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About
The Logic Colloquium is the European Summer Meeting of the Association for
Symbolic Logic, that in 2021 will be held from 19th to 24th of July at the Adam
Mickiewicz University in Poznań, Poland. It is organized jointly by the AMU
Faculties: of Psychology and Cognitive Science and of Mathematics and Computer
Science. This year, it is an on-line event. However, we are not going to miss this
perfect opportunity to present to all of the prospective participants our University
and the beautiful city of Poznań: please have a look at the ’Venue’ and ’Local
Guide’ sections of the website, and come visit us in more travel-friendly time!

https://lc2021.pl/
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Contributed talks



All contributed talks in alphabetical order

1. Claudio Agostini and Eugenio Colla, An algebraic characterization of Ram-
sey Monoids

2. Aleksi Anttila, Maria Aloni and Fan Yang, A logic for modelling free choice
inference

3. Aizhan Altayeva, Beibut Kulpeshov and Sergey Sudoplatov, On algebras of
binary formulas for almost ω-categorical weakly o-minimal theories

4. Pavel Arazim, Logic not being serious

5. John Baldwin, Finer classification of Strongly minimal sets

6. Nikolay Bazhenov, Dariusz Kalociński and Michał Wrocławski, Degree spec-
tra of unary recursive functions on naturals with standard ordering

7. Gaia Belardinelli and Rasmus K. Rendsvig, Epistemic Planning with At-
tention as a Bounded Resource

8. Dylan Bellier, Massimo Benerecetti, Dario Della Monica and Fabio Mo-
gavero, Good-for-Game QPTL: An Alternating Hodges Semantics

9. Bruno Bentzen, How do we intuit mathematical constructions?

10. Nick Bezhanishvili and Fan Yang, Intermediate logics in the team semantics
setting

11. Laurent Bienvenu, Valentino Delle Rose and Tomasz Steifer, Computable
randomness relative to almost all oracles

12. Katalin Bimbo, Abaci running backward

13. Nicola Bonatti, Two questions concerning quantifiers rules

14. Marta Fiori Carones, Measuring the strength of Ramsey-theoretic state-
ments over RCA0∗

15. Matteo de Ceglie, The V-logic Multiverse and MAXIMIZE

16. Yong Cheng, The interpretation degree structure of r.e. theories for which
the first incompleteness theorem holds

17. Horatiu Cheval, General metatheorems in proof mining

18. Anahit Chubaryan and Arsen Hambardzumyan, On non-monotonous prop-
erties of some propositional proof systems
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19. Anahit Chubaryan, Sargis Hovhannisyan and Hayk Gasparyan, Comparison
of two propositional proof systems by lines and by sizes

20. Gabriel Ciobanu, Various notions of infinity for finitely supported structures

21. Vittorio Cipriani, Cantor-Bendixson theorem in the Weihrauch lattice

22. Willem Conradie and Valentin Goranko, Algorithmic correspondence for
relevance logics

23. Ludovica Conti, Logicality and Abstraction

24. Andrés Cordón-Franco, F. Félix Lara-Martín and Manuel J.S. Loureiro, On
determinacy of Lipschitz and Wadge games in second order arithmetic

25. Jakub Dakowski, Aleksandra Draszewska, Barbara Adamska, Dominika Juszczak,
Łukasz Abramowicz and Robert Szymański, Addressing logic students’ proof
making difficulties with Plugin Oriented Programming and gamification

26. Karol Duda and Aleksander Iwanow, A finitely presented group with un-
decidable amenability

27. Dmitry Emelyanov, Beibut Kulpeshov and Sergey Sudoplatov, On algebras
of binary formulas for partially ordered theories

28. Christian Espindola, Categoricity theorems in infinite quantifier languages

29. Andrzej Gajda, Abductive reasoning in a neural-symbolic system

30. Francesco Gallinaro, Around exponential algebraic closedness

31. Luke Gardiner, Countable Exponent Partition Relations on the Real Line

32. Margarita Gaskova, Boolean algebras autostable relative to n-constructivizations

33. Azza Gaysin, H-Coloring Dichotomy in Proof Complexity

34. Meghdad Ghari, A temporal logic of justification and obligation

35. Michał Tomasz Godziszewski and Luca San Mauro, Quotient structures,
philosophy of computability theory and computational structuralism

36. Michał Tomasz Godziszewski, Fairness and Jutsified Representation in Judg-
ment Aggregation and Belief Merging

37. Lew Gordeev and Edward Haeusler, On Proof Theory in Computational
Complexity
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38. Davit Harutyunyan, On Some Associative Formula with Functional Vari-
ables

39. Taneli Huuskonen, Cromulence logic: duty meets preference

40. Martina Iannella, The complexity of convex bi-embeddability among count-
able linear orders

41. Raheleh Jalali, On hard theorems for substructural logics

42. Josiah Jacobsen-Grocott, A Characterization of the Strongly η-Representable
Many-One Degrees

43. Marcin Jukiewicz and Dorota Leszczyńska-Jasion, Improving the work of a
genetic algorithm in proof-search tasks

44. Vladimir Kanovei, On the ‘Definability of definable’ problem of Alfred
Tarski

45. Ruaan Kellerman and Valentin Goranko, Approximating trees as coloured
linear orders and complete axiomatisations of some classes of trees

46. Mohamed Khaled, Algebras of Concepts and Their Networks: Boolean Al-
gebras

47. Peter Koepke, The Naproche natural language proof assistant

48. KatarzynaW. Kowalik, Classifying Ramsey-theoretic principles with strongly
infinite witnesses over RCA∗

0

49. Agnieszka Kozdęba and Apoloniusz Tyszka, The physical limits of compu-
tation inspire an open problem that concerns decidable sets X ⊆ N and
cannot be formalized in ZFC as it refers to the current knowledge on X

50. Beibut Kulpeshov, On criterion for binarity of almost ω-categorical weakly
o-minimal theories

51. Borisa Kuzeljevic and Stevo Todorcevic, Cofinal types on ω2

52. Paul Blain Levy, Broad Infinity and Generation Principles

53. Ivan Di Liberti, Formal model theory and Higher Topology

54. Philipp Moritz Lücke, Huge reflection

55. Pawel Lupkowski, Erotetic search scenarios and blackboard architecture in
group question decomposition
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56. Mateusz Łełyk, On Sigma1 uniform reflection over uniform Tarski bicondi-
tionals

57. Judit Madarász, Concept algebra of special relativistic spacetime

58. AdamMalinowski and Ludomir Newelski, A few remarks on strongly generic
sets

59. Nurlan Markhabatov and Sergey Sudoplatov, On closures for partially or-
dered families of theories

60. Santiago Jockwich Martinez, Algebra-valued models and Priests Logic of
Paradox

61. Alba Massolo and Inés Crespo, Arguments against a Bayesian approach to
the normativity of argumentation

62. Yukihiro Masuoka and Makoto Tatsuta, Counterexample to cut-elimination
in cyclic proof system

63. Lachlan McPheat, Mehrnoosh Sadrzadeh, Hadi Wazni and Gijs Wijnholds,
Vectorial discourse analysis in Lambek calculus with a bounded relevant
modality

64. José M. Méndez, Gemma Robles and Francisco Salto Three-valued rele-
vance logics

65. Yana Michailovskaya, Computable linear orders enriched by the relations
Sn
L

66. Douglas Moore, Naturality as Universal Normative Authority in Stoic Logic

67. Sandra Müller, The strength of determinacy when all sets are universally
Baire

68. Omer Ben Neria and Dominik Adolf, Tree-like scales and free subsets of set
theoretic algebras

69. Yuya Okawa, Sohei Iwata and Taishi Kurahashi, Craig’s interpolation and
the fixed point properties for sublogics of interpretability logic IL.

70. Mattias Granberg Olsson and Graham Leigh, A proof of conservativity of
ˆID

i

1 over Heyting arithmetic via truth

71. Sergei Ospichev, About families in Ershov hierarchy without Friedberg
numberings
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72. Valeria de Paiva and Samuel G. Da Silva, Dialectica and Kolmogorov-Veloso
problems

73. Inessa Pavlyuk and Sergey Sudoplatov, On rich properties for the family of
theories of Abelian groups

74. Luiz Carlos Pereira, Elaine Pimentel and Valeria de Paiva, Ecumenic Nega-
tion: one or two?

75. Iosif Petrakis, Chu representations of categories related to constructive
mathematics

76. Yaroslav Petrukhin, Cut-free proof systems for non-standard modal logics
based on S5

77. Ivo Pezlar, A Note on Paradoxical Propositions from an Inferential Point
of View

78. Paweł Płaczek The PTIME complexity of multiplicative nonassociative bi-
linear logic

79. Alexej Pynko, Finite Hilbert-style calculi for disjunctive and implicative
finitely-valued logics with equality determinant

80. Davide Emilio Quadrellaro and Gianluca Grilletti, Topological Semantics
for Inquisitive and DNA-logics

81. Paula Quinon, The anti-mechanist argument based on Gödel’s Incomplete-
ness Theorems, indescribability of the concept of natural number and de-
viant encodings

82. Eric Raidl, Definable conditionals

83. Eric Raidl, Andrea Iacona and Vincenzo Crupi, The Logic of the Evidential
Conditional

84. Luca Reggio, Game comonads and homomorphism counting in finite model
theory

85. Gemma Robles, Alternative semantical interpretations of the paraconsistent
and paracomplete 4-valued logic PŁ4

86. Lorenzo Rossi and Michał Tomasz Godziszewski, First-order vs. Second-
order theories: searching for deep disagreement

87. Yana Rumenova and Tinko Tinchev, Undecidability of modal definability:
the class of frames with two commuting equivalence relations
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88. Francisco Salto and Carmen Requena, BRAIN ACTIVITY MARKS OF
LOGICAL VALIDITY: results from EEG and MEG studies

89. Sam Sanders, The Big Six and Big Seven of Reverse Mathematics, and a
new zoo

90. Anton Setzer, A model of computation for single threaded sequential inter-
active programs

91. Paul Shafer, An infinite Π1 set with no ∆2 cohesive subset

92. Michał Sochański, Dorota Leszczyńska-Jasion, Szymon Chlebowski, Agata
Tomczyk, Aleksander Kiryk and Marcin Jukiewicz, Synthetic tableaux: us-
ing data analysis in the optimization of proof search

93. Michał Sochański and Dorota Leszczyńska-Jasion, On the representation of
logical formulas as cographs

94. William Stafford, Completeness of intuitionistic logic for generalised proof-
theoretic semantics

95. Raffael Stenzel, (∞, 1)-Categorical Comprehension Schemes

96. Alexey Stukachev, Marina Stukacheva and Alexey Ryzhkov, Approximation
spaces over dense linear orders

97. Donald Stull, Algorithmic Randomness and Fractal Geometry

98. Gergely Székely, Conceptual Distance and Algebras of Concepts

99. Amirhossein Akbar Tabatabai, Feasible Visser-Harrop property for intu-
itionistic modal logics

100. Sourav Tarafder and Giorgio Venturi, ZF between classicality and non-
classicality

101. Alberto Termine, Fabio Aurelio D’Asaro and Giuseppe Primiero, Modelling
depth-bounded Boolean reasoning with Markov decision processes and re-
inforcement learning

102. Agata Tomczyk, Marta Gawek and Szymon Chlebowski, Natural Deduction
Systems for Intuitionistic Logic with Identity

103. Christopher Turner, Forcing axioms and name principles

104. Sara L. Uckelman, Women in the history of logic: why does it matter who
our foremothers are?
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105. Michal Walicki Logic of sentential predicates

106. Bartosz Wcisło, Disjunctive correctness and sequential induction

107. Trevor Wilson, Characterizing strong cardinals, virtually strong cardinals,
and other large cardinals by Löwenheim–Skolem properties

108. Urszula Wybraniec-Skardowska, A formal-logic approach to the ontology of
language

109. Manlio Valenti, Algebraic properties of the first-order part of a problem

110. Giorgio Venturi, On non-classical models of ZFC

111. Viktor Verbovskiy and Aigerim Dauletiyarova, On local monotonicity of
unary functions definable in o-stable ordered groups

112. Jannik Vierling, The limits of the n-clause calculus

113. Aibat Yeshkeyev, Aigul Issayeva and Nazgul Shamatayeva, On atomic and
algebraically prime definable subsets of semantic model

114. Aibat Yeshkeyev, Olga Ulbrikht and Nazerke Mussina, On the categoricity
of the class of the Jonsson spectrum

115. Aibat Yeshkeyev and Olga Ulbrikht, The Jonsson nonforking notion under
some positiveness

116. Pedro H. Zambrano and David Reyes, Co-quantale valued logics

117. Maxim Zubkov and Andrey Frolov, Spectral universality of linear orders
with one binary relation.
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All contributed talks divided by topics

General
1. Pavel Arazim, Logic not being serious

2. Bruno Bentzen, How do we intuit mathematical constructions?

3. Nick Bezhanishvili and Fan Yang, Intermediate logics in the team semantics
setting

4. Ludovica Conti, Logicality and Abstraction

5. Azza Gaysin, H-Coloring Dichotomy in Proof Complexity

6. Michał Tomasz Godziszewski and Luca San Mauro, Quotient structures,
philosophy of computability theory and computational structuralism

7. Michał Tomasz Godziszewski, Fairness and Jutsified Representation in Judg-
ment Aggregation and Belief Merging

8. Mohamed Khaled, Algebras of Concepts and Their Networks: Boolean Al-
gebras

9. Judit Madarász, Concept algebra of special relativistic spacetime

10. José M. Méndez, Gemma Robles and Francisco Salto Three-valued rele-
vance logics

11. Iosif Petrakis, Chu representations of categories related to constructive
mathematics

12. Paula Quinon, The anti-mechanist argument based on Gödel’s Incomplete-
ness Theorems, indescribability of the concept of natural number and de-
viant encodings

13. Lorenzo Rossi and Michał Tomasz Godziszewski, First-order vs. Second-
order theories: searching for deep disagreement

14. William Stafford, Completeness of intuitionistic logic for generalised proof-
theoretic semantics

15. Raffael Stenzel, (∞, 1)-Categorical Comprehension Schemes

16. Alberto Termine, Fabio Aurelio D’Asaro and Giuseppe Primiero, Modelling
depth-bounded Boolean reasoning with Markov decision processes and re-
inforcement learning
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17. Sara L. Uckelman, Women in the history of logic: why does it matter who
our foremothers are?

18. Jannik Vierling, The limits of the n-clause calculus

19. Michal Walicki, Logic of sentential predicates

Computability
1. Nikolay Bazhenov, Dariusz Kalociński and Michał Wrocławski, Degree spec-

tra of unary recursive functions on naturals with standard ordering

2. Laurent Bienvenu, Valentino Delle Rose and Tomasz Steifer, Computable
randomness relative to almost all oracles

3. Marta Fiori Carones, Measuring the strength of Ramsey-theoretic state-
ments over RCA0∗

4. Vittorio Cipriani, Cantor-Bendixson theorem in the Weihrauch lattice

5. Andrés Cordón-Franco, F. Félix Lara-Martín and Manuel J.S. Loureiro, On
determinacy of Lipschitz and Wadge games in second order arithmetic

6. Karol Duda and Aleksander Iwanow, A finitely presented group with un-
decidable amenability

7. Margarita Gaskova, Boolean algebras autostable relative to n-constructivizations

8. Josiah Jacobsen-Grocott, A Characterization of the Strongly η-Representable
Many-One Degrees

9. KatarzynaW. Kowalik, Classifying Ramsey-theoretic principles with strongly
infinite witnesses over RCA∗

0

10. Agnieszka Kozdęba and Apoloniusz Tyszka, The physical limits of compu-
tation inspire an open problem that concerns decidable sets X ⊆ N and
cannot be formalized in ZFC as it refers to the current knowledge on X

11. Yana Michailovskaya, Computable linear orders enriched by the relations
Sn
L

12. Sergei Ospichev, About families in Ershov hierarchy without Friedberg
numberings

13. Paweł Płaczek The PTIME complexity of multiplicative nonassociative bi-
linear logic
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14. Sam Sanders, The Big Six and Big Seven of Reverse Mathematics, and a
new zoo

15. Anton Setzer, A model of computation for single threaded sequential inter-
active programs

16. Paul Shafer, An infinite Π1 set with no ∆2 cohesive subset

17. Donald Stull, Algorithmic Randomness and Fractal Geometry

18. Manlio Valenti, Algebraic properties of the first-order part of a problem

19. Maxim Zubkov and Andrey Frolov, Spectral universality of linear orders
with one binary relation.

Logic in Cognitive Science and Linguistics
1. Jakub Dakowski, Aleksandra Draszewska, Barbara Adamska, Dominika Juszczak,

Łukasz Abramowicz and Robert Szymański, Addressing logic students’ proof
making difficulties with Plugin Oriented Programming and gamification

2. Andrzej Gajda, Abductive reasoning in a neural-symbolic system

3. Pawel Lupkowski, Erotetic search scenarios and blackboard architecture in
group question decomposition

4. Alba Massolo and Inés Crespo, Arguments against a Bayesian approach to
the normativity of argumentation

5. Lachlan McPheat, Mehrnoosh Sadrzadeh, Hadi Wazni and Gijs Wijnholds,
Vectorial discourse analysis in Lambek calculus with a bounded relevant
modality

6. Francisco Salto and Carmen Requena, BRAIN ACTIVITY MARKS OF
LOGICAL VALIDITY: results from EEG and MEG studies

7. Urszula Wybraniec-Skardowska, A formal-logic approach to the ontology of
language

Modal and Epistemic Logic
1. Aleksi Anttila, Maria Aloni and Fan Yang, A logic for modelling free choice

inference

2. Gaia Belardinelli and Rasmus K. Rendsvig, Epistemic Planning with At-
tention as a Bounded Resource
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3. Dylan Bellier, Massimo Benerecetti, Dario Della Monica and Fabio Mo-
gavero, Good-for-Game QPTL: An Alternating Hodges Semantics

4. Willem Conradie and Valentin Goranko, Algorithmic correspondence for
relevance logics

5. Meghdad Ghari, A temporal logic of justification and obligation

6. Taneli Huuskonen, Cromulence logic: duty meets preference

7. Douglas Moore, Naturality as Universal Normative Authority in Stoic Logic

8. Yuya Okawa, Sohei Iwata and Taishi Kurahashi, Craig’s interpolation and
the fixed point properties for sublogics of interpretability logic IL.

9. Davide Emilio Quadrellaro and Gianluca Grilletti, Topological Semantics
for Inquisitive and DNA-logics

10. Eric Raidl, Definable conditionals

11. Eric Raidl, Andrea Iacona and Vincenzo Crupi, The Logic of the Evidential
Conditional

12. Gemma Robles, Alternative semantical interpretations of the paraconsistent
and paracomplete 4-valued logic PŁ4

13. Yana Rumenova and Tinko Tinchev, Undecidability of modal definability:
the class of frames with two commuting equivalence relations

Model Theory
1. Claudio Agostini and Eugenio Colla, An algebraic characterization of Ram-

sey Monoids

2. Aizhan Altayeva, Beibut Kulpeshov and Sergey Sudoplatov, On algebras of
binary formulas for almost ω-categorical weakly o-minimal theories

3. John Baldwin, Finer classification of Strongly minimal sets

4. Dmitry Emelyanov, Beibut Kulpeshov and Sergey Sudoplatov, On algebras
of binary formulas for partially ordered theories

5. Christian Espindola, Categoricity theorems in infinite quantifier languages

6. Francesco Gallinaro, Around exponential algebraic closedness

7. Davit Harutyunyan, On Some Associative Formula with Functional Vari-
ables
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8. Ruaan Kellerman and Valentin Goranko, Approximating trees as coloured
linear orders and complete axiomatisations of some classes of trees

9. Beibut Kulpeshov, On criterion for binarity of almost ω-categorical weakly
o-minimal theories

10. Ivan Di Liberti, Formal model theory and Higher Topology

11. AdamMalinowski and Ludomir Newelski, A few remarks on strongly generic
sets

12. Nurlan Markhabatov and Sergey Sudoplatov, On closures for partially or-
dered families of theories

13. Inessa Pavlyuk and Sergey Sudoplatov, On rich properties for the family of
theories of Abelian groups

14. Luca Reggio, Game comonads and homomorphism counting in finite model
theory

15. Alexey Stukachev, Marina Stukacheva and Alexey Ryzhkov, Approximation
spaces over dense linear orders

16. Gergely Székely, Conceptual Distance and Algebras of Concepts

17. Viktor Verbovskiy and Aigerim Dauletiyarova, On local monotonicity of
unary functions definable in o-stable ordered groups

18. Aibat Yeshkeyev, Aigul Issayeva and Nazgul Shamatayeva, On atomic and
algebraically prime definable subsets of semantic model

19. Aibat Yeshkeyev, Olga Ulbrikht and Nazerke Mussina, On the categoricity
of the class of the Jonsson spectrum

20. Aibat Yeshkeyev and Olga Ulbrikht, The Jonsson nonforking notion under
some positiveness

21. Pedro H. Zambrano and David Reyes, Co-quantale valued logics

Proofs and Programs
1. Katalin Bimbo, Abaci running backward

2. Nicola Bonatti, Two questions concerning quantifiers rules

3. Yong Cheng, The interpretation degree structure of r.e. theories for which
the first incompleteness theorem holds
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4. Horatiu Cheval, General metatheorems in proof mining

5. Anahit Chubaryan and Arsen Hambardzumyan, On non-monotonous prop-
erties of some propositional proof systems

6. Anahit Chubaryan, Sargis Hovhannisyan and Hayk Gasparyan, Comparison
of two propositional proof systems by lines and by sizes

7. Lew Gordeev and Edward Haeusler, On Proof Theory in Computational
Complexity

8. Raheleh Jalali, On hard theorems for substructural logics

9. Marcin Jukiewicz and Dorota Leszczyńska-Jasion, Improving the work of a
genetic algorithm in proof-search tasks

10. Peter Koepke, The Naproche natural language proof assistant

11. Mateusz Łełyk, On Sigma1 uniform reflection over uniform Tarski bicondi-
tionals

12. Yukihiro Masuoka and Makoto Tatsuta, Counterexample to cut-elimination
in cyclic proof system

13. Mattias Granberg Olsson and Graham Leigh, A proof of conservativity of
ˆID

i

1 over Heyting arithmetic via truth

14. Valeria de Paiva and Samuel G. Da Silva, Dialectica and Kolmogorov-Veloso
problems

15. Luiz Carlos Pereira, Elaine Pimentel and Valeria de Paiva, Ecumenic Nega-
tion: one or two?

16. Yaroslav Petrukhin, Cut-free proof systems for non-standard modal logics
based on S5

17. Ivo Pezlar, A Note on Paradoxical Propositions from an Inferential Point
of View

18. Alexej Pynko, Finite Hilbert-style calculi for disjunctive and implicative
finitely-valued logics with equality determinant

19. Michał Sochański and Dorota Leszczyńska-Jasion, On the representation of
logical formulas as cographs

20. Michał Sochański, Dorota Leszczyńska-Jasion, Szymon Chlebowski, Agata
Tomczyk, Aleksander Kiryk and Marcin Jukiewicz, Synthetic tableaux: us-
ing data analysis in the optimization of proof search
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21. Amirhossein Akbar Tabatabai, Feasible Visser-Harrop property for intu-
itionistic modal logics

22. Agata Tomczyk, Marta Gawek and Szymon Chlebowski, Natural Deduction
Systems for Intuitionistic Logic with Identity

23. Bartosz Wcisło, Disjunctive correctness and sequential induction

Set Theory
1. Matteo de Ceglie, The V-logic Multiverse and MAXIMIZE

2. Gabriel Ciobanu, Various notions of infinity for finitely supported structures

3. Luke Gardiner, Countable Exponent Partition Relations on the Real Line

4. Martina Iannella, The complexity of convex bi-embeddability among count-
able linear orders

5. Vladimir Kanovei, On the ‘Definability of definable’ problem of Alfred
Tarski

6. Borisa Kuzeljevic and Stevo Todorcevic, Cofinal types on ω2

7. Paul Blain Levy, Broad Infinity and Generation Principles

8. Philipp Moritz Lücke, Huge reflection

9. Santiago Jockwich Martinez, Algebra-valued models and Priests Logic of
Paradox

10. Sourav Tarafder and Giorgio Venturi, ZF between classicality and non-
classicality

11. Christopher Turner, Forcing axioms and name principles
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I JOHAN VAN BENTHEM (JOINT WORK WITH THOMAS ICARD), Interleaving
Logic and Counting, A View from the Bottom.
University of Amsterdam.
E-mail: johan@stanford.edu.

Reasoning with quantifier expressions in natural language combines logical and arith-
metical features, transcending divides between qualitative and quantitative. Our topic
is this cooperation of styles. A view from the top is afforded by FO(#), first-order
logic with counting operators and cardinality comparisons. This system is known to be
of very high complexity, and drowns out finer aspects of the combination of logic and
counting. Therefore, we start from the bottom, and move to a small fragment that can
represent numerical syllogisms and basic reasoning about comparative size: monadic
first-order logic with counting (MFO(#)). We provide normal forms that allow for
axiomatization, determine which arithmetical notions can be defined on finite and (us-
ing a separation theorem) on infinite models, and conversely, we discuss which logical
notions can be defined out of purely arithmetical ones, and what sort of (non-)classical
logics can be induced.

Next we investigate a series of strengthenings of MFO(#) using the same methods.
The second-order version is close to additive Presburger Arithmetic, while versions with
tuple counting take us to Diophantine equations, making the logic undecidable. We
also define a system ML(#) that combines basic modal logic over binary accessibility
relations with counting, needed to formulate ubiquitous reasoning patterns such as the
Pigeon Hole Principle. We prove decidability of ML(#), and provide a new kind of
bisimulation matching the expressive power of the language.

As a complement to the fragment approach pursued here, we also discuss another
way of lowering complexity: changing the semantics of counting in natural ways, such as
allowing dependencies between variables, or introducing well-motivated abstract values
for ‘mass’ or other aggregating notions than cardinalities.

Finally, we return to natural language, confronting the architecture of our formal
systems with linguistic quantifier vocabulary and reasoning modules such as the mono-
tonicity calculus. In addition, we discuss the role of counting in evaluation proce-
dures for quantifier expressions and determine which binary quantifiers are computable
by finite ‘semantic automata’. We conclude with some general thoughts on further
entanglements of logic and counting in formal systems, on rethinking the qualita-
tive/quantitative divide, and on empirical consequences of our analysis.

Caveat. Logic and counting is a topic with a vast scattered literature. The full paper
will contain many references, especially to relevant papers in computational logic.
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I ARTEM CHERNIKOV, Measures in model theory.
University of California Los Angeles.
E-mail: chernikov@math.ucla.edu.

In model theory, a type is an ultrafilter on the Boolean algebra of definable sets
in a structure, which is the same thing as a finitely additive {0, 1}-valued measure.
This is a special kind of a Keisler measure, which is just a finitely additive real-valued
probability measure on the Boolean algebra of definable sets. Introduced by Keisler
in the late 80’s, Keisler measures became a central object of study in the last decade.
This is motivated by several intertwined lines of research. One of them (and perhaps
the oldest one) is the development of probabilistic and continuous logics. Another is
the study of definable groups in o-minimal, and more generally in NIP theories, leading
to interesting connections with topological dynamics. Further motivation comes from
applications in additive and in extremal combinatorics, uniting the aforementioned
directions. I will survey some of the recent developments in the subject.
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I VERA FISCHER, Combinatorial sets of reals.
University of Viena.
E-mail: vera.fischer@univie.ac.at.

Infinitary combinatorial sets of reals, such as almost disjoint families, cofinitary
groups, independent families, and towers occupy a central place in the study of the set-
theoretic properties of the real line. Of particular interest are such extremal sets of reals,
i.e. combinatorial sets which are maximal under inclusion with respect to a desired
property, their possible cardinalities, definability properties, as well as the existence
or non-existence of ZFC dependences. The study of such combinatorial sets of reals is
closely connected with the development of a broad spectrum of forcing techniques.

In this talk we will see some recent advances in the subject and point towards
interesting remaining open questions.
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I NOAM GREENBERG, The information common to relatively random sequences.
Victoria University of Wellington.
E-mail: noam.greenberg@vuw.ac.nz.

If X and Y are relatively random, what common information can X and Y have?
We use algorithmic randomness and computability theory to make sense of this ques-
tion. The answer involves some unexpected ingredients, such as the Lebesgue density
theorem, and linear programming, and reveals a rich hierarchy of Turing degrees within
the K-trivial degrees.
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I BENOIT MONIN, The computational content of Milliken’s tree theorem.
Créteil University.
E-mail: benoit.monin@computability.fr.

The Milliken’s tree theorem is an extension of Ramsey’s theorem to trees. It implies
for instance that if we assign to all the sets of two strings of the same length, one mong
k colors, there is an infinite binary tree within which every pair of strings of the same
height has the same color. We are going to present some results on Milliken’s tree
theorem from the viewpoint of computability theory and reverse mathematics.
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I FRANK PFENNING, Adjoint Logic.
Carnegie Mellon University.
E-mail: fp@cs.cmu.edu.

We introduce adjoint logic as a general framework for integrating logics with different
structural properties, that is, admitting or denying exchange, weakening, or contraction
among the hypotheses. We investigate its proof-theoretic properties from two angles:
proof construction and proof reduction. The former is the basis for applications in
logical frameworks and logic programming, while the latter provides computational
interpretations in functional and concurrent programming. We briefly sketch some of
these applications.

The talk presents joint work with William Chargin, Klaas Pruiksma, and Jason
Reed.
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I ELAINE PIMENTEL, A pure view of ecumenical modalities.
Federal University of Rio Grande do Norte.
E-mail: elaine.pimentel@gmail.com.

The discussion about how to put together Gentzen’s systems for classical and intu-
itionistic logic in a single unified system is back in fashion. Indeed, recently Prawitz and
others have been discussing the so-called ecumenical Systems, where connectives from
these logics can co-exist in peace. In Prawitz’ system, the classical logician and the
intuitionistic logician would share the universal quantifier, conjunction, negation, and
the constant for the absurd, but they would each have their own existential quantifier,
disjunction, and implication, with different meanings.

In this talk, we show how to extend Prawitz’ ecumenical idea to alethic K-modalities:
using Simpson’s meta-logical characterization, necessity is independent of the viewer,
while possibility can be either intuitionistic or classical. We will show an internal pure
calculus for ecumenical modalities, nEK, where every basic object of the calculus can
be read as a formula in the language of the ecumenical modal logic EK. We prove that
nEK is sound and complete w.r.t. the ecumenical birrelational semantics, and discuss
fragments and modal extensions.

This is a joint work with Sonia Marin, Luiz Carlos Pereira and Emerson Sales.
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I LUCA MOTTO ROS, Generalized descriptive set theory for all cofinalities, and some
applications.
University of Turin.
E-mail: luca.mottoros@unito.it.

Generalized descriptive set theory is nowadays a very active field of research. The
idea is to develop a higher analogue of classical descriptive set theory in which ω is
systematically replaced with an uncountable cardinal κ. With a few exceptions, papers
in this area tend to concentrate on the case of regular cardinals. This is because under
such assumption one can easily generalize a number of basic facts and techniques from
the classical setup, but from the theoretical viewpoint the choice is indeed not fully
justified.

In this talk I will survey some recent work in which the theory is instead developed in
a uniform and cofinality-independent way, thus naturally including the case of singular
cardinals. I will also consider some interesting applications connecting generalized
descriptive set theory to Shelah’s stability theory (in the case of regular cardinals), and
to the study of nonseparable complete metric spaces under Woodin’s axiom I0 (in the
case of singular cardinals of countable cofinality).
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I LINDA WESTRICK, Reverse mathematics of Borel sets.
Pennsylvania State University.
E-mail: westrick@psu.edu.

Theorems about Borel sets are often proved using arguments which appeal to some
regularity property of Borel sets, rather than recursing on the Borel structure of the set
directly. For example, the statement “there is no Borel well-ordering of the reals” can
be proved using either a measure or category argument. More generally, suppose we
are given a theorem about Borel sets and a proof based on their measurability. Could
the same theorem also be proved with a category argument? In principle, when the
answer is “no”, reverse mathematics provides a framework for proving this negative
answer. However, if ATR is taken as a base theory, measure and category arguments
cannot be distinguished. That is because both “Every Borel set is measurable” and
“Every Borel set has the property of Baire” follow already from ATR.

