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This paper focuses on the spectral properties of a bounded self-adjoint operator 
in L2(Rd) being the sum of a convolution operator with an integrable convolution 
kernel and an operator of multiplication by a continuous potential converging to zero 
at infinity. We study both the essential and the discrete spectra of this operator. It is 
shown that the essential spectrum of the sum is the union of the essential spectrum 
of the convolution operator and the image of the potential. We then provide a 
number of sufficient conditions for the existence of discrete spectrum and obtain 
lower and upper bounds for the number of discrete eigenvalues. Special attention 
is paid to the case of operators possessing countably many points of the discrete 
spectrum. We also compare the spectral properties of the operators considered in 
this work with those of classical Schrödinger operators.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this work we study the spectral properties of a non-local self-adjoint operator L in L2(Rd) of the form

Lu = Au + V u, (Au)(x) :=
∫
Rd

a(x− y)u(y) dy, (1.1)

where A is a convolution operator with an integrable kernel a(·), and V is a potential being a bounded 
continuous real-valued function that tends to zero at infinity. Our goal is to characterize the structure of 
the essential and discrete spectra of this operator.
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In recent years there is a growing attention to non-local convolution type operators with integrable 
kernels. This is stimulated by a number of interesting and non-trivial mathematical problems appearing 
in the theory of such operators on the one hand, and by various important applications of this theory on 
the other hand. Among the applied fields in which zero order convolution type operators are of essential 
importance we mention population dynamics, ecological problems and porous media theory. In particular, 
in the population dynamics models the operators defined in (1.1) with a non-negative function a(·) can be 
used to analyse the spread of infections or the growth of biological populations of plants or animals.

A rigorous mathematical theory of population dynamics relies on the so called contact model in contin-
uum, see e.g. [10,14,17]. This model deals with a birth and death process that describes the evolution of 
stochastic interacting infinite-particle systems in terms of birth and death rates. The function a(·) is called 
the dispersal kernel, it defines the distribution of a position of a newly born particle in the configuration.

The evolution of the first correlation function denoted by u(x, t) and being the density of a population 
is described by the following Cauchy problem:

∂u

∂t
= Lu− 〈a〉u, u = u(t, x), x ∈ Rd, t � 0, u(0, x) = u0(x) � 0, (1.2)

where 〈a〉 =
∫
Rd

a(z) dz. The potential V (x) in (1.2) is a real-valued function defined as the difference between 

the birth and death rates at a point x ∈ Rd. In spatially inhomogeneous environments the birth and death 
rates are functions of the position in the space and thus the potential V (x) need not be equal to a constant. 
It is assumed that at infinity the birth and death rates coincide so that V (x) tends to zero as |x| → ∞.

This gives rise to an interesting mathematical question that reads: find a class of potentials V (·) and 
dispersal kernels a(·) for which the operator L −〈a〉 has a positive spectrum and thus the density of population 
shows an exponential growth everywhere in the space. The problem of the existence of positive eigenvalues 
has been discussed in [1,11,13], and the structure of the principal eigenfunction has been investigated in 
[12]. Also, in [13] a possible location of the essential spectrum of the operator L − 〈a〉 was studied.

It is known, see, for instance, [2, Theorem 19.1], that in the region x �
√
t the large time asymptotics of 

the fundamental solution of the equation

∂tv(x, t) =
∫
Rd

a(x− y)
(
v(y, t) − v(x, t)

)
dy (1.3)

coincides with that of the heat kernel of the operator div
(
â∇

)
with

âij =
∫
Rd

zizja(z)dz.

Therefore, it is natural to consider the operator on the right-hand side of (1.3) as an approximation of the 
Laplacian and to call L a non-local Schrödinger operator.

The operator L defined in (1.1) can be regarded as a perturbation of the convolution operator A by the 
potential V or vice versa, a perturbation of the multiplication operator by the convolution one. From this 
point of view, there is a clear analogy with spectral properties of the Schrödinger operators perturbed by 
potentials or other lower order perturbations. There is a vast literature and hundreds of works devoted to 
such operators. Not trying to mention all of them, we just cite few classical works [3], [8], [9], [20] and a 
recent book [5]. However, there exists a fundamental difference between the classical Schrödinger operator 
and the non-local Schrödinger operator of the form (1.1). The potential term in the classical Schrödinger 
operator is a relatively compact perturbation of the Laplacian, while the terms of the operator L in (1.1)
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are equipollent. As our main results show, this fact makes the spectral pictures for such operators and for 
classical Schrödinger operators rather different.

Also, in the mathematical and physical literature a number of works is devoted to the properties of the 
discrete spectrum of the so-called quantum Hamiltonians and other Schrödinger type operators which are 
self-adjoint operators in L2(Rd) of the form H = H0 + V , where H0 = H0(−i∂) is a pseudo-differential 
operator with symbol H0(p), and V is the operator of multiplication by a potential V , see [4], [6], [7], [18]
and the references therein. Under the assumptions imposed in these works the essential spectrum of the 
said Schrödinger type operators was always determined by the operator H0. The results on the existence of 
discrete spectrum and lower bounds for the number of eigenvalues relied on the minimax principle and local 
properties of functions H0, V and the Fourier image of V . In particular, it was assumed in [4], [6], [18] that 
the symbol H0 of the considered operators grows at infinity and degenerates along a manifold of dimension 
at least one. This fact was used to establish sufficient conditions ensuring the existence of infinitely many 
discrete eigenvalues. In [7] no degeneration condition was assumed and the symbol H0 could attain its 
minimum at a single point. The main contribution of this work was a collection of sufficient conditions for 
the existence of the discrete eigenvalues and a series of upper bounds similar to the Cwikel-Lieb-Rozenblum 
inequalities. The sufficient conditions were formulated in terms of certain integral inequalities, characterizing 
the behaviour of the symbol near its minimum.

Paper [15] deals with a rather general class of Schrödinger type operators of the form H0+V , where H0 is 
a self-adjoint non-negative operator defined on a σ-compact metric space. It is assumed that the semigroup 
generated by −H0 acts on the space of continuous functions and that the corresponding heat kernel satisfies 
certain decay in time conditions. Then, under the assumption that H0 + V has a discrete spectrum on the 
negative semiaxis, the authors proved Cwikel-Lieb-Rozenblum and Lieb–Thirring inequalities.

The case of operators H0 such that the Markov process with generator −H0 is recurrent was considered in 
[16], where several lower and upper bounds for the number of negative eigenvalues of H0 +V were obtained.

In the present paper two conditions are imposed on the kernel a(·). Namely, we assume that a(−z) = a(z)
for all z ∈ Rd, and a ∈ L1(Rd). The first condition makes the operator L symmetric, while the second one 
ensures that A is bounded in L2(Rd). The function V is real, continuous, and vanishes at infinity. We 
observe that the operator A is unitary equivalent to the operator of multiplication by the Fourier image of 
the function a(·) and that this Fourier image is a continuous function that vanishes at infinity.

It should be emphasized that we impose no conditions on the sign of a(·) and V (·). This makes a 
difference with the operators studied in [11], [13] where, due to probabilistic background of the operators, 
it was assumed that both the kernel a(·) and the potential V (·) were non-negative.

Our first result characterizes the essential spectrum of operator L in L2(Rd). We show that σess(L) is 
the union of the spectra of A and of the multiplication operator u 	→ V u. Then we provide a number of 
sufficient conditions for the existence of the discrete spectrum and obtain several upper and lower bounds 
for the number of points of the discrete spectrum. The lower bounds rely on the detailed analysis of the 
convolution operator and the minimax principle. In order to prove an upper bound, we use a modification 
of the Birman-Schwinger principle adapted to the non-local operators studied here.

We also pay a special attention to the cases, when the operator L possesses infinitely many discrete 
eigenvalues accumulating to the edges of the essential spectrum. We provide various sufficient conditions 
guaranteeing such a behaviour of the spectrum. In particular, these conditions show that the class of non-
local Schrödinger operators having infinitely many points of the discrete spectrum is rather wide in contrast 
with classical differential operators with lower order perturbations.

2. Problem setup and main results

Let V = V (x) and a = a(x) be given measurable functions defined on Rd, which are real- and complex-
valued, respectively. We assume that the function a belongs to L1(Rd) and satisfies the identity
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a(−x) = a(x). (2.1)

By F we denote a Fourier transform on L1(Rd) defined by the formula

F [u](x) :=
∫
Rd

u(ξ)e−ix·ξ dξ.

The same symbol stands for the Fourier transform extended to L2(Rd). We then assume that the function 
V is an image of some function V̂ ∈ L1(Rd) satisfying also condition (2.1), that is,

V = F [V̂ ], V̂ (−x) = V̂ (x).

We also denote

â(ξ) := F [a](ξ).

