Математические заметки

Том	выпуск _	ГОД	
	• –		

УДК 510.223+510.225

О конструктивных множествах в теории множеств Симпсона

В. Г. Кановей, В. А. Любецкий

Теория множеств Симпсона \mathbf{SST} является подтеорией теории множенств Цермело — Френкеля \mathbf{ZF} , полученной удалением аксиомы степени и схемы аксиом подстановки но с добавленными аксиомами счетности, транзитивного замыкания, и транзитивной свертки фундированных отношений. Метаматематически, \mathbf{SST} является консервативным расширением арифметики второго порядка \mathbf{Z}_2 (без аксиомы выбора) и допускает интерпретацию в \mathbf{Z}_2 . Симпсон показал, что построение класса \mathbf{L} всех конструктивных множеств по Гёделю осуществимо в этой теории, несмотря на отсутствие схемы аксиом подстановки. Исследуя класс \mathbf{L} в теории Симпсона, мы доказываем, что \mathbf{L} удовлетворяет самой \mathbf{SST} без аксиомы счетности, в частности, удовлетворяет схеме аксиом выделения.

Библиография: ЧЧ названий.

Ключевые слова: конструктивность; теория множеств Симпсона; арифметика второго порядка; консервативность

1. Введение

int

Симпсон [23; гл. VII] провел тщательное исследование взаимосвязей между различными подтеориями арифметики второго порядка \mathbf{Z}_2 и теориями множеств без аксиомы степени но с аксиомой \mathbf{Cntbl} о счетности каждого множества. Как своего рода ядро своих теоретико-множественных схем, Симпсон берет теорию $\mathbf{ATR}_{\mathrm{set}}^0$, полученную из теории Цермело \mathbf{Z} удалением аксиомы степени и схемы выделения и добавлением 1) аксиомы существования транзитивных надмножеств, 2) аксиомы существования транзитивной модели для любого фундированного бинарного отношения, 3) аксиомы \mathbf{Cntbl} о счетности каждого множества, и 4) аксиомы универсальной определенности гёделевых и некоторых других операций. К этой базовой

Исследование выполнено за счет гранта Российского Научного Фонда N=24-44-00099, https://rscf.ru/project/24-44-00099/ .

3t

теории Симпсон добавляет схемы выделения для разных классов \in -формул, и, как законченный вариант, полную схему выделения **Sep** (или $\Pi_{\infty}^{\text{set}}$ -comprehension, как в [23]). Полученную таким образом теорию $\mathbf{ATR}_{\text{set}}^0 + \mathbf{Sep}$ мы называем здесь *теорией множеств Симпсона* и обозначаем через **SST**.

С точки зрения оснований математики, теория **SST** важна тем, что она в точности является теорией стандартной интерпретации теории множеств в арифметике второго порядка \mathbb{Z}_2 при помощи фундированных деревьев, как показано в [23; § VII.3]. Об этом см. также в статьях [2, 21, 25, 26] и др., или ниже в § 4 этой статьи.

Симпсон установил в [23; § VII.4] что теория **SST** (и даже до какой-то степени $\mathbf{ATR}^0_{\mathrm{set}}$) достаточно сильна для выполнения многих типичных теоретико-множественных построений по трансфинитной индукции, включая адекватное построение класса $\mathbf{L} = \bigcup_{\alpha \in \mathrm{Ord}} \mathbf{L}_{\alpha}$ конструктивных множеств с выводом ряда главных свойств иерархии множеств \mathbf{L}_{α} — несмотря на отсутствие схемы подстановки, которая обычно используется для этих целей в **ZF**. В частности, Симпсон доказывает следующее:

hcl ТЕОРЕМА 1 (**SST**). *Класс* **HCL** всех множеств x, принадлежащих транзитивному и счетному в **L** множеству $y \in \mathbf{L}$, удовлетворяет аксиомам **ZFC** $^-$.

Здесь ${\bf ZFC}^-$ — это ${\bf ZFC}$ без аксиомы степени.

Приведем фундаментальное следствие из теоремы 1.

1t СЛЕДСТВИЕ 1. $Teopuu \mathbf{Z}_2$, \mathbf{Z}_2 c аксиомой счетного выбора, \mathbf{Z}^- , \mathbf{ZF}^- , \mathbf{ZFC}^- равнонепротиворечивы.

Этот результат о непротиворечивости известен по крайней мере с 1960х, хотя полные доказательства как будто не опубликованы.

Что касается самого класса L в теории SST, то, в противоположность его подклассу HCL, он остался мало исследованным в [23] в связи с аксиомами теории множеств. Указано лишь, что L не оьязательно удовлетворяет схеме подстановки (см. ниже пример 1). В положительном же направлении рассмотрен лишь случай отношений типа Σ_1 (упражнение VII.5.5 в [23]). Мы заполняем этот пробел следующей теоремой:

ТЕОРЕМА 2 (SST). Класс **L** удовлетворяет аксиомам SST, за исключением, возможно, аксиомы счетности Cntbl. В частности, **L** удовлетворяет схеме выделения Sep для формул любого типа.

Следовательно, класс (или множество) $\mathbf{L} \cap \mathscr{P}(\omega)$ удовлетворяет \mathbf{Z}_2 .

Теорема 2 – главный результат этой статьи. Она доказана в § 8 настоящей статьи на основе результатов о конструктивности в контексте **SST**, изложенных в §§ 5, 6. Эти промежуточные результаты о конструктивности позволят нам дать также и новое упрощенное доказательство теоремы 1 Симпсона, в следующей форме:

ТЕОРЕМА 3 (**SST**). Следующее множество или класс удовлетворяет \mathbf{ZFC}^- : 2red

$$\mathbf{L}^* = \begin{cases} \mathbf{L}, & \text{если ординал } \omega_1^{\mathbf{L}} \text{ не существует}, \\ \mathbf{L}_{\Omega} = \bigcup_{\alpha < \Omega} \mathbf{L}_{\alpha}, & \text{если ординал } \omega_1^{\mathbf{L}} = \Omega \text{ существует}. \end{cases}$$
 (a)

Теорема 3 доказана в §9 настоящей статьи. В частности, ключевая теорема 6 в этом разделе утверждает, что, в определенных условиях, класс вида $K = \bigcup_{\alpha \in \Omega} \mathbf{L}_{\alpha}$ удовлетворяет **ZFC** $^-$, что и ведет к доказательству теорем 3 и 1.

2. Теория множеств Симпсона

2prel

zfcm1

zfcm2

zfcm3

Теория **ZFC**⁻ получается из теории множеств Цермело - Френкеля **ZFC** так:

- (I) аксиома степени PS удаляется это символизирует минус в аббревиатуре;
- (II) обычная аксиома выбора **AC** по Цермело как в **ZFC** удаляется (ибо без **PS** она неэффективна), а вместо нее вводится *аксиома полного упорядочивания* **WOA**, постулирующая возможность вполне упорядочить любое множество;
- (III) схема выделения **Sep** сохраняется, но схема подстановки **Repl** (слишком слабая в отсутствие **PS**) замещается схемой *собирания*:

 $\mathbf{Coll}: \ \forall \ X \ \big(\forall \ x \in X \ \exists \ y \ \Phi(x,y) \implies \exists \ Y \ \forall \ x \in X \ \exists \ y \in Y \ \Phi(x,y) \big).$

Известно, что $Coll + Sep \implies Repl.$

См. работы [1, 8, 9] за подробностями о теории **ZFC** $^-$.

Также см. [10], [24], [7; разд. 2] и др. о различных но эквивалентных формулировках схемы собирания, таких как например следующая форма в [10; гл. 6]:

Coll':
$$\forall X \exists Y \forall x \in X (\exists y \varphi(x, y) \Longrightarrow \exists y \in Y \varphi(x, y)).$$

Это выглядит несколько сильнее чем **Coll** выше, но на самом деле **Coll**' следует из **Coll**. Именно, нужно взять $\Phi(x,y) := \varphi(x,y) \lor (y=0 \land \neg \exists y \varphi(x,y))$ в формуле **Coll**.

 \bullet **ZF** $^-$ есть **ZFC** $^-$ без аксиомы полного упорядочивания **WOA**;

Функция $\mu = \mu_A$ называется функцией свёртки для A.

zm

zfm

 \bullet **Z** $^-$ есть **ZF** $^-$ без схемы собирания **Coll**.

zmc

trsu

moco

xet

Наконец, определим meopuю mhoжеств Cumncoha SST как Z^- с добавленными следующими тремя аксиомами TrCov, Beta, Cntbl:

Транзитивное накрытие, TrCov: $\forall X$, существует транзитивное множество $Y \supseteq X$. **Аксиома Beta или коллапс Мостовского:** любое фундированное отношение A на множестве $D = \mathsf{fld}\,A := \mathsf{dom}\,A \cup \mathsf{ran}\,A$ допускает транзитивное множество X и функцию $\mu:D$ на X, удовлетворяющую (*) $\mu(d) = \{\mu(j): j \ A \ d\}$, для всех $d \in D$. Функция μ и множество X определены этим условием однозначно.

atros

aeq

aei

rud

a3

sst2

dev

Напомним, что бинарное отношение A на множестве $D = \mathbf{fld} A$ фундировано, если любое непустое $Y \subseteq D$ содержит элемент $y \in Y$, для которого $\forall x \in Y \neg (x \land y)$.

соип **Счетность Cntbl:** $\forall x \exists f (f : x \to \omega \ 1 - 1 \ функция), т. е. все множества счетны.$

Понятно, что $SST \subseteq ZF^- + Cntbl$.

Об аксиоме **Beta** см. книгу [23], определение VII.3.8 и замечания в конце § VII.3 о её истории. Вывод **Beta** из **Repl** см. например в [10; теорема 6.15].

Сам Симпсон подходит к аксиоматике равносильной нашей **SST** в [23; VII.3.3 и VII.3.8] с несколько иных позиций, относящихся к направлению reverse mathematics. Именно, он вводит теорию $\mathbf{ATR}_{\mathrm{set}}^0$ в \in -языке, содержащую такие аксиомы:

- (a) аксиомы равенства: = есть отношение эквивалентности, а отношение \in является =-инвариантным;
- (b) экстенсиональность, бесконечность, регулярность в их обычных **ZF**-формах;
- (c) аксиома рудиментарной замкнутости, которая утверждает, для всех множеств u, v, существование множеств $\mathcal{F}_1(u, v) = \{u, v\}$, $\mathcal{F}_2(u, v) = u \setminus v$, $\mathcal{F}_3(u, v) = u \times v$, $\mathcal{F}_4(u, v) = \bigcup u$, а также множеств:

$$\mathcal{F}_{5}(u,v) = \in \upharpoonright u = \{\langle x,y\rangle : x,y \in u \land x \in y\},
\mathcal{F}_{6}(u,v) = u^{-1} = \{\langle x,y\rangle : \langle y,x\rangle \in u\},
\mathcal{F}_{7}(u,v) = \{\langle y,\langle x,z\rangle\rangle : \langle y,x\rangle \in v \land z \in u\},
\mathcal{F}_{8}(u,v) = \{\langle y,\langle z,x\rangle\rangle : \langle y,x\rangle \in v \land z \in u\},
\mathcal{F}_{9}(u,v) = \{z : \exists x (x \in u \land z = v"\{x\})\},$$

where v" $\{x\} = \operatorname{ran}(v \upharpoonright \{x\});$

(d) наконец, аксиомы **TrCov**, **Beta**, **Cntbl**, как выше.

ЛЕММА 1. $\mathbf{ATR}_{\mathrm{set}}^0 \subseteq \mathbf{SST}$, а потому \mathbf{SST} тождественна $\mathbf{ATR}_{\mathrm{set}}^0 + \mathbf{Sep}$.

