⃗⃗𝝅 , considered with countable
initial segments ⃗⃗𝝅 =

⃗⃗ ⃗
Π �𝛼 of the key sequence

⃗⃗ ⃗
Π , coincides with the true P-forcing

relation (see Definition 14.1) up to the level ℒ𝛴1
n−1 .

We argue in L. Recall that the key sequence
⃗⃗ ⃗
Π = ⟨Π𝛼⟩𝛼<𝜔1 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜔1 , satisfying

|⋃cw ⃗⃗ ⃗Π | = 𝜔1 and (i), (ii), (iii) of Theorem 13.4, was introduced by Definition 13.6,
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and P = MT(
⃗⃗ ⃗
Π) is our forcing notion. In addition, n ≥ 4 by the conditions of

Theorem 17.1.

Definition 22.1 We write 𝒑 forc𝛼 𝜑 instead of 𝒑 forc ⃗⃗ ⃗⃗Π � 𝛼 𝜑 , for the sake of brevity.
Let 𝒑 forc∞ 𝜑 mean: 𝒑 forc𝛼 𝜑 for some 𝛼 < 𝜔1 . �

The following technical lemma contains some useful results.

Lemma 22.2 (in L) Assume that 𝒑 ∈ P , 𝛼 < 𝜔1 , and 𝒑 forc𝛼 𝜑 . Then:

(i) if 𝛼 ≤ 𝛽 < 𝜔1 , 𝒒 ∈ P<𝛽 = MT(
⃗⃗ ⃗
Π � 𝛽) , and 𝒒 6 𝒑 , then 𝒒 forc𝛽 𝜑 ;

(ii) if 𝒒 ∈ P , 𝒒 6 𝒑 , then 𝒒 forc𝛽 𝜑 for some 𝛽 ; 𝛼 ≤ 𝛽 < 𝜔1 ;

(iii) if 𝒒 ∈ P and 𝒒 forc∞ 𝜑− then 𝒑⊥ 𝒒 in the sense of Definition 4.1;

(iv) therefore, 1st, if 𝒑, 𝒒 ∈ P , 𝒒 6 𝒑 , and 𝒑 forc∞ 𝜑 then 𝒒 forc∞ 𝜑 , and 2nd,
𝒑 forc∞ 𝜑 , 𝒑 forc∞ 𝜑− cannot hold together.

Proof To prove (i) apply Lemma 18.2. To prove (ii) pick 𝛽 such that 𝛼 < 𝛽 < 𝜔1
and 𝒒 ∈ MT(

⃗⃗ ⃗
Π � 𝛽) , and apply (i). To prove (iii) note that 𝒑, 𝒒 are incompatible in

P , as otherwise (i) leads to contradiction, but the incompatibility in P implies ⊥ by
Corollary 4.2. �

Theorem 22.3 If 𝜑 is a closed ℒ-formula in ℒ(𝛴𝛱 )11 ∪ℒ𝛴1
2 ∪ℒ𝛱 1

2 ∪ . . .∪ℒ𝛴1
n−2 ∪

ℒ𝛱 1
n−2 ∪ℒ𝛴1

n−1 and 𝒑 ∈ P , then 𝒑 P-forces 𝜑[𝐺] over L in the usual sense, if and only
if 𝒑 forc∞ 𝜑 .

Proof Let ∥− denote the usual P-forcing relation over L .
Part 1: 𝜑 is a formula in ℒ(𝛴𝛱 )11 . If 𝒑 forc∞ 𝜑 then 𝒑 forc ⃗⃗ ⃗⃗Π � 𝛾 𝜑 for some 𝛾 <

𝜔1 , and then 𝒑 ∥− 𝜑[𝐺] by Lemma 18.3 with
⃗⃗ ⃗⃗
ϙϙ =
⃗⃗ ⃗
Π and 𝔑 = L .

Suppose now that 𝒑 ∥− 𝜑[𝐺] . There is an ordinal 𝛾0 < 𝜔1 such that 𝒑 ∈ P𝛾0 =

MT(
⃗⃗ ⃗
Π �𝛾0) and 𝜑 belongs to 𝔏(

⃗⃗ ⃗
Π �𝛾0) . (Recall Definition 13.2 on models 𝔏(𝑥) |=

ZFL– .) The set𝑈 of all sequences ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF such that 𝛾0 < dom ⃗⃗𝝅 and there is an ordinal

𝜗 , 𝛾0 < 𝜗 < dom ⃗⃗𝝅 , such that ⃗⃗𝝅 �𝜗 ⊂𝔏( ⃗⃗𝝅 � 𝜗)
⃗⃗
𝝅 , is dense in

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF by Theorem 12.3,

and is ∆1 (HC) . Therefore by Corollary 13.7 there is an ordinal 𝛾 < 𝜔1 such that
⃗⃗
𝝅 =⃗⃗ ⃗

Π �𝛾 ∈ 𝑈 . Let this be witnessed by an ordinal 𝜗 , so that 𝛾0 < 𝜗 < 𝛾 = dom ⃗⃗𝝅 and⃗⃗
𝝅 �𝜗 ⊂𝔏( ⃗⃗𝝅 � 𝜗)

⃗⃗
𝝅 . We claim that 𝒑 MT( ⃗⃗𝝅 �𝜗)-forces 𝜑[𝐺] over 𝔏( ⃗⃗𝝅 �𝜗) in the usual

sense — then by definition 𝒑 forc ⃗⃗𝝅 𝜑 , as required.
To prove the claim, assume otherwise. Then there is a multitree 𝒒 ∈ MT(

⃗⃗ ⃗
Π �𝜗) ,

𝒒 6 𝒑 , which MT( ⃗⃗𝝅 �𝜗)-forces ¬ 𝜑[𝐺] over 𝔏( ⃗⃗𝝅 �𝜗) . Then by definition (1◦ in
Section 18) 𝒒 forc ⃗⃗𝝅 ¬ 𝜑 holds, hence 𝒒 forc∞ ¬ 𝜑 , and then 𝒒 ∥− ¬ 𝜑[𝐺] (see above),
with a contradiction to 𝒑 ∥− 𝜑[𝐺] .

Part 2: the step ℒ𝛱 1
𝑚 → ℒ𝛴1

𝑚+1 (1 ≤ 𝑚 ≤ n − 2). Consider a ℒ𝛱 1
𝑚 formula

𝜑(𝑥) . Assume 𝒑 forc∞ ∃ 𝑥 𝜑(𝑥) . By definition there is a small real name c such that
𝒑 forc∞ 𝜑(c) . By inductive hypothesis, 𝒑 ∥− 𝜑(𝑐) [𝐺] , that is, 𝒑 ∥− ∃ 𝑥 𝜑(𝑥) [𝐺] .
Conversely, assume that 𝒑 ∥− ∃ 𝑥 𝜑(𝑥) [𝐺] . As P is CCC, there is a small real name
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c (in L) such that 𝒑 ∥− 𝜑(c) [𝐺] . We have 𝒑 forc∞ 𝜑(c) by the inductive hypothesis,
hence 𝒑 forc∞ ∃ 𝑥 𝜑(𝑥) .

Part 3: the step ℒ𝛴1
𝑚 → ℒ𝛱 1

𝑚 (2 ≤ 𝑚 ≤ n − 2). Assume that 𝜑 is a closed ℒ𝛴1
𝑚

formula, and 𝒑 forc∞ 𝜑− . By Lemma 22.2(iv), there is nomultitree 𝒒 ∈ P , 𝒒 6 𝒑 , with
𝒒 forc∞ 𝜑 . This implies 𝒑 ∥− 𝜑− by the inductive hypothesis.

