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Abstract.We consider the structures of the plane-line and point-line incidence ma-
trices of the projective space PG(3, q) connected with orbits of planes, points, and lines
under the stabilizer group of the twisted cubic. In the literature, lines are partitioned
into classes, each of which is a union of line orbits. In this paper, for all q, even and odd,
we determine the incidence matrices connected with a family of orbits of the class named
O6. This class contains lines external to the twisted cubic. The considered family include
an essential part of all O6 orbits, whose complete classification is an open problem.

Keywords: Twisted cubic, Projective space, Incidence matrix, Line class O6

Mathematics Subject Classification (2010). 05B25, 05E18, 51E20, 51E21, 51E22

1 Introduction

Let Fq be the Galois field with q elements, F∗
q = Fq \ {0}, F+

q = Fq ∪ {∞}.
In the N -dimensional projective space PG(N, q) over Fq, an n-arc is a set of n points

such that no N + 1 points belong to the same hyperplane.
In PG(N, q) a normal rational curve is any (q + 1)-arc projectively equivalent to the

point set {(tN , tN−1, . . . , t2, t, 1)|t ∈ F
+
q }, named twisted cubic for N = 3; see [26].

∗The research of S. Marcugini and F. Pambianco was supported in part by the Italian National
Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) (Contract
No. U-UFMBAZ-2019-000160, 11.02.2019) and by University of Perugia (Project No. 98751: Strutture
Geometriche, Combinatoria e loro Applicazioni, Base Research Fund 2017-2019).
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The twisted cubic has many interesting properties and is connected with distinct
combinatorial and applied problems, which led this curve to be widely studied, see for
instance [4, 6, 7, 9–11, 23, 26, 29, 32] and the references therein.

Of particular interest is to consider the action of the stabilizer group Gq
∼= PGL(2, q)

of the twisted cubic on points, lines, planes of PG(3,q) and the determination of their
related incidence matrices. The investigations, based on the known classification of the
point and plane orbits of Gq given in [26], were started by D. Bartoli and the present
authors in 2020 [2]: the point-plane incidence matrix is determined and applied in coding
theory obtaining optimal multiple covering codes. The results in [2] are also useful to
classify the cosets of the [q + 1, q − 3, 5]q3 generalized doubly-extended Reed-Solomon
code of codimension 4 through their weight distributions [17].

For the study of plane-line and point-line incidence matrices a description of line orbits
under Gq is useful. In [26], a partition of the lines in PG(3,q) into classes is given, each
of which is a union of line orbits under Gq. In [15, 16, 20] we have determined both the
number and the structure of the orbits forming those unions, apart from one class denoted
by O6, containing lines external to the twisted cubic that are not its chords or axes and
do not lie in its osculating planes. Basing on the results of [15, 16, 20], in [14, 18, 19] the
plane-line and point-line incidence matrices connected with orbits of all line classes apart
from O6 were obtained. For O6 some average and cumulative values are calculated.

The above results have attracted attention, and motivated some investigation using
different techniques in [3, 24] and in the recent paper [8]. In particular, in [3] (for all
q ≥ 23) and in [24] (for finite fields of characteristic > 3) line orbits (without those from
O6) are obtained by other methods than in [15, 16, 20]. Also, in [24] incidence matrices
connected with the described line orbits are given. In [8], for even q = 2n, n ≥ 3 the
(q + 1)-arc A = {(1, t, t2h, t2h+1)|t ∈ F

+
q } ⊂ PG(3, q) with gcd(n, h) = 1 (it is the twisted

cubic for h = 1), has been considered; it is shown that the orbits of points and of planes
under the projective stabilizer Gh of A are similar to those under G1 described in [26];
moreover, the point-plane incidence matrix with respect to Gh-orbits mirrors the case h=1
described in [2]. In [8], it is also proved that for even q, q ≡ ξ (mod 3), ξ ∈ {1,−1}, Gh

has 2q+7+ ξ orbits on lines, providing a proof of a conjecture of ours [15,20, Conjecture
8.2] in the case even q. Also, in [8], the point-line incidence matrix for even q is given.

The class O6 is the most complicated since the number of orbits it contains depends
on q, whereas the remaining seven classes contain at most three orbits.

Recently, for all even and odd q, we have determined a family F of orbits of this class
O6; see [21]. The orbits of the family depend on a parameter running over F∗

q. Also, there
is once more special orbit with another description. The family F includes an essential
part of all O6 orbits, whose complete classification remains an open problem.

In this paper, using the properties of the family F from [21], we determine all the
incidence matrices connected with F and the special orbit. For plane-line incidence
matrices we obtain the numbers of distinct planes through distinct lines and, conversely,
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the numbers of distinct lines lying in distinct planes. (By “distinct planes” we mean
“planes from distinct orbits”, and similarly for points and lines.) For point-line incidence
matrices we obtain the numbers of distinct lines through distinct points and, vice versa,
the numbers of distinct points lying on distinct lines. To obtain the needed numbers
we prove relations connecting them based on the general properties of O6, see Section 3.
Then, using the properties of F , we consider intersections of lines generating orbits of
F with distinct lines and planes. This gives rise to some cubic and quartic equations,
the numbers of solutions of which is equal to parameters of the incidence matrices, see
Sections 4, 5. Formulas for the numbers of solutions are described.

The incidence submatrices considered in this paper are configurations in the sense
of [25], see Definition 2.4 in Section 2.2. They do not contain 2 × 2 submatrices whose
entries are 1. The interest for such matrices is, for example, in the classical Zarankiewicz
problem, see [22,30,31], or in the construction of low-density parity-check (LDPC) codes,
whose corresponding bipartite graph codes are free from the so-called 4-cycles [1, 13, 28].

The paper is organized as follows. Section 2 contains preliminaries. including the
description of F , see Section 2.3. Some useful relations are given in Section 3. The inci-
dence matrices and needed cubic equations for the special orbit are obtained in Section 4.
In Section 5, we consider intersections of lines generating orbits of F given parametri-
cally with distinct lines and planes and form the needed cubic and quartic equations. In
Sections 6, 7, and 8, the incidence matrices, respectively, for even q, odd q 6≡ 0 (mod 3),
and q ≡ 0 (mod 3), are obtained.

2 Preliminaries

2.1 Twisted cubic

We summarize the results on the twisted cubic of [26] useful in this paper.
Let P(x0, x1, x2, x3) be a point of PG(3, q) with homogeneous coordinates xi ∈ Fq. For

t ∈ F
+
q , let P (t) be a point such that

P (t) = P(t3, t2, t, 1) if t ∈ Fq; P (∞) = P(1, 0, 0, 0). (2.1)

Let C ⊂ PG(3, q) be the twisted cubic consisting of q + 1 points P1, . . . , Pq+1 no four
of which are coplanar. We consider C in the canonical form

C = {P1, P2, . . . , Pq+1} = {P (t) | t ∈ F
+
q }. (2.2)

A chord of C is a line through a pair of real points of C or a pair of complex conjugate
points. In the last case it is an imaginary chord. If the real points are distinct, it is a
real chord ; if they coincide with each other, it is a tangent. Let Tt be the tangent to C at
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P (t); Tt has a coordinate vector

Ltang
t = (t4, 2t3, 3t2, t2,−2t, 1), t ∈ Fq; Ltang

∞ = (1, 0, 0, 0, 0, 0). (2.3)

Let π(c0, c1, c2, c3) ⊂ PG(3, q), be the plane with equation

c0x0 + c1x1 + c2x2 + c3x3 = 0, ci ∈ Fq. (2.4)

The osculating plane in the point P (t) ∈ C is as follows:

πosc(t) = π(1,−3t, 3t2,−t3) if t ∈ Fq; πosc(∞) = π(0, 0, 0, 1). (2.5)

The q + 1 osculating planes form the osculating developable Γ to C , that is a pencil of
planes for q ≡ 0 (mod 3) or a cubic developable for q 6≡ 0 (mod 3).

An axis of Γ is a line of PG(3, q) which is the intersection of a pair of real planes or
complex conjugate planes of Γ. In the last case it is an imaginary axis. If the real planes
are distinct it is a real axis ; if they coincide with each other, it is a tangent to C .

