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1 Introduction

1.1 Background and Motivation

Bourgain, Gamburd, and Sarnak [2, 3] have recently initiated the study of reductions
modulo p of the set M of Markoff triples (x, y, z) ∈ N

3 which are positive integer
solutions to the Diophantine equation

x2 + y2 + z2 = 3xyz, (x, y, z) ∈ Z
3. (1)

Simple computation shows that the map

R1 : (x, y, z) �→ (3yz − x, y, z)

and similarly defined maps R2, R3 (which are all involutions) send one Markoff
triple to another. Due to the symmetry of (1), the set M is also invariant under
permutations. Let S3 be the group of permutations of order 3. For σ ∈ S3 we
denote by �σ the mapping π(x1, x2, x3) = (xσ(1), xσ(2), xσ(3)). It is easy to check
that the transformations Ri , i = 1, 2, 3 and the mappings �σ generate a group of
transformations acting on M.

A celebrated result of Markoff [18, 19] asserts that all integer positive solutions
to (1) can be generated from the solution (1, 1, 1) by using sequences of the above
transformations.

This naturally leads to the notion of the functional graph on Markoff triples
with the “root” (1, 1, 1) and edges (x1, y1, z1) → (x2, y2, z2), povided that
(x2, y2, z2) = T (x1, y1, z1), where

T ∈ {R1,R2,R3} ∪ {�σ : σ ∈ S3}. (2)

In this terminology, the result of Markoff [18, 19] asserts that this graph is
connected.

Baragar [1, Section V.3] and, more recently, Bourgain, Gamburd, and Sarnak [2,
3] conjecture that this property is preserved modulo all sufficiently large primes p

and the set of non-zero solutionsMp to (1) considered modulo p. In particular, this
means thatMp can be obtained from the set of Markoff triplesM reduced modulo
p.

This conjecture, which we can also write asMp = M (mod p), means that the
functional graph Xp associated with the transformation (2) remains connected.

Accordingly, if we define by Cp ⊆ Mp the set of the triples in the largest
connected component of the above graph Xp, then we can state:

Conjecture 1.1 (Baragar [1]; Bourgain, Gamburd, and Sarnak [2, 3]) For every
prime p, we have Cp = Mp.
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Bourgain, Gamburd, and Sarnak [2, 3] have obtained several major results
towards Conjecture 1.1; see also [4, 8, 9, 11]. For example, by [2, Theorem 1], we
have

#
(
Mp \ Cp

) = po(1), as p → ∞, (3)

and also by [2, Theorem 2], we know that Conjecture 1.1 holds for all but maybe at
most Xo(1) primes p ≤ X as X → ∞.

The bound (3) has been improved in [16, Theorem 1.2] as

#
(
Mp \ Cp

) ≤ exp
(
(logp)2/3+o(1)

)
, as p → ∞. (4)

Furthermore, Bourgain, Gamburd, and Sarnak [2, 3] have also proved that the
size of any connected component of the graphs Xp is at least

#Xp ≥ c(logp)1/3, (5)

for some absolute constant c > 0. In turn, the bound (5) has been improved in [16,
Theorem 1.3] as

#Xp ≥ c(logp)7/9. (6)

The improvements in (4) and (6) are based on a bound of Corvaja and Zannier [7,
Corollary 2], on the number of solutions to the equation

P(u, v) = 0, (u, v) ∈ G1 × G2,

where P is a bivariate absolutely irreducible polynomial over the finite field Fp of
p elements and G1,G2 ⊆ Fp are multiplicative groups in the algebraic closure Fp

of Fp; see also [12, 14, 17, 20] for some related results.
Motivated by the above results and connections, here we

• Derive a new bound on the number of solutions in subgroups to a systems of
several polynomials which covers under a unified setting the results of [7, 17, 20];

• Obtain an improvement of (4) under a very plausible conjecture on the number
of solutions in subgroups of some particular equation over F∗

p.

1.2 New Results

As before, for a prime p, we use Fp to denote the algebraic closure of the finite field
Fp of p elements.

We also say that a polynomial is irreducible if and only it is absolutely
irreducible.
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For a bivariate irreducible polynomial

P(X, Y ) =
∑

i+j≤d

aijX
iY j ∈ Fp[X, Y ] (7)

of total degree degP ≤ d, we define P �(X, Y ) as the homogeneous polynomial of
degree d� = min{i + j : aij �= 0} given by

P �(X, Y ) =
∑

i+j=d�

aijX
iY j . (8)

We also consider the set of polynomials P:

P = {P(λX,μY) | λ,μ ∈ F
∗
p}.

Since P(X, Y ) is irreducible, it is not homogenous, and thus P(X, Y ) �= P �(X, Y ).
Hence, we can define g as the greatest common divisor of the following set of
differences:

g = gcd{i1 + j1 − i2 − j2 : ai1,j1ai2,j2 �= 0}. (9)

Given a multiplicative subgroup G ⊆ Fp, we say that two polynomials P,Q ∈
Fp[X, Y ] are G-independent if there is no (u, v) ∈ G2 and γ ∈ F

∗
p such that

polynomials P(X, Y ) and γQ(uX, vY ) coincide.
We now fix h polynomials

Pk(X, Y ) = P(λkX,μkY ) ∈ P, k = 1, . . . , h, (10)

which are G-independent.
The following result generalizes a series of previous estimates of a similar type;

see [7, 12, 14, 17, 20] and references therein.

