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Lattice Structure of Some Closed Classes
for Non-binary Logic and Its
Applications

Elmira Yu. Kalimulina

Abstract The paper provides a brief overview of modern applications of multi-1

valued logic models, where the design of heterogeneous computing systems with2

small computing units based on three-valued logic gives the mathematically better3

and more effective solution compared to binary models. It is necessary for applica-4

tions to implement circuits comprised from chipsets, the operation of which is based5

on three-valued logic. To be able to implement such schemes, a fundamentally impor-6

tant theoretical problem must be solved: the problem of completeness of classes of7

functions of three-valued logic. From a practical point of view, the completeness of8

the classes of such functions ensures that circuits with the desired operations can9

be produced from on an arbitrary (finite) set of chipsets. In this paper, the closure10

operator on the set of functions of three-valued logic, that strengthens the usual sub-11

stitution operator has been considered. It was shown that it is possible to recover the12

sublattice of closed classes in the general case of closure of functions with respect13

to the classical superposition operator. The problem of the lattice of closed classes14

for the class of functions T2 preserving two is considered. The closure operator R115

for which functions that differ only by dummy variables are considered to be equiv-16

alent is considered in this paper. A lattice is constructed for closed subclasses in17

T2 = { f | f (2, . . . , 2) = 2} – class of functions preserving two18
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2 E. Yu. Kalimulina

1 Introduction21

A ternary system is the most optimal from the point of view of information density22

[9]. The generalization for multi-valued logic is the ternary logic [2, 3]. Further,23

without loss of generality instead of multivalued case a ternary logic model may24

be considered. In ternary logic, a statement is assigned one of three values: “true”,25

“false”, “undefined” [2, 4, 9]; in binary logic—two: either “true” or “false”. Symmet-26

ric form of number representation based on three-valued logic simplifies a processing27

of negative numbers, since it requires an extra bit to store the sign [4].28

Some features of the operation logic of a ternary computer, for example, the29

representation of negative numbers, give possibilities for design more reliable and30

high-performance modern systems, that will be useful for many modern applications.31

Mathematically, ternary logic is more efficient than binary logic [2, 4, 9]. Research32

and development of algorithms based on three-valued logic are very relevant [8], for33

example, in telecommunications [7, 10], in the field of artificial intelligence (AI)34

[6], quantum computing [7, 11–13], medicine, physics [14]. This is confirmed by35

a significant increase of the number of scientific publications in leading scientific36

journals related to various applications of three-valued logic over the past few years37

[17].38

1.1 A Brief Overview of Modern Applications of Multivalued39

Logic40

Here are examples of several applications where the construction of algorithms based41

on three-valued logic provides greater efficiency and turns out to be preferable in42

comparison with two-valued logic. For more detailed overview, you can read refer-43

ences.44

Reliability analysis of structural processes and factors assessment of technical45

systems Multi-valued logic allows to consider qualitative variables instead of quanti-46

tative ones. Quantitative indicators (factors) are discretized by mapping into a certain47

m-interval scale. This approach allows you to combine quantitative and qualitative48

indicators within the single model. The reliability of the factors decreases minimally49

with such discretisation. This allows to investigate the model as fully as possible. This50

is especially effective in situations where there is no way to quantify the impact of a51

particular factor on the process. The use of qualitative variables provides additional52

opportunities for assessing factors.53

Simulation of processes and modern design languages Simulation is the only avail-54

able way to check the quality and reliability of complicated and expensive technical55

systems at their design stage. Automated design tools allow you to assess quality56

based on real-world operating conditions. Temporary simulation of circuits in an57

automated simulation system is often based on the principles of three-valued logic.58
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Lattice Structure of Some Closed Classes for Non-binary Logic and Its Applications 3

