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Abstract

The problem of online probabilistic forecasting is considered. Probabilistic forecasts are
obtained as a result of the application of conformal predictive systems. The conformal
predictive system is a novel method for obtaining reliable predictions which are based
on point forecasts of the regression algorithm. The paper considers the case when at
each moment of time several competing conformal predictive systems (experts) give their
predictions in the form of probability distribution functions. Probabilistic forecasts of the
experts are combined by an aggregation algorithm into one probabilistic forecast at each
step of the forecasting process, while expert forecasts can be used partially.

The developed methods are used to solve the well-known problem of predicting the
load of an electrical network online. Numerical experiments have shown the agreement of
predictions with real data.

Keywords: Conformal prediction, Predictive distributions, Split conformal predictive sys-
tems, Aggregating of predictive distributions, Electrical load forecasting.

1. Introduction

Probabilistic predictions are important in many applications since the predictive distribu-
tion function describes the uncertainty of the prediction and also provides the ability to
calculate the probabilities of any event associated with the predicted parameter.

We consider methods for predicting the test labels y of objects x, where x ∈ Rk, (in the
simplest case k = 1) and y ∈ R. It is assumed that ”object-label” pairs (x, y) are generated
by some probability source (distribution), moreover, the pairs (x, y) are independent and
identically distributed (iid). A weaker hypothesis on data exchangeability can also be used
as the main assumption. We refer to such an assumption as to main assumption or main
hypothesis Vovk et al. (2005). The specific form of this probability distribution may be
unknown to us and will not be used in what follows.

There are a large number of methods for point, interval and probabilistic forecasting.
The first part of this work is related to improving the quality and reliability of known
methods, based on a recently proposed non-parametric approach called conformal predicting
systems Vovk et al. (2019b). Conformal predictive systems are designed to make reliable
probabilistic predictions for test labels basing only on the relationship between the current
and past point forecasts of an arbitrary algorithm.

In papers Vovk et al. (2018a), Vovk et al. (2018b), Vovk et al. (2018b), Vovk et al.
(2019b), Vovk et al. (2020b) split conformal predictive systems were introduced, as well
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as cross-conformal predictive systems Vovk et al. (2020b). The first type system splits the
training data into two parts - training and calibration samples, the second type system uses
a cross-validation process to calculate the corresponding statistics. We will use systems of
the first type.

Any conformal predictive system is constructed as follows. Training data is divided into
training and calibration samples. The training sample is used to construct a prediction
rule (algorithm) that, using the object x, presents a point prediction of its label y. The
calibration sample allows, based on a comparison of a point forecast with past forecasts
and known outcomes, to rebuild the algorithm forecast into (a predictive) probability dis-
tribution. This makes it possible to assess the inaccuracy and uncertainty for the point
forecast. For example, using this probability distribution, one can build confidence interval
predictions for y.

The training sample is used only at the initial stage of training — for constructing
a regression algorithm. This algorithm will be used at the following steps to construct
conformal predictive systems.

Conformal predictive system will be constructed online basing on point forecasts of the
regression algorithm. At each time step t = 1, 2, . . . the system receives the testing object
xt, for which it is necessary to determine the distribution function of its label yt. To do this,
the calibration sample z̃m1 = (x̃1, ỹ1), . . . , zm = (x̃m, ỹm) is used, consisting of the observed
objects and their labels, the corresponding forecasts are also used by algorithm for these
labels.

The probability distribution for the test label is constructed using a special statistic – a
measure of conformity (or nonconformity) of the pair (x, y) with respect to the calibration
sample z̃m1 .

In order to achieve more accurate forecasts, the approach of Prediction with Expert
Advice is used Vovk (1998), Vovk (2001).

At the training stage, the training part of the time series is divided into sections of
homogeneity, which are determined based on the properties of the subject area. This data
split used is essentially a Mondrian categories, see Vovk et al. (2005), Boström et al. (2021).

The Mondrian partition breaks the data into regions of homogeneity, within which the
main hypothesis gets more evidence. Mondrian conformal predictive distributions based
on Mondrian categories significantly outperforms the use of standard conformal predictive
distributions, see Boström et al. (2021), Vovk (2022).

Mondrian categories will be extended to “fuzzy sets” when aggregating conformal dis-
tributions. Although each expert is trained in his area of expertise, we will partially use his
predictions in neighboring areas as well, bearing in mind that his predictive ability declines
gradually outside of his area of expertise. It is also necessary to take into account the
fact that we use conformal predictive systems for different Mondrian partitions (seasonal
partitions, additional time-of-day partitions).

Thus, at each time point, we can have probabilistic forecasts from several experts at once
and have to aggregate them, taking into account the degree of their competence. Numerical
experiments show that the proposed aggregation algorithm successfully copes with this task.

Main contribution of this paper is follows:

• Two methods for constructing online Mondrian conformal predictive systems are pro-
posed and tested.
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• A method for online aggregating of conformal predictive systems in the prediction of
expert advice framework using experts’ competence levels is presented.

• The algorithm has been developed for obtaining probabilistic forecasts online based
on the proposed methods.

• Empirical support for the proposed approach is provided, showing that predictive
performance of aggregating algorithm, as measured by CRPS loss function, may be
improved compared to the individual experts.