For q 6≡ 0 (mod 3), the null polarity A [27, Sections 2.1.5, 5.3], [26, Theorem 21.1.2]
is given by

P(x0, x1, x2, x3)A = π(x3,−3x2, 3x1,−x0). (2.6)

Notation 2.1. Throughout the paper, we consider q ≡ ξ (mod 3) with ξ ∈ {−1, 0, 1}.
Many values depend on ξ or have sense only for specific ξ. If it is not clear by the context,
we note this by remarks. The following notation is used.

Gq the group of projectivities in PG(3, q) fixing C ;

Atr the transposed matrix of A;

#S the cardinality of a set S;

AB the line through the points A and B;

, the sign “equality by definition”.

Types π of planes:

Γ-plane an osculating plane of Γ;

dC -plane a plane containing exactly dC distinct points of C , dC ∈ {0, 2, 3};
1C -plane a plane not in Γ containing exactly 1 point of C ;

P the list of possible types π of planes, P , {Γ, 2C , 3C , 1C , 0C};
π-plane a plane of the type π ∈ P.

Types p of points with respect to the twisted cubic C :

C -point a point of C ;
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µΓ-point a point off C lying on exactly µ distinct osculating planes,

µΓ ∈ {0Γ, 1Γ, 3Γ} for ξ 6= 0, µΓ ∈ {(q + 1)Γ} for ξ = 0;

T-point a point off C on a tangent to C for ξ 6= 0;

TO-point a point off C on a tangent and one osculating plane for ξ = 0;

RC-point a point off C on a real chord;

IC-point a point on an imaginary chord (it is always off C );

M the list of possible types p of points,

M , {C , 0Γ, 1Γ, 3Γ,T,RC, IC} for ξ 6= 0,

M , {C , (q + 1)Γ,TO,RC, IC} for ξ = 0;

p-point a point of the type p ∈ M.

Orbits under Gq:

Nπ the orbit of π-planes under Gq, π ∈ P;

Mp the orbit of p-points under Gq, p ∈ M;

EnΓ-line a line, external to the cubic C , not in osculating planes,

that is neither a chord nor an axis;

O6 = OEnΓ the union (class) of all orbits of EnΓ-lines.

Remark 2.2. The words “nor an axis” are included to the definition of EnΓ-line by the
context of [26, Lemma 21.1.4].

The following theorem summarizes the results from [26] useful in this paper.

Theorem 2.3. [26, Chapter 21] The following properties of the twisted cubic C of (2.2)
hold:

(i) The group Gq acts triply transitively on C ; Gq
∼= PGL(2, q) for q ≥ 5.

The matrix M corresponding to a projectivity of Gq has the general form

M =




a3 a2c ac2 c3

3a2b a2d+ 2abc bc2 + 2acd 3c2d
3ab2 b2c+ 2abd ad2 + 2bcd 3cd2

b3 b2d bd2 d3


 , a, b, c, d ∈ Fq, ad− bc 6= 0. (2.7)

(ii) Under Gq, q ≥ 5, there are the following five orbits Nπ of planes:

N1 = NΓ = {Γ-planes}, #NΓ = q + 1; N2 = N2C
= {2C -planes}, #N2C

= q2 + q;

N3 = N3C
= {3C -planes}, #N3C

= (q3 − q)/6; N4 = N1C
= {1C -planes},
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#N1C
= (q3 − q)/2; N5 = N0C

= {0C -planes}, #N0C
= (q3 − q)/3.

(iii) For q 6≡ 0 (mod 3), there are the following five orbits Mj of points:

M1 = MC = {C -points}, M2 = MT = {T-points}, M3 = M3Γ = {3Γ-points},
M4 = M1Γ = {1Γ-points}, M5 = M0Γ = {0Γ-points}.
For q ≡ 1 (mod 3), M3Γ ∪ M0Γ = {RC-points}, M1Γ = {IC-points};
for q ≡ −1 (mod 3), M3Γ ∪ M0Γ = {IC-points}, M1Γ = {RC-points}.
MjA = Nj , #Mj = #Nj, j = 1, . . . , 5;

MCA = NΓ, MTA = N2C
, M3ΓA = N3C

, M1ΓA = N1C
, M0ΓA = N0C

. (2.8)

(iv) For q ≡ 0 (mod 3), the are the following five orbits Mj of points:

M1 = MC = {C -points}, M2 = M(q+1)Γ = {(q + 1)Γ-points},
#MC = #M(q+1)Γ = q + 1; M3 = MTO = {TO-points}, #MTO = q2 − 1;

M4 = MRC = {RC-points}, M5 = MIC = {IC-points},
#MRC = #MIC = (q3 − q)/2.

(v) The lines of PG(3, q) can be partitioned into classes called Oi and O′
i = OiA, each of

which is a union of orbits under Gq. The full list of the classes can be found in [26,
Lemma 21.1.4]. In particular, for all q, there is the class O6 = OEnΓ = {EnΓ-lines},
#O6 = #OEnΓ = (q2 − q)(q2 − 1). If q 6≡ 0 (mod 3), we have O6 = O′

6 = O6A.

2.2 J2-free matrices and configurations

We denote by J2 =

[
1 1
1 1

]
the 2×2 matrix consisting of all ones. A 01-matrix not con-

taining the submatrices J2 is called a J2-free matrix. Designs 2-(v, k, 1) and configurations
are important examples of J2-free matrices.

Definition 2.4. [25] A configuration (vr, bk) is an incidence structure of v points and b
lines such that each line contains k points, each point lies on r lines, and two different
points are connected by at most one line. If v = b and, hence, r = k, the configuration is
symmetric, denoted by vk.

For an introduction to configurations see [12, 25] and the references therein.
J2-free matrices are known to be of interest, for instance, in the classical Zarankiewicz

problem, see [22, 30, 31], but also in a recent application to the low-density parity-check
(LDPC) codes, i.e. error correcting codes with a strongly sparse parity check matrix.
The absence of the submatrices J2 allows to avoid the 4-cycles in the bipartite graphs
corresponding to the codes, see e.g. [1, 13, 28] and the references therein.
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2.3 The known orbits of EnΓ-lines from class O6 = OEnΓ

In this subsection we give results from [21] useful in this paper.

2.3.1 An orbit OL

Let Qβ and Q∞ be the points: Qβ = P(1, 0, β, 1), β ∈ Fq; Q∞ = P(0, 0, 1, 0). We consider
the line ℓL = Q0Q∞ through the points Qβ and Q∞. We have

ℓL = P(1, 0, 0, 1)P(0, 0, 1, 0) = {P(0, 0, 1, 0),P(1, 0, β, 1) |β ∈ Fq}. (2.9)

Let OL be the orbit of ℓL under Gq.

Theorem 2.5. [21, Theorem 3.5]

(i) For q 6≡ 0 (mod 3), we have OL ⊂ O6 = OEnΓ, i.e. the lines of OL are EnΓ-lines.

(ii) Let q ≡ ξ (mod 3). The orbit OL has size

#OL =





(q3 − q)/3 if ξ = 1, q is even or 2 is a non-cube in Fq;
(q3 − q)/12 if ξ = 1, q is odd and 2 is a cube in Fq;
q3 − q if ξ = −1, q is even;
(q3 − q)/2 if ξ = −1, q is odd.

(2.10)

2.3.2 Orbits Oµ, µ ∈ F
∗
q \ {1, 1/9}

Let Rµ,γ be the point:
Rµ,γ = P(γ, µ, γ, 1), γ ∈ F

+
q ; Rµ,0 = P(0, µ, 0, 1), Rµ,∞ = P(1, 0, 1, 0),

µ ∈
{

F
∗
q \ {1} if q is even or q ≡ 0 (mod 3)

F
∗
q \ {1, 1/9} if q is odd and q 6≡ 0 (mod 3)

. (2.11)

We consider the line ℓµ = Rµ,0Rµ,∞ through Rµ,0 and Rµ,∞.