Design of data transmission and processing systems Ternary logic is effective in59

constructing computing units for equipment of data transmission networks. Poten-60

tially, the transmission of three states instead of two bits at a time can increase the data61

transfer rate by 1.5 times. With an increase of the number of trits (instead of bit) the62

speed can grow exponentially [10, 18, 19]. It is possible to implement solutions for63

data aggregation and transmission based on multivalued logic. These solutions will64

provide a single high-dimensional space for network addressing—both for standard65

purposes of data transmission [15] and for new tasks for controlling robotic devices66

for the Internet Of Things [7].67

Three-valued logic is also effective both for solving problems of image processing68

[5] and for problems of cryptography. Quantum computing for data security is the69

most effective method of protecting mobile robots, the Internet of Things (IoT) and70

security of distributed applications. That also uses multi-valued logic models. With71

the rapid growth of quantum computers, ternary computing has become relevant again72

[5, 12, 13]. The leading IT companies have introduced their quantum computers73

operating on several dozen of qubits in the last decade: IBM quantum processors74

consist of 65 qubits, Google has 72 [20]. The developers plan to release a 1112-qubit75

processor called “Condor” by 2023, that should bring quantum technologies to a new76

commercial level [20].77

Also, at present, the multi-valued logic toolkit is widely used in tasks related78

to data analysis and the construction of AI models, for example, in the tasks of79

hierarchical data clustering for arbitrary complicated data sets [6, 7]. Interpretation80

models via 3-valued logic allows to overcome exiting limitations on the ability to81

create fully automatic program-analysis algorithms [1].82

At the end of this short overview of multivalued logic models, the application83

in economic research should be mentioned: models of collective behavior and the84

problem of collective choice, where “cyclical logic” arises as a special case of k-85

valued logic [21].86

2 Theoretical Aspects of Designing of Computing Systems87

Based on Three-Valued Logic88

All applied problems considered above are reduced to the problem of determining89

the factors that have an influence on the process and considering a countable set P390

of states of these factors. Any countable number of states can be approximated by91

basically three states [23]: 0, 1, 2.92

And for a decision making someone need to find the value of the output function93

Y that depends on this set. Accordingly, the output function Y can be represented as a94

combination of predicates on the set P3 [22]. For this purpose complicated predicates95

and superpositions of these predicates on P3 will be considered.96

These predicates can be implemented (from practical point of view) as circuits of97

chips, the operation of which is based on three-valued logic.98
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4 E. Yu. Kalimulina

2.1 Completeness of Functions Classes of Three-Valued99

Logic100

A fundamentally important problem—the problem of completeness of classes of101

functions of three-valued logic [22]—must be solved to make this implementation102

possible. From the practical point of view, the completeness of the classes of functions103

guarantees that a circuit with the desired functional diagram can be produced based104

on an arbitrary finite number of chipsets. For two-valued logic, this problem was also105

solved by Emil Post, which led to the explosive growth of electronics [24].106

Post’s classical theorem describes five precomplete classes in the set of Boolean107

functions [24].108

For the case of three-valued logic, the problem was solved by Yablonsky in 1958109

[22, 23]. He proved that there are 18 precomplete classes for functions of three-110

valued logic. In the papers [22, 23], the closure of the set of functions with respect111

to the substitution operator was considered.112

Unfortunately, for three-valued logic it was proved that this problem cannot be113

solved in a general case [23]. If the lattice of closed classes is countable in the case114

of two-valued logic, then it is exponential in the case of three-valued logic. However,115

its closure operators on the set of three-valued logic functions can be considered,116

which are a strength of the common substitution operator.117

Solving the completeness problems for this new closure operator and finding the118

structure of the lattice of closed classes will help not only to restore the sublattice of119

closed classes in the general case of closure of functions with respect to the classical120

superposition operator, but also will optimize the possible production of chips for121

functional circuits for solving the problem described above in the Introduction.122

Consider a variant of the closure operator R∞, for which functions that differ only123

in dummy variables are considered equivalent. Let us construct a lattice for closed124

subclasses in T1 = { f | f (1, . . . , 1) = 1} — in the class of functions preserving two.125

