On semirecursive sets

A. V. Seliverstov Institute for Information Transmission Problemsof the Russian Academy of Sciences(Kharkevich Institute)

> Mal'tsev MeetingNovosibirskNovember 11–15, ²⁰²⁴

Semirecursive sets were defined by Carl Groos Jockusch in the 1960s. (Jockusch, 1965; Jockusch, 1968.)

A set $A\subseteq\omega$ is *semirecursive* iff there is a recursive *selector* function f of two variables, where for any $x, y \in \omega$ the following conditions are satisfied: $f(x, y) \in \{x, y\}$ and if $x \in A$ or $y \in A$, then $f(x, y) \in A$.

If a set A is semirecursive with selector function $f(x, y)$, then its complement $\omega\backslash A$ is also semirecursive with selector function

$$
g(x, y) = f(y, x).
$$

We assume an **additional condition:**

the selector function is polynomial-time computable.

Semirecursive sets satisfying this condition are also called p -selective. In general, this condition does not limit the computational complexityof the recognition problem. But if $P \neq NP$, then no semirecursive set
with nelynomial time computable selector function is NP complete. with polynomial-time computable selector function is NP -complete. (Selman, 1979; Selman, 1982.)

Example. Let us fix some numbering $\nu : \omega \to \mathbb{Q}$ of rational numbers
so that for any two numbers $x, y \in \mathbb{Q}$ the sondition $\nu(x) \leq \nu(x)$ san be so that for any two numbers $x, y \in \omega$ the condition $\nu(x) \leqslant \nu(y)$ can be checked in polynomial time. For a real number α , let us denote by A_{α} the set of numbers of those rationals that are greater than $\alpha.$

The set A_α is semirecursive. Its selector function is polynomial-time computable.

$$
f(x,y) = \begin{cases} x, & \nu(x) > \nu(y) \\ y, & \nu(x) \leq \nu(y). \end{cases}
$$

However, depending on the choice of α , the complexity of recognizing the set A_α can be arbitrarily high.

On the other hand, the set A_α belongs to the non-uniform class $P/poly$ because for any finite set $B\in\omega$, it suffices to specify one rational approximation $\beta \approx \alpha$, comparison with which determines the intersection $B \cap A_{\alpha}$. If the set B is not entirely contained in A_{α} , then $\nu(\beta)$ can be chosen from the relative complement $B\backslash A_\alpha.$ Therefore, this number is bounded from above.

Theorem 1. *Let ^a non-empty set* ^U *of propositional formulae be closed under the substitution of ^a Boolean constant, i. e., False* [⊥] *or True* [⊤] *instead of any variable. Moreover, let the numbering* ^ν : ^ω [→] ^U *be bijective and satisfy following conditions.*

 (i) For any formula $\varphi(p_1, \ldots, p_n) \in U$ the following inequality holds:

$$
\nu^{-1}(\varphi)\geqslant n.
$$

 (iii) For any formula $\varphi(p_1,\ldots,p_n)\in U$, formulae obtained by substituting a constant instead of the variable p_n can be calculated in polynomial *time.*

(iii) *Moreover, the numbers of the new formulae are less than the* n umber of the original formula $\varphi(p_1,\ldots,p_n)$, i. e.,

$$
\nu^{-1}(\varphi(p_1,\ldots,p_{n-1},\perp)) < \nu^{-1}(\varphi(p_1,\ldots,p_n)),
$$

$$
\nu^{-1}(\varphi(p_1,\ldots,p_{n-1},\top)) < \nu^{-1}(\varphi(p_1,\ldots,p_n)).
$$

If the set ^A *of numbers of satisfiable formulae from* ^U *is semirecursive with ^a polynomial-time computable selector function, then the set* ^A*is polynomial-time decidable.*

The class RP (Randomized Polynomial-time) consists of sets A that are recognized by probabilistic polynomial-time algorithms with theconstraint: if $x \in A$, then x is accepted with probability at least $1/2$, otherwise x is accepted with probability 0.

Since there is ^a polynomial-time computable numbering of pairs of finite graphs given by adjacency matrices, the problem of recognizingisomorphism reduces to recognizing some set GraphIso $\subset \omega$ consisting
of the numbers of pairs of isomorphis araphs of the numbers of pairs of isomorphic graphs.

Theorem 2. *If the set* GraphIso *is semirecursive with ^a polynomialtime computable selector function, then*

 $\mathsf{GraphIso} \in RP.$

For two graphs (G,H) , we associate two pairs of graphs $(G^{\prime},G^{\prime \prime})$ and (G',H') , where graphs $G',$ G'' , and H' are obtained by independent random permutations of the vertices of the original graphs. Graphs G^{\prime} and G'' are always isomorphic to each other. The input is accepted if the value of the selector function encodes the pair (G',H') .

It is also possible to consider the problem of isomorphism of any finitestructures, where operations and relations are defined by tables.

C. G. Jockusch, Jr., Semirecursive sets, Notices Amer. Math. Soc., ¹², no. ⁷ (1965), 816.

C. G. Jockusch, Jr., Semirecursive sets and positive reducibility, Trans. Amer. Math. Soc., **131** (1968), 420–436.

A. L. Selman, P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP, Math. Systems Theory, ¹³(1979), 55–65.

A. L. Selman, Reductions on NP and p-selective sets, Theoret. Comput. Sci., ¹⁹ (1982), 287–304.

N. Kh. Kasymov, A. S. Morozov, Lower semilattices of separable congruences of numbered algebras, Sib. Math. J., $\bf{64}$ (2023) , 864–876.

Thank you!