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Abstract This work is motivated by modelling of real

information systems. Parallel and series reliability models

or their combinations are usually used for these tasks.

Common assumptions for such models are independent

failures, exponentially distributed failures and recoveries.

These assumptions simplify a system modelling signifi-

cantly, but often give a very rude approximation for it. So

there are a lot of restrictions for an application of these

models to practical tasks. This study presents a system with

more general assumptions: dependent failures, arbitrary

failures and repairs, and a system with control. We apply a

continuous-time semi-Markov process to evaluate the

reliability and the mean time to system failure (MTTF) for

a system under these assumption. The repair time of each

component is assumed to have an arbitrary distribution

function (e.g., Weibull, Poisson or exponential). Kol-

mogorov equations method and the Laplace transform are

used to derive generalised expressions for system state

probabilities, reliability and MTTF. A numerical example

is presented in order to illustrate the performance analysis

of the model.

Keywords Reliability � Dependent failures � Semi-markov

model � Laplace transform

1 Introduction

Commonly used reliability models of information and

computer systems are based on the following assumptions

(Siewiorek and Swarz 2014; Kumar and Malik 2012;

Munday and Malik 2014; Thanakornworakij et al. 2012;

Xin et al. 2014; Zhou et al. 2014; Fiondella and Xing

2015; Huang et al. 2015; Li et al. 2016):

• independent failures,

• the exponential distribution of a failure time,

• the exponential distribution of a recovery time,

• identity of elements in a model of reliability,

• non repairable components.

Exact solutions for availability and reliability coefficients

derived under these assumptions are well-known. These

results are classical and can be found in a lot of textbooks

on mathematical theory of reliability, for example in Bar-

low and Proschan (1996), Barlow (1996), Ushakov (1994),

Blischke and Prabhakar (2000), Ramakumar (2000), or in

Birolini (2013), Bazovsky (2013), Abdel-Mohamed (2012).

The study in Kumar and Malik (2012) deals with the

reliability modelling of a computer system of two identical

units-one is operative and other is kept as spare in cold

standby. In each unit h/w and s/w components work

together and fail independently. The failure time distribu-

tion of the components follow negative exponential

whereas the distributions of preventive maintenance, repair

and replacement times are taken as arbitrary with different

probability density functions. Reliability measures of a

computer system with independent constant failure of

hardware and software components have been evaluated in

Munday and Malik (2014). In this paper the random vari-

ables are assumed to be statistically independent. The
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failure times of hardware and software components also

follow negative exponential distribution.

There are many examples of reliability calculations for

elements of computer systems in Siewiorek and Swarz

(2014, Part I, Chapter 5). The general assumption for the

most of them is an exponential distribution of failure and

recovery times.

The authors of paper Xin et al. (2014) consider a load-

sharing computer systems with redundant structure and

provide their research of the optimal maintenance policy

for high reliability under the assumption that the compo-

nents are identical distributed with exponential failure

times. The paper Zhou et al. (2014) analyses the system

reliability of on board computer system by considering a

two-state Markov model with independent units and con-

stant intensity rates.

Fiondella and Xing proposed in Fiondella and Xing

(2015) discrete and continuous models with k-out-of-n

structure. They refused from the assumption that compo-

nents of a system fail in a statistically independent manner

and consider correlated failures. But their reliability model

is restricted by identical components, where components

possess the same reliability and also exhibit a common

failure correlation parameter.

A new reliability model and an analytical solution are

developed for a warm standby redundancy with two sets of

identical units with exponential distribution in Huang et al.

(2015). The complicated reliability model for non-re-

pairable dependent multi-state k-out-of-n systems with

identical components, nonidentical components, and par-

tially dependent components are formulated in Li et al.

(2016) using copula functions and minimal paths of system

states.

But real computer systems have more complex struc-

ture. A time of recovery in modern systems differs from

exponential and may be, for example, lognormally dis-

tributed (for collections of IT services) (Franke et al.

2014), may have a Weibull and q-Weibull distribution

(Assis et al. 2013), or may have the other modified distri-

bution function, see, for example, the statistical research

paper (Khan and Jan 2015). Non-exponential delays are a

standard assumption for reliability models of electronic

funds transfer systems (Arajo et al. 2011), mechanical

systems (Kumar et al. 2014).

Elements in modern telecommunication networks,

computer systems are functioning dependently, redundant

components have different reliability characteristics, and

usually there is a control system, which affects the total

reliability in a nonlinear way (Nader 2014). There are a lot

of applied and practical textbooks on reliability modelling,

but they are more about general methods and ideas than

real practical examples, see Shooman (2003), Alfa (2010),

Ushakov (2012). There are no practical reliability models

for systems with an automatic control.

