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Mutual Generation of the Choice
and Majority Functions

Elmira Yu Kalimulina

1 Introduction

The rapid growth of quantum computers and its application in the field of artificial
intelligence has led k-valued (in particular ternary) computing to be relevant again [1].
Also, the research and development of algorithms based on k–valued logic are very
relevant inmanyother fields such as, for example, telecommunications (developingof
new protocols [2], choosing optimal network routing scheme [3], data aggregation
schemes [4]), symbolic analysis of complex systems, software development and
detecting design errors, machine learning, etc.

The detailed review of k-valued logic applications was given in [5, 6]. Thus, the
problem of a full description of all closed classes of k-valued logic functions is very
crucial for progress in many fields of science and engineering. A fundamentally
essential problem—the problem of full description of closed classes of three-valued
logic functions [7]—must be solved to make the implementation of circuits with the
desired functional diagram possible [8]. The famous result by Emil Post relates to
the full description of all closed classes of Boolean functions (with respect to the
superposition operation) [9]. Later it had been described in detail in [10]. This result
let many problems of two-valued logic to be solved. Then the special case of the finite
generation of all closed two-valued logic classes with respect to a superposition
operation had been proved. But with the transition to a k-valued logic (k > 2) a
continuum of closed classes with respect to superposition operation appeared. And in
that case a complete description is impossible. There are not finitely generated classes
in k-valued logic case (see the example of Yanov and Muchnik [11]). Therefore, the
description of all finitely generated classes for k-valued logic is an open problem [12].

There are many results related to the description of family of classes of functions
closed with respect to a special operation. The operation of binary superposition
determined for the k-valued logic functions on the basis of their representation in the
binary number systemhas been considered in [13]. Criterion of implicit completeness
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50 E. Y. Kalimulina

in three-valued logic in terms of precomplete classes was considered in [14]. Several
sufficient conditions of finite generation are known. The most famous of them are:
the existence of a majority function in the class, of a choice function, and all unary
functions (see [15]).

This paper considers the problem of verifying the finite generation of classes
containing some subclass of one variable functions. We also give a description of
overlattices of classes in Pk containing some precomplete class of unary functions,
that has been given earlier by M.A. Posypkin in [16]. The finitely generation of
overlattices has been proved. It is also shown that any class consisting of monotone
functions and containing all monotone functions of one variable is finitely generated.
The finite precompleteness of some closed classes can not be checked under the
sufficient assumptions given above. These classes do not contain a choice function,
any majority function, all functions of one variable, and the set of any one-variable
function that is precompleted on all one-place functions. Some examples of such
closed classes have been given in this paper. The proof of finite generation of such
classes is based on the constant modelling method proposed in [17].

Let us introduce some standard notation and definitions [18]. Let Ek be the set
{0, 1, . . . , k − 1}. For every natural number n the set En

k is n-th Cartesian power
of a set Ek , and the mapping f : En

k → Ek is an n-place k-valued logic func-
tion. The set of all functions of k-valued logic is denoted by Pk . Let R be an
arbitrary set of k-valued logic functions. A superposition of functions over a set
R is defined by induction: (1) every function f from R is a superposition over
R; (2) if g0(x1, . . . , xn) is superposition over R and if gi (xi,1, . . . , xi,mi ) is either
a superposition over R for any i = 1, . . . , n, or xi,l(1 ! l ! mi ), then a function
g0(g1(x1,1, . . . , x1,m1), . . . , gn(xn,1, . . . , xn,mn )) is superposition over R.

The closure (with respect to superposition) of a set R is the set of all superpositions
over R. The closure of a set R is denoted by [R]. Obviously, R ⊆ [R]. A set R of
k-valued logic functions is called a (functionally) closed class if [R] = R.

We call a set of functions Q generates a closed class R (or the class R is generated
by a set of functions Q) if [Q] = R. If a closed class R is generated by a finite set
of functions, then R is called finitely generated. If the set Q generates a closed class
R, then we say the set Q is complete in the class R.

