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A model is proposed primarily for the classical RNA attenuation regulation of gene expression 
through premature transcription termination. The model is based on the concept of the RNA 
secondary structure macrostate within the regulatory region between the ribosome and RNA-
polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate 
and on views of transcription and translation initiation and elongation, under different values of the 
four basic model parameters which were varied. A special effort was made to select adequate model 
parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a 
specific parentheses structure used to construct a conventional set of hairpins. The originally 
developed software that realizes the proposed model offers functionality to fully model RNA 
secondary folding kinetics. Its performance is compared to that of a public server described in [1]. 
We then describe the delay in RNA-polymerase shifting to the next base or its premature termination 
caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential 
concepts are the basic and excited states of the polymerase first introduced in [2]: the polymerase 
shifting to the next base can occur only in the basic state, and its detachment from DNA strand –only 
in excited state. As to the authors’ knowledge, such a model incorporating the above mentioned 
attenuation characteristics is not published elsewhere. The model was implemented in an application 
with command line interface for running in batch mode in Windows and Linux environments, as 
well as a public web server [3]. The model was tested with a conventional Monte-Carlo procedure. 
In these simulations, the estimate of correlation between the premature transcription termination 
probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for 
many regulatory regions in many bacterial genomes, as well as for local mutations in these regions. 

Keywords: Attenuation; transcription regulation model; mathematic modeling. 

1. Introduction 

The important role of RNA secondary structures in gene expression regulation is widely 
acknowledged. Its mechanism is based on affecting transcription elongation, translation 
delay, and involves various mediators, e.g. the ribosome in case of classic attenuation or 
regulatory proteins, tRNAs and co-factors in other attenuation types [4, 5, 6, 7, 8, 9]. 
Detailed evidence on attenuation is available for gamma-proteobacteria and Firmicutes 
[10, 11, 12, 13, 14, 15]. Regulations of novel type on the level of transcription and 
translation were proposed to involve T-boxes [16, 12], recently discovered riboswitches 
[17, 18, 7, 8], hypothetical regulatory LEU-element [19] as well as other elements, e.g. in 
chloroplasts [20]. Some alternative regulatory structures were sought using extensive 
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datamining [21, 22]. These studies advance functional annotation of hypothetical genes 
and contribute to filling the gaps in our understanding of bacterial metabolism [14, 17, 
23, 24]. Attenuation regulation first gained attention in classic studies by C. Yanofsky 
and co-authors (ref. [25]). The historical record of attenuation research is briefly outlined 
in [4, 27, 9, 11]. 

Bioinformatic studies in this field include systematic efforts to find regulations of 
known and novel types using comparative genomic tools and a few attempts to model the 
regulatory mechanisms, the latter mainly focused on modeling RNA secondary structure 
kinetics. A dedicated web server was launched recently [1]. Our software that also 
implements kinetics modeling along with other functions is described in [27], and also is 
available as web server [3]. 

A host of approaches exists to model secondary folding kinetics, those are briefly 
reviewed, e.g., in introduction to [1]. Pioneering research on kinetics was published in 
[29-31] and formed the ideological basis for future work. Most studies employed Monte-
Carlo technique to model kinetics of RNA secondary folding at the microstate level. 
Noteworthy, the adequate level to describe attenuation model is as yet not decided (each 
atom, each complementary pair, microstates or macrostates, i.e. clusters of microstates, 
and some others). In [32, 33] Monte-Carlo probabilistic modeling is applied to study 
pseudoknot formation in RNA secondary structure. A model of secondary structure 
folding kinetics was proposed based on original fast Monte-Carlo implementation 
developed to prevent the previously encountered states from being repeatedly sampled by 
the Markov chain. In [34] antitermination probability is estimated with explicit equation 
as a sum of two items: first, probability of the ribosome being at a regulatory codon when 
the antiterminator is formed as the polymerase reaches a U-rich region, and, second, 
probability of the ribosome leaving the stop codon when the antiterminator is not yet 
formed, multiplied by 0.5. The coefficient of 0.5 is introduced to account for mutually 
exclusive formation of either terminator or antiterminator. 