In this way the developing of new reliability models for

analysis of modern systems (distributed networks, com-

puter systems, information systems and etc.) still remains

the actual task. But in difference from classical reliability

models the new ones should take into account special

features such as non-exponential distributed failures and

recovery times, the complex redundancy scheme, the

dependency of elements in a reliability model.

A computer simulation is a standard technique for

analysing complex systems, but the main disadvantage of

simulation is the absence of exact analytical formulae for

reliability, which is important for the future analysis of

systems, for example, for tasks of reliability planning and

optimisation (Kalimulina 2011; Kalimulina et al. 2012;

Kalimulina 2013).

The aim of this paper is to develop mathematical models

of reliability of complex systems with an application to

distributed networks with a control. We achieve this goal

by applying semi-Markov models of reliability. We con-

struct a state graph, derive Kolmogorov equations for

system state probabilities and solve them using the Laplace

transform. Formulae for non-stationary and stationary

reliability coefficients with assumptions about arbitrary

distributions of recovery times are derived.

Then we estimate the efficiency of control of distributed

network, analyse the dependency of availability coefficient

from the distribution of the recovery time of network

control centre. Also the example illustrating the difference

between classical models and models developed here is

given. It shows the importance to take into consideration

the dependency between elements while reliability

planning.

The idea of application of semi-Markov processes in

reliability theory is well known. There are a lot of good

textbooks on this subject with an introduction to stochastic

processes and renewal theory. But they are more theoretical

than practical, and sometimes too complicated for engi-

neering problems (Oprisan and Limnios 2001). So devel-

oping of models for every special case and adaptation of

theoretical models for practical usage are actual tasks. For

example, in Titman (2014) the author gives phase-type

approximations for estimation of parametric semi-Markov

models. In Norros et al. (2014) authors construct a

stochastic model for repairable system with dependent

components.

In this paper we develop semi-Markov reliability models

for the system with dependent components, complex

transitions between states, with a control and different

schemes of redundancy (active and standby) consisting of

n components with different reliability parameters.
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2 Functional model of reliability

This work is being done mainly with an application to

distributed information system (network) with control. So

firstly we’ll give a short description of them. We consider a

distributed system as a collection of functions (or services).

We distinguish three main functions:

• data transmission,

• data processing and storage,

• network control and recovery.

Data transmission functions are performed by an access

transport networks (ATN). Processing and storage func-

tions are realised by a central processing complex (CPC).

In the case of failure of one of these components, the

system stops performing basic functions. For more effec-

tive operation the network control centre (NCC) is organ-

ised. It controls the failures detection and prompt recovery

of network components. Thus, we consider a model of

reliability consisting of three main components (as ser-

vices): ATN, CPC, NCC.

Let’s consider a mathematical model of reliability and

analytical expressions of availability coefficients of this system.

In general, the consideration of reliability model as a serial

model consisting of three independent subsystems is not cor-

rect, because as we can see from the description, a reliability of

transmission and processing depends on the control system.

Therefore, in the general case, we cannot consider a

serial reliability model, as it’s usually done in Barlow and

Proschan (1996); Ushakov (1994); Ramakumar (2000);

Shooman (2003); Ushakov (2012) and compute a reliability

coefficient (availability) as a product of reliabilities of each

component:

gsðtÞ ¼ g1ðtÞ � g2ðtÞ � g3ðtÞ; ð1Þ

where giðtÞ—reliability of component i, t - time.

The operation of components in a distributed network is

regulated by the central control system (network control

centre or NCC), a NCC is used to detect failures and

recover components. At the same time, if a NCC is in

failure mode, an ATN and CPC is continuing to work. For

the reliability analysis we consider a functional model with

dependent components (Fig. 1).

We make the following assumptions for the model in

Fig. 1. Each subsystem can be in one of two states:

working (up) or failed (down). In the case of ATN failure

or/and CPC failure the system is failed. In the case of NCC

failure and operational state of CPC and ATN the system is

in the operational state. If the ATN, CPC, NCC are failed,

NCC must be recovered before ATN and CPC, then the

ATN and CPC can be recovered. When NCC is failed, the

ATN and CPC failures cannot be detected until NCC is

recovered.