• Based on real data on the load of the electrical network, a comparative analysis of
the effectiveness of these and previously proposed forecasting methods was carried
out. To illustrate the proposed methods for constructing predictive models and their
aggregation, real data from the problem of predicting loads in an electrical network
(see Devaine et al. (2013), Tao Hong (2016)) are used.

Section 2.1 contains the main concepts and definitions of the method of conformal
predictions. Section 2.2 presents some details of the aggregating algorithm of Vovk (1998),
as well as its extension to the case of probabilistic forecasts by V’yugin and Trunov (2019a).
In Section 2.3 we generalize the aggregating algorithm for the case when expert predictions
are provided with levels of competence. In this section the concept of discounted regret is
introduced, its upper bound is obtained.

The effectiveness of the proposed methods is demonstrated by the results of numerical
experiments given in section 4. The data of the Global Energy Forecasting - Competition
2014 (GEFCOM 2014, Track Load) used for the experimental study, a detailed description
is given in Section 4 below.

2. Basic concepts and methods

2.1. Conformal Predictions

Let X be a measurable space, which we will call the object space. The observation space
is defined as Z = X × Y; its element z = (x, y), where x ∈ X and y ∈ Y, is interpreted as
an observation consisting of the object x and its label y. The task of “supervised learning”
is that, given training data consisting of observations zi = (xi, yi), i = 1, . . . , n and a new
(test) object xn+1 ∈ X , predict the corresponding label yn+1.

The classical formulation of the method of conformal predictions is given by Vovk et al.
(2005), where conformal predictors use previous data to determine the size of confidence
set Γεn, where 0 < ε < 1, for new predictions. Let there be an algorithm f that generates
predictions ŷn+1. Then the described method makes it possible to obtain the set Γεn of
predictions, which also contains the true value yn+1 with significance level 1 − ε. This
method can be applied to any machine learning algorithm. The predictions of the algorithm
have the property of validity if, with an increase in the number of outcomes (xn, yn) and
the corresponding predictions ŷn+1 = fzn1 (xn+1), with the probability 1, the error rate will
tend to ε.1

1. An error is a forecast result when yn+1 6∈ Γεn.
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A conformity measure is a measurable function A : ∪∞n=1Z
n+1 → R, invariant under

permutations of training observations: for any n and for any permutation π of the set
{1, . . . , n} for any sequence zn1 = z1, . . . zn ∈ Zn and for any zn+1 ∈ Z,

A(z1, . . . , zn, zn+1) = A(zπ(1), . . . , zπ(n), zn+1).

The interpretation of the conformity measure A is that the value of A(z1, . . . , zn, zn+1)
measures how much a new observation zn+1 is “similar” to previously received observations
(z1, . . . , zn).

An example of the conformity measure for the case of regression (when Y = R) is

A(z1, . . . , zn, xn+1) = y − ŷn+1, (1)

where ŷn+1 is the label prediction calculated by the considered algorithm based on the
known values of z1, . . . , zn, xn+1 and y is the testing label.

Define conformity counters

αyi = A(z1, . . . , zi−1, zi+1, . . . , (xn+1, y), zi) for i = 1, . . . , n, (2)

αyn+1 = A(z1, . . . , . . . , zn, (xn+1, y)). (3)

The conformal transform corresponding to the conformity measure A is defined as

CA(zn1 , (xn+1, y)) =
1

n+ 1
|{i : 1 ≤ i ≤ n+ 1, αyi ≤ α

y
n+1}|, (4)

where |D| denotes the number of elements of a finite set D.
It is easy to see that under the assumption that all pairs zi = (xi, yi) and xn+1 are

generated independently by the some probability distribution P ,

P{CA(zn1 , (xn+1, y)) ≤ ε} ≤ ε. (5)

Indeed, the left side of the inequality (5) is the probability that the number αyn+1 is among
the subset of the largest numbers of the set αy1, . . . , α

y
n+1, the fraction≤ ε. Since all orderings

of this set are equally likely, the probability of the event (5) does not exceed ε.
The goal is to construct a probability distribution function based on (4), i.e., this value

must be uniformly distributed. In this case, in (5) should be equality. To do this, the
following modification of the definition (4) was carried out by Vovk et al. (2005). Let
τ ∈ [0, 1] be a uniformly distributed random variable independent of all zi.

A randomized conformal transform corresponding to the conformity measure A is defined
as

CA(zn1 , (xn+1, y), τ) =
1

n+ 1
|{i : 1 ≤ i ≤ n+ 1, αyi < αyn+1}|+
τ

n+ 1
|{i : 1 ≤ i ≤ n+ 1, αyi = αyn+1}|. (6)

Vovk et al. (2005) has proved that the predictive system (6) is calibrated in probability:

P{CA(zn1 , (xn+1, y), τ) ≤ ε} = ε, (7)
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where P is the combined probability in zi, xn+1 and τ ∼ U (uniform distribution on the
interval [0, 1]).

The property (7) can be used to build prediction confidence sets.2. Any y such that

CA(zn1 , (xn+1, y), τ) > ε, (8)

is considered as a forecast value with 1−ε significance level: y ∈ Γεn. The condition (8) (and
the definition (6)) means that the value of the conformity counter of the test pair (x, y) is
not less than the values of conformity counters of the fraction ε of all pairs of the learning
sample.