ДОКАЗАТЕЛЬСТВО. Пусть множеств u, v произвольны. Согласно лемме 5 ниже, существует транзитивное множество Y, содержащее u, v и замкнутое относительно конечных подмножеств — а тогда и относительно упорядоченных пар, троек и т. п. Тогда каждая из операций $\mathcal{F}_1 - \mathcal{F}_8$ из (c), примененная к множествам $u, v \in Y$, даёт результат, являющийся частью Y, т.е. множеством согласно **Sep**. Что касается \mathcal{F}_9 , то в наших условиях выполнено $\mathcal{F}_9(u, v) \subseteq \mathscr{P}(Y)$, так что остается сослаться на лемму $\mathbf{4}(\mathbf{ii})$ ниже при D = u и F(x) = v° $\{x\}$.

Операции $\mathcal{F}_1 - \mathcal{F}_9$ из (c) можно сравнить с $\mathit{r\"{e}denesumu}$ операциями из § 7 ниже.

3. Развитие теории Симпсона

Здесь собрано несколько достаточно простых результатов в теории **SST**. В частности, аксиома **TrCov** и схема **Sep** приносят такой результат:

ЛЕММА 2 (SST, ТРАНЗИТИВНОЕ ЗАМЫКАНИЕ). Для любого множества X суetcществует транзитивное замыкание $TC(X) = \bigcap \{Y \supseteq X : Y \text{ транзитивно} \}$.

Применяя **Beta** для случая $A = \in \upharpoonright D$, мы получаем:

ЛЕММА 3 (SST, ТРАНЗИТИВНАЯ СВЁРТКА). Для любого множества D суc12ществуют единственные транзитивное множество X и функция свёртки τ : D на X, удовлетворяющие $\tau(x) = \{\tau(y): y \in x \cap D\}$ для всех $x \in D$.

Для краткости, класс-функцией назовем любой (определимый) класс, удовлетворяющий обычному определению функции (состоит из упорядоченных пар, и т. д.).

ЛЕММА 4 (**SST**). Пусть $F - \kappa \Lambda acc - \phi y + \kappa u u s$, определенная на множестве D. mz12Тогда F и образ $R = F"D = \{F(x) : x \in D\}$ – множества в таких двух случаях:

- (i) R m ранзитивный класс,
- (ii) имеется множество Y, для которого $R \subseteq \mathscr{P}(Y)$.

2mz12

Доказательство. (i) Согласно **Cntbl**, мы можем предполагать, что $D \subseteq \omega$. Также предполагаем, что F взаимно однозначна; иначе заменим D множеством

$$D' = \{ k \in D : \forall j \in D (j < k \Longrightarrow F(j) \neq F(k)) \}.$$

Тогда отношение $A = \{\langle j, k \rangle : j, k \in D \land F(j) \in F(k)\}$ фундировано, как изоморфное отношению $\in \upharpoonright R$. С другой стороны, A изоморфно $\in \upharpoonright Y$ согласно **Beta**, где Y – транзитивное *множество*. Значит транзитивные Y и $R \in$ -изоморфны, а потому R = Y – множество. Наконец, $F \subseteq X \times R$ – также множество благодаря **Sep**.

(ii) Аксиома \mathbf{TrCov} позволяет допустить транзитивность множества Y. Также можно предполагать, что $D \cap Y = \emptyset$; иначе положим $D' = D \times \{Y\}$ и соответственно изменим F. В этих предположениях, берем $D_1 = D \cup Y$ и продолжаем Fдо F_1 идентичным отображением на Y. Тогда образ F_1 " $D_1 = R \cup Y$ — транзитивное множество согласно (i). Наконец, $R \subseteq F_1$ " D_1 – множество по **Sep**.

Скажем, что множество S замкнуто относительно конечных подмножеств, если $\forall z \subseteq Y (z \text{ finite } \Longrightarrow z \in Y)$. Для любого X, вводится соответствующее замыкание FC(X) как наименьшее надмножество $Y \supseteq X$, замкнутое относительно конечных подмножеств (если оно существует в данной аксиоматике).

PCX

1mz12

ЛЕММА 5 (SST). Для любого множества X, существует множество FC(X).

Доказательство. Для случая $X = \omega$, через p_k обозначим k-е простое число, так что $p_1 = 2, p_2 = 3,$ и т. д. Положим $A = \{\langle k, n \rangle : k \geqslant 1 \land p_k$ делит $n\}$. Тогда $\mathsf{fld}\,A = \omega \setminus \{0\}, \ A$ фундировано (поскольку $k \ A \ n \Longrightarrow k < n),$ и (†) для любого конечного $u \subseteq \mathsf{fld}\,A$ имеется $n \in \mathsf{fld}\,A$, для которого $u = \{k : k\,A\,n\}$. По аксиоме **Beta** существует отображение μ : fld A на транзитивное множество R, удовлетворяющее $\mu(n) = \{\mu(k): k \ A \ n)\}$, для всех $n \in \text{fld } A$. Понятно, что $R = FC(\omega)$ согласно (†).

Теперь общий случай. Можно предполагать, по **TrCov**, что X транзитивно. По **Cntbl**, имеется функция $h:\omega$ onto X. Она продолжается до класс-функции H, определенной на большем множестве $R=\mathrm{FC}(\omega)$ через $H\!\upharpoonright\!\omega=h$, а если $u\in R\!\smallsetminus\!\omega$ то $H(u)=\{H(n)\colon n\in u\}$. Тогда $\mathrm{ran}\, H=\mathrm{FC}(X)$ (класс), и поэтому $\mathrm{ran}\, H$ транзитивно вместе с X. Однако по лемме $\mathrm{4(i)}$, как H так и $\mathrm{ran}\, H=\mathrm{FC}(X)$ – множества. \square

capr

ЛЕММА 6 (SST). Для любых множеств U u V, существуют как множества $U \times V$, $\mathscr{P}_{\text{fin}}(U)$, $U^{<\omega}$.

ДОКАЗАТЕЛЬСТВО. $X = U \cup V = \bigcup \{U, V\}$ — множество даже в \mathbf{Z}^- , так что и $\mathrm{FC}(X)$ — множество по лемме 5, и далее $U \times V \subseteq \mathrm{FC}(X)$ — множество по **Sep**. Далее, имеем $\mathscr{P}_{\mathtt{fin}}(U), U^{<\omega} \subseteq \mathrm{FC}(U)$; используем лемму 5 и опять **Sep**.

Таким образом, **SST** доказывает существование декартовых произведений. Заметим, что \mathbf{Z}^- недостаточно сильна даже для вывода существования $\omega \times \omega$!

ord ЛЕММА 7 (SST). Пусть E – строгое полное упорядочение множества U. Найдется ординал λ и порядковый изоморфизм $\langle U; E \rangle$ на $\langle \lambda; \in \rangle$.

Доказательство. В частности, E – фундированное отношение на U. Аксиома **Beta** дает транзитивное множество $\lambda = X$, вполне упорядоченное отношением \in , т. е. ординал.

 $\operatorname{ord} C$

Следствие 2 (**SST**). *If* α, β – *ординалы, то существуют (как множества) ординалы* $\alpha + \beta$, $\alpha \cdot \beta$, α^{β} . (В смысле стандартной арифметики ординалов.)

ДОКАЗАТЕЛЬСТВО. Достаточно определить вполне упорядоченные множества, представляющие указанные порядковые числа. Декартово произведение $\alpha \times \beta$ (множество по лемме 6), упорядоченное лексикографически, представляет $\alpha \cdot \beta$. Экспонента же α^{β} представлена множеством

$$W = \{f : D \to \alpha \setminus \{0\} : D \subseteq \beta \text{ is finite}\}$$

с лексикографическим порядком, понимаемым в том смысле, что каждая $f \in D$ продолжена через $f(\xi) = 0$ для всех $\xi \in \beta \setminus D$. Заметим, что $W \subseteq FC(\beta \times \alpha)$ – множество согласно лемме 5.

dim

4. Метаматематика теории множеств Симпсона

Выбор аксиом **SST** выглядит достаточно случайным и мало обоснованным сверх чисто технической необходимости в тех или иных доказательствах. Целью этого

раздела будет обосновать, что это не совсем так, и что на самом деле \mathbf{SST} можно считать своего рода теоретико-множественным «когнатом» арифметики второго порядка \mathbf{Z}_2 (напомним: без аксиомы выбора). Главные результаты здесь таковы.

- 1°. Теория **SST** есть консервативное расширение \mathbf{Z}_2 в том смысле, что предложение P языка \mathbf{Z}_2 является теоремой \mathbf{Z}_2 в том и только в том случае, когда релятивизация $(P)^{\mathscr{P}(\omega)}$ является теоремой **SST**.

dim1

 2° . Существует интерпретация теории **SST** в \mathbf{Z}_2 , определимая в \mathbf{Z}_2 и такая, что структура $\langle \omega; \mathscr{P}(\omega) \rangle$ интерпретации имеет канонический изоморфизм с самим универсумом теории \mathbf{Z}_2 .

dim2

est

Оба результата изложены в [23; VII.3], но известны фактически с 1960х годов.

Для вывода 1° и 2°, рассматривается совокупность WFT всех непустых фундированных деревьев $T\subseteq \text{SEQ}=\omega^{<\omega}$. Напомним, что

- Seq = $\omega^{<\omega}$ = все кортежи натуральных чисел;
- $\langle \rangle \in \text{Seq}$ пустой кортеж, $\langle k \rangle$ кортеж с k как единственным членом;
- $s \hat{\ } j$ получается присоединением члена $j \in \omega$ к кортежу $s \in SEQ$ справа, а если $s,t \in SEQ$ то $s \hat{\ } t \in SEQ$ обозначает конкатенацию;
- $T \subseteq Seq depeso$, если $s \cap j \in T \Longrightarrow s \in T$;
- дерево $T \subseteq \text{Seq}$ фундировано, $T \in \text{WFT}$, если $\neg \exists g : \omega \to \omega \, \forall \, m \, (g \upharpoonright m \in T)$;
- если T дерево и $s \in T$ то $T^s = \{t \in \text{Seq}: s^{\hat{}} t \in T\}$ также дерево, и если T фундировано то и T^s фундировано.

Упражнение 1 (**SST**). Пусть $T \in WFT$. Докажите, что существует единственная функция \mathbf{set}_T , определенная на T и удовлетворяющая равенству $\mathbf{set}_T(u) = \{\mathbf{set}_T(u^{\hat{}}j) \colon u^{\hat{}}j \in T\}$ для всех $u \in T$. Полагаем $\mathbf{Set}_T = \mathbf{set}_T(\langle \rangle)$.

Определенным недостатком теорий подобных арифметике второго порядка \mathbb{Z}_2 является то, что кортежи натуральных чисел, деревья, функции SEQ \to SEQ и т. п. объекты формально не входят в область изучения. Этому можно помочь подходящей $\kappa o \partial u po \epsilon \kappa o \dot{u}$. См. об этом в [23], гл. I, и особенно раздел II.2 с рядом примеров.

В частности, для кодировки кортежей, положим $s_0 = \langle \rangle$ (пустой кортеж), и если $n = 2^m(2j+1) - 1 \geqslant 1$ то $s_n = s_m \hat{j}$. Тогда $\text{SEQ} = \{s_n : n < \omega\}$, и $n \mapsto s_n$ является биекцией. Соответственно, число n = n(s) служит кодом кортежа $s = s_n \in \text{SEQ}$, а каждое множество $x \subseteq \omega$ служит кодом множества кортежей $\{s_n : n \in x\} \subseteq \text{SEQ}$. Следуя Симпсону [23; II.2], это позмоляет нам свободно рассматривать кортежи и их множества, оставаясь в рамках теории \mathbf{Z}_2 . Это относится и к множествам $X \subseteq \omega \times \omega$, $H \subseteq \text{SEQ} \times \text{SEQ}$, и им подобным.