A set Q is called a precomplete class in the closed class R if Q ⊆ R, [Q] ̸= R
and [Q ∪ { f }] = R holds for every function f that does not belong to Q but belongs
to R.

Let eni (x1, . . . , xi , . . . , xn) denote a k-valued logic function for any natural n and
any i , 1 " i " n. The values of eni coincide with the values of the variable xi . The
functions eni are called selector functions. The function e11(x) is also denoted by x .

2 Majority Functions and the Choice Function

Definition 1 If µ(x, y . . . , y) = µ(y, x . . . , y) = · · · = µ(y, y . . . , x) = y, then a
function µ(x1, . . . , xn) is called a majority function for any n " 3.
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For example, d3(x1, x2, x3) = x1 · x2 ∨ x2 · x3 ∨ x1 · x3 is a majority function,
where x · y = min(x, y), x ∨ y = max(x, y).

The set of all functions of no more than s variables obtained from the function f
by identifying variables is denoted by As( f ) for any function f (x1, . . . , xn) and any
s, s " 1.

If s > n, then we set As( f ) = { f }.
The idea of proving the following theorem belongs to K. Baker andA. Pixley [19].

Theorem 1 (see also [20]) If µ(x1, . . . , xm+1) is a majority function of m +
1 variables, where m " 2, then we have f ∈ [{µ} ∪ Akm ( f )] for any function
f (x1, . . . , xn) ∈ Pk, where k " 2.

Corollary 1 Let F = [F] ⊆ Pk, k " 2, µ(x1, . . . , xm+1) ∈ F, µ be a majority func-
tion. Then F is finite generated.

Let E ⊂ Ek . Let us consider a special case of the majority function.

Definition 2 A function g(x1, . . . , xn) ∈ Pk , k " 3 is called a majority function on
the set E if

g : En
k → E

and g(x, y . . . , y) = g(y, x . . . , y) = · · · = g(y, y . . . , x) = y holds for any n " 3
and for all x, y ∈ E .

Let us show that the property similar to one considered in Theorem 1 holds for a
majority function on the set E .

Let PE
k for any k " 2 denote the set of all functions from Pk taking values from

the set E and all selector functions from Pk .

Theorem 2 (see also [21]) Let the closed class F ⊆ Pk, k " 3 contain a function
g(x1, . . . , xm), that is a majority on the set E. Then the class F ∩ [PE

k ] is finitely
generated.

Consider the another function called a choice function.

Definition 3 (Choice function). If y = i , where i = 0, 1, . . . , k − 1, then the func-
tion ϕ(y, x0, . . . , xk−1) = xi is called the choice function in Pk for any k " 2.

For example, xy ∨ x̄ z is the choice function in P2. A sufficient condition for the
finiteness of class can be obtained via the choice function. And the following theorem
gives an answer.

Theorem 3 Letϕ(y, x0, . . . , xk−1)bea choice function, and F is anarbitrary closed
class in Pk, k " 2 such, that ϕ, 0, . . . , k − 1 ∈ F. Then F is finitely generated.

Proof This statement follows from the decomposition, that holds for any arbitrary
function f (x1, . . . , xn) from the class F . It may be checked by substituting the con-
stants 0, . . . , k − 1 instead of the first variable. Let f (x1, . . . , xn) be an arbitrary
function from the class F , then f (x1, . . . , xn) = ϕ(x1, f (0, x2, . . . , xn), . . . , f (k −
1, x2, . . . , xn)). Applying a similar decomposition for f (0, x2, . . . , xn), …, f (k −
1, x2, . . . , xn) and further for all other subfunctions, we can obtain that F ⊆
[{ϕ(y, x0, . . . , xk−1), 0, . . . , k − 1}]. The reverse inclusion is obvious.
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2.1 Mutual Generation of the Choice Function and Majority
Functions

Theorem 4 Let the choice function ϕ(y, x0, . . . , xk−1) in Pk, k " 2 belong to the
closed class F. Then F contains some majority function.