When CPC and ATN are failed, then NCC still can be in

the operational state. We assume that all network subsys-

tems are recoverable completely (there are no absorbing

states on the state graph, which is shown in Fig. 2, where ki
means the failure rate and Fri means the distribution

functions, i ¼ 1; 2; 3). The description of states is given in

the Table 1, where ‘‘0’’ means that the subsystem is in a

failure state, ‘‘1’’ the subsystem is in the operational state

for ATN, CPC, NCC, accordingly.

To obtain the explicit solution, we assume the event

consisting in the simultaneous failure of ATN and CPC

while NCC working to have a zero probability. If NCC is in

the failure state, ATN and CPC cannot fail. So, the state

graph of network model consists of six states (Fig. 2).

3 Problem solution

We derive formulae for the availability coefficient and the

mean time between failures of a system, taking into con-

sideration the following assumptions:

• failure rates of ATN, CPC, NCC equal to k1; k2; k3;
• recovery times of subsystems ‘‘1’’, ‘‘2’’, ‘‘3’’, have

arbitrary distribution functions Fr1ðtÞ, Fr2ðtÞ, Fr3ðtÞ.

Fig. 1 Reliability model with dependent failures

Fig. 2 State graph of the system
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We denote the stationary probabilities of system states

0; 1; 2; 3; 4; 5 as p0; p1; p2; p3; p4; p5. The network is work-

ing, if ATN and CPC are working. The availability coef-

ficient of a system equals to

A ¼ p0 þ p3: ð2Þ

We want to find probabilities of network states piðtÞ; i ¼
0; . . .; 5 or their limit values in order limt!1 piðtÞ to derive

the coefficient of availability. The theory of semi-Markov

random processes is used to analyse the reliability of a

system with non-exponential distributed time of recovery.

Methods of reliability analysis of systems described by

semi-Markov and non-Markov processes are presented in

Oprisan and Limnios (2001). For the reliability estimation

we firstly have to find the functional matrix of transition

probabilities for the state graph in Fig. 2 (Barlow and Pro-

schan 1996; Oprisan and Limnios 2001). Denote the tran-

sition probability from the state i to the state j at Markov

moments of time as PijðtÞ. The system can move from the

state 0 to the state 1 (see Fig. 2) only in the case of ATN

failure during a small interval of time ðs; sþ dsÞ under the
condition that CPC and NCC have not failed till time t.

Thus, transition probabilities equal:

P0jðtÞ ¼
Z t

0

kje
�ðk1þk2þk3Þsds; j ¼ 1; 2; 3; ð3Þ

Pi0ðtÞ ¼ FriðtÞ; i ¼ 1; 2; ð4Þ

P30ðtÞ ¼
Z t

0

e�ðk1þk2ÞsdFr3ðsÞ; ð5Þ

P34ðtÞ ¼
Z t

0

k1e
�ðk1þk2Þsð1� Fr3sÞds; ð6Þ

P35ðtÞ ¼
Z t

0

k2e
�ðk1þk2Þsð1� Fr3sÞds; ð7Þ

P41ðtÞ ¼ P52ðtÞ ¼ Fr3ðtÞ; ð8Þ

p0j ¼
kj

k1 þ k2 þ k3
; j ¼ 1; 2; 3; ð9Þ

p30 ¼ F�
r3ðk1 þ k2Þ; ð10Þ

p34 ¼
k1

k1 þ k2
1� F�

r3ðk1 þ k2Þ
� �

; ð11Þ

p35 ¼
k2

k1 þ k2
1� F�

r3ðk1 þ k2Þ
� �

; ð12Þ

where F�
r3ðk1 þ k2Þ is the Laplace transform of a function

Fr3ðtÞ with s ¼ k1 þ k2.
The distribution functions for unconditional mean times

of staying of a random process in the state

i ði ¼ 0; 1; ��� ; 5Þ:

F0ðtÞ ¼ 1� e�ðk1þk2þk3Þt;

F1ðtÞ ¼ Fr1ðtÞ;
F2ðtÞ ¼ Fr2ðtÞ;
F0ðtÞ ¼ 1� ð1� Fr3ðtÞÞe�ðk1þk2Þt;

F4ðtÞ ¼ F5ðtÞ ¼ 1� ð1� Fr3ðtÞÞ:

ð13Þ

The unconditional expectations of time of staying in the

state i:

g0 ¼
1

k1 þ k2 þ k3
; ð14Þ

g1 ¼
Z þ1

0

tdFr1ðtÞ; ð15Þ

g2 ¼
Z þ1

0

tdFr2ðtÞ; ð16Þ

g3 ¼
1

k1 þ k2
ð1� F�

r3ðk1 þ k2ÞÞ; ð17Þ

g4 ¼
Z þ1

0

tdFr3ðtÞ; ð18Þ

g5 ¼
Z þ1

0

tdFr3ðtÞ: ð19Þ

The stationary probabilities of embedded markov chain

are defined by the following system of equations:

Table 1 Description of states

ATN CPC NCC State number System decription

1 1 1 0 ATN is up, CPC is up, NCC is up, system is up

0 1 1 1 ATN is down, CPC is up; NCC is up, system is down and recovering

1 0 1 2 ATN is up, CPC is down, NCC is up, system is down and recovering

1 1 0 3 ATN is up, CPC is up, NCC is down, system is up, NCC is recovering

0 1 0 4 ATN is down, CPC is up; NCC is down, system is down

1 0 0 5 ATN is up, CPC is down, NCC is down and recovering, system is down
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p0 ¼ p1p10 þ p2p20 þ p3p30;

p1 ¼ p0p01 þ p4p41;

p2 ¼ p0p02 þ p5p52;

p3 ¼ p0p03;

p4 ¼ p3p34;

p5 ¼ p3p35:

ð20Þ

The solution is:

p1 ¼ p0ðp01 þ p03p34p41Þ;
p2 ¼ p0ðp02 þ p03p35p52Þ;
p3 ¼ p0p03;

p4 ¼ p0p03p34;

p5 ¼ p0p03p35:

ð21Þ

From (20, 21) and the condition
P5

i¼0 pi ¼ 1, we can

derive all stationary probabilities:

p0 ¼ ð1þ a1 þ a2 þ a3 þ a4 þ a5Þ�1; ð22Þ

where

a1 ¼ p01 þ p03p34p41;

a2 ¼ p02 þ p03p35p52;

a3 ¼ p03;

a4 ¼ p03p34;

a5 ¼ p03p35;

and pij are derived from (3–12).

In general case a stationary and non-stationary reliability

coefficients are derived from Barlow (1996); Ushakov

(1994); Ramakumar (2000)

gðtÞ ¼
X
k2Eþ

PkðtÞ;A ¼
X
k2Eþ

pk;

where

pi ¼ pigi=
X
j2E

pjgj; ð23Þ

E, the system states set, Eþ, the subset of operating states,

PiðtÞ, a probability of no failure operation during the time t

under the condition, that at the initial moment the system

was in the state k, gi, is taken from (14 to 19).

The system is working if it’s in the state 0 or 3, so the

availability coefficient is a sum of probabilities, that system

in the state 0 or 3

As ¼ p0 þ p3 ¼ 1þ k3
k1 þ k2

1� F�
r3ðk1 þ k2Þ

� �� �
=D

ð24Þ

where

D ¼ 1þ k1 þ k3p34p41ð Þ
Z þ1

0

tdFr1ðtÞ

þ k2 þ k3p35p52ð Þ
Z þ1

0

tdFr2ðtÞ

þ k3 1� Fr3ðk1 þ k2Þð Þ 1

k1 þ k2
þ
Z þ1

0

tdFr3ðtÞ
� �

:

In the special exponential case if we set Fri; i ¼ 1; 2; 3

equal:

Fr1ðtÞ ¼ 1� e�l1t;Fr2ðtÞ ¼ 1� e�l2t;Fr3ðtÞ ¼ 1� e�l3t; ð25Þ

the availability coefficient equals:

As ¼
1þ k3

k1þk2þl3

1þ k3
l3
þ 1þ k3

k1þk2þl3

� �
k1
l1
þ k2

l2

� � : ð26Þ

4 Efficiency of a control centre of network

In this section we analyse the dependency of the system

reliability from subsystems parameters. To evaluate the

influence of a recovery time distribution of the NCC on

system reliability we consider the widely used for renewal

models distributions (O’Connor 2011): exponential, uni-

form, gamma-distribution.

As it was mentioned in Sect. 3, if we set Fr3 equal to

ð1� e�l3ðtÞÞ, the availability coefficient is defined by the

formula (26).