A distribution predicted for the test label must have the property of validity Vovk et al.
(2019b), in other words, this means that the distribution must have statistical compatibility
with implementations, i.e., reflect the true state of affairs. The main assumption to ensure
such validity is that the elements of the calibration sample and the tested value xt be
independently and identically distributed (iid) with respect to some overall probability
distribution, which we may not know.3

Vovk et al. (2005) has proved that the quantities pn = CA(zn1 , (xn+1, y), τ) are inde-
pendently and identically distributed over P and U , which, together with (7), ensures the
validity of predictions – according to the law of large numbers, with probability 1 the
proportion of errors in choosing y tends to ε in the limit.

Split conformal predictive systems. Finding confidence sets for conformal predic-
tions using the rule (8), even in the case of a finite set Y, is a computationally difficult
problem. In Vovk et al. (2018a), Vovk et al. (2018b), Vovk et al. (2020a) split conformal
prediction systems that are much more computationally efficient 4 have been introduced.
In this formulation, the entire training set is divided into a training set zn1 = z1, . . . , zn and
a calibration set z̃m1 = z̃1, . . . , z̃m. Based on the training sample, a basic algorithm is built
that can make predictions ŷ = fzn1 (x) for every x. Based on the calibration sample, we
define the conformity measure A(zn1 , (x, y)) and the conformity counters αi of elements of
the calibration sample and the counter αy of an arbitrary test pair (x, y):

αi = A(zn1 , z̃i), for i = 1, . . . ,m. (9)

αy = A(zn1 , (x, y)). (10)

The corresponding randomized conformal transform is defined as

CAzn1 ,z̃m1 ,x,τ =
1

m+ 1
|{i : 1 ≤ i ≤ m,αi < αy}|+

τ

m+ 1
|{i : 1 ≤ i ≤ m,αi = αy}|, (11)

where τ is a random variable uniformly distributed over the interval [0, 1].
The split conformal predictive system (11) is also calibrated in probability in the sense

of (7), see Vovk et al. (2020a).

2. A confidence set is an interval if the function (6) is monotonic in y
3. A hypothesis on data exchangeability can also be used as the main assumption.
4. Although less accurate in applications, as noted in these papers.
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The split conformal predictive system (11) allows to construct a conformal probability
distribution of predictions of the corresponding labels instead of confidence sets of predic-
tions. The implementation of the scheme for constructing a probabilistic split conformal
prediction in online mode is given in section 3 below.

2.2. Prediction with Expert Advice

In the previous section, methods for constructing probability distribution function for any
expert were given. The problem arises of aggregating these distribution functions into a
single resulting probability distribution function.

In this section, we give the necessary definitions and auxiliary results of the theory of
predictions with expert advice. A detailed presentation and proofs of the main statements
are given in Vovk (1998) and Vovk (2001).

Online learning and forecasting. Let Ω be a set of outcomes, Γ be a set of predictions
and λ(f, y) be a real non-negative loss function, where f ∈ Γ and y ∈ Ω.5 Also, let
E = {1, . . . , N} be the set of experts.

In the theory of predictions with expert advice, the process of online learning and
forecasting is considered as a game with complete information. At each step t = 1, 2, . . . ,
each expert i ∈ E makes a prediction fi,t ∈ Γ, after that, the forecaster makes his prediction
ft ∈ Γ . After the predictions have been made, an outcome yt ∈ Ω is announced and each
expert i incurs the loss λ(fi,t, yt) and the forecaster incurs loss λ(ft, yt). This sequence of
actions is presented below as Protocol 1.

Protocol 1

FOR t = 1, . . . , T

1. Experts present forecasts fi,t, where 1 ≤ i ≤ N .

2. Forecaster presents his prediction ft.

3. An outcome yt is revealed and the losses λ(fi,t, yt) of the experts and the loss λ(ft, yt) of
Forecaster are calculated.

ENDFOR

Let HT =
T∑
t=1

λ(ft, yt) be the total (accumulated) loss of Forecaster and LiT =
T∑
t=1

λ(fi,t, yt) –

total loss of the expert i suffered for the first T steps. The difference RiT = HT −LiT is called regret
with respect to the expert i, RT = HT −mini L

i
T – regret with respect to the least loss (best) expert.

The purpose of Forecaster is to make predictions in such a way as to minimize the regret.
Aggregating algorithms AA and WA. To aggregate the expert forecasts, we will apply a

scheme proposed in Vovk (1990), Vovk (1998), Vovk (2001), Cesa-Bianchi and Lugosi (2006).
Each of the AA and WA algorithms assigns weights to experts depending on their accumulated

losses. At the first step the initial weights are defined as wi,1 = 1
N for all i. At subsequent steps,

weights wi,t are updated according to the rule:

wi,t+1 = wi,te
−ηλ(fi,t,yt) for t = 1, 2, . . . , (12)

5. The nature of these sets will be explained later.
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where η > 0 is a learning parameter. These weights are normalized:

w∗
i,t =

wi,t
N∑
j=1

wj,t

. (13)

The AA algorithm uses the so-called superprediction function to build an aggregated forecast.
According to Vovk (1998), a loss function is said to be η-mixable if for any probability distribution
q = (q1, . . . , qN ) on the set E of all experts 6 and for any of their predictions f = (f1, . . . , fN ) there
exists a prediction f such that

λ(f, y) ≤ g(y) for all y, (14)

Where

g(y) = −1

η
ln

N∑
i=1

e−ηλ(fi,y)qi (15)

is a superprediction function.
We fix the rule for computing prediction f and denote

f = Subst(f ,q). (16)

The function Subst is called substitution function.
For the AA algorithm, at each step t, the superprediction function is defined as

gt(y) = −1

η
ln

N∑
i=1

e−ηλ(fi,t,y)w∗
i,t, (17)

at the same time, Forecaster’s prediction is ft = Subst(ft,w
∗
t ), where ft = (f1,t, . . . , fN,t) be experts

forecasts and w∗
t = (w∗

1,t, . . . , w
∗
N,t) be the set of their normalized weights.