Among other influential works in the field, in [35, 36] RNA folding kinetics is 
modeled with the approach proposed by A. Mironov; in [37] transformation rates are 
provided for certain minor specialized RNAs; in [38, 39] stochastic processes of RNA 
secondary structure formation are discussed with a conclusion that most effective 
approach to kinetics modeling is based on symmetric case of transition rate constant 
between secondary structures primarily introduced in [40] (here ref. Eq. (6)). This case is 
being called in [38, 39] Kawasaki rate. 

The model proposed in this work differs in an attempt to describe secondary folding 
dynamics under conditions close to biological reality, where definitions of the primary 
sequence region involved in secondary structure folding, and the time of secondary 
structure dynamics are not imposed arbitrarily but are determined by shift events of the 
ribosome or polymerase. This has an important implication, as the secondary structure at 
the region between the ribosome and polymerase that determines the outcome 
(termination or antitermination) may exist in non-equilibrium state over a very short time 
of secondary structure dynamics within the current region. In other words, biologically 
plausible secondary structure is determined by the formation dynamics of the primary 
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sequence region between the ribosome and polymerase. When modeling only secondary 
folding kinetics without ribosome and polymerase shifts, in less than 45 10⋅  secondary 
structure transitions our implementation of the model always computes an equilibrium 
structure quite close to one of those found by server [41] and program RNAstructure 
[44]. On average, it takes 18 sec for up to 120 bases-long sequences. 

The model proposed in present study describes primarily classic RNA attenuation of 
gene expression regulation through premature transcription termination mechanism as 
described in [42], p. 172–189. 

Our model, like the ones previously published, is susceptible to making arbitrary 
decisions on decomposing the entire process into elementary parts, on choosing 
mathematical tools to describe the parts, on defining parameters and their values, on 
means to juxtapose results of modeling with yet sparse experimental studies, etc. A 
perspective to cope with these uncertainties is seen in discussion and comparison of the 
models in the context of experimental evidence. There is hope that interpreting the 
models will also guide future experimental work. An earlier description of this model was 
published in [28] and mainly provided details of algorithmic realization and statistic 
properties of modeling results, such as average number of microstates in a macrostate, 
average helix length, helix number, etc. 

2. Description of the Model 

2.1.  Definition of micro- and macrostates. Transition rate constant between 
mRNA secondary structure micro- and macrostates 

Let the following be given: a sequence in four-letter alphabet {A, C, U, G}, a biological 
regulatory region in bacterial genome or a mutation of such region or random sequence. 
For instance, let it be a region from the promoter (when it is occasionally known) or from 
the ribosome-binding site before the leader peptide up to the end of U-run. 

In the initial sequence, segments at least three bases-long are defined, the stems 
(otherwise, shoulders) of putative helices: … ai, …, bj, …. Pairing of any segments ai and 
bj with same length produces helix sγ  (formation of hydrogen bonds and stacking 
between the stems’ bases is implied). The helix is always assumed to be complete, i.e. 
stems ai and bj are extended with complementary bases as far as possible, and the region 
spanning the segments is at least three bases-long (the helix terminal loop). Generally, 
the model allows for any set of primary helices. In the above example the set contains all 
helices that are both complete and imposed certain stem and loop constraints. 

The details and concepts are described in e.g. [42], p. 172–189, including classic 
RNA attenuation triggered by charged tRNA, the latter being in turn dependent on 
concentrations of the amino acid and amino acyl-tRNA synthetase. 