ℓµ = P(0, µ, 0, 1)P(1, 0, 1, 0) = {P(γ, µ, γ, 1)|γ ∈ F
+
q , µ is fixed}. (2.12)

Let Oµ be the orbit of ℓµ under Gq.

Theorem 2.6. [21, Lemma 4.2, Theorems 3.5, 5.2, 6.3]

(i) We have Rµ,γ /∈ π
osc

(∞), γ ∈ Fq.

(ii) For all q ≥ 5, we have Oµ ⊂ O6 = OEnΓ, i.e. the lines of Oµ are EnΓ-lines.
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(iii) Let q ≡ ξ (mod 3). Let the condition Υq,µ be of the form

Υq,µ : µ = −1/3, q ≡ 1 (mod 12), 1/3 is a fourth power. (2.13)

The orbit Oµ has size

#Oµ =





(q3 − q)/2 if q is even or µ is a non-square in Fq;
(q3 − q)/4 if µ is a square in Fq and ξ = 0;
(q3 − q)/4 if q is odd, µ is a square in Fq, ξ 6= 0,

Υq,µ does not hold;
(q3 − q)/12 if q is odd, ξ 6= 0,Υq,µ holds.

(2.14)

3 Useful relations

Notation 3.1. In addition to Notation 2.1, for π ∈ P, p ∈ M, and an orbit O of
EnΓ-lines, the following notation is used:

Ππ the number of π-planes through a line from the orbit O ;

Λπ the number of lines from the orbit O in a π-plane;

Pp the number of p-points on a line from the orbit O ;

Lp the number of lines from the orbit O through a p-point.

From now on, when we use the notations and the results of this section, as the line-
orbit O we consider the orbit OL or Oµ, see Section 2.3.2. The situation will be clear by
the context.

Also, from now on, we consider q ≥ 5.
The following lemma is obvious, see also [18, Lemma 4.1, Corollary 4.2], [19, Lemma 4.1].

Lemma 3.2. (i) The number of lines from an orbit O in a plane of an orbit Nπ is
the same for all planes of Nπ; conversely, the number of planes from the orbit Nπ

through a line of the orbit O is the same for all lines of O.

(ii) The number of lines from an orbit O through a point of an orbit Mp is the same for
all points of Mp. And, vice versa, the number of points from the orbit Mp on a line
of the orbit O is the same for all lines of O.

(iii)

Ππ =
Λπ ·#Nπ

#O
, Pp =

Lp ·#Mp

#O
; (3.1)

Λπ =
Ππ ·#O

#Nπ

, Lp =
Pp ·#O

#Mp

. (3.2)
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Let ℓ be a line. Let Ππ(ℓ) be the number of π-planes through ℓ, π ∈ P. Let Pp(ℓ) is
the number of p-points on ℓ, p ∈ M.

Lemma 3.3. (i) For all q ≥ 5, the union of q + 1 Γ-planes and q2 + q 2C -planes can be
partitioned into q+1 pencils of planes such that each pencil consists of one Γ-plane
and q 2C -planes and the axis of the pencil is a tangent to C .

(ii) For all q ≥ 5, among EnΓ-lines, only lines lying in 2C -planes can intersect tangents.
If q 6≡ 0 (mod 3), EnΓ-lines lying in 2C -planes intersect tangents in T-points. If
q ≡ 0 (mod 3), EnΓ-lines lying in 2C -planes intersect tangents in TO-points.

(iii) Let ℓ be an EnΓ-line. Then PT(ℓ) = Π2C
(ℓ) if q 6≡ 0 (mod 3) and PTO(ℓ) = Π2C

(ℓ)
if q ≡ 0 (mod 3).

Proof. (i) By [19, Table 1], there is one tangent in every 2C -plane and, conversely, there
are q 2C -planes through each tangent; in addition, there is one tangent in every
Γ-plane and, vice versa, there is one Γ-plane through each tangent.

(ii) By definition, an EnΓ-line does not belong to a Γ-plane and does not contain a C -
point. Also, we take into account the case (i) and the fact that, for q ≡ 0 (mod 3),
Γ-planes form a pencil whose axis can intersect only lines lying in a Γ-plane.

(iii) We take into account the cases (i) and (ii) and their proofs. Also, by [19, Proposition
5.6], for a real chord RC and the two Γ-planes in its common points with C , the
following holds: every 2C -plane through RC intersects one of these Γ-planes in
its tangent and the other in a non-tangent unisecant. The above means that the
2C -planes through an ℓµ-line and the tangents intersecting it complete the set of
2C -planes containing this line.

Proposition 3.4. For any orbit O of EnΓ-lines the following holds.

ΠΓ = ΛΓ = PC = LC = 0, for all q. (3.3)

PT = Π2C
if q 6≡ 0 (mod 3); PTO = Π2C

if q ≡ 0 (mod 3). (3.4)

Proof. The assertions follows from the definition of EnΓ-lines and Lemmas 3.2, 3.3.

For q 6≡ 0 (mod 3), we denote ℓ̃ = ℓA the image of a line ℓ = P1P2 such that ℓA =
P1A∩P2A where P1, P2 are two distinct points of ℓ and P1A, P2A are planes. Obviously,
ℓ = ℓ̃A. By Theorem 2.3(iii), including (2.8), we have the following lemma.

Lemma 3.5. Let q 6≡ 0 (mod 3). The following holds:

Π2C
(ℓ̃) = PT(ℓ), Π3C

(ℓ̃) = P3Γ(ℓ), Π1C
(ℓ̃) = P1Γ(ℓ), Π0C

(ℓ̃) = P0Γ(ℓ).

Lemma 3.6. Let ℓ be an EnΓ-line. Let ℓ̃ = ℓA. Then ℓ = ℓ̃A and

Π1C
(ℓ) + 2Π2C

(ℓ) + 3Π3C
(ℓ) = q + 1, for all q; (3.5)
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Π1C
(ℓ̃) + 2Π2C

(ℓ̃) + 3Π3C
(ℓ̃) = q + 1, q 6≡ 0 (mod 3); (3.6)

P1Γ(ℓ) + 2PT(ℓ) + 3P3Γ(ℓ) = q + 1, q 6≡ 0 (mod 3); (3.7)

P1Γ(ℓ̃) + 2PT(ℓ̃) + 3P3Γ(ℓ̃) = q + 1, q 6≡ 0 (mod 3). (3.8)

Proof. As ℓ is external with respect to C we may use [19, Theorem 4.3]. Then we apply

(3.3) and obtain (3.5). As ℓ̃ also is an EnΓ-line, (3.6) can be obtained similarly.
Then on (3.6) we act by the null-polarity A, taking into account that ℓAA = ℓ and

applying Lemma 3.5, that implies (3.7). Finally, we act by A on (3.5) and obtain (3.8).

Proposition 3.7. For an orbit O the following holds.

Π1C
+ 2Π2C

+ 3Π3C
= q + 1, for all q (3.9)

Π0C
= Π2C

+ 2Π3C
, for all q; (3.10)

P1Γ + 2PT + 3P3Γ = q + 1, q 6≡ 0 (mod 3), (3.11)

P0Γ = PT + 2P3Γ , q 6≡ 0 (mod 3). (3.12)

Proof. We use (3.3) and Lemma 3.2(i)(ii), that gives (3.9) and (3.11). Then we again
apply (3.3) and the facts that there are q + 1 planes through a line and q + 1 points on a
line. This gives (3.10) and (3.12).

4 The point-line and plane-line incidence submatri-

ces for the orbit OL, q 6≡ 0 (mod 3)

In this section q 6≡ 0 (mod 3). We consider the line ℓL and its orbit OL, see Section 2.3.1.
When we use the notations and the results of Section 3, we take OL as the line orbit O .

Lemma 4.1. For q 6≡ 0 (mod 3), every T-point lies in exactly two osculating planes.

Proof. The assertion follows from [2, Table 1].