The main object of our study is an operator in L2(Rd) defined by the formula

L := La� + LV , (La�u)(x) :=
∫
Rd

a(x− y)u(y) dy, (LV u)(x) := V (x)u(x).

We shall show, see Lemma 4.1, that this operator is bounded in L2(Rd) and self-adjoint. Our main aim is 
to describe the structure of the spectrum of this operator depending on the properties of the functions a
and V .

Observe that under the above assumptions on a and V the functions â and V are real-valued, bounded, 
continuous and decaying at infinity. In view of these properties the following quantities are finite:

amin := inf
Rd

â, amax := sup
Rd

â, Vmin := inf
Rd

V, Vmax := sup
Rd

V. (2.2)

It follows from the aforementioned properties of a and V that

amin � 0 � amax, Vmin � 0 � Vmax.

By σess( · ) we denote the essential spectrum of an operator, while σdisc( · ) stands for the discrete spectrum. 
The spectrum of an operator is denoted by σ( · ). Let Qr(x0) be a cube in Rd with a side r centered at a 
point x0.

Our first result describes the essential spectrum of the operator L.

Theorem 2.1. The essential spectrum of the operator L coincides with the segment [μ0, μ1], where μ0 :=
min{amin, Vmin}, μ1 := max{amax, Vmax}. The discrete spectrum of the operator L can be located only in the 
semi-intervals [amin + Vmin, μ0) and (μ1, amax + Vmax] and it can accumulate to the points μ0 and μ1 only.

The rest of our results describes the discrete spectrum of L. First, we provide sufficient condition ensuring 
its existence.

Theorem 2.2. Let x0 be a point of the global minimum of the function V , and assume that Vmin � amin. 
Assume furthermore that there exists δ > 0 such that
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∫
Q2(0)

d∏
i=1

(1 − |xi|) Re a(δx) dx + δ−d

∫
Q1(0)

(
V (x0 + δx) − Vmin

)
dx < 0. (2.3)

Then the discrete spectrum of the operator L in the semi-interval [amin + Vmin, μ0) is non-empty.

Once we know that the discrete spectrum is non-empty, we are interested in the number of discrete 
eigenvalues. Various lower bounds for this number are provided in Theorems 2.3–2.7 below.

We fix some r > 0 and denote

an := (2r)−d

∫
Q2r(0)

a(x)e−πi
r n·x dx, n ∈ Zd. (2.4)

Since a ∈ L1(Q2r(0)), all Fourier coefficients an are well-defined. Employing identity (2.1), it is straightfor-
ward to confirm that all constants an are real-valued. We then introduce the following sets of indices:

J0 := {n ∈ Zd : a2n < 0}

and assume that this set is not empty.
Supposing that x0 is a point of the global minimum of the function V (x), that is, Vmin = V (x0), we 

introduce

Vn :=
∫

Qr(0)

(V (x + x0) − Vmin)e 2πi
r n·x dx, V−n = Vn, (2.5)

and, given a subset J ⊂ J0, we denote

νJ := r−d sup
n∈J

∑
m∈J

|Vn−m|.

Theorem 2.3. Assume that Vmin � amin, x0 is a point of the global minimum of the function V (x), and 
there exists a subset I ⊂ J0 such that

rd max
n∈I

a2n + (2r)d sup
n∈Zd\(2Z)d

an + νI < 0. (2.6)

Then the operator L possesses at least #I eigenvalues below Vmin, where #I is the total number of indices 
in the set I. The lowest eigenvalue λmin of the operator L satisfies the upper bound

λmin � rd min
n∈Zd

a2n + (2r)d sup
n∈Z\(2Z)d

an + r−d

∫
Qr(x0)

(V (x) − Vmin) dx. (2.7)

In the next theorem we consider the case of a sufficiently smooth kernel a. Namely, given N ∈ N, we 
suppose that a ∈ C2N+1(Qr(0)) for some fixed r > 0. We introduce a quadratic form

aN [ζ] :=
∑

n,m∈Zd
+

|m|,|n|�N

(−1)|n|∂n+ma(0)ζmζn, ζ := (ζn)n∈Zd
+, |n|�N , (2.8)

on CM(N), where |n| = n1 + n2 + . . . + nd and M(N) := #
{
n ∈ Zd

+ : |n| � N
}
.
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Let x0 be a point of the global minimum of V . We then let

hN (δ) := max
n∈Zd

+
|n|�2N

∣∣∣∣
∫

Q1(0)

(
V (x0 + δx) − V (x0)

)
xn dx

∣∣∣∣. (2.9)

Theorem 2.4. Let x0 be a point of the global minimum of V (·), and Vmin � amin. Assume that a ∈
C2N+1(Qr(0)) with some r > 0, the identity

lim
δ→0

hN (δ)
δ2N+d

= 0 (2.10)

holds and there exists a subspace S in CM(N), on which the form aN defined in (2.8) is strictly negative. 
Then the operator L possesses at least dimS eigenvalues in the interval [amin + Vmin, μ0).

As it has been demonstrated in Theorem 2.4, sufficient conditions of the existence of a discrete spectrum 
of L can also be formulated in terms of the Taylor coefficients of a(·) about the origin and the behaviour 
of V in the vicinity of its minimum point. Namely, it suffices to check the negative definiteness of the form 
aN on some subspace S and the validity of (2.10). In the next theorem we provide a class of functions a(·)
and V (·) for which these conditions hold.

Theorem 2.5. Let x0 be a point of the global minimum of the function V , and assume that

• Vmin � amin.
• The estimate

V (x) − V (x0) � C|x− x0|α (2.11)

holds for all x in a small neighbourhood of x0, where C and α are some positive constants independent 
of x.

• There exists a subset I ⊆ {n ∈ Zd
+ : |n| � N} such that the derivatives of the function a(·) obey the 

conditions

(−1)|n|∂2na(0) < 0, n ∈ I, (2.12)

|∂n+ma(0)| � βn,m

√
|∂2na(0)|

√
|∂2ma(0)|, n,m ∈ I, n �= m, (2.13)

where N < α−d
2 and βn,m, n, m ∈ I, are some non-negative numbers that satisfy at least one of the 

following two conditions

β1 := max
m∈I

∑
n∈I
n �=m

βn,m < 1 (2.14)

or

β2 :=
∑

n,m∈I
n �=m

β2
n,m <

(#I) 1
2

(#I) 1
2 − 1

. (2.15)

Then the operator L possesses at least #I eigenvalues in the interval [amin + Vmin, μ0).
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The following two theorems concern the operators L possessing infinitely many discrete eigenvalues. In 
the first of them we consider the case of a smooth convolution kernel.

Theorem 2.6. Let a ∈ C∞(Qr(0)), and assume that condition (2.11) holds with an arbitrary α > 0. Assume 
furthermore that Vmin � amin and there exist constants γ > 0 and c1, c2 > 0 and an infinite subset I ⊆ Zd

+
such that

(−1)|n|∂2na(0) < 0 for all n ∈ I, (2.16)∣∣∂2na(0)
∣∣ � c1((2n)!)γ for all n ∈ I, (2.17)∣∣∂na(0)
∣∣ � c2(n!)γ for all n ∈ Zd

+; (2.18)

here n! = n1! · . . . · nd! for n = (n1, . . . , nd) ∈ Zd
+. Then the operator L has infinitely many eigenvalues 

below μ0.

Our next theorem describes the situation when the operator L possesses infinitely many discrete eigen-
values for kernels that need not be smooth.

Theorem 2.7. Let Vmin � amin, V (x) ≡ Vmin on some cube Qr(x0) and assume that at least one of the 
following two conditions hold:

1. The inequalities

amin < 0 and amax = 0 (2.19)

are satisfied.
2. For all n ∈ Zd the quantities an introduced in (2.4) satisfy the inequalities

an � 0

and there exists an infinite subsequence of indices in Zd such that on this subsequence the above inequal-
ities are strict.

Then the operator L possesses countably many eigenvalues in the semi-interval [amin + Vmin, μ0), which 
accumulate to the point μ0.

In complement to the lower bounds for the number of discrete eigenvalues, we also provide an upper 
bound for this number in the following theorem.

Theorem 2.8. Let μ0 = Vmin and assume that Vmin � amin and that

IV :=
∫
Rd

V−(x) dx
V−(x) + Vmin

< ∞, Ia := 1
(2π)d

∫
Rd

â−(x) dx
â−(x) + Vmin

< ∞,

where V−(x) := − min{0, V (x)}, â−(x) := − min{0, ̂a(x)}. Then the number of the eigenvalues of the 
operator L below μ0 does not exceed IaIV .
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3. Discussion of main results

In this section we discuss the principal aspects of our model and main results. We begin with the fact 
mentioned already in the introduction: both terms La� and LV in the operator L are bounded operators in 
L2(Rd) and none of them is relatively compact with respect to the other. This is a fundamental difference in 
comparison with classical Schrödinger operators and it explains specific features of the spectra of operators 
considered here.

