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Abstract. This paper is a continuation of previous research in ergod-
icity of some models for unreliable networks. The set of random graphs
and the sequence of matrixes describing the failure and recovery process
has been used instead of the fixed graph for network structure. The main
results about an ergodicity and bounds for rate of convergence to sta-
tionary distribution are formulated under more general assumptions on
intensity rates.
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1 Introduction

Let’s remind what the standard queueing network (Jackson’s type) is. The stan-
dard queueing network is the network with following parameters (see Fig.1) [2,
9]:

– the network consists of m nodes, M = {1, 2, . . . ,m};

– each node is a multi-server system with an infinite waiting room;

– the algorithm of service is FCFS (First Come First Served);

– all customers are supposed to be indistinguishable;

– there is an external Poisson arrival flow with intensity Λ (only the open
queueing network is considered in this research);

– denote the routing matrix as R = (rij), i, j = 0, 1, . . . ,m; without loss of
generality R is supposed to be regular;

– denote the traffic vector as λ = (λ0, λ1, . . . , λm);
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– denote service rates as µ = (µ1(n1), . . . , µm(nm));

– the number of customers in the system is denoted as n = (n1, . . . , nm).

The state space for stochastic process describing this system is following:

n = (n1, , n2, · · · , nm) ∈ Zm+ = E, (1)

and with the following transitions:

Tijn = (n1, · · · , ni − 1, · · · , nj + 1, · · · , nm),

T0jn = (n1, · · · , nj + 1, · · · , nm),

Ti0n = (n1, · · · , ni − 1, · · · , nm).

Fig. 1. Standard queueing network.

The important problem for such a network is the existence of a limit dis-
tribution and the rate of convergence to it. These problem are well studied by
many researchers. One of the well-known results can be found in [9–11].

We are interested to study some modification of this standard model. The
general motivation for our research is the real systems modelling such as trans-
port networks, computer networks, telecommunication traffic models and etc.
One of the key feature of these real systems is a changing structure. These sys-
tems are well described (in some approach) by queuing systems and networks
models. But the changing structure (due unreliable nodes or part-time regime of
operation) demands some modification of the standard approach. The problem
with the standard approach is that the classical models don’t include parame-
ters specific for real systems. They are more complicated than standard queueing
networks models.

So the following modification of a standard model described above (unreliable
network) is considered here[3, 4]:
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– each node may switch on/off (ex. break down and repair) with intensities
αi, βi, i = 1, ...,m;

– a dynamic routing is being applied as a failure management mechanisms.

The principle of “dynamic routing” is in selecting the alternative node if the
target node is under failure. The alternative node is selected from the nearest to
the failed one. This modification make this model different from another similar
ones.

There are several alternative failure management mechanisms: one of them
is “blocking” (before service and after service), for details see [7, 8]. The ap-
proach suggested here is more specious for real systems, but it demands the
more complicated random process to be considered.

2 Dynamic routing

The “Dynamic routing” failure management mechanisms results the extended
state space by adding some component to standard state space of the process.
The Fig.2 shows the initial structure of the network. The standard approach
implies this graph to be fixed. Recoveries and failures form a new process that
describes the transformation of this graph to another in the suggested model.

...

Fig. 2. Initial structure of the network.

The number of nodes is fixed, new nodes don’t appear in contrast with grow-
ing networks (see [15, 16]).

In our model nodes can be blocked (by deleting/adding edges to it). This
way of transformation is shown on Fig.3.

The nodes marked with red color are under failure, the transition forward
and back from one graph (with working node i) to another (when the node is
under failure) occurs with intensities αi (failure rate) and βi (recovery rate).
This way of graph transformation generates the Markov process with a finite
state space (because the number of nodes is finite).
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We denote the state space of the graph transformation process as the set G:
the node i is ”removed” with some intensity αi (failure rate for this node) or it
can be restored with some intensity βi.

Fig. 3. The network graph evolution process.

So, the standard state space (1) for our network process is extended by adding
the component G and is following:

ñ = (G,n1, n2, ..., nm) ∈ |G| × Zm+ =: E,

where G is a component describing the graph (or transition matrix) transforma-
tion.

We can find a degree distribution for the process from state space G. The
average number of vertices of degree k at time t: {E(k, t)} = E P (k, t) can be
described by the equation:

{E(k, t+ 1)} = {E(k, t)} − αk
E
∑
k P (k)αk

{E(k, t)}+

+
αk−1

E
∑
k−1 P (k − 1)αk−1

{E(k − 1, t)}+

+
αk+1

E
∑
k+1 P (k + 1)αk+1

{E(k + 1, t)}.

It describes the evolution of graph of our network structure in time and for the
continuous time takes the form:

E
∂P (k, t)

∂t
= −αkP (k, t) + αk−1P (k − 1, t) + (2)

P (k + 1, t) + αk+1P (k + 1, t).