Theorem 1.2 Suppose that P is irreducible,

degX P = m and degY P = n

and also that P �(X, Y ) consists of at least two monomials. There exists a constant
c0(m, n), depending only on m and n, such that for any multiplicative subgroup
G ⊆ Fp of order t = #G satisfying

1

2
p3/4h−1/4 ≥ t ≥ max{h2, c0(m, n)},

and G-independent polynomials (10) we have
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h∑

i=1

#
{
(u, v) ∈ G2 : Pi(u, v) = 0

}
< 12mn(m + n)gh2/3t2/3.

Our next result is conditional on the following:

Conjecture 1.3 There exist constants ε0 > 0 and A such that for any prime p,
any subgroup G ⊆ Fp with #G ≤ pε0 , and any elements α1,1, α1,2, α2,1, α2,2 ∈ Fp

satisfying

α1,1 �= 0, α1,2 �= 0, α1,1α2,2 − α1,2α2,1 �= 0, (11)

the equation

α1,1u − α1,2

α2,1u − α2,2
= v (12)

has at most A solutions in u, v ∈ G.
Remark 1.4 It is likely that the constant A in Conjecture 1.3 cannot be taken less
than 9, even for G ⊆ Fp rather than for G ⊆ Fp; see some heuristic arguments in
Sect. 6. It is possible that this is optimal and Conjecture 1.3 holds with A = 9. Also
we must have ε0 ≤ 1/2; see Sect. 6.

Remark 1.5 It is easy to see that using the bound (4) instead of (3) in the argument
of the proof of Theorem 1.6 immediately allows us to relax the condition of
Conjecture 1.3 to counting solutions in subgroups G ⊆ Fp2 of order #G ≤
exp

(
(logp)2/3+ε0

)
. However, we believe Conjecture 1.3 holds as stated.

Theorem 1.6 If Conjecture 1.3 holds for some ε0 and A, then for sufficiently large
p we have

#
(
Mp \ Cp

) ≤ (logp)B,

where B = 16 logA + c for an absolute constant c.

Remark 1.7 Recently (after this work has been submitted) Chen [6] presented a
striking result giving a full resolution of Conjecture 1.1 (for all sufficiently large p).
However, we still believe that our present argument as well as the argument of [16]
are of interest since they apply to more general equations than (1), for example, to
equations of the form x2 + y2 + z2 = axyz + b, which the method of [6] is limited
to (1).
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2 Solutions to Polynomial Equations in Subgroups of Finite
Fields

2.1 Stepanov’s Method

Consider a polynomial 
 ∈ Fp[X, Y,Z] such that

degX 
 < A, degY 
 < B, degZ 
 < C,

that is,


(X, Y,Z) =
∑

0≤a<A

∑

0≤b<B

∑

0≤c<C

ωa,b,cX
aY bZc.

We assume

A < t,

where t = #G is the order of the subgroup G ⊆ F
∗
p, and consider the polynomial

�(X, Y ) = Y t
(X/Y,Xt , Y t ).

Clearly,

deg� ≤ t + t (B − 1) + t (C − 1) = (B + C − 1)t.

We now fix some G-independent polynomials (10) and define the sets

Fk =
(
λ−1

k G × μ−1
k G

)
, k = 1, . . . , h, and E =

h⋃

k=1

Fk. (13)

We also consider the locus of singularity

Msing = {
(X, Y ) | XY = P(X, Y ) = 0 or

∂

∂Y
P (X, Y ) = P(X, Y ) = 0

}
.

Lemma 2.1 Let P(X, Y ) be an irreducible polynomial of bi-degree

(
degX P, degY P

) = (m, n)

and let n ≥ 1. Then, for the cardinality of the setMsing , the following holds:

#Msing ≤ (m + n)2.
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Proof If the polynomial P(X, Y ) is irreducible, then the polynomials P(X, Y ) and
∂P
∂Y

(X, Y ) are relatively prime. Thus, the Bézout theorem yields the bound L ≤
(m + n)(m + n − 1), where L is the number of roots of the system

∂

∂Y
P (X, Y ) = P(X, Y ) = 0.

Clearly, the number of X with P(X, 0) = 0 is less than or equal to degX P (X, Y ) =
m, the number of pairs (0, Y ) on the curve

P(X, Y ) = 0, (14)

where P is given by (7), is less than or equal to degY P (X, Y ) = n. The total
numbers of such pairs is at most L + m + n ≤ (m + n)2. �

Assume that the polynomial � and the G-independent polynomials (10) satisfy
the following conditions:

• All pairs in the set

{
(X, Y ) ∈ E \ Msing | P(X, Y ) = 0

}

are zeros of orders at least D of the function �(X, Y ) on the curve (14);
• The polynomials �(X, Y ) and P(X, Y ) are relatively prime.

If these conditions are satisfied, then the Bézout theorem gives us the upper bound
D−1 deg� degP + #Msing for the number of roots (x, y) of the system

�(X, Y ) = P(X, Y ) = 0, (X, Y ) ∈ G.