Regret bound for AA. Let the loss function λ(f, y) be η-mixable, where η > 0, w∗
t =

(w∗
1,t, . . . , w

∗
N,t) be the normalized weights and ft = (f1,t, . . . , fN,t) be the the experts’ forecasts at

step t. Let also, Forecaster calculate his forecast ft = Subst(ft,w
∗
t ). By(14) λ(ft, yt) ≤ gt(yt) for

all t, where gt(y) is defined by (17). Let HT =
T∑
t=1

λ(ft, yt) be Forecaster’s total loss and LiT =

T∑
t=1

λ(fi,t, yt) be total loss of any expert i. By definition gt(yt) = − 1
η ln Wt+1

Wt
, where Wt =

N∑
i=1

wi,t

and W1 = 1. According to the weight update rule (12), we get wi,t+1 = 1
N e

−ηLi
t . Reducing the

terms equal in absolute value and opposite in sign, we obtain a time-independent upper bound

HT ≤
T∑
t=1

gt(yt) = −1

η
lnWT+1 ≤ LiT +

lnN

η
(18)

for an arbitrary expert i. Thus, there is the forecaster strategy that guarantees the upper bound
RT ≤ lnN

η for regret for all T .

6. i.e.,
N∑
i=1

qi = 1 and qi ≥ 0 for all i
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2.3. Aggregation of probabilistic forecasts

Loss function CRPS. Let the set of outcomes in Protocol 1 be the interval Ω = [a, b] of the real
line, where a < b, and the set of predictions Γ be the set of all probability distribution functions on
this interval: F : [a, b] → [0, 1]. The continuous ranked probability score (CRPS loss function) is
defined as

CRPS(F, y) =

∫ b

a

(F (u)−H(u− y))2du, (19)

where y ∈ [a, b] is an outcome and H(x) is the Heaviside function: H(x) = 0 for x < 0 and H(x) = 1
for x ≥ 0.

Consider a probability forecasting game with expert advice. At each step t, each expert i ∈
{1, . . . , N} presents a forecast which is a probability distribution function Fi,t(u), Forecaster presents
his prediction Ft(u). After that, an outcome yt ∈ [a, b] is revealed and the experts and Forecaster
suffer losses CRPS(Fi,t, yt) and CRPS(Ft, yt).

V’yugin and Trunov (2019a) (and V’yugin and Trunov (2022)) proved that the loss function
CRPS(F, y) is η-mixable for 0 < η ≤ 2

b−a and η-exponentially convex for 0 < η ≤ 1
2(b−a) and,

therefore, the regret bounds from Section 2.2 are valid. For η = 2
b−a Forecaster’s prediction Ft(u) is

computed from expert’s forecasts Fi,t(u), where 1 ≤ i ≤ N , according to the rule

Ft(u) =
1

2
− 1

4
ln

∑N
i=1 w

∗
i,te

−2(Fi,t(u))
2∑N

i=1 w
∗
i,te

−2(1−Fi,t(u))2
, (20)

where w∗
i,t =

wi,t

N∑
j=1

wj,t

are normalized weights and wi,t+1 = wi,te
− 2

(b−a)
CRPS(Fi,t,yt).

For algorithm WA prediction rule (20) should be replaced with

Ft(u) =

N∑
i=1

w∗
i,tFi,t(u), (21)

where w∗
i,t =

wi,t

N∑
j=1

wj,t

are the normalized weights and wi,t+1 = wi,te
− 1

2(b−a)
CRPS(Fi,t,yt). For algorithm

AA regret bound is b−a
2 lnN , see V’yugin and Trunov (2019a). For WA regret bound is 2(b−a) lnN .7

2.4. AA for Experts with Competence Levels

In this section, we will somewhat expand the formulation of the prediction problem. Let at each time
t forecasts ft = (f1,t, . . . fN,t) experts are provided with levels of competence pt = (p1,t, . . . , pN,t).

Competence level p1,t is a real number from the interval [0, 1]. If pi,t = 0, then the corresponding
expert “sleeps” at step t, i.e., his prediction is not taken into account by the aggregating algorithm.
If pi,t < 1, then this forecast fi,t will be used only partially with a discount, see V’yugin and Trunov
(2019a).