A hypohelix of helix iγ  is defined as any continuous region iγ  of iγ  consisting of 
two paired stems at least three bases-long. Stems are defined as paired segments of a 
hypohelix of the helix, and their termini are designated A, B, C, D starting from the 5'-
end of primary sequence. A terminal loop is defined as an RNA region intercalating two 
stems of the hypohelix. 
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Microstate is a non-empty set of hypohelices, which are complete in the set, lack 
pseudoknots, and are not contiguous (i.e., A and D of one hypohelix are not neighbors of 
B and C of the other hypohelix from same helix). An individual initial microstate is 
empty set ∅ . Completeness in the set means that stems of constituent hypohelices can 
not be extended in this set. A pseudoknot is a pair of hypohelices with a stem of one 
hypohelix overlapping with the terminal loop of the other, thus being contained in this 
loop. All helices in the primary sequence are numbered in a fixed order, and in a 
microstate each hypohelix is tagged with the number of complete helix it is derived from. 
We also applied our model without the microstate completeness requirement and 
obtained somehow different results, which will be published elsewhere. 

A microstate diagram is an ordinary parentheses structure describing the hypohelices 
localization in the microstate, with each closed pair of parentheses corresponding to a 
hypohelix and tagged with the number of its parental helix. The parentheses structure can 
be translated as follows: consecutive hypohelices correspond to consecutive closed pairs 
of parentheses, ( )1( )2...; overlapping of first hypohelix with the terminal loop of second 
hypohelix is represented by embedded structure ((...)1)2, where the inner parentheses 
denote the first hypohelix, and the outer ones – second hypohelix. Numbers of individual 
helices can represent multiple entries in the diagram, because several hypohelices can be 
derived from the same helix. A microstate, i.e. a set of all paired bases, uniquely defines 
its diagram. However, the diagram cannot be used to reconstruct the microstate, as it 
preserves only the “geometry” of hypohelices localization and information on which 
helix is allowed to provide a hypohelix for each pair of parentheses. 

Any set of helices 1,..., kγ γ  can produce a variety of its realizing microstates: any set 
of subhelices complete in the set 1 1,..., k kγ ⊆ γ γ ⊆ γ  (each helix iγ  produces only one 
non-empty and not necessarily connected region iγ  with specific constraints on stems) 
without pseudoknots. As previously, contiguous hypohelices (i.e. having A and D bases 
neighboring with B и C) are merged. 

Macrostate is any non-empty diagram (“non-empty” stands for it having at least one 
realizing microstate). For any microstate ω  of macrostate Ω , diagrams ω  and Ω  are 
identical. 

Bond energy 
j

Eγ of hypohelix iγ  is the sum of stacking bond energies of its adjacent 
base pairs. Special provisions are made to account for stacking of the first and the last 
pairs of hypohelix iγ  and coaxial stacking of iγ , which depends on microstate ω  
containing iγ . The energy is computed using the approach and numerical values 
published elsewhere [43-45, 41]. 

Each hypohelix iγ  from given microstate ω  is assigned number il  of nucleotides in 
its terminal loop that are not contained in loops and stems of other hypohelices from ω . 
This number is dependant on the microstate ω  and defines free length il  of the terminal 
loop of hypohelix iγ  in ω . 

Microstate ω  is by definition described with two free energies, bond energy and loop 
energy of ω . From here on, we considered only normalized energies obtained by 
dividing their values with R T⋅ , where 1 10.001984 (kcal degree mol )R − −= ⋅ ⋅  and T  
equals e.g. 310K . Therefore, in all our estimates the energy values are dimensionless. 
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Bond energy of microstate ω  is estimated as follows: 

 1( )
ihel

i
G E

RT γω = ⋅∑ ,  (1) 

where i  varies over all hypohelices iγ  from ω , [43-45, 41]. 
Loop energy of microstate ω  is estimated as follows: 