The notion of a completely determined Borel set, which is now a few years old, allows
theorems involving Borel sets to be analyzed over a weaker base theory. The principles
“Every c.d. Borel set is measurable” and “Every c.d. Borel set has the property of
Baire” are both strictly weaker than ATR and incomparable with each other. With
reference to these landmarks, we present what is known about the reverse mathemat-
ical strength of weak theorems involving Borel sets, including the Borel Dual Ramsey
Theorem and some theorems from descriptive combinatorics. We also characterize the
sets which HYP believes are c.d. Borel.

This work was partially supported by NSF grant DMS-1854107, and parts are joint
with various collaborators: Astor, Dzhafarov, Flood, Montalban, Solomon, Towsner
and Weisshaar.
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I RYAN WILLIAMS, Complexity Lower Bounds from Algorithm Design.
Massachusetts Institute of Technology.
E-mail: rrw@mit.edu.

Since the beginning of the theory of computation, researchers have been fascinated
by the prospect of proving impossibility results on computing. When and how can we
argue that a task cannot be efficiently solved, no matter what algorithm we use? I
will briefly introduce some of the ideas behind a research program in computational
complexity that I and others have studied, for the last decade. The program begins
with the observations that:
(a) Computer scientists know a great deal about how to design efficient algorithms.
(b) However, we do not know how to prove many weak-looking complexity lower
bounds.
It turns out that certain knowledge we have from (a) can be leveraged to prove complex-
ity lower bounds in a systematic way, making progress on (b). For example, progress on
faster circuit satisfiability algorithms (even those that barely improve upon exhaustive
search) automatically imply circuit complexity lower bounds for interesting functions.
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I ELISABETH BOUSCAREN, The ubiquity of configurations in Model Theory.
CNRS – Université Paris-Sud.
E-mail: elisabeth.bouscaren@math.u-psud.fr.

Originally in Classification Theory, then in Geometric Stability and now, beyond
Stability, in Tame Model Theory, one common essential feature is the identification
and study of some geometric configurations, of combinatorial and dimensional theoretic
nature. They can witness the combinatorial and the model theoretic complexity of a
theory or indicate the existence of specific definable algebraic structures. This enables
model theory to tackle questions from very diverse subjects.

We will attempt to illustrate the importance of these configurations through some
examples
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I KRZYSZTOF KRUPIŃSKI, Topological dynamics in model theory.
University of Wroc law.
E-mail: kkrup@math.uni.wroc.pl.

Some fundamental notions and methods of topological dynamics were introduced to
model theory by Newelski in the mid 2000’s.

In the first part of my tutorial, I will recall some basic notions of topological dy-
namics, discuss the flows which appear naturally in model theory (as various spaces
of types), and give applications of basic topological dynamics to some group cover-
ing results of Newelski such as: if an ℵ0-saturated group is covered by countably many
0-type-definable sets, Xn, n ∈ ω, then for some finite A ⊆ G and n ∈ ω, G = AXnX

−1
n .

In the second part, I will define the Ellis semigroup and Ellis group of a flow, and
focus on connections between the Ellis groups of natural flows in model theory and
certain invariants of definable groups (quotients by model-theoretic connected compo-
nents) or first order theories (Galois groups of first order theories as well as spaces
of strong types). In particular, I will discuss the results of Pillay, Rzepecki and my-
self which present certain invariants of this kind as quotients of compact (Hausdorff)
groups (which are canonical Hausdorff quotients of Ellis groups). This has various con-
sequences obtained by Pillay, Rzepecki and myself, e.g. it leads to a general result that
model-theoretic type-definability of a bounded invariant equivalence relation defined on
a single complete type over ∅ is equivalent to descriptive set theoretic smoothness of
this relation.

In the last part, I will discuss a definable variant of Kechris, Pestov, Todorčević
(KPT) theory, developed by Lee, Moconja and myself. KPT theory studies relation-
ships between dynamical properties of the groups of automorphisms of Fräıssé struc-
tures and Ramsey-theoretic (so combinatorial) properties of the underlying Fräıssé
classes. In our research, the idea is to find interactions between dynamical properties
of first order theories (i.e. properties related to the actions of the automorphism group
of a sufficiently saturated model on various types spaces over this model) and definable
versions of Ramsey-theoretic properties of the theory. This leads to analogs of various
results of KPT theory (i.e. a combinatorial characterization of the definable extreme
amenability of a theory), but also to some rather novel theorems, e.g. yielding criteria
for profiniteness of the Ellis group of a first order theory.
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I ANDREW MARKS, Characterizing Borel complexity and an application to decompos-
ability.
University of California Los Angeles.
E-mail: marks@math.ucla.edu.

We give a new characterization of when sets in the Borel hierarchy are Σ0
n hard. This

characterization is proved using Antonio Montalban’s true stages method for conduct-
ing priority arguments in computability theory. We use this to prove the decompos-
ability conjecture, assuming projective determinacy. The decomposability conjecture
describes what Borel functions are decomposable into a countable union of partial
continuous functions with Π0

ndomains. This is joint work with Adam Day.
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I NIKOLAY BAZHENOV, Primitive recursive algebraic structures, and the theory of
numberings.
E-mail: bazhenov@math.nsc.ru.

The paper of Kalimullin, Melnikov, and Ng (2017) was a starting point for the
recent significant progress in the studies of sub-recursive algebra. The key notion in
these developments is that of a punctual structure. A countably infinite structure S is
punctual if the domain of S is the set of natural numbers, and the signature predicates
and functions of S are uniformly primitive recursive. In the talk, we discuss recent
results on punctual algebraic structures, and related results on upper semilattices of
numberings.
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I LESZEK KOLODZIEJCZYK, Weak König’s Lemma in the absence of Σ0
1 induction.

Institute of Mathematics, University of Warsaw.
E-mail: lak@mimuw.edu.pl.

Reverse mathematics studies the logical strength of mathematical theorems by prov-
ing implications between the theorems and some well-established set existence princi-
ples expressed in the language of second-order arithmetic. The implications are proved
over a fixed base theory embodying “computable mathematics”. The usual base theory,
RCA0, is axiomatized by comprehension for computable (i.e. ∆0

1-definable) properties
of natural numbers and by induction for c.e. (i.e. Σ0

1-definable) properties. In the
1980’s, Simpson and Smith introduced an alternative weaker base theory RCA∗

0, in
which Σ0

1-induction is replaced by ∆0
1-induction.

One of the most important set existence principles considered in reverse mathematics
is Weak König’s Lemma, WKL. This states that every infinite binary tree has an infinite
branch. Since there are computable binary trees without computable branches, WKL
is not provable in RCA0, but it is well-known that adding WKL to RCA0 results in a
theory that does not prove any new Π1

1 statements.
Already Simpson and Smith showed that an analogous Π1

1-conservation result for
WKL also holds over RCA∗

0. We prove that WKL nevertheless behaves very differently
over RCA∗

0+¬RCA0 than in the traditional setting. Namely, any two countable models
of RCA∗

0 + WKL that have a common first-order part and share a common witness to
the failure of Σ0

1-induction are isomorphic. It follows, for instance, that WKL is the
strongest Π1

2 statement that is Π1
1-conservative over RCA∗

0 + ¬RCA0. Moreover, the
isomorphism theorem provides new information about the structure of models of RCA0

that satisfy ∆0
2- but not Σ0

2-induction, which has some implications for traditional
reverse mathematics.

Joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama.
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I JUN LE GOH, Redundancy of information: Lowering effective dimension.
Cornell University.
E-mail: junle.goh@wisc.edu.

The effective Hausdorff dimension of an infinite binary sequence can be characterized
using the (normalized) Kolmogorov complexity of its initial segments (Mayordomo). It
is invariant under changes on a set of positions of upper density 0. Greenberg, Miller,
Shen, and Westrick initiated the study of how effective Hausdorff dimension can be
changed if one is allowed to change a sequence on a set of positive upper density.
Specifically, given some X of dimension t, what is the minimum density of changes
needed to obtain some Y of dimension s? The situation differs depending on X, as well
as the value of the target dimension s relative to the value of the starting dimension t.
We present joint work with Miller, Soskova and Westrick on these questions.
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I ARMAN DARBINYAN, Computable groups and computable group orderings.
E-mail: adarbina@math.tamu.edu.

An important class of abstract groups is the one that consists of linearly ordered
groups whose orders are invariant under left (and right) group multiplications. From
computability point of view it is interesting to investigate when orderable groups admit
computable orders. In particular, a question of Downey and Kurtz asks about existence
of computable orderable groups that do not admit computable orders with respect to
any group presentation. In my talk I will discuss recent advancements on this topic.
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I NIKOLAY BAZHENOV, DARIUSZ KALOCIŃSKI, MICHA L WROC LAWSKI, De-
gree spectra of unary recursive functions on naturals with standard ordering.
Sobolev Institute of Mathematics, 4 Akad. Koptyug Ave., 630090 Novosibirsk, Russia.
E-mail: bazhenov@math.nsc.ru.
Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5,
01-248 Warsaw, Poland.
E-mail: dariusz.kalocinski@ipipan.waw.pl.
Faculty of Philosophy, University of Warsaw, ul. Krakowskie Przedmieście 3, 00-927
Warsaw, Poland.
E-mail: m.wroclawski@uw.edu.pl.

Existing results provide some insights into obtaining computable, c.e. or ∆2 degrees
as a spectrum of a unary recursive function on naturals with standard ordering ≤
[1, 3]. We extend these results by providing a more complete picture, covering natural
subclasses of unary recursive functions. For example, we show that if a computable
structure (ω,≤, f) has a finitely generated infinite substructure, then the degree spec-
trum of f on (ω,≤) contains precisely c.e. degrees. This prompts to introduce the
notion of an f -block, understood as a substructure of (ω,≤, f), with the domain equal
to some interval in (ω,≤) and with no proper substructures. We will discuss the
following result: if a computable structure (ω,≤, f), with f unary, has only finitely
many isomorphism types of f -blocks, and all its f -blocks are finite, then either f is
intrinsically computable or its degree spectrum on (ω,≤) consists of all ∆2 degrees.

We also briefly discuss the philosophical side of the results which becomes more ap-
parent when viewed through the lens of Shapiro’s notations for natural numbers [2].
For example, Shapiro’s notion of a function computable in every notation (with com-
putable ordering) coincides with functions having the trivial degree spectrum. Our
results provide a more fine grained classification of the complexity of functions in var-
ious notations, as measured by the Turing degrees thereof.

[1] Rod Downey, Bakhadyr Khoussainov, Joseph S. Miller, and Liang Yu,
Degree spectra of unary relations on (ω,<), Logic, Methodology and Philosophy of
Science (Clark Glymour, Wang Wei, and Dag Westerstahl, editors), College Publica-
tions, London, 2009, pp. 35–55.

[2] Stewart Shapiro, Acceptable notation, Notre Dame Journal of Formal
Logic, vol. 23 (1982).

[3] Matthew Wright, Degrees of relations on ordinals, Computability, vol. 7
(2018).
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I LAURENT BIENVENU, VALENTINO DELLE ROSE, AND TOMASZ STEIFER,
Computable randomness relative to almost all oracles.

LaBRI, CNRS Universit e de Bordeaux, 351 Cours de la Libration, 33405 Talence,France.
E-mail: laurent.bienvenu@u-bordeaux.fr.
Università degli Studi di Siena - Rettorato, via Banchi di Sotto 55, 53100 Siena, Italy.
E-mail: valentin.dellerose@student.unisi.it.
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Paw-
inskiego 5B, 02-106 Warszawa, Poland.
E-mail: tsteifer@ippt.pan.pl.

It follows from van Lambalgen’s theorem for Martin-Löf randomness, that every
Martin-Löf random set X is also Martin-Löf random relative to almost all oracles.
Is this also true for notions of randomness for which van Lambalgen’s theorem does
not hold? We answer this question in the negative for computable randomness. A
binary sequence X is a.e. computably random if there is no probabilistic computable
strategy which is total and succeeds on X for positive measure of oracles. Using the
fireworks technique we construct a sequence which is computably random but not a.e.
computably random. We also prove separation between a.e. computable randomness
and partial computable randomness. This happens exactly in the uniformly almost
everywhere dominating Turing degrees.

[1] L. Yu, When van Lambalgen’s Theorem fails, Proceedings of the American
Mathematical Society, 2007, 861-864.

[2] L. Bienvenu, L. Patey, Diagonally non-computable functions and fireworks,
Information and Computation, 2017, 253: 64-77.
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▶ MARTA FIORI CARONES, Measuring the strength of Ramsey-theoretic statements
over RCA∗

0.
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland.
E-mail: marta.fioricarones@outlook.it.
URL Address: https://martafioricarones.github.io.

(Joint work with Leszek Kołodziejczyk and Katarzyna W. Kowalik)
The common base theory of reverse mathematics is the theory RCA0, which guar-

antees the existence of ∆0
1-definable sets and where mathematical induction for Σ0

1-
formulae holds. In 1986, Simpson and Smith introduced a different base theory, RCA∗

0,
where induction is weakened to ∆0

1-formulae. In more recent years Kołodziejczyk,
Kowalik, Wong, Yokoyama started wondering about the strength of Ramsey’s theorem
over RCA∗

0. In this talk we concentrate on three well known consequences of Ram-
sey’s theorem for pairs, namely the Ascending Descending Sequence principle ADS, the
Chain/Antichain principle CAC and the Cohesive Ramsey theorem for pairs CRT2

2. We
measure the relative strength of these statements in three ways: (1) implications or
non-implications among them over RCA∗

0 (and over RCA∗
0 plus negated Σ0

1-induction),
(2) conservativity over RCA∗

0 and (3) provable closure properties of the intersection
of all Σ0

1-cuts. For example, we show that with respect to the last criterion, RT2
2 is

stronger than both CAC and ADS, while these two are indistinguishable, and it is still
open whether CRT2

2 resembles RT2
2 or CAC/ADS.
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I VITTORIO CIPRIANI, Cantor-Bendixson theorem in the Weihrauch lattice.
Dipartimento di informatica, scienze matematiche e fisiche, Università degli studi di
Udine, Via delle Scienze 206, Udine (UD), Italy.
E-mail: cipriani.vittorio@spes.uniud.it.

In this talk, we continue the program initiated in [4] aiming to study theorems
occurring at the high levels of reverse mathematics (see [1]). Recently there has been
a growing interest in this topic by many authors, see for example [5], [2], [6], [7] and a
recent survey with some open problems concerning also this specific area [8]. We first
present some results at the level of ATR0, showing that (a variant of) the perfect tree
theorem (in [4] denoted with PTT1) is strictly stronger than its version for closed sets,
showing a difference with respect to the reverse mathematics setting where the two
principles are equivalent. On the other hand, if one considers arithmetical Weihrauch
reducibility (see [2] and [7]) the two principles are equivalent. We then move our
attention to natural counterparts of the highest subsystem in the big five in reverse
mathematics, namely Π1

1-CA0, focusing on principles related to the Cantor-Bendixson
theorem. The natural function representing Π1

1-CA0 is the one that maps a countable
sequence of trees to the characteristic function of the set of indices corresponding to
well-founded trees. Recently in [3], Hirst showed its Weihrauch equivalence with PK,
the function that takes as input a tree and outputs its perfect kernel. We will show
that PK, as defined in [3], is strictly stronger than the version for closed sets, even
if, as for the perfect tree theorem, they are arithmetically equivalent. Our analysis
then moves to multivalued functions representing variations of the Cantor-Bendixson
theorem, that, given in input a closed set output its perfect kernel plus a listing of
the isolated points. We will show that (variations of) the Cantor-Bendixson theorem
for trees are as strong as the perfect kernel theorem (for trees). The same holds for
closed sets with the only exception regarding a version of the Cantor-Bendixson in
Baire space.
This is joint work with Alberto Marcone and Manlio Valenti.

[1] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspec-
tives in Logic, Cambridge University Press, 2 edition, 2009.

[2] Paul-Elliot Angls d’Auriac, Takayuki Kihara, A comparison of various
analytic choice principles, Available at https://arxiv.org/abs/1907.02769, 2019.

[3] Jeffry L. Hirst, Leaf management, Computability, vol. 9 (2020), no. 3-4,
pp.309–314.

[4] Takayuki Kihara, Alberto Marcone, Arno Pauly, Searching for an ana-
logue of ATR0 in the Weihrauch lattice, The Journal of Symbolic Logic, vol. 85(3)
(2020), no. 1006-1043, pp.1–37.

[5] Alberto Marcone, Manlio Valenti, The open and clopen Ramsey the-
orems in the Weihrauch lattice, The Journal of Symbolic Logic, to ap-
pear,doi=10.1017/jsl.2021.105. Available at https://arxiv.org/abs/2003.04245

[6] Jun Le Goh, Arno Pauly, Manlio Valenti, Finding descending se-
quences through ill-founded linear orders, The Journal of Symbolic Logic, to ap-
pear,doi=10.1017/jsl.2021.15. Available at https://arxiv.org/abs/2010.03840

[7] Jun Le Goh, Some computability-theoretic reductions between principles around
ATR0, Available at https://arxiv.org/abs/1905.06868

[8] Arno Pauly, An update on Weihrauch complexity, and some open questions,
Available at https://arxiv.org/pdf/2008.11168
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I A. CORDÓN–FRANCO, F.F. LARA–MARTÍN AND MANUEL J.S. LOUREIRO, On
determinacy of Lipschitz and Wadge games in second order arithmetic.
Department of Computer Science and Artificial Intelligence, Universidad de Sevilla,
Facultad de Matemáticas, C/ Tarfia s/n, Sevilla, Spain.
E-mail: acordon@us.es.
Universidad de Sevilla, Seville, Spain.
E-mail: fflara@us.es.
Faculty of Engineering, Lusofona University, Lisbon, Portugal.
E-mail: mloureiro@ulusofona.pt.

We present a detailed formalization of Lipschitz and Wadge games in the context of
second order arithmetic (SOA) and we investigate the logical strength of Lipschitz and
Wadge determinacy, and the tightly related Semi-Linear Ordering principle. We show
that the topological analysis of the complete sets in Hausdorff difference hierarchy
(with respect to Wadge reducibility) developed in [2] can be adapted to prove the
determinacy of these games in SOA. As a result, we extend the work developed in [1]
and characterize the basic systems from Reverse Mathematics WKL0, ACA0 and ATR0

in terms of these determinacy principles.
Given two formula classes Γ1 and Γ2 in the language of SOA, let (Γ1,Γ2)-DetL denote

the principle of determinacy for Lipschitz games in the Baire space where player I’s
pay-off set is Γ1-definable and player II’s pay-off set is Γ2-definable. A similar principle
for Wadge games is introduced and denoted by (Γ1,Γ2)-DetW . Likewise, let (Γ1,Γ2)-
SLOL/W denote the corresponding semi-linear ordering principles. If Γ1 = Γ2 = Γ then
we simply write Γ-DetL/W or Γ-SLOL/W and, when restricting ourselves to games in the
Cantor space the corresponding principles are denoted by Det∗ and SLO∗. Regarding
games in the Cantor space we prove that:

1. Over RCA0, ∆0
1-Det∗L and WKL0 are equivalent.

2. Over RCA0, Σ0
1-Det∗L, (Σ0

1,Σ
0
1∧Π0

1)-SLO∗
L/W and ACA0 are pairwise equivalent.

3. Over WKL0, Σ0
1-Det∗W , Σ0

1-SLO∗
L/W and ACA0 are pairwise equivalent.

4. Over RCA0, ∆0
2-Det∗L and ATR0 are equivalent.

As for games in the Baire space we prove that:

1. Over RCA0, (∆0
1,Π

0
1)-DetL, Π0

1-DetL and ATR0 are pairwise equivalent.
2. Over ACA0, ∆0

1-DetL, ∆0
1-SLOL and ATR0 are pairwise equivalent.

3. Π1
1-CA0 proves (Σ0

1∧Π0
1)-DetL/W .

(Work partially supported by grant MTM2017-86777-P, Ministerio de Economı́a,
Industria y Competitividad, Spanish Government)

[1] M.J.S. Loureiro, Semilinear order property and infinite games, Ph.D. thesis,
University of Seville, Spain, 2016.

[2] W. W. Wadge, Reducibility and Determinateness on the Baire Space, Ph.D.
thesis, University of California, Berkeley, 1983.
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I KAROL DUDA, AND ALEKSANDER IWANOW, A finitely presented group with un-
decidable amenability.
Institute of Mathematics, University of Wroc law, pl. Grunwaldzi 2/4, Wroc law, Poland.
E-mail: Karol.Duda@math.uni.wroc.pl.
Department of Applied Mathematics, Silesian University of Technology, ul. Kaszubska
23, Gliwice, Poland.
E-mail: Aleksander.Iwanow@polsl.pl.

We apply the theory of intrinsically computable relations (see [1]) in order to prove
the following theorem.

Theorem. There is a computable group G such that the following problem is unde-
cidable: does a finite subset F ⊂ G generate an amenable subgroup?

Applying the method of Clapham (see [2]) we show that the group from the theorem
can be made finitely presented.

[1] C. J. Ash and J. F. Knight, Possible degrees in recursive copies II, Annals
of Pure and Applied Logic, vol. 87 (1997), pp. 151–165.

[2] C. R. J. Clapham, An embedding theorem for finitely generated groups, Pro-
ceedings of the London Mathematical Society, vol. 17 (1967), pp. 419–430.
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I MARGARITA GASKOVA, Boolean algebras autostable relative to n-constructivizations.
Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Rus-
sia.
E-mail: margarita.n.gaskova@gmail.com.

It is independently proven in [1] and [2] that Boolean algebra is autostable iff it has a
finite number of atoms. In [3] it is proved that Boolean algebra is autostable relative to
strong constructivizations iff it is isomorphic to a direct product of a finite number of
simple models. In this work we study autostability of Boolean algebras with respect to
n-constructivizations. Boolean algebra is autostable relative to n-constructivizations if
it has n-computable representation and any two of it’s n-computable representations
are computably isomorphic. For n = 0, the description is obtained in [1] and [2]. For
n = 1 and n = 2, the description is published by J. B. Remmel in his chapter in
[4]. This paper gives a complete description of Boolean algebras autostable relative to
n-constructivizations for all natural numbers n.

Theorem. Let n ∈ ω. Boolean algebra A is autostable relative to n-constructivi-
zations iff A is isomorphic to a direct product of finite number of simple models with
elementary characteristics

• (i, 1, 0), (i, 0, 1) and (j, 1, 0), (j, 0, 1), (j,∞, 0) for j < i if n = 4i.
• (j, 1, 0), (j, 0, 1), (j,∞, 0) for j ≤ i if n = 4i+ 1.
• (i+ 1, 1, 0) and (j, 1, 0), (j, 0, 1), (j,∞, 0) for j ≤ i if n = 4i+ 2 or n = 4i+ 3.

Proposition. Each autostable relative to n-constructivizations Boolean algebra has
strong constructivization.

[1] S. S. Goncharov, V. D. Dzgoev, Autostability of models, Algebra and Logic,
vol. 19 (1980), no. 1, pp. 28–37.

[2] J. B. Remmel, Recursive isomorphism types of recursive Boolean algebras, The
Journal of Symbolic Logic, vol. 46 (1981), no. 3, pp. 572–594.

[3] D. E. Palchunov, A. V. Trofimov, A. I. Turko, Autostability relative
to strong constructivizations of Boolean algebras with distinguished ideals, Siberian
Mathematical Journal, vol. 56 (2015), no. 3, pp. 490–498.

[4] J. D. Monk and R. Bonnet, eds. Handbook of Boolean algebras, Elsevier,
Amsterdam: North-Holland Publishing, 1989.
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I JOSIAH JACOBSEN-GROCOTT, A characterization of the strongly η-representable
many-one degrees.
UW Madison.
E-mail: jacobsengroc@wisc.edu.
η-representations are a way of coding sets in computable linear orders that were

first introduced by Fellner in his thesis. Limitwise monotonic functions have been used
to characterize the sets with η-representations, and give characterizations for several
variations of η-representations. The one exception is the class of sets with strong η-
representations, the only class where the order type of the representation is unique.

We introduce the notion of a connected approximation of a set, a variation on Σ0
2

approximations. We use connected approximations to give a characterization of the
many-one degrees of sets with strong η-representations as well new characterizations
of the variations of η-representations with known characterizations.
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I KATARZYNA W. KOWALIK, Classifying Ramsey-theoretic principles with strongly
infinite witnesses over RCA∗

0.
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland.
E-mail: katarzyna.kowalik@mimuw.edu.pl.

We study the strength of some Ramsey-theoretic statements of the form ‘for every
infinite set X there exists an infinite set Y such that φ(X,Y )’, where φ(X,Y ) is arith-
metical. Our base theory is RCA∗

0, which states the existence of computable sets of
natural numbers and allows mathematical induction only for ∆0

1-formulas. RCA∗
0 is

weaker than the usual base theory considered in reverse mathematics, RCA0, which
contains induction for Σ0

1-formulas. The weakening of induction allows for a finer anal-
ysis of the principles considered, but at the same time leads to a peculiar phenomenon
concerning the notion of infinity. Namely, it is consistent with RCA∗

0 that an un-
bounded set of natural numbers does not contain an n-element subset for some n ∈ N.
As a consequence, there are two possible ways of formalizing our principles, depending
on ‘how infinite’ we want the set Y to be.

We consider the effect of requiring Y to be strongly infinite, in the sense of having an
n-element finite subset for each n ∈ N. In 2013, Yokoyama [2] showed that Ramsey’s
theorem with such strongly infinite witnesses implies Σ0

1-induction over RCA∗
0. We show

that if we require strongly infinite witnesses for other Ramsey-theoretic principles, they
tend to behave in one of two ways: they either imply Σ0

1-induction as well or remain
Π0

3-conservative over RCA∗
0.

Joint work with Marta Fiori Carones and Leszek Ko lodziejczyk [1].

[1] Marta Fiori Carones, Leszek Aleksander Ko lodziejczyk,
Katarzyna W. Kowalik, Weaker cousins of Ramsey’s theorem over a weak
base theory. In preparation.

[2] Keita Yokoyama, On the strength of Ramsey’s theorem without Σ1-induction,
Mathematical Logic Quarterly, vol. 59 (2013), no. 1-2, pp. 108–111.
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ized in ZFC as it refers to the current knowledge on X .
Institute of Mathematics, Jagiellonian University,  Lojasiewicza 6, Kraków, Poland.
Technical Faculty, Hugo Ko l la̧taj University, Balicka 116B, Kraków, Poland.
E-mail: rttyszka@cyf-kr.edu.pl.

E. Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite. f(1) = 2, f(2) = 4, f(n+ 1) = f(n)! for n ∈ {2, 3, 4, . . . }. Φ denotes the state-
ment: card(Pn2+1) < ω ⇒ Pn2+1 ⊆ [2, f(7)]. Some systems U ,A ⊆ {xi! = xk : i, k ∈
{1, . . . , 9}} ∪ {xi · xj = xk : i, j, k ∈ {1, . . . , 9}} are written. Only (1, . . . , 1) and
(f(1), . . . , f(9)) solve U in (N \ {0})9. Φ is equivalent to the statement: if at most
finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 solve A, then they satisfy x1, . . . , x9 6
f(9). No known set X ⊆ N satisfies conditions (1)-(4) and is widely known in num-
ber theory or naturally defined. (1) A known algorithm with no input returns an
integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n]. (2) A known algorithm for ev-
ery k ∈ N decides whether or not k ∈ X . (3) No known algorithm with no input
returns the logical value of the statement card(X ) = ω. (4) There are many ele-
ments of X and it is conjectured that X is infinite. (5) X has the simplest definition
among known sets Y ⊆ N with the same set of known elements. Conditions (2)-(5)

hold for X = Pn2+1, condition (1) holds assuming Φ. Conditions (1)-(4) hold for

X = {k ∈ N : (106 < k)⇒ (f(106), f(k)) ∩ Pn2+1 6= ∅}, condition (5) fails. Full text:
URL Address: http://arxiv.org/abs/1506.08655.

63



I YANA MICHAILOVSKAYA, Computable linear orders enriched by the relations Sn
L.

N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan (Volga region) Fed-
eral University, Kazan, 35 Kremlievskaia st., Russia.
E-mail: YaAMihajlovskaya@kpfu.ru.

In this paper, we consider computable linear orders with some additional relations
added to their signature. These relations are denoted as Sn

L and are set as follows:
S2k
L (x, y) � (x <L y)&(|(x, y)L| = 0 ∨ |(x, y)L| = 2 ∨ . . . ∨ |(x, y)L| = 2k),

S2k+1
L (x, y) � (x <L y)&(|(x, y)L| = 1 ∨ |(x, y)L| = 3 ∨ . . . ∨ |(x, y)L| = 2k + 1),

here (x, y)L = {z | x <L z <L y}.

Proposition 1. For any (n + 1)-c.e. set A there is a computable linear order L,
ordered by type Sh({2, 3, ..., n+ 2}) such, that Sn

L ≡T A.

Corollary 1. There is a computable linear order L such that the spectrum of the
relation Sn

L consists exactly of all (n+ 1)-c.e. degrees.

Proposition 2. Let L be a computable linear order containing only a finite number
of blocks of length ≤ n+1. Then, from the computability Sn

L follows the computability
of S0

L.

Theorem 1. Let the computable linear order L have infinitely many blocks of length
2 and for an odd n the relation Sn

L is computable. Then there is a computable linear
order R such that R ∼= L, Sn

R is computable, but S0
R is not computable.

Theorem 2. Let the computable linear order L have infinitely many blocks of
length 2 and for an odd n the relation Sn

L is computable. Then there is a computable
linear order R such that R ∼= L, Sn

R is computable, but L and R are not computably
isomorphic, that is, the computable linear order (L, Sn

L) is not computably categorical.

Corollary 2. A computable linear order (L, S1
L) is computably categorical if and

only if L ∈ ∆({k · η : k < ω} ∪ {ω, ω∗, ω + ω∗}) and L contains only a finite number
of blocks of length 2.

Theorem 3. Let L be a computable linear order in which the following condition
is met: for any element x ∈ L, there are elements x0 <L ... <L xn+1 ∈ L such that
Sn
L(x0, xn+1) is true and x <L x0. Let A be a non-computable (n + 1)-c.e. set such,

that Sn
L ≤T A. Then there is a computable linear order M∼= L such, that Sn

M ≥T A.

Theorem 4. If a computable linear order L is not η-like, then the spectrum of the
relation Sn

L is closed upwards in c.e. degrees.

[1] Chubb J., Frolov A., Harizanov V., Degree spectra of the successor relation
of computable linear orderings, Archive for Mathematical Logic, vol. 48 (2009),
no. 1, pp. 7–13.

[2] Frolov A. N., Presentations of the successor relationof computable linear or-
dering, Russian Mathematics (Iz. VUZ), vol. 54 (2010), no. 7, pp. 64–74.

[3] Hirschfeldt D. R., Degree spectra of intrinsically c.e. relations, Journal of
Symbolic Logic, vol. 66 (2001), no. 2, pp. 441–469.

[4] Moses M., Recursive linear orders with recursive successivities, Annals of Pure
and Applied Logic, vol. 27 (1984), pp. 253–264.
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Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Rus-
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E-mail: ospichev@math.nsc.ru.

The theory of numberings gives a fruitful approach to studying uniform computations
for various families of mathematical objects. Important tools for this approach are
special numberings - for example, principal or positive. One of the most studied special
cases is numbering without repetitions, or Friedberg numbering. For example, for any
level n > 0 of Ershov hierarchy there is infinite Σ−1

n -computable family without Σ−1
n -

computable Friedberg numberings[1]. But what will happen to such a family if we
move to higher levels of the hierarchy? We show that this property will hold for higher
levels:

Theorem. For any natural n > 0 there is Σ−1
n -computable family S such that

there is no Σ−1
m -computable Friedberg numberings of S for any m ≤ 2n but there is

Σ−1
2n+1-computable Friedberg numbering of this family.
Acknowledgment. The reported study was funded by RFBR, project number 20-31-

70006.

[1] S. Ospichev, On the existence of universal numberings for finite families of d.c.e.
sets, (2010) 6th Conference on Computability in Europe, CiE 2010, pp. 311–
315.
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Faculty of Mathematics and Computer Science, Adam Mickiewicz Univeristy in Poznań,
ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland.
E-mail: pawel.placzek@amu.edu.pl.