С этой оговоркой, мы можем рассматривать в ${\bf Z}_2$ кортежи и деревья, дать адекватное ${\bf Z}_2$ -определение фундированности, и даже определить, для данных $S,T\in$

WFT, верны ли соотношения $\mathbf{Set}_S = \mathbf{Set}_T$ и $\mathbf{Set}_S \in \mathbf{Set}_T$, не определяя самих множеств \mathbf{Set}_S , \mathbf{Set}_T . Дается следующее определение в \mathbf{Z}_2 .

bis Определение 1 ([6; 7.8] или [23; VII.3.13]). Пусть $S, T \in WFT$. Множество $H \subseteq S \times T$ называется S, T-бисимуляцией когда, для всех $s \in S$ и $t \in T$, выполнено:

$$s H t \iff \begin{cases} \forall s' = s \hat{j} \in S \exists t' = t \hat{k} \in T \ (s' H t') \land \\ \land \forall t' = t \hat{k} \in T \ \exists s' = s \hat{j} \in S \ (s' H t') \end{cases}.$$

Положим $S=^*T,$ если существует S,T-бисимуляция H, для которой $\langle \rangle$ H $\langle \rangle$.

Положим $S \in T$, когда $S = T^{\langle k \rangle}$ для какого-то $k \in \omega$.

 $Cmpyкmypa V = \langle WFT; =^*, \in^* \rangle$ рассматривается в \mathbb{Z}_2 .

V-интерпретация $[\Phi]^V$ любой ∈-формулы Φ (с параметрами из WFT) естественно понимается через интерпретацию =, ∈ как =*, ∈*, и релятивизацию всех кванторов к WFT. Так например $[x=y]^V$ есть $x=^*y$.

est2 Упражнение 2 (**SST**). Пусть $S, T \in \text{WFT}$. Докажите, что $\mathbf{Set}_S = \mathbf{Set}_T$, если и только если S = T истинно в \mathbf{Z}_2 -структуре $\langle \omega; \mathscr{P}(\omega) \rangle$. То же для $\in \mathfrak{u} \in T$.

Отношение бисимуляции $=^*$ между деревьями из WFT, и соответственно производное отношение \in^* , естественно формализуются в \mathbb{Z}_2 при помощи изложенной выше кодировки. Отсюда следует, что V-интерпретация $[\Phi]^V$ любой \in -формулы Φ с параметрами из WFT является формулой языка \mathbb{Z}_2 .

Teopema 4 (\mathbf{Z}_2).

it1

it11

it12

- (i) V правильно определенная структура, т. е. $=^*$ отношение эквивалентности на WFT, а бинарное отношение \in^* на WFT $=^*$ -инвариантно.
 - (ii) \mathbb{V} удовлетворяет \mathbf{SST} : если Φ аксиома \mathbf{SST} , то $\lceil \Phi \rceil^{\mathbb{V}}$ теорема \mathbf{Z}_2 .
- it13 (iii) Имеется канонический изоморфизм между подструктурой $\langle \omega; \mathscr{P}(\omega) \rangle^{\mathbb{V}}$ интерпретации и собственной структурой $\langle \omega; \mathscr{P}(\omega) \rangle$ универсума \mathbf{Z}_2 .

Результаты, близкие к разным частям этой теоремы, были известны уже Крайзелю [19], а также из статей [2], [25], [21; теорема 1.1 и следствие 1.1], и др.

ДОКАЗАТЕЛЬСТВО (НАБРОСОК). Помимо источников выше, теорема фактически доказана в [23; § VII.3]. Именно, используя лишь подтеорию $\mathbf{ATR}^0 \subseteq \mathbf{Z}_2$ в роли базовой теории арифметики второго порядка, вместо самой \mathbf{Z}_2 , лемма VII.3.20 в [23] доказывает, что если Φ – аксиома $\mathbf{ATR}^0_{\mathrm{set}}$, то $[\Phi]^V$ – теорема \mathbf{ATR}^0 (и тогда также теорема \mathbf{Z}_2). Таким образом, для вывода (ii) лостаточно проверить **Sep** в V.

Рассуждая в ${\bf Z}_2$, пусть $S\in {\rm WFT},\, X=\{k\colon \langle k\rangle\in S\}$, а $\Phi(x)$ является \in -формулой с параметрами из WFT и с x как единственной свободной переменной. По определению, деревья вида $S^k=\{t\in {\rm SEQ}\colon k^\smallfrown t\in S\},\, k\in X,$ принадлежат ${\mathbb V}$ и исчерпывают

(с точностью до $=^*$) все \in^* -элементы S в \mathbb{V} . Используя схему свёртки из \mathbb{Z}_2 , положим $Y = \{k \in X : \lceil \Phi(S^{\langle k \rangle}) \rceil^{\mathbb{V}} \}$. Множество $T = \{\langle \rangle \} \cup \{t \in S : t(0) \in X\}$ — дерево из WFT. Остается проверить $\lceil T = \{x \in S : \Phi(x)\} \rceil^{\mathbb{V}}$.

Допустим, что $C \in \mathrm{WFT}, \ C \in S$, и выполнено $\lceil \Phi(C) \rceil^{\mathbb{V}}$. Тогда $C = S^{\langle k \rangle}$ для какого-то $k \in X$, так что выполнено $\lceil \Phi(S^{\langle k \rangle}) \rceil^{\mathbb{V}}$, и тогда $k \in Y$. Отсюда имеем $C = T^{\langle k \rangle} = S^{\langle k \rangle} \in T$. Доказательство обратной импликации аналогично.

СЛЕДСТВИЕ 3 (ИЗ ТЕОРЕМЫ 4). Утверждения 1° и 2° выше справедливы. Зна- red чит, теории \mathbf{Z}_2 , \mathbf{Z}^- , SST взаимно интерпретируемы и, следовательно, равноне-противоречивы.

Упражнение 3. Мы опустили ряд деталей доказательства теоремы 4, в частности, поскольку эта теорема не связана с доказательством главных результатов настоящей статьи. Однако хорошим *упраженением* для читателя будет восстановить полное доказательство, следуя выкладкам в цитированных публикациях [19, 2, 25, 21, 23], а также вывод 1° и 2° из теоремы.

Замечание 1. Пусть \mathbf{AC}_{ω} – счетная аксиома выбора в \mathbf{Z}_2 , и $\mathbf{Z}_2^+ := \mathbf{Z}_2 + \mathbf{AC}_{\omega}$. ев Заменив \mathbf{Z}_2 на \mathbf{Z}_2^+ в теореме, пункт (ii) примет вид:

если Φ – аксиома **ZFC**⁻, то $\lceil \Phi \rceil^{\mathbb{V}}$ – теорема \mathbf{Z}_2^+ .

Этот вариант даже более известен и лучше отражен в литературе, см. [21].

5. Конструктивные множества в теории Симпсона

Lopr

 $\sin 1$

est2

Здесь приведены ключевые определения и некоторые важные результаты из теории конструктивности в изложении [23; \S VII.4]. Симпсон получает эти результаты в теории $\mathbf{ATR}_{\mathrm{set}}^0$ и другими подтеориями \mathbf{SST} в [23]. Тем более эти результаты верны в нашей базовой теории множеств \mathbf{SST} .

Также отметим, что в настоящей работе рассматривается только частный случай $\mathbf{L} = \bigcup_{\alpha \in \mathrm{Ord}} \mathbf{L}_{\alpha}$ более общего определения *относительной* конструктивности $\mathbf{L}[u] = \bigcup_{\alpha \in \mathrm{Ord}} \mathbf{L}_{\alpha}[u]$ в [23] для случая $u = \varnothing$. Поэтому все данные ниже формулировки определений и результатов из [23; гл. VII] сведены именно к этому случаю.

ЛЕММА 8 (**SST**, [23], ЛЕММА VII.4.1). Пусть X – транзитивное множество. Существует (единственное) множество **Def** X, состоящее из всех множеств $Y \subseteq X$, определимых над $X \in -$ формулой с параметрами из X.

Это множество $\mathbf{Def} X$ транзитивно и удовлетворяет $X \cup \{X\} \subset \mathbf{Def} X$. \square

Доказательство леммы 8 в [23] состоит в выводе существования ϕ ункции оценки для всех \in -формул с параметрами из данного транзитивного множества X. Другой подход к определению $\mathbf{Def}\,X$ (он, как и первый, принадлежит Гёделю) связан с тем, что \in -определимость элиминируется через гёделевы операции, см. \S ?? ниже.

LLdef

13c1

nosep

Далее, лемма 8 даёт следующий результат:

legi ЛЕММА 9 (**SST**, [23], VII.4.2). Пусть $\beta \in \text{Ord.}$ Имеется единственная функjf ция $f = \mathbb{F}_{\beta}$, для которой dom $f = \beta$, $f(0) = \emptyset$, $f(\alpha + 1) = \mathbf{Def} f(\alpha)$ при $\alpha + 1 < \beta$, $u \ f(\lambda) = \bigcup_{\alpha < \lambda} f(\alpha)$ для предельных $\lambda < \beta$.

Функция \mathbb{f}_{β} называется конструирующей функцией высоты β .

Ludef Определение 2 (**SST**). Положим $\mathbf{L}_{\alpha} = \mathbb{f}_{\alpha+1}(\alpha)$ для всех $\alpha \in \operatorname{Ord}$.

Таким образом, теория **SST** (фактически, даже $\mathbf{ATR}_{\mathrm{set}}^0$) достаточно сильна для построения стандартной конструктивной иерархии:

$$\mathbf{L}_{0} = \varnothing,$$

$$\mathbf{L}_{\alpha+1} = \mathbf{Def} \, \mathbf{L}_{\alpha} \, \text{ для всех } \alpha,$$

$$\mathbf{L}_{\lambda} = \bigcup_{\alpha < \lambda} \mathbf{L}_{\alpha} \, \text{ для всех предельных } \lambda,$$

$$\mathbf{L} = \bigcup_{\alpha \in \mathrm{Ord}} \mathbf{L}_{\alpha} = \text{все конструктивные множества.}$$

$$(1)$$

lae ТЕОРЕМА 5 (**SST**). Выплнено следующее:

- lae1 (i) каждое \mathbf{L}_{α} транзитивное множество, и $\alpha \subseteq \mathbf{L}_{\alpha}$;
- lae2 (ii) $ecnu \ \alpha < \beta \ mo \ \mathbf{L}_{\alpha} \in \mathbf{L}_{\beta} \ u \ \mathbf{L}_{\alpha} \subseteq \mathbf{L}_{\beta};$
- lae3 (iii) если λ пределен то \mathbf{L}_{λ} замкнуто относительно операций (c) в разделе 2;
- 4lae (iv) $ecnu \ \alpha \in Ord \ mo \ \mathbb{f}_{\alpha} \in \mathbf{L}_{\alpha+3}$;
 - (v) (1) если $\lambda \in \operatorname{Ord}$ пределен, то отображение $\alpha \mapsto \mathbf{L}_{\alpha}$ ($\alpha < \lambda$) определимо над \mathbf{L}_{λ} без параметров,
 - (2) класс-функция $\alpha \mapsto \mathbf{L}_{\alpha}$ ($\alpha \in \mathrm{Ord}$) определима над \mathbf{L} без параметров.

ДОКАЗАТЕЛЬСТВО. См. [23], теорема VII.4.3, об (i), (ii), (iii). Относительно (iv) и (v), см. теорему VII.4.8 и её доказательство в [23], или к примеру лемму 4.1 в [3; § В.5] или доказательство леммы 2.6(ii) в [7].

ЛЕММА 10 (SST). Если $\lambda \in \text{Ord}$ пределен, то все аксиомы \mathbf{Z}^- кроме, возможено, схемы Sep, выполнены в \mathbf{L}_{λ} .

B самом же классе $\mathbf L$ верны все аксиомы $\mathbf SST$ кроме, возможно, $\mathbf Sep\ u\ \mathbf Cntbl.$

ДОКАЗАТЕЛЬСТВО. Для проверки аксиом \mathbf{Z}^- без \mathbf{Sep} , особых отличий от доказательства в \mathbf{ZF} нет. Рассмотрим, к примеру, аксиому объединения. Пусть $X \in \mathbf{L}_{\lambda}$, т.е. $X \in \mathbf{L}_{\alpha}$, $\alpha < \lambda$ (или просто $\alpha \in \mathrm{Ord}$ для \mathbf{L}). Коль скоро \mathbf{L}_{α} транзитивно, объединение $Y = \bigcup X \subseteq \mathbf{L}_{\alpha}$ определимо над \mathbf{L}_{α} , поэтому $Y \in \mathrm{Def} \mathbf{L}_{\alpha} = \mathbf{L}_{\alpha+1} \subseteq \mathbf{L}_{\lambda} \subseteq \mathbf{L}[u]$, что и требовалось.