2.2 Lattice of Closed Subclasses T2 with Respect to R∞126

Definition 1 Let f (x1, . . . , xi , . . . , xn) ∈ P3, |X f | = n, then xi called R∞-127

essential for f, if there are sets αn
1 = (a1, . . . , ai−1, b1, ai+1, . . . , an), αn

2 =128

(a1, . . . , ai−1, b2, ai+1, . . . , an) such that f (αn
1 ) ∼ f (αn

2 ).129

Completeness in T2130

Definition 2 Use the following notation T 02 def= { f |∃i ∈ {1, X f } : α =131

(a1, . . . , aX f ), ai ∈ {0, 2} ⇒ f (α) = 2}132

T 12 def= { f |∃i ∈ {1, X f } : α = (a1, . . . , aX f ), ai ∈ {1, 2} ⇒ f (α) = 2}133

T 02 def= { f |α = (a1, . . . , aX f ); ai ∈ {0, 2}, i ∈ {1, X f } ⇒ f (α) = 2}134

T 12 def= { f |α = (a1, . . . , aX f ); ai ∈ {1, 2}, i ∈ {1, X f } ⇒ f (α) = 2}135
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Lattice Structure of Some Closed Classes for Non-binary Logic and Its Applications 5

Lemma 1 The class T 02− is R∞-closed.136

Lemma 2 The class T 12− R∞ is closed.137

Proof of Lemma 1. Note that neither the permutation of variables nor identification138

or addition of inessential (dummy) ones affect the property functions belong to class139

T 02. This follows obviously from the class definitions.140

It is also obvious that if f ∈ T 02, then for any function g( f ∼ g) it’s true that141

g ∈ T 02.142

Now show that the superposition of functions from the class T 02 will also lie in143

class T 02.144

Let f ∈ T 02, f = f (x1, . . . , xn). Consider the function h = f (g1, . . . , gn),145

where gi− are either free variables or functions from the set T 02.146

By contradiction, let h /∈ T 02, then there is a set α = (a1, . . . , a|Xh |), ai ∈147

{0, 2}, 1 ≤ i ≤ |Xh |, such that it’s true that h(α) '= 2.148

And by the construction of the function h, and under the condition that f ∈149

T 02 there is such i that the function gi (β) '= , where β = (b1, . . . , b|Xgi |), 1 ≤ bi ≤150

|Xgi |—projection of vector α on the coordinate axes corresponding to free variables151

of the function gi .152

Thus the function gi /∈ T 02, but that contradicts the choice of function gi . Thus153

h ∈ T 02.154

The lemma 1 is proved.155

The Lemma 2 can be proved by repeating the sketch of the proof of lemma 1 (by156

formal replacing of T 02 by T 12).157

Lemma 3 The class T 02− R∞ is pre-complete in the class T2.158

Proof Note that the class T2 = R∞({, }), where f (|X f | = 2)&( f (α) = 2 if and159

only if when α = (2, 2)), g(|Xg| = 1)&(g ∈ T2)&(g /∈ T∼).160

Let there be a function w(w /∈ T 02). Then by definition there is a set α =161

(a1, . . . , a|Xw |), ai ∈ {0, 2}, 1 ≤ i ≤ |Xw| such that w(α) '= 2.162

Let’s move on from the function w to function w′, derived from w by identifying163

variables according to the set α. Namely, variables in the set α will be identified with164

the same values. Thus, the whole set of variables of the function w may be split into165

two groups: with respect to 0 and with respect to 2. By identification, that gives the166

function w′(|Xw′ | = 2)&(w′ /∈ T 02).167

Let without loss of generality w′(0, 2) = 1. If this is not true, then by rearranging168

the variables and moving to function w′′(w′′ ∼ w′) the function with the specified169

property can be obtained easily.170

If the vector α does not contain elements equal to 2, then the function that ∼ a171

function w′ and satisfies the required properties may be considered.172

Note that a function g(g ∈ T 02)&(|Xg| = 1)&(g /∈ T∼) exists. Consider a func-173

tion w′′(w′′ ∼ w) such that:174

w′′(α) =






1, α = (2, 0)