Lemma 4.2. Let the point Qβ = P(1, 0, β, 1) lie in an osculating plane π
osc

(t), t ∈ Fq.
Then the values of β and t satisfy the following cubic equation

Fβ(t) = t3 − 3βt2 − 1 = 0, β, t ∈ Fq. (4.1)

Proof. By (2.5), πosc(t) = π(1,−3t, 3t2,−t3), t ∈ Fq.

We denote by Vm the number of β ∈ Fq such that the cubic equation Fβ(t) (4.1) has
exactly m distinct solutions t in Fq, m = 0, 1, 2, 3.
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Lemma 4.3. For the orbit OL, the following holds.

PT = V2 + 1, P1Γ = V1. (4.2)

Proof. By Lemma 4.2, if, for a fixed β, the equation Fβ(t) (4.1) has exactly m distinct
solutions t in Fq then the point Qβ belongs to exactly m distinct osculating planes. So,
the line ℓL \ {Q∞} contains Vm points belonging to exactly m distinct osculating planes.
In particular, if m = 2, they are T-points, see Lemma 4.1.

Also, Q∞ lies on the tangent to C at the point P(0, 0, 0, 1) with equations x0 = x1 = 0,
see [20, Lemma 5.2]. So, Q∞ is a T-point.

Remind that over Fq, the equation x3 = c has a unique solution if q ≡ −1 (mod 3) or
three distinct solutions if q ≡ 1 (mod 3) [27, Section 1.5].

For a ∈ Fq, the quadratic character η(a) is equal to 1 (resp. -1) if a is a square (resp.
non-square) in F

∗
q. Also, η(0) = 0. We denote

Nq , #{β | η(1 + 4β3) = −1, β ∈ Fq}.

Lemma 4.4. Let q be odd. Let q ≡ ξ (mod 3). For the orbit OL, we have

(i) V2 = 1, V1 = (q − 1)/2, if ξ = −1;

(ii) V2 = 0, V1 = Nq, if ξ = 1, 2 is a non-cube in Fq;

(iii)V2 = 3, V1 = Nq, if ξ = 1, 2 is a cube in Fq.

Proof. Let the discriminant ∆ and the Hessian H(T ) of the equation Fβ(t) (4.1) be as
in [27, Section 1.8, Lemma 1.18, Theorem 1.28]. We have ∆ = −27(1 + 4β3), H(T ) =
β2T 2 + T − β = 0, β ∈ Fq. The roots of H(T ) are T = (−1 ±

√
1 + 4β3)/2β2.

For the calculation of Vm we use [27, Theorem 1.34, Table 1.3].
(i) Let ∆ = 0. Then β = 3

√
−1/4 and Fβ(t) has exactly two distinct roots: −β and

−2β. This implies V2 = 1.
Let ∆ 6= 0. Then β 6= 3

√
−1/4. If β runs over F∗

q \ 3

√
−1/4 the value 1+ 4β3 runs over

F
∗
q \ {1} where there are exactly (q − 3)/2 squares for which H(T ) has two solutions in

Fq and Fβ(t) has one solution in Fq. This gives V1 = (q− 3)/2+ 1 where “+1” takes into
account β = 0 when Fβ(t) has the unique root t = 1.

(ii) As −1/4 is a non-cube in Fq, always ∆ 6= 0 that implies V2 = 0. If β runs over F∗
q

the value 1 + 4β3 takes Nq non-squares for which H(T ) has no solutions in Fq and Fβ(t)
has exactly one solution in Fq. Thus, V1 = Nq as Fβ(t) has 3 distinct roots if β = 0.

(iii) Let ∆ = 0. Then β = 3

√
−1/4 = {β1, β2, β3}. For every i, Fβi

(t) has two distinct
roots that gives V2 = 3. Let ∆ 6= 0. Similarly to the case (ii) we obtain V1 = Nq.

For even q, let Tr2(a) be the absolute trace of a ∈ Fq. We denote

Tq , #{β |Tr2(β3) = 1, β ∈ Fq, q = 22m}.
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By the context of [8, Section 4],

Tq = 22m−1 + (−2)m =
1

2
q + (−1)m

√
q, q = 22m. (4.3)

Lemma 4.5. Let q be even. Let q ≡ ξ (mod 3). For the orbit OL, we have

(i) V2 = 0, V1 = q/2, if q = 22m+1, ξ = −1;

(ii) V2 = 0, V1 = Tq, if q = 22m, ξ = 1.

Proof. For even q, Fβ(t) = t3 + βt2 + 1 = 0, H(T ) = β2T 2 + T + β = 0, ∆ 6= 0. The
replacement T by T/β2 implies H(T ) , T 2 + T + β3 = 0. By [27, Sections 1.2(iv), 1.4],
H(T ) has 2 (resp. 0) roots in Fq if Tr2(β

3) = 0 (resp. Tr2(β
3) = 1).

For the calculation of Vm we use [27, Theorem 1.34]. As ∆ 6= 0, we have V2 = 0.
(i) If β runs over F

∗
q then Tr2(β

3) is equal to 0 (q − 2)/2 times, H(T ) (and hence
H(T )) has two roots in Fq, and Fβ(t) has one root in Fq. So, V1 = (q − 2)/2 + 1 where
“+1” takes into account that F0(t) has one root in Fq.

(ii) If β runs over F
∗
q then Tr2(β

3) is equal to 1 Tq times, H(T ) has no roots in Fq,
and Fβ(t) has one root in Fq. So, V1 = Tq as F0(t) has 3 distinct roots in Fq.

Lemma 4.6. Let q 6≡ 0 (mod 3). We have L = LA.
Proof. We have LA = Q0A∩Q∞A = π(1, 0, 0, 1)∩π(0,−3, 0, 0). One sees that Q0, Q∞ ∈
π(1, 0, 0, 1) and Q0, Q∞ ∈ π(0,−3, 0, 0); this implies Q0, Q∞ ∈ LA.

For the point type p ∈ {T, 3Γ, 1Γ, 0Γ}, let π(p) be the plane type such that MpA =
Nπ(p) in accordance to (2.8). We have

π(T) = 2C , π(3Γ) = 3C , π(1Γ) = 1C , π(0Γ) = 0C . (4.4)

Theorem 4.7. For the submatrices of the point-line and plane-line incidence matrices
with respect to the orbit OL, the values Pp, Ππ, Lp, and Λπ (see Notation 3.1), are as in
Table 1 and (3.3). In that, Pp = Ππ(p) and Lp = Λπ(p) with π(p) in accordance to (4.4).
The sizes of orbits #Mp = #Nπ(p) are noted in the top of columns.

Proof. We obtain the values of PT and P1Γ using (4.3) and Lemmas 4.3–4.5. Then we
calculate P3Γ by (3.11), P0Γ by (3.12), and all Lp by (3.2). To prove Pp = Ππ(p) and
Lp = Λπ(p) , we use Theorem 2.3(iii) and Lemmas 3.5, 4.6.

Example 4.8. Let q ≡ 1 (mod 3). Let q be odd. By computer search, using the system
MAGMA [5], we obtained Table 2 where one can do the following observations. We denote
δq = 2Nq − q. In Table 2, δq is odd, δq ≡ −1 (mod 3). Let q′ ≡ q′′ (mod 9); for both q′

and q′′ 2 is a cube or a non-cube. Then δ′q ≡ δ′′q (mod 9).
In the bottom part of Table 2 (where 2 is a cube in Fq) all the values of Nq are even

providing integer values in Table 1.
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Table 1: Values Pp = Ππ(p) (the number of p-points on a line from OL=the number of
π(p)-planes through a line from OL, top entry) and Lp = Λπ(p) (the number of lines from
OL through a p-point=the number of lines from OL in a π(p)-plane, bottom entry) for the
point-line and plane-line incidence submatrices regarding the orbit OL; q ≡ ξ (mod 3),
H means “2 is a non-cube”, N notes “2 is a cube”, π(p) see in (4.4)

#Mp → q2 + q 1
6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

q PT = Π2C
P3Γ = Π3C

P1Γ = Π1C
P0Γ = Π0C

ξ LT = Λ2C
L3Γ = Λ3C

L1Γ = Λ1C
L0Γ = Λ0C

#OL
odd q 2 1

6
(q − 5) 1

2
(q − 1) 1

3
(q + 1)