Multiplicative-Additive Linear Logic (MALL) was introduced by Girard [6]. Non-
commutative MALL (where product ⊗ is noncommutative) is due to Abrusci [1]. This
logic, presented as a one-sided (precisely: left-sided) sequent system was studied by
Lambek [9] under the name: Classical Bilinear Logic.

We study an analogous system for Nonassociative Bilinear Logic (NBL), being a
version of Bilinear Logic with nonassociative ⊗. Some related logics, restricted to
multiplicative connectives and not admitting multiplicative constant (nor the corre-
sponding unit elements in algebraic models), were studied in [7, 3] under the name:
Classical Nonassociative Lambek Calculus (CNL). CNL contains one (cyclic) negation
∼, satisfying a∼∼ = a in algebras. Buszkowski [4] considers a weaker logic, called In-
volutive Nonassociatvie Lambek Calculus (InNL), with two negations ∼,−, satisfying
a−∼ = a = a∼−.

InNL is a conservative extension of Nonassociative Lambek Calculus (NL), due to
Lambek [8]; see [7, 3]. It can be shown that NBL is a conservative extension of NL
with 1 (NL1). These logics have applications in linguistics as type logics for categorial
grammars [9, 7, 3] and seem quite natural from the perspective of modal logics, where
⊗ can be regarded as a binary possibility operator.

Here we present one-sided systems of NBL in the language ⊗,⊕,∼,−,∧,∨, 0, 1. In
our sequent systems, negations appear at variables only (so we consider formulas in
negation normal form). Negations of arbitrary formulas are defined in metalanguage.
Some systems with negations of formulas in the language were considered in [2] (right-
sided) and [5] (two-sided).

The cut–elimination theorem holds for all the presented systems. We prove the
decidability of NBL. We show that the multiplicative fragment of NBL (MNBL) is
PTIME. The algorithm essentialy uses cut elimination. An analogous result for InNL
is given in [4].

[1] Abrusci, V.M., Phase semantics and sequent calculus for pure noncommuta-
tive classical linear propositional logic, Journal of Symbolic Logic, vol. 56 (1991),
pp. 1403—1451.

[2] Bastenhof, A., Categorial Symmetry, Ph.D. Thesis, University of Utrecht,
2013.

[3] Buszkowski, W., On Classical Nonassociative Lambek Calculus, Logical As-
pects of Computational Linguistics (Amblard, M., de Groote, Ph., Pogodalla, S.
and Retore, C.), Lecture Notes in Computer Science, vol. 10054, Springer, 2016, pp. 68–
84.

[4] Buszkowski, W., Involutive Nonassociative Lambek Calculus: Sequent Systems
and Complexity, Bulletin of The Section of Logic, vol. 46 (2017), no. 1/2, pp. 75—
91.

[5] Galatos, N. and Jipsen, P., Residuated frames with applications to decidability,
Transactions of American Mathematical Society, vol. 365 (2013), pp. 1219—1249.

[6] Girard, J.-Y., Linear Logic, Theoretical Computer Science 50, Elsevier Sci-
ence Publishers B.V., 1987.

[7] de Groote, Ph. and Lamarche, F., Classical Non-Associative Lambek Calcu-
lus, Studia Logica, vol. 71 (2002), no. 3, pp. 355—388.

[8] Lambek, K., On the calculus of syntactic types, Structure of Language and
Its Mathematical Aspects (Jakobson, R), AMS, 1961, pp. 166–178.
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Institute for Philosophy II, RUB Bochum, Germany.
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URL Address: http://sasander.wixsite.com/academic.

I provide an overview of my joint project with Dag Normann on the Reverse Math-
ematics and computability theory of the uncountable ([2–7]). In particular, we have
shown that the following theorems are hard to prove relative to the usual scale of
(higher-order) comprehension axioms, while the objects claimed to exist by these the-
orems are similarly hard to compute, in the sense of Kleene’s S1-S9 schemes ([1]).

1. There is no injection from R to N.
2. Arzelà’s convergence theorem for the Riemann integral.
3. A Riemann integrable function is not everywhere discontinuous (Hankel).
4. Jordan’s decomposition theorem.
5. A function of bounded variation on the unit interval has a point of continuity.
6. A lower semi-continuous function on the unit interval attains its minimum.
7. The Bolzano-Weierstrass theorem for countable sets (injections/bijections to )

We show that the final item gives rise to many robust equivalences, which in turn yields
the ‘Big Six’ and ‘Big Seven’ system of Kohlenbach’s higher-order Reverse Mathematics.

We discuss how comprehension is unsuitable as a measure of logical and computa-
tional strength in this context; we also provide an alternative, namely a (classically
valid) continuity axiom from Brouwer’s intuitionistic mathematics.

Finally, our study shows that coding practise common in Reverse Mathematics can
significantly change the logical strength of basic theorems pertaining to functions of
bounded variation and other ‘close to full continuity’ notions.

REFERENCES.

[1] John Longley and Dag Normann, Higher-order Computability, Theory and Applications of Computability,
Springer, 2015.

[2] Dag Normann and Sam Sanders, On the mathematical and foundational significance of the uncountable,
Journal of Mathematical Logic, https://doi.org/10.1142/S0219061319500016 (2018).

[3] , Open sets in Reverse Mathematics and Computability Theory, To appear in Journal of Logic and
Computability, arXiv: https://arxiv.org/abs/1910.02489 (2020).

[4] , Pincherle’s theorem in Reverse Mathematics and computability theory, Annals of Pure and Applied
Logic, doi: 10.1016/j.apal.2020.102788 (2020).

[5] , On the uncountability of R, Submitted, arxiv: https://arxiv.org/abs/2007.07560 (2020), pp. 37.
[6] , The Axiom of Choice in Computability Theory and Reverse Mathematics, Journal of Logic and

Computation 31 (2021), no. 1, 297-325.
[7] , On robust theorems due to Bolzano, Weierstrass, and Cantor in Reverse Mathematics, See https:

//arxiv.org/abs/2102.04787 (2021), pp. 30.
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URL Address: http://www.cs.swan.ac.uk/~csetzer/.

We present two models of computation derived from our formalisation (together with
Peter Hancock) of interactive programs in dependent type theory, which define the IO
monad using weakly final coalgebras.

The first model covers non-state-dependent interactive programs. An interface con-
sists of commands C ∈ P(N) and responses R : C→ P(N). Examples of commands are
the printing of a string with response set a singleton set, or reading input from console
with response the string being read. Instructions to actuators and reading from sensors
can be represented similarly.

The set of interactive programs for an interface (C, R) is the largest set IO of pairs
〈c, f〉 with c ∈ C and {f} : R(c)→ IO. In order to define a monadic version IO(A), we
add to C termination commands return(a) for a ∈ A with R(return(a)) = ∅. One can
define monadic composition _»_ : (IO(A)× (A→ IO(B)))→ IO(B).

The second model adds a state to the interface, which determines the set of com-
mands available, and which changes depending on commands and responses issued.
So, we have states S ∈ P(N), C ∈ S → P(N), R ∈

∏
s ∈ S.C(s) → P(N) and

next ∈
∏

s ∈ S.
∏

r ∈ C(s).R(s, r) → S. We define IO(s) as the largest set of pairs
〈c, f〉 with c ∈ C(s) and {f} ∈

∏
r ∈ R(s, r).IO(next(s, c, r)). A monadic version

IO(s, A) for A ∈ S→ P(N) can be defined similarly. Equality is bisimulation.
[1] Andreas Abel, Stephan Adelsberger and Anton Setzer, Interactive pro-

gramming in Agda – Objects and graphical user interfaces, J Functional Program-
ming, vol. 27 (2017), E8.
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A classic theorem of D. Martin states that there is a co-infinite recursively enu-
merable set with no maximal superset. By taking complements and appealing to the
correspondence between maximal sets and Π1 cohesive sets, Martin’s result may be
rephrased as stating that there is an infinite Π1 set with no Π1 cohesive subset. We
generalize this result by showing that there is an infinite Π1 set with no ∆2 cohe-
sive subset. We describe how this generalization naturally arises from recent work on
cohesive powers, and, time permitting, we sketch a direct proof.
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E-mail: dstull@iastate.edu.

Recent work has shown a deep connection between algorithmic randomness and
(classical) fractal geometry. In particular, there is a growing body of research that uses
effective methods to solve problems in fractal geometry which have, on the surface,
nothing to do with computability.

One of the central theorems of factral geometry is Marstrand’s projection theorem.
Let E ⊆ R2 be an analytic set. For every angle θ, consider the orthogonal projection
of E onto the line making angle θ with the origin. Informally, Marstrand’s theorem
states that, for almost every angle, this projection has maximal Hausdorff dimension.
A natural question is whether the analyticity condition can be weakened, or dropped
entirely.

In this paper, we define the notion of optimal oracles for subsets E ⊆ Rn. One of
the primary motivations of this definition is that, if E has optimal oracles, then the
conclusion of Marstrand’s projection theorem holds for E. We show that every analytic
set has optimal oracles. We also prove that if the Hausdorff and packing dimensions of
E agree, then E has optimal oracles. Thus, the existence of optimal oracles subsume
the currently known sufficient conditions for Marstrand’s theorem to hold.

Under certain assumptions, every set has optimal oracles. However, assuming the
axiom of choice and the continuum hypothesis, we construct sets which do not have
optimal oracles. This construction naturally leads to a new, algorithmic, proof of Davies
theorem on projections.
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In [1], the authors formalize the notion of “first-order part” of a multi-valued function
as an operator that takes in input a computational problem f and produces the problem
1f with the property that

1f ≡W max
≤W

{g ∈ FO : g ≤W f},

where FO is the family of multi-valued functions with codomain N. While this notion
has been already used (implicitly) in the literature as a useful means to prove separation
results, its algebraic properties have not been explored so far.

In this work, we study the interaction between the first-order part and other common
operators on multi-valued functions (coproduct, meet, parallel product, compositional
product, jump). We also introduce a new operator (·)u∗, which intuitively corresponds
to a finite parallelization where the number of instances is not specified a priori. We
show that if f ≡W ĝ for some g ∈ FO then 1f ≡W gu∗. Moreover, we explore the
connections between (·)u∗ and (·)⋄, the latter being an operator introduced in [2] that
captures the idea of using a Weihrauch problem as an oracle in a computation.

We show how these results can be used to easily characterize the first-order part of
known computational problems.

This is joint work with Giovanni Soldà.
[1] Dzhafarov, Damir D. and Solomon, Reed and Yokoyama, Keita, On the

first-order parts of Weihrauch degrees, In preparation.
[2] Neumann, Eike and Pauly, Arno, A topological view on algebraic computation

models, Journal of Complexity, vol. 44 (2018), pp. 1–22.
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The set of Turing degrees relative to which a given algebraic structure A is com-
putably representable is called the degree spectrum of this structure and is denoted by
dgSp(A). The question of describing the degree spectra of algebraic structures is one
of the fundamental questions in the theory of computable structures and their models.
A. Slinko, D. Hirschfeldt, B. Khusainov, R. Shor [?] called a class of structures spec-
trally universal if any possible degree spectrum of an algebraic structure is realized by
a degree spectrum of a structure from this class. They also established the spectral
universality of a number of classical classes of algebraic structures, for example, classes
such as undirected graphs, lattices, commutative semigroups, and others.

The class of countable linear orders is one of the most difficult in terms of describing
the spectra of degrees of all representatives of this class. It is not spectrally universal.
This follows, for example, from the fact that the spectrum of degrees of linear order,
in contrast to graphs, can form an upper cone of degrees if and only if it contains a
computable degree (L. Richter [?]). And it is still not known whether there is a linear
order whose degree spectrum contains exactly all non-zero degrees.

R. Miller and V. Harizanova [?] proved the result of L. Richter for an arbitrary linear
order with an additional unary predicate. Thus, the class of structures that are linear
orders whose signature is enriched in a unary relation is not spectrally universal.

In this paper, we prove that the binary (and therefore n-ary for any n ≥ 2) relation on
Q (the natural ordering of the set of rational numbers) is spectrally universal. Namely,
it is shown that for any graph there exists a binary relation on Q, whose spectrum
coincides with the spectrum of degrees of the graph.

The authors were supported by RFBR grant No. 20-31-70012.

[1] Hirschfeldt D. R., Khoussainov B., Shore R. A., Slinko A. M. Degree spectra and computable dimensions in
algebraic structures Annals of Pure and Applied Logic vol. 115 (2002), no 1–3, pp. 71–113.

[2] Richter L. J., Degrees of structures, Journal of Symbolic Logic, vol. 46 (1981), no. 4, pp. 723–731.
[3] Harizanov V., Miller R, Spectra of structures and relations, Journal of Symbolic Logic, vol. 72 (2007),

no. 1, pp. 324–348.
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Logical monism, logical pluralism and even logical nihilism share one basic feature,
namely that they reckon with the notion of a logic being right. There is a common
supposition that it makes some sense to look for right logic or logics. Yet it is far
from clear that it is a good idea and that we should measure logical systems by it.
It could be a least refreshing to look for an understanding of logical systems which
places their worth precisely in how they do not fully correspond to something they
could be considered as portraying, for example argumentation in natural language. I
thus propose to see them as specific games and I mean this in two senses. The first one
is familiar since Wittgenstein, namely that a logical system can be seen as language
game constituted by rules of playing it. It can be complemented, though, by another
sense due to Eugen Fink. Fink explicates in what sense playing is unserious, a mere
playing. By playing any game, we gain a distance from reality which, on the other
hand, enables us to enter into a special kind of relationship with it. Namely, we can
see the world somehow as a whole, the world can be glanced at in the game. By
contrast, in normal serious business we tend to fall short of seeing the world, being
beholden merely to what it is filled with. Maybe logical systems offer us a glance at
the practice of argumentation and reasoning as whole? Obviously, as our glance of the
world changes how we behave towards the entities we encounter in it, so an encounter
with theoretical logic changes how we treat our rationality.

[Fink(1957)]Fink, E. (1957). Oase des Gluecks, Gedanken zu einer Ontologie des
Spiels. Freiburg: K.Alber

[Fink(1960)]Fink, E. (1960). Spiel als Weltsymbol. Freiburg: K.Alber
[Russell(2018)]Russell, G. (2018). Logical nihilism: Could there be no logic?. Philo-

sophical Issues, 28, 1
[Wittgenstein(1953)]Wittgenstein, L. (1953). Philosophische Untersuchungen. Ox-

ford: Blackwell
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There is hardly any doubt that the construction of objects by means of effective rules
is an integral part of our mathematical experiences. But is there any sense in which
intuition grants us epistemic access to such constructions? When we ordinarily speak
of a particular construction of a number, set, function, tuple, or sequence, among other
mathematical entities, we often adopt the view of a “construction” as a finite method
for determining a certain mathematical object by means that are generally accepted
as humanly computable. It is therefore with good reason that Bishop describes a
construction as a person program and refuses to identify them with Turing machines.

My aim in this talk is to argue that we gain intuition of at least some elementary
constructions (including numbers, tuples, and booleans) by means of objects of intuition
founded on basic acts of the intellect. I thus reject Kant’s traditional view that intuition
is an immediate kind of sensory objectual representation and side with Husserl in
viewing intuition as a kind of intellectual perception. I will however draw mainly on
ideas advanced by Brouwer and Tieszen on how our intuitions can be mediated by
acts of perception, pairing, reflection, and rule-giving and rule-following. The view I
propose is that certain constructions are intuited as abstract points through imaginative
variations of perceived objects into representations of abstract points, while others are
intuited as abstract pairs through reflection on the pairing act of an abstract point
with one or more given objects of intuition.
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In this work, we explore intermediate logics in the team semantics setting. Team se-
mantics was introduced by Hodges [3], and later advanced by Väänänen in dependence
logic [6], and adopted independently in inquisitive logic [2]. Both dependence and in-
quisitive logic were introduced as extensions of classical logic. Recently several authors
have defined different intuitionistic logic-based dependence/inquisitive logic [5, 1, 4].
Our starting point is [1]. The key idea of (intuitionistic) propositional team semantics
is that formulas are evaluated in (intuitionistic) Kripke models M = (W,R, V ) with
respect to sets t ⊆ W of possible worlds (called teams). We also extend the language
[⊥,∧,∨,→] of intuitionistic logic (IPC) with a disjunction \\/ on the team level. The sys-
tem tIPC of the logic in [1] consists of IPC axioms for [⊥,∧,\\/,→], some simple axioms
for ∨, and the Split axiom α→ (φ \\/ψ)→ (α→ φ)\\/(α→ ψ) with α ∈ [⊥,∧,∨,→].

We provide two alternative approaches to define intermediate team-based logics, by
modifying tIPC with axioms with ∨ or \\/. Given an intermediate logic L = IPC ⊕ ∆
with ∆ a set of [⊥,∧,∨,→]-axioms, the first approach defines an intermediate logic tL

by closing the set tIPC∪{α(~β/~p) | α ∈ ∆, βi ∈ [⊥,∧,∨,→]} under Modus Ponens. We
show that if L is complete for a class F of frames, then tL is also complete for F, provided
that L has disjunction property or is canonical. In the second approach we replace the
Split axiom of tIPC with other [⊥,∧,\\/,→]-axioms. This amounts to changing the
underlying structure of teams from (℘(W ),⊇) to (℘(W ),<) with an arbitrary partial
order <, and thus generalizing the standard team semantics.

[1] I. Ciardelli, R. Iemhoff, and F. Yang. Questions and dependency in intuitionistic
logic. Notre Dame Journal of Formal Logic, 61(1):75–115, 2020.

[2] I. Ciardelli and F. Roelofsen. Inquisitive logic. Journal of Philosophical Logic,
40(1):55–94, 2011.

[3] W. Hodges. Compositional semantics for a language of imperfect information.
Logic Journal of the IGPL, 5:539–563, 1997.

[4] W. Holliday. Inquisitive Intuitionistic Logic In Advances in Modal Logic, Vol. 13.
pp. 329-348, College Publications, 2020

[5] V. Punŭochár̆. A generalization of inquisitive semantics. Journal of Philosophical
Logic, vol. 45 (2016), pp. 399–428.

[6] J. Väänänen. Dependence Logic: A New Approach to Independence Friendly
Logic. Cambridge University Press, 2007.
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In this talk, I aim at discussing a criterion recently suggested in order to prove the
logicality of the abstraction operators. This criterion – which is called weak invariance
– presupposes an arbitrary interpretation of the abstraction operators1 and consists in a
generalised version of the Tarskian isomorphism invariance. It turns out to be satisfied,
at least on some domains, by all the abstraction operators that index classes of the
partitions obtained by invariant equivalence relation (cf. [5]), then, a fortiori, by the
abstraction relations that exhibit an higher form of invariance and by the (contextually)
invariant abstraction principles (cf. [1]).

In the first part of the talk, I will discuss similarities and differences between abstrac-
tion operators and other variable-binding operators, like ι, ε and η (cf. [5]) – which,
for brevity, we will call “choice operators”. Firstly, abstraction operators – differently
from the choice operators – are not total, namely they turn out to be empty whether
evaluated in some domains; secondly, logicality (weak invariance) of abstraction oper-
ators does not coincide – differently from the logicality of the choice operators – with
their purely logical definability (cf. [4]); thirdly, while the logicality of choice operator
seems to formalise a property of the whole class of similar expressions, then of the
intuitive notion of choice, on the contrary, the logicality of abstraction principles seems
to regard only second-order abstraction principles, by excluding, e.g., any first-order
abstraction operator and failing to capture the notion of abstraction.

In the last part of the talk, I will compare two schemas of, respectively, second-
order and first-order abstraction principles, in order to explore whether some of the
limitations mentioned above could be overcome by the adoption of a schematic set-
ting ([3], [5]). On the one side, a schematic second-order abstraction principle (of
form §(RF ) =§(RG) ↔ R(F,G)), where § is a binary abstraction operator and R
any isomorphism invariant equivalence relation, defines an abstraction function from
℘(℘(D) × ℘(D)) × ℘(D) → D that satisfies the criterion of weak invariance and –
differently from the specific unary operators – is total ([5]). On the other side, I will
focus a schematic first-order abstraction principle (of form §(Ra) =§(Rb) ↔ R(a, b))
– where § is a binary abstraction operator and R any first-order equivalence relation
– and I will inquiry whether also the abstraction function from ℘(D × D) × D → D
that it defines could be – differently from the respective unary operators – total and
isomorphism invariant.

[1] Antonelli, G. A., Notions of invariance for abstraction principles Philosophia
Mathematica 18(3), (2010) 276-292.

[2] Boccuni, F., Woods, J., Structuralist neologicism Philosophia Mathematica,
(2018) 28(3), 296-316.

[3] Fine, K., The limits of abstraction Clarendon Press, (2002).
[4] Tennant, N On ε and η Analysis, (1970) 40 (1): 5.
[5] Woods, J. , Logical indefinites Logique et Analyse, (2014) 277-307.

1Such criterion is available in [2]: given an isomorphism i from a domain D, let i+ such that for every set

γ of objects from D, i+(γ) = {i(x) : x ∈ γ}. Then, an expression φ is invariant just in case, for all domains

D,D′ and bijections i from D to D′, the denotation of φ on D(φD) is such that i+(φD) = φD′
.
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The H-coloring problem for undirected simple graphs is a computational problem
from a huge class of the constraint satisfaction problems (CSP): an H-coloring of a
graph G is a homomorphism from G to H and the problem is to decide for fixed H,
given G, if a homomorphism exists or not.

The dichotomy theorem for the H-coloring problem was proved by Hell and Nešetřil
(1990, J. Comb. Theory Ser. B, 48, 92–110) and it says that for each H the problem is
either p-time decidable or NP -complete. Since negations of unsatisfiable instances of
CSP can be expressed as propositional tautologies, it seems to be natural to investigate
the proof complexity of CSP.

We show that the decision algorithm in the p-time case of the H-coloring problem
can be formalized in a relatively weak theory and that the tautologies expressing the
negative instances for such H have polynomial proofs in propositional proof system
R∗(log). To establish this, we use a well-known connection between theories of bounded
arithmetic and propositional proof systems.

We complement this result by a lower bound result that holds for many weak proof
systems for a special example of NP -complete case of the H-coloring problem, using
known results about the proof complexity of the Pigeonhole Principle.

The main goal of our work is to start the development of some of the theory beyond
the CSP dichotomy theorem in bounded arithmetic. We aim eventually - in a subse-
quent work - to formalize in such a theory the soundness of Zhuk’s algorithm (2020, J.
ACM, 67,1–78), extending the upper bound proved here from undirected simple graphs
to the general case of directed graphs in some logical calculi.
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This paper has two main goals. First, we contribute to the large body of work labeled
as structuralism by both expanding it philosophically and exploring it mathematically.
Second, we do the first steps towards a future philosophy of computability.

Structuralism is a view in philosophy of mathematics, according to which mathemat-
ics is the general study of structures and that it does not matter what are the objects
instantiating a given structure. The view can be dated back at least to the 1960s, and
has been receiving attention since then – including recent discussions. According to
this account mathematics is not concerned with the internal nature or specific ontolog-
ical characterization of the elements in the structure, but with how the elements are
related to each other. What demands careful explication here, is then the notion of
the structural property. On the level of informal intuitions, structural properties are
usually characterized in terms of invariance under structural similarity (which is then
usually explicated in terms of the isomorphism of mathematical system instantiating a
structure) and abstraction from structurally similar (usually: isomorphic) systems.

Or, in a slogan: Presentations don’t matter.
Our claim:

• Computational properties of mathematical systems should be a part of the expli-
cation of the notion of structural property;

• Some computational property (most notably, “being computable”) should count as
structural.

We agree with the structuralist interpretation that the elements of a given mathe-
matical system should not be identified with a particular (e.g. set-theoretic) character-
ization, but we argue that an important part of the notion of structure is constituted
by the computational features that can be exhibited by the systems instantiating the
structure.

This requires to:

1. revise the notion of structure in a way that encompasses morphisms, transfor-
mations, maps, actions, i.e., everything that belongs to the performative part of
mathematics and that cannot be faithfully represented as an object;

2. incorporate computability-theoretic properties of mathematical systems into the
explication of the notion of mathematical structure and structural property;

3. give account of the notion of structural similarity that should replace (or at least,
expand) the notion of isomorphism in the structuralist interpretation of mathe-
matics;

4. reply to the so-called epistemological access challenge by employing the notion of
computation in the structuralist characterization of mathematical discourse and
knowledge.

The interpretation we propose has central advantages over what might be called
traditional structuralism, especially in giving a fine-grained analysis of structurality
and structural similarity and in providing a convincing answer to the epistemological
access challenge faced by structuralism (and, noteworthy, other positions in philosophy
of mathematics, such as Platonism).
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Proportional fairness of a voting rule can be characterized as the ability to reflect
all shades of political opinion of a society within the winning committee. Recently
certain a proportionality property of justified representation(JR) has been defined –
intuitively it requires that if there is a group of at least n/k voters whose approval
have at least one candidate in common, then it cannot be the case that neither of these
voters is represented in the committee. During the talk I will try to demonstrate how
we can use the machinery from the field of multiwinner election theory to investigate
proportionality properties in the general situation of voting for logical propositions
(thus, related logically) in place of candidates only.
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The network N of Boolean algebras is defined to be the graph whose vertices are
all Boolean algebras, and which has two types of edges: red edges connecting the
isomorphic algebras, and blue edges connecting two Boolean algebras if they are not
isomorphic and one of them is a large subalgebra of the other one. A large subalgebra
of an algebra B is a proper subalgebra that needs only one extra element to generate
the whole B. With the aid of this network, we introduce a notion of distance that con-
ceivably counts the minimum number of “dissimilarities” between two given Boolean
algebras; with the possibility that this distance may take the value ∞. See [2].

Viewing Boolean algebras as Lindenbaum–Tarski algebras of some propositional the-
ories, this distance thus counts the minimum number of concepts that distinguish these
theories from each other [1, 2]. A connected component of the network N is a maximal
subclass of Boolean algebras with the property that the distance between any two of
its members is finite. Thus, the distance between any member of a connected compo-
nent and an algebra outside this component must be infinite. In this talk, we calculate
distances between some special Boolean algebras and we give two interesting examples
of connected components of the network N of Boolean algebras.

[1] M. Khaled, G. Székely, K. Lefever and M. Friend, Distances Between
Formal Theories, The Review of Symbolic Logic, vol. 13 (2020), no. 3, pp. 633–654.

[2] M. Khaled and G. Székely, Algebras of Concepts and Their Networks,
Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent
Systems and Computing, vol. 1301 (T. Allahviranloo, S. Salahshour and N. Arica,
editors), Springer, Cham, 2021, pp. 611–622.
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This is a joint research with H. Andréka, I. Németi, and G. Székely.
We explore the first-order logic conceptual structure of special relativistic space-

time: We describe the algebra of concepts (explicitly definable relations) of Minkowski-
spacetime, and draw conclusions such as ”the concept of lightlike-separability can be
defined from that of timelike-separability by using four variables but not by using
three variables”, or ”no non-trivial equivalence relation can be defined in Minkowski-
spacetime” , or ”there are no interpretations between the classical (Newtonian) and
the relativistic spacetimes, in either direction”.

We also show that while the algebras of zero-ary and unary concepts are trivial,
two-element ones, the algebra of binary concepts has 16 elements and the algebra of
ternary concepts is infinite. These results are true over arbitrary ordered fields as
the structure of quantities. Concerning the algebra of concepts over real-closed fields
only, the algebra of ternary concepts is atomic, and we give a concrete mathematical
description for it. Similar, but different, results are true for classical spacetime and
Euclidean geometry. For example, the algebra of binary concepts of classical spacetime
has only 8 elements and that of Euclidean geometry has only 4 elements.

Both Leon Henkin and J. Donald Monk expressed the desirability of these kinds of
investigations earlier, the above are the first results of this kind.
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Given a matrix semantics, a conditional is natural if the following conditions are
fulfilled. (1) It coincides with the classical conditional when restricted to the classical
values T and F ; (2) it satisfies the Modus Ponens; and (3) it is assigned a designated
value whenever the antecedent and consequent are assigned the same value. This sense
of ‘natural’ being supposed, the class of all natural 3-valued implicative expansions
of Kleene’s strong logic is defined in [4]. It developed that a subclass of this class
consists of relevance logics in Anderson and Belnap’s minimal sense of the term (cf.
[1]): they have the ‘variable-sharing property’. The aim of this paper is to axiomatize
the relevance logics in the aforementioned subclass by leaning upon an overdetermined
two-valued Belnap-Dunn semantics (cf., e.g., [2], [3]).

[1] A. R. Anderson, N. D. Belnap, Entailment. The Logic of Relevance and
Necessity, Vol I, Princeton University Press, 1975.

[2] N. D. Belnap, A useful four-valued logic, Modern Uses of Multiple-Valued
Logic (G. Epstein and J. M. Dunn, editors), D. Reidel Publishing Co., Dordrecht,
1976, pp. 8–37.

[3] J. M. Dunn, Intuitive semantics for first-degree entailments and “coupled trees”,
Philosophical Studies, vol. 29 (1976), pp. 149–168.

[4] G. Robles, J. M. Méndez, The class of all natural implicative expansions of
Kleene’s strong logic functionally equivalent to  Lukasiewicz’s 3-valued logic  L3, Journal
of Logic, Language and Information, vol. 29 (2020), no. 3, pp. 349–374.

Acknowledgements. Work supported by research project FFI2017-82878-P, financed
by the Spanish Ministry of Economy, Industry and Competitiveness.
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If C is a closed symmetric monoidal category, the Chu category Chu(C, γ) over C and
an object γ of it was defined by Chu in [1], as a ∗-autonomous category generated from
C. In [2] Bishop introduced the category of complemented subsets of a set, in order to
overcome the problems generated by the use of negation in constructive measure theory.
In [4] Shulman mentions that Bishop’s complemented subsets correspond roughly to the
Chu construction. In this talk, based on [3], we explain this correspondence by showing
that there is a Chu representation (a full embedding) of the category of complemented
subsets of a set X into Chu(Set, X × X). A Chu representation of the category of
Bishop spaces into Chu(Set,R) is shown, as the constructive analogue to the standard
Chu representation of the category of topological spaces into Chu(Set, 2). In order
to represent the category of predicates (with objects pairs (X,A), where A is a subset
of X, and the category of complemented predicates (with objects pairs (X,A), where
A is a complemented subset of X, we generalise the Chu construction on a cartesian
closed category by defining the Chu category over a cartesian closed category C and
an endofunctor on C. Finally, we introduce the antiparallel Grothendieck construction
over a product category and a contravariant Set-valued functor on it, of which the Chu
construction is a special case, if C is a locally small, cartesian closed category.

[1] M. Barr, ∗-Autonomous Categories, LNM 752, Springer-Verlag, 1979.
[2] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.
[3] I. Petrakis, Chu representations of categories related to constructive mathemat-

ics, arXiv:2106.01878v1 (2021).
[4] M. Shulman, Linear Logic for Constructive Mathematics, arXiv:1805.07518v1

(2018).

84



I PAULA QUINON, The anti-mechanist argument based on Gödel’s Incompleteness The-
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This paper reassesses the criticism of the Lucas-Penrose anti-mechanist argument,
based on Gödel’s incompleteness theorems, as formulated by Krajewski (2020): this
argument only works with the additional extra-formal assumption that “the human
mind is consistent”. Krajewski argues that this assumption cannot be formalized, and
therefore that the anti-mechanist argument – which requires the formalization of the
whole reasoning process – fails to establish that the human mind is not mechanistic.
A similar situation occurs with a corollary to the argument, that the human mind
allegedly outperforms machines, because although there is no exhaustive formal defini-
tion of natural numbers, mathematicians can successfully work with natural numbers.
Again, the corollary requires an extra-formal assumption: “PA is complete” or “the
set of all natural numbers exists”. I agree that extra-formal assumptions are neces-
sary in order to validate the anti-mechanist argument and its corollary, and that those
assumptions are problematic. However, I argue that formalization is possible and the
problem is instead the circularity of reasoning that they cause. The human mind does
not prove its own consistency, and outperforms the machine, simply by making the
assumption “I am consistent”. Starting from the analysis of circularity, I propose a
way of thinking about the interplay between informal and formal in mathematics.