2, w′(α) = 2
0, otherwise.
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6 E. Yu. Kalimulina

Consider a functionv1(x, y) = g(w′′(x, y)).The propertyv1(α) = 1 for this func-175

tion holds if and only if when α = (0, 2). Also consider a function v2 = v2(x, y) =176

v1(y, x). It is easy to see that by construction it gives {v1, v2} ⊆ R∞(T ′∈ ∩ !).177

Consider the function d such that:178

d(α) =
{

2, ai ∈ {0, 2}, 1 ≤ i ≤ 2
1, otherwise.

,α = (a1, a2).

It’s obviously that d ∈ T 02. Let’s construct a function m:179

m(x, y) = d(d(v1(x, y), d(x, y)), v2(x, y))

m(α) =
{

2, a1 = 1, 1 ≤ i ≤ 2
1, otherwise.

,α = (a1, a2).

By the fact that the function 2 ∈ T 02 a function f can be constructed such that:180

f (x, y) = m(m(x, 2), m(y, 2))

f (α) =
{

2, ai = 2, 1 ≤ i ≤ 2
1, otherwise.

,α = (a1, a2).

It was mentioned above that R∞({{, }}) = T∈. But by construction it can be181

obtained that f ∈ R∞(") ⊆ R∞(!, T ′∈), and by definition g ∈ T 02, therefore T2 =182

R∞(!, T ′∈).183

The lemma is proved.184

Lemma 4 Let f ∈ T2 and f /∈ T01. Then 2 ∈ R∞({)185

Proof Consider the function h(x) = f (x, . . . , x). It is easy to show that if h /∈ T01,186

then 2 ∈ R∞(〈).187

Let h ∈ T01. Note that for any g(|Xg| = 1)&(g ∈ T01) it holds that g ∈ R∞(〈). by188

condition f /∈ T01, hence there is a set α = (α1, . . . ,αn), n = |X f |,αi ∈ {0, 1}, 1 ≤189

i ≤ n such that f (α) = 2. Construct a function f ′ = f (g1, . . . , gn), |Xgi | = 1, gi ∈190

T01, 1 ≤ i ≤ n, at thatgi (0) = αi .Note that {gi , h} ⊂ R∞({) therefore f ′ ∈ R∞({).191

Consider a function h′(x) = f ′(x, . . . , x). By construction it can be obtained that192

h′(0) = h′(2) = 2, and therefore according to the already considered case we have193

2 ∈ R∞(〈′) ⊂ R∞({).194

The lemma is proved.195

Lemma 5 A class T∼ ∩ T2− is R∞−precomplete in T2.196

Proof Let f /∈ T∼, f ∈ T2, |X f | = n. Let us show that R∞({{ ∪ T∼ ∩ T∈}) = T∈.197

Note that, by definition, there are at least two sets α1 = (a1
1, . . . , a1

n) and α2 =198
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Lattice Structure of Some Closed Classes for Non-binary Logic and Its Applications 7

(a2
1, . . . , a2

n) such that α1 ∼ α2, and f (α1) ∼ f (α2). Identify variables in f accord-199

ing to the coincidence of identical pairs in vectors α1 and α2. Concretely if200

(a1
i , a2

i ) = (a1
j , a2

j ), then i−th and j−th variables are identified. Thus the function201

f ′ of five variables satisfying the following condition has been obtain202

f ′(0, 1, 2, 0, 1) ∼ f ′(0, 1, 2, 1, 0)

Without loss of generality, it can be assumed that after identification variables the203

function f ′ will have exactly this order variables. Otherwise, the variables will be204

reordered. Also note that some of the variables of the function f ′ can be dummy.205

