
1

On capacitated clustering problem.
Preprint
DOI: 10.13140/RG.2.2.25642.18882
November 16, 2023

Mark Sh. Levin

The paper addresses capacitated clustering problems: (a) basic capacitated clustering problem, (b)
capacitated centered clustering problem, (b) multi-capacity clustering problem, (c) related problems.
The paper material is based on combinatorial clustering viewpoint. A survey on the problems, solving
approaches, and some applications is presented. The optimization models of basic capacitated clustering
problem and multicriteria capacitated clustering problem are considered. Two applications of capacitated
clustering in communication networks are briefly described: (a) handover minimization in mobile wireless
networks, (b) allocation of end-users to access points in telecommunication networks. Numerical examples
illustrate problems and applications.
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1. Introduction

In recent years a special attention is targeted to various combinatorial clustering problems and ap-
proaches (e.g., [13,27,42,44,45,52,69,88,91]). The paper addresses capacitated clustering problems as a
special type of combinatorial clustering (e.g., [4,16,20,34,63,66,67,71]). This problem is also known as
the node capacitated graph partitioning problem [24,70]. Here the capacitated clustering problem is
considered as a component of combinatorial clustering engineering approach (e.g., [51,52,54–59]).

The capacitated clustering problem (CCP) consists in forming a specified number of clusters (or groups)
from a set of elements in such a way that the sum of the weights of the elements in each cluster is within
some capacity limits, and the sum of the benefits between the pairs of elements in the same cluster is
maximized. The capacitated clustering problem (CPP) is a hard combinatorial optimization problem
(e.g., [4,71]) and is widely studied in the last few decades. The problem is close to facility constrained
location problem. An illustration of the capacitated clustering problem (4 clusters) is depicted in Fig. 1.

Mainly the following four basic capacitated clustering problems are examined: (a) basic capacitated
clustering problem (CCP) (e.g., [20,65–67,71]); (b) capacitated centered clustering problem (e.g., [14,
16,34,72,73,92]); (c) multi-capacity clustering problem (e.g., [4,77]); and (d) heterogeneous capacitated
clustering problem [74]. Basic capacitated clustering problems and some prospective problems are pointed
out in Table 1.

Fig. 1. Illustration for capacitated clustering
(a) initial set of points
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(b) capacitated clustering solution
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Table 1. Capacitated clustering problems
No. Problem Source(s)

1. Capatitated clustering problem formulations:
1.1. Survey on the on the problem formulations (and on solving heuristics) [20]
1.2. Basic capacitated clustering problem [63,65–67,71]
1.3. Capacitated centered clustering [14–16,34,68,72,73,92]
1.4. Multi-capacity clustering problem [4,77]
1.5. Heterogeneous capacitated clustering problems [74]
1.6. Heterogeneous capacitated centered clustering problem [74]
1.7. Large-scale capacitated clustering [34]
1.8. Capacitated clustering problem on the tree [33]
1.9. Fair-capacitated clustering [79]

2. Some prospective problem formulations:
2.1. Multicriteria capacitated clustering problem [36], this paper
2.2. Capacitated clustering problem with ordinal estimates
2.3. Capacitated clustering problem under uncertainty

(e.g., stochastic problems, with fuzzy set estimates, with multiset estimates)
2.4. Multicriteria capacitated centered clustering problem
2.5. Capacitated centered clustering problem with ordinal estimates
2.6. Capacitated centered clustering problem under uncertainty

(e.g., stochastic problems, with fuzzy set estimates, with multiset estimates)
2.7. Multicriteria multi-capacitated clustering problem
2.8. Multi-capacitated clustering problem with ordinal estimates
2.9. Multi-capacitated clustering problem under uncertainty

(e.g., stochastic problems, with fuzzy set estimates, with multiset estimates)
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Fig. 2 depicts a framework of main capacity clustering problem types and some related problems/domains.