Conversely, let 𝒑 ∥− 𝜑− . There is an ordinal 𝛾0 < 𝜔1 such that 𝒑 ∈ P𝛾0 =

MT(
⃗⃗ ⃗
Π �𝛾0) and 𝜑 belongs to 𝔏(

⃗⃗ ⃗
Π �𝛾0) . Consider the set 𝑈 of all sequences ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF

such that dom ⃗⃗𝝅 > 𝛾0 and there is a multitree 𝒒 ∈ MT( ⃗⃗𝝅) satisfying 𝒒 6 𝒑 and
𝒒 forc ⃗⃗𝝅 𝜑 . Then 𝑈 belongs to Σ𝑚−1 (HC) (𝜑 , 𝒑0 as parameters) by Lemma 19.1, hence
to Σn−3 (HC) . Recall that n ≥ 4 by the conditions of Theorem 17.1. Thus by Definition
13.6 (and (ii) of Theorem 13.4) there is an ordinal 𝛾 < 𝜔1 such that

⃗⃗ ⃗
Π �𝛾 blocks 𝑈.

Case 1:
⃗⃗ ⃗
Π �𝛾 ∈ 𝑈 . Let this be witnessed by a multitree 𝒒 ∈ MT( ⃗⃗𝝅) , so that in

particular 𝒒 6 𝒑 and 𝛾 > 𝛾0 . Thus 𝒒 ∈ MT(
⃗⃗ ⃗
Π �𝛾) , 𝒒 6 𝒑 , and 𝒒 forc ⃗⃗ ⃗⃗Π � 𝛾 𝜑 , that is,

𝒒 ∥− 𝜑[𝐺] by the inductive hypothesis, contrary to the choice of 𝒑 . Therefore Case 1
cannot happen, and we have:

Case 2: no sequence in 𝑈 extends
⃗⃗ ⃗
Π �𝛾 . We can assume that 𝛾 > 𝛾0 . (If not, replace

𝛾 by 𝛾0 + 1 .) We claim that 𝒑 forc𝛾 𝜑− . Indeed otherwise by 3◦ of Section 18 there is
a sequence ⃗⃗𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and a multitree 𝒒 ∈ MT( ⃗⃗𝝅) , such that

⃗⃗ ⃗
Π �𝛾 ⊆ ⃗⃗𝝅 , 𝒒 6 𝒑 , and

𝒒 forc ⃗⃗ ⃗⃗
ϙϙ
𝜑 . But then ⃗⃗𝝅 belongs to 𝑈 . On the other hand,

⃗⃗ ⃗
Π �𝛾 ⊆ ⃗⃗𝝅 , contrary to the

Case 2 assumption. Thus indeed 𝒑 forc∞ 𝜑− , as required. �

23 Embedding multiforcings in the key sequence

We argue in L. The following lemma proves that any special multiforcing in spMF
admits an embedding into a layer of the key sequence

⃗⃗ ⃗
Π , by means of an appropriate

permutation, due to the generic properties of
⃗⃗ ⃗
Π .

We make use of the semiinterval notation [𝛼, 𝛽) = {𝛾 : 𝛼 ≤ 𝛾 < 𝛽} .
If ˛ < 𝜗 < 𝜔1 then define permutations 𝒉1 [𝜗] , 𝒉2 [𝜗] ∈ PERM so that

NI(𝒉1 [𝜗]) = [˛, 𝜗) ∪ [𝜗 + ˛, 𝜗·2), NI(𝒉2 [𝜗]) = [˛, 𝜗) ∪ [𝜗·2 + ˛, 𝜗·3),

𝒉1 [𝜗] (𝜉) = 𝒉1 [𝜗]−1 (𝜉) = 𝜗 + 𝜉
𝒉2 [𝜗] (𝜉) = 𝒉2 [𝜗]−1 (𝜉) = 𝜗·2 + 𝜉

}
whenever ˛ ≤ 𝜉 < 𝜗 ,

 (*)

where as usual, 𝜗·2 = 𝜗 + 𝜗 and 𝜗·3 = 𝜗 + 𝜗 + 𝜗 .
Note that the inclusion ϙϙ ⊆ 𝝅 between multiforcings ϙϙ and 𝝅 means simply that

𝑑 = | ϙϙ| ⊆ |𝝅 | and ϙϙ = 𝝅� 𝑑 , that is, ϙϙ(𝜉) = 𝝅(𝜉) for all 𝜉 ∈ 𝑑 .
The next lemma has two applications below. One of them (Lemma 24.1) utilizes the

effect of both 𝒉1 [𝜗] and 𝒉2 [𝜗] . The other one (Section 27) involves only 𝒉1 [„] .

Lemma 23.1 (in L) Assume that 𝛼0 < 𝜔1 , and 𝝈 ∈ spMF , 𝝈�˛ =
⃗⃗ ⃗
Π(𝛼0)�˛ . Then

there is a refinement ϙϙ ∈ spMF , 𝝈 @ ϙϙ , and ordinals 𝜈 > 𝛼0 and „ , ˛ < „ < 𝜔1 , such
that | ϙϙ| ⊆ „ , still ϙϙ�˛ =

⃗⃗ ⃗
Π(𝜈)�˛ , and the multiforcings ϙϙ1 = 𝒉1 [„] · ϙϙ , ϙϙ2 = 𝒉2 [„] · ϙϙ

satisfy ϙϙ1, ϙϙ2 ⊆
⃗⃗⃗
Π(𝜈) .

Proof Arguing in L , let 𝑈 be the set of all sequences ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF such that:
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(†) dom( ⃗⃗𝝅) = 𝜈 + 1 , where 𝜈 > 𝛼0 , and there is an ordinal „ , ˛ < „ < 𝜔1 , and a
multiforcing ϙϙ ∈ spMF such that 𝝈 @ ϙϙ , | ϙϙ| ⊆ [0, „) , ϙϙ�˛ =

⃗⃗ ⃗
Π(𝜈)�˛ , and the

shifted multiforcings ϙϙ1 = 𝒉1 [„] · ϙϙ , ϙϙ2 = 𝒉2 [„] · ϙϙ satisfy ϙϙ1, ϙϙ2 ⊆
⃗⃗
𝝅(𝜈) .

By routine estimation, 𝑈 is a Σ1 (HC) set (with 𝝈, 𝛼0, ˛ as the only parameters of the
straightforward 𝛴1 definition in HC), hence definitely a Σn−3 (HC) set. Thus by (ii) of
Definition 13.6 there is an ordinal 𝜈 < 𝜔1 such that

⃗⃗ ⃗
Π � 𝜈 blocks 𝑈 .

We can w. l.o.g. assume that 𝜈 = 𝜆 + 1 > 𝛼0 is a successor ordinal.
Case 1: no sequence in 𝑈 extends

⃗⃗ ⃗
Π � 𝜈 . To show that this cannot happen, let 𝝉 =⃗⃗ ⃗

Π(𝜆) . Let 𝝉′ ∈ spMF satisfy 𝝉 @ 𝝉′ and |𝝉 | = |𝝉′ | . Let 𝝈′ ∈ spMF satisfy 𝝈 @ 𝝈′

and |𝝈 | = |𝝈′ | . We put ϙϙ = (𝝉′�˛) ∪ (𝝈′� (𝜔1 r ˛)) . Let „ < 𝜔1 be the least ordinal
satisfying |𝝉 | ∪ |𝝈 | ⊆ [0, „) and ˛ < „ . We define ϙϙ1 = 𝒉1 [„] · ϙϙ , ϙϙ2 = 𝒉2 [„] · ϙϙ ,
𝝅 = 𝝉′ ∪ ϙϙ1 ∪ ϙϙ2 .