The first difference is already demonstrated by Theorem 2.1, which says that the essential spectrum of 
the operator L is the union of those of La� and LV . For the classical Schrödinger operators with localized 
perturbations the essential spectrum is determined solely by the unperturbed operator, while in our case 
both the convolution and multiplication operators contribute to the essential spectrum. The entire spectrum 
is a bounded set, which can be located only in the interval [amin + Vmin, amax + Vmax]; this fact is due to 
the boundedness of operator L.

The next important question is about the existence of discrete spectrum. According to Theorem 2.2, it 
can be located only in semi-intervals [amin + Vmin, μ0) and (μ1, amax + Vmax]. Our theorems deal with the 
eigenvalues located in the former semi-interval under the assumption that Vmin � amin. These results can 
be easily transferred to the case amin � Vmin and also to the interval (μ1, amax +Vmax). Indeed, the opposite 
case amin � Vmin can be treated by passing to a unitary equivalent operator

(
1

(2π) d
2
F
)
L
(

1
(2π) d

2
F
)−1

= Lâ + LV̂ �.

In the latter operator, the functions a and V interchange their roles in the sense that the function â generates 
the multiplication operator Lâ, while the function V̂ produces the convolution operator LV̂ �. In order to 
study the eigenvalues above the point μ1 = max{amax, Vmax}, we should simply replace the operator L with 
−L.

Our first result on the discrete spectrum, Theorem 2.2, gives a sufficient condition of its existence. The 
first integral on the left-hand side of (2.3) represents the contribution of the convolution kernel, while the 
second integral reflects that of the potential V . Since Vmin is the global minimum of V , the second integral 
is obviously non-negative and, in order to make condition (2.3) satisfied, the contribution of the convolution 
part should be negative. This condition is first of all aimed for the case of small δ. In this case the existence 
of the discrete spectrum depends on the local properties of both the convolution kernel in the vicinity of 
the origin and the potential in the vicinity of its global minimum point. If the kernel a is continuous and 
the function V satisfies the relation V (x) − Vmin = c0|x − x0|α(1 + o(1)), c0 > 0, α > 0, as |x − x0| → 0, 
then condition (2.3) can be rewritten in a simpler form:

Re a(0) + δ−d+αc0

∫
Q1(0)

|x|α dx < 0. (3.1)

Of course, the discrete spectrum can exist not only due to the local properties of the convolution kernel 
and the potential, but also due to their global structure. Such cases are also covered by Theorem 2.2 once 
condition (2.3) holds for some δ > 0. We also stress that in Theorem 2.2 we do not suppose that the 
potential V possesses a single point of the global minimum. If it has several such points, the theorem 
applies at each of them. The above discussion shows that Theorem 2.2 is quite universal. It applies to rather 
general convolution kernels and potentials.

If the discrete spectrum of L is non-empty, it is natural to turn to estimating the number of discrete 
eigenvalues of L. Lower bounds for the total number of the eigenvalues are presented in Theorems 2.3, 2.4. 
Theorem 2.3 is formulated in terms of the (local) Fourier coefficients (2.4) of the convolution kernel and 
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similar coefficients (2.5) of the potential. The second result of Theorem 2.3 is an upper bound for the lowest 
eigenvalue, see (2.7).

Since the results of Theorem 2.3 are expressed in terms of the local Fourier coefficients, it gives a nice 
opportunity to construct plenty of examples of convolution kernels and potentials satisfying the assumptions 
of this theorem. Indeed, we can fix some r and a sequence of the Fourier coefficients an ensuring required 
conditions, and then define the convolution kernel a as a sum of a Fourier series:

a(x) =
∑
n∈Zd

ane
πi
r n·x on Q2r(0)

and a is arbitrary outside Q2r(0). The potential V can be constructed in the same way via the Fourier 
coefficients defined in (2.5).

For sufficiently smooth convolution kernels a lower bound for the number of discrete eigenvalues of L
can be also formulated in terms of the derivatives of a at zero. This is the subject of Theorem 2.4. Here 
again it is possible to construct plenty of examples of a and V to which Theorem 2.4 applies: we can fix 
the derivatives ∂na(0) satisfying the assumptions of this Theorem and define then the convolution kernel a
in the vicinity of zero as a polynomial with the prescribed derivatives. In view of definition (2.9) of hN (δ), 
this function satisfies identity (2.10) provided the potential approaches its global minimum quite fast.

Once we are given a generic smooth convolution kernel a, the corresponding form aN defined in (2.8) might 
be quite bulky and it could be technically difficult to check whether this form is negative definite or not. In 
particular, the standard Sylvester criterion does not seem helpful at this point. This is why in Theorem 2.5
we provide some sufficient conditions guaranteeing the negative definiteness of the form aN and the validity 
of identity (2.10). The latter identity is ensured by estimate (2.11), while the negative definiteness of the 
form is due to estimates (2.12), (2.13) and one of inequalities (2.14), (2.15). Both these inequalities mean 
that the diagonal entries of the matrix of the form aN dominate the other entries. Inequality (2.14) is more 
adapted to the case, when #I is large enough, it states that in each line of the matrix of the form aN
the contribution of the diagonal entry dominates the contribution of all other elements in the same line. 
Condition (2.15) works better in the case when the cardinality of I is small or the nth order derivatives of 
a at zero grow extremely fast (like exp(n2+δ)) as n → ∞.

Theorem 2.5 is an efficient tool for checking the negativity of the form aN in various situations. For 
instance, if condition (2.12) holds for at least one n ∈ Zd, we simply let I := {n}. Then, if condition (2.10)
holds with N = |n|, we conclude immediately that the operator L possesses at least one eigenvalue below 
μ0.

Another way is to assume that conditions (2.12), (2.13) hold for all n ∈ Zd
+ with |n| � N . Then we let 

I = {n ∈ Zd
+ : |n| � N} and S = CM(N) and we see that the operator L possesses at least M(N) discrete 

eigenvalues below μ0.
Theorem 2.5 can be also employed for identifying the situations with infinitely many discrete eigenvalues 

below μ0. Here we should assume that a ∈ C∞(Qr(0)) and condition (2.11) holds with an arbitrary large 
α, i.e., |V (x) − V (x0)| = o(|x − x0|α) as x approaches x0. Assume furthermore that there exists an infinite 
subset I ⊆ Zd

+ with such that conditions (2.12), (2.13) hold for all m, n ∈ I and at least one of inequalities 
(2.14), (2.15) holds for each subset IN = {n ∈ I : |n| � N}. Then the assumptions of Theorem 2.5 are 
fulfilled for each subset IN and, since #IN grows unboundedly as N → ∞, we conclude that the operator 
L possesses infinitely many discrete eigenvalues below μ0 and then these eigenvalues necessarily accumulate 
to μ0.

Observe that functions a(·), for which (2.12), (2.13) hold for all m, n ∈ Zd
+ and βn,m = β|n−m| with 

β < 1 can not be analytic at zero. The reason is that condition (2.13) requires a very fast growth of the 
derivatives as n increases. Indeed, choosing one of the coordinate directions xj, we derive from (2.13) that 
for each k ∈ Z+ the inequality
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∣∣∣ ∂2k+2

∂x2k+2
j

a(0)
∣∣∣(∣∣∣ ∂2k

∂x2k
j

a(0)
∣∣∣)−1

� 1
β4

∣∣∣ ∂2k

∂x2k
j

a(0)
∣∣∣(∣∣∣ ∂2k−2

∂x2k−2
j

a(0)
∣∣∣)−1

holds true. Iterating this inequality, we obtain

∣∣∣ ∂2k

∂x2k
j

a(0)
∣∣∣ � ( 1

β

)2k(k−1)
|a(0)|.

Since a(0) �= 0 due to (2.12), the Taylor series of a(·) about zero does not converge for any x �= 0.
Ii is also possible to construct a very rich class of examples of analytic at zero functions a, for which 

the operator L possesses infinitely many discrete eigenvalues below μ0. We provide a way of doing this in 
Theorem 2.6. Since the exponent γ in (2.17), (2.18) can be less than one, we see easily that there is a wide 
class of analytic at zero convolution kernels obeying the assumptions of Theorem 2.6.

As an example, we consider the one-dimensional case and let

a(z) = −(1 + z2)−1, V (x) = e−x−2 − 5.

Since in the vicinity of zero the function a(z) admits a representation

a(z) = −
∞∑
j=0

(−z2)j ,

then for all n ∈ Z+ we have

(−1)n∂2na(0) = −(2n)!, ∂2n+1a(0) = 0.