Fig. 2. Capacity clustering problems and related problems/domains
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Constrained clustering problems

Constrained graph partitioning/clustering [2,5,12,19,24,28,65,70]

Constrained clustering (survey, connectivity, etc.) [8,30,31,46,87]

Size constrained clustering [6,40,96]

Constrained balanced clustering (similar size clusters) [53,54,62,86]

Constrained balanced clustering (similar clusters structure) [3,53,54]

Constrained clustering such as k-means with instance-level
Must-Link (ML) and Cannon-Link (CL) [41]

Maximum diversity grouping problems [23,29,65,78,82,83,85]

Some close application problems

Handover minimization problem in mobile networks [66,70]

Mail/newspapers delivery problems [7]

Vehicle routing problems [25,43]

VLSI design problems [90]

Link- and hop-constrained clustering for multi-hop WSNs [17]

Capacitated clustering problems

Basic capacitated clustering problem (or node
capacitated graph partitioning problem) [20,65–67,71]

Capacitated centered problem [14,16,34,72–74,92]

Multi-capacitated clustering problem [4,77]

Heterogeneous capacitated clustering problem [74]

2. Description of basic capacitated clustering problems

In the basic capacitated clustering problem (CCP) the vertices (nodes) of the undirected graph G =
(A,E) (A is the vertices/nodes set, E is the edge set) are divided into several disjoint clusters so that
the sum of the node weights in each cluster meets the capacity limit while maximizing the sum of the
weight of the edges between nodes in the same cluster (e.g., [20,63,65,66,71,95]).

Thus the capacitated clustering problem (CCP) consists in the partition of node set A into p disjoint
clusters/groups (clustering solution X̂ = {X1, ..., Xk, ..., Xp}) in such a way that:

(1) the sum of the weights of the elements (nodes) in each cluster is within some integer capacity limits,
Q−

k and Q+
k (Q−k < Q+

k ), and
(2) the sum of the benefits between the pairs of elements (nodes) in the same cluster is maximized.
The basic Capacitated Centered Clustering Problem (CCCP) (e.g., [14,16,34,68,72,73,92]) consists in

partitioning a set of n points in a space Rλ with dimension λ ≥ 2 into p disjoint clusters with a known
capacity and each cluster is specified by a centroid. The objective is to minimize the total dissimilarity
within each cluster (i.e., the sum of the Euclidean distances between the points and their respective
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cluster centroids), such that a given capacity limit of the cluster is not exceeded. Recently a number of
applications of CCCP is described in literature (e.g., in the dry food distribution logistics, in designing
zones for urban garbage collection, in territorial design of salesmen regions).

An illustration of the capacitated centered clustering problem (5 centroids corresponding to clusters)
is depicted in Fig. 3. Here cluster centers are selected for clusters 1, 2, and 3 and cluster centers are
added (defined) for cluster 4 and 5.

Fig. 3. Illustration for capacitated centered clustering

(a) initial set of points
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(c) centered capacitated clustering
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The basic CCCP (or p-CCCP) is non-linear. It is NP-Hard, once its unconstrained version is also NP-
Hard [39]. A special class of k-center k-supplier problems is under consideration as well (e.g., [10,38,80])
(Table 2). In fact, the problems are based on capacitated k-center clustering.

Table 2. Constrained k-center k-supplier problems
No. Research direction Source(s)

1. k-supplier problem
2. Contrained k-center and k-supplier, version of k-supplier problem [38]

(tight FPT approximation)
3. r-gather k-supplier problem (with and without outliers)
4. r-capacity k-supplier k-center problem (without outliers)
5. Balanced k-supplier problem (with non-uniform lower and upper bounds)
6. Chromatic k-supplier problem
7. Fault-tolerant k-supplier problem
8. Strongly private k-supplier problem [80]
9. l-diversity k-supplier problem
10. Fair k-supplier problem

In the balanced k-center capacitated clustering problem both lower and up constraints on cluster size
are examined [21].

The basic multi-capacity clustering problem (MCCP) was proposed in [4,77]. In this problem various
types of elements (individuals) are considered. The problem consists in a capacitated clustering problem
in which each cluster has a given capacity for each type of elements (individual). If all elements are of
the same type, the problem is reduced to the classical capacitated clustering problem. The existence of
multiple types of individuals, as well as multiple capacities in the facilities, increases the complexity of
this new variant of the clustering problem. MCCP is different from capacitated p-median and capacitated
cluster problems since the capacities may be different between types and medians.