Since the polynomials Pk are G-independent, the sets Fk given by (13) are disjoint,
and also there is a one-to-one correspondence between the zeros:

Pk(X, Y ) = 0, (X, Y ) ∈ G2,

⇐⇒ P(u, v) = 0, (u, v) = (λ−1
k X,μ−1

k Y ) ∈ Fk.

Therefore, we obtain the bound

Nh ≤ deg� · degP

D
+ #Msing

≤ (m + n)(B + C − 1)t

D
+ #Msing

(15)

on the total number of zeros of Pk in G2, k = 1, . . . , h:



280 S. V. Konyagin et al.

Nh =
h∑

k=1

#{(u, v) ∈ G2 : Pk(u, v) = 0}.

For completeness, we present proofs of several results from [17] which we use
here as well.

2.2 Some Divisibilities and Non-divisibilities

We begin with some simple preparatory results on the divisibility of polynomials.

Lemma 2.2 Suppose that Q(X, Y ) ∈ Fp[X, Y ] is an irreducible G-independent
polynomial such that

Q(X, Y ) | �(X, Y )

and Q�(X, Y ) consists of at least two monomials. Then,

Q�(X, Y )�t/e� | ��(X, Y ),

where Q�(X, Y ) and ��(X, Y ) are defined as in (8) and e is defined as g in (9) with
respect to Q(X, Y ) instead of P(x, y).

Proof Consider ρ ∈ G and substitute X = ρX̃ and Y = ρỸ in the polynomials
Q(X, Y ) and �(X, Y ). Then,

Q(X, Y ) �−→ Qρ(X̃, Ỹ ) = Q(ρX̃, ρỸ ),

and

�(X, Y ) = �(ρX̃, ρỸ )

= (ρỸ )t
((ρX̃)/(ρỸ ), (ρX̃)t , (ρỸ )t ) = �(X̃, Ỹ ),

because ρt = 1. Hence, for any ρ ∈ G, we have

Qρ(X, Y ) | �(X, Y ),

and we also note that Qρ(X, Y ) is irreducible.
Since Q(X, Y ) is irreducible, e � 1 is correctly defined, and there exist

at least s = �t/e� elements ρ1, . . . , ρs ∈ G such that all nontrivial ratios
Qρi

(X, Y )/Qρj
(X, Y ) are not constants, that is,

Qρi
(X, Y )/Qρj

(X, Y ) /∈ Fp, 1 ≤ i < j ≤ s. (16)
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Obviously, the polynomials Qρ1(X, Y ), . . . ,Qρs (X, Y ) are pairwise relatively
prime, because they are irreducible and satisfy (16). Furthermore, the polynomials
Q

�
ρi

(X, Y ) are homogeneous of degree d�, and the following holds

Q�(X, Y ) = ρ−d�

1 Q�
ρ1

(X, Y ) = . . . = ρ−d�

s Q�
ρs

(X, Y ).

So, we have

Qρ1(X, Y ) · . . . · Qρs (X, Y ) | �(X, Y );

consequently,

Q�
ρ1

(X, Y ) · . . . · Q�
ρs

(X, Y ) | ��(X, Y ).

Since

Q�
ρ1

(X, Y ) · . . . · Q�
ρs

(X, Y ) = (ρ1 · . . . · ρs)
d�

Q�(X, Y )s,

we obtain the desired result. �
Lemma 2.3 Let G(X, Y ),H(X, Y ) ∈ Fp[X, Y ] be two homogeneous polynomials.
Also suppose that G(X, Y ) consists of at least two nonzero monomials, degH < p,
and the number of monomials of the polynomial H(X, Y ) does not exceed s for
some positive integer s < p. Then,

G(X, Y )s � H(X, Y ).

Proof Clearly, if G(X, Y )s | H(X, Y ), then G(X, 1)s | H(X, 1). The polynomial
G(X, 1) has at least one nonzero root. It has been proved in [14, Lemma 6] that
such a polynomial H(X, 1) cannot have a nonzero root of order s and the result
follows. �
Lemma 2.4 If AB < t/g and deg� < p, then for the polynomial P(X, Y ) given
by (7) we have

P(X, Y ) � �(X, Y ).

2.3 Derivatives on Some Curves

There we study derivatives on an algebraic curve and define some special differential
operators. Throughout this section, we use
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∂

∂X
,

∂

∂Y
and

d

dX

for standard partial derivatives with respect to X and Y and for the derivative with
respect to X along the curve (14), respectively. In particular,

d

dX
= ∂

∂X
+ dY

dX

∂

∂Y
, (17)

where by the implicit function theorem from the Eq. (14), we have

dY

dX
= −

∂P
∂X

(X, Y )

∂P
∂Y

(X, Y )
.

We also define inductively

dk

dXk
= d

dX

dk−1

dXk−1

the k-th derivative on the curve (14).
Consider the polynomials qk(X, Y ) and rk(X, Y ), k ∈ N, which are defined

inductively as

q1(X, Y ) = − ∂

∂X
P (X, Y ), r1(X, Y ) = ∂

∂Y
P (X, Y ),

and

qk+1(X, Y ) = ∂qk

∂X

(
∂P

∂Y

)2

− ∂qk

∂Y

∂P

∂X

∂P

∂Y
− (2k − 1)qk(X, Y )

∂2P

∂X∂Y

∂P

∂Y

+ (2k − 1)qk(X, Y )
∂2P

∂Y 2

∂P

∂X
,

rk+1(X, Y ) = rk(X, Y )

(
∂P

∂Y

)2

=
(

∂P

∂Y

)2k+1

.