We claim that 𝝅 is a special multiforcing. Indeed as all three summands are special
multiforcings, it suffices, byLemma4.3, to check that they pairwise coincide on common
domains. Note that by construction | ϙϙ| ⊆ ˛ = [0, ˛) , and hence by (*) we have | ϙϙ| ∩
| ϙϙ1 | ∩ | ϙϙ2 | ⊆ [0, ˛) whereas outside the interval [0, ˛) all three domains | ϙϙ|, | ϙϙ1 |, | ϙϙ2 |
are pairwise disjoint. Furthermore ϙϙ1� [0, ˛) = ϙϙ2� [0, ˛) = ϙϙ� [0, ˛) still by (*), so
we have got the pairwise coincidence on common domains, as required.

Moreover, as
⃗⃗ ⃗
Π(𝜆) = 𝝉 @ 𝝉′ ⊆ 𝝅 , we have 𝝉 @ 𝝅 by Lemma 5.4.

Now let ⃗⃗𝝅 be the extension of
⃗⃗ ⃗
Π � 𝜈 by ⃗⃗𝝅(𝜈) = 𝝅 . It follows from the above that⃗⃗

𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜈+1 . We claim that ⃗⃗𝝅 ∈ 𝑈 via the condition (†) witnessed by ϙϙ and „ . Indeed

the only part of (†) not immediately clear is 𝝈 @ ϙϙ . But this follows from the definition
of ϙϙ since 𝝈 @ 𝝈′ and 𝝈�˛ =

⃗⃗ ⃗
Π(𝛼0)�˛ @ 𝝉 =

⃗⃗ ⃗
Π(𝜆) @ 𝝉′ . Thus indeed ⃗⃗𝝅 ∈ 𝑈 .

On the other hand,
⃗⃗ ⃗
Π � 𝜈 ⊂ ⃗⃗𝝅 . This contradicts the Case 1 assumption.

Case 2: ⃗⃗𝝅 =
⃗⃗ ⃗
Π � 𝜈 ∈ 𝑈 . Let this be witnessed by „, ϙϙ etc. as in (†). Then ϙϙ1 ∪ ϙϙ2 ⊆⃗⃗⃗

Π(𝜈) immediately by (†). �

24 The non-existence claim, part I

The next lemma continues the proof of Theorem 17.1.

Lemma 24.1 (in L) Suppose that 𝛼0 < 𝜔1 , 𝝈 ∈ spMF , ⃗⃗ ⃗⃗𝝈 �˛ =
⃗⃗ ⃗
Π(𝛼0)�˛ , 𝒔 ∈ MT(𝝈) ,

𝒔 6 p , and 𝜉 ∈ |𝝈 | , 𝜉 ≥ ˛ . Then there is a refinement 𝝅 ∈ spMF , 𝝈 @ 𝝅 , a condition
𝒑 ∈ MT(𝝅) , 𝒑 6 𝒔 , and ordinals 𝜇 > 𝛼0 and 𝜂 ∈ |𝝅 | , 𝜂 ≥ ˛ , such that still 𝝅�˛ =⃗⃗ ⃗
Π(𝜇)�˛ and 𝒑 forc𝝅 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) .

See Section 17 on the definition of sets p, c, ˛, ¸ occurring in this lemma. A club
C ∈ L , C ⊆ 𝜔1 is fixed by (iii) of Theorem 13.4 and Definition 13.6.

Proof We argue in L . By Lemma 23.1, there exist:

(1) ordinals 𝜈 > 𝛼0 and „ , ˛ < „ < 𝜔1 , and a refinement ϙϙ ∈ spMF , 𝝈 @ ϙϙ , such
that | ϙϙ| ⊆ „ , still

⃗⃗ ⃗⃗
ϙϙ �˛ =

⃗⃗ ⃗
Π(𝜈)�˛ , and the derived multiforcings ϙϙ1 = 𝒉1 [„] · ϙϙ ,

ϙϙ2 = 𝒉2 [„] · ϙϙ satisfy ϙϙ1, ϙϙ2 ⊆
⃗⃗⃗
Π(𝜈) .
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Let 𝜉1 = 𝒉1 [„] (𝜉) , 𝜉2 = 𝒉2 [„] (𝜉) . Note that ˛ ≤ 𝜉 < „ by construction, and hence
we have „ + ˛ ≤ 𝜉1 < „·2 and „·2 + ˛ ≤ 𝜉2 < „·3 by (*) in Section 23.

Pick a condition 𝒒 ∈ ϙϙ with 𝒒 6 𝒔 . Then

𝒒1 = 𝒉1 [„]𝒒 ∈ MT( ϙϙ1) and 𝒒2 = 𝒉2 [„]𝒒 ∈ MT( ϙϙ2),

hence, 𝒒1, 𝒒2 ∈ P by (1). (Recall that P is the key forcing notion, Section 14.) Note that
|𝒒1 | ∩ |𝒒2 | ⊆ [0, ˛) by (*) in Section 23. However both 𝒉1 [„] and 𝒉2 [„] are equal to the
identity on the domain ˛ = [0, ˛) . It follows that 𝒒1� [0, ˛) = 𝒒2� [0, ˛) = 𝒒� [0, ˛) .
We conclude that 𝒑′ = 𝒒1 ∪ 𝒒2 is a multitree in MT(

⃗⃗ ⃗
Π(𝜈)) ⊆ P by (1).

It follows by the choice of p , that there is a condition 𝒑1 ∈ P , 𝒑1 6 𝒑′ , which
either P-forces ˘(𝑥𝜉1 [𝐺], 𝑥𝜉2 [𝐺], c[𝐺]) or P-forces ˘(𝑥𝜉2 [𝐺], 𝑥𝜉1 [𝐺], c[𝐺]) . Let
𝒑1 P-force say ˘(𝑥𝜉2 [𝐺], 𝑥𝜉1 [𝐺], c[𝐺]) over L . By Theorem 22.3, we have

(2) 𝒑1 forc ⃗⃗ ⃗⃗Π � (𝜇+1) ˘(
•
𝒙 𝜉2 ,

•
𝒙 𝜉1 , c), or equivalently, by Corollary 20.2,

𝒑1 forc ⃗⃗ ⃗⃗Π(𝜇) ˘(
•
𝒙 𝜉2 ,

•
𝒙 𝜉1 , c), — for some 𝜇 ≥ 𝜈,

where, by Lemma 18.2, 𝒑1 and the ordinal 𝜇 can be chosen so that 𝒑1 ∈ MT(
⃗⃗ ⃗
Π(𝜇))

and [0, „·3) ⊆ |
⃗⃗ ⃗
Π(𝜇) | . Acting by 𝒉1 [„] = (𝒉1 [„])−1 on (2), we get

(3) 𝒑 forc𝝅 ˘(
•
𝒙 𝜉2 ,

•
𝒙 𝜉 , c)

by Theorem 21.1, where 𝝅 = 𝒉1 [„] (
⃗⃗ ⃗
Π(𝜇)) and 𝒑 = 𝒉1 [„] 𝒑1 , because 𝒉1 [„] (𝜉1) =

(𝒉1 [„])−1 (𝜉1) = 𝜉 , 𝒉1 [„] (𝜉2) = 𝜉2 , and 𝒉1 [„]c = c (since |c| ⊆ ˛ and 𝒉1 [„] is the
identity on ˛ = [0, ˛) ).