Hence, conditions (2.16), (2.17), (2.18) of Theorem 2.6 are satisfied and it follows from the definition of 
V (·) that other conditions of this theorem are also fulfilled. We then conclude that the operator L with the 
convolution kernel a(·) and the potential V (·) has infinitely many eigenvalues in the interval [−5 − π, −5).

In a higher dimension d � 1 we can choose

a(z) = −
d∏

k=1

1
1 + z2

k

or a(z) = 1
1 + |z|2d

and these kernels also satisfy the assumptions of Theorem 2.6.
Theorem 2.7 provides some more sufficient conditions for the existence of infinitely many eigenvalues. 

These conditions are formulated either in terms of the range of the Fourier transform of the convolution 
kernel, see Item 1 or via the local Fourier coefficients, see Item 2. Observe that these local Fourier coefficients 
are exactly the ones previously used in Theorem 2.3. It should be also said that conditions (2.19) are 
equivalent to the condition that the function â is non-positive and is not identically zero. We emphasize 
that in the formulation of Theorem 2.7 it is assumed that the potential V equals identically to its global 
minimum in some neighbourhood of the point x0. This condition is crucial.

Our final Theorem 2.8 provides an upper bound for the number of the discrete eigenvalues. Its proof is 
based on an appropriate adaption of the classical Birman-Schwinger principle. The final upper bound is 
rather different in comparison with the classical result, namely, here both the convolution kernel and the 
potential contribute to the bound via the integrals Ia and IV . We also see that the integral IV is finite only 
provided the potential V does not approach its global minimum very fast and this is in a good agreement 
with the above discussed theorems treating the cases of infinitely many eigenvalues.

In view of the above discussed statements we observe an important fact: the number of discrete eigenval-
ues of L depends essentially on how the potential V approaches its global minimum. The faster it tends to 
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this minimum, the more discrete eigenvalues are present. In particular, according to Theorems 2.3, 2.6, the 
operator L can have infinitely many eigenvalues provided the potential V approaches its global minimum 
either exponentially fast (in Theorem 2.3) or it coincides with this minimum identically in some neighbour-
hood of x0 (in Theorem 2.6). And vice versa, if the potential V approaches its global minimum very slowly 
then conditions (2.3), (2.6), (2.10), (2.11) are violated and we can not guarantee even the existence of the 
discrete spectrum. Moreover, in this case Theorem 2.8 says that the operator L can have only finitely many 
eigenvalues.

This explains why Schrödinger operators with localized potentials typically have finitely many eigenvalues 
below the bottom of the essential spectrum, see [5], [8], [9], [20], and to get infinitely many eigenvalues, 
one has to assume that the localized potential should decay at infinity quite slowly, see [3]. Indeed, given a 
one-dimensional Schrödinger operator with a localized potential

H := − d2

dx2 + V (x),

we make its Fourier transform getting then the operator

Ĥ = Lξ2 + LV̂ �, V̂ := F−1[V ].

Here the second derivative becomes the operator of multiplication by ξ2 and only this part of the operator 
Ĥ fully determines the essential spectrum, which is [0, +∞). The function ξ 	→ ξ2 approaches its global 
minimum, which is zero, with a fixed rate, and exactly this prevents the existence of infinitely many eigen-
values for typical localized potentials V . In view of this fact, we can state that in the case of non-local 
Schrödinger operators we impose no apriori restrictions for the behaviour of the potential V in the vicinity 
of its global minimum and this is why the variety of possible spectral pictures is much richer than in the 
case of differential Schrödinger operators.

In conclusion of this section, we shortly discuss some applications of our results to the population dy-
namics models mentioned in the Introduction. The large time behaviour of the population depends crucially 
on whether the operator L − 〈a〉 on the right-hand side of (1.2) has a positive eigenvalue or not. In the 
former case the population exhibits an exponential growth, and its asymptotic profile is proportional to the 
principal eigenfunction. Moreover, the rate of stabilization to this profile is determined by the distance from 
the principal positive eigenvalue to the rest of the spectrum.

Under the assumption that 〈a〉 = 1 the operator L − I, where I is the identity operator, has a positive 
eigenvalue if and only if the operator L has a point of the discrete spectrum above 1. Due to the biological 
interpretation of the potential V , the inequality V � 1 should be satisfied. If max V = 1 then the existence 
of a positive eigenvalue of L − I is governed by condition (3.1). Otherwise, we should consider the Fourier 
image of L and apply our results to the transformed operator.

4. Essential spectrum

In this section we prove Theorem 2.1. We begin with an auxiliary lemma.

Lemma 4.1. The operator L is bounded and self-adjoint in L2(Rd).

Proof. We introduce two auxiliary operators in L2(Rd) by the formulae

(La�u)(x) :=
∫

a(x− y)u(y) dy, (LV u)(x) := V (x)u(x).

Rd
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Since the function V is bounded and real-valued, we immediately conclude that the operator LV is bounded 
and symmetric in L2(Rd), and hence, it is self-adjoint.

Employing the fact that a ∈ L1(Rd), for each u ∈ L2(Rd) by the Cauchy-Schwarz inequality we have:

‖La�u‖2
L2(Rd) �

∫
Rd

dx

⎛
⎝∫
Rd

|a(x− y)||u(y)| dy

⎞
⎠

2

�
∫
Rd

∫
Rd

|a(x− y)| dy
∫
Rd

|a(x− y)||u(y)|2 dy

�‖a‖L1(R)

∫
R2d

|a(x− y)||u(y)|2 dxdy

=‖a‖L1(R)

∫
R2d

|a(x)||u(y)|2 dxdy = ‖a‖2
L1(R)‖u‖2

L2(Rd).

(4.1)

This proves the boundedness of the operator La�. The symmetricity, and hence, the self-adjointness, is 
confirmed straightforwardly by means of assumption (2.1):

(La�u, v)L2(Rd) =
∫

R2d

a(x− y)u(y)v(x) dxdy =
∫

R2d

u(y)v(x)a(y − x) dxdy = (u,La�v)L2(Rd).

The proof is complete. �
The rest of this section is devoted to the proof of Theorem 2.1. It is straightforward to confirm that 

under the unitary Fourier transform the bounded self-adjoint operators La� and LV are unitarily equivalent 
respectively to the operator of multiplication by â and to the operator of convolution with V̂ . Namely, the 
identities hold:

(
1

(2π) d
2
F
)
La�

(
1

(2π) d
2
F
)−1

= Lâ,

(
1

(2π) d
2
F
)
LV

(
1

(2π) d
2
F
)−1

= LV̂ �. (4.2)

In view of the continuity of the functions V and â, the spectra of the operators Lâ and LV coincides with 
their essential parts and are given by the following identities:

σ(Lâ) = σess(Lâ) = [amin, amax], σ(LV ) = σess(LV ) = [Vmin, Vmax]. (4.3)

Hence, by identities (4.2), the same is true for the operators La� and LV̂ �:

σ(La�) = σess(La�) = [amin, amax], σ(LV̂ �) = σess(LV̂ �) = [Vmin, Vmax]. (4.4)

We also observe an obvious identity

L = La� + LV .

Our next step is to prove the inclusion

σess(La�) ∪ σess(LV ) ⊆ σess(L). (4.5)

We introduce a family of functions:
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φδ(x) :=
{
δ−

d
2 on Qδ(0),

0 outside Qδ(0),
(4.6)

where δ is supposed to be small enough. Then we choose arbitrary λ ∈ (Vmin, Vmax) and by the continuity 
of V we conclude that there exists x0 ∈ Rd such that V (x0) = λ. By straightforward calculations we then 
easily confirm that

∥∥(LV − λ)φδ( · − x0)
∥∥2
L2(Rd) = δ−d

∫
Qδ(x0)

|V (x) − V (x0)|2 dx → 0, δ → +0. (4.7)

We also observe that the family {φδ(x − x0)} is non-compact and ‖φδ( · − x0)‖L2(Rd) = 1 for all δ and x0. 
Hence, each sequence φδn( · − x0) with arbitrary sequence δn → +0, n → ∞, is a Weyl sequence for the 
operator LV at the point λ. If we prove that

La�φδ( · − x0) → 0, δ → +0, (4.8)

then together with (4.7) this will imply that the sequence φδn( · − x0) is also a Weyl one for the operator 
L at the point λ and hence,

σess(LV ) ⊆ σess(L). (4.9)

We prove (4.8) by rather straightforward calculations. Namely,

‖La�φδ( · − x0)‖2
L2(Rd) � δ−d

∫
Rd

dx

⎛
⎜⎝ ∫
Qδ(x0)

|a(x− y)| dy

⎞
⎟⎠

2

� δ−dJδ

∫
Rd

dx

∫
Qδ(x−x0)

|a(y)| dy, (4.10)

where we have denoted

Jδ := sup
x∈Rd

∫
Qδ(x0)

|a(x− y)| dy = sup
x∈Rd

∫
Qδ(x−x0)

|a(y)| dy � ‖a‖L1(Rd).