(18)

We now show by induction that

dk

dXk
Y = qk(X, Y )

rk(X, Y )
, k ∈ N. (19)

The base of induction is
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d

dX
Y = −

∂
∂X

P (X, Y )

∂
∂Y

P (X, Y )
= q1(X, Y )

r1(X, Y )
.

One can now easily verify that assuming (19) and (17) we have

dk+1

dXk+1 Y = d

dX

dk

dXk
Y = d

dX

qk(X, Y )

rk(X, Y )
= qk+1(X, Y )

rk+1(X, Y )
,

where qk+1 and rk+1 are given by (18), which concludes the induction and proves
the formula (19).

The implicit function theorem gives us the derivatives dk+1

dXk+1 Y at a point (X, Y )

on the algebraic curve (14), if the denominator rk(X, Y ) is not equal to zero.
Otherwise, rk(X, Y ) = 0 if and only if the following system holds:

∂

∂Y
P (X, Y ) = P(X, Y ) = 0.

Let us give the following estimates:

Lemma 2.5 For all integers k ≥ 1, the degrees of the polynomials qk(X, Y ) and
rk(X, Y ) satisfy the bounds

degX qk ≤ (2k − 1)m − k, degY qk ≤ (2k − 1)n − 2k + 2,

degX rk ≤ (2k − 1)m, degY rk ≤ (2k − 1)(n − 1).

Proof Direct calculations show that

degX q1 ≤ m − 1 and degY q1 ≤ n,

and using (18) (with k − 1 instead of k) and examining the degree of each term, we
obtain the inequalities

degX qk ≤ degX qk−1 + 2m − 1 ≤ (2k − 1)m − k,

degY qk ≤ degy qk−1 + 2n − 2 ≤ (2k − 1)n − 2k + 2.

We now obtain the desire bounds on degX qk and degY qk by induction.
For the polynomials rk , the statement is obvious. �

Lemma 2.6 Let Q(X, Y ) ∈ Fp[X, Y ] be a polynomial such that

degX Q(X, Y ) ≤ μ, degY Q(X, Y ) ≤ ν (20)

and P(X, Y ) ∈ Fp[X, Y ] be a polynomial such that
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degX P (X, Y ) ≤ m, degY P (X, Y ) ≤ n.

Then, the divisibility condition

P(X, Y ) | Q(X, Y ) (21)

on the coefficients of the polynomialQ(X, Y ) is equivalent to a certain system of not
more than (μ + ν + 1)mn homogeneous linear algebraic equations in coefficients
of Q(X, Y ) as variables.

Proof The dimension of the vector space L of polynomials Q(X, Y ) that sat-
isfy (20) is equal to (μ + 1)(ν + 1). Let us call the vector subspace of polynomials
Q(X, Y ) that satisfy (20) and (21) by L̃. Because Q(X, Y ) = P(X, Y )R(X, Y )

where the polynomial R(X, Y ) is such that

degX R(X, Y ) ≤ μ − m and degY R(X, Y ) ≤ ν − n, (22)

then the vector space L̃ is isomorphic to the vector space of the coefficients of the
polynomials R(x, y) satisfying (22). The dimension of the vector space L̃ is equal
to

dim L̃ = (μ − m + 1)(ν − n + 1).

It means that the subspace L̃ of the space L is given by a system of

(μ + 1)(ν + 1) − (μ − m + 1)(ν − n + 1)

= μn + νm − mn + m + n + 1 ≤ (μ + ν + 1)mn

homogeneous linear algebraic equations. �
As in [17], we now consider the differential operators:

Dk =
(

∂P

∂Y

)2k−1

XkY k dk

dXk
, k ∈ N, (23)

where, as before, dk

dXk denotes the k-th derivative on the algebraic curve (14) with the
local parameter X. We note now that the derivative of a polynomial in two variables
along a curve is a rational function. As one can see from the inductive formula for
dk

dXk , the result of applying any operator Dk to a polynomial in two variables is again
a polynomial in two variables.

Consider non-negative integers a, b, c such that a < A, b < B, c < C. From
the formulas (19) for derivatives on the algebraic curve (14), we obtain by induction
the following relations:



Polynomial Equations in Subgroups 285

Dk

(
X

Y

)a

XbtY (c+1)t = Rk,a,b,c(X, Y )

(
X

Y

)a

XbtY (c+1)t ,

Dk�(X, Y )|X,Y∈Fi
= Rk,i(X, Y )|X,Y∈Fi

,

(24)

where Fi are from formula (13),

Rk,i(X, Y )

=
∑

0≤a<A

∑

0≤b<B

∑

0≤c<C

ωa,b,cRk,a,b,c(X, Y )

(
X

Y

)a

λ−bt
i μ

−(c+1)t
i

(25)

for some coefficients ωa,b,c ∈ Fp, a < A, b < B, c < C, and λi, μi from (13).
We now define

R̃k,i(X, Y ) = YA−1Rk,i(X, Y ). (26)

Lemma 2.7 The rational functions Rk,a,b,c(X, Y ) and R̃k,i(X, Y ), given by (24)
and (26), are polynomials of degrees

degX Rk,a,b,c ≤ 4km, degY Rk,a,b,c ≤ 4kn,

and

degX R̃k,i ≤ A + 4km, degY R̃k,i ≤ A + 4kn.