Результат для \mathbf{L} см. [23; следствие VII.4.15]. Наиболее сложная в этом результате проверка аксиомы **Beta** в \mathbf{L} (теорема VII.4.12 там же) основана на лемме VII.4.10,

согласно которой если $A \in \mathbf{L}$ – фундированное отношение, то его функция свёртки μ_A (см. определение аксиомы **Beta** в разделе 2) также принадлежит \mathbf{L} .

В то же время, для схем Repl/Coll и аксиомы Cntbl имеется такой контрпример.

ПРИМЕР 1. Рассуждая в **ZF**, положим $\mathfrak{M} = \mathbf{L}_{\vartheta}$, где $\vartheta = (\aleph_{\omega})^{\mathbf{L}}$. Рассмотрим генерическое расширение \mathfrak{N} модели \mathfrak{M} генерической последовательностью функций $f_n : \omega$ onto $(\aleph_n)^{\mathbf{L}}$. Тогда \mathfrak{N} – модель **SST**, и в то же время $(\mathbf{L})^{\mathfrak{N}} = \mathfrak{M}$, но схемы **Repl/Coll** и аксиома **Cntbl** определенно нарушены в \mathfrak{M} .

6. Определимость и полные упорядочения конструктивного универсума

abs

Здесь доказываются некоторые более тонкие результаты о конструктивности в теории **SST**. Следующая лемма говорит о параметрах определимости.

ЛЕММА 11 (SST). Пусть λ – предельный ординал, $u \ Y \in \mathbf{L}_{\lambda}$. Тогда Y определимо над \mathbf{L}_{λ} (i) формулой c параметрами вида \mathbf{L}_{δ} , $\delta < \lambda$, (ii) формулой c параметрами $\delta < \lambda$.

ДОКАЗАТЕЛЬСТВО. (i) По определению, $Y = \{y \in \mathbf{L}_{\alpha} : \mathbf{L}_{\alpha} \models \varphi(y)\}$, где $\alpha < \lambda$ и φ может иметь параметры из \mathbf{L}_{α} . Рассуждая индукцией по α , пусть для простоты $\varphi(y)$ есть $\varphi(p,y)$, с одним параметром $p \in \mathbf{L}_{\alpha}$, т.е. $p \in \mathbf{L}_{\gamma+1}$, где $\gamma < \alpha$. По индуктивному предположению, $p = \{z \in \mathbf{L}_{\gamma} : \mathbf{L}_{\lambda} \models \psi(z)\}$, где ψ имеет параметры из \mathbf{L}_{δ} , $\delta < \lambda$. Тогда $Y = \{y \in \mathbf{L}_{\alpha} : \mathbf{L}_{\lambda} \models \Phi(y)\}$, где

$$\Phi(y) := \exists p (y, p \in \mathbf{L}_{\alpha} \land p = \{z : z \in \mathbf{L}_{\gamma} \land \psi(z)\} \land \varphi(p, y)^{\mathbf{L}_{\alpha}}),$$

а $\varphi(p,y)^{\mathbf{L}_{\alpha}}$ означает релятивизацию к \mathbf{L}_{α} , т. е. все кванторы $\exists a, \forall a$ меняются на, соответственно, $\exists a \in \mathbf{L}_{\alpha}, \forall a \in \mathbf{L}_{\alpha}$. Однако Φ имеет только \mathbf{L}_{γ} , \mathbf{L}_{α} , и некоторые \mathbf{L}_{δ} , $\delta < \lambda$, в роли параметров. Этим доказано утверждение (i). Для доказательства (ii) остается использовать теорему $\mathbf{5}(\mathbf{v})$.

ЛЕММА 12 (SST). Пусть λ – предельный ординал. Существует функция H: new $D = \omega \times \lambda \times \lambda^{<\omega}$ на \mathbf{L}_{λ} , определимая над \mathbf{L}_{λ} без параметров.

Доказательство. Каждое $Y \in \mathbf{L}_{\lambda}$ имеет вид $Y = \{y \in \mathbf{L}_{\alpha} : \mathbf{L}_{\lambda} \models \varphi(y)\}$ по лемме 11, для какого-то $\alpha < \lambda$, где φ содержит параметры $\delta < \lambda$.

Пусть $n \in \omega$, $\alpha < \lambda$, и $p = \langle \delta_1, \dots, \delta_k \rangle \in \lambda^k$. Через φ_n обозначим n-ю беспараметрическую \in -формулу. Если

(†) $\delta_1 \dots, \delta_k < \lambda$ и φ_n есть $\varphi_n(v_1, \dots, v_k, v)$ с k+1 свободными переменными, newl* то определим множество

$$H(n, \alpha, p) = \{ y \in \mathbf{L}_{\alpha} : \mathbf{L}_{\lambda} \models \varphi(\delta_1, \dots, \delta_k, y) \}.$$

Если же (†) неверно, то просто положим $H(n, \alpha, p) = \emptyset$. Функция H определима над \mathbf{L}_{λ} без параметров по теореме $\mathbf{5}(\mathbf{v})$, поскольку она задана через определимое отображение $\alpha \mapsto \mathbf{L}_{\alpha}$.

13c3 lcu lu la u

13c4

kgo

ЛЕММА 13 (SST). Существует полное упорядочение $<_{\mathbf{L}}$ класса \mathbf{L} , определимое над \mathbf{L} без параметров. Если λ – предельный ординал, то существует полное упорядочение $<_{\mathbf{L}_{\lambda}}$ множества \mathbf{L}_{λ} , определимое над \mathbf{L}_{λ} без параметров.

Доказательство. Для λ -утверждения, используем функцию $H:D \stackrel{\text{onto}}{\longrightarrow} \mathbf{L}_{\lambda}$ леммы 12. Множество $D = \omega \times \lambda \times \lambda^{<\omega} \subseteq \mathbf{L}_{\lambda}$ определимо над \mathbf{L}_{λ} без параметров. Значит, для определения $<_{\mathbf{L}_{\lambda}}$ достаточно показать, что D допускает полное упорядочение $<_D$, определимое над \mathbf{L}_{λ} без параметров. С этой целью, если

$$d = \langle n, \alpha, u = \langle \gamma_1, \dots, \gamma_m \rangle \rangle \in D, \quad d' = \langle n', \alpha', u' = \langle \gamma'_1, \dots, \gamma'_{m'} \rangle \rangle \in D,$$

то положим $\mu(d) = \max\{\alpha, \gamma_1, \dots, \gamma_m\}$ и определим $d <_D d'$ если и только если:

(‡) либо $\mu(d) < \mu(d')$, либо $\mu(d) = \mu(d')$ и m < m', либо $\mu(d) = \mu(d')$, m = m', и u < u' лексикографически в λ^m , либо же $\mu(d) = \mu(d')$, m = m', u = u', и n < n'.

Теперь полное упорядочение $<_{\mathbf{L}}$ класса \mathbf{L} определяется так, что $x<_{\mathbf{L}}y$ если либо (1) $\lambda_x<\lambda_y$, где λ_x – наименьший предельный ординал, для которого $x\in\mathbf{L}_{\lambda_x}$, либо же (2) $\lambda_x=\lambda_y$ и $x<_{\mathbf{L}_{\lambda}}y$. \square

7. Конструктивность и гёделевы операции

В этом разделе изложен предварительный материал к доказательству теоремы 2 ниже в §8. Мы начинаем со списка *гёделевых операций* по книге [10; гл. 13].

$$\mathcal{G}_{1}(u,v) = \{u,v\},\$$
 $\mathcal{G}_{2}(u,v) = u \times v,\$
 $\mathcal{G}_{3}(u,v) = \in \upharpoonright u = \{\langle x,y \rangle : x,y \in u \land x \in y\},\$
 $\mathcal{G}_{4}(u,v) = u \land v,\$
 $\mathcal{G}_{5}(u,v) = u \cap v - \text{сводится к } \mathcal{G}_{4}, \text{ так как } u \cap v = u \land (u \land v),\$
 $\mathcal{G}_{6}(u,v) = \bigcup u,\$
 $\mathcal{G}_{7}(u,v) = \text{dom } u = \{x : \exists y (\langle x,y \rangle \in u\},\$
 $\mathcal{G}_{8}(u,v) = u^{-1} = \{\langle x,y \rangle : \langle y,x \rangle \in u\},\$
 $\mathcal{G}_{9}(u,v) = \{\langle x,y,z \rangle : \langle x,z,y \rangle \in u\},\$
 $\mathcal{G}_{10}(u,v) = \{\langle x,y,z \rangle : \langle x,z,y \rangle \in u\}.$

Их можно сравнить с рудиментарными операциями Симпсона $\mathcal{F}_1 - \mathcal{F}_9$ в § 2. В частности операции $\mathcal{F}_1 - \mathcal{F}_6$ тождественны соответственно операциям $\mathcal{G}_1, \mathcal{G}_4, \mathcal{G}_2,$ $\mathcal{G}_{6}, \mathcal{G}_{3}, \mathcal{G}_{8}$. Имеются определенные соответствия и среди остальных операций.

Главное приложение гёделевых операций к теории конструктивности состоит в возможности элиминировать определение **Def** посредством следующей леммы.

ЛЕММА 14 (СЛЕДСТВИЕ 13.8 в [10]). Если множество X транзитивно, то defG $\mathbf{Def} X = \mathbf{Def}^* X$, где $\mathbf{Def}^* X = \mathbf{cl}(X \cup \{X\}) \cap \mathscr{P}(X)$, а через $\mathbf{cl}(Y)$ обозначено замыкание множества Y относительно операций $\mathcal{G}_1 - \mathcal{G}_{10}$.

Также существенную роль играют вопросы абсолютности в связи с гёделвыми операциями, которые мы изложим по [27; § 11].

Пусть K – транзитивное множество или класс. Вводятся такие его свойства (A)-(F), из которых затем (лемма 15) будут получены важные следствия.

- (A) Класс K замкнут относительно операций \mathcal{G}_i , $i=1,\ldots,10$.
- (В) **К** замкнут относительно операций \mathcal{G}_i " $X := \{\mathcal{G}_i(u,v) : u,v \in X\}, i = 1,\ldots,10,$ kb и операции $\mathcal{G}^*(X) = \bigcup_{1 \leq i \leq 10} \mathcal{G}_i X.$
- (C) $\omega \in \mathbf{K}$. kc

Функция замыкания \mathbf{fcl}_X множества X вводится условиями: $\mathsf{dom}(\mathbf{fcl}_X) = \omega$, $fcl_X(0) = X$, и $fcl_X(n+1) = \mathcal{G}^*(fcl_X(n)) = \{\mathcal{G}_i(u,v) : u,v \in fcl_X(n) \land 1 \leqslant i \leqslant 10\}.$

- (D) Если $X \in K$, то функция замыкания \mathbf{fcl}_X принадлежит K.
- (E) Если $X \in \mathbf{K}$, то $\mathbf{Def}^*X \in \mathbf{K}$.