ξ = −1 q − 1 1
2
(q − 5) 1

2
(q − 1) 1

2
(q + 1)

1
2
(q3 − q)

q = 22m+1 1 1
6
(q − 2) 1

2
q 1

3
(q + 1)

ξ = −1 q − 1 q − 2 q q + 1
q3 − q

odd q,H 1 1
3
(q − 1−Nq) Nq

1
3
(2q + 1− 2Nq)

ξ = 1 1
3
(q − 1) 2

3
(q − 1−Nq)

2
3
Nq

1
3
(2q + 1− 2Nq)

1
3
(q3 − q)
odd q,N 4 1

3
(q − 7−Nq) Nq

2
3
(q − 1−Nq)

ξ = 1 1
3
(q − 1) 1

6
(q − 7−Nq)

1
6
Nq

1
6
(q − 1−Nq)

1
12
(q3 − q)
q = 22m 1 1

3
(1
2
q − 1− (−2)m) 1

2
q + (−2)m 1

3
(q + 1 + (−2)m+1)

ξ = 1 1
3
(q − 1) 2

3
(1
2
q − 1− (−2)m) 2

3
(1
2
q + (−2)m) 1

3
(q + 1 + (−2)m+1)

1
3
(q3 − q)

5 Connections of lines ℓµ with Γ-, 2C -, and 1C -planes

and tangents to cubic C

Let the line ℓµ be as in Section 2.3.2, in particular, µ ∈ F
∗
q \ {1, 1/9} that for even q and

q ≡ 0 (mod 3) naturally reduces to µ ∈ F
∗
q \ {1}.

5.1 Intersections of lines ℓµ with osculating planes, q 6≡ 0 (mod 3)

Lemma 5.1. Let q be odd, q 6≡ 0 (mod 3). Then the point Rµ,∞ = P(1, 0, 1, 0) is a
1Γ-point if q ≡ −1 (mod 3) and a 3Γ-point if q ≡ 1 (mod 3).

Proof. We have Rµ,∞ ∈ πosc(∞) for all q, see (2.5). If q ≡ −1 (mod 3) then Rµ,∞ /∈ πosc(t)

with t ∈ Fq. If q ≡ 1 (mod 3) then Rµ,∞ ∈ πosc(±
√

−1/3).
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Table 2: The values Nq, odd q ≡ 1 (mod 3), 7 ≤ q ≤ 907
2 is a non-cube in Fq

q 7 61 169 331 547 19 73 181 829 49 103 211
2Nq − q −1 −1 −1 −1 −1 −7 −7 −7 −7 −13 −13 −13

q 373 859 97 151 421 907 163 487 409 571 787 349
2Nq − q −13 −13 −19 −19 −19 −19 −25 −25 −31 −31 −31 −37

q 673 523 631 607 661 769 13 67 337 823 37 199
2Nq − q −37 −43 −43 −49 −49 −49 5 5 5 5 11 11

q 361 577 79 241 619 139 193 463 271 379 541 757
2Nq − q 11 11 17 17 17 23 23 23 29 29 29 29

q 313 367 853 751 613 883 709 877
2Nq − q 35 35 35 41 47 47 53 59

2 is a cube in Fq

q 109 433 31 25 457 307 739 121 229 223 439 289
2Nq − q −1 −1 −7 −13 −13 −19 −19 −25 −25 −31 −31 −37

q 397 643 529 841 43 691 157 127 343 277 601 283
2Nq − q −37 −43 −49 −61 5 5 11 17 17 23 23 29

q 499 727 625 733 811
2Nq − q 29 41 47 47 53

Lemma 5.2. Let q 6≡ 0 (mod 3). Let γ, t ∈ Fq. Let the point Rµ,γ = P(γ, µ, γ, 1) belong
to the osculating plane π

osc
(t). Then the values of µ, γ, and t satisfy the cubic equation

Φµ,γ(t) = t3 − 3γt2 + 3µt− γ = 0, γ ∈ Fq, µ ∈ F
∗
q \ {1,

1

9
}, q 6≡ 0 (mod 3). (5.1)

Proof. We have πosc(t) = π(1,−3t, 3t2,−t3), t ∈ Fq, that implies the assertions.

We denote N1(µ) the number of γ ∈ Fq, such that the equation Φµ,γ(t) (5.1) has
exactly one solution t in Fq.

5.2 Intersections of lines ℓµ with tangents to cubic C ; lines ℓµ
and 2C -planes

The coordinate vector Lµ of ℓµ is Lµ = (µ, 0, 1,−µ, 0, 1). By [26, Section 15.2], (2.3), the
mutual invariant of ℓµ and a tangent Tt is:

̟(ℓµ, Tt) = t4 − (3µ− 1)t2 + µ, t ∈ Fq; ̟(ℓµ, T∞) = 1 6= 0. (5.2)

Two lines intersect if and only if their mutual invariant is equal to zero. Thus, ℓµ does
not intersect T∞ for any µ; we may consider only intersections with Tt for t ∈ Fq.

14



Let nq(µ) be the number of solutions in Fq of the equation

̟(ℓµ, Tt) = t4 − (3µ− 1)t2 + µ = 0, t ∈ Fq. (5.3)

Useful results on nq(µ) can be found in [27, Section 1.11]. By above, in particular by
Lemma 3.3, Propostion 3.4, and (3.4), the following lemma holds.

Lemma 5.3. Both the number of T-points on an ℓµ-line and the number of 2C -planes
containing the line are equal to nq(µ).

5.3 Line ℓµ and 1C -planes

We consider the cubic equation regarding t.

Φ̃µ,c(t) , t3 + ct2 − t− µc = 0, t ∈ Fq, c ∈ F
∗
q, µ is as in (2.11). (5.4)

We denote Ñ1(µ) the number of c ∈ F
∗
q such that the equation Φ̃µ,c(t) (5.4) has exactly

one solution t in Fq.

Lemma 5.4. The number of 1C -planes containing a line ℓµ is equal to Ñ1(µ) if µ is a

square in Fq and Ñ1(µ) + 1 otherwise.

Proof. Let π̃ = π(c0, c1, c2, c3) be a plane containing ℓµ. As Rµ,0, Rµ,∞ ∈ π̃, we have
π̃ = π(c0, c1,−c0,−µc1).

Let c0 = 0. Then c1 6= 0, π̃ = π(0, 1, 0,−µ), P (∞) ∈ π̃. For t ∈ Fq, P (t) ∈ π̃ if t2 = µ.
So, π̃ is a 1C (resp. 3C )-plane if µ is a non-square (resp. square) in Fq.

Let c1 = 0. Then c0 6= 0, π̃ = π(1, 0,−1, 0), P (∞) /∈ π̃. For t ∈ Fq, P (t) ∈ π̃ if t3 = t.
So, π̃ is a 3C -plane.

Let c0, c1 6= 0. Then π̃ = π(1, c,−1,−µc), c = c1/c0 ∈ F
∗
q , P (∞) /∈ π̃. The point P (t)

of C , t ∈ Fq, lies in π̃ if and only if t satisfies Φ̃µ,c(t) (5.4). If Φ̃µ,c(t) has exactly one
solution t in Fq then π̃ contains exactly one point P (t), i.e. π̃ is a 1C -plane.

6 Point-line and plane-line incidence submatrices for

orbits Oµ, even q

In this section we assume that q is even. This implies the natural simplification of some
elements of Sections 2.3.2 and 5. For even q we have µ ∈ F

∗
q \ {1} and

̟(ℓµ, Tt) = t4 + (µ+ 1)t2 + µ; (6.1)

Φµ,γ(t) = t3 + γt2 + µt+ γ = 0, Φ̃µ,c(t) = t3 + ct2 + t + µc = 0. (6.2)
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6.1 Incidence submatrices

Lemma 6.1. Let q ≥ 8 be even. The points Rµ,∞ and Rµ,0 lie on the tangents T1 and
T√

µ, respectively. No other point of ℓµ is a T-point, i.e. for all orbits generated by the
lines ℓµ we have PT = 2.