A simplified illustration for multi-capacitated clustering is depicted in Fig. 4 (four clusters are designed
on the basis of four elements types):

1. cluster 1: 6 elements (4 of type 1, 1 element of type 3, 1 element of type 4);
2. cluster 2: 7 elements (5 of type 2, 1 of type 1, 1 of type 4);
3. cluster 3: 7 elements (6 of type 3, 1 of type 4); and
4. cluster 4: 8 elements (1 element of type 1, 7 elements of type 4).
Evidently, two constraints for each element type have to be considered as well.
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Fig. 4. Illustrative example of multi-capacitated clustering

qd

s s

s

s

qcf

qd
qd

qd

qd

qdqd

qcf

s

rf
qcf

rf

rf

rf

rf

qcf

qcf

qcf

qcf

qcfqcf

s

qcf

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

Â

Á

¿

À

Cluster
1qd

s¡
¡¡

s@
@

@

s
¡¡

s

qcf

sqd s
qcf
s

s

Â

Á

¿

À

Cluster
3
qd©©

qd@@

qd
¡¡

qd

qdqd
A
A

qcfqdqd qcf
qd
qd

qdqd

Â

Á

¿

À

Cluster
2s

rf¡
¡¡ qcf@@

rf
¡

¡

rf

rf

rfrfs qcf
rf
rfrf

rf

Â

Á

¿

ÀCluster
4

qcfHH

qcf¡¡

qcf
¡¡

qcf

qcfqcf
A
A

s

qcf¢
¢

qcfqcf s
qcf
qcf

qcfqcf
qcf

3. Related problems

3.1. Some basic related problems
The following basic related problems are pointed out in the literature (Fig. 2):
1. Capacitated clustering problem (CCP) is closely related to the graph partition problem (GPP) (e.g.,

[4,95]), where the goal is to find a partition of the vertex set in k classes while minimizing the number of
cut edges and respecting a balance constraint between the classes.

2. Various constrained clustering problems, for example: (i) constrained graph partitioning/clustering
(e.g., [2,5,12,19,24,28,65,70]); (ii) size constrained clustering (e.g., [6,40,96]); (iii) constrained balanced
clustering (e.g., [3,53,54,62,86]).

3. The capacitated clustering problem is close to facility constrained location problem (e.g., [50,60,61]).
4. Capacitated clustering problem (CCP) is equivalent to the Handover Minimization Problem (HMP)

in mobility networks (e.g., [66,70]). Here the objective is to minimize the sum of weights of the edges
with end-points in different clusters.

5. Another important related problem is the maximum diversity (or maximally diverse) grouping
problem (MDGP) (e.g., [49,65,82,83,85,94,95]):

Some real-world applications of capacitated clustering problems are pointed out later.

3.2. Maximum diversity grouping problem
An interesting close problem is considered as maximum diversity grouping problem (MDGP) (e.g.,

[23,29,49,65,78,82,83,85,94]):

Find the assignment of a set of items (i, j ∈ A) to disjoint groups in such a way that the diversity
among the elements in each group (the sum of pairwise distances/benefits cij between all items assigned
to the same group) is maximized.

Here the heterogeneity inside groups is maximized. The objective of the problem is to maximize the
overall diversity, i.e., the sum of the diversity of all groups, when the size of each group is within a
specified range. Clearly, the MDGP is a special case of the CCP.

The MDGP is called the k-partition problem in [23] and the equitable partition problem in [75]. The
problem belongs to the family of diversity problems (e.g., [22,29,78]).

3.3. Some real-world applications
Some examples of real-world applications of capacitated clustering in industry and services which are

described in literature are listed in Table 3 (e.g., [26,32,64,71,73]).
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Table 3. Real-world applications of capacitated clustering in industry and services
No. Application Source(s)

1. Hop-constrained clustering for multi-hop WSNs [17]
2. Partitioning of nodes in distributed communication networks [4]
3. Healthcare application (e.g., assignment of people to a certain hospital(s)) [4]
4. Vehicle routing, consolidation of customer orders into vehicle shipments [25,43,95]
5. Designing zones for urban garbage collection [73]
6. Mail delivery, newspaper delivery [7,32,71,73]
7. Layout of IT-teams in software factories [74]
8. VLSI design [64,95]
9. Educational applications (forming students groups/teams) [4,51,53,54,89]
10. Products manufacturing management (e.g., clustering of products [4]

in facilities like refinery)
11. Oil industry (assignment of the oil by-products demands [4]

among the existing refineries facilities)

4. Basic solving approaches

Table 4 contains a list of basic solving approaches.