В дополнение к понятию конструирующей последовательности f_{β} длины β (см. лемму 9), назовем модифицированной конструирующей последовательностью (сокращенно МКП) длины $\beta \in \operatorname{Ord}$ функцию \mathbb{f}_{β}^* , для которой $\operatorname{dom}(\mathbb{f}_{\beta}^*) = \beta$, $\mathbb{f}_{\beta}^*(0) = \emptyset$, $\mathbb{f}_{\beta}^*(\lambda) = \bigcap_{\alpha < \lambda} \mathbb{f}_{\beta}^*(\alpha)$ для предельных $\lambda < \beta$, и если $\alpha + 1 < \beta$ то

$$\mathbb{f}_{\beta}^*(\alpha+1) = \mathbf{Def}^*(\mathbb{f}_{\beta}^*(\alpha)).$$

Соответственно, положим $\mathbf{L}_{\alpha}^* = \mathbb{f}_{\alpha+1}^*(\alpha)$. Тогда $\mathbb{f}_{\beta}^* = \mathbb{f}_{\beta}$ и $\mathbf{L}_{\alpha}^* = \mathbf{L}_{\alpha}$ в **SST** по лемме 14, но мы не утверждаем, что эти равенства сохраняются при релятивизации к произвольному транзитивному множеству. И последние свойства:

- (F) Если $\alpha \in \operatorname{Ord} \cap \mathbf{K}$, то $\mathbb{f}_{\alpha+1}^* \in \mathbf{K}$.
- (G) Если $x \in \mathbf{K}$ то $\exists \alpha \in \mathrm{Ord} \cap \mathbf{K} (x \in \mathbf{L}_{\alpha}^*)$.

ЛЕММА 15 ([27], § 11). Пусть K – транзитивное множество или класс;

(1) формулы $x = \mathcal{G}_i(u, v), 1 \leqslant i \leqslant 10$, абсолютны для \mathfrak{M} ;

gabs

kf

kg

ka

kd

ke

gabs1

fura3

- gabs2 (2) если выполнено (A), то формулы $Y = \mathcal{G}_i$ "(X), $1 \leqslant i \leqslant 10$, $u Y = \mathcal{G}^*(X)$ абсолютны для \mathfrak{M} ;
- gabs3 (3) если выполнены (A),(B),(C), то формула $C = \mathbf{fcl}_X$ абсолютна для \mathfrak{M} ;
- gabs4 (4) если выполнены (A),(B),(C),(D), то формула $Y = \mathbf{Def}^*X$ абсолютна для \mathfrak{M} ;
- gabs5 (5) если выполнены все (A)-(E), то формула $f = \mathbb{F}_{\alpha+1}^*$ абсолютна для \mathfrak{M} ,
- gabs6 (6) если выполнены все (A)-(F), то формула $X = \mathbf{L}_{\alpha}^*$ абсолютна для \mathfrak{M} .

Доказательство. См. элементарные выкладки в [27; § 11].

le5 ЛЕММА 16 (**SST**). Класс **L** удовлетворяет требованиям (A)-(F). Другими словами, все соответствующие функции, т. е.

$$\mathcal{G}_i$$
, \mathcal{G}_i ", \mathcal{G}^* , $X \mapsto \mathbf{fcl}X$, $X \mapsto \mathbf{Def}^*X$, $\beta \mapsto \mathbb{f}_{\beta}^* = \mathbb{f}_{\beta}$, $\alpha \mapsto \mathbf{L}_{\alpha}^* = \mathbf{L}_{\alpha}$, а также $x \mapsto \alpha_x :=$ наименьший ординал α , для которого $x \in \mathbf{L}_{\alpha}^* = \mathbf{L}_{\alpha}$,

принимают значения в L на аргументах из L.

Доказательство. Это также известный результат из основ теории конструктивности. Мы поэтому дадим лишь наброски доказательств.

Для (A) действует непосредственная проверка. Например, для \mathcal{G}_6 , пусть $u, v \in \mathbf{L}_{\alpha}$. Тогда $\mathcal{G}_6(u, v) = \bigcup u \subseteq \mathbf{L}_{\alpha}$ по транзитивности \mathbf{L}_{α} , откуда

$$| | u = \{z \in \mathbf{L}_{\alpha} : \mathbf{L}_{\alpha} \models \exists y \in u (z \in y)\} \in \mathbf{L}_{\alpha+1} \subset \mathbf{L}.$$

Для $\mathcal{G}_8(u,v) = u^{-1}$, если $\langle x,y \rangle \in u \in \mathbf{L}_{\alpha}$, то $x,y \in \mathbf{L}_{\alpha}$ по транзитивности, и тогда множества $\{y\}$ и $\{y,x\}$ принадлежат $\mathbf{L}_{\alpha+1}$, $\langle y,x \rangle = \{\{y\},\{y,x\}\} \in \mathbf{L}_{\alpha+2}$, и наконец $u^{-1} \in \mathbf{L}_{\alpha+3}$. Остальные операции \mathcal{G}_i рассматриваются аналогично \mathcal{G}_6 или \mathcal{G}_8 .

В сущности, если $u, v \in X \in \mathbf{L}_{\alpha}$ и $i \leq 10$, то заведомо $\mathcal{G}_i(u, v) \in \mathbf{L}_{\alpha+5}$, и тогда \mathcal{G}_i "(X) и \mathcal{G}_i "(X) принадлежат $\mathbf{L}_{\alpha+6}$, откуда и из леммы 15(1) следует (B).

$$\mathbf{h}_2(u) = \mathbf{h}_3(u) \cup \mathbf{h}_3(\mathbf{h}_3(u)) \cup \mathbf{h}_3(\mathbf{h}_3(\mathbf{h}_3(u))) \cup \ldots \subseteq \mathbf{L}_{\alpha+\omega},$$

и наконец $h_2(u) \in \mathbf{L}_{\alpha+\omega+1}$, что и требовалось. Абсолютность (б) для h_3 и h_3 следует из доказанного для h_{1i} .

В частности, для $h_4 - h_7$ это следует из определений и теоремы 5(i),(ii),(iv). \square

8. Схема выделения в конструктивном универсуме

Доказательство (теорема 2, окончание). **Мы рассуждаем в SST.** Согласно лемме 10, достаточно проверить, что схема аксиом выделения **Sep** выполнена в L.

Пусть напротив, схема **Sep** *нарушена* в **L**, т.е. существуют: транзитивное множество $B \in \mathbf{L}$, скажем, $B = \mathbf{L}_{\alpha}$ для какого-то α , и формула $\varphi(p,x)$ с параметром $p \in \mathbf{L}$, для которых множество $Y = \{b \in B : \varphi^{\mathbf{L}}(p,b)\}$ не принадлежит **L**. (Заметим, что Y – множество в базовом универсуме **SST**, так как эта теория включает

ls*

Sep.) Беря $<_{\mathbf{L}}$ -наименьшую пару множеств $B, p \in \mathbf{L}$ с этими свойствами, мы сводим общий случай к следующему:

(I) $\varphi(\cdot)$ – беспараметрическая формула, не содержащая \forall (заменено на $\neg \exists \neg$), и выполнено равенство $Y = \{b \in B \colon \varphi^{\mathbf{L}}(b)\} \notin \mathbf{L}$.

Если $\exists y \, \psi \, (y, x_1, \dots, x_k)$ – одна из экзистенциальных подформул формулы φ (возможно, и сама φ , если она начинается с \exists), то положим $S_{\psi}(x_1, \dots, x_k)$ равным $<_{\mathbf{L}}$ наименьшему множеству $y \in \mathbf{L}$, удовлетворяющему $\psi^{\mathbf{L}}(y, x_1, \dots, x_k)$ — если такие y есть, а иначе $S_{\psi}(x_1, \dots, x_k) = \varnothing$. Таким образом, каждая $S_{\psi}: \mathbf{L}^k \to \mathbf{L}$ является скулемовской класс-функцией, определимой над \mathbf{L} без параметров, где $k = k(j) < \omega$ — арность. Добавим к списку функций S_{ψ} также функцию S(x) = x и следующие функции, определенные в обозначениях § 7.

(II)
$$\mathcal{G}_i$$
, \mathcal{G}_i ", \mathcal{G}^* , $X \mapsto \mathbf{fcl}X$, $X \mapsto \mathbf{cl}(X \cup \{X\}) \cap \mathscr{P}(X)$, $\beta \mapsto \mathbb{f}_{\beta}^* = \mathbb{f}_{\beta}$, $\alpha \mapsto \mathbf{L}_{\alpha}^* = \mathbf{L}_{\alpha}$, $\alpha \mapsto \alpha + 1$, и $x \mapsto \alpha_x :=$ наименьший ординал α , для которого $x \in \mathbf{L}_{\alpha}^* = \mathbf{L}_{\alpha}$,

и пусть h_0, \ldots, h_n – этот полный расширенный список класс-функций. Мы предполагаем для простоты, что функции $\beta \mapsto \mathbb{f}_{\beta}^* = \mathbb{f}_{\beta}$, $\alpha \mapsto \mathbf{L}_{\alpha}^*$, $\alpha \mapsto \alpha + 1$ принимают значение \emptyset , когда аргумент в \mathbf{L} не является ординалом. Тогда каждая функция из (II) становится класс-функцией, определенной над \mathbf{L} без параметров.

ЛЕММА 17. $\mathcal{G}_i: \mathbf{L}^2 \to \mathbf{L}, \ u \ f: \mathbf{L} \to \mathbf{L}$ для всех прочих класс-функций f из (II).

vsop

fun

Доказательство. В неочевидных случаях следует из леммы 16. Например, для $\beta \mapsto \mathbb{f}_{\beta}^*$, если $\beta \in \operatorname{Ord}$, то $\mathbb{f}_{\beta}^* \in \mathbf{L}$ по лемме 16 в отношении свойства (D). \square

Следствие 4. Следующие формулы истинны в ${f L}$:

nab nab1

(1)
$$\forall u, v \exists x (x = \mathcal{G}_i(u, v)), i = 1, ..., 10,$$

11002

(2)
$$\forall X \exists Y(Y = \mathcal{G}_i"X), i = 1, ..., 10,$$

nab2

(3)
$$\forall X \exists Y (Y = \mathcal{G}^*(X)) := \{ \mathcal{G}_i(u, v) : 1 \leq i \leq 10 \land u, v \in X \} \}$$

nab3

(4)
$$\forall X \exists Y (Y = \mathbf{fcl}(X)),$$

nab4

(5)
$$\forall X \exists Y (Y = \mathbf{cl}(X \cup \{X\}) \cap \mathscr{P}(X)),$$

nab5

(6)
$$\forall \alpha \in \operatorname{Ord} \exists f (f = \mathbb{f}_{\alpha+1}^*),$$

nab6

(7)
$$\forall \alpha \in \text{Ord } \exists \beta \in \text{Ord } (\beta = \alpha + 1)$$
,

nab7

(8)
$$\forall x \,\exists \alpha \in \operatorname{Ord}(x \in \mathbf{L}_{\alpha}^*).$$

nab8

Доказательство. Например, для формулы (4), пусть $X \in \mathbf{L}$. Тогда $Y = \mathbf{fcl}X \in \mathbf{L}$ по лемме 17, а формула $Y = \mathbf{fcl}X$ абсолютна для \mathbf{L} по лемме 15.

Рассмотрим замыкание $\mathfrak{M} \subseteq \mathbf{L}$ множества $B \cup \{B\} \in \mathbf{L}$ относительно многократного действия класс-функций h_0, \ldots, h_n . Таким образом, \mathfrak{M} – класс, определимый без параметров, возможно, собственный класс.

Mls2

1ls

Nls

NN

Mls1 Следствие 5. (I) $Bce\ \phi opмулы\ (1)$ –(8) следствия $\frac{4}{4}$ истинны в \mathfrak{M} .

(II) \mathfrak{M} – элементарная подструктура в \mathbf{L} для $\varphi(b)$ из (I) при любом $b \in B$. \square

Доказательство. (I)

(II) Стандартное теоретико-модельное рассуждение дает искомый результат. \square

Далее, простое комбинаторное рассуждение приносит класс-функцию F, заданную на подходящем множестве P, для которой $\mathfrak{M} = F$ " $P = \{F(p) : p \in P\}$.

