Generalized power series solutions of *q*-difference equations and the small divisors phenomenon¹

R.R. Gontsov², I.V. Goryuchkina³

²Institute for Information Transmission Problems of RAS, Russia
 ³Keldysh Institute of Applied Mathematics of RAS, Russia
 e-mail: gontsovrr@gmail.com, igoryuchkina@gmail.com

Abstract

The problem of the convergence of generalized formal power series (with complex power exponents) solutions of q-difference equations is studied in the situation where the small divisors phenomenon arises; a sufficient condition of convergence generalizing corresponding conditions for classical power series solutions is obtained; an illustrating example is given.

Keywords: *q*-difference equation, generalized power series solution, convergence, small divisors

Our talk is based on the joint work with A. Lastra, see [4]. We consider a q-difference equation

$$F(z, y, \sigma y, \sigma^2 y, \dots, \sigma^n y) = 0, \qquad z \in \mathbb{C},$$
(1)

where $F = F(z, y_0, y_1, \dots, y_n)$ is a polynomial and σ stands for the dilatation operator

$$\sigma: y(z) \mapsto y(qz),$$

 $q \neq 0, 1$ being a fixed complex number. We study the question of the convergence of its generalized formal power series solutions $y = \varphi$ of the form

$$\varphi = \sum_{j=0}^{\infty} c_j z^{\lambda_j}, \qquad c_j, \lambda_j \in \mathbb{C},$$
(2)

where $c_0 \neq 0$ and the sequence of the exponents λ_i possesses the following two properties:

- (i) $\operatorname{Re} \lambda_j \leq \operatorname{Re} \lambda_{j+1}$ for all $j \geq 0$,
- (ii) $\lim_{i \to \infty} \operatorname{Re} \lambda_i = +\infty.$

We note that the conditions (i), (ii) make the set of all generalized formal power series an algebra over \mathbb{C} . The definition of the dilatation operator extends naturally to this algebra after fixing the value of $\ln q$ by the condition $0 \leq \arg q < 2\pi$:

$$\sigma\left(\sum_{j=0}^{\infty} c_j z^{\lambda_j}\right) = \sum_{j=0}^{\infty} c_j q^{\lambda_j} z^{\lambda_j}.$$

Thus the notion of a generalized formal power series solution of (1) is correctly defined in view of the above remarks: such a series φ is said to be a *formal solution* of (1) if the substitution of $y_i = \sigma^i \varphi$, i = 0, 1, ..., n, into the polynomial F leads to a generalized power series with zero coefficients.

¹The research is carried out at IITP RAS under support of Russian Science Foundation, grant no. 22-21-00717, https://rscf.ru/en/project/22-21-00717/.

Formal solutions (2) generalize classical power series solutions of the form $\sum_{j=0}^{\infty} c_j z^j$. The convergence of the latter was widely studied within the last decades: there are two principally different cases, that of $|q| \neq 1$ (see [8], [5]) and that of |q| = 1, q not being a root of unity, where the small divisors phenomenon may arise (see [1], [2]). Namely, the coefficients c_j of a formal power series solution $\sum_{j=0}^{\infty} c_j z^j$ of (1) are determined recurrently via relations $Q(q^j) c_j = P_j(c_0, c_1, \ldots, c_{j-1})$, with some polynomials $Q, \{P_j\}$. Therefore the sequence q^j tends neither to infinity nor to zero if |q| = 1 and may come arbitrarily close to a root of Q, which may cause a high growth of the coefficients c_j obstructing the convergence of the series.

For the generalized formal power series solution (2) of (1), assume that each $F'_{y_i}(z, \varphi, \sigma\varphi, \ldots, \sigma^n\varphi)$ is of the form

$$\frac{\partial F}{\partial y_i}(z,\varphi,\sigma\varphi,\ldots,\sigma^n\varphi) = A_i z^\gamma + B_i z^{\gamma_i} + \ldots, \qquad \operatorname{Re} \gamma_i > \operatorname{Re} \gamma \ge 0,$$