[1] Gödel, K., Undecidable Diophantine Propositions, Collected Works, Volume
III, Unpublished essays and lectures, Feferman S., et al. (eds.), Oxford University
Press 1995: 164–175.

[2] *1951 is Gödel’s 1951 Gibbs lecture. Some basic theorems on the founda-
tions of mathematics and their implications, lecture manuscript, Journal, Collected
Works, Volume III, Unpublished essays and lectures, Feferman S., et al. (eds.),
Oxford University Press 1995: 304–323.

[3] Krajewski, S., On Gödel’s Theorem and Mechanism: Inconsistency or Un-
soundness is Unavoidable in any Attempt to “Out-Gödel” the Mechanist, Fundamenta
Informaticae, vol. 81 (2007), pp. 173–181.

[4] On the Anti-Mechnist Arguments Based on Gödel’s Theorem, Semiotic
Studies, vol. 34 (2020), no. 1, pp. 9–56.

[5] Lucas, J.R. Minds, Machines and Gödel Philosophy vol. 36 (1961) no. 137, pp.
112-127.

[6] Penrose, R. The Emperor’s New Mind: Concerning Computers Oxford
University Press 1989

[7] Quinon P. The anti-mechanist argument based on Gödel’s Incompleteness Theo-
rems, indescribability of the concept of natural number and deviant encodings, Semiotic
Studies, vol. 34(1): 243-266.

[8] Wang, H. From Mathematics to Philosophy Routledge and Kegan Paul 1974

85



I LORENZO ROSSI, MICHA l TOMASZ GODZISZEWSKI, First-order vs. Second-
order theories: searching for deep disagreement.
LMU Munich Center for Mathematical Philosophy.
E-mail: Lorenzo.Rossi@lrz.uni-muenchen.de.
University of Warsaw.
E-mail: mtgodziszewski@gmail.com .

We address the general question: what is the best way to formulate (the foundations
of) mathematics? In particular, which kind of theory or theories should we employ, in
order to provide axiomatizations and explanations of the foundations of mathematics?
Of course, one of the main dichotomies is between first-order foundational theories (such
as ZFC plus possible extensions) and second-order theories (whether second-order pure
logic or second-order ZF). Here, we explore this question by looking at some of the
main technical and conceptual differences between first- and second-order foundational
theories, and consider which of the two options offers the best (if any) combination of
mathematical, meta-mathematical, and philosophical properties to justifiably carry on
foundationalist programs.

One of the main methodological and conceptual guidelines we follow is to keep sep-
arate the question of which is the best foundational theory (or theories) from the
question of how we justify and explain it. In other words, the theory or theories we
select to develop the foundations of mathematics in are to be kept separate from the
epistemological theories we use to justify the latter.

Some of the key points of the deep disagreement between the Second-Orderist and
First-Orderist we reach are with respect to the conception of (mathematical) truth and
to the forms of multiversism and/or set-theoretic pluralism.
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Proof-theoretic validity offers a justification for the logical laws. However, it has
recently been shown that proof-theoretic validity does not offer a semantics for intu-
itionistic logic, but rather it provides a semantics for intermediate logics which aren’t
harmonious. This is worrying as baked into the philosophical justification for proof-
theoretic validity is the idea that it results in a logic with harmonious rules. I show
that the lack of harmony stems from the treatment of atomic sentences, not from the
treatment of logical connectives. I propose a modification to proof-theoretic validity
that could remove the undue impact of atomic formulas sentences.
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Comprehension schemes arose as a crucial notion in the early work on the foundations
of set theory, and hence found expression in a variety of foundational settings for
mathematics. In particular, Bénabou ([1]) provided an intuition to define the notion
of comprehension schemes for arbitrary fibered categories in a syntax-free way. The
notion has been made precise in considerable generality by Johnstone in [2], tieing
together the elementary examples given in the glossary of [1] to a structurally well
behaved theory.

In this talk – based on [3] – we generalize Johnstone’s notion of comprehension
schemes to the context of cartesian fibrations over (∞, 1)-categories. In doing so it turns
out not only that many results do carry over, but that some pivotal constructions are in
fact better behaved for the reason that “evil” meta-mathematical equalities naturally
arising in the context of ordinary category theory are implicitly replaced by “good”
instances of equivalences between (∞, 1)-categories. Much in the spirit of Univalent
Foundations, the study of equality becomes a study of equivalence.

The aim of the talk will be to present some of the central results in [3] and show
how to apply them to natural examples arising in higher topos theory as well as higher
category theory in general.

[1] J. Bénabou, Fibered Categories and the Foundations of naive Category Theory,
The Journal of Symbolic Logic, vol. 50 (1985), no. 1, pp. 10–37.

[2] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium,
Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2002.

[3] R. Stenzel, (∞, 1)-Categorical comprehension schemes, arXiv:2010.09663,
Preprint, 2020.
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§1. Abstract. It has been widely claimed that classical Boolean logic cannot model
real agents with bounded cognitive resources [1]. Depth-Bounded Boolean Logics (DBBL)
[2] aim to solve this issue by limiting the deductive power of the agent with a bound on
the maximum number of “guesses” it can perform. The standard semantic treatment of
DBBL, however, offers limited connections with contemporary machine-learning meth-
ods. Our ongoing work bridges this gap by offering a different semantic approach to
Depth-Bounded Reasoning that abstracts away from DBBL and admits it as a special
case. The semantics of our language is given in terms of Markov Decision Processes
(MDPs), thus facilitating the use of Reinforcement Learning techniques [3]. The start-
ing point is to define depth-bounded agents as stochastic state-transition systems that
manipulate Boolean formulae through the application of a finite set of weighted rules,
the weights representing the rules’ cognitive costs. The stochastic “inferential” behavior
of depth-bounded agents is modelled by MDPs whose states are finite sets of Boolean
formulae and actions are synctactic rules to manipulate such formulae. Semantically,
the depth-bounded entailment relation is modelled as cost-bounded reachability, i.e., a
given formula φ is said n-depth derivable if and only if there is a probability equal
to 1 of the agent to reach a φ state with an expected cumulative cost at most equal
to n. Inferences, eventually, are modelled as MDP policies. Notice that, given an n
depth-bounded sequence Γ �n φ, there exist typically more than one possible inference
deriving φ from Γ. The first step becomes hence to find the inference that minimizes
the expected cumulative cost earned by the agent, i.e., the optimal policy. Once the op-
timal policy has been determined, the derivability of a given depth-bounded sequence
Γ �n φ is verified by checking the reward-bounded reachability of φ with respect to
that optimal policy.

[1] D’Agostino, M., An Informational View of Classical Logic, Theoretical Com-
puter Science, (2015), no 606, pp.79–97

[2] D’Agostino, M., Finger, M., Gabbay, D.M., Semantics and proof-theory of
depth bounded Boolean logics, Theoretical Computer Science, (2013), no 480, pp.43–
68

[3] Sutton, R.S., Barto, A.G., Reinforcement Learning - An introduction,
Adaptive computation and machine learning, MIT Press 1998.
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In this talk, I will introduce my current book project, Women in the History of
Logic, and raise and discuss three important methodological questions:

1. What gets to count as “logic” when writing such a history?
2. Who gets to count as a “logician” when writing such a history?
3. Why does it matter who our logical foremothers are?

I will focus on the final question, by showing how understanding the role of women in
the history of logic is not (merely) a matter of properly attributing logical developments
to the right people, but that by working to understand how these women were involved
in the field, and how they have come to be excluded from our understanding of the
history of logic, we can understand how it is that women are still being excluded from
the current state of logic, and also what we can do about it.
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Extending FOL with quantification over all sentences (of the extended language)
does not increase expressive power, hence, does not yield any paradoxes. Further
extension with sentential predicates (on sentences, not their names/codes), by a form
of definitional extension, does not lead to any paradoxes, either. Thus, every FOL
theory has a conservative extension with truth predicate axiomatized by the single
sentence ∀φ(T φ ↔ φ), [2]. Semantics is obtained by extending a presentation of the
standard semantics of FOL using kernels of digraphs [3].

Truth predicate is an example of a sentential predicate. Using such, we can say
that John claims to be sometimes lying, J(¬∀φ(J(φ) → φ)). Reasoning system LSP,
extending LK with two rules, allows then to deduce that he indeed does, while if he
does not say anything else, that his claim is paradoxical, implying a contradiction.

Following [1], kernel semantics is refined to semikernels, giving a paraconsistent
interpretation of such theories, with John’s paradox not affecting truth of most other
sentences. LSP is complete for this semantics, while extended with (cut) is complete
for the explosive semantics of kernels, where John’s paradox excludes any model.

[1] M. Walicki, Resolving infinitary paradoxes, Journal of Symbolic Logic,
82(2):709–723, 2017.

[2] , Logic of sentential predicates, 2021, [in preparation, https://www.ii.
uib.no/~michal/LSP.pdf].

[3] , Extensions in graph normal form, Logic Journal of the IGPL, 2021,
[to appear, https://doi.org/10.1093/jigpal/jzaa054].
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The automation of proof by mathematical induction is a challenging problem that
is of paramount importance for computer science. The n-clause calculus addresses this
problem by extending the superposition calculus by a cycle detection mechanism [1].
In this talk we will explore the limits of the n-clause calculus. First, we will show
that the induction mechanism of the n-clause calculus is not stronger than unnested
applications of the ∃−1 induction rule. After that, we provide an unprovability result
for the n-clause calculus by showing the independence of x+ x = x→ x = 0 from the
theory [T,∃−1 (L(T ))-INDR], where T is the base theory of additive arithmetic with the
predecessor function p. The independence is obtained by constructing a model M with
non-zero idempotents, whose elements are of the form n[b] with n ∈ Z and b ∈ {0, 1}
such that b = 0 implies n ∈ N. We prove M |= [T,∃−1 (L(T ))-INDR] by showing that for
every T -inductive ∃1 formula ϕ(x), there exists an infinite strictly descending sequence

(ni)i≥0 of integers such that M |= ϕ(n
[1]
i ), for all i ∈ Z.

[1] Abdelkader Kersani, Nicolas Peltier, Combining Superposition and In-
duction: A Practical Realization, Frontiers of Combining Systems – 9th Inter-
national Symposium (Nancy, France), (Pascal Fontaine, Christophe Ringeissen and
Renate A. Schmidt, editors), vol. 8152, Springer, 2013, pp. 7–22.
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Université de Paris.
E-mail: yonatanginzburg@gmail.com.

A great insight of Richard Montague’s was to use Mostowski’s notion of General-
ized Quantification to offer a uniform syntax and semantics for both referential and
quantification terms. Via subsequent work of Barwise, Cooper, Keenan, van Benthem,
Westerstahl and many others this ushered in a golden age of work on natural lan-
guage quantification. Nonetheless, there are grounds to question whether a semantics
based on Generalized Quantification is optimal as an analysis of the meaning of nat-
ural language nominal terms, once we consider certain cognitive considerations, for
instance how people interact when clarifying the meaning of such terms and the abil-
ity to understand such terms independently of predication. Given these problems for
a GQ strategy, I will present an alternative approach, based on viewing nominals as
structured pluralities and show its application to various natural language phenomena.
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The Lambek calculus is tightly related to categorial grammars - a family of for-
malisms for natural language syntax. The categorial grammars can bear only pos-
itive information, whereas, as it has been pointed out (independently) by Wojciech
Biszkowski and Heinrich Wansing about 25 years ago, negative information is also of
importance. In our talk, we present an axiomatization of the non-associative Lambek
calculus extended with classical negation and show that the frame semantics with the
classical interpretation of negation is sound and complete for this extension.
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Fregean versus non-Fregean paradigm

Frege’s Axiom by Suszko:
There are only two references for all sentences: truth and falsehood. All true sentences
have one and the same reference, the truth; all false sentences have one and the same
reference, the falsehood. An acceptance of Frege’s axiom means to semantically reduce
of all sentences to two or more objects, the logical values. Thus, there are sentences
with completely different meanings but with the same semantic correlate (i.e. their
logical value). This approach leads to many paradoxes, including paradoxes of mate-
rial implication or paradoxes of self-reference.

Example 1 How to interpret the connective of implication appearing in the classical
tautology

(α→ β) ∨ (β → α)

For any two sentences, at least one implies the other? What does it mean?

Example 2 How to formalize the liar sentence L? Is

L↔ ¬L
a correct expressing of the sense

L says “L is false”?

After all, the liar sentence says nothing about equivalence of sentences.

Example 3: The Linda problem
After getting acquainted with the characteristics of a previously unknown Linda, the
subjects assessed the conjunctions of two sentences as more likely than that of one of
these sentences. Now, that is as conjunction fallacy.
Of course, the list of problems is long, and well known. So, let us follow Suszko and
reject Frege’s axiom, and let us see what comes out of it. Thus, let every sentence has
its own semantic corelate, understood as situation or content.

Two non-Fregean logics plus one not standard inference
One of these logics is well known Suszko’s SCI, the second is the logic with content
implication CCL. However, the logic closest to our thinking seems to be a specific
contentual inference. It is seemingly non-monotonic, with empty set of tautologies
inference satisfying the rule of implosion: from contradiction, nothing, like in our ev-
eryday thinking.

Thinking fast and slow
Using the same class of mappings and the same class of models it is possible to define
two kinds of inferences. One is like fast and the second like slow thinking, both described
by Kahneman and Tversky.
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Since the end of the XX century, certain areas of logic become more and more
oriented towards modelling actual cognitive activities of more or less idealized agents.
Drawing on enormous achievements brought about by the mathematical turn that
started more than a hundred years ago, logic now has come back to its Aristotelian
roots as an instrument by which we come to know anything. The re-forged alliance
between logic - now well equipped with sophisticated formal tools - and psychology
results in more and more substantial developments in studies on human reasoning and
problem-solving. To reap the fruits of this alliance we need to be aware that it leads
to a shift in focal points of interest of such studies as well as to the expansion of their
methodological repertoire. In this talk, I argue that such a practical, or cognitive,
turn in logic results in (1) the concept of error becoming crucial for formal modelling
of human reasoning processes, (2) prescriptive perspective, which takes into account
human limitations in information processing, becoming the most interesting vantage
point for such research and (3) triangulation of formal methods, quantitative approach
and qualitative analyses becoming the most effective methodology in formal modelling
studies.
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DOMINIKA JUSZCZAK, ŁUKASZ ABRAMOWICZ, ROBERT SZYMAŃSKI,
Addressing logic students’ proof making difficulties with Plugin Oriented Programming
and gamification.
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There have been several attempts at creating Intelligent Tutoring Systems for several
proof methods. Nowadays such software usually can give demonstrations and in some
cases finish proofs that were already started [1]. Unfortunately, these tools tend to be
pretty limited when it comes to customisation options and overall user experience.

This project, called Larch, aims at improving these aspects of ITS. Since its very
beginning, it has been the authors’ intention to create an intuitive logical assistant,
which would also be usable in didactics. The application guides its users through a
chosen proof method, laying out possible options and their consequences, it empow-
ers students to become more proficient, all in a user-friendly way. To achieve that,
techniques of gamification were incorporated into the software, along with the best
UX practices. Plugin Oriented Programming paradigm was used to create a versatile
system, adaptable to users’ needs. The most notable plugins created so far include: an
implementation of analytic tableaux for propositional logic, sequent calculi for intu-
itionistic logic with loop prevention mechanism, and a script for generating TeX code.
Long-term development plans include implementing other plugins as well as measuring
the effectiveness of Larch as a tutoring application for students.

[1] Cristiano Galafassi, Fabiane F.P. Galafassi, Eliseo B. Reategui,
Rosa M. Vicari, EvoLogic: Intelligent Tutoring System to Teach Logic, Brazilian
Conference on Intelligent Systems (Rio Grande, Brazil), (Ricardo Cerri, Ronaldo
C. Prati, editors), vol. 1, Springer, 2020, pp. 110–121.
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In my talk I am going to describe how abductive reasoning can be modelled in a
neural-symbolic system, and present implementation of the whole procedure along with
results obtained for chosen abductive problems. The definition of abductive reasoning
that I am using is worded from algorithmic perspective given by Gabbay and Woods [1],
where an abductive hypothesis is an additional information added to the initial knowl-
edge base, that makes it possible to derive (or prove) a formula that was not derivable
from that knowledge base as it was initially structured. The neural-symbolic system
used in this work is one given by Garcez et al. [2], which allows to translate logic
programs into artificial neural networks that can be trained by means of backprop-
agation algorithm, and translate artificial neural networks into logic programs. The
initial knowledge base and abductive problem are worded in logic programs language
and then translated into a neural network. The abductive procedure generates abduc-
tive hypotheses in the process of neural network training and then translating trained
neural network into a logic program. I will also show that this abductive procedure
generates abductive hypotheses that fulfill certain criteria [3], like for example consis-
tency with the knowledge base, minimalism or inability of deriving abductive goal from
the abductive hypothesis alone.

[1] Dov M. Gabbay and John Woods, The Reach of Abduction. Insight and
Trial, Elsevier, London, 2005.

[2] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay, Neural-
Symbolic Learning Systems: Foundations and Applications, Springer-Verlag,
London, 2002.

[3] Maciej Komosinski, Adam Kups, Dorota Leszczyńska-Jasion, and Mar-
iusz Urbański, Identifying efficient abductive hypotheses using multi-criteria domi-
nance relation, ACM Transactions on Computational Logic, 15(4), 2014., vol. 15
(2014), no. 4.
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In the paper I present how erotetic search scenarios (ESS)—a tool developed within
a framework of the Inferential Erotetic Logic (IEL)—may be used to model a decom-
position of a complex problem into simpler sub-problems. Such an initial problem is
represented as the initial question of ESS, and the decomposition process results in
a series of auxiliary questions obtained in a systematic manner. ESS has a tree-like
structure with the main question as the root and direct answers to it as leaves. Other
questions are auxiliary.

I present how ESS may be used to model a question decomposition by a single agent.
In what follows, I propose a method relying on the blackboard architecture which allows
for modeling a decomposition of a complex question by a group of agents. The aim
is to express a situation where agents solve a complex problem in the cooperative
manner. The central element is the blackboard visible for all the agents. We have
one main agent, called the Writer (who writes down questions and information on the
blackboard) and other agents involved in the problem-solving process. As for agents
from the group we assume that they have different knowledge concerning the problem
in question. We also assume that the group deals with a complex question which
cannot be resolved by any agent individually. This question is then written down on
the blackboard along with the common knowledge of the group. Afterwards the initial
group question is decomposed on a group level into a series of simpler questions (using
the aforementioned common knowledge). In what follows, these simpler questions are
analyzed by group members (at this level ESSs for each agent are introduced). The
last step is collecting the solutions to these auxiliary questions by the Writer and
establishing the answer to the initial question.
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Corner & Hahn [1] argue in favor of a Bayesian grounding of normative standards
for rational argumentation. We wish to take issue with this strategy, attacking two
different angles.

Corner & Hahn find support in [2], but this sort of study presupposes logical monism,
while in the past decades logical pluralism has become a strong position in the phi-
losophy of logic [2] [3]. Assuming a contextual logical pluralism, we argue in favor
of an externalist characterization of the normativity of logic, where practices them-
selves are to be seen as sources of normative standards for rational argumentation.
Besides, Corner & Hahn’s endorsement of a Bayesian account assumes that rational
argumentation is only, or mostly, evidence-based reasoning. However, this model seems
inadequate if one considers different contexts of argumentative practices, as is the case
for mathematics.

Corner & Hahn claim that intuitions about argument strength, or logical validity,
match the adequacy of Bayesian formalization as providing normative standards for
rational argumentation. However, this match doesn’t show that those intuitions play
any rôle as normative standards. Furthermore, one should wonder whether anyone’s
intuitions count. Resnik [5] claims that only expert’s intuitions count when it comes to
fixing the reflective equilibrium issued by inferential practices. By contrast, we argue
that one can see normative standards be issued, not by individual’s intuitions, but
rather by the argumentative practices which take place within different communities.

[1] A. Corner & U Hahn, Normative theories of argumentation: Are some norms
better than others?, Synthese, 190 (16), 3579-3510, 2013.

[2] M. Oaksford & N. Chater, A rational analysis of the selection task as optimal
data selection, Psychological Review, 101, 608–631, 1994

[3] JC Beall & G. Restall, Logical Pluralism, Name of series, Oxford, Oxford
University Press, 2006.

[4] C. Caret, Why logical pluralism? , Synthese,
https://doi.org/10.1007/s11229-019- 02132- w, 2019.

[5] M. Resnik, Consequence and Normative Guidance, Logic: normative or de-
scriptive? The ethics of belief or a branch of psychology?, 52, 221-238, 1985.
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Lambek calculus, the Gentzen-style sequent calculus of a residuated non-commutative
monoid, provides a logic for the syntactic structure of preliminary fragment of natural
language. Categorial grammarians such as Moortgat and Morrill showed how adding
extra operators to the calculus makes it applicable to fragments witnessing phenomena
that involve a form of movement, as in relative clauses. More recently, [1] showed that
adding a relevant modality makes the calculus applicable to the notoriously complex
phenomena of parasitic gaps. In previous work [2], we developed a categorical vector
space semantics for this calculus where modal types were interpreted as Fock spaces
and copying was obtained via a Frobenius comultiplication. We later showed that the
calculus can also be applied to co-reference resolution and can distinguish between the
strict /sloppy readings of ambiguous sentences. That framework faced two problems.
Firstly, the calculus was undecidable. Secondly, the Frobenius comultiplication only
provided approximations of the desired vector copying. In this paper, we redo all the
previous work for the newly developed Soft Subexponentials of Lambek calculus [3],
which is decidable. We show how the required full copying operation is now obtainable
via the layer-wise projections of bounded Fock spaces. We implement the constructions
on a large scale corpus, build vector semantics for datasets of parasitic gap noun phrases
and elliptic sentences and show how our constructions advance the natural language
processing tasks of disambiguation and similarity.

[1] Kanovich, Kuznetsov, Scedrov. Undecidability of the Lambek calculus with a
relevant modality. Lecture Notes in Computer Science, 9804:240–256, 2016.

[2] McPheat, Sadrzadeh, Wazni, Wijnholds. Categorical vector space semantics for
Lambek calculus with a relevant modality, Electronic Proceedings in Theoretical Com-
puter Science, 333:168–182, 2021.

[3] Kanovich, Kuznetsov, Nigam, Scedrov. Soft subexponentials and multiplexing.
Lecture Notes in Computer Science, 12166: 500-517, 2020.
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The objective of this research is to verify or refute the presence of specific cere-

bral electrical marks in logically valid inferences. The studies focus on extensional

bivalent truth-functional inferences in which logical validity (in classical sense) and

probabilistic p-validity (in Adam’s sense) coincide. Remarkably, it is not presupposed

that any inference exemplifying a deductive argument is eo ipso a deductive inference.

This has been an a priori assumption in cognitive neuroscience and it is important

because, if understood as abstract relations among propositions or probabilities [2],

deductive arguments are clearly distinct from non-deductive arguments. However, as

time-consuming cortical events, deductive inferences are far less clearly distinct from

non-deductive inferential processes [1]. 23 subjects in the MEG study and 20 in the

EEG research were placed into a two conditions paradigm framed in the SET game,

with 100 trials for each condition, logically valid vs invalid [3]. Results show: (i)

deductive inferences with the same content evoke the same electromagnetic response

pattern in both logically valid and invalid conditions, (ii) the amplitude and intensity

is lower in valid deductions, significantly in the MEG study (p=0.0003), (iii) reac-

tion time in valid deductions was significantly higher (54.37% in MEG and 61.54% in

EEG), (iv) time/frequency patterns of valid deductions show beta-2 band activations

at early (300ms) and late (650ms) stages (p-value 0.005), (vi) valid deductions involve

frontal connectivity patterns and bands dynamically distinct from invalid inferences.

As a conclusion, validity leaves a measurable electrical trait in brain processing. Valid

inference is a less-demanding and slow automatism, probably attributable to the re-

cursive and automatable character of valid deductions, suggesting a physical indicator

of computational deductive properties.

[1] A. Chuderski, The relational integration task explains fluid reasoning above and
beyond other working memory tasks, Memory & Cognition, vol. 42 (2014 ), no. 3,
pp. 448—463.

[2] G. Harman, The relational integration task explains fluid reasoning above and
beyond other working memory tasks, Foundations: Logic, Language and Mathe-
matics, (H. Leblanc and E. Mendelson and A. Orenstein, editors), Springer, New York,
1984, pp. 107—127.

[3] F. Salto, C. Requena, P. Álvarez-Merino, L. Antón, F. Maestú, Brain
electrical traits of logical validity, Scientific Reports, vol. 11 (2021), no. 7982, pp. 1—
13.
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The ontology of language is understood here as a general formal-logical theory of
language, considered as a particular ontological being and generated by the classical
categorial grammar. The main goal of this paper is to outline the theory in accordance
with the logical conception of language proposed by K. Ajdukiewicz [1] and formalized
on the basis of classical logic and set theory. The theory is sketched with respect to
the dual ontological status of linguistic expressions as either concreta – i.e. tokens, in
the sense of material, physical objects – or types, in the sense of classes of tokens –
i.e. abstract, ideal objects. Such a duality takes into account two different levels of
formalization of the theory of linguistic syntax, semantics and pragmatics, one stem-
ming from concreta, construed as linguistic tokens of expressions, the other – from their
classes, namely types, conceived as abstract beings. The two dual-aspect theoretical
approaches to linguistic syntax are logically equivalent. The outcome of the consider-
ations is recognition of complete analogousness between the syntactic notions of the
two levels, so logic does not settle which view pertaining to the nature of linguistic
objects – the concretistic one or the idealistic, platonizing, one – is correct. The basic
semantic-pragmatic notions of ‘meaning’ and ‘denotation’ are used only with refer-
ence to expressions-types of language, but their definitions require using some notions
for expressions-tokens. Considerations related to the formalization of the categorial
language lead to the statement that the logic applied here (using set theory) is onto-
logically neutral due to the existential assumptions regarding the existence of linguistic
expressions and their extra linguistic counterparts.

[1] K. Ajdukiewicz, Pragmatic logic, Synthese Library, vol. 62, Reidel-PWN,
Dordrecht-Boston-Warsaw, 1975, p. 12.

[2] U. Wybraniec-Skardowska, Logic and Ontology of Language, Contemporary
Polish Ontology (B. Skowron, ed.), De Gruyter, Berlin-Boston, 2020, pp. 109–132.
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What is the epistemic meaning of Cantor- Bendixson’s derivative? A common epis-
temic (mis)interpretation is that Cantor derivative is a good topological model for
belief. In several joint papers, I criticized this interpretation as ad-hoc and highly
problematic. In this talk, I give what I think is the correct answer to the above ques-
tion, generalizing to arbitrary topologies an idea that goes back (in a restricted, S5
setting) to an old paper by Rohit Parikh.

I start by briefly reviewing the view of topology as a model for evidential episte-
mology, in particular recalling the two epistemic interpretations of topological interior:
as knowledge, or as knowability (by the corresponding agent), depending on whether
the topology is taken to represent “evidence in hand” (=the actual evidence currently
available to the agent) or “evidence out there” (=the potential evidence, that might
be observed or learnt by the agent). I then move to the derivative modality D(P ),
extracting its epistemic meaning from that of the interior modality. It turns out that
D(P ) captures the “lack of knowledge”, or “unknowability”, of the actual world even
in the presence of additional information P .

Once derivative is thus understood, you’ll be wondering how did you ever manage to
do any epistemic logic without it. I show that derivative and its multi-agent general-
izations play a key role in a wide range of well-known epistemic puzzles: from the Wise
Men (or Muddy Children) puzzle, to the Two Numbers’ Puzzle, to the Surprise Exam
Paradox. I explain how the Cantor-Bendixson process of iterating derivatives D(P ),
D(D(P )), etc, models the informational dynamics underlying all these puzzles, and
how the (non-)paradoxicality of different scenarios is related to the (non-)emptiness of
the greatest fixed point of this process: the “perfect core” D∞(P ) of the set P .

I then present a complete axiomatization of the logic of Cantor’s derivative and the
perfect core, and prove its decidability. This last part is based on joint work with Nick
Bezhanishvili and David Fernandez-Duque.
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Dynamic Epistemic Logic (DEL) can be used as a formalism for agents to represent
the mental states of other agents: their beliefs and knowledge, and potentially even
their plans and goals. Hence, the logic can be used as a formalism to give agents a
Theory of Mind allowing them to take the perspective of other agents. In my research,
I have combined DEL with techniques from automated planning in order to describe
a theory of what I call Epistemic Planning: planning where agents explicitly reason
about the mental states of others. Recently, Lasse Dissing, Nicolai Hermann and I have
implemented the framework of epistemic planning on physical robots and applied the
implementation to human-robot collaboration scenarios. One of the recurring themes
is implicit coordination: how to successfully achieve joint goals in decentralised multi-
agent systems without prior negotiation or coordination. The talk will first give an
introduction to epistemic planning based on DEL and will then demonstrate its use in
human-robot collaboration.
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Recently, two apparently quite different duality-based approaches to automata min-
imisation have appeared. One is based on ideas that originated from the controllability-
observability duality from systems theory, and the other is based on ideas derived from
Stone-type dualities specifically linking coalgebras with algebraic structures derived
from modal logics.

In this talk, I will present an abstract framework, based on coalgebraic modal logic,
that unifies the two approaches. As in the Stone-duality approach, the algebras are
essentially logics for reasoning about automata viewed as coalgebras. By exploiting the
ability to pass between coalgebras and algebras via a dual adjunction, and extending
this dual adjunction to one between automata, we obtain an abstract minimisation
algorithm that has several instances, including the Brzozowski minimisation algorithm
of DFAs. Further examples include deterministic Kripke frames based on a Stone-type
duality, weighted automata based on the self-duality of semimodules, and topological
automata based on Gelfand duality, and alternating automata based on the discrete
duality between sets and complete atomic Boolean algebras.
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In this talk I will discuss some new developments in Strategy Logic with imperfect
information. Strategy Logic is concerned with agents’ strategic abilities in multi-agent
systems, and unlike ATL, treats strategies as first-class objects in the logic, independent
from the agents. Thus, in imperfect information settings, Strategy Logic raises delicate
issues, such as what agents know about one another’s strategies. I will describe a new
version of Strategy Logic that ensures that agents’ strategies are uniform, and allows a
formal description of their knowledge about each other’s strategies. This talk is on joint
work with Bastien Maubert, Aniello Murano, Sasha Rubin, Francesco Belardinelli, and
Alessio Lomuscio.

112



Contributed talks

113



I ALEKSI ANTTILA, MARIA ALONI, AND FAN YANG, A logic for modelling free
choice inference.
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014
HELSINGIN YLIOPISTO, Finland.
E-mail: aleksi.i.anttila@helsinki.fi.
Institute for Logic, Language and Computation and Department of Philosophy, Uni-
versity of Amsterdam.
E-mail: M.D.Aloni@uva.nl.
Department of Mathematics and Statistics, University of Helsinki.
E-mail: fan.yang@helsinki.fi.

Free choice (fc) is a natural language phenomenon whereby disjunctive sentences
appear to license conjunctive inferences:

You may go to the beach or go to the cinema.

;You may go the beach and you may go to the cinema.

Aloni [1] proposes a bilateral state-based modal logic (BSML) to account for fc. In
state-based modal semantics, formulas are interpreted with respect to sets of possible
worlds (states) rather than the single worlds employed in standard Kripke semantics.
BSML extends classical modal logic with a non-emptiness atom ne. ne allows for
the representation of a pragmatic enrichment of formulas by the pragmatic principle
“avoid stating a contradiction”. fc inferences are derived as entailments involving
pragmatically enriched formulas.

This talk is based on [2]. We consider an extension of BSML with the inquisitive
disjunction (BSMLI). We show that BSMLI is expressively complete for the set of
state properties invariant under a type of bisimulation for states. We present a complete
natural deduction axiomatization for BSMLI; this is a modal extension of a state-based
propositional system from [3]. The key new contribution of the system for BSMLI is
the provision of rules governing the interaction of ne and the modal operators.

[1] Maria Aloni, Logic and conversation: the case of free choice, Preprint,
https://semanticsarchive.net/Archive/ThiNmIzM/Aloni21.pdf, 2021.

[2] Aleksi Anttila, The logic of free choice. Axiomatizations of state-based
modal logics, Master’s thesis, University of Amsterdam, 2021.