Associate each level of competence pi,t with a probability distribution pi,t = (pi,t, 1− pi,t) on a
two-element set and. define an auxiliary randomized forecast of the “virtual” expert i:

f̃i,t =

{
fi,t with probability pi,t,
ft with probability 1− pi,t,

7. Note that the regret bound for WA is four times worse, than the bound for AA. Results of experiments
in Section 4 show that, the accumulative losses of the AA algorithm are less than those of the WA
algorithm.
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where ft is Forecaster’s prediction, which will be calculated later.
Our goal is to define the forecast ft so that

e−ηλ(ft,y) ≥
N∑
i=1

Epi,t
[e−ηλ(f̃i,t,y)]wi,t (22)

for every y. Here Epi,t
is the expectation with respect to the probability distribution pi,t. Also wi,t

is the weight of expert i at step t.
Let’s write the inequality (22) in a more detailed form:

e−ηλ(ft,y) ≥
N∑
i=1

Epi,t
[e−ηλ(f̃i,t,y)]wi,t = (23)

N∑
i=1

pi,twi,te
−ηλ(fi,t,y) + e−ηλ(ft,y)

(
1−

N∑
i=1

pi,twi,t

)
(24)

for all ω. Thus, the inequality (22) is equivalent to the inequality

e−ηλ(fi,y) ≥
N∑
i=1

w∗
i,te

−ηλ(fi,t,y), (25)

where

w∗
i,t =

pi,twi,t∑N
j=1 pj,twj,t

. (26)

We use the rule (16) to calculate a forecast of the AA algorithm: ft = Subst(f̄t,w
∗
t ). Then

(25) is equivalent to (23). Here Subst is a substitution function, w∗
t = (w∗

i,1, . . . , w
∗
i,N ) and f̄t =

(f1,t, . . . fi,N ).

Let ht = λ(ft, yt) be the Forecaster’s loss at step t, Virtual Expert i suffers the loss l̂i,t =

Epi,t
[λ(f̃i,t, yt)].

Protocol 1 for AA with competence levels is modified as follows, see V’yugin and Trunov (2019a):

Protocol 2

FOR t = 1, . . . , T

1. Get fi,t expert predictions and competence levels pi,t, where 1 ≤ i ≤ N .

2. Define Forecaster’s prediction ft = Subst(ft,w
∗
t )), where w∗

t = (w∗
1,t, . . . , w

∗
N,t) are normalized

weights defined by

w∗
i,t =

pi,twi,t∑N
j=1 pj,twj,t

.

3. Get the true value of the outcome yt and calculate the loss li,t = λ(fi,t, yt) of experts and the
loss of Forecaster λ(ft, yt).

4. Update the experts’ weights:

wi,t+1 = wi,te
−η(pi,tλ(fi,t,yt)+(1−pi,t)λ(ft,yt)). (27)
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ENDFOR

Since by definition the loss of a virtual expert is l̂i,t = pi,tli,t + (1 − pi,t)ht, will be ht − l̂i,t =
pi,t(ht − li,t). Let’s call this value the discounted regret with respect to the expert i at the step t.
We will measure performance of our algorithm using the total discounted regret with respect to the
expert i.

Theorem 1 For any 1 ≤ i ≤ N the upper bound of the total discounted regret relative to expert i:

T∑
t=1

pi,t(ht − li,t) ≤
lnN

η
. (28)

Proof. From the convexity of the exponent and the inequality (22) we get

e−ηλ(ft,y) ≥
N∑
i=1

e
−ηEpi,t)

[λ(f̃i,t,y)]w∗
i,t =

N∑
i=1

e−ηl̂i,tw∗
i,t. (29)

Let mt = − 1
η ln

∑N
i=1 w

∗
i,te

−ηl̂i,t .By (29) ht ≤ mt. Let’s rewrite the rule (27) as

wi,t+1 = wi,te
−ηl̂i,t . (30)

Recall that WT =
∑
t=1 wi,t, W1 = 1 and mt = 1

η ln Wt+1

Wt
. Just like in (18), using (29) and (30), we

get

T∑
t=1

ht ≤
T∑
t=1

mt = −1

η
lnWT+1 ≤

T∑
t=1

l̂i,t +
lnN

η

for any i. Since ht − l̂i,t = pi,t(ht − li,t), we get the inequality (28). 4

3. Online construction of conformal distributions

To build and calibrate expert strategies, the entire array of historical data, consisting of pairs (x, y),
where x is the temperature, y is the network load, is divided by pairwise non-overlapping intervals
of time segments (season, time of day), which will also be called the areas of competence of the
respective experts.

The data split used is essentially a Mondrian categories. The Mondrian partition breaks the
data into regions of homogeneity, within which the main hypothesis gets more evidence.8

Experts training. The entire array of historical data, consisting of pairs (xt, yt), where xt is
the temperature, yt is the network load at time t, is divided by pairwise non-overlapping intervals of
time segments (season, time of day), that are the areas of competence of the respective experts. In
each area of competence, the data is divided into a training sample zn1 = z1, . . . , zn, and a calibration
sample z̃m1 = z̃1, . . . , z̃m, where zi = (xti , yti) for 1 ≤ i ≤ n and z̃i = (x̃ti , ỹti) for 1 ≤ i ≤ m.

Each expert is trained on its own training set zn1
9 and will be in what follows calibrated on the

elements of the z̃m1 set or on its extension, which will be determined online. 10

8. The conformal predictive distributions based on Mondrian categories significantly outperforms the use
of standard conformal predictive distributions, see Boström et al. (2021), Vovk (2022).