Note that there is 2, g ∈ T∼ ∩ T2(g(0) = 1, g(1) = 0). Let’s move on from the206

function f ′ to a function f ′′ = f ′(g(x1), x1, 2, x2, x3), f ′′ ∈ R∞(T∼ ∩ T∈). A func-207

tion f ′′ satisfies the property208

f ′′(0, 0, 1) ∼ f ′′(1, 0, 1)

Let without loss of generality f ′′(1, 0, 1) = 2.209

There are functions f ∈ T∼ ∩ T2, such that f (α) = 2 if α = (2, . . . , 2). Denote210

the set of such functions as N . Let us show by a construction that R∞({{′′,N}) = T2.211

Let h ∈ T2 – arbitrary function. Consider the functions g0, g1, g2 ∈ N (|Xgi | =212

|Xh | = n).213

g0(α) =
{

2, α = (2, . . . , 2)

0, otherwise.

g1(α) =
{

2, α = (2, . . . , 2)

1, otherwise.

g2(α) =






2, α = (2, . . . , 2)

1, h(α) = 2,

0, h(α) '= 2,

Consider the function h′(x1, . . . , xn) = f ′′(g2(x1, . . . , xn), g1(x1, . . . , xn),214

g0(x1, . . . , xn)). By construction h′ ∼ h. Thereby R∞(〈′) = R∞(〈) ⊆215

R∞({{′′,N }) ⊆ R∞({, T∼ ∩ T∈). Due to the arbitrariness of the function h ∈ T2216

we get T2 ∈ R∞({{, T∼ ∩ T∈}).217

The lemma is proved.218

Lemma 6 A class T01 ∩ T2 – R∞-precomplete in T2.219

Proof Consider the function f /∈ T01 ∩ T2, f ∈ T2. By Lemma 4 R∞(∈, T′∞ ∩220

T∈) ⊆ R∞({, T′∞ ∩ T∈). Let h ∈ T2 — arbitrary function from T2. Note that there221

is a function g ∈ T01 ∩ T2, satisfying the following property:222

g(0, 2) ∼ g(1, 2)
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8 E. Yu. Kalimulina

Without loss of generality g(1, 2) = 2.223

Consider the function m ∈ T01 ∩ T2(|Xm | = |Xh| = n) such that:224

m(α) =






2, α = (2, . . . , 2)

1, h(α) = 2,

0, h(α) '= 2,

The function h′(x1, . . . , xn) = g(m(x1, . . . , xn), 2) satisfies the property h ∼ h′
225

by construction. In this way h ∈ R∞(〈′) ⊆ R∞({∈, T′∞ ∩ T∈}) ⊆ R∞({{, T′∞ ∩226

T∈}). By the arbitrary function h we have T2 ∈ R∞({, T′∞ ∩ T∈).227

The lemma is proved.228

Now it is possible to formulate the main result that follows from these lemmas229

Theorem 1 (Completeness) There are five pre-complete classes in T2.230

2.3 The Completeness Problem for the Operator R∞231

Let M be a given set of functions from P3. Denote the result of the closure of the set
of functions M with respect to operation of substitution and transition of the function
g to the equivalent function f ∼ g as R∞(M), where

f ∼ g ⇔ ∀x [ ( f (x) = g(x)) ∨ ( f (x), g(x) ∈ {0, 1}) ].