 $\gamma \in \mathbb{C}$ being the same for all i = 0, 1, ..., n, and at least one of the A_i 's being non-zero. Then under a generic assumption on the power exponents λ_j of (2) that, starting with some $j_0 \in \mathbb{Z}_+$, the q^{λ_j} 's are not the roots of a non-zero polynomial

$$L(\xi) = A_n \xi^n + \ldots + A_1 \xi + A_0$$

of degree $\leq n$, one can assert that all $\lambda_j - \lambda_{j_0}$, $j > j_0$, belong to a finitely generated additive semi-group $\Gamma \subset \mathbb{C}$ whose generators $\alpha_1, \ldots, \alpha_s$ all have a positive real part (see Lemmas 1, 2 in [3]). Thus we may initially consider the formal solution (2) in the form

$$\varphi = \sum_{j=0}^{\infty} c_j z^{\lambda_j} = \sum_{j=0}^{j_0} c_j z^{\lambda_j} + \sum_{(m_1,\dots,m_s) \in \mathbb{Z}^s_+ \setminus \{0\}} c_{m_1,\dots,m_s} z^{\lambda_{j_0} + m_1 \alpha_1 + \dots + m_s \alpha_s}.$$
 (3)

For such a formal series solution the small divisors phenomenon does not arise if all the α_k 's lie strictly above or strictly under the line \mathcal{L} passing through $0 \in \mathbb{C}$ and having the slope $\ln |q|/\arg q$ (or, equivalently, all the q^{α_k} 's lie strictly inside or strictly outside the unit circle). This condition defines an analogue (and generalization) of the case of $|q| \neq 1$ in the classical situation. The convergence of (3) under such a condition was studied in our previous work [3]. Contrariwise, the placement of α_k 's on both sides of (or on) \mathcal{L} may cause the small divisors phenomenon. The study of this situation is the main subject of our present talk and we propose the following theorem on the convergence of φ .

Theorem 1. Let the generalized formal power series (3) satisfy (1). If deg L = n, $L(0) \neq 0$, and for each root $\xi = a$ of the polynomial $(\xi - q^{\lambda_{j_0}})L(\xi)$ the following diophantine condition is fulfilled:

$$\left| \left(\lambda_{j_0} + m_1 \alpha_1 + \ldots + m_s \alpha_s \right) \ln q - \ln a - 2\pi m \mathbf{i} \right| > c \left(m_1 + \ldots + m_s \right)^{-\nu} \quad \text{for all } m_i \in \mathbb{Z}_+, \ m \in \mathbb{Z}$$

$$\tag{4}$$

(with the exception of $m_1 = \ldots = m_s = 0$), where c and ν are some positive constants, then (3) has a non-zero radius of convergence (that is, it converges uniformly in any sector $S \subset \mathbb{C}$ of sufficiently small radius with the vertex at the origin and of the opening less than 2π defining there a germ of a holomorphic function).

Remarks 1. The diophantine condition of Theorem 1 is generically fulfilled. As for concrete examples, one can apply in particular Schmidt's result [6] from which it follows that (4) holds for $a = q^{\lambda_{j_0}}$, if

- 1. the real parts of all $\frac{1}{2\pi i} \alpha_1 \ln q, \ldots, \frac{1}{2\pi i} \alpha_s \ln q$ are algebraic and together with 1 linearly independent over \mathbb{Z} or
- 2. the imaginary parts of all $\frac{1}{2\pi i}\alpha_1 \ln q, \ldots, \frac{1}{2\pi i}\alpha_s \ln q$ are algebraic and linearly independent over \mathbb{Z} .

(If L has roots $\xi = a$ other than $q^{\lambda_{j_0}}$ then the number $\frac{1}{2\pi i} \ln(q^{\lambda_{j_0}}/a)$ should be added to the set of numbers in the above conditions 1, 2 for each such $a \neq q^{\lambda_{j_0}}$.)

The proof of the theorem is based on Siegel's ideas [7] of studying a first order equation $\sigma y = f(y)$ describing the linearization of a diffeomorphism f of $(\mathbb{C}, 0)$. This uses the majorant method adapted to our "multi-index case" for the construction of a convergent series majorizing (3).

Some particular placements of the α_k 's with respect to the line \mathcal{L} allow one to weak assumptions of Theorem 1. Therefore we formulate a separate statement which follows from Theorem 1 and distinguishes all these particular cases of the placement of the α_k 's on the plane.

Theorem 2. The statement of Theorem 1 holds in the following particular cases:

a) $L(0) \neq 0$ and all the α_k 's lie strictly above the line \mathcal{L} ;

b) deg L = n and all the α_k 's lie strictly under the line \mathcal{L} ;

c) all the α_k 's lie on the line \mathcal{L} and the condition (4) is fulfilled for those roots $\xi = a$ of the polynomial $(\xi - q^{\lambda_{j_0}})L(\xi)$ that lie on the circle $\{|\xi| = |q^{\lambda_{j_0}}|\};$

d) $L(0) \neq 0$, all the α_k 's lie above or on the line \mathcal{L} , and the condition (4) is fulfilled for those roots $\xi = a$ of the polynomial $(\xi - q^{\lambda_{j_0}})L(\xi)$ that lie inside the closed disk $\{|\xi| \leq |q^{\lambda_{j_0}}|\}$;

e) deg L = n, all the α_k 's lie under or on the line \mathcal{L} , and the condition (4) is fulfilled for those roots $\xi = a$ of the polynomial $(\xi - q^{\lambda_{j_0}})L(\xi)$ that lie outside the open disk $\{|\xi| < |q^{\lambda_{j_0}}|\}$.