Now we observe that 𝒉1 [„] ϙϙ = ϙϙ1 ⊆
⃗⃗⃗
Π(𝜈) @

⃗⃗ ⃗
Π(𝜇) , therefore 𝒉1 [„] ϙϙ @

⃗⃗ ⃗
Π(𝜇) by

Lemma 5.4, and then we have ϙϙ @ 𝝅 since 𝒉1 [„] = 𝒉1 [„]−1 , so that 𝝈 @ 𝝅 as well by
(1). We have 𝒑 6 𝒔 by similar reasons. And finally, 𝝅�˛ =

⃗⃗ ⃗
Π(𝜇)�˛ because 𝒉1 [„] is

the identity on [0, ˛) .
This ends the proof of the lemma, with 𝜂 = 𝜉2 . �

25 The non-existence claim, part II

In this section our goal will be to strengthen Lemma 24.1 so that not only one condition
𝒑 but a whole dense set of conditions with the same property will be obtained. Recall
that ¸, ˛,p, c were introduced in Section 17 whereas a club C ∈ L , C ⊆ 𝜔1 is fixed by
(iii) of Theorem 13.4 and Definition 13.6.

Lemma 25.1 (in L) There is a limit ordinal 𝜆 ∈ C , a sequence ⃗⃗𝝅 = ⟨𝝅𝛼⟩𝛼<𝜆 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆 , and

an increasing continuous sequence of ordinals 𝜈𝛼 , 𝛼 < 𝜆 , such that:

(i)
⃗⃗ ⃗
Π(¸) ⊆ 𝝅0 and |𝝅0 | = |

⃗⃗ ⃗
Π(¸) | ∪ {˛} ;

(ii) 𝝅𝛼�˛ =
⃗⃗ ⃗
Π(𝜈𝛼)�˛ ;

(iii) if 𝜉 ∈ | ⃗⃗𝝅 | , 𝜉 ≥ ˛ , and 𝒒 ∈ MT( ⃗⃗𝝅) , 𝒒 6 p , then there is a condition 𝒑 ∈ MT( ⃗⃗𝝅) ,
𝒑 6 𝒒 , and an ordinal 𝜂 ∈ | ⃗⃗𝝅 | , 𝜂 ≥ ˛ such that 𝒑 forc ⃗⃗𝝅 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) , or in other

words, the set

𝐷 𝜉 [
⃗⃗
𝝅] = { 𝒑 ∈ MT( ⃗⃗𝝅) : ∃ 𝜂 ∈ | ⃗⃗𝝅 | r ˛

(
𝒑 forc ⃗⃗𝝅 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c)

)
}
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is dense (then open dense by Lemma 18.2) in MT( ⃗⃗𝝅) below p

(iv) sup𝛼<𝜆 𝜈𝛼 = 𝜆 and
⃗⃗
𝝅 ∈ 𝔏(

⃗⃗ ⃗
Π �𝜆) . (See Definition 13.2 on 𝔏(𝑥) .)

Proof Following (i), we define 𝝅0 so that |𝝅0 | = |
⃗⃗ ⃗
Π(¸) | ∪ {˛} , 𝝅0 (𝜉) =

⃗⃗ ⃗
Π(¸) (𝜉) for

all 𝜉 ∈ |
⃗⃗ ⃗
Π(¸) | , and finally 𝝅0 (˛) = Pcoh , where Pcoh is the Cohen forcing, as in the

proof of Lemma 12.1.
Successor step. Assume that 𝝅𝛼 and 𝜈𝛼 are already defined and satisfy (ii). Then

for a certain specially picked (see below) pair of 𝜉𝛼 ∈ |𝝅𝛼 | r ˛ and 𝒒𝛼 ∈ MT(𝝅𝛼)
with 𝒒𝛼 6 p , a multiforcing 𝝅𝛼+1 ∈ spMF and an ordinal 𝜈𝛼+1 > 𝜈𝛼 are chosen by
Lemma 24.1 so that 𝝅𝛼 @ 𝝅𝛼+1 , 𝝅𝛼+1�˛ =

⃗⃗ ⃗
Π(𝜈𝛼+1)�˛ , and

∃ 𝒑𝛼 ∈ MT(𝝅𝛼+1) ∃ 𝜂𝛼 ∈ |𝝅𝛼+1 | r ˛
(
𝒑𝛼 6 𝒒𝛼 ∧ 𝒑𝛼 forc𝝅𝛼+1 ˘(

•
𝒙𝜂𝛼 ,

•
𝒙 𝜉𝛼 , c)

)
.

Limit step. Assume that 𝜅 < 𝜔1 is limit, and 𝝅𝛼 and 𝜈𝛼 are already defined for all
𝛼 < 𝜅 , so that ⟨𝝅𝛼⟩𝛼<𝜅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅 and (ii) holds for all 𝛼 < 𝜅 . Let 𝜈𝜅 = sup𝛼<𝜅 𝜈𝛼 . By

Theorem 12.3, there is a sequence
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 with ⟨𝝅𝛼⟩𝛼<𝜅 ⊂

⃗⃗⃗⃗
ϙϙ . Basically,

⃗⃗ ⃗⃗
ϙϙ extends

⟨𝝅𝛼⟩𝛼<𝜅 by an extra term ϙϙ =
⃗⃗ ⃗⃗
ϙϙ(𝜅) ∈ spMF satisfying 𝝅𝛼 @ ϙϙ for all 𝛼 < 𝜅 . But ϙϙ�˛

may not be equal to
⃗⃗ ⃗
Π(𝜈)�˛ . To fix this issue, we define 𝝅𝜅 so that 𝝅𝜅 �˛ =

⃗⃗ ⃗
Π(𝜈)�˛ ,

but 𝝅𝜅 (𝜉) = ϙϙ(𝜉) for all 𝜉 ∈ | ϙϙ| , 𝜉 ≥ ˛ . Then still 𝝅𝛼 @ 𝝅𝜅 for all 𝛼 < 𝜅 since the
sequence

⃗⃗ ⃗
Π is @-increasing.

Choiceof 𝜉𝛼 and 𝒒𝛼 .This can be arranged so that for each ordinal 𝛼′ in the process,
and every 𝜉 ∈ |𝝅𝛼′ | r ˛ and every condition 𝒒 ∈ MT(𝝅𝛼′ ) , 𝒒 6 p , there is 𝑚 < 𝜔

such that 𝜉𝛼 = 𝜉 and 𝒒𝛼 6 𝒒 , where 𝛼 = 𝛼′ + 𝑚 .
Choice of 𝜆 . The construction above is supposed to run in principle over the whole

domain 𝛼 < 𝜔1 . However, as the set C ⊆ 𝜔1 is a club, its subset C′ = {𝜆 ∈ C :
𝜈𝜆 = 𝜆} is a club either. Now let’s find 𝜆 ∈ C′ such that (iv) holds. Consider the
∈-structure ⟨L𝜔2 ; 𝜔1,C′, ⟨𝝅𝛼⟩𝛼<𝜔1⟩ , a model of ZFL– (see Definition 13.2). It has a
countable elementary submodel 𝑀 ⊆ L𝜔2 containing 𝜔1 , C′ , and ⟨𝝅𝛼⟩𝛼<𝜔1 . The lat-
ter admits a Mostowski collapse map ℎ : 𝑀

onto−→ L𝜗 |= ZFL– , where 𝜗 < 𝜔1 . Then
ℎ(𝜔1) = 𝜆 < 𝜗 , ℎ(C′) = C′ ∩ 𝜆 — and hence 𝜆 ∈ C′ because C′ is a club, — and
ℎ(⟨ ⃗⃗𝝅 𝛼⟩𝛼<𝜔1 ) = ⟨𝝅𝛼⟩𝛼<𝜆 ∈ L𝜗 by construction. On the other hand, 𝜆 is uncountable
in L𝜗 by the elementarity. It follows that surely L𝜗 ⊆ 𝔏(

⃗⃗ ⃗
Π �𝜆) , because by defini-

tion 𝜆 is countable in the model 𝔏(
⃗⃗ ⃗
Π �𝜆) = L𝜇 for some 𝜇 < 𝜔1 . We conclude that

⟨𝝅𝛼⟩𝛼<𝜆 ∈ 𝔏(
⃗⃗ ⃗
Π �𝜆) , as required.