Consider classes: T01 — class of functions preserving the set {0, 1}, T2 — function232

class preserving two, and class T∼ (also T{01},{2} (U (R)) — function class, preserving233

the relation ∼ .234

It is easy to see that with passing from the function f to the function g property of235

belonging to classes T2, T01, T∼ is preserved. In this way due to the fact that classes236

T2, T01, T∼ are precomplete with respect to the substitution, and completion does237

not add new functions, then the following lemma is obtained:238

Lemma 7 Classes T2, T01, T∼ are R∞-precomplete.239

Lemma 8 Let f /∈ T01, Then 2 ∈ R∞({).240

Proof It is easy to check that if h(x) /∈ T01 is a 1-place function, then 2 ∈ R∞(〈).241

Thus, if the function g(x) = f (x, . . . , x), g /∈ T01, then the lemma is proved.242

Let g ∈ T01. By condition, there is a set α = (a1, . . . , an), ai ∈ {0, 1} such that243

f (α) = 2. Consider a function f ′ such that244

g′(x) = f (g1(x), . . . , gn(x))

where gi (gi (0) = ai )&(gi ∼ g). notice, that g′ ∈ R∞({) and g′(0) = 2, and then245

2 ∈ R∞(}′) ⊆ R∞({).246

The lemma is proved.247

Theorem 2 (Completeness) There are three R∞−pre-complete classes T2.248
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Lattice Structure of Some Closed Classes for Non-binary Logic and Its Applications 9

2.4 Conclusion249

In this paper, the closure operators on the set of functions of three-valued logic, which250

are a strength of the usual substitution operator was considered. It was proved that251

the completeness problem for this operator has a solution; it is possible to recover the252

sublattice of closed classes in the general case of closure of functions with respect253

to the classical superposition operator, which will optimize possible production of254

chipsets for new functional circuits for transmission and data processing tasks. Also255

a brief overview of modern applications of three-valued logic models was given.256

References257

1. Reps T.W., Sagiv M., Wilhelm R. (2004) Static Program Analysis Via 3-valued Logic. In:258

Alur R., Peled D.A. (Eds) Computer Aided Verification. Cav 2004. Lecture Notes In Computer259

Science, Vol 3114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27813-260

9_2.261

2. Trogemann, Georg; Nitussov, Alexander Y.; Ernst, Wolfgang (2001), Computing In Russia:262

The History Of Computer Devices And Information Technology Revealed, Vieweg+Teubner263

Verlag, Pp. 19, 55, 57, 91, 104–107, Isbn 978-3-528-05757-2.264

3. Rumyantsev, Dmitri. Interviews With The Designer Of The Ternary Computer. Upgrade 33:175265

(2004). An Interview With Nikolai Brusentsov, Designer Of The Setun Ternary Computer. In266

Russian.267

4. The Ternary Calculating Machine Of Thomas Fowler: www.Mortati.Com/Glusker/Fowler/268

Index.Htm269

5. Abiri Ebrahim, Darabi Abdolreza, Salem Sanaz. Design Of Multiple-valued Logic Gates Using270

Gate-diffusion Input For Image Processing Applications . Computers Electrical Engineering.271

2018. Vol.69. Pages 142–157. 0.1016/J.Compeleceng.2018.05.019.272

6. Aizenberg I. Complex-valued Neural Networks With Multi-valued Neurons. Studies In Com-273

putational Intelligence (Vol. 353). Springer-verlag Berlin Heidelberg. 2011. 273 C. https://doi.274

org/10.1007/978-3-642-20353-4.275

7. Bykovsky Alexey Yu. Heterogeneous Network Architecture For Integration Of Ai And Quan-276

tum Optics By Means Of Multiple-valued Logic . Quantum Rep. 2020. -2. Pp. 126–165. https://277

doi.org/10.3390/Quantum2010010.278

8. Cobreros Pablo, Égré Paul, Ripley David, Van Rooij Robert. Three-valued Logics And Their279

Applications . Journal Of Applied Non-classical Logics. 2014. Vol.24, Iss.1-2. P. 1–11. https://280