Proof We have

dk

dXk
Xa+btY (c+1)t−a =

∑

(�1,...,�s )

C�1,...,�s X
a+bt−k+∑s

i=1 �i

Y (c+1)t−a−s

(
d�1Y

dX�1

)
. . .

(
d�s Y

dX�s

)
,

(27)

where (�1, . . . , �s) runs through all s-tuples of positive integers with �1+ . . .+�s ≤
k, s = 0, . . . , k, and C�1,...,�s are some constants.

By the formula (27) and the form of the operator (23), we obtain that
Rk,a,b,c(x, y) are polynomials and Rk,i(x, y) are rational functions. Actually, from
the formulas (27) and (19), we easily obtain that the denominator of

dk

dXk

(
X

Y

)a

XbtY (c+1)t
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divides
(

∂P
∂Y

(X, Y )
)2k−1

. Hence, we obtain that Rk,a,b.c(X, Y ) are polynomials.
From the formula (25), we obtain that Rk,i is a rational function with denominator
divided by YA−1. Consequently, R̃k,i are polynomials.

The result now follows from Lemma 2.5 and the formulas (23) and (24). �

2.4 Multiplicity Points on Some Curves

We recall that Dk , k = 1, 2, . . . are the differential operators defined by (23).

Lemma 2.8 If P(X, Y ) | �(X, Y ) and P(X, Y ) | Dj�(X, Y ), j = 1, . . . , k − 1,
then at least one of the following alternatives holds:

• either (x, y) is a root of order at least k of �(X, Y ) on the algebraic curve (14).
• or (x, y) ∈ Msing .

Proof If Dj�(X, Y ) vanishes on the curve P(X, Y ) = 0, then either

dj

dXj
�(x, y) = 0, (28)

where, as before, dj

dXj is j -th derivative on the algebraic curve (14) with the local
parameter X, or

xy = 0, (29)

or

∂P

∂Y
(x, y) = 0, (30)

on the curve (14).
If we have (28) for j = 1, . . . , k − 1 and also �(x, y) = 0, then the pair (x, y)

satisfies the first case of conditions of Lemma 2.8.
If we have (29) or (30) on the curve (14), then the pair (x, y) satisfies the second

case of conditions of Lemma 2.8. �

3 Small Divisors of Integers

3.1 Smooth Numbers

As usual, we say that a positive integer is y-smooth if it is composed of prime
numbers up to y. Then, we denote by ψ(x, y) the number of y-smooth positive
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integers n ≤ x. Among a large variety of bounds and asymptotic formulas for
ψ(x, y) (see [13, 15, 22]), the most convenient bound for our applications is given
by [22, Theorem 5.1].

Lemma 3.1 There is an absolute constant c0 such that for any fixed real-positive
x ≥ y ≥ 2, we have

ψ(x, y) ≤ c0e
−u/2x,

where

u = log x

log y
.

3.2 Number of Small Divisors of Integers

For a real z and an integer n, we use τz(n) to denote the number of positive integer
divisors d | n with d ≤ z. We present a bound on τz(n) for small values of z (which
we put in a slightly more general form than we need for our applications).

Lemma 3.2 There is an absolute constant C0 such that for any fixed real-positive
ε < 1, there is n(ε) such that if n ≥ n(ε) and z ≥ (log n)2 log(1/ε), then

τz(n) ≤ C0εz.

Proof Let s be the number of all distinct prime divisors of n, and let p1, . . . , ps be
the first s primes. We note that

τz(n) ≤ ψ(z, ps). (31)

By the prime number theorem, we have n ≥ p1 . . . ps = exp(ps + o(ps)), and
thus

ps � log n ≤ z1/b, (32)

where b = 2 log(1/ε). Combining Lemma 3.1 with (31) and (32), we see that

τz(n) ≤ ψ(z, z1/b+o(1)) ≤ c0e
−b/2+o(1)z = (c0 + o(1))e−b/2z ≤ C0εz

for any C0 > c0 (where c0 is as in Lemma 3.1), provided that n and thus z are large
enough. �
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4 Proof of Theorem 1.2

4.1 Preliminary Estimates

We define the following parameters:

A =
⌊

t2/3

gh1/3

⌋
, B = C =

⌊
h1/3t1/3

⌋
, D =

⌊
t2/3

4gh1/3mn

⌋
.

The exact values of A, B, C, and D play no role until the optimization step at the
very end of the proof. However, it is important to note that their choice ensures (36)
and (37).

If Pi(x, y) = 0 for at least one i = 1, . . . , h, then

Dk�(x, y) = 0, (x, y) ∈
h⋃

i=1

Fi , (33)

with the operators (23), where the sets Fi are as in (13). The condition (33) is given
by a system of linear homogeneous algebraic equations in the variables ωa,b,c. The
number of equations can be calculated by means of Lemmas 2.6 and 2.7. To satisfy
the condition (33) for some k, we have to make sure that the polynomials R̃k,i(X, Y ),
i = 1, . . . , h, given by (26), vanish identically on the curve (14). The bi-degree of
R̃k,i (X, Y ) is given by Lemma 2.7:

degX R̃k,i ≤ A + 4km, degY R̃k,i ≤ A + 4kn.