Proof Let ϕl(z2, z3), where l = 0, . . . , k − 1 denote the function obtained from
ϕ(y, x0, . . . , xk−1) by the following identification of the variables: y = xl = z2, and
for all j ̸= l, j ∈ {0, 1, . . . , k − 1} x j = z3.

Let
µ(z1, z2, z3) = ϕ(z1,ϕ0(z2, z3), . . . ,ϕk−1(z2, z3)).

Since ϕ(x, x, . . . , x) = x and ϕ(y, x, . . . , x) = x , then

µ(z2, z1, z1) = ϕ(z2,ϕ(z1, z1, . . . , z1), . . . ,ϕ(z1, z1, . . . , z1)) = ϕ(z2, z1, . . . , z1) = z1.

We emphasize that if z1 = i for any i ∈ {0, 1, . . . , k − 1}, then ϕi (z2, z1) =
ϕi (z2, i) = i , ϕi (z1, z2) = ϕ1(i, z2) = i .

Then
µ(z1, z2, z1) = ϕ(z1,ϕ0(z2, z1), . . . ,ϕk−1(z2, z1)) = z1,

and
µ(z1, z1, z2) = ϕ(z1,ϕ0(z1, z2), . . . ,ϕk−1(z1, z2)) = z1.

Hence, µ(z1, z2, z3) is a majority function.

The converse statement is not true: the choice function cannot be generated by
an arbitrary majority function. However, there are majority functions whose closure
the choice function belongs to.

Theorem 5 The majority function µ in Pk, k " 2, generation a choice function
ϕ(y, x0, . . . , xk−1) exists.

Proof Let us define the function µ(x1, . . . , x2k+2) as a majority function on sets
(x, y . . . , y), (y, x . . . , y),. . . , (y, y . . . , x), x, y ∈ Ek . Let i , a ∈ {0, 1, . . . , k − 1}.
Then suppose that function µ takes the value a on all sets such that x1 = x2 = i ,
x2i+3 = x2i+4 = a.

It is obvious that a function

ϕ(x1, x3, . . . , x2k+1) = µ(x1, x1, x3, x3, . . . , x2k+1, x2k+1)

is a desired choice function.

We denote by M the set of all functions from Pk that are monotone with respect
to the linear order (0 < · · · < k − 1).

Let for i = 0, 1, . . . , k − 1
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Ji (x) =
{
k − 1, x " i
0, x < i.

Let for i = 0, 1, . . . , k − 1

ji (x) =
{
1, x " i
0, x < i.

Definition 4 For any k " 3 a monotone function ϕM ∈ Pk defined as

ϕM(y, x0, x1, . . . , xk−1) = Jk−1(y)xk−1 ∨ · · · ∨ J1(y)x1 ∨ x0,

is called a monotone choice function in Pk .

Theorem 6 (property of a monotone choice function)

M = [{ϕM , 0, 1, . . . , k − 1}].

Proof Let f (x1, . . . , xn) be an arbitrary function from M . Then f (x1, . . . , xn) =
Jk−1(x1) f (k − 1, x2, . . . , xn) ∨ · · · ∨ J1(x1) f (1, x2, . . . , xn) ∨ (0, x2, . . . , xn).

This equality is verified directly by substituting the values of the variable x1
and using the definition of monotonic function f . Then we apply this expansion to
all subfunctions. Hence, it follows that M ⊆ [{ϕM , 0, 1, . . . , k − 1}]. The reverse
inclusion is obvious.

Consider a set consisting of functions f for which there exists a number i : 1 !
i ! n such that f (x1, . . . , xi−1, k − 1, xi+1, . . . , xn) = k − 1 independently of the
values of the other variables. This set of functions will be denoted by Fk−1. It is easy
to see that this is a closed class.

Note that ϕM ∈ Fk−1. It is enough to consider a set in which the value of the
variable x0 is equal to k − 1, and the values of the other variables are arbitrary. On
any set with this property, the monotone choice function takes a value equal to k − 1.

Theorem 7 Let µ to be arbitrary majority function, then µ /∈ [ϕM ].
Proof Since [ϕM ] ⊆ Fk−1, it is sufficient to show that a majority function doesn’t
lie in Fk−1.