doi.org/10.1080/11663081.2014.909631.281

9. Connelly Jeff. Ternary Computing Testbed 3-trit Computer Architecture. Phd282

Thesis. Computer Engineering Department. California Polytechnic State Uni-283

versity. 2008. P.192. Url: Http:.Xyzzy.Freeshell.Org/Trinary/Cpe%20report%20-284

%20ternary%20computing%20testbed%20-%20rc6a.Pdf.285

10. Yi Jin, Huacan He, Yangtian Lü. Ternary Optical Computer Architecture . Physica Scripta.286

2005. T118. https://doi.org/10.1238/Physica.Topical.118a00098.287

11. Hu Zhengbing, Deibuk Vitaly. Design Of Ternary Reversible/Quantum Sequential Elements .288

Journal Of Thermoelectricity. 2018. -1. C. 5–16.289

12. Muthukrishnan Ashok, Stroud C. R. Jr. Multivalued Logic Gates For Quantum Computation .290

Phys. Rev. A. 2000. Iss. 5 (Vol. 62). https://doi.org/10.1103/Physreva.62.052309.291

13. Muthukrishnan Ashok. Classical And Quantum Logic Gates: An Introduction To Quantum292

Computing. - Rochester Center For Quantum Information (Rcqi). Quantum Information Sem-293

inar, 1999. P. 22.294

516381_1_En_2_Chapter ! TYPESET DISK LE ! CP Disp.:28/2/2022 Pages: xxx Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

10 E. Yu. Kalimulina

14. Warzecha M., Oszajca M., Pilarczyk K., Szaclowski K. A Three-valued Photoelectrochemical295

Logic Device Realising Accept Anything And Consensus Operations . Chemical Communi-296

cations. 2015. Vol.51, Iss.17. P. 3559–3561. https://doi.org/10.1039/C4cc09980j.297

15. Esin A., Yavorskiy R., Zemtsov N. Brief Announcement Monitoring Of Linear Distributed298

Computations. In: Dolev S. (Eds) Distributed Computing. Disc 2006. Lecture Notes In Com-299

puter Science, Vol 4167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864219-47.300

16. Esin A.A. On Function Classes In P3 Precomplete With Respect To A Strengthened Closure301

Operator . Math Notes. 2008, 83:5. C. 594603. https://doi.org/10.1134/S0001434608050027.302

17. Kak Subhash. On Ternary Coding And Three-valued Logic. 2018. Arxiv.Org/Abs/1807.06419.303

18. Gaudet V. A Survey And Tutorial On Contemporary Aspects Of Multiple-valued Logic And304

Its Application To Microelectronic Circuits . Ieee Journal On Emerging And Selected Topics305

In Circuits And Systems. 2016. Vol. 6, March, No. 1. Pp. 5–12. https://doi.org/10.1109/Jetcas.306

2016.2528041.307

19. Wu Haixia, Bai Yilong, Li Xiaoran, Wang Yiming. Design Of High-speed Quaternary D Flip-308

flop Based On Multiple-valued Current-mode . Journal Of Physics: Conference Series. 2020,309

October. Vol. 1626. https://doi.org/10.1088/1742-6596/1626/1/012067.310

20. Ibm Quantum Summit 2020: Exploring The Promise Of Quantum Computing For Industry,311

Www.Ibm.Com/Blogs/Research/2020/09/Quantum-industry/.312

21. J. B. Nation. Logic On Other Planets. Preprint, 2005. www.Math.Hawaii.Edu/~Jb/Planets.313

Pdf.314

22. S.V. Yablonskiy, G.P. Gavrilov And V.B. Kudryavtsev "Logical Algebra Functions And Post315

Classes". Moscow.: "Nauka", 1966.316

23. S.V. Yablonskii, ’Functional Constructions In A K-valued Logic” , Collection Of Articles On317

Mathematical Logic And Its Applications To Some Questions Of Cybernetics, Trudy Mat. Inst.318

Steklov., 51, Acad. Sci. Ussr, Moscow, 1958, 5–142319

24. Post E.L. Two-valued Iterative Systems Of Mathematical Logic . Annals Of Math. Studies.320

Princeton Univ. Press. 1941. V. 5.321

516381_1_En_2_Chapter ! TYPESET DISK LE ! CP Disp.:28/2/2022 Pages: xxx Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f