Is easy to see for this equation that (2) is linear homogeneous equation (under
assumption of constant failure and recovery rates) and has a stationary solution:
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P (k) = lim
t→∞

P (k, t). (3)

3 Main results

3.1 Convergence of process XS(t)

The state for this network process is described by the following vector

n = ((n1, s1), (n2, s2), ..., (nm, sm)),

where ni – the number of customers at the i-th node and

si = { 0 , if the ith node works, 1, otherwise.

The behaviour of n is a Markov chain in continuous time. It includes an
embedded homogeneous Markov chain with positive probabilities for transitions:

si −→ (1− si), (4)

ni −→ (ni ± 1).

Exponential convergence of reliability process S = (s1, . . . , sm) converges to
stationary distribution with exponential rate.

Let’s consider the reliability process XS(t) of our model separately.

{XSi
(t+ 1) = XSi

(t)} =

m∑
j=1

γj − γi
m∑
j=1

γj

,

{XSi(t+ 1) = 1−XSi(t)} =
γi
m∑
j=1

γj

,

where

γi = αi1{si = 0}+ βi1{si = 1}.
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3.2 Convergence of process XR(t)

The behaviour of the process XR(t) is defined by the process XS(t) with the
same transition probabilities. It takes values from the finite set (R = ‖rij(t)‖),
so XR(t) has the stationary distribution and converges to it exponentially. The
sequence of R = ‖rij(t)‖ has a limit R̃ = ‖r̃ij‖, where r̃ij are dependent random
variables.

Processes XS(t) and XR(t) describe only reliability of our network. At this
moment we still haven’t took into consideration the service process and an input
flow, that are our main interest of studying.

But they are ergodic and don’t depend on the input flow and service process
(in further we will apply these facts).

Definition of the main network process The process has the following state
space:

ñ = (G,n1, n2, . . . , nm) ∈ G× Zm+ =: E

The following transitions in a network are possible:

Tijñ := (G,n1, . . . , ni − 1, . . . , nj + 1 . . . , nm),

T0jñ := (G,n1, . . . , nj + 1, . . . , nm),

Ti0ñ := (G,n1, . . . , ni − 1, . . . , nm),

Tf ñ := (G+, n1, . . . , nm),

Trñ := (G−, n1, . . . , nm).

Definition. We will call a “dynamic routing network” the process

X = (X(t), t ≥ 0)

defined by the following infinitesimal generator:

Qf(n) =
m∑
i=1

m∑
j=1

(f(T0jn)− f(n))λirij +

m∑
i=1

m∑
j=1

(f(Tijn)− f(n))µi(ni)rij +

∑
k∈G+

(f(Tkn)− f(n))αk +

∑
k∈G\G+

(f(Tkn)− f(n))βk + (5)

m∑
i=1

(f(Ti0n)− f(n))µi(ni)ri0,
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where λ = (λ0, λ1, . . . , λm) satisfies the balance equations.

Suppose the infinitesimal generator (5) satisfies the following assumptions:

1.

inf
n,i

m∑
i=1

αiµi(n)

αi + βi
> Λ;

2. R̃ = ‖r̃ij‖ is irreducible, so the expectation of steps visited by one customer
within the network is finite.

The second condition may be checked for R(t) under large t. The convergence
rate of R(t) may be estimated from the Markov-Doeblin condition (see, e.g.
Doeblin, 1938 [14]).

The second condition guarantees the existence on non-zero values for the
traffic vector λ = (λ0, λ1, . . . , λm). It leads every customer to leave the system
with non-zero probability. So the number of nodes each customer visited within
the network is less than some geometrically distributed random variable and has
a finite expectation.

Some notations for network process. If X = (Xt, t ≥ 0) is a Markov
process, the following notations will be used:

Q = [q(e, e′)]e,e′∈E – transition intensities;
π – stationary distribution;
infinitesimal generator:

Qf(e) =
∑
e′∈E

(f(e′)− f(e))q(e, e′);

the scalar product for some functions f and g on L2(E, π):

〈f, g〉pi =
∑
e∈E

f(e)g(e)π(e). (6)

Spectral gap for X [1, 6]:

Gap(Q) = inf{−〈f,Qf〉π : ‖f‖2 = 1, 〈f,1〉π = 0} (7)

Theorem 1. If X - the “dynamic routing network” process , with Q - infinites-
imal generator (suppose bounded), minimal service and recovery intensities µ > 0
and β > 0, and assumptions satisfy (1-2 ), then

Gap(Q) > 0

iff for each i = 1, . . . ,m, the birth and death process with λi, µi(ni), αi, βi, has
Gapi(Qi) > 0.
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Theorem 2. If X - the “dynamic routing network” process with infinitesimal
generator Q (suppose bounded), minimal service and recovery intensities µ > 0
and β > 0, X(t) satisfies the assumptions (1–2),
then

Gap(Q) > 0

iff for each i = 1, . . . ,m, distribution π = (πi), i ≥ 0 is strongly light-tailed, i.e.

inf
k

πi(k)∑
j>k

πi(j)
> 0.