Proof. We use the equations of the corresponding tangents given in [15, Lemma 6.2], [20,
Lemma 5.2]. Also, by (6.1), the equation ̟(ℓµ, Tt) = 0 has exactly two solutions t = 1
and t =

√
µ. By (5.2), ℓµ does not intersect T∞. Finally, we use Lemma 3.2(ii).

Lemma 6.2. Let q be even. For the orbits Oµ the following holds.

PT = Π2C
= 2, P1Γ = N1(µ); Π1C

= Ñ1(µ). (6.3)

Proof. By Lemma 5.2, for a fixed γ, if the equation Φµ,γ(t) (5.1) (see also (6.2)) has exactly
m distinct solutions in Fq then the point Rµ,γ belongs to exactly m distinct osculating
planes. Also we use (3.4), Lemmas 5.4, 6.1.

Theorem 6.3. Let q be even. For the submatrices of the point-line and plane-line inci-
dence matrices with respect to the orbit Oµ, the values Pp, Lp and Ππ, Λπ (see Notation
3.1), are as in Tables 3 and 4, respectively; see also Proposition 3.4. The sizes of orbits
#Mp and #Nπ are noted in the top of columns.

Proof. For Oµ, we obtain the values of PT and P1Γ using (6.3). Then we calculate P3Γ by
(3.11) and P0Γ by (3.12). Finally, we obtain all Lp by (3.2). This gives Table 3.

We obtain Π2C
and Π1C

by (6.3), calculate Π3C
by (3.9), Π0C

by (3.10), and all Λπ by
(3.2). This gives Table 4.

Table 3: Values Pp (the number of p-points on a line from Oµ, top entry) and Lp (the
number of lines from Oµ through a p-point, bottom entry) for the point-line incidence
submatrices regarding the orbit Oµ; q is even, #Oµ = (q3 − q)/2

q2 + q 1
6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

PT P3Γ P1Γ P0Γ

LT L3Γ L1Γ L0Γ

2 1
3
(q − 3− N1(µ)) N1(µ)

2
3
(q − N1(µ))

q − 1 q − 3− N1(µ) N1(µ) q − N1(µ)
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Table 4: Values Ππ (the number of π-planes through a line from Oµ, top entry) and Λπ

(the number of lines from Oµ in a π-plane, bottom entry) for the plane-line incidence
submatrices regarding the orbit Oµ; q is even, #Oµ = (q3 − q)/2

q2 + q 1
6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

Π2C
Π3C

Π1C
Π0C

Λ2C
Λ3C

Λ1C
Λ0C

2 1
3
(q − 3− Ñ1(µ)) Ñ1(µ)

2
3
(q − Ñ1(µ))

q − 1 q − 3− Ñ1(µ) Ñ1(µ) q − Ñ1(µ)

6.2 Obtaining of N1(µ) and Ñ1(µ) for equations Φµ,γ(t) and Φ̃µ,c(t)
of (6.2)

By [27, Section 1.8] the invariants δ and δ̃ of Φµ,γ(t) and Φ̃µ,c(t) of (6.2) are, respectively,

δµ,γ =
µ3 + γ4

γ2(µ+ 1)2
+

1

µ+ 1
, δ̃µ,c =

1 + µc4

c2(µ+ 1)2
+

µ

µ+ 1
, γ, c ∈ F

∗
q. (6.4)

Lemma 6.4. Let q be even. Let Tr2(a) be the absolute trace of an element a of Fq. Then

N1(µ)) = #{γ | Tr2(δµ,γ) = 1, γ ∈ F
∗
q}; Ñ1(µ) = #{c | Tr2(δ̃µ,c) = 1, c ∈ F

∗
q}. (6.5)

Proof. We use [27, Corollary 1.15(ii)].

Example 6.5. In Table 5, for even q, we give the values of N1(µ) and Ñ1(µ), obtained
by the system MAGMA. By N we denote the number of µ providing the given values.
Table 5 allows us to do the following interesting observations:

• Let q = 22m, i.e. q ≡ 1 (mod 3). Then N1(µ) = Ñ1(µ). The values of N1(µ) form an
arithmetic progression with difference 3 and the first term q/2−∆, ∆ ≡ 1 (mod 3).

• Let q = 22m+1, i.e. q ≡ −1 (mod 3). Then the set {(N1(µ), Ñ1(µ))|µ ∈ F
∗
q \ {1}} is

partitioned into pairs of the form (N1(µ), Ñ1(µ)) = (a, b) and (N1(µ), Ñ1(µ)) = (b, a)
where (a, b) forms the series (q/2+ 1, q/2− 2), (q/2+ 4, q/2− 5), (q/2+ 7, q/2− 8)
... (q/2 + A, q/2 − A − 1), A = 3 · 2m−1 − 2. The number N of µ providing each
pair is divided by 2m+ 1.
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Table 5: Values of N1(µ) and Ñ1(µ); N is the number of cases; even q

q 2N1(µ) 2Ñ1(µ) N 2N1(µ) 2Ñ1(µ) N 2N1(µ) 2Ñ1(µ) N

23 q + 2 q − 4 3 q − 4 q + 2 3
25 q + 8 q − 10 5 q − 10 q + 8 5

q + 2 q − 4 10 q − 4 q + 2 10
27 q + 20 q − 22 7 q − 22 q + 20 7

q + 14 q − 16 14 q − 16 q + 14 14
q + 8 q − 10 21 q − 10 q + 8 21
q + 2 q − 4 21 q − 4 q + 2 21

24 q − 8 q − 8 2 q − 2 q − 2 8 q + 4 q + 4 4
26 q − 14 q − 14 6 q − 8 q − 8 18 q − 2 q − 2 12

q + 4 q + 4 12 q + 10 q + 10 14
28 q − 32 q − 32 8 q − 26 q − 26 16 q − 20 q − 20 16

q − 14 q − 14 48 q − 8 q − 8 20 q − 2 q − 2 16
q + 4 q + 4 56 q + 10 q + 10 16 q + 16 q + 16 18
q + 22 q + 22 32 q + 28 q + 28 8

7 Point-line and plane-line incidence submatrices for

orbits Oλ for odd q 6≡ 0 (mod 3)

In this section q is odd and q 6≡ 0 (mod 3). By (5.3), it can be shown

nq(µ) = #

{
t|t = ±

√
1

2

(
3µ− 1±

√
(µ− 1)(9µ− 1

)
, t ∈ Fq

}
∈ {0, 2, 4}. (7.1)

7.1 Incidence submatrices

Lemma 7.1. Let q be odd, q 6≡ 0 (mod 3). For the orbit Oµ we have

PT = Π2C
= nq(µ) for all q, µ; (7.2)

P1Γ = N1(µ) + 1 if q ≡ −1 (mod 3), P1Γ = N1(µ) if q ≡ 1 (mod 3);

Π1C
= Ñ1(µ) if µ is a square in Fq, Π1C

= Ñ1(µ) + 1 otherwise.

Proof. By Lemma 5.2, for a fixed γ ∈ Fq, if Φµ,γ(t) (5.1) has exactly one solution t in
Fq then the point Rµ,γ belongs to exactly one osculating plane. So, the set ℓµ \ {Rµ,∞}
contains N1(µ) points belonging to exactly one osculating plane. Then, using Lemmas
5.1 and 5.3 we obtain P1Γ and PT = Π2C

. Finally, by Lemmas 3.2 and 5.4, we obtain
Π1C

.
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Theorem 7.2. Let q be odd, q 6≡ 0 (mod 3). For the submatrices of the point-line and
plane-line incidence matrices with respect to the orbit Oµ, the values Pp, Lp and Ππ, Λπ

(see Notation 3.1), are as in Tables 6 and 7, respectively; see also Proposition 3.4. The
sizes of orbits #Mp and #Nπ are noted in the top of columns.

Proof. For Oµ, we obtain the values of PT and P1Γ using (7.2). Then we calculate P3Γ by
(3.11) and P0Γ by (3.12). Finally, we obtain all Lp by (3.2). This gives Table 6.