Finalization. It remains to check (iii) with 𝜆 ∈ C chosen as above. Thus assume
that 𝜉 ∈ | ⃗⃗𝝅 | r ˛ , and 𝒒 ∈ MT( ⃗⃗𝝅) , 𝒒 6 p . There exists an ordinal 𝛼′ < 𝜆 such
that 𝜉 ∈ |𝝅𝛼′ | r ˛ and a condition 𝒒′ ∈ MT(𝝅𝛼′ ) , 𝒒′ 6 𝒒 . By construction, there is an
ordinal 𝛼 = 𝛼′+𝑚 , 𝑚 < 𝜔 , such that 𝜉𝛼 = 𝜉 and 𝒒𝛼 6 𝒒′ .Moreover (see the successor
step) there exists an ordinal 𝜂 ∈ |𝝅𝛼+1 | r ˛ and a condition 𝒑 ∈ MT(𝝅𝛼+1) such that
𝒑 6 𝒒𝛼 6 𝒒′ 6 𝒒 and 𝒑 forc𝝅𝛼+1 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) . By Theorem 20.1 this is equivalent to

𝒑 forc ⃗⃗𝝅 � 𝛼+2 ˘(
•
𝒙𝜂 ,

•
𝒙 𝜉 , c) . This implies 𝒑 forc ⃗⃗𝝅 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) by Lemma 18.2. �

Let a 25.1-type sequence be any ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF satisfying Lemma 25.1. Thus if 𝜉 ∈ | ⃗⃗𝝅 | r ˛

then 𝐷 𝜉 [
⃗⃗
𝝅] is open dense in MT( ⃗⃗𝝅) below p in this case.
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26 The non-existence claim, part III

The next theorem makes use of the results of Section 25.

Theorem 26.1 (in L) Assume that
⃗⃗
𝝅 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF is a 25.1-type sequence, 𝜆 = dom( ⃗⃗𝝅) . Then

there is an extension
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆+1 ,

⃗⃗
𝝅 ⊂

⃗⃗⃗⃗
ϙϙ , by an extra term ϙϙ =

⃗⃗ ⃗⃗
ϙϙ(𝜆) , such that ϙϙ�˛ =⃗⃗ ⃗

Π(𝜆)�˛ , and if ⃗⃗𝝉 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF and

⃗⃗ ⃗⃗
ϙϙ ⊆ ⃗⃗𝝉 then every set 𝐷 𝜉 [

⃗⃗
𝝅] , 𝜉 ∈ | ⃗⃗𝝅 | r ˛ , is pre-dense in

MT( ⃗⃗𝝉) below p .
Therefore, if 𝝉 ∈ spMF satisfies ϙϙ @ 𝝉 , and 𝜉 ∈ | ⃗⃗𝝅 | r ˛ , then the set

𝐷 𝜉 [𝝉] = { 𝒑 ∈ MT(𝝉) : ∃ 𝜂 ∈ | ⃗⃗𝝅 | r ˛
(
𝒑 forc𝝉 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c)

)
}

is dense in MT(𝝉) below p .

Proof We argue in L . We know that ⃗⃗𝝅 ∈ 𝔐 = 𝔏(
⃗⃗ ⃗
Π �𝜆) |= ZFL– . In particular, the

multiforcing 𝝅 =
⋃cw
𝛼<𝜆

⃗⃗
𝝅(𝛼) also belongs to 𝔐 .

Our plan is to add a 𝜆-th layer ϙϙ to ⃗⃗𝝅 so that the extended sequence
⃗⃗ ⃗⃗
ϙϙ =
⃗⃗
𝝅 a ϙϙ ∈⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

MF 𝜆+1 satisfies 𝝅 @𝑫 ϙϙ =
⃗⃗ ⃗⃗
ϙϙ(𝜆) for any set 𝑫 ∈ 𝔐 , 𝑫 ⊆ MT(𝝅) , open dense in

MT(𝝅) , and still satisfies ϙϙ�˛ =
⃗⃗ ⃗
Π(𝜆)�˛ . However a direct application of Lemma 9.4

and then Theorem 10.1(vii) does not yield the result required since Lemma 9.4 does not
provide ϙϙ�˛ =

⃗⃗ ⃗
Π(𝜆)�˛ . Thuswe need amore elaborate construction of ϙϙ . Basically, as

the value of 𝝅�˛ =
⃗⃗ ⃗
Π(𝜆)�˛ is predetermined, we’ll have to define the complementary

part ϙϙ� [˛, 𝜔1) .
For that purpose, let’s split the given sequence ⃗⃗𝝅 at ˛ into sequences ⃗⃗𝜺 =

⃗⃗
𝝅<˛ and⃗⃗⃗

𝜹 =
⃗⃗
𝝅 ≥˛ , in

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆 ∩ 𝔐 , such that dom( ⃗⃗𝜺) = dom(

⃗⃗⃗
𝜹) = 𝜆 and ⃗⃗𝜺(𝛼) = ⃗⃗𝝅(𝛼)�˛ ,⃗⃗⃗

𝜹(𝛼) = ⃗⃗𝝅(𝛼)� [˛, 𝜔1) for all 𝛼 < 𝜆 . By the way, ⃗⃗𝜺(𝛼) =
⃗⃗ ⃗
Π(𝜈𝛼)�˛ for all 𝛼 , where

𝜈𝛼 < 𝜆 and sup𝛼<𝜆 𝜈𝛼 = 𝜆 as ⃗⃗𝝅 is a 25.1-type sequence. Therefore the multiforcings
Π<𝜆 =

⋃cw
𝛼<𝜆

⃗⃗ ⃗
Π(𝛼) and 𝜺 =

⋃
𝛼<𝜆

⃗⃗
𝜺(𝛼) are connected so that 𝜺 ⊆ Π<𝜆�˛ and 𝜺 is

dense in Π<𝜆�˛ .
Note that as 𝜆 = dom(𝜑) ∈ C , the ordinal 𝜆 is limit and ∗crucial for

⃗⃗ ⃗
Π . This means

that
⃗⃗ ⃗
Π(𝜆) = lim[˘] is an 𝔐-generic refinement of Π<𝜆 via an 𝔐-generic 4-decreas-

ing sequence ˘ = ⟨𝜑 𝑗⟩ 𝑗<𝜔 of systems 𝜑 𝑗 ∈ Sys(Π<𝜆) , as in (I)–(V) of Section 9. Here
each 𝜑 𝑗 ∈ Sys(Π<𝜆) is a map defined on a finite set |𝜑 𝑗 | ⊆ |Π<𝜆 | × 𝜔 such that if
⟨𝜉, 𝑘⟩ ∈ |𝜑 𝑗 | then 𝜑 𝑗 (𝜉, 𝑘) =

〈
𝑛
𝜑 𝑗

𝜉 𝑘
, 𝑇

𝜑 𝑗

𝜉 𝑘

〉
, where 𝑛𝜑 𝑗

𝜉 𝑘
< 𝜔 , 𝑇 𝜑 𝑗

𝜉 𝑘
∈ ⋃fin Π<𝜆 (𝜉) , and⋃fin Π<𝜆 (𝜉) consists of all finite unions of trees in Π<𝜆 (𝜉) , as in Subsection 9A.