Since the measures of the set Qδ(x −x0) are equal to δd for all x −x0 and the function |a| is integrable over 
Rd, by the absolute continuity of the Lebesgue integral we conclude that

Jδ → 0, δ → +0. (4.11)

Then we can continue estimating in (4.10) as follows:

‖La�φδ( · − x0)‖2
L2(Rd) � δ−dJδ

∫
Rd

dy|a(y)|
∫

Qδ(x0+y)

dx = Jδ‖a‖L1(Rd)

and by (4.11) we then arrive at (4.8) and hence, to (4.9). In view of unitary equivalence (4.2) and identities 
(4.3), (4.4) we then get that σess(La�) ⊆ σess(L) and together with (4.9) this leads us to (4.5).

To complete the proof of identity

σess(L) = σess(La�) ∪ σess(LV ) = [μ0, μ1], (4.12)

it sufficient to show that
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σess(L) \
(
σess(La�) ∪ σess(LV )

)
= ∅.

Let λ ∈ σess(L) and λ /∈ σess(La�), λ /∈ σess(LV )
)
. Then there exists a Weyl sequence un ∈ L2(Rd), which 

is bounded, non-compact and

fn := (L − λ)un → 0, n → ∞. (4.13)

Since λ /∈ σess(LV ), by the second identity in (4.3), the inverse operator (LV − λ)−1 is well-defined and 
bounded. We hence can rewrite (4.13) as

1
V − λ

La�un + un = fn
V − λ

→ 0, n → +∞. (4.14)

In view of (2.2), zero belongs to the essential spectrum of the operator LV and hence, λ �= 0, V − λ �= 0. 
Then

1
V − λ

= − 1
λ

+ V1

λ
, V1 := V

V − λ
.

We substitute this identity into (4.14) and we get:

(La� − λ)un + V1La�un = λ

V − λ
fn. (4.15)

By our assumptions and by (4.4) the number λ is in the resolvent set of the operator La� and hence, the 
resolvent (La� − λ)−1 is well-defined and is a bounded in L2(Rd). This allows us to rewrite (4.15) as

un = (La� − λ)−1
(

λ

V − λ
fn − V1La�un

)
. (4.16)

According to our assumptions on V , this function decays at infinity. Hence, the same is true for V1. 
Then it is easy to see that the operator V1La� is compact in L2(Rd). Since the sequence un is bounded, it 
contains a subsequence, still denoted by un, such that V1La�un converges in L1(Rd). The sequence λ

V−λfn
also converges as n → +∞; the limiting function is zero. Hence, the right hand side in (4.16) is a converging 
sequence as n → +∞. This contradicts the non-compactness of the sequence un. Hence, identity (4.12)
holds and this proves the first part of the theorem.

We proceed to proving the second part of the theorem. In view of the first identity in (4.2), the quadratic 
form associated with the operator L reads

l[u] := (Lu, u)L2(Rd) = (La�u, u)L2(Rd) + (V u, u)L2(Rd) = (Lâû, û)L2(Rd) + (V u, u)L2(Rd), (4.17)

where

û := 1
(2π) d

2
F [u], ‖u‖L2(Rd) = ‖û‖L2(Rd).

Hence, identity (4.17) implies immediately that this form satisfies the estimate

(amin + Vmin)‖u‖2
L2(Rd) � (Lu, u)L2(Rd) � (amax + Vmax)‖u‖2

L2(Rd)

and hence, the spectrum of the operator L is located inside the segment [amin + Vmin, amax + Vmax]. Now 
the second part of the theorem follows from the standard properties of the spectra of self-adjoint operators 
and identity (4.12). This completes the proof of Theorem 2.1.
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5. Existence of discrete spectrum

In this section we study the existence of the discrete spectrum of the operator L, namely, we prove 
Theorem 2.2.

5.1. Proof of Theorem 2.2

The proof is based on the minimax principle: if we find a normalized function ϕ ∈ L2(Rd) such that 
l[ϕ] < Vmin, this will imply the statement of the theorem; we recall that l[u] is the quadratic form associated 
with the operator L, see (4.17).

We construct a required test function explicitly choosing it to be φδ(x − x0) with φδ introduced in (4.6)
and δ mentioned in the formulation of the theorem; we note that this function is normalized in L2(Rd). 
Having this normalization in mind, we consider the quadratic form l on such function, namely:

l[φδ( · − x0)] − Vmin =δ−d

∫
Qδ(x0)×Qδ(x0)

a(x− y) dxdy + δ−d

∫
Qδ(x0)

(
V (x) − Vmin

)
dx

=δd
∫

Q1(0)×Q1(0)

a(δ(x− y)) dxdy +
∫

Q1(0)

(
V (x0 + δx) − Vmin

)
dx.

(5.1)

Let us calculate the first integral in the above identity.
First of all observe that owing to condition (2.1) we immediately get

∫
Q1(0)×Q1(0)

a(δ(x− y)) dxdy =
∫

Q1(0)×Q1(0)

a(δ(y − x)) dxdy

=
∫

Q1(0)×Q1(0)

a(δ(x− y)) dxdy =
∫

Q1(0)×Q1(0)

Re a(δ(x− y)) dxdy.

Then we make the change of the variables (x, y) → (x − y, x + y):

∫
Q1(0)×Q1(0)

Re a(δ(x− y)) dxdy =2−d

∫
Q2(0)

dxRe a(δx)
∫

{y: |yi|<1−|xi|, i=1,...,d}

dy

=
∫

Q2(0)

d∏
i=1

(1 − |xi|) Re a(δx) dx.

Now by (5.1) we have:

l[φδ( · − x0)] − Vmin‖φδ( · − x0)‖2
L2(Rd) = δd

( ∫
Q2(0)

d∏
i=1

(1 − |xi|) Re a(δx) dx

+ δ−d

∫
Q1(0)

(
V (x0 + δx) − Vmin

)
dx

)
< 0.

Hence, by the minimax principle we conclude that the operator L has a non-empty discrete spectrum below 
Vmin. This completes the proof of Theorem 2.2.
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6. Existence of finitely many eigenvalues

In this section we discuss sufficient conditions ensuring the existence of at least finitely many eigenvalues 
of the operator L, namely, we prove Theorems 2.3 and 2.4.

6.1. Proof of Theorem 2.3

Since the restriction of the function a on Q2r(0) belongs to L1(Q2r(0)), for each η > 0 there exists an 
infinitely differentiable function aη ∈ C∞

0 (Q2r(0)) such that

‖a− aη‖L1(Q2r(0)) � η. (6.1)

Let u = u(x) be an infinitely differentiable function on Qr(x0); we extend it by zero outside Qr(x0). 
Then by estimates (4.1) and (6.1) we find:

(La�u, u)L2(Rd) =
∫

Qr(x0)×Qr(x0)

a(x− y)u(y)u(x) dxdy

=
∫

Qr(0)×Qr(0)

aη(x− y)u(y + x0)u(x + x0) dxdy + rη[u],
(6.2)

where rη[u] is a quadratic form satisfying the estimate

|rη[u]| � η‖u‖2
L2(R)d . (6.3)

We represent the function aη by its Fourier series, namely,

aη(x) =
∑
n∈Zd

aηne
iπ
r n·x, x ∈ Q2r(0), aηn := (2r)−d

∫
Q2r(0)

aη(x)e− iπ
r n·x dx.

It follows from (6.1) that

|aηn − an| � η, n ∈ Zd, an := (2r)−d

∫
Q2r(0)

a(x)e− iπ
r n·x dx.

Owing to the assumed smoothness of the function aη, its Fourier series converges uniformly on Q2r(0). 
This allows us to substitute this Fourier series into the first term on the right hand side of (6.2):

∫
Qr(0)×Qr(0)

aη(x− y)u(x0 + y)u(x0 + x) dxdy

=
∑
n∈Zd

aηn

∫
Qr(0)×Qr(0)

e
iπ
r n·(x−y)u(x0 + y)u(x0 + x) dxdy =

∑
n∈Zd

aηn|Un|2,
(6.4)

where

Un :=
∫

e−
iπ
r n·xu(x0 + x) dx = e

iπ
r n·x0

∫
e−

iπ
r n·xu(x) dx.
Qr(0) Q2r(x0)
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Here we have also employed that u vanishes on Q2r(x0) \Qr(x0). Up to a fixed multiplicative constant, the 
numbers Un are the Fourier coefficients of the function u, namely,

u(x + x0) = (2r)−d
∑
n∈Zd

Une
iπ
r n·x, x ∈ Q2r(0),

and by the Parseval identity it holds:

‖u‖2
L2(Q2r(x0)) = ‖u‖2

L2(Qr(x0)) = ‖u( · + x0)‖2
L2(Qr(0)) = (2r)−d

∑
n∈Zd

|Un|2. (6.5)

The function u(x) can be also regarded as defined on the cube Qr(x0) and it can be represented by one 
more Fourier series

u(x + x0) = r−d
∑
n∈Zd

une
2πi
r n·x, x ∈ Qr(0), un :=

∫
Qr(0)

e−
2πi
r n·xu(x + x0) dx.