Именно, определим P как совокупность всех пар $p = \langle T, f \rangle$, где $T = T_p \subseteq \omega^{<\omega}$ – конечное дерево, $f = f_p$ – функция с $\text{dom}\, f = T$, если $t \in \text{Max}(T)$ (множество всех концевых вершин), то $f(t) \in B \cup \{B\}$, а если $t \in T \setminus \text{Max}(T)$, то $f(t) \in \{0,1,\ldots,n\}$, причем если f(t) = j и k = k(j) (арность функции \mathbf{h}_j), то $\{1,\ldots,k\} = \{\ell \colon t \ \ell \in T\}$. В этом случае, определим

$$F_p(t) = \left\{ \begin{array}{ll} f(t)\,, & \text{при} \quad t \in \operatorname{Max}(T)\,, \\ \boldsymbol{h}_j(F_p(t^\smallfrown 1), \dots, F_p(t^\smallfrown k))\,, & \text{при} \quad t \notin \operatorname{Max}(T), \ j = f(t), \ k = k(j) \end{array} \right.$$

для всех $t \in T$, и окончательно $F(p) = F_p(\langle \rangle)$ для пустого кортежа $\langle \rangle \in T$. Равенство $\mathfrak{M} = F$ " $P = \{F(p) \colon p \in P\}$ очевидно по построению.

Заметим, что P – в самом деле множество (в **SST**), поскольку оно определяется при помощи схемы **Sep** и операций леммы 6.

Пусть теперь класс-функция $\tau:\mathfrak{M}$ на транзитивное множество или класс \mathfrak{N} является транзитивной свёрткой, т. е., $\tau(x)=\{\tau(y)\colon y\in x\cap\mathfrak{M}\}$ для всех $x\in\mathfrak{M}$. Для построения \mathfrak{N},τ достаточно использовать лемму 3 для множеств вида $M_{\alpha}=\mathfrak{M}\cap\mathbf{L}_{\alpha}$, $\alpha\in\mathrm{Ord}$, и потом определить τ как объединение всех полученных транзитивных свёрток $\tau_{\alpha}:M_{\alpha}$ на транзитивное множество N_{α} .

Соласно лемме 4(i) для суперпозиции F и τ , $\mathfrak N$ – множество. Сверх того, коль скоро само B транзитивно, мы имеем

(IV)
$$B = \tau(B) \in \mathfrak{N}$$
, и $b = \tau(b) \in \mathfrak{N}$ для всех $b \in B$.

Отсюда, поскольку $\tau:\mathfrak{M}$ на \mathfrak{N} есть \in -изоморфизм, мы получаем из 5:

(E) множество \mathfrak{N} – элементарная подструктура в **L** по отношению к формуле $\varphi(b)$ из (I) при любом $b \in B$ и по отношению к универсальным замыканиям формул 4, с тем же ограничением $\forall \alpha \in \text{Ord}$ для формул (4),(5),(6).

Соединяя (E) и (I) выше, мы получаем равенство (*) $Y = \{b \in B : \varphi^{\mathfrak{N}}(b)\}.$

Остается проверить, что множество \mathfrak{N} само принадлежит \mathbf{L} , что вместе с (*) дает $Y \in \mathbf{L}$ с искомым противоречием. Для этого заметим, что согласно (E), и поскольку универсальные замыкания формул 4(1-7) истинны в \mathbf{L} , имеет место:

(F) универсальные замыкания формул 4(1-7) истинны в \mathfrak{N} , и потому: (1) если $u, v \in \mathfrak{N}$, то $\mathcal{G}_i(u, v) \in \mathfrak{N}$, $i = 1, 2, \dots, 10$,

- (2) если $X \in \mathfrak{N}$ то $\mathbf{cl}X \in \mathfrak{N}$;
- (3) если $X \in \mathfrak{N}$ то $\{\mathcal{G}_i(u,v): 1 \leqslant i \leqslant 10 \land u,v \in X\} \in \mathfrak{N};$
- (4) если $\alpha \in \operatorname{Ord} \cap \mathfrak{N}$ то $\mathfrak{l}_{\alpha} \in \mathfrak{N}$;
- (5) если $\alpha \in \operatorname{Ord} \cap \mathfrak{N}$ то $\mathbf{L}_{\alpha} \in \mathfrak{N}$;
- (6) если $\alpha \in \operatorname{Ord} \cap \mathfrak{N}$ то $\alpha + 1 \in \mathfrak{N}$.
- (7) если $x \in \mathfrak{N}$ то $x \in \mathbf{L}_{\alpha}$ для некоторого $\alpha \in \mathrm{Ord} \cap \mathfrak{N}$;

Более подробно, формально мы должны записать (1) в виде $\mathfrak{N} \models \forall u, v \,\exists \, \mathcal{G}_i(u, v)$. Однако операции \mathcal{G}_i абсолютны для транзитивных множеств, откуда следуют как равенство $\mathcal{G}_i(u, v) = (\mathcal{G}_i(u, v))^{\mathfrak{N}}$ и из него само утверждение (1). Точно таким же образом, мы имеем $\mathbf{cl}X = (\mathbf{cl}X)^{\mathfrak{N}}$, поскольку операция \mathbf{cl} абсолютна для транзитивных множеств, замкнутых относительно всех \mathcal{G}_i — отсюда следует (2). Аналогично для (3).

Отсюда, в частности, следует, что транзитивное множество \mathfrak{N} является адекватным в смысле определения (13.12) в [10] (после теоремы 13.16).

Но тогда конструктивное построение абсолютно для \mathfrak{N} , т.е. $\mathbf{L}_{\alpha} = (\mathbf{L}_{\alpha})^{\mathfrak{N}} \in \mathfrak{N}$ для всех ординалов $\alpha \in \mathrm{Ord} \cap \mathfrak{N}$. (См. об этй абсолютности там же в [10] после теоремы 13.16, в связи с предложениями (13.12) и (13.13).)

Из упомянутой абсолютности следует $\mathfrak{N} = \bigcup_{\alpha \in \text{Ord} \cap \mathfrak{N}} \mathbf{L}_{\alpha} = \mathbf{L}_{\lambda} \in \mathbf{L}$ согласно (E)(4), где $\lambda = \text{Ord} \cap \mathfrak{N}$ – предельный ординал в силу (E)(7), что и требовалось. \square

9. Доказательство теорем 1 и 3

mas

Главное содержание этого раздела состоит в формулировке удобного достаточного условия для вывода принципа отражения (лемма 20 ниже) и, как следствие, вывода схем аксиом **Sep** и **Coll** в подходящих областях конструктивного универсума, с доказательством указанных теорем в самом конце.

Начинаем с ключевого определения.

Определение 3 (**SST**). Определим $\mathfrak{A}(\Omega, K)$ как следующую формулу:

sig

ssu

- либо (A) $\Omega={\rm Ord},\ K={\bf L},$ и ординал $\omega_1^{\bf L}$ не существует, другими словами, в ${\bf L}$ истинно, что все ординалы счетны,
- либо (В) ординал $\Omega=\omega_1^{\mathbf{L}}$ существует, и $K=\mathbf{L}_{\Omega}=\mathbf{L}_{\omega_1^{\mathbf{L}}}$.

Таким образом, $K = \bigcup_{\alpha \in \Omega} \mathbf{L}_{\alpha}$ в обоих случаях (A), (B). \square

ЛЕММА 18 (SST + $\mathfrak{A}(\Omega, K)$). Если $\alpha \in \Omega$, то \mathbf{L}_{α} счетно в \mathbf{L} .

2coun

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha_0 \in \Omega$. Тогда ординал $\alpha = \alpha_0 + \omega$ также принадлежит Ω и кроме того α пределен. По определению 3, существует функция $f \in \mathbf{L}$, $f : \omega$ на α . Lemma 12 приносит множество $D = \omega \times \alpha \times \alpha^{<\omega} \in \mathbf{L}$ и функцию $H \in \mathbf{L}$, H : D на \mathbf{L}_{α} . Комбинируя f и H в \mathbf{L} , получаем функцию $h \in \mathbf{L}$, $h : \omega$ на \mathbf{L}_{α} . \square

z33mz

ЛЕММА 19 (SST + $\mathfrak{A}(\Omega, K)$). Пусть $X \in K$, а $F : X \to K$ – класс-функция, определенная над \mathbf{L} . Тогда $\operatorname{ran} F = \{F(x) : x \in X\} \subseteq \mathbf{L}_{\gamma}$ для некоторого $\gamma \in \Omega$, поэтому F, $\operatorname{ran} F$ – множества.

ДОКАЗАТЕЛЬСТВО. Согласно лемме 18, мы не ограничивая обшности предполагаем, что $X = \omega$. Для $k < \omega$, через δ_k обозначим наименьший ординал $\delta \in \Omega$, для которого $F(k) \in \mathbf{L}_{\delta}$. Предположим противное, т. е. в наших обозначениях множество $\{\delta_k \colon k < \omega\}$ неограничено в Ω . Тогда $\Omega = \bigcup_{k < \omega} \delta_k$.

В случае (A), для любого k найдется функция $h \in \mathbf{L}$, $h : \omega$ на δ_k ; через h_k обозначим $<_{\mathbf{L}[u]}$ -наименьшую из таких f. Если $n = 2^k(2j+1)-1$, то положим $G(n) = h_k(j)$. По построению, G является определимой класс-функцией ω на $\Omega = \mathrm{Ord}$. Следовательно, Ω и G — множества по лемме $\mathbf{4}(\mathbf{i})$ ибо Ω транзитивно. Получаем противоречие, так как Ord не является множеством в \mathbf{SST} .

В случае (В), имеем $\Omega = \omega_1^{\mathbf{L}}$. Определим h_k и G при помощи полного порядка $<_{\mathbf{L}_{\Omega}}$ на \mathbf{L}_{Ω} вместо $<_{\mathbf{L}}$. Тогда G – класс-функция ω на $\Omega = \omega_1^{\mathbf{L}}$, определенная над \mathbf{L}_{Ω} поскольку порядок $<_{\mathbf{L}_{\Omega}}$ обладает этим же свойством. Таким образом, $G \in \mathbf{L}_{\Omega+1} \subseteq \mathbf{L}$, и поэтому ординал Ω счетен в \mathbf{L} , опять с противоречием.

z35mz

Следствие 6 (**SST** + $\mathfrak{A}(\Omega, K)$). Пусть $\alpha \in \Omega$, $m < \omega$, u $G_1, \ldots, G_m : K \to K$ суть класс-функции, определимые над \mathbf{L} . Существует предельный ординал $\beta \in \Omega$, $\beta > \alpha$, удовлетворяющий G_k " $\mathbf{L}_{\beta} \subseteq \mathbf{L}_{\beta}$ для всех $k = 1, \ldots, m$.

ДОКАЗАТЕЛЬСТВО. Положим $G(x) = \langle G_1(x), \dots, G_m(x) \rangle$. Лемма 19 приносит класс-последовательность $\alpha = \alpha_0 < \alpha_1 < \alpha_2 < \dots$ ординалов из Ω , для которой G " $\mathbf{L}_{\alpha_n} \subseteq \mathbf{L}_{\alpha_{n+1}}$, $\forall n$. Опять имеем $\beta = \sup_n \alpha_n \in \Omega$ по лемме 19.

В предположении $\mathfrak{A}(\Omega,K)$, скажем, что ординал $\beta \in \Omega$ отражает формулу $\varphi(x_1,\ldots,x_n)$, если эквивалентность $\varphi^K(x_1,\ldots,x_n) \Longleftrightarrow \varphi^{\mathbf{L}_{\beta}}(x_1,\ldots,x_n)$ выполнена для всех $x_i \in \mathbf{L}_{\beta}$. Следующая лемма об отражении выводится из следствия 6.

z36mz

ЛЕММА 20 (SST + $\mathfrak{A}(\Omega, K)$). Если $\alpha \in \Omega$ и φ – беспараметрическая формула, то существует предельный ординал $\beta \in \Omega$, $\beta > \alpha$, который отражает каждую подформулу формулы φ , включая и саму φ .

Доказательство. Не ограничивая общности, предполагаем, что φ не содержит \forall (иначе меняем \forall на $\neg \exists \neg$). Фиксируем перечисление ψ_1, \ldots, ψ_n всех подформул формулы φ (включая, возможно, и её саму), начинающихся с \exists .

Если $j \leq n$, то определяем класс-функцию G_j следующим образом.