9. Based on this set, a regression equation is constructed that allows given x to calculate a point prediction
y.

10. For this sample, based on the point predictions of the regression algorithm, as a result of online calibra-
tion, a conformal predictive system will be constructed that, given x, produces a probability distribution
function of y.

10
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Each expert will be trained and calibrated on elements of its area of competence (Mondrian
category). Three types of splits are used: all data, splits by season (winter, spring, summer, autumn),
split by time of day within a season (morning in winter, morning in spring, afternoon in winter, day
in spring, etc.). AnyTime expert is trained and calibrated from all data, four seasonal experts are
determined from seasonal data, the remaining 16 experts correspond to the times of the day.

Experts online calibration. The conformal calibration procedure defines a split conformal
forecasting system. At each time step t, we get the testing object xt, for which a probability
distribution function of the consumption value yt should be constructed using a calibration sam-
ple z̃m1 = (x̃1, ỹ1), . . . , z̃m = (x̃m, ỹm), whose elements belong to the expert’s area of competence
(Mondrian category).

Two methods for forming calibration sample will be used. With the CP method, a part of the
training sample is allocated, which serves as a calibration sample at all subsequent steps.11

With the CP+ method, the initial calibration sample is replenished at each step with new pairs
from the area of competence observed at time t by the expert.12

Online aggregation of the experts’ conformal distribution functions. In this paper,
when aggregating the predictive distributions of experts, we somewhat expand the concept of Mon-
drian partitioning – by specifying a partition using real values pi, we define fuzzy sets in which
conformal predictive systems are applied and aggregated. The conducted comparative experiments
(below) show that in this way we achieve more accurate results in forecasting.

In Section 4 (below) we will present the results of numerical experiments with real data. Below
is a modification of Protocol 2, Algorithm 3, that will be used in these experiments.

Algorithm 3

FOR i = 1, . . . N *Preprocessing loop
Using the ith training sample zn1

13, we build a regression rule (algorithm) y = fi(x).
ENDFOR *End of preprocessing loop

Define wi,1 = 1
N for 1 ≤ i ≤ N .

FOR t = 1, . . . , T *Main Loop

1. We get the testing object xt and define the probabilistic forecasts of experts – probability
distribution functions Fi,t(y) for i = 1, . . . N .

FOR i = 1, . . . N *Construction of the experts’ conformal distributions.14

Let us fix the calibration sample z̃m1 = z̃1, . . . , z̃m from the area of competence of the corre-
sponding expert i, z̃s = (x̃s, ỹs) for 1 ≤ s ≤ m.

We use the conformity measure

A(zn1 , (x, y)) = y − ŷ,

where ŷ = fi(x) is the label prediction computed by the regression algorithm.

Calculate the conformity counters αs for s = 1, . . . ,m: αs = A(zn1 , (x̃s, ỹs)) and arrange them
in ascending order:

α(1) < · · · < α(k).

Let nj = |{s : αs = α(j)}| for j = 1, . . . , k.

11. At the same time, the main assumption is preserved that the elements of the calibration sample and the
test value must be independently and identically distributed distributed with respect to some probability
distribution on pairs (x, y) corresponding to the the expert’s area of competence. The specific form of
this distribution is not taken into account.

12. This method makes it possible to take into account possible local violations of the basic assumption.
13. more precisely, its training part, from the area of competence of the expert i
14. Here we follow ideas from Vovk et al. (2020a).

11
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Define also mj = sup{y : αy < α(j)} and Mj = inf{y : αy > α(j)}, where αy = A(zn1 , (x, y)).

Define the predictive conformal probability distribution function:

Qzn1 ,z̃m1 ,xt,τ (y) =


τ

m+1 if y < m1,
n1+···+nj−1+τnj+τ

m+1 if mj < y < Mj , j = 1, . . . k,
n1+···+nj+τ

m+1 if Mj < y < mj+1, j = 1, . . . k − 1,
n1+···+nk+τ

m+1 = m+τ
m+1 if y > Mk.

It was proved by Vovk et al. (2020a) that, under some mild assumptions, the function Q is a
probability distribution function.

Denote Fi,t(y) = Qzn1 ,z̃m1 ,xt,τ (y) the conformal probability distribution function of the expert
i.

ENDFOR *End of loop for constructing the experts’ conformal distributions

2. Aggregation of the experts’ probability distribution functions.

We get the competence levels pi,t, where 1 ≤ i ≤ N . Define the probability distribution
function of Forecaster by the rule

Ft(y) =
1

2
− 1

4
ln

∑N
i=1 w

p
i,te

−2(Fi,t(y))
2∑N

i=1 w
p
i,te

−2(1−Fi,t(y))2
(31)

for AA algorithm, or by the rule

Ft(y) =

N∑
i=1

wpi,tFi,t(y) (32)

for WA algorithm, where

wpi,t =
pi,twi,t∑N
j=1 pj,twj,t

.

3. Observe outcome yt and compute losses CRPS(Fi,t, yt) of the experts 1 ≤ i ≤ N , as well as
the loss CRPS(Ft, yt) of Forecaster.

4. Update weights of the experts 1 ≤ i ≤ N

wi,t+1 = wi,te
−η(pi,tCRPS(Fi,t,yt)+(1−pi,t)CRPS(Ft,yt)), (33)

where η = 2
b−a for AA and η = 1

2(b−a) for WA.