Let some majority function µ(x1, . . . , xn), n " 3 lie in Fk−1. Then, due to the
property that all functions from Fk−1 have, there is a number i : 1 ! i ! n such
that if the variable xi = k − 1, then µ(x1, . . . , xi−1, k − 1, xi+1, . . . , xn) = k − 1
regardless of the values of the other numbers.

Consider a set α̃ such that αi = k − 1, and α j = 0 for all j ̸= i , j = 0, 1, . . . , n.
Then, on the one hand µ(α̃) = 0, since µ is a majority function, and on the other
hand µ(α̃) = k − 1, since µ is contained in Fk−1. We’ve got a contradiction.

A monotone choice function cannot be generated by an arbitrary monotone majority
function. However, there are monotonic majority functions, the closure of which
belongs to a monotone choice function.
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Theorem 8 A monotone majority function µ in Pk generating a monotone choice
function ϕM(y, x0, . . . , xk−1) exists.

Proof Set k = 3. Define the function µ(x1, . . . , x8) as a majority on the follow-
ing sets: (x, y . . . , y), (y, x . . . , y), . . . , (y, y . . . , x), x, y ∈ E3. Then set function
µ = a for any a, b, c ∈ {0, 1, 2} on all sets such that x1 = x2 = 0, x3 = x4 = a;
set function µ = max(a, b, c) on all sets such that x1 = x2 = 1, x3 = x4 = a, x5 =
x6 = b; and set µ equal to max(a, b, c) on all sets where x1 = x2 = 2, x3 = x4 = a,
x5 = x6 = b, x7 = x8 = c.

On the other sets, we can redefine the function by monotony. It’s clear that
ϕ(x1, x3, x5, x7) = µ(x1, x1, x3, x3, x5, x5, x7, x7) is the desired monotone choice
function.

The majority function of 2n + 2 variables is constructed similarly. By pairwise
identification of variables (see k = 3) we obtain a function of n + 1 variable. That
function is a desired monotonic choice function.

3 Description of Classes, that Include a Class of Unary
Functions, or Pre-complete Class of Unary Functions

Firstly, we need the following definitions and notation.
We say that a function f (x1, . . . , xi−1, xi , xi+1, . . . , xn) from Pk essentially

depends on the variable xi , if there are such values a1, a2, . . . , ai−1, ai+1, . . . , an ∈
Ek of variables x1, . . . , xi−1, xi , xi+1, . . . , xn such that

h(x) = f (a1, . . . , ai−1, x, ai+1, . . . , an)

doesn’t equal to the constant identically.
In this case, the variable xi is called essential. A variable is called dummy if the

function f (x1, . . . , xn) does not depend on it essentially.
Let f, g ∈ Pk . We say that f = g if one of them can be obtained from the other

by adding or removing dummy variables.
Let x̃ to denote the set of numbers x1, . . . , xn, n " 1.
Let F be a closed class in Pk , then F(n) is the set of all functions from F that

depend on the variables x1, . . . , xn . F (n) is the set of all functions F taking at most n
values. CR(F) is the set of all precomplete classes in the closed class F ⊆ Pk . PSk
is the set of all unary functions taking exactly k values.

Definition 5 A function f (x1, . . . , xn) that takes no more than two values is called
quasilinear if for any number of the variable i , where (1 ! i ! n), and any two
elements α,β ∈ Ek one of two following relations holds:
either for any γ1, . . . , γi−1, γi+1, . . . , γn ∈ Ek

f (γ1, . . . , γi−1,α, γi+1, . . . , γn) = f (γ1, . . . , γi−1,β, γi+1, . . . , γn),
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or for any γ1, . . . , γi−1, γi+1, . . . , γn ∈ Ek

f (γ1, . . . , γi−1,α, γi+1, . . . , γn) ̸= f (γ1, . . . , γi−1,β, γi+1, . . . , γn).