Theorem 3. Let X - the “dynamic routing network” process with generator
Q (given above) and the corresponding transition semigroup Pt, with minimal
service and recovery intensities µ > 0 and β > 0, and X(t) satisfies the as-
sumptions (1–2). Suppose that G satisfies the condition (2). If πi is strongly
light-tailed, for each i = 1, · · · ,m, then following statements are equivalent

– for all f ∈ L2(E, π)

‖Ptf − π(f)‖2 ≤ e−Gap(Q)t‖f − π(f)‖2, t > 0, (8)

– for each e ∈ E there exists C(e) > 0 such that

‖δe − π(f)‖TV ≤ C(e)e−Gap(Q)t, t > 0. (9)

Proof. The proofs of these results are based on the standard techniques devel-
oped by T.Ligget and extended for queueing systems by other researchers [6, 12,
13]. There are two main results from Liggett[6]:

– Assume that Z is a birth and death process on Z+ with state independent
birth rates µ > 0, and possibly state dependent death rates µ(n) > 0, and
for all i ≥ 0, and for some b, c > 0, we have∑

j>i

π(i) ≤ cπ(i)λ

and ∑
j>i

π(i) ≤ bπ(i).

Then for the corresponding generator Q

Gap(Q) ≥ (
√
b+ 1 +

√
b)2

c
≥ 1

2c(1 + 2b)
.

– Suppose that X is a Markov process with generator Q and stationary dis-
tribution π evolves on the product state space

E = E1 ×E2 × . . .Em, m ≥ 1,



Title Suppressed Due to Excessive Length 9

having coordinates which are independent Markov processes such that i-
th coordinate has generator Qi, denumerable state space Ei and invariant
probability measure πi.
Then π is the product measure of πi and

Gap(Q) = inf
i
Gap(Qi).

Consider generators Q̂, Q̂i, Q̂0, i = 1, . . . ,m associated with independent pro-
cesses (X̂0t, X̂t), X̂0t, X̂t describing the evolution of each node of our “dynamic
routing network” separately. The process X̂0t defined on the finite state space,
the stationary distribution π0 and Gap(Q̂0) > 0. From Liggett’s results we may
conclude that

Gap(Q̂) = min
i
Gap(Q̂i)

and so

Gap(Q̂) > 0.

3.3 Rate of convergence

The next important result relates to the convergence rate of the process X and
is a consequence of Mu-Fa Chen results(see [5]).

Theorem 4. Let X - the “dynamic routing network” process with generator Q
(given above) and the corresponding transition semigroup Pt, then the classical
variations formula holds

Gap(Q) = inf{−〈f,Q〉π : π(f) = 0, ‖f‖2 = 1}

where

〈f, g〉 =

∫
f(x)g(x)π(dx),

π(f) =

∫
f(x)π(dx), V arπ(f) = π(f2)− (π(f))2,

and π is invariant for (Pt).
Let f ∈ L2(E, π), then

C = Gap(Q)−1

is optimal in Poincare inequality:

V arπ(f) ≤ C − 〈f,Q〉π.

Proof. The above result for our network is a consequence from two theorems for
Markov process from [5]. The first one is a Poincare inequality, the second one
is the theorem about constant C existance:
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Fig. 4. Network with two-servers nodes

– Poincare inequality holds if and only if Markov process converges according
to L2(E, π)-exponential convergence: for all

f ∈ L2(E, π)

‖Ptf − f‖22 = V ar(Ptf) ≤ V ar(f)exp(−2Gap(Q)t), t > 0;

– Suppose that E is countable and Pt reversible.
Then for all f ∈ L2(E, π)

‖Ptf − π(f)‖22 = V ar(Ptf) ≤ V ar(f) exp(−2Gap(Q)t), t > 0,

iff for each e ∈ E there exists C(e) > 0 such that

‖δePt − π‖tv ≤ C(e) exp(−2Gap(Q)t), t > 0.

So we can show that
C = Gap(Q)−1

and from Poincare inequality for general Markov process:

V arπ(f) ≤ C − 〈f,Q〉π.

4 The numerical example

We consider two numerical examples of network state probabilities calculation
from [4]:

Example 1: The network consists of three nodes, each node is a system with
two servers (see Figure 4).

Example 2: The network consists of two nodes, each node is a system with
three servers (see Figure 5).

For the transition probabilities matrix (the same from [4]):

Pij =


0.03 0.57 0.35 0.05
0.1 0.002 0.398 0.5
0.35 0.25 0.15 0.25
0.2 0.25 0.3 0.25,
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Fig. 5. Network with three-servers nodes

we suppose following failure rates αi:

α0 = α1 = α2 = 3.0,

and recovery rates βi:

β0 = β1 = β2 = 6.0.

The obtained results for characteristics of this network are: - The probabil-
ity of denial of service (the probability that all sites are occupied) = 0.0054; -
Availability factor of the system (the system is completely free) = 0.29.

4.1 Further work and conclusion

The bounds derived above are valid only for light-tailed distribution. The conver-
gence rates estimations for heavy-tailed distribution of service may be received
via more complicated technique such as coupling method [17] and the general-
ized Lorden’s inequality [18, 19], but only under large t. The future plan is to
find polynomial bounds via this approach. This bounds will be valid only for
large t > T , where T is computable.
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