To restrict ˘ to the domain ˛ = [0, ˛) , we let ˘�˛ = ⟨𝜑 𝑗�˛⟩ 𝑗<𝜔 , where 𝜑 𝑗�˛
is just the restriction of 𝜑 𝑗 to {⟨𝜉, 𝑘⟩ ∈ |𝜑 𝑗 | : 𝜉 < ˛} . Thus ˘�˛ is a 4-decreasing
sequence of systems 𝜑 𝑗�˛ in Sys(Π<𝜆�˛) . Moreover ˘�˛ is an 𝔐-generic sequence
by the product forcing theory, since ˘ itself is generic.

However 𝜺 is dense in Π<𝜆�˛ , see above, therefore Sys(𝜺) is dense in Sys(Π<𝜆�˛) .
It follows that the sequence ˘�˛ contains an infinite cofinal subsequence ˘′ =

⟨𝜑 𝑗𝑚�˛⟩𝑚<𝜔 of systems 𝜑 𝑗𝑚�˛ ∈ Sys(𝜺) , ˘′ is 𝔐-generic along with ˘�˛ by the
cofinality, and we have lim[˘′] = lim[˘�˛] =

⃗⃗ ⃗
Π(𝜆)�˛ since generally

⃗⃗ ⃗
Π(𝜆) =

lim[˘] .
Now consider the other half

⃗⃗⃗
𝜹 =
⃗⃗
𝝅 ≥˛ of the given sequence ⃗⃗𝝅 , and the according

multiforcing 𝜹 =
⋃cw
𝛼<𝜅

⃗⃗⃗
𝜹(𝛼) , where

⃗⃗⃗
𝜹(𝛼) =

⃗⃗
𝝅(𝛼)� [˛, 𝜔1) . Let ¯ be an arbitrary
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𝔐 [˘′]-generic and 4-decreasing sequence of systems 𝜓 𝑗 ∈ Sys(𝜹) , as above. Here
each 𝜓 𝑗 ∈ Sys(𝜹) is amapdefinedon a finite set |𝜓 𝑗 | ⊆ |𝜹 |×𝜔 such that if ⟨𝜉, 𝑘⟩ ∈ |𝜓 𝑗 |
then 𝜓 𝑗 (𝜉, 𝑘) =

〈
𝑛
𝜓𝑗

𝜉 𝑘
, 𝑇
𝜓𝑗

𝜉 𝑘

〉
, where 𝑛𝜓𝑗

𝜉 𝑘
< 𝜔 , 𝑇𝜓𝑗

𝜉 𝑘
∈ ⋃fin 𝜹(𝜉) , and the set ⋃fin 𝜹(𝜉)

consists of all finite unions of trees in 𝜹(𝜉) .
Note that | ⃗⃗𝜺 | ⊆ ˛ and |

⃗⃗⃗
𝜹 | ⊆ [˛, 𝜔1) are disjoint sets by construction. It follows

that if 𝑗 < 𝜔 then |𝜑 𝑗�˛| ∩ |𝜓 𝑗 | = ∅ , therefore the union 𝜗 𝑗 = (𝜑 𝑗�˛) ∪ 𝜓 𝑗 of
functions with disjoint domains is a system in Sys(𝝅) . Moreover ˆ = ⟨𝜗 𝑗⟩ 𝑗<𝜔 is a 4-
decreasing sequence of systems 𝜗 𝑗 ∈ Sys(𝝅) , and 𝔐-generic by the product forcing
theorem since ˘�˛ is 𝔐-generic while ¯ is 𝔐 [˘]-generic.

It follows from Theorem 10.1 that the according limit multiforcing ϙϙ = lim[ˆ] is
a small special multiforcing satisfying ⃗⃗𝝅(𝛼) @ ϙϙ for all 𝛼 < 𝜆 . We conclude that the
extended sequence

⃗⃗ ⃗⃗
ϙϙ =
⃗⃗
𝝅 a ϙϙ belongs to

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜅+1 ; note that ϙϙ =

⃗⃗ ⃗⃗
ϙϙ(𝜅) is the last term

of
⃗⃗ ⃗⃗
ϙϙ . Moreover, as the (<˛)-part of ˆ is equal to ˘�˛ , we have ϙϙ�˛ = lim[˘�˛] =⃗⃗ ⃗

Π(𝜅)�˛ . It follows that
⃗⃗ ⃗⃗
ϙϙ �<˛ ⊂

⃗⃗⃗
Π �<˛ .

Now let ⃗⃗𝝉 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF be any sequence with

⃗⃗ ⃗⃗
ϙϙ ⊆ ⃗⃗𝝉 . Suppose that 𝜉 ∈ | ⃗⃗𝝅 | . Then

the set 𝐷 𝜉 [
⃗⃗
𝝅] ∈ 𝔐 is open dense in MT(𝝅) below p because ⃗⃗𝝅 is an 25.1-type

sequence. Therefore the bigger set 𝑫 = 𝐷 𝜉 [
⃗⃗
𝝅] ∪ { 𝒑 ∈ MT(𝝅) : 𝒑⊥p} ∈ 𝔐

is simply open dense in MT(𝝅) . (Recall that ⊥ means incompatibility.) Therefore
𝝅 @𝑫 ϙϙ by Theorem 10.1(vii). It follows by Lemma 6.4 that 𝝅 @𝑫 𝝉≥𝜆 , where
𝝉≥𝜅 =

⋃cw
𝜅≤𝛼<dom( ⃗⃗𝝉)

⃗⃗
𝝉(𝛼) , and hence 𝑫 is pre-dense in MT(𝝅 ∪cw 𝝉≥𝜅 ) . However

MT( ⃗⃗𝝉) = MT(𝝅 ∪cw 𝝉≥𝜅 ) . Thus 𝑫 is pre-dense in MT( ⃗⃗𝝉) . We conclude that 𝐷 𝜉 [
⃗⃗
𝝅]

is pre-dense in MT( ⃗⃗𝝉) below p .
To prove the ‘therefore’ part of the theorem, let ⃗⃗𝝉 ∈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆+2 be the extension of

⃗⃗ ⃗⃗
ϙϙ

by the extra term ⃗⃗𝝉(𝜆 + 1) = 𝝉 . Let 𝜉 ∈ | ⃗⃗𝝅 | r ˛ . Assume that 𝒓 ∈ MT(𝝉) , 𝒓 6 p .
By the main part of the theorem, 𝒓 is compatible with some 𝒑 ∈ 𝐷 𝜉 [

⃗⃗
𝝅] in MT( ⃗⃗𝝉) , so

that there exists 𝒒 ∈ MT( ⃗⃗𝝉) with 𝒒 6 𝒑 and 𝒒 6 𝒓 . We may assume that 𝒒 belongs to
𝝉 (the top level of ⃗⃗𝝉 ).