Note that the small divisors phenomenon for classical power series solutions of (1) arising in the case of $q = e^{2\pi i \omega}$, $\omega \in \mathbb{R} \setminus \mathbb{Q}$, and studied in [1], [2], is contained in the case c) of Theorem 2: the line \mathcal{L} coincides with the Ox axis, $\lambda_{j_0} = 0$, the set of power exponents is generated by the unique $\alpha_1 = 1 \in \mathcal{L}$ and the condition (4) is reduced to

$$|j\omega - (1/2\pi i)\ln a - m| > cj^{-\nu}$$
 for all $j \in \mathbb{N}, m \in \mathbb{Z}_{+}$

in this case (see Th. 6.1 in [1] and Th. 8 in [2]).

Example 1. Consider a kind of a q-difference analogue of the Painlevé III equation with a = b = 0, c = d = 1:

$$y \sigma^2 y - (\sigma y)^2 - z^2 y^4 - z^2 = 0,$$

where $q = e^{2i\pi\omega}$, $\omega \in \mathbb{R} \setminus \mathbb{Q}$. This equation possesses a two-parameter family of formal solutions:

$$\varphi = \sum_{m_1, m_2 \in \mathbb{Z}_+} c_{m_1, m_2} \, z^{r+m_1(2-2r)+m_2(2+2r)},$$

where the complex coefficient $c_{0,0} \neq 0$ is arbitrary, $-1 < \operatorname{Re} r < 1$, the other complex coefficients c_{m_1,m_2} are uniquely determined by $c_{0,0}$ and r. The numbers $q^{2\pm 2r}$ lie on the opposite sides of the unit circle (if $\operatorname{Im} r \neq 0$) or on the unit circle (if $\operatorname{Im} r = 0$), whereas the second degree polynomial $L(\xi) = c_{0,0}(\xi - q^r)^2$ does not vanish at 0. Therefore taking r, ω in such a way that the condition of Theorem 1 holds,

$$|(m_1(2-2r)\omega + m_2(2+2r)\omega - m| > c (m_1 + m_2)^{-\nu}$$

for some positive c and ν , we obtain the convergent φ . For example, it is sufficient for ω to be algebraic and for r simply to have a non-zero imaginary part. Indeed, then for any $m_1 \neq m_2$ one has

$$|(m_1(2-2r)\omega + m_2(2+2r)\omega - m)| \ge 2|\omega \operatorname{Im} r| \cdot |m_2 - m_1| > c (m_1 + m_2)^{-\nu},$$

whereas for $m_1 = m_2$ it follows that

$$|(m_1(2-2r)\omega + m_2(2+2r)\omega - m)| = |4\omega m_1 - m| > c m_1^{-\nu}.$$

References

- Bézivin J.-P. Sur les équations fonctionnelles aux q-différences. Aequat. Math. 1992. Vol. 43. P. 159–176.
- [2] Di Vizio L. An ultrametric version of the Maillet-Malgrange theorem for nonlinear qdifference equations. Proc. Amer. Math. Soc. 2008. Vol. 136, N. 8. P. 2803–2814.
- [3] Gontsov R., Goryuchkina I., Lastra A. On the convergence of generalized power series solutions of q-difference equations. Aequat. Math. 2022. Vol. 96, N. 3. P. 579–597.
- [4] Gontsov R., Goryuchkina I., Lastra A. Small divisors in the problem of the convergence of generalized power series solutions of q-difference equations. 2022. arXiv: 2209.09365, 16pp.
- [5] Li X., Zhang C. Existence of analytic solutions to analytic nonlinear q-difference equations. J. Math. Anal. Appl. 2011. Vol. 375. P. 412–417.
- Schmidt W.M. Simultaneous approximation to algebraic numbers by rationals. Acta Math. 1970. Vol. 125. P. 189–201.
- [7] Siegel C.L. Iteration of analytic functions. Ann. of Math. 1942. Vol. 43, N. 4. P. 607–612.
- [8] Zhang C. Sur un théorème du type de Maillet-Malgrange pour les équations q-différencesdifférentielles. Asymptot. Anal. 1998. Vol. 17, N. 4. P. 309–314.