5. Some formulations of capacitated clustering problems

5.1. Basic capacitated clustering problem
The following components are examined in the basic capacitated clustering problem (e.g., [20,63,65,66,

71,95]):
(a) graph G = (A, E) where A is a set of n nodes (vertices, elements, items) (i.e., A = {1, ..., i, ..., n}

and E is a set of edges E = {(i, j)}, ∀i, j ∈ A;
(b) node weight (e.g., demand) wi ≥ 0 (∀i ∈ A);
(c) benefit (or weight/profit/utility) of edge cij (∀(i, j) ∈ E), note cij = 0 if edge (i, j)∈E;
(d) given number p of disjoint clusters {X1 = (A1, E1), ..., Xk = (Ak, Ek), ..., Xp = (Ap, Ep)} (i.e.,

k = 1, p, here |Ak1&Ak2 | = 0 ∀k1, k2 = 1, k and k1 6= k2);
(e) two constraints are considered for each cluster k = 1, p: (i) minimum capacity (i.e., constraint) Q−k

and (ii) maximum capacity (i.e., constraint) Q+
k .

The capacitated clustering problem (CCP) is usually formulated as the following quadratic integer
program (e.g., [11,20,95]) with binary variables: xik = 1 if element (node) i is in cluster k and 0 otherwise.
Thus the basic optimization model is:

max
p∑

k=1

n−1∑

i=1

n∑

j>i

cij xik xjk (1.1)

s.t.

p∑

k=1

xik = 1, i = 1, n, (1.2)

Q−k ≤
n∑

i=1

wixik ≤ Q+
k , k = 1, p, (1.3)

xik ∈ {0, 1}, i = 1, n, k = 1, p (1.4)

Here the objective function (1.1) corresponds to the total benefit of all pairs of elements that belong to
the same cluster.
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Table 4. Basic solving approaches
No. Approach Source(s)

1. Surveys, generalized algorithm descriptions:
1.1. Comprehensive review on the most representative approaches for CCP [20]
1.2. Bibliographic view (survey) [46]
1.3. Survey on state-of-the-art approaches (heuristic search, greedy randomize adaptive [95]

search procedures (GRASP), etc.)
1.4. State-of-the-art heuristics for capacitated clustering problem [65,66]

(Tabu search, randomized algorithms, hybrid methods)
1.5. Pairwise-confidence-constraints-clustering algorithm (center-based heuristic) [9]

2. Heuristics:
2.1. Hybrid simulated annealing and tabu search (for capacitated clustering problems) [76]
2.2. Scatter search heuristic for capacitated clustering problem [81]
2.3. Tabu search for the capacitated clustering problem [95]
2.4. Path-relinking with tabu search for the capacitated centered clustering problem [72]
2.5. Tabu search and GRASP for the capacitated clustering problem [65]
2.6. Randomized heuristics for the capacitated clustering problem [66]
2.7. Greedy random adaptive memory programming search for capacitated clustering [1]

3. Some special search based methods (e.g., local search, GRASP, etc.):
3.1. Adaptive biased random-key GA with local search for capacitated centered clustering [16]
3.2. Parallel clustering search applied to capacitated centered clustering problem [68]
3.3. Constrained clustering through dual iterative local search (new metaheuristic) [35]
3.4. Reactive GRASP (Greedy Randomized Adaptive Search Procedure) [20]

with path relinking for capacitated clustering

4. Variable neighborhood search (VNS) approaches:
4.1. Variable neighborhood search (VNS) for capacitated clustering problem [11,48]
4.2. Iterated VNS for the capacitated clustering problem [47]
4.3. Neighborhood decomposition-driven VNS for capacitated clustering [48]
4.4. Iterative neighborhood local search algorithm for capacitated centered clustering [92]

5. Evolutionary methods:
5.1. Genetic algorithms for capacitated clustering problem [84]
5.2. Hybrid evolutionary algorithm for the capacitated centered clustering problem [15]
5.3. Differential evolution approach for instance-level constrained clustering [37]
5.4. Tabu search memetic algorithm for the capacitated clustering problem [95]
5.5. Membrane evolutionary algorithm for capacitated clustering problem (MEACCP) [64]
5.6. Decomposition-based memetic elitism (for multiobjective constrained clustering) [36]

6. Metaheurisrics:
6.1. Metaheuristic framework for heterogeneous capacitated centered clustering (HCCCP) [74]
6.2. Clustering search algorithm as hybrid metaheuristic for capacitated centered clustering [14]
6.3. Hybrid metaheuristics for multi-capacity clustering problem [4]
6.4. Matheuristic for large-scale capacitated clustering [34]

7. Hybrid methods:
7.1. HA-CCP: a hybrid algorithm for solving capacitated clustering problem [63]
7.2. Hybrid metaheuristics for multi-capacity clustering problem [4]
7.3. Hybrid evolutionary algorithm for the capacitated centered clustering problem [15]
7.4. Clustering search algorithm as hybrid metaheuristic [14]

for capacitated centered clustering problem
7.5. Three-phase search approach with dynamic population size (hybrid algorithm) [94]