 ( ) 1.77 ln( 1)loop i
i i

CG l B
l

⎛ ⎞
ω = ⋅ + + +⎜ ⎟

⎝ ⎠
∑ ,  (2) 

where i  varies over all hypohelices iγ  fromω ; Eq. (2) closely resembles that accepted 
in [29, 30]. Equation (2) is in good agreement with comprehensive tabulated data from 
[44, 41] for all loop energies under 2il > , assuming 6.5B =  for terminal loops, 0B =  
for double-strand bulges (also known as internal loops) and 4B =  for single-strand 
bulges. Coefficient 1.77  (Flory parameter) is derived from the non self-intersecting 
random walk theory [46]. Results provided in Section 4 were obtained under 5C = ; the 
case of 0C =  was also considered. Cases where 2il ≤  are tackled separately according 
to the tables from [44, 41]: loop energies are set 0.8 (under 2l = ) for a double-strand 
bulge and 6.2 (under 1l = ) or 4.5 (under 2l = ) for a single-strand bulge. Terminal loops 
of such lengths are excluded from our model. Although Eq. (2) is part of the Edgeworth 
expansion series, currently available experimental evidence does not seem to suffice for 
estimating its leading coefficients. 

There exist “fast” and “slow” transitions between microstates. A fast transition by 
definition does not imply changes in corresponding microstate diagram. A slow transition 
by definition alters the microstate diagram by one pair of parentheses. Generally, in any 
transition the arbitrary set of hypohelices can be changed. 

Absolute probabilities of fast transitions between microstates ω  and ′ω  from same 
macrostate Ω  are inessential in our model, instead, it operates with rates, see Eqs. (4-7). 
The critical assumption is that transitions in the set of all microstates ω  from current 
macrostate Ω  reproduce the Boltzmann-Gibbs stationary probability distribution: 

 
( )exp ( ( ) ( ))

( )
( )

loop helG G
p

z
− ω + ω

ω =
Ω

, where ( )( ) exp ( ) ( )loop helz G G
ω∈Ω

Ω = − ω − ω∑ . (3) 

A slow transition from current microstate ω  to any microstate ′ω  always occurs with 
altering macrostate ω  by one pair of parentheses. There are two cases described with the 
equations below. In the model, the rate of any slow transition is described by Eqs. (4, 5) 
(“asymmetric case”) [4, 27] under the assumption that hypohelix decomposition rate 
depends only on its bond energy and the hypohelix binding rate, the only spatial factor 
affecting the approach of the ends of its stems. Otherwise, an alternative Eq. (6) 
(“symmetric case”) is used to describe the slow transition. 

Note that equations, including (4-6), and tabulated values of all model parameters are 
defined symbolically in the program code, and thus can be easily changed in future 
implementations. 
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Thus, under slow transition in case of hypohelix decomposition current macrostate 
alters by one pair of parentheses, i.e. a transition occurs from microstate 1{ ,..., }i kiω = γ γ  
(with all its hypohelices) to microstate 1{ ,..., }i ki′ ′ ′ω = γ γ  (with all its hypohelices, where 

li′γ = ∅  under some chosen ,l i , i.e. hypohelix li′γ  is virtually absent from ′ω ), 
hypohelices ,li li′γ γ  are derived from same helix lγ  and correspond to one pair of 
parentheses, the slow transition rate is described with the following equation 
(“asymmetric case”): 

 ( )( ) exp ( ) ( )hel helK G G′ ′ω→ ω = κ ⋅ ω − ω .  (4) 

Under slow transition, binding of hypohelix, macrostate increases by one pair of 
parentheses and in the same notation is described as follows (“asymmetric case”): 

 ( )( ) exp ( ) ( ) .loop loopK G G′ ′ω → ω = κ ⋅ ω − ω   (5) 

Alternatively to Eqs. (4-5), any of the two slow transitions are described as the 
“symmetric case”: 

 ( ) ( )1( ) exp ( ) ( ) ( ) ( )
2 loop hel loop helK G G G G⎧ ⎫⎡ ⎤′ ′ ′ω→ ω = κ ⋅ ω + ω − ω + ω⎨ ⎬⎣ ⎦⎩ ⎭

.  (6) 

In published studies 6 -110  sκ = ; in [1] it is set to 710  by default. Here the value of 
κ was varied in the range from 31 s-1 to 106 s-1. An equation similar to (6) was used in 
[39] to model RNA secondary structure folding. This equation was first introduced in 
[40] in relation to the kinetic Ising model. Eqs. (4-6) were derived to fulfill the detailed 
equilibrium requirement: 

 [ ]( ) exp ( ) ( )
( )

K E E
K

′ω→ ω ′= ω − ω
′ω →ω

, 

where ( )E ω  is energy of microstate ω  under both approaches. Particularly, this accounts 
for coefficient 1 2  in Eq. (6). 