Furthermore, as 𝒑 ∈ 𝐷 𝜉 [
⃗⃗
𝝅] , we have 𝒑 forc ⃗⃗𝝅 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) for an ordinal 𝜂 ∈

| ⃗⃗𝝅 | r ˛ . Then 𝒒 forc ⃗⃗𝝉 ˘(
•
𝒙𝜂 ,

•
𝒙 𝜉 , c) holds by Lemma 18.2 and 𝒒 forc𝝉 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c)

by Theorem 20.1 since 𝝉 is just the top term of ⃗⃗𝝉 . Thus 𝒒 ∈ 𝐷 𝜉 [
⃗⃗
𝝅] . �

Remark 26.2 In the context of Theorem 26.1, | ϙϙ| r ˛ ≠ ∅ . Indeed, by (i) of
Theorem 25.1, we have ˛ ∈ |𝝅0 | ⊆ |

⃗⃗
𝝅 | ⊆ | ϙϙ| . �

27 The non-existence claim, part IV, finalization

Arguing in L under the contrary Assumption 17.2, we proceed as follows.

(A) In L , pick an 25.1-type sequence ⃗⃗𝝅 ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆 , 𝜆 < 𝜔1 , by Lemma 25.1.

(B) Then, still in L , pick
⃗⃗ ⃗⃗
ϙϙ ∈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
MF 𝜆+1 by Theorem 26.1, so that ⃗⃗𝝅 ⊂

⃗⃗⃗⃗
ϙϙ , the multiforcing

ϙϙ =
⃗⃗ ⃗⃗
ϙϙ(𝜆) satisfies ϙϙ ∩ ˛ =

⃗⃗ ⃗
Π(𝜆) ∩ ˛ , and if 𝜉 ∈ | ⃗⃗𝝅 | r ˛ and 𝝉 ∈ spMF , ϙϙ @ 𝝉 ,

then 𝐷 𝜉 [𝝉] is dense in MT(𝝉) below p .

By Lemma 23.1, there is a refinement 𝝌 ∈ spMF ϙϙ @ 𝝌 , and ordinals 𝜈 > 𝜆 , and
„ , ˛ < „ < 𝜔1 , such that |𝝌 | ⊆ „ , 𝝌�˛ =

⃗⃗ ⃗
Π(𝜈)�˛ , and the permutation 𝒉1 [„] (see

2022/09/23 08:01



40 V. Kanovei and V. Lyubetsky

Section 23) acts so that the shifted multiforcing 𝝌∗ = 𝒉1 [„] · 𝝌 satisfies 𝝌∗ ⊆
⃗⃗⃗
Π(𝜈) .

We may note that

(C) 𝒉1 [„]p = p and 𝒉1 [„]c = c by the choice of ˛ in Section 17 and by the fact that
𝒉1 [„] is the identity on the domain [0, ˛) .

Accordingly let ϙϙ∗ = 𝒉1 [„] · ϙϙ ,
⃗⃗ ⃗⃗ ⃗⃗
ϙϙ∗ = 𝒉1 [„] ·

⃗⃗ ⃗⃗
ϙϙ , ⃗⃗ ⃗⃗ ⃗⃗𝝅∗ = 𝒉1 [„] ·

⃗⃗
𝝅 , so that

⃗⃗ ⃗⃗ ⃗⃗
ϙϙ∗ is an

extension of ⃗⃗ ⃗⃗ ⃗⃗𝝅∗ by ϙϙ∗ as the top element. Note that ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝝌∗ (𝜈) = 𝝌∗ .

Lemma 27.1 (in L) If 𝜉′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛ and 𝝉∗ ∈ spMF , 𝝌∗ @ 𝝉∗ , then

𝐷 𝜉 ′ [𝝉∗] = { 𝒑′ ∈ MT(𝝉∗) : ∃ 𝜂′ ∈ |
⃗⃗⃗⃗ ⃗⃗
𝝅∗ | r ˛

(
𝒑′ forc𝝉∗ ˘(

•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c)

)
}

is a dense set in MT(𝝉∗) below p .

Proof We argue in L. To prove the lemma we carefully explore the action of 𝒉1 [„]
on (B) above. The key argument will be

(D) 𝐷 𝜉 ′ [𝝉∗] = 𝒉1 [„] ”𝐷 𝜉 [𝝉] = {𝒉1 [„] · 𝒑 : 𝒑 ∈ 𝐷 𝜉 [𝝉] } .

To prove (D) suppose that 𝜉 ∈ | ⃗⃗𝝅 | r ˛ and 𝒑 ∈ 𝐷 𝜉 [𝝉] and show that 𝒑′ = 𝒉1 [„] · 𝒑
belongs to 𝐷 𝜉 ′ [𝝉∗] , where accordingly 𝜉′ = 𝒉1 [„] (𝜉) . (The inverse implication is sim-
ilar.) By definition there is an ordinal 𝜂 ∈ |𝝉 | r˛ such that 𝒑 forc𝝉 ˘(

•
𝒙𝜂 ,

•
𝒙 𝜉 , c) . Then

we have 𝒑′ forc𝝉∗ ˘(
•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c) by Theorem 21.1 and (C), where 𝜂′ = 𝒉1 [„] (𝜂) . This

completes the proof of (D).
Now to prove the lemma assume that 𝒒′ ∈ MT(𝝉∗) and 𝒒′ 6 p . Note that 𝒒′ =

𝒉1 [„] ·𝒒 , where 𝒒 = 𝒉1 [„] ·𝒒′ ∈ MT(𝝉) , because 𝒉1 [„] = 𝒉1 [„]−1 . In addition, 𝒒 6
p by (C). Therefore by (B) there exists 𝒑 ∈ 𝐷 𝜉 [𝝉] ⊆ MT(𝝉) , satisfying 𝒑 6 𝒒 . Finally
we put 𝒑′ = 𝒉1 [„] · 𝒑 ∈ MT(𝝉∗) , so that 𝒑′ 6 𝒒′ , and in addition 𝒑′ ∈ 𝐷 𝜉 ′ [𝝉∗] by
(D). �

The next lemma transfers the pre-density result to the key sequence
⃗⃗ ⃗
Π .

Recall that 𝒑 forc∞ 𝜑 means that 𝒑 forc ⃗⃗ ⃗⃗Π � 𝛼 𝜑 holds for some 𝛼 < 𝜔1 . (See just
before Proposition 22.3.)

Lemma 27.2 (in L) If 𝜉′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛ then the set

𝐷 𝜉 ′ = {𝒔 ∈ MT(
⃗⃗ ⃗
Π) : ∃ 𝜂′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛

(
𝒔 forc∞ ˘(

•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c)

)
}

is open dense in P = MT(
⃗⃗ ⃗
Π) below p .

Proof We argue in L. The openness follows from Lemma 18.2. To prove the density,
consider any 𝒑0 ∈ P , 𝒑0 6 p . We have to find an element 𝜂′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛ , and a
condition 𝒔 ∈ MT(

⃗⃗ ⃗
Π) = P such that 𝒔 6 𝒑0 and 𝒔 forc∞ ˘(

•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c) .