Then we obtain Π2C
, Π1C

by (7.2), calculate Π3C
by (3.9), Π0C

by (3.10), and all Λπ

by (3.2). This gives Table 7.

Table 6: Values Pp (the number of p-points on a line from Oµ, top entry) and Lp (the
number of lines from Oµ through a p-point, bottom entry) for the point-line incidence
submatrices regarding the orbit Oµ; odd q ≡ ξ (mod 3), Aq(µ) , q − 2nq(µ) − N1(µ),
Bq(µ) , 2q−nq(µ)−2N1(µ); ⊖ means “Υq,µ (2.13) does not hold”, ⊕ means “Υq,µ holds”

#Mp → q2 + q 1
6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

ξ
η(µ) PT P3Γ P1Γ P0Γ

#Oµ LT L3Γ L1Γ L0Γ

ξ = −1
η(µ) = −1 nq(µ)

1
3
Aq(µ) N1(µ) + 1 1

3
Bq(µ)

1
2
(q3 − q) 1

2
(q − 1)nq(µ) Aq(µ) N1(µ) + 1 1

2
Bq(µ)

ξ = −1
η(µ) = 1 nq(µ)

1
3
Aq(µ) N1(µ) + 1 1

3
Bq(µ)

1
4
(q3 − q) 1

4
(q − 1)nq(µ)

1
2
Aq(µ)

1
2
(N1(µ) + 1) 1

4
Bq(µ)

ξ = 1
η(µ) = −1 nq(µ)

1
3
(Aq(µ) + 1) N1(µ)

1
3
(Bq(µ) + 1)

1
2
(q3 − q) 1

2
(q − 1)nq(µ) Aq(µ) + 1 N1(µ)

1
2
(Bq(µ) + 1)

ξ = 1
η(µ) = 1,⊖ nq(µ)

1
3
(Aq(µ) + 1) N1(µ)

1
3
(Bq(µ) + 1)

1
4
(q3 − q) 1

4
(q − 1)nq(µ)

1
2
(Aq(µ) + 1) 1

2
N1(µ)

1
4
(Bq(µ) + 1)

ξ = 1
η(µ) = 1,⊕ nq(µ)

1
3
(Aq(µ) + 1) N1(µ)

1
3
(Bq(µ) + 1)

1
12
(q3 − q) 1

12
(q − 1)nq(µ)

1
6
(Aq(µ) + 1) 1

6
N1(µ)

1
12
(Bq(µ) + 1)

7.2 Obtaining of N1(µ) and Ñ1(µ) for equations Φµ,γ(t) (5.1) and

Φ̃µ,c(t) (5.4)

For Φµ,γ(t) (5.1), the discriminant ∆µ,γ and the coefficients Ai of the Hessian H(T ) =
A0T

2+A1T +A2 , considered in [27, Section 1.8, equation (1.14), Lemma 1.18, Theorem
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Table 7: Values Ππ (the number of π-planes through a line from Oµ, top entry) and Λπ

(the number of lines from Oµ in a π-plane, bottom entry) for the plane-line incidence

submatrices regarding the orbit Oµ; odd q 6≡ 0 (mod 3), Ãq(µ) , q − 2nq(µ) − Ñ1(µ),

B̃q(µ) , 2q−nq(µ)−2Ñ1(µ); ⊖ means “Υq,µ (2.13) does not hold”, ⊕ means “Υq,µ holds”
#Nπ → q2 + q 1

6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

η(µ) Π2C
Π3C

Π1C
Π0C

#Oµ Λ2C
Λ3C

Λ1C
Λ0C

η(µ) = −1 nq(µ)
1
3
Ãq(µ) Ñ1(µ) + 1 1

3
B̃q(µ)

1
2
(q3 − q) 1

2
(q − 1)nq(µ) Ãq(µ) Ñ1(µ) + 1 1

2
B̃q(µ)

η(µ) = 1,⊖ nq(µ)
1
3
(Ãq(µ) + 1) Ñ1(µ)

1
3
(B̃q(µ) + 1)

1
4
(q3 − q) 1

4
(q − 1)nq(µ)

1
2
(Ãq(µ) + 1) 1

2
Ñ1(µ)

1
4
(B̃q(µ) + 1)

η(µ) = 1,⊕ nq(µ)
1
3
(Ãq(µ) + 1) Ñ1(µ)

1
3
(B̃q(µ) + 1)

1
12
(q3 − q) 1

12
(q − 1)nq(µ)

1
6
(Ãq(µ) + 1) 1

6
Ñ1(µ)

1
12
(B̃q(µ) + 1)

1.28, Proof of Lemma 1.32], are as follows:

∆µ,γ = 27(3γ2µ2 − 4µ3 − 4γ4 − γ2 + 6µγ2); (7.3)

A0 = 9(µ− γ2), A1 = 9γ(µ− 1), A2
1 − 4A0A2 = −3∆µ,γ .

For Φ̃µ,c(t) (5.4), the corresponding objects ∆̃µ,c and Ãi have the form

∆̃µ,c = c2 + 4 + 4µc4 − 27µ2c2 + 18µc2; (7.4)

Ã0 = −(3 + c2), Ã1 = c(1− 9µ); Ã2
1 − 4Ã0Ã2 = −3∆̃µ,c.

Lemma 7.3. Let q be odd. Let q ≡ ξ (mod 3), ξ 6= 0. Let the quadratic character η be
as in Section 4. Then the number of γ ∈ Fq and c ∈ F

∗
q such that the equations Φµ,γ(t)

(5.1) and Φ̃µ,c(t) (5.4) have exactly one solution in Fq is:

N1(µ) = #{γ | γ ∈ Fq, η(−3∆µ,γ) = −ξ}, (7.5)

Ñ1(µ) = #{c | c ∈ F
∗
q, η(−3∆̃µ,c) = −ξ}. (7.6)

Proof. We take ∆µ,γ and Ai from (7.3). By [27, Corollary 1.30], for ∆µ,γ = 0, Φµ,γ(t) has
one root in Fq if all Ai = 0. But A0 6= 0 if γ = 0 and A1 6= 0 if γ 6= 0. By [27, Theorem
1,34, Table 1.3], for ∆µ,γ 6= 0, Φµ,γ(t) has exactly one root in Fq, if H(T ) has 2 or 0 roots
in Fq according to q ≡ −1 (mod 3) or q ≡ 1 (mod 3), respectively. By (7.3), H(T ) has 2
roots in Fq (resp. 0 roots) if and only if −3∆µ,γ is a non-zero square (resp. non-square).
This proves (7.5).

The assertion (7.6) for Ñ1(µ) can be proved similarly.
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Example 7.4. In Table 8, for odd q 6≡ 0 (mod 3), we give the values of nq(µ), N1(µ), and

Ñ1(µ), obtained by the system MAGMA. By N we denote the number of µ providing
the given values. Table 8 allows us to do the following interesting observations:

• nq(µ) ∈ {0, 2} if η(µ) = −1; nq(µ) ∈ {0, 4} if η(µ) = 1.

• N1(µ)− Ñ1(µ) = 1 if q ≡ 1 (mod 3) and η(µ) = −1.

• N1(µ) = Ñ1(µ) if q ≡ 1 (mod 3) and η(µ) = 1.

• Let q ≡ −1 (mod 3), η(µ) = −1. Then there are cases N1(µ) = Ñ1(µ) and also

pairs of the form (N1(µ), Ñ1(µ)) = (a, b) and (N1(µ), Ñ1(µ)) = (b, a).

• For q′ ≡ q′′ (mod 12), relations between N1(µ) and Ñ1(µ) are similar.

8 Point-line and plane-line incidence submatrices for

orbits Oλ, q ≡ 0 (mod 3)

In this section q ≡ 0 (mod 3). This implies the natural simplification of some elements
of Sections 2.3.2 and 5. For q ≡ 0 (mod 3) we have µ ∈ F

∗
q \ {1} and

̟(ℓµ, Tt) = t4 + t2 + µ, t ∈ Fq; ̟(ℓµ, Tt) = 0 if t = ±
√

1±
√
1− µ; (8.1)

nq(µ) = #

{
t|t = ±

√
1±

√
1− µ, t ∈ Fq

}
∈ {0, 2, 4}.