The corresponding Parseval identity reads:

‖u‖2
L2(Qr(x0)) = ‖u( · + x0)‖2

L2(Qr(0)) = r−d
∑
n∈Zd

|un|2. (6.6)

We also observe the identity

U2n = un, n ∈ Zd, (6.7)

which will play an important role in what follows.
We substitute (6.4) into (6.2) and take into consideration estimate (6.3) and Parseval identity (6.5). This 

gives:

(La�u, u)L2(Rd) �(Laη�u, u)L2(Rd) + η‖u‖2
L2(Qr(x0)) =

∑
n∈Zd

aηn|Un|2 + η‖u‖2
L2(Qr(x0))

�
∑
n∈Zd

an|Un|2 + η
(
1 + (2r)d

)
‖u‖2

L2(Qr(x0)).

Passing then to the limit as η → +0 and using identity (6.7), we get

(La�u, u)L2(Rd) �
∑
n∈Zd

an|Un|2 =
∑

n∈(2Z)d
a2n|un|2 +

∑
n∈Zd\(2Z)d

an|Un|2. (6.8)

By the Parseval identity (6.5) we obtain:
∑

n∈Zd\(2Z)d
an|Un|2 � sup

n∈Zd\(2Z)d
an

∑
n∈Zd\(2Z)d

|Un|2 � α‖u‖2
L2(Qr(x0)), α := (2r)d sup

n∈Zd\(2Z)d
an;

here we have also used the inequality α � 0. This allows us to rewrite estimate (6.8) as

(La�u, u)L2(Rd) �
∑
n∈Zd

a2n|un|2 + α‖u‖2
L2(Qr(x0)). (6.9)

Now let us consider test functions u ∈ L2(Rd) supported in the cube Qr(x0). We suppose that on Qr(x0)
the function u is a finite linear combination
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u(x) = r−d
∑
n∈J

une
2πi
r n·(x−x0), (6.10)

where J is a finite subset of J0. Then for such u estimate (6.9) becomes

(La�u, u)L2(Rd) �
∑
n∈J

a2n|un|2 + α‖u‖2
L2(Qr(x0)). (6.11)

We also have:

(
(V (x) − Vmin)u, u

)
L2(Rd) =

∫
Qr(x0)

(V (x) − Vmin)|u(x)|2 dx

=r−2d
∑

m,n∈J

unum

∫
Qr(0)

(
V (x + x0) − Vmin

)
e

2πi
r (n−m)·x dx

=r−2d
∑

n,m∈J

unumVn−m.

Hence, by Cauchy-Schwartz inequality and Parseval identity,

(
(V (x) − Vmin)u, u

)
L2(Rd) �r−2d

(∑
n∈J

|un|2
) 1

2
(∑

n∈J

∣∣∣∣ ∑
m∈J

Vn−mum

∣∣∣∣
2
) 1

2

�r−2d

(∑
n∈J

|un|2
) 1

2
(∑

n∈J

(∑
m∈J

|Vn−m|
)(∑

m∈J

|Vn−m||um|2
)) 1

2

�r−
3
2d

(∑
n∈J

|un|2
) 1

2

ν
1
2
J

⎛
⎝ ∑

m,n∈J

|Vn−m||un|2
⎞
⎠

1
2

� νJ‖u‖2
L2(Qr(x0)).

This estimate, (6.11) and Parseval identity (6.6) lead us to a final estimate for the form of the operator L
on the functions u defined in (6.10):

l[u] − Vmin‖u‖2
L2(Rd) � (rd max

n∈J
a2n + α + νJ)‖u‖2

L2(Qr(x0)). (6.12)

We substitute for J in (6.12) the set I from the formulation of the theorem. Then combining (2.6) and 
(6.12) yields

l[u] − Vmin‖u‖2
L2(Rd) < 0

for all linear combinations (6.10) with J ⊂ I. By the minimax principle this implies that the operator L
possesses at least #I eigenvalues below Vmin and this completes the proof of the first statement in the 
theorem.

Now as the set J in (6.12) we choose J := {n} with n ∈ I. Then estimate (6.12) becomes

l[u] − Vmin‖u‖2
L2(Rd) �

(
rda2n + α + r−d|V0|

)
‖u‖2

L2(Qr(x0)), |V0| = V0.

Taking the infimum over n ∈ J of the right hand side in the above inequality, by the minimax principle we 
arrive at (2.7). This completes the proof of Theorem 2.3.
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6.2. Proof of Theorem 2.4

Let U be an arbitrary function defined on the cube Q1(0) and being an element of L2(Q1(0)). We extend all 
such functions by zero outside Q1(0). Then we choose a sufficiently small δ and let uδ(x) := U((x −x0)δ−1). 
This function is supported in Qδ(x0). The quadratic form of the operator La� on the function uδ reads as

(La�uδ, uδ)L2(Rd) =
∫

Qδ(x0)×Qδ(x0)

a(x− y)uδ(y)uδ(x) dxdy

=δ2d
∫

Q1(0)×Q1(0)

a(δ(x− y))U(y)U(x) dxdy.
(6.13)

Since the function a is smooth, we can represent it by the Taylor formula as

a(δ(x− y)) =
2N∑
j=0

δjAj(x− y) + δ2N+1Ã2N+1(x− y, δ), (6.14)

where Aj are homogeneous polynomials of degree j given by the formulae

Aj(ξ) =
∑

n∈Zd
+

|n|=j

∂na(0)
n! ξn.

The remainder Ã2N+1 in (6.14) satisfies the uniform estimate

|Ã2N+1(ξ, δ)| � C for all ξ ∈ Q2(0), (6.15)

where C is some constant independent of ξ and δ. Since

(x− y)n =
∑

m,q∈Zd
+

m+q=n

(−1)|q| n!
m!q!x

myq,

we immediately get

Aj(x− y) =
∑

m,q∈Zd
+

|m|+|q|=j

(−1)|q|∂m+qa(0)x
myq

m!q! .

We substitute this formula into (6.14) and the result is plugged in (6.13). Denoting then

Um :=
∫

Q1(0)

xmU(x) dx,

we arrive at the identities

(La�uδ, uδ)L2(Rd) =
∑

m,q∈Zd
+

|m|+|q|�2N

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q!

+ δ2N+1
∫

A2N+1(x− y, δ)U(x)U(y) dxdy.

(6.16)
Q1(0)×Q1(0)
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Estimate (6.15) yields immediately that
∣∣∣∣∣∣∣δ

2N+1
∫

Q1(0)×Q1(0)

A2N+1(x− y, δ)U(x)U(y) dxdy

∣∣∣∣∣∣∣ � Cδ2N+1‖U‖2
L2(Q1(0)),

where C is some constant independent of δ and U .
For now on we specify the choice of the function U . Namely, we assume that it is a polynomial of degree 

at most N , i.e.,

U(x) =
∑

m∈Zd
+

|m|�N

cmxm. (6.17)

Then we have

Un =
∑

m∈Zd
+

|m|�N

cm

∫
Q1(0)

xn+m dx. (6.18)

A matrix of size M(N) × M(N) with entries 
∫

Q1(0)
xn+m dx, is the Gram matrix of linearly independent 

functions {xn}, n ∈ Zd
+, |n| � N , and hence, this matrix is non-degenerate. Then it follows from (6.18) that 

the coefficients cm are expressed as linear combinations of Un, n ∈ Zd
+, |n| � N . Therefore, each polynomial 

(6.17) can be equivalently characterized be means of the coefficients Un, n ∈ Zd
+, |n| � N . In particular, 

this implies uniform estimates

c̃−1‖U‖2
L2(Q1(0)) �

∑
n∈Zd

+
|n|�N

|Un|2 � c̃‖U‖2
L2(Q1(0)), (6.19)

∑
n∈Zd

+
N+1�|n|�2N

|Un|2 � C‖U‖2
L2(Q1(0)), (6.20)

where c̃ and C are constants independent of U .
We rewrite the first term on the right hand side of (6.16) as

∑
m,q∈Zd

+
|m|+|q|�2N

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q! =
∑

m,q∈Zd
+

|m|,|q|�N

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q!