ENDFOR *End of the main loop

4. Probabilistic forecasting of hourly electrical loads

The data of the Global Energy Forecasting - Competition 2014 (GEFCOM 2014, Track Load) which
was served as the material for the experimental study was held on the Kaggle platform (Tao Hong
(2016)).

The goal of GEFCom2014-L was to evaluate quantiles (more precisely, all 100 percentiles) for
the probability distribution of hourly electrical loads. At the same time, the horizon forecast varied
over a wide range from one hour to one month. The main block of the training sample includes data
on hourly electrical loads for the period from January 2005 to the end of 2010 and data on hourly
temperature measurements at 25 meteorological stations from January 2001 to September 2010 (for

12
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Figure 1: 3D “Temperature–Electrical Load” scatterplots showing the relationship between hourly

air temperature measurements and electrical load on the network. The left figure shows

a scattering cloud points “Temperature”, “Load” , “Day of the year” . The right figure

shows the same data, but the scatterplot points from the left figure refer to the same

season of the year (winter, spring, summer, autumn) “collapsed” into flat scatterplots,

which differ in the shape of the clouds. The color indicates the periods of the day (night,

morning, afternoon, evening). The x-axis shows the temperature values, and the y-axis

shows all the days of the year from 1 to 365.

117 months). The test sample includes data from January 1, 2011 to December 2011. The databases
are available at http : //www.kaggle.com/datasets.

In this work, we restrict ourselves to the data of the current temperature averaged over weather
stations and its prehistory and calendar indicators (season of the year and time of day). In Fig. 1 3D
“Temperature–Electrical Load” scatterplots showing the relationship between hourly air temperature
measurements and electrical load on the network are presented.

4.1. Numerical experiments

In this section, we present the methodology that used for probabilistic forecasting of the electrical
load on the electrical network.

Experts training. Taking into account the type of 3D-scatterplots (see Fig. 1), the training
set was divided into subsamples corresponding to the seasons (winter, spring, summer, autumn) and
time of day (morning, afternoon, evening, night).

The area of competence of any expert i at time t is determined by levels of competence pi,t. At
the training stage of the expert i, only those points t are included in the training sample, where
pi,t = 1. When forecasting, the scope of the expert extends to all points in time where his level
of competence is greater than 0. Thus, each the expert competes with other experts working on
overlapping intervals. In this case, the corresponding AA (or WA) algorithm for aggregating experts
is used, taking into account their levels of competence.

Taking into account the analysis of diagrams scattering, shown in Fig. 1, the full training set was
divided into subsamples, corresponding to the four seasons (winter, spring, summer, autumn) and
the four time intervals (morning, afternoon, evening, night). Each of the subsamples was associated
with a specialized expert, who formed his own probabilistic predictive model based on these data:

13
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1.Reference model GMM – approximation of a two-dimensional point cloud using several Gaus-
sian components, as was done in V’yugin and Trunov (2019a).

2.Methods CP (CP+) of conformal predictions of the experts which are based on point predic-
tions of polynomial regression and subsequent use of calibration sample (constant - CP, or replenished
- CP+) to build predictive probability distribution.

On the test sample, the use of specialized experts was regulated by their competence levels pi,t.
Since, when moving to the next calendar subsample, this expert gradually loses its predictive ability,
the level of competence pi,t in its forecasts outside its area of competence decreased linearly from 1
to 0 in the extended part of the interval (see Fig. 2). Therefore, in the vicinity of the boundaries
of the corresponding subsamples, there appear competing experts with different non-zero levels of
competence. The aggregating algorithm (Algorithm 3) combines forecasts of the experts (probability
distributions) taking into account these levels of competence.15

As can be seen from the scatterplots in Fig. 1, the season and time of day are manifested in the
form of noticeable regular changes in the general appearance of scattering clouds and their relative
position. The results of the conformal predictive systems (CP and CP+) are compared with the
results of reference method constructing probability distributions from empirical data – the Gaussian
mixture method (GMM).

Gaussian mixture method GMM. Gaussian mixture method at the training stage builds
a probability distribution for each subsample based on a scatterplot steam “temperature – load”.
Probability distribution functions produced by the GMM method are aggregated using the AA and
WA algorithms (Algorithm 3) in the probability distribution function of the resulting forecast.

Conformal prediction systems. The same training samples were used for construction and
estimation of methods of conformal distributions CP (CP+). For each expert at the initial stage
of training the expert’s area of competence is divided into two parts – training sample and calibra-
tion sample. First on the training set a polynomial regression approximation is built, where cubic
polynomials were used. Examples of point prediction of electrical loads can be found in V’yugin
and Trunov (2019b). The calibration sample is used in the subsequent steps to build a predictive
probability distribution.

Based on the calibration sample and on point forecasts, a system of conformal prediction is
constructed. The calibration sample can remain constant in the process of forecasting or replenish
at each step with new pairs from the expert’s area of competence.

The following actions are performed online (see Algorithm 3):
At each step of the forecasting period based on current temperature forecasts and a calibration

sample defined at the initial step, the probability distribution of the load value is constructed. This
method is referred to as CP. Thus, with this method, the calibration sample is constant.16

In the CP+ method, the initial calibration sample is replenished at each step with new pairs
from the observed part of the expert’s area of competence, after which the probability distribution
of the load value is constructed.17

Aggregation of expert probability distribution functions. The distribution functions
produced by conformal predictive systems for each expert are aggregated using the AA and WA
algorithms (Algorithm 3) into the distribution function of the resulting prediction.

