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Let us denote by GF(3) the field of residues modulo three.

Elements of the field GF(3) are numbers {0,1,2}.

For example, let us write −1 = 2 instead of −1 ≡ 2 (mod 3).

A solution to a system of equations in which the value of each variable

belongs to the set {0,1} is called a (0,1)-solution.

The recognition problem of deciding whether there is a (0,1)-solution

to a system of linear equations over the field GF(3) is NP-complete.

However, for a single equation, this problem can be easily solved:

only a linear equation of the type xk = 2 does not have a (0,1)-solution

because each linear equation that depends non-trivially on two or more

variables has a (0,1)-solution.

x y x+ y x+2y
0 0 0 0
0 1 1 2
1 0 1 1
1 1 2 0



Proposition.There is an algorithm that takes as input a system of m

linear equations in n variables over the field GF(3) and in nO(m) time

accepts the input if and only if the system has a (0,1)-solution.

Any (0,1)-solution to a system in n variables over GF(3) extends to a

(0,1)-solution to a system in n+m⌈log2(n+1)⌉ variables over Z.

Each system has m equations. Here the j-th equation

aj0 + aj1x1 + · · ·+ ajnxn = 0

over GF(3) corresponds to the equation

aj0 + aj1x1 + · · ·+ ajnxn = 3
(

yj1 +2yj2 + · · ·+2kyjk
)

over Z, where k = ⌈log2(n + 1)⌉ and each new variable yj1, . . . , yjk
occurs only once. The absolute values of the coefficients are O(n).

The search for a (0,1)-solution can be performed using dynamic pro-

gramming in at most nO(m) time.

The proposition is proven.



Let a system of linear equations in variables x1, . . . , xn contain more

than one equation and some equation non-trivially depends on xk.

Definition. A new system of linear equations is obtained from the

original system by eliminating the variable xk if two conditions hold:

(1) the new system does not depend on the variable xk and

(2) the original system is equivalent to the union of the new system

and exactly one equation (depending on xk) equal to a linear combi-

nation of the equations of the original system.

{

x1 + x2 = 1
x1 − x2 + x3 + x4 = 0

Eliminating the variable x3 yields one equation:

x1 + x2 = 1

and each of its (0,1)-solutions can be extended to a (0,1)-solution to

a system of two equations.

Eliminating a variable may result in a system having a larger number

of (0,1)-solutions than the original system had.



Lemma 1. Given natural numbers n and m satisfying inequalities

n > 5, m > 2, and m 6 log3(2n−1), and a system of m linear equations

in n variables over the field GF(3). Suppose for each index 1 6 k 6 n,

there exists an equation that depends non-trivially on the variable xk.

If this system has no (0,1)-solution, then there exists an index k 6 n

such that eliminating the variable xk yields a new system that has no

(0,1)-solution. Moreover, this new system can be found in polynomial

time O(mn⌈log2(n+1)⌉).

For a system Ax = b, the variables corresponding to the columns in

the matrix A that are proportional to each other are eliminated.

It is possible over the field GF(3).



The proof of Lemma 1 uses the following claim.

Claim. Given an m× n matrix A without zero columns.

If m 6 log3(2n− 1), then there are two linearly dependent columns.

These columns can be found in polynomial time.

The number of possible different non-zero columns is 3m − 1.

This set is divided into (3m−1)/2 pairs of linearly dependent columns.

Therefore, the fulfillment of the condition n > (3m+1)/2 ensures that

there are two linearly dependent columns in the matrix A.

Let us denote by j and k the numbers of these columns. One can find

the numbers j and k by going through n(n−1)/2 variants and checking

the linear dependence of the corresponding columns.

But another approach is faster.

In almost linear O(mn log2 n) time, all columns are sorted.

Then, for the j-th column, the search for the k-th column is performed

in O(m log2 n) time.



The original system Ax = b is equivalent to the system Bx = c, where

in the m×n matrix B in columns with numbers j and k nonzero entries

are located only in one row with number ℓ. For example, for j = 1,

k = 2 and ℓ = 1:

B =











b11 b12 ∗ · · · ∗
0 0 ∗ · · · ∗
... ... ... . . . ...
0 0 ∗ · · · ∗











,

where b11 6= 0 and b12 6= 0.

If a new system obtained by removing the ℓ-th equation from this

system has a (0,1)-solution, then it has a (0,1)-solution for any values

of the variables xj and xk. Consequently, the entire system also has

a (0,1)-solution, since the choice of values of the variables xj and

xk allows the ℓ-th equation to be satisfied for any evaluation of the

remaining variables.

Removing the ℓ-th equation corresponds to eliminating the variables

xj and xk.

Lemma 1 is proven.



Lemma 2. Let us consider a system of linear equations in n variables

over the field GF(3):










a11x1 + · · ·+ a1nxn = b1
· · ·

am1x1 + · · ·+ amnxn = bm

Let integer 1 6 s 6 n be given. The system has a (0,1)-solution if

and only if there is a (0,1)-solution to a new system in which for each

1 6 j 6 m in the j-th equation the coefficient ajs of the variable xs is

replaced by a linear combination of the coefficients

cj = 2bj −
n
∑

k=1

ajk.