(for solving the maximally diverse grouping problem)

8. Some special approaches:
8.1. Lagrangian relaxation approach for a large scale new variant [93]

of capacitated clustering problem
8.2. Fixed-parameter tractability of capacitated clustering [18]
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In the model above the constraints are as follows:
(i) the constraint (1.2) corresponds the assignment of each element to a cluster (i.e., the constraint

guarantees that every node is assigned to exactly one cluster), and
(ii) the constraint (1.3) corresponds to the following: the sum of the weights of the pairs of elements

in the same cluster k (k = 1, p) to be between the specified constraints: Q−k and Q+
k (i.e, the constraint

ensures that the minimum capacity Q−k and the maximum capacity Q+
k requirements of each cluster k are

satisfied). Evidently in a simplified problem the same capacity constraints can be used for each cluster
k: Q−k = Q− (k = 1, p) and Q+

k = Q+ (k = 1, p).

5.2. Multicriteria capacitated clustering problem
First, in multicriteria capacitated clustering problem the benefit (profit/utility) of edge (i, j) ∈ E ci,j

can be transformed into the vector ci,j = (c1
i,j , ..., c

γ
i,j , ..., c

µ
i,j). The corresponding problem will be as

follows:

max
p∑

k=1

n−1∑

i=1

n∑

j>i

c1
ijxik xjk, ..., max

p∑

k=1

n−1∑

i=1

n∑

j>i

cγ
ijxik xjk, ..., max

p∑

k=1

n−1∑

i=1

n∑

j>i

cµ
ijxik xjk; (2.1)

s.t.

p∑

k=1

xik = 1, i = 1, n (2.2)

Q−k ≤
n∑

i=1

wixik ≤ Q+
k , k = 1, p, (2.3)

xik ∈ {0, 1}, i = 1, n, k = 1, p (2.4)

Here the Pareto efficient solution(s) have to be search for.
Second, the node weight wi (i ∈ A) can be transformed into vector weight wi = (w1

i , ...wξ
i , ...w

η
i ) and

corresponding constraint for each cluster k ∈ {1, ..., p} (i.e., constraint (2.3) will be changed by a set of
η constraints. Thus the model is:

max
p∑

k=1

n−1∑

i=1

n∑

j>i

c1
ijxik xjk, ..., max

p∑

k=1

n−1∑

i=1

n∑

j>i

cγ
ijxik xjk, ..., max

p∑

k=1

n−1∑

i=1

n∑

j>i

cµ
ijxik xjk; (3.1)

s.t.

p∑

k=1

xik = 1, i = 1, n (3.2)

Qξ−
k ≤

n∑

i=1

wξ
i xik ≤ Qξ+

k , k = 1, p, ξ = 1, η, (3.3)

xik ∈ {0, 1}, i = 1, n, k = 1, p (3.4)

Evidently various modifications of multicriteria capacitated clustering problem can be examined as
well.

6. Applied examples of capacitated clustering in communications

In general, main clustering problems in networking are targeted to design some clusters under spe-
cial constraints (e.g., resource constraints). In this section two special applied clustering problems on
communication networks are briefly described (at an illustrative level).

6.1. Handover minimization in mobile wireless networks
In recent years, the application of capacitated clustering problem (or node capacitated graph parti-

tioning problem) for handover minimization in mobile wireless networks is examined (e.g., [66,70]). An
illustrative example of mobility network is depicted in Fig. 5: mobile users (end users), base stations, and
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radio network controllers (RNC). Radio network controllers are controlling the base station operations,
including traffic and handover. Handovers between base stations connected to different RNCs tend to
fail more often than handovers between base stations connected to the same RNC. The Handover Mini-
mization Problem consists in assignment of the base stations to RNCs. A subset of base stations which
are assigned to the same RNS can be considered as a cluster. The minimization of handovers between
different clusters is equivalent to the maximization of handovers within the same cluster.

Here the following notations are used: (i) set of base stations A = {1,...,i,...,n}, (ii) graph G = (A,E),
E is a set of edges (i.e., pair connections between base stations) in G, (iii) edge benefit cu (∀u ∈ E), (iv)
node weight wi ≥ 0 (∀i ∈ A), (v) integer capacity limits for each cluster Q+ and Q+. The problem is
equivalent to the CCP:

Find a partition of set base stations A into p clusters (groups of base stations – each group/cluster is
assigned to the same controller) such that:

(a) the sum of edge benefits (benefit cu of edge u ∈ E) in clusters is maximized, and
(b) for each cluster the sum of the node weights (wi, for nodes i ∈ A) satisfied to capacity limits: Q−

and Q+ (Q− < Q+).