Since
⃗⃗ ⃗
Π is @-increasing, there is an ordinal 𝛾 > 𝜈 and a stronger condition

𝒑1 ∈ MT(
⃗⃗ ⃗
Π(𝛾)) , 𝒑1 6 𝒑0 . Let 𝝉∗ =

⃗⃗ ⃗
Π(𝛾) . Then 𝝌∗ ⊆

⃗⃗⃗
Π(𝜈) @

⃗⃗ ⃗
Π(𝛾) = 𝝉∗ ,

hence 𝝌∗ @ 𝝉∗ by Lemma 5.4. But 𝒑1 ∈ MT(𝝉∗) . By Lemma 27.1, there is a con-
dition 𝒑′ ∈ 𝐷 𝜉 ′ [𝝉∗] , 𝒑′ 6 𝒑1 . Then we have 𝒑′ forc𝝉∗ ˘(

•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c) for some
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𝜂′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛ , and then 𝒔 forc ⃗⃗ ⃗⃗Π � (𝛾+1) ˘(
•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c) by Theorem 20.1. By definition

this implies 𝒔 forc∞ ˘(
•
𝒙𝜂′ ,

•
𝒙 𝜉 ′ , c) , as required. �

Let ∥− be the P-forcing relation over L . It essentially coincides with the relation
forc∞ by Theorem 22.3. Therefore the lemma implies:

Corollary 27.3 (in L) If 𝜉′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛ then the set

Δ𝜉 ′ = {𝒔 ∈ MT(
⃗⃗ ⃗
Π) : ∃ 𝜂′ ∈ | ⃗⃗⃗⃗ ⃗⃗𝝅∗ | r ˛

(
𝒔 ∥− ˘( •𝒙𝜂′ [𝐺],

•
𝒙 𝜉 ′ [𝐺], c[𝐺])

)
}

is open dense in P below p . �

Nowwe are able to easily accomplish theproof ofTheorem17.1.Namely, as p ∈ 𝐺 ,
Corollary 27.3 implies that the set 𝑋 ′ = {𝑥𝜉 ′ [𝐺] : 𝜉′ ∈ |

⃗⃗⃗⃗ ⃗⃗
𝝅∗ | r ˛} (non-empty by

Remark 26.2) has no <c[𝐺 ]˘ -least element, which contradicts Assumption 17.2.
� (Theorem 17.1)

Combining this result with Theorem 16.1, already established above, we finalize the
proof of Theorem 1.1.

� (Theorem 1.1)

28 Conclusions and problems

In this study, the technique of finite-support products of Jensen’s forcing was employed
to the problem of obtaining a model of ZFC in which, for a given 𝑛 ≥ 3 , there exist
good well-orderings of the reals in the lightface class 𝛥1𝑛 , but no well-ordering of the
reals (not necessarily good) exists in the boldface class ∆1

𝑛−1 at the previous level. This
result (Theorem 1.1 of this paper) is an a significant strengthening of our previous result
in [32], in which the negative part conserned only lightface 𝛥1

𝑛−1 -good well-orderings.
This theorem continues our series of resent research such as

− a 𝛱 1
n E0-equivalence class containing no OD elements, while every countable 𝛴1

n-
set of reals contains only OD reals [27],

− a 𝛱 1
n real singleton {𝑎} such that 𝑎 codes a cofinal map 𝑓 : 𝜔→ 𝜔L

1 , while every
𝛴1
n set 𝑋 ⊆ 𝜔 is constructible and hence cannot code a cofinal map 𝜔→ 𝜔L

1 , [28],
− a non-ROD-uniformizable 𝛱 1

n set with countable cross-sections, while all Σ1
n sets

with countable cross-sections are ∆1
n+1 -uniformizable [29].

Theorem 1.1may also be a step towards solution of the following all-important problem
by S. D. Friedman [11, P. 209], [12, P. 602]: assuming the consistency of an inaccessible
cardinal, find amodel for a given 𝑛 in which all Σ1

𝑛 sets of reals are Lebesguemeasurable
and have the Baire and perfect set properties, but there is a ∆1

𝑛+1 well-ordering of the
reals.

From our study, it is concluded that the technique of definable generic inductive con-
structions of forcing notions in L , developed for Jensen-type product forcing in our
earlier papers [31, 30], succeeds to solve (by our Theorem 1.1) another descriptive set
theoretic problem of the same kind.
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From the result of Theorem 1.1, we come to the following problems.

Problem 28.1 Prove that it holds in themodel L[𝐺] of Section 15 that there is no bold-
face ∆1

n−1 well-ordering of a set of reals, whose domain includes uncountablymany reals
of the form 𝑥𝜉 [𝐺] , 𝜉 < 𝜔1 . (See Definition 15.1.)

Problem 28.2 Prove a version of Theorem 1.1 with the additional requirement that
the negation 2ℵ0 > ℵ1 of the continuum hypothesis holds in the generic extension
considered.

The model for Theorem 1.1 introduced in Section 15 (the key model) definitely sat-
isfies the continuum hypothesis 2ℵ0 = ℵ1 . The problem of obtaining models of ZFC
in which 2ℵ0 > ℵ1 and there is a projective well-ordering of the real line, has been
known since the early years of modern set theory. See, e. g., problem 3214 in an early
survey [35] by Mathias. Harrington [19] solved this problem by constructing a generic
model of ZFC , in which 2ℵ0 > ℵ1 and there is a 𝛥13 well-ordering of the continuum.
This model involves various forcing notions like the almost-disjoint forcing [21] and a
forcing notion by Jensen and Johnsbråten [23].
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4 on systems, 13
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Goedel wellordering 6L , 22
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permutation
action, 31
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PERM, 31
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•
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non-principal over/at, 11
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c[𝐺] , 10
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𝐾c
𝑛 , 10

𝐾c
𝑛𝑖 , 10

𝐾c
𝑛↑𝝅 , 10

reals
principal generic reals, 𝑥𝜉 [𝐺] , 7

refinement
𝔐-generic, 14
arboreal forcings, 7
multiforcings, 8
𝑃 @𝐷 𝑄 , 8
𝑃 @ 𝑄 , 7
𝝅 @c ϙϙ , 11
𝝅 @ ϙϙ , 8
𝝅 @𝑫 ϙϙ , 9
𝝅 @c

𝜉
ϙϙ , 11

𝝅 @@𝔐 ϙϙ , 19
𝝅 @@∗

𝔐
ϙϙ , 19

seals, 8
lim[˘] , 14
Q˘
𝜉
, 14

regular, 6

regular forcing, 5

seals, 8, 9, 11
sequence

extension, ⃗⃗𝝅 ⊆
⃗⃗⃗⃗
ϙϙ , 20

extension, ⃗⃗𝝅 ⊂
⃗⃗⃗⃗
ϙϙ , 20

key sequence
⃗⃗ ⃗⃗
Π , 23

𝔐-extension, ⃗⃗𝝅 ⊂𝔐
⃗⃗ ⃗⃗
ϙϙ , 20

𝔐-extension, ⃗⃗𝝅 ⊂∗
𝔐

⃗⃗ ⃗⃗
ϙϙ , 20

set
𝑫 (c, 𝑄, 𝝅) , 11
dense, 7
𝑫𝝅
𝜉
(c) , 11

𝑫
|𝒖 |
𝒒 , 9

FORC[𝐾] , 30
hereditarily countable, HC , 14
open dense, 7
pre-dense, 7
Sys(𝝅) , of all 𝝅-systems, 13

sets Υn (𝑝) , 21
small, 6
special, 6
special forcing, 5
system

Sys(𝝅) , all 𝝅-systems, 13
𝔐-generic sequence, 14
𝝅-system, 13

𝛾-tail, 30
theory

ZFC−1 , 13
ZFL– , 21

tree
antichain of trees, 5
compatible trees, 5
incompatible trees, 𝑆⊥𝑇 , 5
𝑸˘
𝜉 𝑘

, 14
tuple, 4

universal formula, un𝑚 (𝑝, 𝑥) , 21

⊥ , incompatibility, 5
̸⊥ , compatibility, 5
⊆fin , 9
⊆fin ∨

, 9
⊆fin ⋃

, 7
⊂𝔐 , 20
⊂∗
𝔐
, 20⋃cw ⃗⃗𝝅 , componentwise union, 7⋃fin 𝑃 , finite union closure, 5
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AF , arboreal forcing, 5
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C , 23
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𝜉
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forc , 28
FORC[𝐾] , 30
forc𝛼 , 32
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