+
∑

m,q∈Zd
+, |m|+|q|�2N

|m|�N+1 or |q|�N+1

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q! .

(6.21)

By (6.20) we can estimate the second term on the right hand side of the above identity as follows:
∣∣∣∣∣∣∣∣∣

∑
m,q∈Zd

+, |m|+|q|�2N

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q!

∣∣∣∣∣∣∣∣∣
� CδN+1‖U‖2

L2(Q1(0)), (6.22)
|m|�N+1 or |q|�N+1
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where C is a constant independent of δ and U . In view of the definition of the form aN in (2.8), the first 
term on the right hand side of (6.21) can be expressed as

∑
m,q∈Zd

+
|m|,|q|�N

(−1)|q|δ|m|+|q|∂m+qa(0)UmUq

m!q! = aN [uδ], uδ :=
(
δ|m|Um

m!

)
m∈Zd

+, |m|�N

.

It follows from (6.19) that

‖uδ‖2
CM(N) � c̃0δ

2N‖U‖2
L2(Q1(0)), (6.23)

where c̃0 is a positive constant independent of δ and U .
Since by the assumptions of the theorem the form aN is negative definite on the subspace S, there exists 

a constant c̃1 > 0 independent of δ and uδ such that

aN [uδ] � −c̃1‖uδ‖2
CM(N)

for each uδ ∈ S. Hence, for each polynomial (6.17), for which the corresponding vector uδ belongs to S, by 
(6.23) we obtain:

aN [uδ] � −c̃1c̃0δ
2N‖U‖2

L2(Q1(0)).

The above inequality and (6.22) allow us to estimate the form (La�uδ, uδ)L2(Rd) from above for sufficiently 
small δ as follows:

(La�uδ, uδ)L2(Rd) � δ2(N+d)(−c̃0c̃1 + δc̃)‖U‖2
L2(Q1(0)) � − c̃0c̃1

2 δ2(N+d)‖U‖2
L2(Q1(0)). (6.24)

We proceed to estimating the contribution of the potential V to the form of the operator L. Namely, we 
have:

(LV uδ, uδ)L2(Rd) − Vmin‖uδ‖2
L2(Rd) =

∫
Rd

(V (x) − Vmin)|uδ(x)|2 dx

=δd
∫

Q1(0)

(
V (x0 + δx) − Vmin

)
|U(x)|2 dx

=δd
∑

m,q∈Zd
+

|m|,|q|�2N

cncm

∫
Q1(0)

(
V (x0 + δx) − Vmin

)
xn+m dx.

Hence, by definition (2.9) of the function hN (δ) and inequality (6.19) we find:

(LV uδ, uδ)L2(Rd) − Vmin‖uδ‖2
L2(Rd) � CδdhN (δ)‖U‖2

L2(Q1(0)),

where C is some constant independent of δ and U . This estimate and (6.24) yield:

(Luδ, uδ)L2(Rd) − Vmin‖uδ‖2
L2(Rd) � δ2(N+d)

(
− c̃0c̃1

2 + C
hN (δ)
δ2N+d

)
‖U‖2

L2(Rd).

Applying condition (2.10), we finally see that for sufficiently small δ the estimate
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(Luδ, uδ)L2(Rd) � − c̃0c̃1
3 δ2(N+d)‖U‖2

L2(Rd)

holds true for each polynomial U defined by formula (6.17), for which the corresponding vector uδ belongs 
to S. Since the dimension of the space of such polynomials coincides with that of the subspace S, by the 
minimax principle we conclude that the operator L possesses at least dimS discrete eigenvalues below μ0. 
The proof of Theorem 2.4 is complete.

6.3. Proof of Theorem 2.5

We introduce a subspace S of CM(N) that consists of vectors ζ = (ζn)n∈Zd
+, |n|�N such that ζn = 0 as 

n /∈ I. It is obvious that the dimension of the space S coincides with #I.
Let us show that the conditions of this theorem imply the assumptions of Theorem 2.4 with the introduced 

subspaces S. We begin with studying the form aN . We rewrite definition (2.8) of this form as

aN [ζ] =
∑
n∈I

(−1)|n|∂2na(0)|ζn|2 +
∑

n,m∈I, n �=m

(−1)|n|∂n+ma(0)ζmζn. (6.25)

Inequalities (2.12) then yield
∑
n∈I

(−1)|n|∂2na(0)|ζn|2 = −
∑
n∈I

|∂2na(0)||ζn|2. (6.26)

Employing condition (2.13) and assuming that (2.14) holds, we estimate the second term in (6.25) as follows:
∣∣∣∣∣

∑
n,m∈I, n �=m

(−1)|n|∂n+ma(0)ζmζn

∣∣∣∣∣ �
∑

n,m∈I, n �=m

βn,m

√
|∂2na(0)|

√
|∂2ma(0)||ζn||ζm|

� 1
2
∑
n∈I

∑
m∈I,
m�=n

βn,m|∂2na(0)||ζn|2 + 1
2
∑
m∈I

∑
n∈I,
n �=m

βn,m|∂2ma(0)||ζm|2

� β1
∑
n∈I

|∂2na(0)||ζn|2.

Combining this estimate with identities (6.25), (6.26), we obtain the following estimate for the form aN :

aN [ζ] � −(1 − β1)
∑
n∈I

|∂2na(0)||ζn|2,

and, since β1 < 1, we conclude that the form aN is negative definite.
Recalling the definition of hN (δ) in (2.9), it is straightforward to show that estimate (2.11) implies the 

following inequality:

|hN (δ)| � Cδα,

where C is some constant independent of δ. Since 2N < α− d by the assumption on N , condition (2.10) is 
fulfilled, and therefore Theorem 2.4 applies.

If (2.15) holds, the second term on the right-hand side of (6.25) can be estimated as follows:
∣∣∣∣∣

∑
(−1)|n|∂n+ma(0)ζmζn

∣∣∣∣∣ �
∑

βn,m

√
|∂2na(0)|

√
|∂2ma(0)||ζn||ζm|
n,m∈I, n �=m n,m∈I, n �=m
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�
( ∑

n,m∈I,
n �=m

β2
n,m

) 1
2
( ∑

n,m∈I,
n �=m

|∂2na(0)| |∂2ma(0)| |ζn|2|ζm|2
) 1

2

=β
1
2
2

((∑
n∈I

|∂2na(0)| |ζn|2
)2

−
∑
n∈I

|∂2na(0)|2|ζn|4
) 1

2

Therefore,

aN [ζ] �−
∑
n∈I

∣∣∂2na(0)
∣∣|ζn|2 + β

1
2
2

((∑
n∈I

|∂2na(0)| |ζn|2
)2

−
∑
n∈I

|∂2na(0)|2|ζn|4
) 1

2

=
β2

(( ∑
n∈I

|∂2na(0)| |ζn|2
)2

−
∑
n∈I

|∂2na(0)|2|ζn|4
)
−

( ∑
n∈I

∣∣∂2na(0)
∣∣|ζn|2)2

β
1
2
2

(( ∑
n∈I

|∂2na(0)| |ζn|2
)2

−
∑
n∈I

|∂2na(0)|2|ζn|4
) 1

2

+
∑
n∈I

|∂2na(0)||ζn|2

�−
(
1 − β2

)∑
n∈I

|∂2na(0)||ζn|2 − β2

(∑
n∈I

|∂2na(0)|2|ζn|4
)(∑

n∈I

|∂2na(0)| |ζn|2
)−1

Considering the inequality

(∑
n∈I

|∂2na(0)||ζn|2
)2

� (#I)
∑
n∈I

|∂2na(0)|2|ζn|4,

we derive from the latter estimate the following upper bound:

aN [ζ] � −
(
(1 − β2) + (#I)−

1
2β2

)(∑
n∈I

|∂2na(0)|2|ζn|4
)(∑

n∈I

|∂2na(0)| |ζn|2
)−1

.

Therefore, the form aN [ζ] is negative definite if 1 − β2 + (#I)− 1
2β2 > 0 or, equivalently,

β2 <
(#I) 1

2

(#I) 1
2 − 1

.

This completes the proof of Theorem 2.5.

6.4. Proof of Theorem 2.6

It suffices to check that under the assumptions of Theorem 2.6 there exists an infinite subset Ĩ ⊂ I such 
that condition (2.14) holds for Ĩ. Indeed, letting ĨN = {n ∈ Ĩ : |n| � N}, N ∈ Z+, and assuming that 
(2.14) holds for Ĩ, by Theorem 2.5 we obtain that there exist at least #ĨN points of the discrete spectrum 
of L below μ0. Since N is an arbitrary number from N, and #ĨN tends to infinity as N → ∞, the desired 
statement follows.

It remains to construct a subset Ĩ that satisfies the aforementioned conditions.