8.1 Incidence submatrices

Lemma 8.1. Let q ≡ 0 (mod 3). For an orbit Oµ, (3.9) and (3.10) hold. Also, we have

(i) P(q+1)Γ = 0, PTO = nq(µ); (8.2)

(ii) Π1C
= PIC; (8.3)

(iii) Π1C
= Ñ1(µ) if µ is a square in Fq, Π1C

= Ñ1(µ) + 1 otherwise. (8.4)

Proof. (i) An EnΓ-line does not lie in any osculating plane, therefore it does not intersect
the axis of the pencil of the osculating planes. See also Proposition 3.4 and Lemmas
3.3, 5.3.

(ii) The assertion follows from [19, Table 1, Theorem 3.3(vi)] and [18, Remark 3, (4.13)].

(iii) The assertion follows from Lemmas 3.2, 5.4.
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Table 8: Values of nq(µ), N1(µ), and Ñ1(µ); N is the number of cases; odd q ≡ ξ (mod 3)

q ξ η(µ) nq(µ) 2N1(µ) 2Ñ1(µ) N 2N1(µ) 2Ñ1(µ) N

5 -1 -1 0 q − 1 q − 1 2
11 -1 -1 0 q − 7 q + 5 1 q + 5 q − 7 1

-1 2 q − 3 q − 3 3
1 0 q − 1 q + 1 3

17 -1 -1 0 q − 1 q − 1 4
-1 2 q − 9 q + 3 2 q + 3 q − 9 2
1 0 q − 7 q + 7 3 q + 5 q − 5 2
1 4 q + 1 q − 9 1

23 -1 -1 0 q − 7 q + 5 4 q + 5 q − 7 4
-1 2 q − 3 q − 3 3
1 0 q − 1 q + 1 6
1 4 q − 5 q − 3 3

29 -1 -1 0 q − 1 q − 1 6
-1 2 q − 9 q + 3 4 q + 3 q − 9 4
1 0 q − 7 q + 7 4 q + 5 q − 5 6
1 4 q − 11 q + 3 2

7 1 -1 0 q + 3 q + 1 2
-1 2 q − 5 0 1
1 0 q − 3 q − 3 1

13 1 -1 0 q − 3 q − 5 4
-1 2 q + 1 q − 1 2
1 0 q + 3 q + 3 4

19 1 -1 0 q + 3 q + 1 6
-1 2 q − 5 q − 7 2 q + 7 q + 5 1
1 0 q − 3 q − 3 4 q + 9 q + 9 1
1 4 q − 7 q − 7 2

25 1 -1 0 q − 3 q − 5 4 q + 9 q + 7 4
-1 2 q + 1 q − 1 4
1 0 q − 9 q − 9 4 q + 3 q + 3 4
1 4 q − 1 q − 1 2

31 1 -1 0 q + 3 q + 1 4 q − 9 q − 11 2
-1 2 q − 5 q − 7 7 q + 7 q + 5 2
1 0 q − 3 q − 3 7 q + 9 q + 9 4
1 4 q + 5 q + 5 2
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Theorem 8.2. Let q ≡ 0 (mod 3). For the submatrices of the point-line and plane-line
incidence matrices with respect to the orbit Oµ, the values Pp, Lp and Ππ, Λπ (see Nota-
tion 3.1), are as in Tables 9 and 10, respectively; see also Proposition 3.4 and Lemma 8.1.
The sizes of orbits #Mp and #Nπ(p) are noted in the top of columns.

Proof. For Oµ, we obtain the values of PTO, Π2C
, Π1C

, and PIC, using Proposition 3.4
and Lemma 8.1. Then we calculate PRC = q + 1 − PTO − PIC, Π3C

by (3.9), and Π0C
by

(3.10). Finally, we obtain all Lp and Λπ by (3.2).

Table 9: Values Pp (the number of p-points on a line from Oµ, top entry) and Lp (the
number of lines from Oµ through a p-point, bottom entry) for the point-line incidence
submatrices regarding the orbit Oµ; q ≡ 0 (mod 3)

#Mp → q2 − 1 1
2
(q3 − q) 1

2
(q3 − q)

η(µ) PTO PRC PIC

#Oµ LTO LRC LIC

η(µ) = −1 nq(µ) q − nq(µ)− Ñ1(µ) Ñ1(µ) + 1
1
2
(q3 − q) 1

2
qnq(µ) q − nq(µ)− Ñ1(µ) Ñ1(µ) + 1

η(µ) = 1 nq(µ) q + 1− nq(µ)− Ñ1(µ) Ñ1(µ)
1
4
(q3 − q) 1

4
qnq(µ)

1
2
(q + 1− nq(µ)− Ñ1(µ))

1
2
Ñ1(µ)

Table 10: Values Ππ (the number of π-planes through a line from Oµ, top entry) and
Λπ (the number of lines from Oµ in a π-plane, bottom entry) for the plane-line incidence

submatrices regarding the orbit Oµ; q ≡ 0 (mod 3), Ãq(µ) , q−2nq(µ)− Ñ1(µ), B̃q(µ) ,

2q − nq(µ)− 2Ñ1(µ)
#Nπ → q2 + q 1

6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

η(µ) Π2C
Π3C

Π1C
Π0C

#Oµ Λ2C
Λ3C

Λ1C
Λ0C

η(µ) = −1 nq(µ)
1
3
Ãq(µ) Ñ1(µ) + 1 1

3
B̃q(µ)

1
2
(q3 − q) 1

2
(q − 1)nq(µ) Ãq(µ) Ñ1(µ) + 1 1

2
B̃q(µ)

η(µ) = 1 nq(µ)
1
3
(Ãq(µ) + 1) Ñ1(µ)

1
3
(B̃q(µ) + 1)

1
4
(q3 − q) 1

4
(q − 1)nq(µ)

1
2
(Ãq(µ) + 1) 1

2
Ñ1(µ)

1
4
(B̃q(µ) + 1)
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8.2 Obtaining of Ñ1(µ) for equation Φ̃µ,c(t) (5.4)

Lemma 8.3. Let the quadratic character η be as in Section 4. For Ñ1(µ) we have

Ñ1(µ) = #

{
c | η

(
c4

µc4 + c2 + 1

)
= −1, c ∈ F

∗
q, µc4 + c2 + 1 6= 0

}
. (8.5)

Proof. We use the results of [27, Corollary 1.23, Section 1.10, p. 25]. We put α = −c−1,

make the variable substitution t = x + α in Φ̃µ,c(t) and obtain f(x) = x3 + cx2 + d = 0

where d = Φ̃µ,c(α) = −(µc4 + c2 + 1)/c3. If d = 0 then α is a double root of Φ̃µ,c(t).
If d 6= 0 then, by [27, p. 25], f(x) has exactly one root in Fq if −c/d is a non-square
in Fq.

Example 8.4. In Table 11, for q ≡ 0 (mod 3), we give the values of nq(µ) and Ñ1(µ)
obtained by the system MAGMA. By N we denote the number of µ providing the given
values. Similarly to Example 6.5, we observe here that nq(µ) ∈ {0, 2} if η(µ) = −1;
nq(µ) ∈ {0, 4} if η(µ) = 1.

Table 11: Values of nq(µ), Ñ1(µ); N is the number of cases; q ≡ 0 (mod 3)

q η(µ) nq(µ) 2Ñ1(µ) N 2Ñ1(µ) N 2Ñ1(µ) N

9 -1 0 q + 3 2
-1 2 q − 5 2
1 0 q − 1 3

27 -1 0 q − 3 6 q + 9 1
-1 2 q + 1 3 q − 11 3
1 0 q + 5 6 q − 7 3
1 4 q + 1 3

81 -1 0 q − 9 8 q + 3 8 q + 15 4
-1 2 q − 17 4 q − 5 8 q + 7 8
1 0 q − 13 4 q − 1 8 q + 11 8
1 4 q − 17 5 q + 7 4
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