The set of all quasilinear functions in Pk will be denoted by LQk .
The problem of enumerating of all closed classes of k-valued logic containing all

functions of one variable was solved by G.A. Burle [15].

Theorem 9 (see [15]) Functionally closed classes of functions of k-valued logic
that contain all functions of one variable are following classes: Pk(1), LQk ∪ Pk(1),
P (2)
k ∪ Pk(1), . . . , P

(k−1)
k ∪ Pk(1), Pk and are only them.

The k-valued classes Pk(1), LQk ∪ Pk(1), P
(2)
k ∪ Pk(1), . . . , P

(k−1)
k ∪ Pk(1), Pk

are called Burle’s classes. The proof of the Theorem 9 is based on the following
property of Burle’s classes: Pk(1) is precomplete class in LQk ∪ Pk(1), LQk ∪ Pk(1)
is precomplete class in P (2)

k ∪ Pk(1), P
(l)
k ∪ Pk(1) is precomplete class in P (l+1)

k ∪
Pk(1) for 2 ! l ! k − 2, P (k−1)

k ∪ Pk(1) is precomplete class in Pk . It’s easy to see
from this property that all Burle’s classes are finitely generated. In other words, all
closed classes of k -valued logic containing all functions of one variable are finitely
generated.

The problem of finding functionally closed classes containing a given class of
functions of one variable was formulated by S.G. Gindikin (as it was point out by
G.A. Burle). For classes containing precomplete classes of the set of all one-place
functions, this problem was solved by M.A. Posypkin [16].

Theorem 10 ([16]) Let k " 3 and CR(PSk) = {V1, . . . , Vrk }. Then the set
CR(Pk(1)) consists of classes P

(k−2)
k ∪ PSk, V1 ∪ P (k−1)

k , . . . , Vrk ∪ P (k−1)
k .

Corollary 2 Let G ∈ CR(Pk(1)), k " 3. Then 1 ∈ G.

Proof The Theorem 10 describes the setCR(Pk(1)). LetCR(PSk) = {V1, . . . , Vrk }.
Then the set CR(Pk(1)) consists of classes P (k−2)

k ∪ PSk , V1 ∪ P (k−1)
k , . . . , Vrk ∪

P (k−1)
k .

(1) The class P (k−2)
k ∪ PSk contains one, since 1 ∈ P (k−2)

K .
(2) Classes V1 ∪ P (k−1)

K , . . . , Vrk ∪ P (k−1)
k contain one, since 1 ∈ P (k−1)

k .

Remark In the case k = 3, the class P (k−2)
k ∪ PSK coincides with the class of all

linear unary functions L3(1).

An overlattice of a class G is the set of all classes F ⊆ Pk such that G ⊆ F .
A complete description of the overlattices of precomplete in Pk(1) classes for

k = 3 is described by the following theorem.

Theorem 11 ([16]) 1. Let V ∈ CR(PS3). Then the closed class V ∪ P (2)
3 (1) has a

finite overlattice consisting of the following classes:
V ∪ P (2)

3 (1), P3(1);
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V ∪ P (2)
3 (1) ∪ LQ3, P3(1) ∪ LQ3;

V ∪ P (2)
3 (1) ∪ P (2)

3 , P3(1) ∪ P (2)
3 ;

P3.
2. The class L3(1) has a finite overlattice consisting of the following closed classes:
L3(1), L3, P3(1), LQ3 ∪ P3(1), P

(2)
3 ∪ P3(1), P3.

4 Conclusion

In this paper, the problemof verifying the finite generation of classes containing some
subclass of functions of one variable has been considered. We also give a description
of the over lattices of classes in Pk containing some precomplete class of unary
functions. The finite generation of overlattices has been proved. The completeness
problem for this operator has a solution. It is possible to describe the sublattice of
closed classes in the general case of closure of functions with respect to the classical
superposition operator.

In further papers relying on the above results, we plan to show that any class
containing any of the precomplete classes of the set of unary functions in P3 is
finitely generated.

Funding This publication was prepared with the support of the Russian Foundation for Basic Research
according to the research project No. 20-01-00575_A.
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