The geometric meaning is in the projective transformation, where:

a hyperplane passing through the point (2, · · · ,2) in the affine space

and not incident to any (0,1)-point maps to an improper hyperplane;

(0,1)-points are mapped to, generally speaking, other (0,1)-points.

Such a transformation is an involution.

In the plane, (0,1)-points correspond to the vertices of a square.

⑦

⑦

⑦

⑦

⇛

⑦

⑦

⑦

⑦



Let us consider an auxiliary system in which a linear term from a new

variable y is added to each equation:










a11x1 + · · ·+ a1nxn + c1y = b1
· · ·

am1x1 + · · ·+ amnxn + cmy = bm,

where the coefficients

cj = 2bj −
n
∑

k=1

ajk.

One of the solutions of this system is obtained when all variables are

equal to 2.

The auxiliary system has a (0,1)-solution if and only if the original

system has a (0,1)-solution. Moreover, the set of (0,1)-solutions to

the auxiliary system is divided into pairs of antipodal solutions that

transform into each other under simultaneous inversion of the values of

all variables. Consequently, if a (0,1)-solution exists, then the auxiliary

system has a pair of antipodal (0,1)-solutions for both xs = 0 and

xs = 1. Next, let us fix the value xs = 0 and replace the name of the

variable y with xs.

Lemma 2 is proven.



Theorem. There is a polynomial-time algorithm that takes as input

a system of m linear equations in n variables over the field GF(3) and,

subject to the condition

m 6 log3 log3(2n− 1),

accepts the input if and only if the system has a (0,1)-solution.

The input is an m×(n+1) matrix M = [A | b] of a system of equations

Ax = b. If the matrix A is empty, then the linear forms of all equations

vanish, and the equations themselves turn into either identities 0 = 0

or false equalities 0 = 1 or 0 = 2. The matrix M can be modified

so that the new system of linear equations has a (0,1)-solution if and

only if the original system of equations has a (0,1)-solution. In this

case, the numbers of rows and columns never increase.

The loop executes the steps corresponding to Lemmata 1 and 2 until

the matrix M stabilizes or the additional stopping condition is satisfied.

For the resulting system of equations, the existence of a (0,1)-solution

is easily verified if the conditions of the theorem are satisfied.



If there are k variables left, and the system contains several equations

and cannot be reduced, then 2k cases are analyzed. Let us estimate

the number k from above.

Since the remaining number of equations does not exceed the number

m, the inequality

log3(2k − 1) < m

holds. But by the condition of applicability of the algorithm,

m 6 log3 log3(2n− 1).

Therefore, the inequalities (2k − 1) < log3(2n− 1) and

k 6 0.5 log3(2n− 1) < 0.3155 log2(2n− 1)

hold. Therefore, the number of different (0,1)-values of the remaining

k variables is less than the number (2n− 1)0.3155 = o(n).

Theorem is proven.



Example. The system of equations in two variables x1 and x2 over

GF(3)
{

2x1 +2x2 = 1
x1 +2x2 = 1

corresponds to the augmented matrix

M =

(

2 2 1
1 2 1

)

.

There are no linearly dependent columns among the first two, but

Lemma 2 can be applied. The column c =

(

1
2

)

is proportional to the

first column in the matrix M . Replacing the second column, we obtain

the matrix
(

2 1 1
1 2 1

)

.

Since the first and second columns are proportional to each other, it is

possible to eliminate variables, which leads to the false equality 0 = 2.

Therefore, there are no (0,1)-solutions.



For the number m of rows, the median and 99-th percentile are given

for the number of randomly generated nonzero columns, none of which

are linearly dependent, but the next column is linearly dependent on

some of the previous columns. For each number m, 100,000 series

of columns are used. The upper bound on the number of pairwise

independent columns is (3m − 1)/2.

m 50% 99% 100%

4 7 18 40
8 67 172 3280

12 605 1561 265720
16 5450 14127 21523360
20 49176 126316 1743392200

The median of the largest number of columns in the series is close to

the value
4

5
·

(

26

15

)m



The algorithm is implemented in Python.

The program either recognizes the presence of a (0,1)-solution or gives

an indefinite answer.

To empirically estimate the running time, for different values of the

number of equations m and the number of variables n, the medians

of the running time in seconds were calculated under the condition

of obtaining a definite answer, when the existence or absence of a

(0,1)-solution was established.

n

m 105 106 107 108

4 0.03 0.3 3 35
8 0.09 0.9 10 97

12 0.17 1.8 18 187
16 0.33 2.9 28 304
20 0.9 4.7 43 445
24 2.06 10.4 63 609



The program as well as some examples are available at

http://lab6.iitp.ru/-/havoc

• The binary search method can find some (0,1)-solution to the

system when one exists, although enumerating all (0,1)-solutions

may be too difficult.

• This allows the possibility of practical use for solving those applied

problems that can easily be reduced to finding a (0,1)-solution to

a system of linear algebraic equations.

Thank you!