For a uniform distribution:

Fr3ðtÞ ¼

0; if t\a;

ðt � aÞ
ðb� aÞ ; if a� t� b;

1; if b� t;

8>><
>>:

the availability coefficient equals

F�
r3ðk1 þ k2Þ ¼

aðk1 þ k2Þ � 1

ðk1 þ k2Þða� bÞ ;

g4 ¼ g5 ¼
aþ b

2
;

As ¼
1þ x

1þ q1ð1þ xÞ þ q1ð1þ xÞ þ x 1þ ðaþbÞðk1þk2Þ
2

� � ;

ð27Þ

where

x ¼ k3ð1� bðk1 þ k2ÞÞ
ða� bÞðk1 þ k2Þ2

;

q1 ¼ k1=l1;

q2 ¼ k2=l2:
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For a gamma-distribution:

Fr3ðtÞ ¼ 1�
Xk�1

i¼0

l3t
i!

e�l3t;

F�
r3ðk1 þ k2Þ ¼ 1�

Xk�1

i¼0

k1 þ k2
ðk1 þ k2 þ l3Þiþ1

;

g4 ¼ g5 ¼
k

l3
;

As ¼
1þ x

1þ q1ð1þ xÞ þ q1ð1þ xÞ þ x 1þ kðk1þk2Þ
l3

� � ;

x ¼ k3ð1� ðk1 þ k2 þ l3Þ�kÞ
k1 þ k2 þ l3 � 1

;

q1 ¼ k1=l1;

q2 ¼ k2=l2:

ð28Þ

Now set:

l1 ¼ 1=11; l2 ¼ 1=10; k1 ¼ 1=240; k2 ¼ 1=300; k3 ¼ 1=290:

and calculate reliabilities on formulae (26), (27), (28). The

calculation results are in the Table 2.

Using formula (26) we can estimate the dependency of

the system reliability from the reliability of NCC. The

system reliability increases at least by 7 % with NCC, and

the mean time between failures increases 10 times. Fig-

ure 3 shows the dependency of the system reliability from

reliability parameters of NCC. The initial data:

l1 ¼ 1=11; l2 ¼ 1=20; k1 ¼ 1=220; k2 ¼ 1=250:

Now we estimate the influence of centralised control

centre on reliability improvement. To achieve this task we

compare the reliability of the model in Fig. 1 with the

reliability of series model consisting of two independent

components (without control centre). The system reliability

Table 2 Reliability coefficients for different distributions of recovery

time

l3 a b k As As As

Exp Uniform Gamma

0.1 10 20 0.5 0.921095 0.855504 0.922826

0.11 9.09091 19.0909 0.55 0.921424 0.860728 0.922799

0.12 8.33333 18.3333 0.6 0.921677 0.865127 0.922772

0.13 7.69231 17.6923 0.65 0.921876 0.868883 0.922744

0.14 7.14286 17.1429 0.7 0.922035 0.872127 0.922717

0.15 6.56777 16.6667 0.75 0.922165 0.874958 0.92269

0.16 6.25 16.25 0.8 0.922272 0.877449 0.922662

0.17 5.88235 15.8824 0.85 0.922361 0.879658 0.922635

0.18 5.55556 15.5556 0.9 0.922436 0.881631 0.922608

0.19 5.26316 15.2632 0.95 0.9225 0.883403 0.922581

0.2 5 15 1 0.922555 0.885004 0.922555

0.21 4.7619 14.7619 1.05 0.922602 0.886458 0.922529

0.22 4.54545 14.5455 1.1 0.922643 0.887783 0.922503

0.23 4.34783 14.3478 1.15 0.922679 0.888996 0.922478

0.24 4.16667 14.1667 1.2 0.922711 0.890111 0.922454

0.25 4 14 1.25 0.922739 0.891139 0.92243

0.26 3.84615 13.8462 1.3 0.922764 0.89209 0.922407

0.27 3.7037 13.7037 1.35 0.922787 0.892972 0.922385

0.28 3.57143 13.5714 1.4 0.922807 0.893793 0.922363

0.29 3.44828 13.4483 1.45 0.922824 0.894558 0.922342

0.3 3.33333 13.3333 1.5 0.922841 0.895274 0.922322

0.31 3.22581 13.2258 1.55 0.922855 0.895944 0.922303

0.32 3.125 13.125 1.6 0.922869 0.896574 0.922284

0.33 3.0303 13.0303 1.65 0.922881 0.897166 0.922267

0.34 2.94118 12.9412 1.7 0.922892 0.897723 0.92225

0.35 2.85714 12.8571 1.75 0.922903 0.89825 0.922235

0.36 2.77778 12.7778 1.8 0.922912 0.898748 0.92222

0.37 2.7027 12.7027 1.85 0.922921 0.899219 0.922206

0.38 2.63158 12.6316 1.9 0.922929 0.899667 0.922193

0.39 2.5641 12.5641 1.95 0.922936 0.900091 0.922181

0.4 2.5 12.5 2 0.922943 0.900495 0.92217

Fig. 3 Graph of the dependency coefficient of reliability from NCC

parameters

Fig. 4 Graph of
1�Asseries

1�As
as a function of l3
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of two independent components is estimated by the fol-

lowing formula (Ushakov 2012; Shooman 2003; Ushakov

1994):

Asseries ¼
l1l2

ðk1 þ l1Þðk2 þ l2Þ
: ð29Þ

Suppose CPC and ATN is recovering faster with NCC.