15. As shown in V’yugin and Trunov (2019a), the use of extended areas of competence leads to more accurate
predictions and a corresponding reduction in the cumulative loss of aggregation algorithms.

16. Here we use the assumption that the probability distribution generating data observable in any subset
of an expert’s area of expertise is the same.

17. Thus, small changes in the parameters of the generating distribution are taken into account.

14
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4.2. Results of numerical experiments

To illustrate the proposed methods a particular problem was chosen, namely, predicting the proba-
bility distribution function of electrical loads one hour ahead based on the temperature forecast and
current calendar parameters.18

An example of setting expert competence levels is shown in Fig. 2.

Figure 2: Left side of the figure: Competence levels for Experts 2-5 (seasonal experts) and 6-21

(Season, Time of day). Right side: Enlarged fragment of the drawing from the left side.

Time steps are plotted along the x-axis, the competency value is plotted along the y-axis

In this experiment, the experts, which were built according to their areas of competence, make
predictions at all points of the test sample, and the AA and WA algorithms aggregated these
predictions in one case without taking into account their competence levels (see Fig. 3 ), and in the
second case, taking into account the levels of competence (see fig. 4).

Fig. 3 shows graphs of average (over time) of accumulated CRPS losses: t→ 1
t

∑t
s=1 CRPS(Fi,s, ys),

for experts 1–21, constructed by the CP method and the losses of two algorithms WA and AA, which
are used without taking into account the expert’s competence levels (i.e., pi,t = 1 for all i and t.).

The figure 4 shows the average (over time) values of the accumulated CRPS losses of aggregators
AA and WA for experts constructed by the GMM, CP and CP+ methods, applied taking into account
the levels of expert competence.

The AA algorithm, when aggregating experts built by the CP and CP+ methods, leads to lower
losses than the AA algorithm applied to experts built by the GMM method, and the use of the CP+
method for building experts leads to lower losses than the use of the CP method.

As before, for all methods of building experts throughout the test period, the loss of the aggre-
gator AA is slightly less than the loss of the aggregator WA.

Discounted Regret curves of the AA Algorithm for all experts build by the CP Method are shown
in Fig. 5.

The 3D image of the distribution density, built by the AA algorithm with the aggregation of
experts built by the CP method, is shown in Fig.6.

18. Note that the above technology and the corresponding algorithms make it possible to calculate load
forecasts at any future point in time, for which there is a temperature forecast.
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Figure 3: Average values of accumulated CRPS losses of experts, constructed by the CP method,

and the loss of aggregators WA and AA of these experts, used without taking into account

their levels of competence (marked with numbers 2 and 3). For comparison, the same

figure shows the losses of aggregators WA and AA, built taking into account the levels of

expert’s competence (numbers 4 and 5). Number 1 marks the loss curve of the AnyTime

expert. Time steps are plotted along the x-axis, the loss value is plotted along the y-axis

5. Conclusion

This paper presents the technology for probabilistic forecasting of loads in an electrical network,
which uses methods for constructing conformal probabilistic forecasts (CP and CP+) and methods
for aggregating these forecasts online. Experimental calculations are carried out on real data.

The results of forecasting by the CP and CP+ methods were compared with the results of the
method for constructing probabilistic forecasts based on Gaussian GMM mixtures. To assess the
quality of probabilistic forecasts, the continuous ranked probability scoring rule CRPS was used.

The paper presents the algorithm for predicting electrical network loads online using CP (CP+)
conformal prediction systems. A comparative analysis of the effectiveness of the methods of con-
formal predictions CP and CP+ and the previously used method of Gaussian mixtures GMM for
constructing the probability distribution functions of expert strategies has been carried out.

The GMM forecasting method for constructing experts uses an approximation of a two-dimensional
point cloud “temperature – load” with the help of several Gaussian components. Conformal pre-
diction systems (CP and CP+) do not directly use any approximation of data from the training
sample, they build a predictive probability distribution only based on the relationship between the
current and past point predictions of the regression algorithm.
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Figure 4: Average values of accumulated CRPS losses of aggregators AA and WA for experts

constructed by GMM, CP and CP+ methods. Numbers mark the loss curves of 1-

WA((GMM),2-AA(GMM), 3-WA(CP), 4-AA(CP), 5-WA(CP+), 6-AA(CP+) aggrega-

tors used with experts’ levels of competence. Time steps are plotted along the x-axis,

the loss value is plotted along the y-axis.

The numerical results show that the use of the CP and CP+ methods for the construction the
expert forecasts leads to a smaller loss of averaged aggregated forecasts than method GMM and the
use of the CP+ method for building experts leads to lower losses than the use of the CP method.

It is also shown that the AA aggregator has lower average losses than the WA aggregator over
the entire test period, which is consistent with the corresponding regret bounds.

The conducted comparative experiments showed the highest accuracy of forecasts when using
fuzzy sets of competence for aggregating experts. Perhaps even greater accuracy can be achieved
by using fuzzy competence areas when constructing conformal predictor distributions, i.e., when
calibrating predictions.
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