The number of equations on the coefficients that guarantee the vanishing of the
polynomial R̃k,i (X, Y ) on the curve (14) is given by Lemma 2.6 and is equal to
(μ + ν + 1)mn, where μ, ν are as in Lemma 2.6 and

μ ≤ A + 4km, ν ≤ A + 4kn.

Finally, the condition (33) for some k is given by h(μ + ν + 1)mn ≤ mnh(2A +
4k(m + n)) linear algebraic homogeneous equations. Consequently, the condi-
tion (33) for all k = 0, . . . , D − 1 is given by the system of

L = hmn

D−1∑

k=0

(4k(m + n) + 2A + 1)

linear algebraic homogeneous equations in variables ωa,b,c. Now it is easy to see
that

L = h ((2A + 1)Dmn + 2nm(m + n)D(D − 1))
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≤ 2hADmn + 2hmn(m + n)D2 = 2hmn(AD + (m + n)D2).

4.2 Optimization of Parameters

The system has a nonzero solution if the number of equations is less than to the
number of variables, in particular, if

2hmn(AD + (m + n)D2) < ABC, (34)

as we have ABC variables. It is easy to get an upper bound for the left-hand
side of (34). For sufficiently large t > c0(m, n), where c0(m, n) is some constant
depending only on m and n, we have

2hmn(AD + (m + n)D2)

< 2hmn

(
h−1/3t2/3

g

h−1/3t2/3

4mng
+ (m + n)

h−2/3t4/3

16m2n2g2

)

<
3

4

h1/3t4/3

g2
.

(35)

Assuming that c0(m, n) is large enough, we obtain

ABC =
⌊

h−1/3t2/3

g

⌋
�h1/3t1/3�2 >

3

4

h1/3t4/3

g2 ,

which together with (35) implies (34).
It is clear that

gAB ≤ t. (36)

We also require that the degree of the polynomial �(x, y) should be less than p,

deg�(x, y) ≤ (B − 1)t + Ct < p. (37)

Actually, the inequality (B − 1)t + Ct < 2h1/3t4/3 < p is satisfied because t <
1
2p

3/4h−1/4.
Finally, recalling Lemmas 2.2, 2.3 and 2.4, and also the irreducibility of the

polynomial P(x, y), we see that Pk(X, Y ) and �(X, Y ) are co-prime. Hence,
by Lemmas 2.1 and 2.8 and the inequality (15), we obtain that Nh satisfies the
inequality



290 S. V. Konyagin et al.

Nh ≤ #Msing + (m + n)
(B + C − 1)t

D

< (m + n)2 + (m + n)
2h1/3t4/3

⌊
h−1/3t2/3/(4mng)

⌋

< 12mn(m + n)gh2/3t2/3

for sufficiently large t > c0(m, n), which concludes the proof.

5 Proof of Theorem 1.6

5.1 Outline of the Proof

Before giving technical details, we first outline the sequence of the following
steps:

• We consider the setR = Mp \Cp and show that if it is large then by Lemma 3.2
there is a large set L ⊆ R elements of large orders.

• Each element x ∈ L has an orbit of size at least t (x)/2, which is also inR.
• Using Conjecture 1.3, we estimate the size of intersections of these orbits for

distinct elements x1, x2 ∈ L.
• We conclude that all intersections together are small, and so to fit all orbits inR,

the size of R must be even larger than we have initially assumed.

5.2 Formal Argument

We always assume that p is large enough. Define the mapping

T0 (x, y, z) �→ (x, z, 3xz − y) ,

where T0 = �1,3,2 ◦ R2 is the composition of the permutations

�1,3,2 = (x, y, z) �→ (x, z, y)

and the involution

R2 : (x, y, z) �→ (x, 3xz − y, z)

as in the above.
Therefore, the orbit �(x, y, z) of (x, y, z) under the above group of transforma-

tions � contains, in particular, the triples (x, un, un+1), n = 1, 2, . . ., where the
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sequence un satisfies a binary linear recurrence relation

un+2 = 3xun+1 − un, n = 1, 2, . . . , (38)

with the initial values, u1 = y, u2 = z. This also means that �(x, y, z) contains all
triples obtained by the permutations of the elements in (x, un, un+1).

Let ξ, ξ−1 ∈ F
∗
p2 be the roots of the characteristic polynomial Z2 − 3xZ + 1

of the recurrence relation (38). In particular, 3x = ξ + ξ−1. Then, it is easy to see
that unless (x, y, z) = (0, 0, 0), which we eliminate from the consideration, the
sequence un is periodic with period t (x) which is the order of ξ in F∗

p2 .
Let B be a fixed positive number to be chosen later. We denote

M0 = (logp)B and M1 = M
1/4
0 /3 = (logp)B/4/3.

Assume that the remaining set of nodesR = Mp \Cp is of size #R > M0. Note
that if (x, y, z) ∈ R, then also (y, x, z) ∈ R, and for any x, y, there are at most
two values of z such that (x, y, z) ∈ R. Therefore, there are more than (M0/2)1/2

elements x ∈ F
∗
p with (x, y, z) ∈ R for some y, z ∈ Fp.