Fig. 5. Illustration of handover minimization in mobile wireless networks
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6.2. Connection of users with telecommunication networks
A special multicriteria assignment applied problem is examined in [60,61]. Here a communication

network involves a set of end-users and a set of access points. A set of end-users are divided into groups
(clusters) and for each cluster the corresponding end-users are connected with the same access point of the
communication network while taking into account the following: (a) a resource constraint of each access
point, (b) proximities (e.g., distance) between end-points and access points, (c) additional parameters of
the connection between the end-user and the access point (e.g., reliability of the connection) and (d) end-
user requirement(s) for information transmission (e.g., frequency bandwidth, required level of connection
reliability).

Thus the problem consists in allocation of end-users to access points (i.e., grouping/clustering of end-
users via multicriteria assignment and resource constraints). Clearly, this problem is very close to capac-
itated clustering problem and can be considered as a special modification of the capacitated clustering.
A simplified illustrative numerical example of the problem (i.e., clustering solution) is depicted in Fig. 6
(set of end-users A = {1, 2, ..., 24}, (5 access points B = {1, 2, 3, 4, 5}):
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(1) cluster 1 (access point 1): X1 = {1, 2, 3, 4, 5, 6},
(2) cluster 2 (access point 2): X2 = {7, 8, 9, 10, 11},
(3) cluster 3 (access point 3): X3 = {12, 13, 14},
(4) cluster 4 (access point 4): X4 = {15, 16, 17, 18, 19},
(5) cluster 5 (access point 5): X5 = {20, 21, 22, 23, 24}.

Fig. 6. Assignment of users to access points

¢
¢

A
A

r

2

fi
HH A

A¨
§

¥
¦u

8
¨
§

¥
¦u

10
¡

¡
¡

¨
§

¥
¦u9©©̈

§
¥
¦u

11

HH

¢
¢

A
A

r

3

fi

HH

¨
§

¥
¦u

13

¨
§

¥
¦u

12
¡¡

¨
§

¥
¦u14

¢
¢

A
A

r

1

fi
@@

¨
§

¥
¦u

3

¨
§

¥
¦u2

¢¢

¨
§

¥
¦u1

AA
¨
§

¥
¦u

4
³³³³

¨
§

¥
¦u5

¨
§

¥
¦u

7

¨
§

¥
¦u

6
HHH

¢
¢

A
A

r

4

fi
¨
§

¥
¦u

17
³³³
¨
§

¥
¦u

19
Q

QQ

¨
§

¥
¦u16

¨
§

¥
¦u18

¨
§

¥
¦u

15¢
¢¢

¢
¢

A
A

r

5

fi
¨
§

¥
¦u

20

¨
§

¥
¦u

22

¨
§

¥
¦u

21

¢
¢

¢¢

¨
§

¥
¦u

23

¢
¢¢ ¨

§
¥
¦u

24

A
AA

7. Conclusion

In the paper versions of capacitated clustering problems are examined from the viewpoint of combinato-
rial clustering: (a) basic capacitated clustering problem, (b) capacitated centered clustering problem, (b)
multi-capacity clustering problem, (c) some real-world related problems (including maximum diversity
grouping problem). A survey on the problems, solving approaches, and some applications is presented.
The optimization formulations of basic capacitated clustering problem and two versions of multicriteria
capacitated clustering problem are considered. Two network applications of capacitated clustering are
briefly described (at an illustration level): (a) handover minimization in mobile wireless networks, (b)
allocation of end-users to access points in telecommunication networks.

In the future, it may be reasonable to consider the following: (1) examination of new multicriteria
models for capacitated centered clustering problem and multi-capacity clustering problem; (2) special
study of various versions of the capacitated clustering problem under uncertainty (stochastic statement,
models with fuzzy estimates, models with multiset estimates, etc.); (3) design and analysis of special
new solving strategies (e.g., special metaheuristics and hybrid solving schemes); (4) special examination
of maximum diversity grouping problem and its applications; (5) additional description and analysis of
capacitated clustering problems in various application domains; and (6) using the suggested problems
and solving frameworks in education.

The author states that there is no conflict of interest.
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