Пусть ψ_j есть $\exists y \, \vartheta_j(y, x_1, \dots, x_m)$. Если $p = \langle x_1, \dots, x_m \rangle \in K$ и и имеется $y \in K$, для которого $\vartheta_j^K(y, x_1, \dots, x_m)$, то через $G_j(p)$ обозначим $<_{\mathbf{L}}$ -наименьшее из таких множеств y. В противном случае берем $G_j(p) = \varnothing$. Класс-функция G_j определима над \mathbf{L} , поскольку таковым является полное упорядочение $<_{\mathbf{L}}$.

Согласно следствию 6, существует ординал $\beta \in \Omega$, $\beta > \alpha$, удовлетворяющий G_j " $\mathbf{L}_{\beta} \subseteq \mathbf{L}_{\beta}$ для всех индексов $j = 1, \ldots, n$. Отсюда, индукцией по построению подформул, легко получается, что β отражает каждую подформулу формулы φ , в частности, и саму φ , что и требовалось.

ТЕОРЕМА 6 (SST + $\mathfrak{A}(\Omega, K)$). Схемы аксиом Sep и Coll верны в K. Следовательно ZFC⁻ в целом выполнена в K по лемме 10.

z37mz

Доказательство. Для схемы **Sep**, рассмотрим беспараметрическую формулу $\varphi(x,y)$, и пусть $\alpha\in\Omega$ и $p\in X=\mathbf{L}_{\alpha}$. Требуется доказать, что $Y=\{x\in X:\varphi^K(x,p)\}\in K$. По лемме 20, имеется предельный ординал $\beta\in\Omega$, $\beta>\alpha$, отражающий $\varphi(x,y)$, так что

$$Y = \{x \in X : \varphi^{\mathbf{L}_{\beta}}(x, p)\} = \{x \in X : \mathbf{L}_{\beta} \models \varphi(x, p)\} \in \mathbf{L}_{\beta+1} \subseteq K.$$

Для схемы **Coll**, рассмотрим беспараметрическую формулу $\varphi(x,y,z)$, и пусть $\alpha \in \Omega$, $p \in X = \mathbf{L}_{\alpha}$, и выполнено $\forall x \in X \exists y \in K \varphi^K(x,y,p)$. Лемма 20 приносит пределный ординал $\beta \in \Omega$, $\beta > \alpha$, отражающий формулу $\exists y \varphi(x,y,z)$ и все её подформулы, включая $\varphi(x,y,z)$, так что

$$\forall x \in X \,\exists y \in \mathbf{L}_{\beta} \, \varphi^{\mathbf{L}_{\beta}}(x, y, p), \text{ and } \forall x \in X \,\exists y \in \mathbf{L}_{\beta} \, \varphi^{K}(x, y, p).$$

Доказательство (теоремы 1 и 3). Теорема 1 элементарно следует из теоремы 3, поэом докажем последнюю. Собственно, вся работа уже сделана.

Случай (б) теоремы 3. Рассуждая в **SST**, мы имеем случай (В) определения **3** с $u = \varnothing$, $\Omega = \omega_1^{\mathbf{L}}$, $K = \mathbf{L}^* = \mathbf{L}_{\omega_1^{\mathbf{L}}}$. Тогда выполнено $\mathfrak{A}(\omega_1^{\mathbf{L}}, \mathbf{L}^*)$, и поэтому \mathbf{L}^* удовлетворяет **ZFC**⁻ согласно теореме **6**.

Случай (а) теоремы 3. Аналогично, но через случай (А) определения 3.

10. Some other models

2om

Here we briefly describe three other interpretations of \mathbf{ZFC}^- in \mathbf{SST} designed rather similar to \mathbf{L}^* of Theorem 3.

Model 1. Consider the least ordinal $\langle \rangle$ such that the set $\mathbf{L}_{\langle} \rangle$ is not countable in $\mathbf{L}_{\langle \rangle+1}$ — provided such ordinals exist, and otherwise $\langle \rangle =$ all ordinals. Put $\mathbf{L}^{\dagger} = \bigcup_{\alpha \in \langle \rangle} \mathbf{L}_{\alpha}$. It is demonstrated in [12] that \mathbf{L}^{\dagger} is an interpretation of **ZFC**⁻ in **SST**.

Model 2: a version of Model 1. Consider the least ordinal Ξ such that the difference $\mathbf{L}_{\Xi+1} \setminus \mathbf{L}_{\Xi}$ contains no sets $x \subseteq \omega$ — the first *index ordinal* as defined in [4] — provided such ordinals exist, and otherwise Ξ = all ordinals. Arguments close to those in [12] show that $\mathbf{L}^{\ddagger} = \bigcup_{\alpha \in \Xi} \mathbf{L}_{\Xi}$ \mathbf{L}^{\dagger} is an interpretation of \mathbf{ZFC}^{-} in \mathbf{SST} .

Model 3. Simpson defines in [23; VII.4.22] the set or class **HCL** of all sets x which belong to transitive sets $X \in \mathbf{L}$, countable in \mathbf{L} , and proves that **HCL** is an interpretation of **ZFC**⁻ in **SST** yet again. But it looks like **HCL** is just equal to \mathbf{L}^* of Theorem 3.

$_{\mathrm{rah}}$ 11. Ramified analytical hierarchy — a shortcut?

Cutting Theorem 1 to the equiconsistency of \mathbf{PA}_2 and \mathbf{PA}_2^- (second order arithmetic with, resp., without the countable Choice \mathbf{AC}_{ω}), one may want to manufacture a true second-order arithmetical proof, not involving set theories like \mathbf{Z}^- , \mathbf{ZFC}^- , \mathbf{ZF}^- , \mathbf{TMC} . The above proof (Section ??) definitely does not belong to this type, since it involves \mathbf{TMC} in quite significant way. In this section, we survey a possible approach to this problem.

Using earlier ideas of Kleene [18] and Cohen [5], a transfinite sequence of countable sets $\mathbf{A}_{\alpha} \subseteq \mathscr{P}(\omega)$ is defined in e.g. [4; § 3] by induction so that

$$\mathbf{A}_{0} = \mathscr{P}_{fin}(\omega) = \text{all finite sets } x \subseteq \omega
\mathbf{A}_{\alpha+1} = \mathbf{Def A}_{\alpha} \text{ for all } \alpha
\mathbf{A}_{\lambda} = \bigcup_{\alpha < \lambda} \mathbf{A}_{\alpha} \text{ for all limit } \lambda
\mathbf{A} = \bigcup_{\alpha \in \text{Ord}} \mathbf{A}_{\alpha} = \text{all } ramified \ analytic sets} \right\}, \tag{1}$$

where $\operatorname{Def} \mathbf{A}_{\alpha} = \{x \subseteq \omega : x \text{ is definable over } \mathbf{A}_{\alpha} \text{ with parameters} \}$ in the 2nd line. Thus a set $x \subseteq \omega$ belongs to $\operatorname{Def} \mathbf{A}_{\alpha}$ iff $x = \{n : \mathbf{A}_{\alpha} \models \varphi(n)\}$ for some formula φ of $\mathcal{L}(\mathbf{PA}_2)$ with parameters in \mathbf{A}_{α} , and $X \models \ldots$ means the formal truth in the $\mathcal{L}(\mathbf{PA}_2)$ -structure $\langle \omega ; X \rangle$. The following is routine.

 $ΠΕΜΜΑ 21. If <math>x ∈ \mathbf{A}_{\alpha}$ and $y ⊆ \omega$ is arithmetical in x then $y ∈ \mathbf{A}_{\alpha}$. \square

In spite of obvious similarities with the Gödel constructible hierarchy (1), the ramified analytic hierarchy is collapsing below ω_1 :

ДОКАЗАТЕЛЬСТВО. By the cardinality argument, there is an ordinal β with $\mathbf{A}_{\beta} = \mathbf{A}_{\beta+1}$. Then $\mathbf{A}_{\beta} \models \mathbf{Sep}$. Let $\kappa = \beta^+$, the least cardinal bigger than β . Consider a countable elementary submodel M of \mathbf{L}_{κ} containing β , and let $H: M \xrightarrow{\text{onto}} \mathbf{L}_{\lambda}$ be the Mostowski collapse. Let $\beta_0 = H(\beta)$; then $\beta_0 < \lambda$. As the construction of the sets \mathbf{A}_{α} is obviously absolute for \mathbf{L} , we have $\mathbf{A}_{\beta_0} \models \mathbf{Sep}$ as well, and then $\mathbf{A}_{\beta_0} = \mathbf{A}_{\beta_0+1}$, as required. \square

The following theorem is essentially Lemma 2.2 in [22].

Adef

bhp

Teopema 7 **ZF**. $\mathbf{A} = \mathbf{A}_{\beta_0}$ satisfies \mathbf{PA}_2 with the choice schema \mathbf{AC}_{ω} .

b0pa

To sketch a proof of this profound result, we need to have a look at the ramified analytic hierarchy from a somewhat different angle. This involves a "shift" of Gödel's hierarchy and ensuing classification of ordinals:

- Let $\mathbf{M}_{\alpha} = \mathbf{L}_{\omega+\alpha}$ for all α . In particular, $\mathbf{M}_0 = \mathbf{L}_{\omega} =$ all hereditarily finite sets, but still, similarly to (1), $\mathbf{M}_{\alpha+1} = \mathbf{Def} \ \mathbf{M}_{\alpha}$, $\forall \alpha$, and the union is taken at limit steps. (See e.g. note 2 on p. 499 in [4] or Section 5 in [11] where " $\mathbf{L}_0 =$ hereditarily finite sets" is defined outright.) Needless to say that $\mathbf{M}_{\alpha} = \mathbf{L}_{\alpha}$ for all $\alpha \geqslant \omega^2$.
- An ordinal α is an index if $(\mathbf{M}_{\alpha+1} \setminus \mathbf{M}_{\alpha}) \cap \mathscr{P}(\omega) \neq \varnothing$, [4, 20, 22].

We'll refer to a result, established in [4], Theorems 1 and 9 by a complex mixture of set theoretic and recursion theoretic methods. A set $E \subseteq \omega \times \omega$ is a code (or arithmetical copy, as in [4, 20]) of \mathbf{M}_{α} if it is isomorphic to $\in \upharpoonright \mathbf{M}_{\alpha}$ via a bijection of **fld** E onto \mathbf{M}_{α} .

ПРЕДЛОЖЕНИЕ 1. (i) If $\alpha \leqslant \beta_0 + 1$ then $\mathbf{A}_{\alpha} = \mathbf{M}_{\alpha} \cap \mathscr{P}(\omega)$.

BP2

(ii) If β is an index then there is a code of \mathbf{M}_{β} in $\mathbf{M}_{\beta+1}$.

BP1

ДОКАЗАТЕЛЬСТВО SKETCH. (ii) Suppose that β is limit. Argue as in Section 8 with $B = \omega$ and $\mathbf{M}_{\beta} = \mathbf{L}_{\omega+\beta}$ instead of \mathbf{L} , so that $Y = \{k \in \omega : \varphi^{\mathbf{M}_{\beta}}(k)\} \notin \mathbf{M}_{\beta}$. In the notation of Section 8, we still have $N = \mathbf{M}_{\lambda}$ for a limit λ . Note that $\lambda < \beta$ is impossible since $Y \in \mathbf{M}_{\lambda+1} \setminus \mathbf{M}_{\beta}$. And $\lambda > \beta$ is impossible as well since N is the transitive collapse of $M \subseteq \mathbf{M}_{\beta}$.

Thus $\lambda = \beta$, and hence \mathbf{M}_{β} is \in -isomorphic to M.

On the other hand, $M \in \mathbf{M}_{\beta+1}$ as a definable subset of \mathbf{M}_{β} . Moreover, the inductive construction of M as the closude of ω under a finite list of functions definable over \mathbf{M}_{β} , can be represented as a construction of a relation $E \subseteq \omega \times \omega$, still definable over \mathbf{M}_{β} , and such that $\langle \omega; E \rangle$ is isomorphic to $\langle M; \in \rangle$, hence to $\langle \mathbf{M}_{\beta}; \in \rangle$ by the above.

In other words, $E \in \mathbf{M}_{\beta+1}$ is a code of \mathbf{M}_{β} , as required.