Since there are obviously at most T (T + 1)/2 elements ξ ∈ F
∗
p2 of order at most

T , we conclude that there is a triple (x∗, y∗, z∗) ∈ R with

t (x∗) >

√
(M0/2)1/2 > 2M1, (39)

where t (x∗) is the period of the sequence un which is defined as in (38) with respect
to (x∗, y∗, z∗).

Then, the orbit �(x∗, y∗, z∗) of this triple has at least 2M1 elements. Let M

be the cardinality of the set X of projections along the first components of all
triples (x, y, z) ∈ �(x∗, y∗, z∗). Since the orbits are closed under the permutation
of coordinates and permutations of the triples

(x∗, un, un+1), n = 1, . . . , t (x∗),

where as above the sequence un is defined as in (38) with respect to (x∗, y∗, z∗) and
t (x∗) is its period, produce the same projection no more than twice, we obtain

M ≥ 1

2
t (x∗). (40)

Recalling (39), we obtain

M > M1 = (logp)B/4/3. (41)

Using that (x, y, z) �∈ Mp, we notice that by the bound (3),
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M = po(1). (42)

For t | p2 − 1, we denote g(t) the number of x ∈ X for which the period of the
sequence un defined as in (38) satisfies t (x) = t . Observe that

∑

t |p2−1

g(t) = M.

The same argument as used in the bound (40) implies that

g(t) = 0 for t > 2M. (43)

We apply Lemma 3.2 with

ε = 1

40AC0
, (44)

where A is a bound from Conjecture 1.3 and C0 is as in Lemma 3.1. Take

B = 16 log(1/ε) + 1. (45)

Since g(t) < t for any t and also since due to (41) we have

4
√

AM > (logp)B/8 ≥ (log(p2 − 1))2 log(1/ε),

by Lemma 3.2,

∑

t≤4
√

AM

t |p2−1

g(t) <
∑

t≤4
√

AM

t |p2−1

t ≤ 4
√

AMτ4
√

AM
(p2 − 1)

≤ C0ε(4
√

AM)2 = 0.4M.

Hence, we conclude that

∑

t>4
√

AM

t |p2−1

g(t) ≥ 0.6M.

Let L be the set of x ∈ X with t (x) > 4
√

AM . We have shown that

#L ≥ 0.6M. (46)

For each x ∈ L, we fix some y, z ∈ Fp such (x, y, z) ∈ �(x∗, y∗, z∗) and again
consider the sequence un, n = 1, 2, . . ., given by (38) having the period t (x) = t0,
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so we consider the set

Z(x) = {un : n = 1, . . . , t0}.

Let Hx be the subgroup of F
∗
p2 of order t (x) and ξ(x) satisfy the equation

3x = ξ(x) + ξ(x)−1. One can easily check, using an explicit expression for binary
recurrence sequences via the roots of the characteristic polynomial, that

Z(x) =
{
α(x)u + r(x)

α(x)u
: u ∈ Hx

}
,

where

r(x) = (ξ(x)2 + 1)2

9(ξ(x)2 − 1)2
,

and α(x) ∈ F
∗
p2 . If for some r an element ξ = ξ0 satisfies the equation

r = (ξ2 + 1)2

9(ξ2 − 1)2
,

then other solutions are −ξ0, 1/ξ0,−1/ξ0. Moreover, 3x = ξ + ξ−1 can take, for a
fixed r , at most two values whose sum is 0. Since every value is taken at most twice
among the elements of the sequence un, n = 1, . . . , t (x), we have

#Z(x) ≥ 1

2
t (x) > 2

√
AM. (47)

Now we construct a set L∗ ⊆ L. If x, x∗ ∈ L and x + x∗ = 0, then we put one
of the elements x, x∗ in L∗. If x ∈ L and −x �∈ L, then we set x ∈ L∗. Due to (46),
we get

#L∗ ≥ 0.3M. (48)

Moreover, for any distinct x, x∗ ∈ L∗, we have x+x∗ �= 0 and, hence, r(x) �= r(x∗).
We claim that under Conjecture 1.3 for any distinct x, x∗ ∈ L∗, the inequality

#
(
Z(x)

⋂
Z(x∗)

)
≤ 2A (49)

holds.
Indeed, take distinct elements x, x∗ ∈ L∗. By G, we denote the subgroup of F∗

p2

generated by Hx and Hx∗ . Notice that due to (42) and (43), we have

#G = po(1). (50)
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Next, #(Z(x) ∩ Z(x∗) is the number of solutions to the equation

α(x)u + r(x)

α(x)u
= α(x∗)v + r(x∗)

α(x∗)v
, (u, v) ∈ Hx × Hx∗ ,

as in the above or, equivalently,

Px,x∗(u, v) = 0, (u, v) ∈ Hx × Hx∗ ,

where

Px,x∗(X, Y ) = α(x)2α(x∗)X2Y − α(x)α(x∗)2XY 2

− α(x)r(x∗)X + α(x∗)r(x)Y.