[3] Fan Yang and Jouko Väänänen, Propositional team logics, Annals of Pure
and Applied Logic, vol. 168 (2017), no. 7, pp. 1406–1441.
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Where information grows abundant, attention becomes scarce. As a result, agents
must plan wisely how to allocate their attention in order to achieve epistemic efficiency.
Here, we present a framework for multi-agent epistemic planning with attention, based
on Dynamic Epistemic Logic (DEL, powerful formalism for epistemic planning [1]).
The static part of the framework is composed by an attention state: a Kripke model
augmented with an attention function that assigns to each agent a quantitative at-
tention budget. The budget is spent in the dynamic part to learn formulas from a
language for attention and knowledge. The learning dynamics are partly captured by
an attention action: an action model augmented with a cost function and a question-
ing function. The cost function specifies how much attention the agent must spend to
learn any given formula; the questioning function specifies what formula each agent is
attempting to learn the truth-value of, by paying attention to it. A product update
then merges the attention state and action to represent the epistemic changes and the
relative attention expenditures.

We identify this framework as a fragment of standard DEL, and consider its plan
existence problem [1]: given an (initial) attention state, a finite set of attention actions,
and a goal formula, is there a finite sequence of the attention actions applicable to the
initial attention state that realizes the goal formula? While in the general case the plan
existence problem is undecidable, we show that when attention is required for learning,
all instances of the problem are decidable.

[1] Thomas Bolander, Tristan Charrier, Sophie Pinchinat, François
Schwarzentruber, DEL-based epistemic planning: Decidability and complexity, Ar-
tificial Intelligence, vol.287, 103304, 2020.
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E-mail: massimo.benerecetti@unina.it.
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, via
delle Scienze, 206 - 33100 Udine, Italy.
E-mail: dario.dellamonica@uniud.it.
Università di Napoli “Federico II”.
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The well-established connection between logic and games is witnessed by the fact
that satisfiability of a (first-order) logical formula can be reduced to deciding whether a
player has a winning strategy in a zero-sum two-player game. Logic can also be used to
reason about coalition-games, by encoding moves of the opposing coalitions by means
of existentially and universally quantified variables and by describing the game with a
formula over those variables. Deciding who wins the game reduces to deciding whether
the resulting sentence is satisfiable. When infinite games are considered, one can make
the quantified variables range over (infinite) sequences of moves. This leads to first-order
extensions of temporal logics, which predicate over infinite sequences of temporal points,
one for each round of the game. In this setting, however, the satisfiability and the game
solution problems do not coincide anymore, since the choices of one player at each round
may depend on the future choices of the adversary.

Inspired by the work on dependence logics [1–3], we propose a novel semantics,
generalizing Hodges’ one [4], for a first-order extension of Linear Temporal Logic [5],
where functional dependencies among the variables can be restricted so that their
current values are independent of the future values of the other variables. This allows
us to encode various forms of independence constraints and provide a powerful tool
to fine-tune the semantics of the propositional quantifiers. In particular, we discuss
a specific instantiation of the semantics that allows one to recover a compositional
game-theoretic interpretation of the quantifiers and reconcile the satisfiability and the
game solution problems. This semantics leads to 2ExpTime decision procedures for
both satisfiability and model-checking, heavily reducing the complexity of the logic
when interpreted with the standard semantics.

[1] Jouko Väänänen, Dependence Logic: A New Approach to Independence
Friendly Logic, Cambridge, London Mathematical Society Student Texts. 2007.

[2] Samson Abramsky, Juha Kontinen, Jouko Väänänen, Heribert Vollmer,
Dependence Logic: Theory and Applications, Birkhäuser, 2016.

[3] A.L. Mann and G. Sandu and M. Sevenster, Independence-Friendly Logic
- A Game-Theoretic Approach, Cambridge, 2011.

[4] W. Hodges, Compositional Semantics for a Language of Imperfect Information,
Logic Journal of the Interest Group in Pure and applied Logic, vol. 5 (1997),
no. 4, pp. 539-563.

[5] A. Pnueli, The Temporal Logic of Programs, 18th Annual Symposium on
Foundations of Computer Science (Providence, RI, USA), IEEE, 1977.
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This work brings together two important areas of active development in non-classical
logics, viz. relevance logics and algorithmic correspondence theory.

The classical correspondence theory of modal logic was developed in the 1970s by van
Benthem, Sahlqvist, and others, to establish first-order definability and completeness
via canonicity for a wide syntactically defined class of modal axioms, commonly referred
to as Sahlqvist - van Benthem formulae. These were later generalised to a range of
logics with non-classical propositional base in the works of Gehrke, Venema, Nagahasi,
Celani, Jansana and others. Algorithmic correspondence theory, first developed in [?],
transcends the syntactic approach of the classical correspondence theory by developing
algorithmic procedures for computing first-order equivalents and proving canonicity of
a considerably wider class of input formulae, including all inductive formulae [4]. The
first such algorithmic procedure, developed for normal modal logics, was SQEMA [?],
later generalised to ALBA [2] for logic algebraically captured by classes of normal lattice
expansions.

In this work, reported in [3], we develop a variation of ALBA for formulae of relevance
logics with semantics over Routley-Meyer frames.The resulting algorithmic procedure
PEARL computes first-order correspondents with respect to validity in Routley-Meyer
frames. It succeeds, inter alia, on a large class of inductive relevance formulas, including
almost all axioms for important relevance logics known from the literature and it is
currently under implementation.

[1] Willem Conradie, Valentin Goranko and Dimiter Vakarelov, Algorith-
mic correspondence and completeness in modal logic. I. The core algorithm SQEMA,
Logical Methods in Computer Science, vol. 2 (2006), no. 1, pp. 1–26.

[2] Willem Conradie and Alessandra Palmigiano, Algorithmic correspondence
and canonicity for non-distributive logics, Annals of Pure and Applied Logic,
vol. 170 (2019), no. 9, pp. 923–974.

[3] Willem Conradie and Valentin Goranko, Algorithmic Correspondence for
Relevance Logics I. The algorithm PEARL, Alasdair Urquhart on Nonclassical
and Algebraic Logic and Complexity of Proofs (Ivo Düntsch and Edwin Mares,
editors), Springer, 2021, pp. 163–209.

[4] Valentin Goranko and Dimiter Vakarelov, Elementary canonical formu-
lae: extending Sahlqvist’s theorem, Annals of Pure and Applied Logic, vol. 141
(2006), no. 1-2, pp. 180–217.
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We combine linear temporal logic (with both past and future modalities) with a
deontic version of justification logic (cf. [1]) to provide a framework for reasoning
about time and epistemic and normative reasons. In addition to temporal modalities,
the resulting logic contains two kinds of justification assertions: epistemic justification
assertions [t]iφ and deontic justification assertions [s]Oi φ, which are read respectively
as “t is agent i’s justification for φ” and “t is a reason why φ is obligatory for agent
i”. We present a semantics based on interpreted systems in which the truth condition
of epistemic justification assertions is given by neighborhood functions (functions that
assign to each state/term pair a set of subsets of possible states) and the truth condition
of deontic justification assertions is given by binary accessibility relations Rt, for each
term t, on possible states. The use of the neighborhood and relational semantics enables
us to define the dual of justification assertions, i.e. 〈t〉i φ and 〈t〉Pi φ, which are read
respectively as “t is a reason why φ is compatible with agent i’s knowledge” and “t is a
reason why φ is permitted for agent i”. We then establish soundness and completeness
of an axiom system of the logic with respect to this semantics. Further, we formalize
the Protagoras paradox in this logic and present a solution to the paradox, and also
briefly discuss Leibniz’s solution.

[1] S. Artemov, and M. Fitting, Justification Logic, The Stanford Ency-
clopedia of Philosophy, (Spring 2021 Edition), Edward N. Zalta (ed.), URL =
https://plato.stanford.edu/archives/spr2021/entries/logic-justification/.
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In standard deontic logic, duties and permissions are treated in terms of an ideal
world, in which all obligations are met. This approach leads to several well-known
paradoxes and failures to formalize intuitively clear ideas. We propose a framework to
link deontic concepts with preferences in a formal way, thereby resolving many of the
paradoxes and shortcomings of standard deontic logic.

Cromulence logic, which is how we call our new logic, can be formulated as an
extension of the well-known modal logic S5 with two new binary modal operators. The
operators can be chosen to express obligation and permission under a given condition,
from which preference operators (strict and nonstrict) can be derived by stipulating
that meeting obligations is preferable to failing them. We can also equally well treat
preferences as primary concepts and derive obligations from them under a “your wish
is my command” assumption.
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To be tractable, every science requires first principles. The special sciences embark
from axioms and empirical laws φ for their first principles employing a rule-based ethic
to deductively arrive at consequent knowledge χ. The construct can be represented
schematically by the functor F:

F : φ→ χ #1

At the other limit we find metaphysics, the only science lacking determined genus and
thus devoid of a priori knowledge. This leads to a right-side rationality schematic:

G : χ← φ #2

Here, rationality flows in the opposite direction with a priori knowledge χ′ on the right
and the consequent φ′ on the left. This schematic no longer illustrates a syllogism but
its converse, a cosyllogism (not to be confused with Peirce’s adjunctions). For that the
cosyllogism be tractable, a priori knowledge χ′ must be formalised in some way. We
resort to the only viable normative authority available – naturality.

In mathematics, naturality is colloquially regarded as involving constructs that are
free of ad hoc subjective choices. Traditional set theory mathematics is ill-equipped
to formalise the ethics of naturality. The alternative is Category Theory originally
developed “to study functors and natural transformations”. Natural transformations
can be formalised in the form of naturality squares that commute where two sides are
left and right adjoints making up “natural” symmetries – arguably the most ubiquitous
and fundamental generic structure underlying mathematics.

In this paper, category theory will be shown to participate in its own natural sym-
metry with its “right adjoint” complementary opposite providing a natural way of
formalising the cosyllogistic logic in #2. The paper then goes on to show that the
resulting cosyllogistic “right-side” rationality provides a means of reverse engineering
the natural rationality underlying the five indemonstrables of ancient Stoic logic.
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ku, Chiba-shi, Chiba, 263-8522, Japan.
E-mail: ahga4770@chiba-u.jp.
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The interpretability logic IL is a basic logic for investigating the notion of relative
interpretability. De Jongh and Visser proved that the fixed point property (FPP) holds
for IL [2]. Also, Areces, Hoogland and de Jongh proved that Craig’s interpolation
property holds for IL [1].

In a previous work [3], several sublogics of IL are introduced and the modal com-
pleteness of twenty sublogics of IL are investigated. The weakest logic of them is IL−

and other logics are obtained by adding some IL-provable axioms to IL−.
In this talk, we discuss the fixed point property and Craig’s interpolation property

for sublogics of IL. Firstly, we completely reveal whether the fixed point property holds
for the twenty sublogics of IL. The logic IL−(J2+,J5) is the weakest logic of them
having FPP, and IL−(J4,J5) is the weakest logic of them having a newly introduced
weaker property ℓFPP. Moreover, we reveal whether Craig’s interpolation property
holds for the seventeen logics. Secondly, we introduce countably many sublogics of
IL−(J2+,J5) (resp. IL−(J4,J5)) having FPP (resp. ℓFPP).

[1] Carlos Areces, Eva Hoogland, Dick de Jongh, Interpolation, definability
and fixed points in interpretability logics, Advances in modal logic, Vol. 2 (Uppsala,
1998) (Stanford, CA), CSLI Lecture Notes,vol. 119, CSLI Publ, 2001, pp. 35–58.

[2] Dick de Jongh, Albert Visser, Explicit fixed points in interpretability logic,
Studia Logica, vol. 50 (1991), pp. 39–50.

[3] Taishi Kurahashi, Yuya Okawa, Modal completeness of sublogics of the inter-
pretability logic IL, Mathematical Logic Quarterly, accepted.
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We develop a novel topological semantics for inquisitive propositional logic inqB

and for the entire class of the so-called DNA-logics. Inquisitive logic was introduced
by a state-based semantics in [3], while DNA-logics were introduced and studied from
a syntactical point of view in [4], as negative variants of intermediate logics. It was
shown in [3] that inqB is a DNA-logic, as it is the negative variant of the Kreisel-Putnam
intermediate logic KP. An algebraic and topological semantics for inqB was introduced
in [2], and later extended to all DNA-logics in [1].

In this work, we introduce a topological semantics for DNA-logics which is based on
Esakia semantics and differs from the one considered in [2]. We define for any DNA-
logic Λ a topological DNA-model as a pair M = (E, µ¬), where E is an Esakia space
and µ¬ is a valuation of atomic formulas over the set CUR(E) of regular, clopen upset
of E. Formulas are then interpreted in the usual way and truth is defined by letting
M �¬ φ if JφKM = E. Similarly, E �¬ φ holds if (E, µ¬) �¬ φ for all regular valuations
µ¬ : AT→ CUR(E).

It follows from Esakia duality together with the completeness of the algebraic seman-
tics studied in [1] that this topological semantics is sound and complete with respect to
every DNA-logic Λ. Let Space(Λ) = {E ∈ Esa : E �¬ Λ} and Log(C) = {φ ∈ L : C �¬ φ},
then we have the following theorem.

Theorem 1. φ ∈ Λ⇐⇒ Space(Λ) �¬ φ and E ∈ C ⇐⇒ E �¬ Log(C).

In addition, we study regular subsets in Esakia spaces and characterise what are the
Esakia spaces dual to regular Heyting algebras:

Theorem 2. Let E be an Esakia space and ME the Stone space of its maximal el-
ements, then the map M : CUR(E) → C(ME) such that M : V 7→ V ∩ ME is an
isomorphism of Boolean algebras.

Theorem 3. H is a finite, regular, subdirectly irreducible Heyting algebra if and only
if the Esakia space E(H) dual to H is a finite, rooted frame such that:

(i) For all x,∈ E(H), there are two distinct y0, y1 ∈ E(H) such that x � y0 and
x � y1.

(ii) For all x, y /∈ME, S(x) 6= S(y), where S(z) = {y ∈ E : x ≤ y}.

[1] Nick Bezhanishvili and Gianluca Grilletti and Davide Emilio Quadrel-
laro, An Algebraic Approach to Inquisitive and DNA-Logics, ILLC PP-2020-10.

[2] Nick Bezhanishvili and Gianluca Grilletti and Wesley H. Holliday, Al-
gebraic and Topological Semantics for Inquisitive Logic Via Choice-Free Duality, Logic,
Language, Information, and Computation. WoLLIC 2019. Lecture Notes in
Computer Science (Rosalie Iemhoff and Michael Moortgat and Ruy de Queiroz, ed-
itors), vol. 11541, Springer, 2019, 35–52.

[3] Ivano Ciardelli and Floris Roelofsen, Inquisitive Logic, Journal of Philo-
sophical Logic, vol. 40 (2011), no. 1, pp. 55–94.

[4] Miglioli, P. and U. Moscato and M. Ornaghi and S. Quazza and G.
Usberti, Some results on intermediate constructive logics, Notre Dame Journal of
Formal Logic, vol. 30(1989), no. 1, pp. 543-562.
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Conditionals ‘if A, [then] C’ are difficult to analyze. A standard account has however
emerged [3]: a conditional A > C is true in the actual world (roughly) if and only if
the closest A-worlds are C-worlds. However, recent reflections suggest to strengthen
the defining clause by additional conditions. Different approaches argue for different
additional conditions ([2], [7], [4], [6], [1]). In this talk, I present a general method to
prove completeness results for such strengthened conditionals, as I developed it in [5].

The problem is this: Imagine you have a conditional of the form

• ϕ B ψ in world w iff closest ϕ-worlds are ψ-worlds and X.

Suppose that X is also formulated in terms of closeness. One can then rephrase ϕ B ψ
as (ϕ > ψ) ∧ χ, where χ is the expression corresponding to the condition X. The
central question is whether known completeness results for > can be used to obtain
completeness results for B. The answer is yes and the paper provides a general method:
First, redefine > in terms of B. This backtranslation of ϕ > ψ yields a formula α in
the language for B. One can then use this backtranslation to translate axioms for >
into axioms for B. This is a looking glass which provides a distorted picture of the
logic for >, in terms of B. The picture is a logic for B. The article applies the method
to several conditional constructions.

[1] Vincenzo Crupi and Andrea Iacona, The Evidential Conditional, Erkennt-
nis (2021). https://doi.org/10.1007/s10670-020-00332-2

[2] David Lewis, Causation, Journal of Philosophy, vol. 70, no. 17, pp. 556–567.
[3] David Lewis, Counterfactuals, Oxford, Blackwell, 1973.
[4] Eric Raidl, Completeness for counter-doxa conditionals – using ranking seman-

tics, The Review of Symbolic Logic, vol. 12 (2019), no. 4, pp. 861–891.
[5] Definable Conditionals, Topoi, vol. 40 (2021), 87–105.
[6] Hans Rott, Difference-making conditionals and the Relevant Ramsey Test, The

Review of Symbolic Logic, doi:10.1017/S1755020319000674.
[7] Wolfgang Spohn, Conditionals: A Unifying Ranking-Theoretic Perspective,

Philosophers’ Imprint, vol. 15, no. 1, pp. 1–30.
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In a recent work, Crupi and Iacona [1] have suggested an account of conditionals –
the evidential account. The account rests on the idea that a conditional is true just in
case its antecedent supports its consequent. The idea that A supports C is spelled out
in terms of two conditions. One is the Ramsey Test as understood by Stalnaker and
Lewis: in the closest possible worlds in which A is true, C must be true as well. The
other is the Reverse Ramsey Test : in the closest possible worlds in which C is false,
A must be false as well. We call Chrysippus Test the conjunction of the Ramsey Test
and the Reverse Ramsey Test.

The paper implements the Chrysippus test in a possible world semantic and presents
a system of conditional logic which we show to be sound and complete for the evidential
account. The proof adapts a general method elaborated by Raidl [2]. For this, the
following insights are used: the evidential conditional can be defined from a known
Lewisean conditional as a conjunctive strengthening of the later. Conversely, and less
obviously, the Lewisean conditional is back-definable from the evidential conditional.
This is expressed by a translation between the languages of the two conditionals. It is
this bridge which allows transferring results from the known Lewisean conditional to
the defined conditional, as we show in [3].

[1] Vincenzo Crupi and Andrea Iacona, The Evidential Conditional, Erkennt-
nis (2021). https://doi.org/10.1007/s10670-020-00332-2

[2] Eric Raidl, Definable Conditionals, Topoi, 40 (2021), 87–105.
[3] Eric Raidl, Andrea Iacona, Vincenzo Crupi, The Logic

of the Evidential Conditional, Review of Symbolic Logic (2021).
https://doi.org/10.1017/S1755020321000071
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The logic P L4 is characterized by a modification of the matrix determining  Lukasiewicz’s
4-valued modal logic  L (cf. [2]). It is a strong and rich paraconsistent and paracomplete
4-valued logic where necessity and possibility (among other) operators are definable
without “ Lukasiewicz-type modal paradoxes” being provable (cf. [3]). The logic P L4
is introduced in [3], but in [1] it is remarked that De and Omori’s logic BD+, Zaitsev’s
paraconsistent logic FDEP and Beziau’s 4-valued logic PM4M are equivalent to P L4
(cf. [1] and references therein). The fact that the four systems just quoted have been
obtained independently from different motivations seems to suggest that they are four
versions of a strong and rich natural logic.

P L4 is originally interpreted with a two-valued Belnap-Dunn semantics (cf. [3] and
references therein). Nevertheless, the aim of the present paper is to provide still another
perspective on P L4 by endowing it with both a ternary Routley-Meyer semantics and
a binary Routley-semantics together with their respective restriction to the 2 set-up
case (cf. [4]).

[1] M. De, H. Omori, Classical Negation and Expansions of Belnap-Dunn Logic,
Studia Logica, vol. 103 (2015), no. 4, pp. 825–851.

[2] J.  Lukasiewicz, A system of modal logic, The Journal of Computing Sys-
tems, vol. 1 (1953), pp. 111–149.

[3] J. M. Méndez, G. Robles, A strong and rich 4-valued modal logic without
 Lukasiewicz-type paradoxes, Logica Universalis, vol. 9 (2015), no. 4, pp. 501–522.

[4] R. Routley, R. K. Meyer, V. Plumwood, R. T. Brady, Relevant Logics
and their Rivals, vol. 1, Ridgeview Publishing Co., Atascadero, CA. 1982.
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James Bourchier 5, Sofia 1164, Bulgaria.
E-mail: tinko@fmi.uni-sofia.bg.

Let K be the class of all relational structures with two commuting equivalence re-
lations and Kfin be the class of all finite structures from K. Our goal is to study the
modal definability of sentences with respect to K (resp. Kfin). Remind that a sentence
A from a first-order language with two binary predicate symbols is modally definable
with respect to some class of frames if there is a modal formula ϕ from the propositional
modal language with two unary modalities such that A and ϕ are valid in the same
frames from the class. In this talk we prove the following.

Theorem 1. The problem of deciding the validity of sentences in K (resp. Kfin) is
reducible to the problem of deciding the modal definability of sentences with respect to
K (resp. Kfin).

Theorem 2. The first-order theories of K and Kfin are heretitarily undecidable.

Corollary 3. The problem of deciding the modal definability of sentences with re-
spect to K (resp. Kfin) is undecidable.
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I DANIEL MAX HOFFMANN, Kim-independence and ranks.
Instytut Matematyki, Uniwersytet Warszawski.
E-mail: d.hoffmann@uw.edu.pl.
There are two main, quite independent, goals of this talk:

• to describe how the Kim-independence can be induced by its counterpart from
the absolute Galois group,

• to present some ranks developed for NSOP1.

Before coming to the aforementioned points of the talk, I will start with a mild intro-
duction to the class of NSOP1 theories and provide a summary of the recent results
in the NSOP1. Of course, the list of results will be incomplete and just my personal
insight into the subject.

The content of the first goal of this talk is based on the results from [3]. Basically, we
generalize there theorems of Zoé Chatzidakis and Nick Ramsey on PAC fields ([1],[4])
to the level of arbitrary PAC substructures of a stable model. We show how the Kim-
independence descents from the many sorted structure of the absolute Galois group of
a PAC structure to the PAC structure itself.

Second goal of the talk is related to searching for a proper rank for any NSOP1

theory. There is already a notion of rank intended for NSOP1 which might be found
in [2]. However, there are some questions related to this rank and we would like to
propose a slightly different approach to the rank for NSOP1.

[1] Zoé Chatzidakis Amalgamation of types in pseudo-algebraically closed fields and
applications, Journal of Mathematical Logic, Vol. 19, No. 2 (2019)

[2] Artem Chernikov, Byunghan Kim, Nicholas Ramsey Transitivity, lowness, and
ranks in NSOP1 theories, 2020. Available on https://arxiv.org/abs/2006.10486.

[3] Daniel Max Hoffmann, Junguk Lee Co-theory of sorted profinite groups for PAC
structures, 2019. Available on https://arxiv.org/abs/1905.09748.

[4] Nick Ramsey Independence, Amalgamation, and Trees, PhD dissertation, 2018.
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I YATIR HALEVI (JOINT WORK WITH ASSAF HASSON AND KOBI PETERZIL),
Definable fields in various dp-minimal fields.
Ben Gurion University of the Negev.
E-mail: yatirh@gmail.com.

The study of definable (or interpretable) fields in various fields has a long history,
though with relatively few results, in model theory. For interpretable fields the proof
usually relies on elimination of imaginaries in some well understood language.

In this talk we outline a proof that every definable field in a dp-minimal valued
field K with generic differentiability of definable functions is definably isomorphic to
a finite extension of K. This latter condition holds, e.g., in p-adically closed fields,
t-convex fields and algebraically closed valued fields (really in any 1-h-minimal dp-
minimal valued field).

If time permits, we will briefly outline a general method for the study of fields
interpretable in dp-minimal valued fields satisfying generic differentiability of definable
functions, which bypasses elimination of imaginaries. More specifically, we show that
in some situations the ”interpretable” case reduces (locally) to the ”definable” case.
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I PABLO CUBIDES KOVACSICS, Beautiful pairs and spaces of definable types.
Heinrich Heine Universität Düsseldorf.
E-mail: cubidesk@hhu.de.

We introduce a general notion of beautiful pairs which encompasses classical results
of Poizat in the stable case and of van den Dries-Lewemberg/Pillay in the o-minimal
case. We obtain an Ax-Kochen-Ershov type result, showing that beautiful pairs of
certain classes of henselian valued fields are essentially controlled by the corresponding
beautiful pairs of the value group and residue field. As an application, we infer strict
pro-definability of various spaces of definable types. For simplicity, the talk will mainly
focus on the case of algebraically closed non-trivially valued fields, where the associated
spaces of definable types have a concrete geometric interpretation, e.g., the stable
completion introduced by Hrushovski-Loeser, and a model theoretic analogue of the
Huber analytification of an algebraic variety.

This is work in progress, joint with Martin Hils and Jinhe Ye.
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I CLAUDIO AGOSTINI, AND EUGENIO COLLA, An algebraic characterization of
Ramsey monoids.
Department of mathematics “G. Peano”, Università degli Studi di Torino, Via Carlo
Alberto 10, 10123 Torino, Italy.
E-mail: claudio.agostini@unito.it.
Department of mathematics “G. Peano”, Università degli Studi di Torino, Via Carlo
Alberto 10, 10123 Torino, Italy.
E-mail: eugenio.colla@unito.it.

Carlson’s theorem on variable words and Gowers’ FINk theorem are generalizations
of Hindman’s theorem that involve a monoid action on a semigroup. In short, they
state that for any finite coloring of a semigroup there is an infinite monochromatic
“span”. They differ in the choice of the monoid. Recently, Solecki in [1] isolated from
these two theorems the notion of Ramsey monoid, providing a common generalization
of them. Then he proved that an entire class of finite monoids is Ramsey. In this talk,
I will present some of the result from a joint work with Eugenio Colla, where we prove
a generalization of Solecki’s theorem, enlarging the class of monoids that can be proved
to be Ramsey and reaching a simple algebraic characterization of Ramsey monoids.

[1] S lawomir Solecki, Monoid actions and ultrafilter methods in Ramsey theory,
Forum of Mathematics, Sigma, vol. 7 (2019), no. e2.
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I AIZHAN ALTAYEVA, BEIBUT KULPESHOV, SERGEY SUDOPLATOV, On alge-
bras of binary formulas for almost ω-categorical weakly o-minimal theories.
Al-Farabi Kazakh National University, Institute of Mathematics and Mathematical
Modeling, Pushkin str. 125, Almaty, Kazakhstan.
E-mail: vip.altayeva@mail.ru.
Kazakh-British Technical University, Tole bi str. 59, Almaty, Kazakhstan.
E-mail: b.kulpeshov@kbtu.kz.
Sobolev Institute of Mathematics, Novosibirsk State Technical University, Karl Marx
av. 20, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.

In [1, 2] algebras of distributions of binary isolating formulas for both countably
categorical weakly o-minimal theories and quite o-minimal theories with few countable
models were described. Here we describe algebras of distributions of binary isolating
formulas for almost ω-categorical weakly o-minimal theories.

Definition 1. [3, 4] Let T be a complete theory, and p1(x1), . . . , pn(xn) ∈ S1(∅). A

type q(x1, . . . , xn) ∈ Sn(∅) is said to be a (p1, . . . , pn)-type if q(x1, . . . , xn) ⊇
n⋃
i=1

pi(xi).

The set of all (p1, . . . , pn)-types of the theory T is denoted by Sp1,... ,pn(T ). A countable
theory T is said to be almost ω-categorical if for any types p1(x1), . . . , pn(xn) ∈ S1(∅)
there are only finitely many types q(x1, . . . , xn) ∈ Sp1,... ,pn(T ).

The convexity rank of a formula with one free variable was introduced in [5].

Theorem 2. Let T be an almost ω-categorical weakly o-minimal theory, p, q ∈ S1(∅)
be non-algebraic, p 6⊥w q. Then the algebra Pν({p,q}) of binary isolating formulas is
generalized commutative iff RCbin(p) = RCbin(q).

This research has been funded by the Science Committee of the Ministry of Education
and Science of the Republic of Kazakhstan (Grant No. AP08855544).

[1] D.Yu. Emelyanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of distribu-
tions for binary formulas in countably categorical weakly o-minimal structures, Algebra
and Logic, vol. 56, No. 1 (2017), pp. 13–36.

[2] D.Yu. Emelyanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of distri-
butions of binary isolating formulas for quite o-minimal theories, Algebra and Logic,
vol. 57, No. 6 (2019), pp. 429–444.

[3] K. Ikeda, A. Pillay, A. Tsuboi, On theories having three countable models,
Mathematical Logic Quarterly, vol. 44, issue 2 (1998), pp. 161–166.

[4] S.V. Sudoplatov, Classification of countable models of complete theories, part
1, Novosibirsk: Novosibirsk State Technical University Publishing House, 2018, ISBN
978-5-7782-3527-4, 326 p.

[5] B.Sh. Kulpeshov, Weakly o-minimal structures and some of their properties,
The Journal of Symbolic Logic, vol. 63 (1998), pp. 1511–1528.
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I JOHN BALDWIN, Finer Classification of Strongly minimal sets.
Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 850
S. Morgan St. Chicago IL 60607,USA.
E-mail: jbaldwin@uic.edu.
URL Address: http://homepages.math.uic.edu/ jbaldwin/. This is joint work with
Viktor Verbovski. We refine Zilber’s trichotomy by studying several variants on de-
finable closure and exploring strongly minimal sets with flat geometries. We find the
following classes. 0) acl is trivial; acl is non-trivial but: 1) sdcl (see below) is triv-
ial on independent sets (no commutative binary functions), 2) dcl is trivial on inde-
pendent sets (no binary functions), 4) definable binary functions exist; e.g. quasi-
groups, ternary rings.This includes the basic Hrushovski example with any admissible
µ (δ(B) ≤ µ(A/B)) [CW12]. In particular no structure in class 1) admits elimination of
imaginaries. (Verbovskiy has an example with elimination of imaginaries in an infinite
vocabulary). This includes the basic ternary Hrushovski example with any admissible
µ (δ(B) ≤ µ(A/B)) [CW12].

To distinguish the classes 0)-4) we introduce several notions. We write GI (G{I})
for the group of automorphisms of a model M that fix I pointwise (setwise). For
either choice of G, A is G-normal if it is finite G-invariant and strong in M . Then a
is in dcl(X) (sdcl(X)) if a is fixed by GX , (G{X}). We introduce the notion of tree-
decomposition of a G-normal subset. Under appropriate conditions on µ, we prove for
all G normal sets A ,by induction on the height of A, that dcl∗(I) (sdcl∗(I)) is empty
when G = GI , (GI) and I is independent with |I| < ω. (The ∗ means a depends on
all elements of I.) In particular, we show that strongly minimal systems from [CW12]
and [BP18] can be found in each classes 1)-4).

[BP18]John T. Baldwin and G. Paolini. Strongly Minimal Steiner Systems I: Exis-
tence. Journal of Symbolic Logic Published online by Cambridge University Press: 22
October 2020, pp. 1–15

[CW12]E. Hrushovski Perfect countably infinite Steiner triple systems. Annals of
Pure and Applied Logic, 62:147–166, 1993.
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I DMITRY EMELYANOV, BEIBUT KULPESHOV, SERGEY SUDOPLATOV, On al-
gebras of binary formulas for partially ordered theories.
Novosibirsk State Technical University, Novosibirsk, Russia.
E-mail: dima-pavlyk@mail.ru.
Kazakh-British Technical University, Almaty, Kazakhstan.
E-mail: b.kulpeshov@kbtu.kz.
Sobolev Institute of Mathematics, Novosibirsk State Technical University, Novosibirsk
State University, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.

We consider a generalization, for partially ordered theories, of descriptions for alge-
bras of binary isolating formulas [1] for a series of linearly ordered theories [2, 3, 4],
based on dense lower semilattices with Ehrenfeucht theories [5, Example 1.1.1.4].