If $\beta = \nu + k$, where ν is limit and $1 \leq k < \omega$, then we have to go back to Section 8 and, using σ , define a closed formula σ_k by induction on k, such that, for any transitive set M, $(\sigma_k)^M$ holds iff $M = \mathbf{L}_{\nu+k}$ for some limit ordinal ν . Namely, put $\sigma_0 := \sigma$ as in Section 8, then let σ_{k+1} say: "there is a transitive set X with $(\sigma_k)^X$ and (all sets) = $\mathbf{Def} X$ ".

Then go through the arguments in the limit case, mutatis mutandis.

(i) This claim goes by induction, using (ii) as the key argument. See [4] for details.

 \square (Proposition)

ДОКАЗАТЕЛЬСТВО THEOREM 7. The equality $\mathbf{A}_{\beta_0} = \mathbf{A}_{\beta_0+1}$ implies Comprehension in \mathbf{A}_{β_0} . The proof of \mathbf{AC}_{ω} takes more effort. We claim that:

- (I) β_0 is not an index, whereas each $\alpha < \beta_0$ is an index;
- (II) β_0 is a limit ordinal Lemma 2.5 in [22].

172i

172iii

To prove (I), note that, by the choice of β_0 and Proposition 1(i), β_0 is is not an index since $(\mathbf{M}_{\beta_0+1} \setminus \mathbf{M}_{\beta_0}) \cap \mathscr{P}(\omega) = (\mathbf{A}_{\beta_0+1} \setminus \mathbf{A}_{\beta_0}) \cap \mathscr{P}(\omega) = \varnothing$, whereas every $\alpha < \beta_0$ is an index by similar reasons.

To verify (II), suppose to the contrary that $\beta_0 = \alpha + 1$. By (I) and Proposition 1(ii), there is a code $x \subseteq \omega$ of \mathbf{M}_{α} in \mathbf{M}_{β_0} , hence, in \mathbf{A}_{β_0} by Proposition 1(i). In particular, x codes all sets in $\mathbf{M}_{\alpha} \cap \mathscr{P}(\omega)$. Therefore we can extract a part $y \subseteq \omega$ of x, which codes all those sets so that

$$\mathbf{M}_{\alpha} \cap \mathscr{P}(\omega) = \{(y)_n : n < \omega\} , \qquad (2)$$

(see Section ?? on $(x)_n$), and in addition y is arithmetical in x.

Then $y \in \mathbf{A}_{\beta_0}$ by Lemma 21. But each $z \in \mathbf{A}_{\beta_0}$ is arithmetical in y by (2). This is a contradiction since $\mathbf{A}_{\beta_0} \models \mathbf{P}\mathbf{A}_2^-$ by Lemma 22.

Now, coming to \mathbf{AC}_{ω} , we are going to prove that

17ac

$$\forall n \,\exists x \,\Phi(n,x) \Longrightarrow \exists y \,\forall n \,\Phi(n,(y)_n) \tag{3}$$

holds in \mathbf{A}_{β_0} , where Φ is a $\mathbf{P}\mathbf{A}_2$ formula possibly with parameters in \mathbf{A}_{β_0} .

By Lemma 13, there exists a well-ordering $<_{\mathbf{L}_{\beta_0}}$ of \mathbf{M}_{β_0} , definable over \mathbf{M}_{β_0} . (β_0 is limit by (II).) Assuming that the left-hand side of (3) holds in \mathbf{A}_{β_0} , we let x_n be the $<_{\mathbf{L}_{\beta_0}}$ -least element $x \in \mathbf{A}_{\beta_0} = \mathbf{M}_{\beta_0} \cap \mathscr{P}(\omega)$ satisfying $\mathbf{A}_{\beta_0} \models \Phi(n, x)$.

The set $y = \{ [n, j] : j \in x_n \}$ is then definable over \mathbf{M}_{β_0} , hence $y \in \mathbf{Def} \ \mathbf{M}_{\beta_0} = \mathbf{M}_{\beta_0+1}$. We conclude that $y \in \mathbf{A}_{\beta_0+1}$ by Proposition 1(i). Finally $y \in \mathbf{A}_{\beta_0}$, because $\mathbf{A}_{\beta_0} = \mathbf{A}_{\beta_0+1}$ by the choice of β_0 . Thus y witnesses the right-hand side of (3) since $(y)_n = x_n$ by construction. \square

The construction of the ramified analytical hierarchy is purely analytical and can be described by suitable $\mathcal{L}(\mathbf{PA}_2)$ formulas. In principle, the proof of Theorem 7 remains valid in **TMC** mutatis mutandis. For instance, as ω_1 may not exist in **TMC**, the case $\beta_0 = \mathrm{Ord}$ has to be taken care of. Let

anal1

$$\beta_0 = \begin{cases} \text{the least } \beta \text{ with } \mathbf{A}_{\beta} = \mathbf{A}_{\beta+1} & - \text{ if such ordinals } \beta \text{ exist,} \\ \text{Ord, the class of all ordinals } - \text{ otherwise,} \end{cases}$$
 (4)

so that $\mathbf{A} = \bigcup_{\alpha \in \beta_0} \mathbf{A}_{\alpha}$ in both cases. It can be an interesting problem to maintain the construction and the proof of Theorem 7 entirely by analytical means on the base of \mathbf{PA}_2^- , thereby giving a pure analytical proof of the ensuing equiconsistency of \mathbf{PA}_2^- and \mathbf{PA}_2 .

12. Conclusions and problems

In this study, the methods of second-order arithmetic and set theory were employed to giving a full, and self-contained in major details, proof of Theorem 1 on the formal equiconsistency of such theories as second-order arithmetic \mathbf{PA}_2^- and Zermelo–Fraenkel \mathbf{ZFC}^- without the Power Set axiom (Theorem 1). In addition, Theorems 3 and 2 contain new results related to constructible sets.

The following problems arise from our study.

ПРОБЛЕМА 1. Regarding the axiom **TrCov** (Transitive superset, Section 2), is it really pro1 independent of the rest of **TMC** axioms? On the other hand, can **TrCov** be eliminated from the above proofs of the main results?

ПРОБЛЕМА 2. Find a purely analytical proof of Theorem 7 in \mathbf{PA}_2^- that does not pro1+ involve V of Definition 1, or any similar derived set-theoretic structure, explicitly or implicitly.

We expect that the methods and results of this paper can be used to strengthen and further develop Cohen's set-theoretic forcing method in its recent applications to theories \mathbf{ZFC}^- and \mathbf{PA}_2 in [17]. The technique of definable generic forcing notions has been recently applied for some definability problems in modern set theory, including the following applications:

- a model of **ZFC** in [13], in which minimal collapse functions $\omega \xrightarrow{\text{onto}} \omega_1^{\mathbf{L}}$ first appear at a given projective level;
- a model of **ZFC** in [14], in which the Separation principle fails for a given projective class Σ_n^1 , $n \ge 3$;
- a model of **ZFC** in [15], in which the full basis theorem holds in the absence of analytically definable well-orderings of the reals;.
- a model of **ZFC** in [16], in which the Separation principle holds for a given effective class Σ_n^1 , $n \ge 3$.

It is a common problem related to all these results to establish their \mathbf{PA}_2 -consistency versions similar to Theorem 1.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] Carolin Antos and Victoria Gitman. Modern class forcing. In A. Daghighi et al., editors, Research Trends in Contemporary Logic. College Publications, forthcoming. PhilArchive LINK, accessed: 2022-12-06.
- [2] Krysztof R. Apt and W. Marek. Second order arithmetic and related topics. *Ann. Math. Logic*, 6:177–229, 1974.

- [3] Jon Barwise, editor. Handbook of mathematical logic. Reprint, volume 90 of Stud. Logic Found. Math. Elsevier, Amsterdam, 1982.
- [4] George Boolos and Hilary Putnam. Degrees of unsolvability of constructible sets of integers. *Journal of Symbolic Logic*, 33(4):497aTi"513, 1969.
- [5] P. J. Cohen. A minimal model for set theory. Bull. Am. Math. Soc., 69:537–540, 1963.
- [6] Keith Devlin. The joy of sets. Fundamentals of contemporary set theory. Undergraduate Texts Math. New York: Springer-Verlag, 2 edition, 1993.
- [7] Keith J. Devlin. *Constructibility*. Perspect. Log. Cambridge: Cambridge University Press; Urbana, IL: Association for Symbolic Logic (ASL), 2016.
- [8] Victoria Gitman, Joel David Hamkins, and Thomas A. Johnstone. What is the theory ZFC without power set? *Math. Log. Q.*, 62(4-5):391–406, 2016.
- [9] Victoria Gitman and Richard Matthews. ZFC without power set II: Reflection strikes back. Fundam. Math., 264(2):149–178, 2023.
- [10] Thomas Jech. Set theory. Springer-Verlag, Berlin-Heidelberg-New York, The third millennium revised and expanded edition, 2003. Pages xiii + 769.
- [11] Carl G. Jockusch, jun. and Stephen G. Simpson. A degree-theoretic definition of the ramified analytical hierarchy. *Ann. Math. Logic*, 10:1–32, 1976.
- [12] V. G. Kanovei. Theory of Zermelo without power set axiom and the theory of Zermelo–Fraenkel without power set axiom are relatively consistent. *Math. Notes*, 30:695–702, 1981.
- [13] Vladimir Kanovei and Vassily Lyubetsky. Definable minimal collapse functions at arbitrary projective levels. J. Symb. Log., 84(1):266–289, 2019.
- [14] Vladimir Kanovei and Vassily Lyubetsky. Models of set theory in which separation theorem fails. *Izvestiya: Mathematics*, 85(6):1181–1219, 2021.
- [15] Vladimir Kanovei and Vassily Lyubetsky. The full basis theorem does not imply analytic wellordering. Ann. Pure Appl. Logic, 172(4):46, 2021. Id/No 102929.
- [16] Vladimir Kanovei and Vassily Lyubetsky. A model in which the Separation principle holds for a given effective projective Sigma-class. *Axioms*, 11(3), 2022. Article No 122.
- [17] Vladimir Kanovei and Vassily Lyubetsky. Jensen Δ_n^1 reals by means of ZFC and second-order Peano arithmetic. Axioms, 13(2), 2024. Article No 96.
- [18] S. C. Kleene. Quantification of number-theoretic functions. *Compos. Math.*, 14:23–40, 1958.
- [19] Georg Kreisel. A survey of proof theory. J. Symb. Log., 33:321–388, 1968.
- [20] Stephen Leeds and Hilary Putnam. An intrinsic characterization of the hierarchy of constructible sets of integers. Logic Colloqu. '69, Proc. Summer School Colloqu. math. Logic, Manchester 1969, 311-350 (1971)., 1971.
- [21] W. Marek. ω -models of second order arithmetic and admissible sets. Fundam. Math., 98:103–120, 1978.
- [22] W. Marek and M. Srebrny. Gaps in the constructible universe. *Ann. Math. Logic*, 6:359–394, 1974.
- [23] Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in Logic. Cambridge: Cambridge University Press; Urbana, IL: ASL, 2nd edition, 2009. Pages xvi + 444.

- [24] Andrzej M. Zarach. Replacement → collection. In Gödel '96. Logical foundations of mathematics, computer science and physics Kurt Gödel's legacy, pages 307–322. Berlin: Springer-Verlag, 1996.
- [25] P. Zbierski. Models for higher order arithmetics. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 19:557–562, 1971.
- [26] P. Zbierski. Non standard interpretations of higher order theories. Fundam. Math., 112:175–186, 1981.
- [27] Т. Йех. Теория множеств и метод форсинга. "Мир", Москва, 1973. Пер. с англ. В.И. Фуксона под ред. В.М. Гришина, оригинал Thomas Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Mathematics, Vol. 217, Springer-Verlag, Berlin, 1971.

В. Г. Кановей

Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (ИППИ РАН), г. Москва

 $E ext{-}mail:$ kanovei@iitp.ru

В. А. Любецкий

Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (ИППИ РАН), г. Москва

E-mail: lyubetsk@iitp.ru