Set recovery rates of CPC and ATN equal to l1 ¼
l1 � k1 and l2 ¼ l1 � k2 (k1 [ 1; k2 [ 1) and consider

relation:

1� Asseries

1� As

¼ k2k1l2l3ðk1 þ k2 þ k3 þ l3Þ
k1k2ðk1 þ l1Þðk2 þ l2Þl3ðk1 þ k2 þ k3 þ l1Þ

þ k1l1k2l2ðk1 þ k2 þ l3Þðk3 þ l3Þ
k1k2ðk1 þ l1Þðk2 þ l2Þl3ðk1 þ k2 þ k3 þ l1Þ

þ k1l1k2l3ðk1 þ k2 þ k3 þ l3Þ
k1k2ðk1 þ l1Þðk2 þ l2Þl3ðk1 þ k2 þ k3 þ l1Þ

:

ð30Þ

The dependency of efficiency (30) from recovery rate l3
with fixed k1 and k2 is shown in Fig. 4. The dependency of

efficiency (30) from k1 is shown in Fig. 5.

Fig. 5 Graph of
1�Asseries

1�As
as a

function of k1 with

k2 ¼ 1; 2; 5; 10

Fig. 6 Graph of the reliability

for dependent and series models

as functions of l3
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We have restricted here only by three distributions.

But the formula (24) can be applied for more flexible

distributions, for example, for a Weibull distribution

with the density function f ðxÞ ¼ k=k � ðx=kÞk�1

e�ðx=kÞk�1

; x� 0. We only have to apply the Laplace

transform F�
r3ð _Þ for distribution function, but this prob-

lem has been solved. One of the approaches to this task

can be found in Rossberg (2008). We don’t provide this

result here due to the cumbersome formula. And it is

worth mentioning the proposed method may perform

well in the simulation study for a large system where we

can use their approximations instead of exact

distributions.

Now we estimate an increase in reliability after NCC

implementation. Assume the following initial data:

l1 ¼ 1=11, l2 ¼ 1=20, k1 ¼ 1=220, k2 ¼ 1=250,

k1 ¼ 2; l3 ¼ 1=2, k3 ¼ 1=250. Reliability of two-compo-

nent series system equals 0.881834 (downtime coefficients

equals 0.118166), of three-component system with control

centre equals 0.93885 (downtime coefficients equals

0.06115). Thus, from calculations and graphs in Figs. 4 and

5 we can make a conclusion that control centre decreases

the downtime approximately twice.

As it was mentioned above the reliability of CPC and

ATN depends on early failures detection, consequently on

the reliability of NCC. Let’s compare numerical results of

the reliability estimation for series model with the model of

dependent components. Set l1 ¼ 2=11, l2 ¼ 1=10,

k1 ¼ 1=220, k2 ¼ 1=250, l3 ¼ 1=2, k3 ¼ 1=250 in (26). So

reliability for a model with dependent components equals

to 0.93855, for independent series system equals to

0.874836. The dependency of reliability for these models

from l3 and k3 is shown in Figs. 6 and 7.

5 Conclusion

We derive analytical formulae for reliability estimation of

systems with dependent components with a control based

on semi-Markov models. General results were obtained for

widely used renewable models such as exponential, uni-

form, gamma distributions. Also a special case of expo-

nential failure and recovery rates has been considered.

Then we estimated the efficiency of NCC of distributed

network, and analysed the dependency of a reliability

coefficient from the distribution of recovery time of NCC.

The numerical example of reliability estimation for a dis-

tributed information system (network) with control has

been presented.

The derived formulae may be applied to reliability

estimation of different distributed systems (information,

telecommunication, energy networks and etc.) with a

structure which is more complex than independent and

parallel ones. The results show the importance to take into

consideration the dependency between elements while

reliability planning and efficiency of NCC.

But there may be some small restrictions with the

described model. An implementation of extra states may be

required in model in Fig. 2, but this problem can be easily

solved by using any software for graph modelling.
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