The number of solutions to the last equation in (u, v) ∈ Hx × Hx∗ does not exceed
the number of solutions in (u, v) ∈ G2. LetZ = X/Y . Then, the equation is reduced
to

α(x)2α(x∗)Z − α(x)α(x∗)2

α(x)r(x∗)Z − α(x∗)r(x)
= U, (51)

where U = Y−2Z−1.
Now we are in position to use Conjecture 1.3. The conditions (11) on the

coefficients of linear functions in the numerator and in the denominator of the
fraction in (51) are satisfied since α(x) �= 0, α(x∗) �= 0, and r(x) �= r(x∗).

Also, for large p we have #G ≤ pε0 due to (50). By Conjecture 1.3, Eq. (51) has
at most A solutions in Z, Y . For each solution, there are at most two possible values
of Y . Fixing Y , we determine X. So, the inequality (49) holds.

Denote

h = [√M/A] + 1.

Due to (41) and (48), we have #L∗ ≥ h provided that p is large enough. We choose
h elements x1, . . . , xh from L∗. It follows from (49) that for j = 1, . . . , h we have

j−1∑

i=1

#
(
Z

(
xj

)⋂
Z (xi)

)
≤ 2(j − 1)A,

which implies by (47)

#

⎛

⎝Z
(
xj

) \
j−1⋃

i=1

Z (xi)

⎞

⎠ ≥ 2
√

AM − 2(j − 1)A.
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Observe that

#

⎛

⎝
h⋃

j=1

Z
(
xj

)
⎞

⎠ =
h∑

j=1

#

⎛

⎝Z
(
xj

) \
j−1⋃

i=1

Z (xi)

⎞

⎠ .

Hence,

#

⎛

⎝
h⋃

j=1

Z
(
xj

)
⎞

⎠ > 2
√

AMh − (h − 1)hA

= (2
√

AM − (h − 1)A)h

> (2
√

AM − √
AM)

√
M/A > M,

but this inequality contradicts the definition of M . Together with the choice of B

given by (44) and (45), this concludes the proof.

6 Comments

Let P(n) be the largest primitive prime divisor of 2n − 1, that is, the largest prime
which divides 2n − 1, but does not divide any of the numbers 2d − 1 for 1 ≤ d < n.
Note that P(n) ≡ 1 (mod n). By a striking result of Stewart [21, Theorem 1.1], we
have

P(n) ≥ n exp

(
log n

104 log log n

)
,

provided that n is large enough. It is also natural to assume that logP(n)/ log n →
∞ for n → ∞. However, for us a weaker assumption is sufficient. Namely, assume
that

lim sup
logP(24m)

logm
= ∞.

We then take n = 24m, m ∈ N, and p = P(n) such that n = po(1). Then, p ≡ 1
(mod 24). Since 2 is a quadratic residue modulo p, we can take ξ ∈ Fp such that
ξ2 = 2. We consider a group G generated by ξ . Note that #G = 2n = po(1) as
n → ∞. The group G contains an element ζ4 of order 4 and an element ζ6 of order
6. It is easy to check that

((±ζ4 ± 1)/ξ)8 = 1.
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Thus,

(±ζ4 ± 1)2n = ξ6n = 1.

Hence, ±ζ4 ± 1 ∈ G. Also,

(±ζ6 − 1)3 = 1.

Hence, similarly ±ζ6 − 1 ∈ G. Consider a set D consisting of 9 elements

D = {(p − 1/2), 1,−2, ζ4,−ζ4, ζ4 − 1,−ζ4 − 1, ζ6 − 1,−ζ6 − 1}.

Clearly, x ∈ G, x + 1 ∈ G for any x ∈ D. This shows that probably A in
Conjecture 1.3 should be at least 9.

We also observe that in Conjecture 1.3 the value of ε0 cannot be taken greater
than 1/2.

Indeed, suppose that p is a prime and p − 1 has a divisor t = pε0+o(1), as
p → ∞ with a fixed ε0 > 1/2 (the infinitude of such primes follows instantly
from [10, Theorem 7]).

Let us fix any α1,1, α1,2, α2,1, α2,2 ∈ Fp. Clearly, the Eq. (12) has N = p+O(1)

of solutions (u, v) ∈
(
F

∗
p

)2
. Let G ⊆ F

∗
p be a subgroup of order t . Since F∗

p is the

union of (p − 1)/t cosets aG of G, the direct product F∗
p × F

∗
p is the union of

(p − 1)2/t2 products of cosets of G. By the Dirichlet principle is that there is at
least one product aG×bG such that the number of solutions (u, v) ∈ aG×bG (with
some a, b ∈ F

∗
p) is not less than

N

(p − 1)2/t2
≥ (1 + o(1))t2/p ≥ p2ε0−1+o(1)

and hence is not bounded as p → ∞. Changing the variables ũ = a−1u, ṽ = b−1v

in (12) we obtain another equation of the same type

α1,1ab−1ũ − α1,2b
−1

α2,1aũ − α2,2
= ṽ

with an unbounded number of solutions (̃u, ṽ) ∈ G2.
Finally, we note that using [5, Theorem 1.2] one concludes that Conjecture 1.3

holds (in much stronger and general form) for a sequence of primes of relative
density 1. However, this does not give any new results for the sets Mp because,
as we mentioned, Bourgain, Gamburd, and Sarnak [2, Theorem 2] have already
shown that Conjecture 1.1 holds for an overwhelming majority of primes p ≤ X as
X → ∞.
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