Using Cayley tables for countably categorical weakly o-minimal theories [2] and
quite o-minimal theories we explicitly define the classes of commutative monoids An,
respectively, AQR

n , AQL
n , AI

n, of isolating formulas for isolated, respectively, quasirational
to the right, quasirational to the left, irrational, 1-types p of quite o-minimal partially
ordered theories with few countable models, with convexity rank RC(p) = n. For an
algebra Pν(p) of binary isolating formulas of 1-type p, we have:

Theorem 1. Let T be a quite o-minimal partially ordered theory with few countable
models, p ∈ S1(∅) be a non-algebraic type. Then there exists n < ω such that:

(1) if p is isolated then Pν(p) ' An;

(2) if p is quasirational to the right (left) then Pν(p) ' AQR
n (Pν(p) ' AQL

n );

(3) if p is irrational then Pν(p) ' AI
n.

Corollary 2. Let T be a quite o-minimal partially ordered theory with few countable
models, p, q ∈ S1(∅) be non-algebraic types. Then Pν(p) ' Pν(q) if and only if RC(p) =
RC(q) and the types p and q are simultaneously either isolated, or quasirational, or
irrational.

This research has been funded by RFBR (project No. 20-31-90004), by KN MON
RK (Grant No. AP08855544), and by SB RAS (project No. 0314-2019-0002).

[1] I.V. Shulepov, S.V. Sudoplatov, Algebras of distributions for isolating for-
mulas of a complete theory, Siberian Electronic Mathematical Reports, Vol. 11
(2014), pp. 362–389.

[2] D.Yu. Emelyanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of distribu-
tions for binary formulas in countably categorical weakly o-minimal structures, Algebra
and Logic, Vol. 56, No. 1 (2017), pp. 13–36.

[3] D.Yu. Emelyanov, B.Sh. Kulpeshov, S.V. Sudoplatov, On algebras of
distributions for binary formulas for quite o-minimal theories, Algebra and Logic,
Vol. 57, No. 6 (2019), pp. 429–444.

[4] D.Yu. Emelyanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of binary
formulas for compositions of theories, Algebra and Logic, Vol. 59, No. 4 (2020),
pp. 295–312.

[5] S.V. Sudoplatov,Classification of countable models of complete theories,
Novosibirsk, Edition of NSTU, 2018.
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I CHRISTIAN ESPÍNDOLA, Categoricity theorems in infinite quantifier languages.
Department of Mathematics and Computer Science, University of La Reunion, 15 Av-
enue René Cassin (97744) Saint-Denis, Réunion - France.
E-mail: christian.espindola@univ-reunion.fr.

We investigate several categoricity phenomena in the model theory of infinite quan-
tifier languages, based on a topos-theoretic approach. For this we prove an omitting
types theorem for infinite quantifier logics and use as well a completeness theorem for
them.

The main insight is a description of the classifying toposes for saturated models in
terms of the double negation topology. Using then a proper class of strongly compact
cardinals we recover the property of amalgamation and prove that in fact it follows
from certain categoricity assumptions.

[1] Esṕındola, C., Infinitary generalizations of Deligne completeness theorem, The
Journal of Symbolic Logic, vol. 85, issue 3, pp. 1147-1162 (2020).

[2] Dickmann, M., Large infinitary languages, North-Holland Publishing Com-
pany (1975).

[3] Esṕındola, C., Infinitary first-order categorical logic, Annals of Pure and
Applied Logic, vol. 170, issue 2, pp. 137-162 (2019).

[4] Karp, C., Languages with expressions of infinite length, North-Holland Pub-
lishing Company (1964).

[5] Makkai, M. and Reyes, G., First order categorical logic, Lecture Notes in
Mathematics, vol. 611 (1977).
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I FRANCESCO GALLINARO, Around exponential algebraic closedness.
School of Mathematics, University of Leeds, LS2 9JT, Leeds, United Kingdom.
E-mail: mmfpg@leeds.ac.uk.

Zilber’s quasiminimality conjecture ([2], [3]) predicts that all subsets of the complex
numbers that are definable using the language of rings and the exponential function
are either countable or cocountable. Building on Zilber’s work, Bays and Kirby have
proved in [1] that the quasiminimality conjecture would follow from the exponential
algebraic closedness conjecture, also due to Zilber, which states that all systems of
exponential polynomial equations which do not contradict Schanuel’s conjecture can
be solved in the complex numbers. Similar questions, based on analogues of Schanuel’s
conjecture, arise in the study of other analytic functions, such as the exponential maps
of abelian varieties and the modular j-function. The first part of this talk will focus
on these conjectures and the interplay between them, while in the second part some
results will be discussed, showing how to solve some classes of systems of equations
which have a particularly nice geometry.

[1] Martin Bays and Jonathan Kirby, Pseudo-exponential maps, variants, and
quasiminimality, Algebra & Number Theory, vol.12 (2018), no.3, pp.493-549.

[2] Boris Zilber, Analytic and pseudo-analytic structure, Lecture Notes in
Logic, 19. Logic Colloquium 2000, Paris, (Rene Cori, Alexander Razborov, Stevo
Todorčević, and Carol Wood, editors), Cambridge University Press, 2005, pp.392-408.

[3] Boris Zilber, Pseudo-exponentiation on algebraically closed fields, Annals of
Pure and Applied Logic, vol.132 (2005), no.1, pp.67-95.
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I DAVIT HARUTYUNYAN, On Some Associative Formula with Functional Variables.
Yerevan State University.
E-mail: david.harutyunyan96@gmail.com.

A binary groupoid (Q,A) is a non-empty set Q together with a binary operation A.
The groupoid (Q, ·) is division if for any a ∈ Q La and Ra are surjective mappings.
The binary algebra (Q,Σ) is a division algebra if (Q,A) is a division groupoid for any
A ∈ Σ.

We call a groupoid (Q, ·) left-regular if ca = cb ⇒ Ra = Rb, where a, b, c ∈ Q.
Similarly, we define the right-regular groupoid. We call a groupoid regular if it is
simultaneously left-regular and rightregular. A binary algebra (Q,Σ) is regular if (Q,A)
is a regular groupoid for any A ∈ Σ.

Theorem 1. Suppose (Q,Σ) is a regular division algebra and for any A,C ∈ Σ there
exist B,D ∈ Σ such that one of these identities

A(x,B(y, z)) = C(D(x, y), z), (1)

A(x,C(y, z)) = B(D(x, y), z), (2)

A(x,D(y, z)) = C(B(x, y), z), (3)

D(x,B(y, z)) = C(A(x, y), z), (4)

is true. Then, there exists a group (Q, ·) such that (Q,Σ) is epitopic to this group.

Theorem 2. Suppose (Q,Σ) is a regular division algebra and for any A,C ∈ Σ there
exist B,D ∈ Σ such that identity (1) takes place. Then, there exists a group (Q, ·) such
that the algebra (Q,Σ) is endolinear over this group.
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I VALENTIN GORANKO, RUAAN KELLERMAN, Approximating trees as coloured
linear orders and complete axiomatisations of some classes of trees.
Department of Philosophy, Stockholm University, Universitetsvägen 10 D Frescati, SE
- 10691 Stockholm, Sweden.
E-mail: valentin.goranko@philosophy.su.se.
Department of Mathematics and Applied Mathematics, University of Pretoria, Private
Bag X20, Hatfield, South Africa.
E-mail: ruaan.kellerman@up.ac.za.

We study the first-order theories of some natural classes of coloured trees, including
the four classes of trees whose paths have the order type respectively of the natural
numbers, the integers, the rationals, and the reals. We develop a technique for ap-
proximating a tree as a suitably coloured linear order. We then present the first-order
theories of certain classes of coloured linear orders and use them, along with the tech-
nique for approximating trees as coloured linear orders, and techniques borrowed from
[1], to establish complete axiomatisations of the four classes of trees mentioned above.
This talk is based on the work presented in [2].

[1] Kees Doets, Monadic Π1
1-Theories of Π1

1-Properties, Notre Dame Journal of
Formal Logic, vol. 30 (1989), no. 2, pp. 224–240.

[2] Valentin Goranko and Ruaan Kellerman, Approximating trees as coloured
linear orders and complete axiomatisations of some classes of trees, Journal for Sym-
bolic Logic, to appear.
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I B.SH. KULPESHOV, On criterion for binarity of almost ω-categorical weakly o-mini-
mal theories.
Kazakh-British Technical University, Almaty, Kazakhstan.
E-mail: b.kulpeshov@kbtu.kz.

This lecture concerns the notion of weak o-minimality which was initially deeply
studied by D. Macpherson, D. Marker and C. Steinhorn in [1]. A weakly o-minimal
structure is a linearly ordered structure M = 〈M,=, <, . . . 〉 such that any definable
(with parameters) subset of M is a union of finitely many convex sets in M . The rank
of convexity of a formula with one free variable was introduced in [2].

The following notion was introduced in [3] and investigated in [4]. Let T be a
complete theory, and p1(x1), . . . , pn(xn) ∈ S1(∅). A type q(x1, . . . , xn) ∈ Sn(∅) is said

to be a (p1, . . . , pn)-type if q(x1, . . . , xn) ⊇
n⋃

i=1

pi(xi). The set of all (p1, . . . , pn)-types

of the theory T is denoted by Sp1,... ,pn(T ). A countable theory T is said to be almost
ω-categorical if for any types p1(x1), . . . , pn(xn) ∈ S1(∅) there are only finitely many
types q(x1, . . . , xn) ∈ Sp1,... ,pn(T ).

Theorem 1. Let T be an almost ω–categorical weakly o-minimal theory. Then T is
binary iff every non-algebraic p ∈ S1(∅) has finite convexity rank.

This research has been funded by the Science Committee of the Ministry of Education
and Science of the Republic of Kazakhstan (Grant No. AP08855544).

[1] H.D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal struc-
tures and real closed fields, Transactions of The American Mathematical Society,
vol. 352 (2000), pp. 5435–5483.

[2] B.Sh. Kulpeshov, Weakly o-minimal structures and some of their properties,
The Journal of Symbolic Logic, vol. 63 (1998), pp. 1511–1528.

[3] K. Ikeda, A. Pillay, A. Tsuboi, On theories having three countable models,
Mathematical Logic Quarterly, vol. 44, issue 2 (1998), pp. 161–166.

[4] S.V. Sudoplatov, Classification of countable models of complete theories, part
1, Novosibirsk: Novosibirsk State Technical University Publishing House, 2018, ISBN
978-5-7782-3527-4, 326 p.
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I IVAN DI LIBERTI, Formal model theory and Higher Topology.
Institute of Mathematics, Czech Academy of Sciences.
E-mail: ivandiliberti@gmail.com.

Motivated by the abstract study of semantics, we study the interaction between
topoi, accessible categories with directed colimits and ionads. This theory amounts to
a categorification of famous construction from general topology: the Scott topology on
a poset and the adjunction between locales and topological spaces. This technology
is then used in order to establish syntax-semantics dualities. Among the significant
contributions, we provide a logical understanding of ionads that encompasses Makkai
ultracategories.

[1] Ivan Di Liberti, The Scott adjunction, PhD thesis, arXiv:2009.07320.
[2] Ivan Di Liberti, General facts on the Scott Adjunction, ArXiv:2009.14023.
[3] Ivan Di Liberti, Towards Higher Topology, ArXiv:2009.14145.
[4] Ivan Di Liberti, Formal Model Theory & Higher Topology,

ArXiv:2010.00319.
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I ADAM MALINOWSKI AND LUDOMIR NEWELSKI, A few remarks on strongly
generic sets.
Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, Poland.
E-mail: adam.malinowski@math.uni.wroc.pl.
Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, Poland.
E-mail: ludomir.newelski@math.uni.wroc.pl.

A promising approach to model theory of unstable groups is via the methods of
topological dynamics (see eg. [1, 2, 3, 5]). For a group G definable over the empty set
in a model M , the space SG(M) of 1-types extending the formula x ∈ G is naturally
a G-flow. The classical Ellis theorem allows to assign to any such model a particular
group, called the Ellis group of SG(M). The study of Ellis groups in model theory aims
to achieve a deeper understanding of the structural properties of the theory of M .

In [4] Newelski established a connection between Ellis groups (or more precisely,
minimal ideals containing them) and particular algebras of subsets of G called image
algebras. Their uncommon property is that they consist of strongly generic sets, i.e.
sets A such that every non-empty Boolean combination of G-translates of A is a generic
subset of G. I am going to present some results and constructions related to strongly
generic sets.

[1] Krzysztof Krupiński, Ludomir Newelski, Pierre Simon, Boundedness and
absoluteness of some dynamical invariants in model theory, Journal of Mathematical
Logic, vol. 19 (2017), no. 2.

[2] Krzysztof Krupiński, Anand Pillay, Amenability, definable groups, and au-
tomorphism groups, Advances in Mathematics, vol. 345 (2019), pp. 1253-1299.

[3] Ludomir Newelski, Topological dynamics of definable group actions, The
Journal of Symbolic Logic, vol. 74 (2009), no. 1, pp. 50–72.

[4] Bounded orbits and strongly generic sets, Journal of the London Math-
ematical Society, vol. 86 (2012), no. 2, pp. 63–86.

[5] Anand Pillay, Topological dynamics and definable groups, The Journal of
Symbolic Logic, vol. 78 (2013), no. 2, pp. 657–666.
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I NURLAN MARKHABATOV, SERGEY SUDOPLATOV, On closures for partially or-
dered families of theories.
Novosibirsk State Technical University, Novosibirsk, Russia.
E-mail: nur 24.08.93@mail.ru.
Sobolev Institute of Mathematics, Novosibirsk, Russia; Novosibirsk State Technical
University, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.
We apply a general approach for closures of families of theories [1, 2] for some special
cases of partially ordered families.

Definition [2]. For a family T of theories in a language Σ and a theory T we put
T ∈ Cl1(T ) if T ∈ T , or T is nonempty and T = {ϕ ∈ Sent(Σ) | |(T ′)ϕ| ≥ ω} for some
T ′ ⊆ T . If T ′ is fixed then we say that T belongs to the Cl1-closure of T with respect
to T ′, and T is an accumulation point of T with respect to T ′.

Theorem 1. [2] For any linearly ⊆-ordered family T , Cl1(T ) consists of unions for
subfamilies of T , and of intersections for countable subfamilies of T ordered by the type
ω∗.

Theorem 2. For any partially ⊆-ordered family T with finitely many maximal chains,
Cl1(T ) consists of unions for unions of chains of T and for intersections of countable
chains of T which are ordered by the type ω∗.

Theorem 2 can fail for the case of infinitely many maximal chains.
This research has been funded by RFBR (project No. 20-31-90003), by KN MON

RK (Grant No. AP08855497), and by SB RAS (project No. 0314-2019-0002).

[1] N.D. Markhabatov, S.V. Sudoplatov, Topologies, ranks and closures for
families of theories. I, Algebra and Logic, Vol. 59, No. 6 (2020), pp. 649–979.

[2] N.D. Markhabatov, S.V. Sudoplatov, Topologies, ranks and closures for
families of theories. II, Algebra and Logic, Vol. 60, No. 2 (2021). (to appear)
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E-mail: inessa7772@mail.ru.
Sobolev Institute of Mathematics, Novosibirsk, Russia; Novosibirsk State Technical
University, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.
We continue to study families of theories of abelian groups [1, 2] describing possibilities
for sentences with respect to rich properties following a general approach for links
between formulas ϕ and properties P using the ranks RSP [3].

Following [3], for a property P ⊆ TΣ, a sentence ϕ ∈ Sent(Σ) is called P -generic if
RSP (ϕ) = RS(P ), and dsP (ϕ) = ds(P ) if ds(P ) is defined.

Let T A be the family of all theories of abelian groups in a language Σ0. A property
P ⊆ T A is called rich if P ∩ P ′ 6= ∅ for each nonempty property P ′ =

(
T A

)
ϕ

defined

by a sentence ϕ locally describing linear (in)dependence, (in)divisibilities and orders of
elements.

Theorem 1. A property P ⊆ T A is rich if and only if ClE(P ) = T A.

Theorem 2. |{P ⊆ T A | P is rich}| = 2ω, moreover, |{P ⊆ T A | P is rich and
countable}| = 2ω.

Theorem 3. For any sentence ϕ ∈ Sent(Σ0) and a rich property P ⊆ T A the
following possibilities hold:

(1) RSP (ϕ) = −1, if ϕ is T A-inconsistent;

(2) RSP (ϕ) = 0, if ϕ is T A-consistent and belongs to (finitely many) theories in T A
with finite models only;

(3) RSP (ϕ) =∞, if ϕ belongs to a theory T ∈ T A with an infinite model.

Corollary 4. For any sentence ϕ ∈ Sent(Σ0) and rich P ⊆ T A either ϕ is repre-

sented by a disjunction of finitely many sentences ϕi isolating theories Ti ∈ T A with
finite models, or ϕ is P -generic.

Notice that the assertions above can fail if P ⊆ T A is not rich.

The study was carried out within the framework of the state contract of the Sobolev
Institute of Mathematics (project No. 0314-2019-0002) and the Committee of Science
in Education and the Science Ministry of the Republic of Kazakhstan (Grant No.
AP08855544).

[1] In.I. Pavlyuk, S.V. Sudoplatov, Families of theories of abelian groups and
their closures, Bulletin of Karaganda University. Series “Mathematics”, vol. 90
(2018), pp. 72–78.

[2] In.I. Pavlyuk, S.V. Sudoplatov, Ranks for families of theories of Abelian
groups, Bulletin of Irkutsk State University. Series “Mathematics”, vol. 28
(2019), pp. 95–112.

[3] S.V. Sudoplatov, Formulas and properties, arXiv:2104.00468v1 [math.LO],
2021.
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Game comonads [1, 3] have been recently introduced as a means of relating categor-
ical semantics to finite model theory. They hinge on the idea that model-comparison
games should be regarded as semantic constructions in their own right, and yield cate-
gorical characterisations of key combinatorial parameters of relational structures. For
an axiomatic approach to game comonads and their coalgebras, see [2].

In this talk, we present an approach to homomorphism counting results in finite
model theory based on game comonads, which has been obtained in joint work with
Anuj Dawar and Tomáš Jakl [4]. The first and best-known homomorphism counting
result is Lovász’ theorem (1967), stating that two finite relational structures A and B
are isomorphic if, and only if, for every finite relational structure C, the number of
homomorphisms from C to A is the same as the number of homomorphisms from C
to B. We explain how game comonads can be used to provide new uniform proofs of
Lovász’ theorem and more recent results of Dvořák (2010) and Grohe (2020), as well
as a novel homomorphism counting result in modal logic.

[1] Samson Abramsky, Anuj Dawar, Pengming Wang, The pebbling comonad
in finite model theory, 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2017, pp. 1–12.

[2] Samson Abramsky, Luca Reggio, Arboreal categories and resources, to appear
in the proceedings of the 48th International Colloquium on Automata, Languages, and
Programming (ICALP), 2021.

[3] Samson Abramsky, Nihil Shah, Relating Structure and Power: Comonadic
semantics for computational resources, 27th EACSL Annual Conference on Computer
Science Logic (CSL), 2018, pp. 2:1–2:17.

[4] Anuj Dawar, Tomáš Jakl, Luca Reggio, Lovász-type theorems and game
comonads, to appear in the proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2021.
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A series of positive results related to the generalized problem of Yu. L. Ershov on
the structure of Σ-degrees of dense linear orders [1, 2, 4] is obtained. In particular,
we prove that interval models of temporal logic, as well as finite fragments of ap-
proximation spaces generated by interval Boolean algebras, are Σ-definable (effectively
interpretable) in hereditarily finite superstructures over dense linear orders. These re-
sults are used in the analysis of semantics of verbs in natural languages within the
approach in formal semantics proposed by R. Montague [3, 5].

[1] Yu.L. Ershov, Definability and computability, Plenum, New York, 1996.
[2] Yu.L. Ershov, Σ-definability of algebraic structures, In: Ershov Yu. L.,

Goncharov S.S., Nerode A., Remmel J. B. (eds.), Handbook of recursive mathematics,
vol. 1, Recursive model theory (Stud. Logic Found. Math. 138), Amsterdam, Elsevier
Science B.V., 235–260, 1998.

[3] D.R. Dowty, R.E. Wall, S.Peters, Introduction to Montague semantics,
Dodrecht: D. Reidel Publishing Company, 1989.

[4] A.I. Stukachev, Effective model theory via the Σ-definability approach,
Lecture Notes in Logic, vol. 41, 164–197, 2013.

[5] A.I. Stukachev, Approximation spaces of temporal processes and effec-
tiveness of interval semantics, In: Distributed Computing and Artificial Intelli-
gence, Special Sessions, 17th International Conference, Advances In Intelligent Systems
and Computing, vol. 1242, 53–61, 2021.
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The notion of conceptual distance has recently been introduced in [1]. This distance
measures the minimal number of concepts that are needed to be added or removed
from a theory to turn it definitionally equivalent to another one. This distance gives a
quantitative method to determine the difference between any two nonequivalent theo-
ries, which is also qualitative if we keep track of the concrete concepts distinguishing
the two theories in hand. For example, using this distance terminology a surprising
result of [3] can be reformulated as: the conceptual distance between special relativity
and late classical kinematics is 1, and they differ only in the concept of absolute rest
of classical kinematics.

In this talk, we are going to introduce a general notion of distance between any two
algebras of the same similarity type called the generator distance, see [2]. Then we
show that, for any two models having finite (but not necessarily the same) first-order
languages, the generator distance between the Lindenbaum–Tarski algebras of these
models is the same as the conceptual distance between their first-order logic theories.

This connection between the generator distance of Lindenbaum–Tarski algebras of
concepts and the conceptual distance of complete theories can give an effective algebraic
method to determine the conceptual distance between arbitrary theories, which seems
to be a quite difficult task in general.

[1] M. Khaled, G. Székely, K. Lefever and M. Friend, Distances Between Formal
Theories, The Review of Symbolic Logic, vol. 13 (2020), no. 3, pp. 633–654.

[2] M. Khaled and G. Székely, Algebras of Concepts and Their Networks, Progress
in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems
and Computing, vol. 1301 (T. Allahviranloo, S. Salahshour and N. Arica, editors),
Springer, Cham, 2021, pp. 611–622.

[3] K. Lefever, Using Logical Interpretation and Definitional Equivalence to Com-
pare Classical Kinematics and Special Relativity Theory, PhD Dissertation, Vrije Uni-
versiteit Brussel, 2017.
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LetM = (M,<, . . . ) be a totally ordered structure. A partition 〈C,D〉 of M is called
a cut if C < D. Given a cut 〈C,D〉 one can construct a partial type {c < x < d : c ∈
C, d ∈ D}, which we also call a cut and use the same notation 〈C,D〉. A cut 〈C,D〉
in an ordered group is called non-valuational [2] if d − c converges to 0 whenever c
and d converge to supC and inf D accordingly. An ordered group G is said to be of
non-valuational type, if there is no definable non-trivial convex subgroup in G.

Definition 1 (B. Baizhanov, V. Verbovskiy [1]).
1) An ordered structure M is o-stable in λ if for any A ⊆ M with |A| ≤ λ and for

any cut 〈C,D〉 in M there are at most λ 1-types over A which are consistent with the
cut 〈C,D〉.

2) A theory T is o-stable in λ if every model of T is. A theory T is o-stable if there
exists an infinite cardinal λ in which T is o-stable.

Here we study o-stable ordered groups, the initial study of them was in [3], [4].

Theorem 2. Any unary function that is definable in an o-stable ordered group of
non-valuational type is piecewise continuous and monotone (note that pieces need not
be convex).

This work was partially supported by the grant AP09259295 of SC of the MES of
RK.

[1] B. Baizhanov, V. Verbovskii, O-stable theories, Algebra and Logic, vol. 50
(2011), no. 3, pp. 211–225.

[2] D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal struc-
tures and real closed fields, Transaction of American Mathematical Society,
vol. 352 (2000), no. 12, pp. 5435–5483.

[3] V. V. Verbovskiy, O-stable ordered groups, Siberian Advances in Mathe-
matics, vol. 22 (2012), no. 1, pp. 50–74.

[4] V. V. Verbovskiy, On ordered groups of Morley o-rank 1, Siberian Electronic
Mathematical Reports, vol. 15 (2018), no. 1, pp. 314–320.
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In current abstract we are giving the result which connected with the different types
of atomic and prime models in the frame of Jonsson theories investigations. In first
time definable atomic and algebraically prime subsets of semantic model was defined
in [1]. Such point of view is a refining of some questions which raised in [2], where
relations between atomic and algebraically prime models was studied.

Let us give a necessary definitions.

Definition 1. 1) α-type is called any set of formulas consistent with T , the free
variables of which are found in x̄α

2) α-type ρ is called Γ-ω-type, if ρ ⊆ Γ
3) Γ-ω-type ρ is called Γ1-principle type, if there exists such a sequence 〈ψn(x̄n) :

1 ≤ n < ω〉 Γ1-formulas, such that:
a) T ∪ ψn(x̄n) is consistent, 1 ≤ n < ω;
b) ψn(x̄n) generates ρ � x̄n, where ρ � x̄n is set of formulas from ρ, the free variables

of which are among (x1, ..., xn), 1 ≤ n < ω;
c) T ` ψn(x̄n)↔ ∃x̄n+1ψn+1(x̄n+1), 1 ≤ n < ω.

Definition 2. A set A1 is called fine almost weakly (Γ1,Γ2)-cl-atomic in the theory
T , if

1) every ω sequence of elements A1 satisfied Γ1-principle type for Γ2-ω-type.
2) cl(A1) = M1,M1 ∈ ET , where ET is a class of all existentially closed models of

the theory T ;
and obtained model M1 is said to be fine almost weakly (Γ1,Γ2)-cl-atomic model of

the theory T .

Definition 3. A set A2 is called a fine almost weakly (Γ1,Γ2)-cl-algebraically prime
in the theory T , if

1) A2 is a fine almost weakly (Γ1,Γ2)-cl-atomic set of theory T ;
2) cl(A2) = M2,M2 ∈ ET ∩APT , where APT is a class of algebraically prime models

the theory T ;
and obtained model M2 is called a fine almost weakly (Γ1,Γ2)-cl-algebraically prime

model of the theory T .

And in the frame above mentioned notions one of the obtained result is the following
theorem:

Theorem 4. Let T be complete for ∃-sentences perfect Jonsson theory and we have
a fine almost weakly (Σ1,Σ1)-cl-atomic set of A1 and a fine almost weakly (Σ1,Σ1)-cl
algebraically prime set of A2. Then M1 = cl(A1) isomorphic to M2 = cl(A2).

All additional information regarding Jonsson theories can be found in [3].

[1] Yeshkeyev A.R., Issayeva A.K., Mussina N.M., The atomic definable sub-
sets of semantic model, Bulletin of the Karaganda University - Mathematics.,
vol. 2(94) (2019), pp. 84–91.

[2] Baldwin J.T., Kueker D.W., Algebraically prime models, Annals of Math-
ematical Logic, no. 20 (1981), pp. 289–330.

[3] Yeshkeyev A.R., Kassymetova M.T., Jonsson theories and their classes
of models, Monograph, KSU, 2016.
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Let L be countable language of an arbitrary signature σ and A be an arbitrary model
of this signature, i. e. A ∈Modσ. Let us call the Jonsson spectrum of model A a set:

JSp(A) = {T |T is Jonsson theory in language L and A ∈ModT}.
The relation of cosemanticness on a set of theories is an equivalence relation. Then

JSp(A)/./ is the factor set of Jonsson spectrum of the model A with respect to ./. [1]
Denote by E[T ] =

⋃
∇∈[T ]

E∇ the class of all existentially closed models of class

[T ] ∈ JSp(A)/./, where E∇ is a class of all existentially closed models of ∇.
A formula ϕ(x̄) is called a ∆-formula [2] with respect to the theory T if there are

existential formulas ψ1(x̄) and ψ2(x̄) such that T |= (ϕ↔ ψ1) and T |= (¬ϕ↔ ψ2).
We say that a theory T admits R1 [2], if for any existential formula ϕ(x̄) consistent

with T there is a formula ψ(x̄) ∈ ∆ consistent with T such that T |= (ψ → ϕ).
And in the frame above mentioned notions we have the following results.

Theorem 1. Let A be an arbitrary model of signature σ, [T ] ∈ JSP (A)/./ and [T ]
be complete for ∃-sentences class of universal theories for which holds R1. Then the
following are equivalent:

1) the theory [T ]∗ is ω1-categorical,
2) any countable model from E[T ] has an algebraically prime model extension in E[T ].

Theorem 2. Let L be a countable language, A be an arbitrary model of this language
L, [T ] ∈ JSp(A)/./. If [T ] is ∀∃-complete ω-categorical class, then [T ] has ω-categorical
model companion [T ]M .

Theorem 3. Let L be a countable language, A be an arbitrary model of this language,
[T ] ∈ JSp(A)/./. If [T ] is ∀∃-complete κ-categorical class, then [T ]∗ is model complete.

All additional information regarding Jonsson theories can be found in [3].

[1] Yeshkeyev A.R., Ulbrikht O.I., JSp-cosemanticness and JSB property of
Abelian groups, Siberian Electronic Mathematical Reports, vol. 13 (2016), pp. 861–
874.

[2] Baldwin J.T., Kueker D.W., Algebraically prime models, Annals of Math-
ematical Logic, no. 20 (1981), pp. 289–330.

[3] Yeshkeyev A.R., Kassymetova M.T., Jonsson theories and their classes
of models, Monograph, KSU, 2016.
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Let L be a first-order language. Denote by At the set of atomic formulas of the
language L and by B+(At) is the set of all positive Boolean combinations (conjunction
and disjunction) of atomic formulas. L+ = Q(B+(At)) is a set of formulas in normal
prenex form obtained by applying quantifiers (∀ and ∃) to B+(At). A formula will be
called positive if it belongs to L+. Let Π+

2 be the set of all ∀∃-formulas of a language L+.
Let ∆ ⊆ Π+

2 ⊆ L+. All morphisms which we are considering below will be immersions
as in [1].

Definition 1. Theory T will be called ∆-J-theory, if it satisfies the following con-
ditions:

1) theory T has infinite model;
2) theory T is Π+

2 -axiomatizable;
3) theory T admits ∆-JEP;
4) theory T admits ∆-AP.

Let T be a ∆-J-theory, M is the semantic model of T . Let A be the class of all
subsets of semantic model M and P is the class of all positive ∃-types (not necessarily
complete), let PJNF (positive Jonsson nonforking) ⊆ P × A be a binary relation.
There is the list of the axioms 1-7 which defined positive Jonsson nonforking notion
PJNF and we have result for ∆-J-theory T .

Theorem 2. The following conditions are equivalent:
1) the relation PJNF satisfies the axioms 1-7 relative to ∆-J-theory T ;
2) T ∗ stable and for all p ∈ P, A ∈ A ((p,A) ∈ PJNF ⇔ p not fork over A) (in

the classical meaning of S.Shelah), where T ∗ is the center of the ∆-J-theory T .

Further we considered on the P×A the relation PJNFLP which is ∆-positive analog
of the notion of forking by Lascar-Poizat [2]. The following theorem was obtained.

Theorem 3. Let T be J-stable existentially complete perfect ∆-J-theory, then the
following conditions are equivalent:

1) the relation PJNFLP satisfies axioms 1-7;
2) the concepts of PJNF and PJNFLP coincide.

All concepts that are not defined in this note will be able extract from [3].

[1] Poizat B., Yeshkeyev A., Positive Jonsson Theories, Logica Universalis
vol.12 (2018), no. 1-2, pp. 101–127.

[2] Lascar D., Poizat B., An Introduction to Forking, J. Symbolic Logic vol.44
(1979), no. 3, pp. 330–350.

[3] Yeshkeyev A.R., Kassymetova M.T., Jonsson theories and their classes
of models, Monograph, KSU, 2016.
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In this talk, we present a generalization of Continuous Logic (see [1]) where the
distances take values in suitable co-quantales (in the way as it was proposed in [2]).

Co-quantales are somehow an interesting setting because R. Flagg ([2]) proved that
any general topological space can be viewed as a generalized pseudo-metric space where
the distance takes values on a suitable co-quantale.

By assuming suitable conditions (e.g., being co-divisible, co-Girard and a V-domain),
we provide, as test questions, a proof of a version of the Tarski-Vaught test and  Loś
Theorem in our setting.

Hopefully, this approach would provide an interesting setting to do Model Theory
for general Topological Spaces.

[1] I. BenYaacov, A. Berenstein, C.W. Henson, and A. Usvyatsov, Model
theory for metric structures, In Model Theory with Applications to Algebra and
Analysis (London Mathematical Society Lecture Notes Series), volume 349
Cambridge University Press, 2008, pp. 315–427.