Lemma 6.1. There exists an infinite sequence n1, n2, . . . , nj , . . . with nj ∈ I such that nj+1
k � nj

k for all 
k = 1, . . . , d and all j ∈ Z+, and nj+1 �= nj.
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We choose the indices j	 in such a way that at least for one k ∈ {1, . . . , d} the inequality

n
j�+1
k � 2|nj� |

holds. Denote |n|∞ = max
k

nk. Then for each m ∈ Z+ and � ∈ Z+, m < �, we have

(2nj�)! (2njm)!(
(nj� + njm)!

)2 =
d∏

k=1

(2nj�
k )! (2njm

k )!(
(nj�

k + njm
k )!

)2 �
(2nj�

k0
)! (2njm

k0
)!(

(nj�
k0

+ njm
k0

)!
)2 �

(3
2

) 1
2 |n

j� |∞
;

here the index k0 is such that |nj� |∞ = nj�
k0

. In view of conditions (2.17) and (2.18), this estimate yields the 
following inequalities:

(|∂2nj�a(0)| |∂2njm
a(0)|) 1

2

|∂nj�+njma(0)|
�

c1
(
(2nj�)! (2njm)!

) γ
2

c2
(
(nj� + njm)!

)γ � c1
c2

(3
2

) γ
4 |n

j� |∞

Choosing nj� in such a way that

c1
c2

(3
2

) γ
4 |n

j� |∞
� 2	 for all � ∈ Z+,

we obtain the desired subset Ĩ and complete the proof.

7. Upper bound for the number of discrete eigenvalues

In this section we prove Theorem 2.8 establishing in this way an upper bound for the number of the 
discrete eigenvalues under the threshold of the essential spectrum. The proof of this theorem follows the 
main ideas of the Birman-Schwinger principle, see e.g. [19, Thm. XIII.10], but with appropriate modifications 
needed for our operator L.

We begin with introducing an auxiliary operator

L(−) := −(La−� + LV−),

where a− is defined by the identity F [a−] = â−. According to the definition of the functions â− and V− and 
by identities (4.2) we conclude immediately that both operators La−� and LV− are non-positive. Hence, the 
operator L(−) is non-negative.

We denote by En and E(−)
n respectively the discrete eigenvalues of the operators L and L(−) below 

Vmin taken counting their multiplicities. By N0 and N (−) we denote respectively the total number of the 
eigenvalues En and E(−)

n , that is,

N0 = #{n : En < μ0}, N (−) = #{n : E(−)
n < μ0}.

Then expression (4.17) for the form of the operators L, a similar expression for the form of the operator 
L(−) and the minimax principle imply that

N0 � N (−). (7.1)

Hence, it is sufficient to find an upper bound for N (−).
We observe that if some E < μ0 � 0 is an eigenvalue of the operator L(−) and a corresponding eigen-

function ψ solves the equation
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(
E − L(−))ψ = 0,

then the function ϕ := V
1
2
− ψ is a solution of the equation

ϕ = −V
1
2
−
(
La−� + E

)−1
V

1
2
− ϕ. (7.2)

Here the function V
1
2
− is well-defined and non-negative since the function V− is non-negative by its definition. 

Equation (7.2) also means that 1 is an eigenvalue of the operator −V
1
2
−
(
La−�+E

)−1
V

1
2
− if E is an eigenvalue 

of the operator L(−).
Since by the assumption of the theorem we have

min â− = inf â = amin � Vmin = μ0,

then for E < μ0 � 0 the inverse operator (La−� + E)−1 is well-defined and bounded in L2(Rd). It can be 
easily found by means of formulae (4.2):

(La−� + E)−1 =
(

1
(2π) d

2
F
)−1

(Lâ− + E)−1

(
1

(2π) d
2
F
)

=
(

1
(2π) d

2
F
)−1

(â− + E)−1

(
1

(2π) d
2
F
)
.

(7.3)

Then, owing to a simple identity

1
â− + E

= 1
E

(1 + bE), bE := − â−
â− + E

,

and (4.2), we can rewrite formula (7.3) as

(La−� + E)−1 = 1
E

(
I + Lb̂E�

)
, b̂E := F [bE ]. (7.4)

We observe that the function b̂E(ξ) is strictly positive for all ξ ∈ Rd and it increases monotonically in E. 
This implies immediately that the operator Lb̂E� is increasing in E in the sense of quadratic forms.

Substituting (7.4) into (7.2), we obtain

ϕ = −V−
E

ϕ− 1
E
V

1
2
− Lb̂E�V

1
2
− ϕ.

Taking into consideration that E + V− > 0, we denote φ := (−(E + V−)) 1
2ϕ and we rewrite the above 

equation as

QEφ = φ, QE :=
(
− (E + V−)

)− 1
2V

1
2
− Lb̂E�V

1
2
−
(
− (E + V−)

)− 1
2φ.

Hence, if E < μ0 is an eigenvalue of the operator L(−), then 1 is an eigenvalue of operator QE .
We observe that QE is an integral operator:

(QEu)(x) =
∫

QE(x, y)u(y) dy,

Rd
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where

QE(x, y) :=
(
− (E + V−(x))

) 1
2V

1
2
− (x)b̂E(x− y)V

1
2
− (y)

(
− (E + V−(y))

) 1
2 . (7.5)

By their definitions, both the functions V− and b̂E vanish at infinity. This ensures that the operator 
Lb̂E� is compact in L2(Rd) and therefore, the same is true for the operator QE. And since the operator 
Lb̂E� is monotonically increasing in E in the sense of quadratic forms, we obtain the same property also for 
QE . These two properties of the operator QE yield that first, the spectrum of the operator QE consists of 
discrete eigenvalues λm(E) and a possible point of essential spectrum at zero, and second, these eigenvalues 
λm(E) increase as E → μ0 − 0. In view of the latter property and the aforementioned relation between the 
eigenvalues of the operator L(−) and of QE , if E(−)

n is an eigenvalue of the operator L(−), then λm(E(−)
n ) = 1

for some m and λm(E) > 1 as E < E
(−)
n . Hence, in order to count the total number of the eigenvalues E(−)

n , 
it is sufficient to count the total number of the eigenvalues λm(E) passing through 1 as E goes to μ0 from 
below. In view of an obvious inequality

∑
m:λm(E)�1

1 �
∑

m:λm(E)�1

λm(E)

by (7.5) we then get:

N (−) = lim
E→μ0−

∑
m:λm(E)�1

1 � lim
E→μ0−

∑
m:λm(E)�1

λm(E) = lim
E→μ0−

TrQE

= lim
E→μ0−

∫
Rd

QE(x, x) dx = lim
E→μ0−

b̂E(0)
∫
Rd

V−(x)
−(E + V−(x)) dx = IaIV .

In view of inequality (7.1), this completes the proof.

8. Infinite discrete spectrum

In this section we discuss the situations when the operator L possesses infinitely many points of the 
discrete spectrum, namely, we prove Theorem 2.7.

We first assume that inequalities (2.19) are satisfied. Since V (x) ≡ Vmin on Qr(x0), in view of (4.17) for 
each infinitely differentiable function u compactly supported in Qr(x0) we have

l[u] − Vmin‖u‖2
L2(Rd) = (La�u, u)L2(Rd) = (âû, û)L2(Rd), û := 1

(2π) d
2
F [u].

Inequalities (2.19) imply that â � 0 and â is a non-trivial function. Therefore, this function is non-zero and 
negative on a set of positive measure; we denote this set by Ω. Since the function u is compactly supported, 
its Fourier transform û is analytic in ξ. Hence, it is non-zero on Ω and we get

l[u] − Vmin‖u‖2
L2(Rd) < 0 for each u ∈ C∞

0 (Qr(x0)).

Since C∞
0 (Qr(x0)) is an infinite dimensional space, by the minimax principle the above inequality implies 

that the operator L possesses infinitely many eigenvalues below the point μ0.
We turn to proving the second part of the theorem. Due to (6.8), for an arbitrary function u ∈ C∞

0 (Qr(x0))
continued by zero outside Qr(x0) we have:

l[u] − Vmin‖u‖2
L2(Rd) = (La�u, u)L2(Rd) �

∑
an|Un|2. (8.1)
n∈Zd
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By our assumptions, all Fourier coefficients satisfy an � 0 and there exists an infinite subsequence of these 
coefficients, for which the latter inequality is strict. We denote such subsequence by n′ and then by (8.1)
we get:

l[u] − Vmin‖u‖2
L2(Rd) �

∑
n′

an′ |Un′ |2 < 0

for u such that at least one of its coefficients Un′ is non-zero. It is clear that the space of such functions 
is infinite-dimensional and by the minimax principle we conclude on the existence of countably many 
eigenvalues below μ0. This completes the proof.
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