[2] R. Flagg, Quantales and continuity spaces, Algebra universalis, vol. 37 (1997),
pp. 257–276.

[3] D. Reyes, P. Zambrano, Co-quantale valued logics, Submitted,
Arxiv:2102.06067
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It is natural to represent real numbers in [-1,1] by streams of signed digits -1,0,1.
Algorithms operating on such streams can be extracted from formal proofs involving a
unary coinductive predicate CoI on (standard) real numbers x: a realizer of CoI(x) is a
stream representing x. We address the question how to obtain bounds for the lookahead
of such algorithms: how far do we have to look into the input streams to compute the
first n digits of the output stream? We present a proof-theoretic method how this
can be done. The idea is to replace the coinductive predicate CoI(x) by an inductive
predicate I(x,n) with the intended meaning that we know the first n digits of a stream
representing x. Then from a formal proof of I(x,n+1) → I(y,n+1) → I(1/2(x+y),n)
we can extract an algorithm for the average function whose lookahead is n+1 for both
arguments. – This is joint work with Nils Koepp.
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I THOMAS POWELL, Some recent work in proof mining.
Bath University.

E-mail: trjp20@bath.ac.uk.
In this talk I will present some recent results on the application of proof theoretic

methods in functional analysis, which focus on producing rates of convergence for
algorithms that compute fixpoints for a specific class of contractive mappings. This
talk will not assume any background in either proof theory or functional analysis but
will instead aim to provide a high-level illustration of some of the core ideas that are
relevant to applied proof theory in general.
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In this talk, I will present two Brouwerian intuitionistic realizability theories, namely
BITT and OpenTT, whose underlying notions of computability go beyond that of stan-
dard Church-Turing. These two time-relative theories capture, through Brouwer’s con-
cept of choice sequences, the intuitionistic notion that new knowledge can be acquired
as time progresses. We will describe how these two theories capture intuitionistic theo-
ries of choice sequences. In addition, we will discuss the status of the Law of Excluded
Middle (LEM) w.r.t., these two theories. LEM, which essentially flattens the notion
of time stating that it is possible to decide whether or not some knowledge will ever
be acquired, can be shown to be false in BITT. It is however consistent with OpenTT,
which relies on a more relaxed model of time, which is more classically inclined than
BITT’s.

As BITT and OpenTT are both inspired by CTT (a Brouwerian intuitionistic re-
alizability theory implemented by the Nuprl proof assistant), we will start with a de-
scription of CTT. We will in particular describe how we were able to extend CTT with
Brouwer’s continuity principle for numbers as well as his bar induction principle (which
allows deriving induction principles for W types), by validating these principles using
our implementation of CTT in Coq.

This is joint work with Liron Cohen (Ben-Gurion University, Israel), and Mark
Bickford Bob Constable (Cornell University, USA).
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We present the Braga method which we use to get verified OCaml programs by ex-
traction from fully specified Coq terms. Unlike structural recursion which is accepted
as is by Coq, the Braga method works systematically with more involved recursive
schemes, including the nonterminating schemes of partial algorithms, nested or mutu-
ally recursive schemes, etc. The method is based on two main concepts linked together:
an inductive description of the computational graph of an algorithm and an inductive
characterization of its domain. The computational graph mimics the structure of re-
cursive calls of the algorithm and serves both (a) as a guideline for the definition of a
domain predicate of which the inductive structure is compatible with recursive calls;
and (b) as a conformity predicate to ensure that the Coq algorithm logically reflects
the original algorithm at a low-level.
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Abacus machines were introduced by Lambek in [3]. (See [2] for a newer and easily
accessible presentation.) Abacus machines are a full model of computation, which are
equivalent to Turing machines, Markov algorithms, etc. They are ingenious in having
only two kinds of instructions while also being deterministic (and computing functions
on N). A way in which a logic may be connected to a model of computation is through
proofs, for example, proofs in a sequent calculus. In [1], we raised a problem for certain
undecidability proofs by pointing out that the sequent calculus proofs, on which the
undecidability claims rely, model backward computation.

In this talk, I define the notion of reverse computation for an abacus—following sim-
ilar notions for finite state automata and finite state transducers introduced earlier. To
ensure that reverse computation is as flexible as it reasonably can be, reverse computa-
tion is defined as a non-deterministic notion. Then, I prove that reverse computation
in abaci is not sufficiently powerful to compute primitive recursive functions.

[1] Bimbó, Katalin and J. Michael Dunn, Modalities in lattice-R, Manuscript,
2015, (39 pages, submitted for publication).

[2] Boolos, George S. and Richard C. Jeffrey, Computability and Logic,
(3rd ed.), Cambridge University Press, Cambridge (UK), 1992.

[3] Lambek, Joachim, How to program an infinite abacus, Canadian Mathemat-
ical Bulletin, vol. 4 (1961), no. 3, pp. 295–302.
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Munich Center for Mathematical Philosophy, LMU Munich, Geschwister-Scholl-Platz
1, Germany.
E-mail: Nicola.Bonatti@campus.lmu.de.

NK systems are distinguished on whether they adopt subordinate proofs for the
rules of the quantifiers ∀ and ∃, thus distinguishing between indirect rules (Existential
Elimination, Universal Introduction – see [1]) and direct rules (Existential Instantiation
and Universal Generalisation – see [4]). Even if the rules are logically equivalent, the
choice between direct and indirect rules has raised philosophical discussion on the
role of eigenvariables in proofs. More precisely, as suggested by [2], the descriptive
question concerning the role of eigenvariables in proofs should be distinguished from
the normative question of what grounds the restrictions on both direct and indirect
rules. In this talk, I will first argue that both direct and indirect quantifiers rules
represent the same order relation – called term-dependence – among the eigenvariables
introduced within a proof (either by direct or indirect rules). The order relation of term-
dependence represents and constraints the choice process of instances for consecutive
application of (in)direct rules – thus answering the normative question. Then, I will
point out that term-dependence is instantiated in NKε (namely, NK extended with
Hilbert’s ε-operator – see [3]) at the syntactic level of nested ε-terms. I will conclude
that term-dependence is best represented by NKε, where the ε-terms themself are
interpreted as eigenvariables – thus answering the descriptive question.

[1] Frederic B. Fitch, Symbolic logic, Ronald Press Co., 1952.
[2] Kit Fine, Reasoning with arbitrary objects, Blackwell, 1985.
[3] Richard Zach, Semantics and proof theory of the epsilon calculus, 7th In-

dian Conference on Logic and Its Applications (Sujata Ghosh, Sanjiva Prasad),
Springer, 2017, pp. 27-47.

[4] William V. O. Quine, Methods of logic, Harvard University Press, 1950.
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E-mail: world-cyr@hotmail.com.

This work is motivated from finding the limit of the first incompleteness theorem
(G1) w.r.t. interpretation. We say that G1 holds for a r.e. theory T iff for any recursively
axiomatizable consistent theory S, if T is interpretable in S, then S is incomplete. It is
natural to examine the interpretation degree structure and the Turing degree structure
of r.e. theories for which G1 holds.

Robinson’s theory R is introduced in [3]. Given r.e. theories U and V , U �V means
that U is interpretable in V , and U � V means that U � V but V � U does not hold;
U ≤T V means that U is Turing reducible to V , U <T V means that U ≤T V , but
V ≤T U does not hold. Define D = {S : S�R and G1 holds for the r.e. theory S} and

D = {S : S <T R, and G1 holds for the r.e. theory S}.
We first show that the structure 〈D,≤T 〉 is as complex as the Turing degree structure

of r.e. sets. The interpretation degree structure of r.e. theories extending Robinson’s
arithmetic PA is well known. However, the interpretation degree structure of r.e. the-
ories weaker than Robinson’s theory R is much more complex. In this work, we try to
answer the open questions about the structure of 〈D,�〉 in [1].

Theorem 1 (Shoenfield, [2]). Let A be recursively enumerable and not recursive.
Then there is a consistent axiomatizable theory T having one non-logical symbol which
is essentially undecidable and has the same Turing degree as A.

Albert Visser improves Theorem 1, and shows that for any r.e. set A, there are
disjoint r.e. sets B and C with B,C ≤T A such that for any r.e. D which separates
B and C, we have A ≤T D. We say a r.e. theory U is Turing persistent iff for any
r.e. theory V , if U � V , then U ≤T V . From Visser’s this result and Theorem 1, we
can show that for any r.e. Turing degree 0 < d ≤ 0′, there exists a Turing persistent
theory Td with Turing degree d for which G1 holds.

About the structure of 〈D,�〉, we have:

• For any r.e. Turing degree 0 < d < 0′, there exists a Turing persistent theory Td

with Turing degree d such that Td ∈ D.
• There are countably many elements of D which are incomparable under �.
• 〈D,�〉 has no minimal element if we restrict to finitely axiomatized theories.
• There is a descending chain of elements of D under � with countable length.
• If 〈D,�〉 has a minimal element, then it is also a minimum, and it is not Turing

persistent.

We find that whether 〈D,�〉 has a minimal element (or 〈D,�〉 is well founded)
depends on the signature of the language. If the signature of the language is infinite,
then 〈D,�〉 has a minimal element. If the signature of the language is finite, this
question is more difficult and is under examination.

Acknowledgement: I would like to thank Albert Visser for the share of his preliminary
note on his improvement of Theorem 1, and email communications about this topic.

[1] Yong Cheng. Finding the limit of incompleteness I. Bulletin of Symbolic Logic,
Volume 26, Issue 3-4, December 2020, pp. 268-286.

[2] Joseph R. Shoenfield. Degrees of formal systems. The Journal of Symbolic Logic,
Volume 23, Number 4, Dec. 1958.

[3] Alfred Tarski, Andrzej Mostowski and Raphael M. Robinson. Undecidabe theo-
ries. Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
1953.
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University of Bucharest.
E-mail: horatiu.cheval@unibuc.ro.

Proof mining [1] is a research program within applied proof theory having as its goal
the extraction of information hidden in non-constructive proofs. The extracted content
may take the form of quantitative results such as uniform effective bounds, or of the
weakening of certain premises. A crucial advance came in 2005, when Kohlenbach [2]
proved the first general metatheorems guaranteeing a priori, under certain conditions,
that such results can be obtained. These metatheorems are each applicable in the
context of a certain class of mathematical structures, Kohlenbach initially providing
versions for inner product spaces, normed spaces, bounded metric spaces, W -hyperbolic
spaces or CAT(0) spaces. Since 2005, metatheorems for other classes of structures in
optimization and nonlinear analysis have been developed, for example for R-trees and
totally bounded metric spaces.

By identifying in the systems used in the results we enumerated the common proper-
ties involved in the proofs of the metatheorems, we introduce a generalization of them to
a unified logical system of a more abstract class of structures satisfying these properties,
containing the restrictions to systems without dependent choice of the aforementioned
metatheorems as particular instances, with the goal of facilitating the introduction of
metatheorems for structures not previously approached.

[1] Ulrich Kohlenbach, Applied proof theory. Proof interpretations and
their use in mathematics, Springer Monographs in Mathematics, Springer-Verlag,
2008.

[2] Ulrich Kohlenbach Some logical metatheorems with applications in functional
analysis, Transactions of the American Mathematical Society, vol. 357 (2005),
no. 1, pp. 89–128.
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erties of some propositional proof systems.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Yerevan, Armenia.
E-mail: achubaryan@ysu.am, arsen.hambardzumyan2@ysumail.am.

We investigate the relations between the proof lines of non-minimal tautologies and
its minimal tautologies for some propositional systems of classical and nonclassical
logics.

Definition 1. A tautology of some logic is called minimal if the replacement result
of all occurrences for each of its non-elementary subformulas by some new variable is
not a tautology of the same logic.

Definition 2. A minimal tautology φ of some logic is minimal of some formula
ψ if φ is ψ, or φ is the replacement result of all occurrences of some non-elementary
subformulas of ψ by some new variable. We denote by M(ψ) the set of all minimal
tautologies of the tautology ψ.

We denote by tϕ(φ) the minimal possible value of the number of proof steps for all
proofs of the tautology φ in the system ϕ.

Definition 3. The proof system ϕ is called t-monotonous if for every tautology ψ
there is a minimal tautology φ, such that φ ∈ M(ψ) and tϕ(ψ) = tϕ(φ).

Definition 4. The proof system ϕ is called t-strongly monotonous if for every
tautology ψ there is no minimal tautology φ, such that φ ∈ M(ψ) and tϕ(φ) > tϕ(ψ).

Theorem. The Frege systems, the sequent systems with cut rule and the sys-
tems of natural deductions of classical, intuitionistic and Johansson’s logics are not
t-monotonous, and consequently, are not t-strongly monotonous.

Proof is give by showing that for these systems there are sequences of tautologies
ψn, every one of which has unique minimal tautologies φn such that for each n the
minimal proof lines of φn are an order more than the minimal proof lines of ψn.

[1] Hambardzumyan A. A., Investigation of monotonous properties for Frege sys-
tems, Mathematical Problems of Computer Science, 53(7):70 (2020).

[2] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propo-
sitional proof systems, The journal of symbolic logic, 44(1):36-50 (1979).

[3] Mints G., Kozhevnikov A., Intuitionistic Frege systems are polynomially equiv-
alent, Zapiskinauchnykhseminarov POMI, v. 316 (2004), 129–146.
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haykgasparyan012@gmail.com.

The two main proof complexity characteristics (lines and sizes) are compared for two
classes of formulas in some “weak” propositional proof system, based on generalization
of splitting method, and in one of “strong” systems - Frege systems.

For any proof system ϕ and tautology φ we denote by tϕ
φ (lϕφ) the minimal possible

value of lines (sizes) for all ϕ-proofs of tautology φ.
We compare propositional proof system GS, based on generalization of splitting

method, which is defined in [1], and system F – one of well-known Frege systems.
Our formulas are:

DNF n = ∨
(σ1,... ,σn)∈En

n

&
i=1

pσi
i (n ≥ 1)

and

TTMn,m = ∨
(σ1,... ,σn)∈En

m

&
j=1

n∨
i=1

pσi
ij

(n ≥ 1, 1 ≤ m ≤ 2n − 1)

Main results are the following:

tGS
DNF n

= Θ(n), tF
DNF n

= Ω(2n)

and
lGS
DNF n

= 0(n2n), lFDNF n
= Ω((2n)2).

Earlier it is proved in [1] that for sufficiently big n and ∀i (1 ≤ i < [n logn 2]) for
formulas φi

n = TTMn,ni we have log2 tGS
φi

n
= Ω(ni) and log2 lGS

φi
n

= Ω(ni), and it is

proved in [2] that tF
T T Mn,2n−1

and lFT T Mn,2n−1
are polynomial bounded.

Comparative analysis of above results shows that the first system is better by both
complexity characteristics for the first of considered formula classes, just as the second
system is better for the other classes.

[1] An. Chubaryan, Arm. Chubaryan, Bounds of some proof complexity charac-
teristics in the system of splitting generalization, Otechestv. Nauka w epokhu izme-
nenij, vol. 10 (2015), 2(7), 11–14, (in Russian).

[2] S. R. Aleksanyan and An. A. Chubaryan, The polynomial bounds of proof
complexity in Frege systems, Siberian Mathematical Journal, vol. 50 (2009), no. 2,
pp. 243–249.
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In [2] (see also [1], [3]) we presented full proof of the equalities NP = coNP =
PSPACE. These results have been obtained by the novel proof theoretic tree-to-dag
compressing techniques adapted to Prawitz’s [5] Natural Deduction (ND) for propo-
sitional minimal logic coupled with corresponding Hudelmaier’s sequent calculus [4].
Recall that conventional interpretation of ND assumes that derivations are rooted trees
whose nodes are labeled with formulas that are ordered according to the inference rules
allowed; top formulas and the root formula are called assumptions and conclusion, re-
spectively. Proofs are derivations whose all assumptions are discharged [5]. We use
more lliberal interpretation that allows dag-like derivations whose nodes are ordered
as DAGs (: directed acyclic graphs), not necessarily trees. Obviously dag-like deriva-
tions can be exponentially smaller than corresponding tree-like ones (but note that
our dag-like proofs require a special notion of correctness). We elaborated a method
of twofold horizontal compression of arbitrary “huge” polynomial-height (though pos-
sibly exponential-weight) tree-like proofs ∂ into equivalent “small” polynomial-weight
dag-like proofs ∂0 containing only different formulas at every horizontal level, whose
correctness is verifiable in polynomial time by a deterministic TM. First part of com-
pression [1] is defined by plain deterministic recursion on the height that provides us
with “small” polynomial-weight dag-like proofs in a modified ND that allows multiple-
premise inferences. In the second part [2] we apply nondeterministic recursion to elimi-
nate multiple premises and eventually arrive at ”small” dag-like proofs ∂0 in basic ND,
as desired. As an application [3] we consider simple directed graphs G and canoni-
cal “huge” tree-like exponential-weight(though polynomial-height) normal deductions
(derivations) ∂ whose conclusions are valid iff G have no Hamiltonian cycles. By the
horizontal compression we obtain equivalent “small” polynomial-weight dag-like proofs
∂0 and observe that the correctness of ∂0 is verifiable in polynomial time by a deter-
ministic TM. Since Hamiltonian Graph Problem is coNP-complete, the existence of
such polynomial-weight proofs ∂0 proves NP = coNP [2], [3]. Now consider problem
NP =? PSPACE. We know that the validity problem in propositional minimal logic
is PSPACE-complete. Moreover, minimal tautologies are provable in Hudelmaier’s
cutfree sequent calculus by polynomial-height tree-like derivations ∂. Standard trans-
lation into ND in question yields corresponding “huge” tree-like proofs ∂′ that can
be horizontally compressed into desired “small” dag-like polynomial-weight proofs ∂0
whose correctness is deterministically verifiable in polynomial time. This yields NP =
PSPACE [2].

[1] L. Gordeev and E. H. Haeusler, Proof Compression and NP Versus PSPACE,
Studia Logica, vol. 107 (2019), no. 1, pp. 55–83.

[2] Proof Compression and NP Versus PSPACE II, Bulletin of the Section
of Logic, vol. 49 (2020), no. 3, pp. 213–230.

[3] Proof Compression and NP Versus PSPACE II: Addendum, Bulletin of
the Section of Logic, to appear.

[4] J. Hudelmaier, An O (n logn)-space decision procedure for intuitionistic propo-
sitional logic, Journal of Logic and Computation, vol. 3 (1993), pp. 1–13.

[5] D. Prawitz, Natural deduction: a proof-theoretical study, Almqvist & Wik-
sell, 1965.
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Given a proof system, how can we specify the “hardness” of its theorems? One way
to tackle this problem is taking the lengths of proofs as the corresponding hardness
measure. Following this route, we call a theorem hard when even its shortest proof in
the system is “long” in a certain formal sense. Finding hard theorems in proof systems
for classical logic has been an open problem for a long time. However, in recent years
as significant progress, many super-intuitionistic and modal logics have been shown to
have hard theorems. In this talk, we will extend the aforementioned result to also cover
a variety of weaker logics in the substructural realm. We show that there are theorems
in the usual calculi for substructural logics that are even hard for the intuitionistic
systems.

In technical terms, for any proof system P at least as strong as Full Lambek calcu-
lus, FL, and polynomially simulated by the extended Frege system for some infinite
branching super-intuitionistic logic, we present an exponential lower bound on the proof
lengths. More precisely, we will provide a sequence of P-provable formulas {An}∞n=1

such that the length of the shortest P-proof for An is exponential in the length of
An. The lower bound also extends to the number of proof-lines (proof-lengths) in any
Frege system (extended Frege system) for a logic between FL and any infinite branching
super-intuitionistic logic. We will also prove a similar result for the proof systems and
logics extending Visser’s basic propositional calculus BPC and its logic BPC, respec-
tively. Finally, in the classical substructural setting, we will establish an exponential
lower bound on the number of proof-lines in any proof system polynomially simulated
by the cut-free version of CFLew.
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The aim of our work is an optimization of proof-search in a sequent system by
a Genetic Algorithm (GA). In [1] we report on the satisfactory preliminary results:
our GA provides derivation trees which are significantly shorter than trees built in a
more standard manner. Moreover, a trend that shows up on the examined data is
that the difference in the size of trees between the standard approach and GA grows
exponentially with the size of tested formulas.

Our solution had one weakness – as the complexity of sequents increased, the effec-
tiveness in finding the correct proof decreased. The problem lies in too extensive search
space that made it difficult for GA to find the correct proof. Therefore we focused on
improving our previous solution and our goal was to reduce computations performed
by GA. In the previous work, some repetitive patterns could be seen in most of the
outlined derivation trees. Since these elements are repeatable, it is possible to include
them in the tree-building algorithm. Then GA should select these elements that cannot
be built into the algorithm, because they strongly depend on a formula.

[1] M. Jukiewicz, D. Leszczyńska-Jasion, and A. Czyż, Genetic algorithms in
proof-search tasks, (2021), submitted for publication.

1This work was supported financially by National Science Centre, Poland, grant no 2017/26/E/HS1/00127.
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The natural language proof assistant Naproche (Natural Proof Checking) stems from
two long-term efforts to narrow the gap between informal and formal mathematics:
the System for Automated Deduction (SAD) project at Kiev and Paris [7], and the
Naproche project at Bonn [2, 1, 3, 5]. Some texts which are formalized and proof-
checked in Naproche come close to ordinary mathematical writing, as indicated in
the following excerpt from a formalization of König’s Theorem in cardinal arithmetic
[6]. The LATEX dialect of the Naproche input language ForTheL (Formula Theory
Language) allows immediate mathematical typesetting of input files. The Naproche
system as well as the example formalization is included in the latest edition of the
Isabelle prover platform [4]

Theorem 1. Let κ, λ be sequences of cardinals on D. Assume that for every element
i of D κi < λi. Then

∑

i∈D

κi <
∏

i∈D

λi.

Proof. Proof by contradiction. Assume the contrary. Then
∏

i∈D

λi ≤
∑

i∈D

κi.

Take a function G such that
⋃̇

i∈Dκi is the domain of G and ×i∈Dλi is the image of
G. ... . Define

∆(i) = {G((n, i))(i) | n is an element of κi} for i in D.

...
Contradiction. a
[1] Marcos Cramer, Proof-checking mathematical texts in controlled natural

language, PhD thesis, University of Bonn, 2013.
[2] Marcos Cramer, Peter Koepke, Daniel Kühlwein, and Bernhard

Schröder, The Naproche system, 2009.
[3] Steffen Frerix and Peter Koepke, Automatic proof-checking of ordinary

mathematical texts, Proceedings of the Workshop Formal Mathematics for
Mathematicians, 2018.

[4] Isabelle contributors, The Isabelle2021 release, February 2021.
[5] Peter Koepke, Textbook mathematics in the Naproche-SAD system, Joint pro-

ceedings of the FMM and LML Workshops, 2019.
[6] Julius König, Zum Kontinuumsproblem, Mathematische Annalen, vol. 60

(1905), pp. 177–180.
[7] Andrei Paskevich, Methodes de formalisation des connaissances et des

raisonnements mathematiques: aspects appliques et theoriques. PhD thesis,
Universite Paris 12, 2007.
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A reflection principle is a way of expressing the soundness of a given theory in the
language of this theory. In particular, the uniform reflection principle for a formalized
arithmetical theory S consists of all sentences of the form

∀x
(ProvS(φ(ẋ))→ φ(x)

)
,

where φ(x) is a formula in the language of S and ProvS(x) is the canonical provability
predicate for S. If we allow φ only from a certain class of formulae Γ, then the resulting
principle is called Γ-uniform reflection for S.

In [1] it is shown that iterations of Σn-reflection principles over weak truth theories
provide a convenient and uniform tool for performing the ordinal analysis of theories
of predicative strength. Theories of truth in study consist uniquely of uniform Tarski
biconditionals for some language L (call it UTB−(L)) i.e. sentences of the form

∀x
(
T (φ(ẋ)) ≡ φ(x)

)
,

where T is a fresh predicate which does not belong toL and φ(x) is anL-formula. One of
the important issues is to understand relations between iterated uniform reflection over
uniform Tarski biconditionals and more well-known hierarchies of compositional truth
predicates.

In our talk we sketch a proof that ∆0-induction for the compositional truth predicate
suffices for proving Σ1-uniform reflection over UTB−(LPA), where LPA denotes the lan-
guage of arithmetic. This answers an open problem posed in [1].

[1] Lev D. Beklemishev, Fedor Pakhomov, Reflection algebras and conservation results for
theories of iterated truth, Preprint, arXiv:1908.10302, 2019
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A cyclic proof system or a circular proof system, whose proof figures are finite trees
with cycles, is an alternative proof system to the proof system with explicit induction.
Brotherston defined the cyclic proof system CLKIDω for first-order logic with inductive
definitions [1]. Conjecture 5.2.4. of [1] states the cut rule could not be eliminated in
CLKIDω. We show that the conjecture is correct by giving a counterexample. The
counterexample is a sequent which states that an inductive predicate of the addition
implies another inductive predicate of the addition. We give a CLKIDω proof of the
sequent with the cut rule and show that there is no CLKIDω proof of the sequent without
the cut rule.

[1] J. Brotherston, Sequent Calculus Proof Systems for Inductive Definitions, PhD
thesis, University of Edinburgh, 2006.

172



I MATTIAS GRANBERG OLSSON AND GRAHAM LEIGH, A proof of conservativity
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We present work in progress on a novel proof of the conservativity of the intuitionistic

fix-point theory ÎDi
1 over Heyting arithmetic (HA), originally proved in full generality

by Arai [1]. We make use of the work of van den Berg and van Slooten [2] on realizability
in Heyting arithmetic over Beeson’s logic of partial terms (HAP). The proof is divided

into four parts: First we extend the inclusion of HA into HAP to ÎDi
1 into a similar

theory ÎDi
1P in the logic of partial terms. We then show that every theorem of this

theory provably has a realizer in the theory ÎDi
1P(Λ) of fix-points for almost negative

operator forms only. Constructing a hierarchy stratifying the class of almost negative
formulae and partial truth predicates for this hierarchy, we use Gödel’s diagonal lemma

to show ÎDi
1P(Λ) is interpretable in HAP. Finally we use the result of [2] that adding

the schema of “self-realizability” for arithmetic formulae to HAP is conservative over
HA.

[1] Toshiyasu Arai, Quick Cut-elimination for Strictly Positive Cuts, Annals of
Pure and Applied Logic, vol. 162 (2011), no. 10, pp. 807–815.

[2] Benno van den Berg and Lotte van Slooten, Arithmetical Conservation
Results, Indagationes Mathematicae, vol. 29 (2018), pp. 260–275.
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Blass’ paper on questions and answers makes a surprising connection between Di-
alectica categories (models of Linear Logic), Vojtas’ methods to prove inequalities be-
tween cardinal characteristics of the continuum (Set Theory) and complexity theoretical
notions of problems (and reductions) between these. We recently realized that Kol-
mogorov’s very abstract notion of problem, which is not related to specific complexity
issues, can also be intrinsically related to Blass’ examples above. Kolmogorov’s notion
of abstract problem, produces an alternative intuitive semantics for Propositional Intu-
itionistic Logic, an essential component of the celebrated Brouwer-Heyting-Kolmogorov
(BHK) interpretation. We connect Kolmogorov’s problems to objects of the Dialectica
construction, thereby connecting also Veloso’s problems. More importantly, we show
how category theory gives us a better approach to Kolmogorov’s problems, providing
the morphisms that Kolmogorov lacked in 1932. Time allowing, we will discuss possible
applications of these problems to multi-agent systems in Artificial Intelligence.
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umenic Negation: one or two?.
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Prawitz proposed an ecumenical system where classical logic and intuitionist logic
co-exist harmoniously. Previous work on this Ecumenical Logic system has provided
a Gentzen Natural Deduction formalization as well as a Gentzen sequent calculus for-
mulation with the expected properties of normalization and cut-elimination. In these
formulations Intuitionistic Propositional Logic and Classical Propositional logic, tradi-
tionally considered rival logics, accept and reject the same theorems. The ecumenical
system as described has two disjunctions and two implications (one classical and one
intuitionistic), but only one conjunction, one negation and one constant for falsum.
Given that usually negation is defined as implication into falsum, it would seem rea-
sonable to expect two negations, one the intuitionistic implication into falsum, the other
a classical implication into falsum. However it is easy to prove that these two possible
negations are interderivable in the Ecumenical system. Is this a sufficient criterium to
decide on a single negation? This paper presents two arguments to defend the thesis
that in fact there is only one way to assert the negation of a proposition A. The first
argument is based on Glivenko’s theorems and the second on the notion of ‘compu-
tational isomorphism’. We discuss these arguments, as well as the failure of Joyal’s
collapse in minimal logic, as subsidies for a robust notion of ecumenical negation.
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In this report, we present several modifications of Restall’s [3] hypersequent calculus
for S5. They formalize logics which are based on S5, but instead of necessity (2) and
possibility (3) operators they have one or a few of the following ones: non-contingency
(4), contingency (5), essence (◦) or accident (•) modalities. They are defined as
follows: 4A = 2A ∨ 2¬A, 5A = 3A ∧ 3¬A, ◦A = A → 2A, and •A = A ∧ 3¬A.
The formal study of 4 and 5 is due to Montgomery and Routley [2], ◦ and • is due
to Marcos [1]. However, among these logics only a non-contingency version of S5 has
already had a sequent calculus developed by Zolin [4], but it is not cut-free. We are
going to fill this gap and suggest the following hypersequent rules:

(4⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
4A⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G (⇒4)

⇒ A | A⇒ | H
⇒ 4A | H

(5⇒)
⇒ A | A⇒ | H
5A⇒ | H (⇒5)

A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
⇒5A | Γ⇒ ∆ | Θ⇒ Λ | H | G

(◦ ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
◦A,Θ⇒ Λ | Γ⇒ ∆ | H | G (⇒ ◦) ⇒ A | A,Γ⇒ ∆ | H

Γ⇒ ∆, ◦A | H

(• ⇒)
⇒ A | A,Γ⇒ ∆ | H
•A,Γ⇒ ∆ | H (⇒ •) A,Γ⇒ ∆ | H Θ⇒ Λ, A | G

Θ⇒ Λ, •A | Γ⇒ ∆ | H | G
One should replace the rules for 2 in Restall’s hypersequent calculus for S5 with

these ones in order to have a cut-free hypersequent calculus for a version of S5 with
non-standard modalities.

[1] Marcos J., Logics of essence and accident, Bulletin of The Section of Logic,
vol. 34 (2005), no. 1, pp. 43–56.

[2] Montgomery H., Routley R., Contingency and noncontingency bases for nor-
mal modal logics, Logique et Analyse, vol. 9 (1966), no. 35–36, pp. 318–328.

[3] Restall G., Proofnets for S5: Sequents and circuits for modal logic, Logic
Colloquium 2005 (Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and
John R. Steel, editors), Cambridge University Press, 2007, pp. 151–172.

[4] Zolin E., Sequential reflexive logics with noncontingency operator, Mathemat-
ical Notes, vol. 72 (2002), no. 5–6, pp. 784–798.
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Czech Academy of Sciences, Institute of Philosophy, Jilska 1, Praha 1, 110 00, Czech
Republic.
E-mail: pezlar@flu.cas.cz.

In a recent paper by Tranchini [1] an introduction rule for the paradoxical proposition
ρ∗ that can be simultaneously proven and disproven is discussed. This rule is formalized
in Martin-Löf’s constructive type theory (CTT) and supplemented with an inferential
explanation in the style of Brouwer-Heyting-Kolmogorov semantics. I will, however,
argue that the provided formalization is problematic because what is paradoxical about
ρ∗ from the viewpoint of CTT is not its provability, but whether it is a proposition at
all.

The main issue with ρ∗ lies in the circular nature of its introduction rule, more
specifically, there is a negative occurrence of ρ∗ in its premise (i.e., ρ∗ appears as an as-
sumption). This clashes with the general justification scheme of CTT: formation rules,
which tell us how to form new propositions, should be justified by the corresponding
introduction rules, which tell us what these propositions mean, i.e., how to prove them.
In the case of the proposition ρ∗, this justification requirement is, however, not met,
since the introduction rule that should explain the meaning of ρ∗ presupposes that
we already understand it. Consequently, the formation rules cannot be understood as
justified.

The other two variants of ρ∗ considered by Tranchini are shown to have analogous
issues. These variants are: 1) a paradoxical proposition ρ with a negative self-reference
operator ! and its inverse

!
and 2) semi-paradoxical propositions σ and τ whose para-

doxical nature does not come from self-reference, or negative self-reference, but from
their circular meaning dependencies.

[1] Luca Tranchini, Proof, Meaning and Paradox: Some Remarks, Topoi, vol. 38
(2019), no. 3, pp. 591–603.
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The main result of the work is the fact that any propositional finitely-valued logic
(viz., logical matrix) M with connectives in a [finite] propositional language L and
equality determinant =(p) ⊆ FmL (in the sense of [1]) as well as (possibly, secondary)
disjunction|implication (∨| ⊃) is axiomatized by any finite Hilbert-style calculus for
the (∨| ⊃)-fragment of the classical logic supplemented by [finitely many] rules|axioms
to be [effectively] constructed in the following way. Given any fixed total ordering 6
of the finite set = and any L-sequential =-table T of rank (0, 0) for M (in the sense of
[1]) to be found [effectively] (cf. Theorem 1 therein), let A be the [finite] set constituted
by:

1. those of the finitely many L-sequents, true inM, with disjoint left and right sides
without repetitions, constituted by elements of = and ordered according to 6,
which are minimal under subsumption partial (because, for all formulas η(p) and
ζ(p), η = p = ζ, whenever η(ζ) = p) ordering between such sequents to be treated
as disjuncts of the first-order signature L ∪ {D} with function symbols in L and
the only relation unary one D;

2. for each ι ∈ = and every nullary c ∈ L, that (unique) of the sequents ι(c) ` or
` ι(c), which is true in M;

3. for each ι ∈ = and every F ∈ L distinct from (∨| ⊃) of arity n > 0 such that
F (p) 6∈ =, whenever n = 1, all those sequents, which are resulted from sequents
in (λ/ρ)T (ι(F )) by adding the formula ι(F (p1, . . . , pn)) to their right/left sides.

Then, we have the [finite] set B , {((φ0 ∨ q, . . . , φk−1 ∨ q) ` (ψ0, . . . , ψm−1, q))|(∅ `
(ψ0/q, φk−1, . . . , φ0/, ψm−1 ⊃ q, . . . , ψ0 ⊃ q)) | k ∈ ω 3 m| = / 6= 1, φ̄ ∈ Fmk

L, ψ̄ ∈
Fmm

L , (φ̄ ` ψ̄) ∈ A} of L-sequents with non-empty right sides|“ and empty left ones”.
(Note that q 6∈ ({p} ∪ {pi}0 6=i∈ω) is a variable occurring in no sequent in A.) Fi-
nally, the supplementary rules|axioms are as follows: for each (φ̄ ` ψ̄) ∈ B, where
φ̄ ∈ Fmk

L and ψ̄ ∈ Fmm
L , while k,m ∈ ω, whereas m 6= 0| = k, the L-rule|-axiom

{φ0, . . . , φk−1} → (. . . (ψ0(∨| ⊂) . . . )(∨| ⊂)ψm−1), respectively. In view of Examples 1,
2 and 3 of [1], this universal [effective] construction is well applicable (and has been suc-
cessfully applied) to [both disjunctive|implicative fragments of the classical logic and]
arbitrary|implicative four-valued expansions of Belnap’s “useful” four-valued logic [by
finitely many connectives] |“as well as to [both arbitrary  Lukasiewicz’ finitely-valued
logics and] certain implicative paraconsistent three-valued logics [with finitely many
connectives like HZ, providing its first finite Hilbert-style axiomatization]”.

[1] A. P. Pynko, Sequential calculi for many-valued logics with equality determinant,
Bulletin of the Section of Logic, vol. 33 (2004), no. 1, pp. 23–32.
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In our talk, we propose a novel method of representing semantic information con-
tained in formulas of propositional logic in the language of graph theory. The method
starts with creation of a syntax tree of a formula, with every subformula in the tree
labeled with α or β – depending on their type according to Smullyan’s uniform notation
– and with every leaf corresponding to an occurrence of a literal. Such labeled tree can
be used to construct a graph G – further denoted as ‘semantic graph’ – where V (G)
is the set of leafs of the tree, and two vertices xi, xj in G are connected by an edge
if the lowest common ancestor of xi and xj in the tree is a formula of type α. The
resulting graph turns out to be a cograph and its properties can be used to analyse
certain semantic properties of the formula. The most important property of semantic
graphs is that every maximal clique in G corresponds to a set of literals L, such that
any valuation that satisfies L, satisfies the formula. In addition to that it is known
that every cograph is a permutation graph, which allows a representation of formu-
las – or the semantic dependencies between occurrences of literals in formulas – as a
permutation. Many properties of cographs translate to properties of permutations; for
example, maximal cliques in the cograph correspond to decreasing subsequences in the
permutation. Both cographs and permutations allow the construction of efficient algo-
rithms, which may make such representation of particular interest for computational
logic.

1This work was supported financially by National Science Centre, Poland, grant no 2017/26/E/HS1/00127.
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E-mail: Szymon.Chlebowski@amu.edu.pl.
E-mail: Agata.Tomczyk@amu.edu.pl.
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań,
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In [1] we report on research on heuristics for generating minimal synthetic tableaux
(ST) for CPL. The research was conducted in a quasi-experimental setting. Based on
theoretical considerations we described a number of functions indicating heuristics of
an optimal ST construction, and we developed a methodological framework to examine
the efficiency of these functions.

Functions were tested on over 30 million of ST for more than 240 000 of formulas.
The outcomes are satisfactory: we have settled the most efficient functions indicating
heuristics to use them on larger data; also the methodological framework has been
tested with a preliminary success.

In our talk we present the outcomes of further experiments conducted on data sets
containing randomly generated formulas longer than those used in the first phase of
research.

[1] M. Sochański, D. Leszczyńska-Jasion, Sz. Chlebowski, A. Tomczyk, M.
Jukiewicz, Synthetic tableaux: minimal tableau search heuristics, (2021), submitted
for publication.

1This work was supported financially by National Science Centre, Poland, grant no 2017/26/E/HS1/00127.
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A proof system P has feasible Visser-Harrop property, if there is a polynomial time
algorithm that reads a P -proof of Γ, {Ai → Bi}ni=1 ` An+1 ∨ An+2 and produces a
P -proof of Γ, {Ai → Bi}ni=1 ` Ai, for some 1 ≤ i ≤ n + 2, where Γ is a set of Harrop
formulas.
In this talk, we will present a class of rules called the almost positive rules to show
that any proof system for an intuitionistic modal logic that consists of theses rules, the
cut and the necessitation rule has the feasible Visser-Harrop property. This method
uniformly proves the property for the usual sequent-style and Hilbert-style proof sys-
tems for a broad range of intuitionistic modal logics, including IK, IKT, IK4, IS4, IS5,
their Fisher-Servi versions, the intuitionistic logics for bounded depth and bounded
width and the propositional lax logic. On the negative side, though, it shows that if an
intuitionistic modal logic does not admit the Visser rules or specially does not have the
disjunction property, then it does not have a calculus consisting only of almost positive
rules, the cut rule and the necessitation rule. As the class of these rules is a general and
natural class to consider, this negative result presents an interesting proof theoretical
result about generic proof systems and their existence. This is based on a joint work
with Raheleh Jalali.
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The aim of our work is to present two Natural Deduction systems for Intuitionis-
tic Sentential Calculus with Identity, (hereafter ISCI) [1]. The syntactically motivated
Natural Deduction, closely follows axiom schemes in Hilbert-style system for ISCI. The
other, semantically motivated, follows Gentzen’s idea that each connective has an intro-
duction and elimination rule. We focus on the normalization and subformula property
of the aforementioned systems. We prove that in the case of ISCI normalization does
not imply subformula property, however, a weaker version of subformula property still
holds — the occurrences of non-subformulas in normal proofs can be constrained.

[1] Szymon Chlebowski, Dorota Leszczyńska-Jasion, Investigation into Intu-
itionistic Logic with Identity, Bulletin of the Section of Logic, vol. 48 (2019), no. 4,
pp. 259–283.

[2] Roman Suszko, Abolition of the Fregean Axiom, Lecture Notes in Mathe-
matics, vol. 453 (1975), pp. 169–239.
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This talk concerns axiomatic truth theories. They are formed by adding to a fixed
base theory strong enough to handle syntax (in our case this will be Peano Arithmetic,
PA) a unary predicate T (x) with the intended reading ”x is a Gödel code a true
sentence” along with axioms postulating that the constructed predicate indeed behaves
like the notion of truth. One of the basic sets of axioms considered in this context
postulates that T satisfies Tarski’s compositional clauses. E.g., a conjunction of two
sentences is true iff one of the conjuncts is. This theory is called CT− (Compositional
Truth).

By a theorem of Kotlarski, Krajewski, and Lachlan, CT− is conservative over PA. On
the other hand, if we add to CT− the full induction scheme for the formulae containing
the truth predicate, the resulting theory can prove consistency of arithmetic and thus it
is not conservative over its base theory. Tarski Boundary programme tries to establish
what precise assumptions have to be made about the truth predicate in order to assure
that a theory with that predicate is not conservative over its base theory. It turns out
that a number of natural and seemingly unrelated principles are all equivalent to the
Global Reflection Axiom which states that any sentence provable in Peano arithmetic
is true in the sense of the predicate T . One of the most striking such equivalences is
that Global Reflection is equivalent to Disjunctive Correctness which states that an
arbitrary disjunction of a finite sequence of arithmetical sentences is true iff one of the
disjuncts is. The analogue of this principle for a fixed finite number of disjuncts is
a consequence of compositional axioms, but the quantified statement turns out to be
much stronger.

In this talk, we will present a (relatively) direct proof that Disjunctive Correctness
is equivalent to a certain weak form of induction for the truth predicate, thus obtaining
a more straightforward argument that it is not conservative over PA. The introduced
method will actually allow us to show that already one side of disjunctive correctness,
”every true disjunction has a true disjunct,” is equivalent to the Global Reflection.

This is a joint work with Cezary Cieśliński and Mateusz  Le lyk.
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I OMER BEN-NERIA AND DOMINIK ADOLF, Tree-like scales and free subsets of set
theoretic algebras.
Hebrew University.
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In his PhD thesis, Luis Pereira isolated and developed several principles of singular
cardinals that emerge from Shelah’s PCF theory; principles which involve properties
of scales, such as the inexistence of continuous Tree Like scales, and properties of
internally approachable structures such as the Approachable Free Subset Property. In
the talk, I will discuss these principles and their relations, and present new results from
a joint work with Dominik Adolf concerning their consistency and consistency strength.
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The large cardinal strength of the Axiom of Determinacy when enhanced with the
hypothesis that all sets of reals are universally Baire is known to be much stronger
than the Axiom of Determinacy itself. In fact, Sargsyan conjectured it to be as strong
as the existence of a cardinal that is both a limit of Woodin cardinals and a limit
of strong cardinals. Larson, Sargsyan and Wilson showed that this would be optimal
via a generalization of Woodin’s derived model construction. We will discuss a new
translation procedure for hybrid mice extending work of Steel, Zhu and Sargsyan and
use this to prove Sargsyan’s conjecture.
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Let us say that a logic L has the Löwenheim–Skolem (LS) property at a cardinal κ
if every sentence of L with a model M also has a model M0 of cardinality less than
κ, and has the Löwenheim–Skolem–Tarski (LST) property at κ if in addition we may
take M0 to be a substructure of M . Magidor [1] proved that the least cardinal at which
second-order logic L2

ωω has the LST property equals the least supercompact cardinal.
By weakening the LST property to the LS property and strengthening L2

ωω to various
fragments of infinitary second-order logic L2

∞∞, we obtain similar characterizations of
various other large cardinals.

Letting L2
ωω(∨∞∀∞) be the fragment of L2

∞∞ obtained from atomic formulas and
their negations by the operations of infinitary disjunction, finitary conjunction, in-
finitary universal quantification, and finitary existential quantification, we show that
the least cardinal at which L2

ωω(∨∞∀∞) has the LS property equals the least strong
cardinal. We also show that the least cardinal at which L2

ωω(∨∞∀∞) has the weak
LS property, which is the special case of the LS property in which M has cardinality
exactly κ, equals the least measurable cardinal.

Letting L2
κω(∨∞∀∞) be as above but also allowing <κ-ary conjunctions, we show

that any given cardinal κ is strong if and only if L2
κω(∨∞∀∞) has the LS property at

κ, and is measurable if and only if L2
κω(∨∞∀∞) has the weak LS property at κ. We

also obtain analogous results for L2
κω(∨∞), which allows only finitary quantification.

Namely, we show that any given cardinal κ is virtually strong (a new large cardinal
property weaker than remarkability) if and only if L2

κω(∨∞) has the LS property at κ,
and is completely ineffable if and only if L2

κω(∨∞) has the weak LS property at κ.

[1] Magidor, M. On the role of supercompact and extendible cardinals in logic. Israel
J. Math., 10(2):147–157, 1971.
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In this talk we present some recent developments in the study of non-classical models
of ZFC. We will show that there are algebras that are neither Boolean, nor Heyting, but
that still give rise to models of ZFC. This result is obtained by using an algebra-valued
construction similar to that of the Boolean-valued models. Specifically we will show
the following theorem.

Theorem 1. There is an algebra A, whose underlying logic is neither classical, nor
intuitionistic such that VA � ZFC. Moreover, there are formulas in the pure language
of set theory such that VA � ϕ ∧ ¬ϕ.

The above result is obtained by a suitable modification of the interpretation of equal-
ity and belongingness, which are classical equivalent to the standard ones, used in
Boolean-valued constructions.

Towards the end of the talk we will present an application of these constructions,
showing the independence of CH from non-classical set theories, together with a general
preservation theorem of independence from the classical to the non-classical case.

(This is a joint work with Sourav Tarafder and Santiago Jockwich)
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I argue that classical set theory, ZFC(+LCs), is restrictive compared to the V -logic
multiverse (a novel set theoretic multiverse developed by the author and Claudio Ter-
nullo). This multiverse is based upon Friedman’s Hyperuniverse and Steel’s set-generic
multiverse: like the Hyperuniverse, it uses the infinitary V -logic as background logic
(this logic admits formulas of length less than the first successor of the least inaccessible
cardinal, but only a finite block of quantifiers in front of them) and admits all kinds
of outer models of V (produced by set-generic, class-generic, hyperclass forcing). Like
Steel’s set-generic multiverse, it is recursively axiomatisable and is rooted on a ground
universe that satisfies ZFC. For this proof, I compare ZFC+LCs and the V -logic mul-
tiverse, characterised as ZFC +LCs+ the Multiverse Axiom Schema (this axiom tells
us that if a sentence ϕ is consistence in V -logic then there is an actual outer model of V
satisfying it), following Maddy’s methodological principle MAXIMIZE (introduced in
[3]). According to this principle, when comparing two foundational theories we should
prefer the one that can prove more isomorphism types. I claim that the V -logic mul-
tiverse, as opposed to ZFC + LCs, does exactly that. This is because in the V -logic
multiverse theory we can prove the existence of proper, uncountable, extensions of V ,
that we cannot have in ZFC + LCs (see [2]). In turn, these extra objects means we
can realise more isomorphism types that are not available in ZFC +LCs, since in the
V -logic multiverse we can prove the existence of iterable class sharps and, more im-
portantly, maps between them (see [1]). Moreover, when moving from ZFC + LCs to
the V -logic Multiverse we are not losing anything: ZFC, all the large cardinals, inner
models and V are still there. On the other hand, when moving from the V -logic mul-
tiverse to ZFC + LCs we lose the actual outer models of V , iterable class sharps and
iterable class sharp generated models. Thus, this latter theory is restrictive compared
to the V -logic multiverse theory.

[1] Carolin Antos, Neil Barton, Sy-David Friedman, Universism and exten-
sions of V , Review of Symbolic Logic, FirstView (forthcoming), pp. 1–43.

[2] Neil Barton, Forcing and the Universe of Sets: Must we lose insight?, Journal
of Philosophical Logic, vol. 49 (2020), no. 4, pp. 575–612.

[3] Penelope Maddy, Naturalism in Mathematics, Oxford University Press,
1998.
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Finitely supported structures are related to permutation models of Zermelo-Fraenkel
set theory with atoms. For such a structures we focus only on a finite subset (its ‘finite
support’) which can characterize the entire structure. More exactly, they are sets
equipped with actions of the group of all permutations of a fixed (infinite) set A of
atoms satisfying a certain finite support requirement; this requirement states that any
element of such a set is left unchanged under the effect of each permutation of A that
fixes pointwise finitely many atoms.

There exist several notions of infinity for finitely supported structures: Tarski infinity,
Dedekind infinity, Mostowski infinity, etc. These notions are defined and studied, and
several relationships between them are given. There are emphasized the similarities and
differences between these new definitions of infinity for finitely supported structures.
By presenting examples of finitely supported sets that satisfy a certain forms of infinity,
while they do not satisfy other forms of infinity, we show that these notions of infinity
are pairwise non-equivalent.

Examples of some finitely supported sets satisfying various forms of infinity (Tarski I,
Tarski III, Dedekind, Mostowski, Ascending, Tarski II and Non-amorphous infinity) are
presented shortly in the table below, where N is the set of natural numbers, ℘fin(X)
is the finite powerset of X, ℘fs(X) is the set of all finitely supported subsets of X,
Tfin(A) is the set of all finite and injective tuples of elements from A, and Y X

fs is the
set of all finitely supported functions from X to Y .

Set TI i TIII i D i M i Asc i TII i N-am.

A No No No No No No No

A + A No No No No No No Yes

A × A No No No No No No Yes

℘fin(A) No No No No Yes Yes Yes

Tfin(A) No No No No Yes Yes Yes

℘fs(A) No No No No Yes Yes Yes

℘fin(℘fs(A)) No No No No Yes Yes Yes

AA
fs No No No No Yes Yes Yes

Tfin(A)A
fs No No No No Yes Yes Yes

℘fs(A)A
fs No No No No Yes Yes Yes

A ∪ N No No Yes Yes Yes Yes Yes

A × N No Yes Yes Yes Yes Yes Yes

℘fs(A ∪ N) No Yes Yes Yes Yes Yes Yes

℘fs(℘fs(A)) ? Yes Yes Yes Yes Yes Yes

AN
fs Yes Yes Yes Yes Yes Yes Yes

NA
fs Yes Yes Yes Yes Yes Yes Yes

More details are available in the recent book
Foundations of Finitely Supported Structures: a set theoretical viewpoint available at
URL Address: https://www.springer.com/gp/book/9783030529611..
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I LUKE GARDINER, Countable exponent partition relations on the real line.
Department of Pure Mathematics and Mathematical Statistics & Trinity College, Uni-
versity of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom.
E-mail: lag44@cam.ac.uk.

For linear order types ξ, τ , and σ, the partition relation ξ → (σ)τ is the statement
that whenever L is a linear order of order type ξ and F : [L]τ → 2 is a colouring
of the subsets of L of order type τ , there is a subset of L of order type σ which is
homogeneous (monochromatic) for the colouring F . In the usual setting where ξ is
an ordinal, relations where the exponent τ is infinite are inconsistent with the Axiom
of Choice, by a theorem of Erdős and Rado [1], but it is consistent with ZF without
Choice that such infinite exponent partition relations can hold.

We characterise the countable order types τ for which a relation of the form λ→ (σ)τ

is consistent with ZF, where λ is the order type of the real line R, and we show that
such relations hold iff every set of reals is completely Ramsey, a statement which is
known to be consistent with ZF + DC relative to an inaccessible cardinal (e.g. by a
result of Mathias [2], it holds in Solovay’s model).

[1] P. Erdős, R. Rado, Combinatorial theorems on classifications of subsets of
a given set, Proceedings of the London Mathematical Society, vol. s3-2 (1952),
pp. 417–439.

[2] A. R. D. Mathias, Happy families, Annals of Mathematical Logic, vol. 12
(1977), no. 1, pp. 59–111.
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I MARTINA IANNELLA, The complexity of convex bi-embeddability among countable
linear orders.
Department of Mathematics, Computer Science and Physics, University of Udine, Via
delle Scienze, 206, Udine, Italy.
E-mail: iannella.martina@spes.uniud.it.

Consider the set LO of countable linear orders and the following “convex embed-
dability” relation among them:

L ELO M iff L is isomorphic to a convex set in M.

One easily gets that ELO is an analytic quasi-order on the Polish space LO. We first
show that, in contrast to the usual embeddability between linear orders, the relation
ELO is combinatorially complicated: it is not a well quasi-order, indeed it has both
infinite descending chains and antichains of size the continuum.

Denote by ./LO the equivalence relation on LO induced by ELO.

Theorem 1. (i) The isomorphism relation ∼=LO between linear orders is Borel
reducible to ./LO. In particular, ./LO is a proper analytic equivalence relation.

(ii) There is a Baire measurable reduction from ./LO to ∼=LO.
(iii) If X is a turbulent Polish G-space, then the equivalence relation induced by the

group G on X is not Borel reducible to ./LO.

In particular, ./LO is not complete for analytic equivalence relations.

Finally, we define the “(finite) piecewise convex embeddability” on LO, denoted by
E<ω

LO: given L,L′ ∈ LO, we write L E<ω
LO L′ if L is the sum of k disjoint convex subsets

Li ⊆ L, with i = 0, ..., k < ω, such that each Li ELO L′ via some map fi, and the
fi(Li)’s are pairwise disjoint in L′ and ordered by <L′ . We consider its associated
equivalence relation ./<ω

LO, and show the following result.

Theorem 2. E1 ≤B ./<ω
LO.

As a corollary, we have that ./<ω
LO is not Baire reducible to any orbit equivalence

relation, and by (ii) of Theorem 1 it does not reduce to ./LO.

This is joint work with Vadim Kulikov, Alberto Marcone, and Luca Motto Ros.
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I VLADIMIR KANOVEI, On the ‘Definability of definable’ problem of Alfred Tarski.
IITP RAS, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russian Federation.
URL Address: http://iitp.ru/en/users/156.htm.
E-mail: kanovei@iitp.ru.

Alfred Tarski defined [1] Dpm to be the set of all sets of type p, type-theoretically
definable by parameterfree formulas of type ≤ m, and asked whether it is true that
D1m ∈ D2m for m ≥ 1. Tarski noted that the negative solution is consistent because
the axiom of constructibility V = L implies D1m /∈ D2m for all m ≥ 1, and he left
the consistency of the positive solution as a major open problem. This was solved in
[2], where it is established that for any m ≥ 1 there is a generic extension of L, the
constructible universe, where it is true that D1m ∈ D2m.

Theorem 1. If Y ⊆ ω \{0}, Y ∈ L, then there is a generic extension of L in which
D1m ∈ D2m holds for all m ∈ Y but fails for all m ≥ 1, m /∈ Y.

It follows that Tarski’s sentences D1m ∈ D2m are not only consistent, but also
independent of each other. This gives a full solution of the Tarski problem.

The other theorem concerns the sets Dp =
⋃

mDpm; thus Dp is the set of all sets of
type p, type-theoretically definable by formulas of any type.

Theorem 2. There is a generic extension of L in which D1 = P(ω) ∈ D2.

This result was announced by Harrington [3] but never published.
Our methods are based on almost-disjoint forcing of Jensen and Solovay.

[1] Alfred Tarski, A problem concerning the notion of definability, Journal of
Symbolic Logic, vol. 13 (1948), pp. 107–111.

[2] Vladimir Kanovei and Vassily Lyubetsky, On the ‘definability of definable’
problem of Alfred Tarski, Mathematics, vol. 8 (2020), no. 12, Article No 2214.

[3] Leo Harrington, The constructible reals can be anything. Preprint dated
May 1974, Available at http://logic-library.berkeley.edu/catalog/detail/2135.
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I BORIŠA KUZELJEVIĆ, STEVO TODORČEVIĆ, Cofinal types on ω2.
University of Novi Sad, Serbia.
E-mail: borisha@dmi.uns.ac.rs.
University of Toronto, Canada, and Institut de Mathématiques de Jussieu, France, and
Mathematical Institute SANU, Serbia.
E-mail: stevo@math.utoronto.ca.

We will present the preliminary analysis of the class Dℵ2 , the class of directed sets
whose cofinality is ℵ2. We compare orders in Dℵ2 using the notion of Tukey reducibility
≤T , and we isolate some simple cofinal types in this class. We will explain why all of
the simple types are pairwise non-equivalent. Then we proceed to show for which pairs
E1, E2 of these simple types there is no directed set D such that E1 <T D <T E2. We
also show that for the remaining pairs of these simple types, if GCH holds and there
is a non-reflecting stationary subset of S2

0 = {α < ω2 : cof(α) = ω}, then there is a
directed set which is strictly between them in the Tukey ordering.
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I PAUL BLAIN LEVY, Broad Infinity and generation principles.
School of Computer Science, University of Birmingham, B15 2TT, U.K..
E-mail: p.b.levy@bham.ac.uk.
URL Address: www.cs.bham.ac.uk/~pbl.

This work, presented in detail in [2], has three main contributions:

• To introduce an (arguably intuitive) set-theoretic axiom scheme, called Broad
Infinity.

• To show it provides powerful generation principles for families, and (assuming
AC) for sets and ordinals.

• To show it is equivalent (assuming AC) to the widely studied Ord-is-Mahlo
scheme: every closed unbounded class of ordinals contains a regular ordinal [1, 3].

The new scheme is presented as follows. Let T denote the universal class.
Firstly we want Start ∈ T and Build : T3 → T such that Build is injective and never

yields Start. The following achieves this:

Start
def
= ∅

Build(x, y, z)
def
= {{x}, {x, {{y}, {y, z}}}}

A signature consists of a set I and an I-indexed family of sets (Ki)i∈I . A broad
signature is a class function from T to the class of all signatures.

Given a broad signature G, a set X is said to be G-inductive when the following
conditions hold.

• Start ∈ X.
• For any x∈X with Gx = (Ki)i∈I , and any i∈I and Ki-tuple [ak]k∈Ki of elements

of X, we have Build(x, i, [ak]k∈Ki) ∈ X.

A set of all G-broad numbers is a minimal (and therefore least) G-inductive set. The
axiom scheme of Broad Infinity states that, for every broad signature G, there is a set
of all G-broad numbers. Equivalently: the class of all G-broad numbers (i.e. the least
G-inductive class, which can be constructed) is a set. We may visualize a G-broad
number as a well-founded three-dimensional tree.

Here is an attempt to articulate the intuitive justification for Broad Infinity. For
any G-broad number of the form Build(x, i, [ak]k∈Ki), the signature Gx = (Ki)i∈I is
obtained from x, which “has already been constructed”. This seems to provide a clearly
specified construction process.

[1] A. Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific
Journal of Mathematics, vol. 10 (1960), no. 1, pp. 223–238.

[2] P. B. Levy, Broad Infinity and Generation Principles, arXiv 2101.01698.
[3] H. Wang, Large sets, Logic, foundations of mathematics, and computabil-

ity theory, Springer, 1977, pp. 309–333.
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I PHILIPP LÜCKE, Huge reflection.
Institut de Matemàtica, Universitat de Barcelona, Gran via de les Corts Catalanes 585,
08007 Barcelona, Spain.
E-mail: philipp.luecke@ub.edu.
URL Address: www.ub.edu/saifia/luecke.

Results of Bagaria and his collaborators show that a great variety of large cardi-
nal notions, ranging from weakly inaccessible cardinals to Vopěnka’s Principle, can be
characterized through principles of Structural Reflection. These principles generalize
the Downward Löwenheim–Skolem Theorem to classes of models defined through ex-
ternal set-theoretic properties. In my talk, I want to present recent progress towards
characterizing large cardinal notions beyond Vopěnka’s Principle through natural struc-
tural reflection principles. I will introduce a simple reflection principle, called Exact
Structural Reflection, and show that its validity implies the existence of various large
cardinals in the region between almost huge cardinals and rank–into–rank embeddings.

This is joint work with Joan Bagaria (Barcelona).
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I SANTIAGO JOCKWICH, Algebra-valued models and Priest’s logic of paradox.
Institute of Philosophy and Human Sciences, Unicamp, Rua Cora Coralina 100 , Brazil.
E-mail: santijoxi@hotmail.com.,

This talk contributes to the study of models of non-classical set theories. We explore
the possibility of constructing algebra-valued models of set theory based on Priest’s
logic of paradox (LP). We first outline the difficulties of this approach. In particular,
we show that we can build an algebra-valued model based on LP, though, we obtain
a model where Leibniz’s law of indiscernibility of identicals fails and we loose several
basic set-theoretic properties. On top of this we end up with a strange ontology. Then,
secondly, we show that we can overcome this difficulties by modifying the interpretation
map for ∈ and = in our algebra-valued model. Given the modified interpretation map
we build a non-classical model of ZF which has as internal logic Priest’s Logic of
Paradox and validates Leibniz’s law of indiscernibility of identicals. Even though it
was already shown in [1] that set theories based on LP are compatible with ZFC,
the validity of Leibniz’s law of indiscernibility of identicals opens up the possibility of
constructing equivalence classes and thus producing a quotient model based on LP with
a rich ontology. We end by discussing the possibility of adding classes to the ontology
of our algebra-valued model.

[1] G. Priest, What if? The exploration of an idea, Australasian Journal of
Logic , vol.14 (2017), no.1.
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I SOURAV TARAFDER AND GIORGIO VENTURI, ZF between classicality and non-
classicality.
Department of Commerce, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata-
700016, India.
E-mail: souravt09@gmail.com.
IFCH, Unicamp, Barão Geraldo, R. Cora Coralina, 100-Cidade Universitária, Camp-
inas - SP, 13083-896, Brazil.
E-mail: gio.venturi@gmail.com.

Using a model V of Zarmelo-Fraenkel set theory (ZFC) and a complete Boolean

algebra B one can construct Boolean-valued model V(B) of ZFC. This is done by
assigning to every set theoretic sentence an algebraic (truth) value by means of a map

J.K; a sentence ϕ is said to be valid in V(B), denoted by V(B) |= ϕ, if JϕK = 1, the top
element of B. This construction was generalised in [1] to get algebra-valued models

V(A) of classical and non-classical set theories, where A is a reasonable implication
algebra (RIA).

If we now fix a model V of ZF and an algebra A, but change the notion of validity
as V(A) |= ϕ iff JϕK ∈ D, where D ⊆ A is called a designated set, then we get a more
liberal interpretation of this method. The new class of algebras found in this way
will be called reasonable implication designated algebra (RIDA), whose properties will
depend on the interaction between the operations and the designated set. We will show
how RIDA’s offer a generalisation of RIA’s. If A is a RIDA then V(A) |= NFF-ZF, the
negation-free fragment of ZF. Finally a property regarding complementation will be
added to RIDA to have a new algebra, reasonable implication complemented designated
algebra (RICDA). For a RICDA, A we will show V(A) |= ZF.

Class many examples of RICDA, A will be provided so that the logic of the algebra
is non-classical, but the logic of the set theory corresponding to V(A) is classical.

[1] Löwe, B., & Tarafder, S., Generalized algebra-valued models of set theory.,
Review of symbolic logic, vol. 8 (2015), no. 1, pp. 192–205.
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I CHRISTOPHER TURNER, Forcing axioms and name principles.
Bristol University, Beacon House, Queens Road, Bristol, United Kingdom.
E-mail: christopher.turner@bristol.ac.uk.

Forcing axioms are a well-known formal expression of the concept “V contains P-
filters which are close to being generic”, where P is some interesting forcing. They say
“take κ many dense open sets of P; then we can find a filter g ∈ V which meets a
lot of them” (where the value of κ and the interpretation of “a lot” depends on the
forcing axiom). A classic example is Martin’s Axiom MA(ω1), which talks about all
c.c.c. forcings with κ = ω1 and “a lot” being interpreted as “all”.

Here, we introduce another class of axioms which express this “close to generic”
concept in a different way: name principles. These say: “Let σ be any sufficiently nice
name such that P ` P . Then there is a filter g ∈ V such that P is true for σg in
V .” Here, P is some first order property, which depends on the name principle. These
name principles have been used on an ad-hoc basis, but have not been studied much in
their own right. We present a small selection of the many connections between name
principles and forcing axioms.

This is joint work with Philipp Schlicht.
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