If macrostate dynamics is now to be described using dynamics of its realizing 
microstates, only two transitions will be possible: adding new hypohelix γ  to current 
macrostate Ω  and disappearance of initially present γ  from Ω . Trivial averaging over 
all pairs of microstates , ′ ′ω∈Ω ω ∈Ω  produces the following equation for the transition 
rate between macrostates Ω  and ′Ω  that applies to both the increase and decrease of a 
macrostate by one hypohelix: 

 ( ) ( ) ( )K p K
′ ′ω∈Ω ω∈Ω

′ ′Ω →Ω = ω ⋅ ω→ ω∑ ∑ .  (7) 

An effective original computer implementation of the described model is developed, 
i.e. an algorithm to compute the above sums without enumerating all microstate pairs, 
and is published in [47-48]. The program typically takes less than one minute to run in 
batch mode with default parameter settings to output all termination probabilities ( )p c  
under concentration values c  ranging from 0 to 0.5 with step 0.05 and 100 independent 
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reiterations of the Monte-Carlo procedure for each c . It also logs down statistics and 
details of the run. Detailed representation of model trajectories can also be obtained to 
analyze secondary structure folding kinetics. 

Original definitions of fast and slow transitions find their mathematical support from 
combinatorics in the below proposition, with its nontrivial proof published in [47-48]. 
 
Proposition 1.  Let two microstates that realize the same macrostate be given. Then a 
chain of transitions from one microstate to the other is possible, such that each microstate 
of the chain belongs to the macrostate, through a number of steps, each realizing no more 
than two openings and two formations of base pairs. And otherwise: if two microstates 
originate from different macrostates, any such chain of transitions between them is not 
possible. 

2.2.  Shifting of RNA-polymerase on DNA strand 

A hairpin is defined here for our purposes as a chain of paired stems linearly nested in 
each other’s terminal loops with minor bulges between contiguous stem pairs and an 
arbitrary terminal loop at the end of the chain; the first stem pair forms the handle of the 
hairpin. Each stem pair in the hairpin, i.e. a hypohelix, has a terminal loop comprising all 
such subsequent pairs, their terminal loops and bulges. A hairpin might not represent a 
microstate if the former does not meet the completeness requirement. Here the hairpin 
definition is used in a narrower sense than traditionally accepted. 

Nucleotide z is U-rich if exists at least one word containing z at any position and 
exceeding a certain threshold in length (5 is default) and in relative frequent occurrence 
of character ‘U’ (0.8 is default). Other letters are allowed at any position in the word 
including the position of z. For a set of all U-rich nucleotides, all intervals of maximal 
length are constructed; those define U-rich regions. Default parameter values are taken 
from experimental evidence [49]. 

Let us denote z a position in the given sequence, which coincides with the active 
center of the polymerase and where transcription takes place. If z n= , three scenarios are 
possible: shifting of the polymerase on ( 1)n + -nucleotide, premature termination at n -
nucleotide or staying at n -nucleotide. 

We will describe rate constants ν  and μ  for the first two scenarios. Given the 
assumption from [2] that the polymerase exists in two states, either basic or excited, at 
any nucleotide, let us denote probabilities of these states β  and (1 )−β , respectively. The 
polymerase can shift to the next nucleotide with rate constant polλ  only in its basic state, 
and it can slip off DNA strand with rate constant urλ  at a U-rich nucleotide only in its 
excited state (premature termination event). Only in excited state the polymerase binds 
with one of the hairpins. The default value 140 spol

−λ =  is similar to that published in 
[50]; polλ  describes the polymerase-DNA interaction. urλ  is 0 at a non-U-rich 
nucleotide, and is 110 s−  otherwise, the latter value is provided in [2]; urλ  describes 
interactions facilitating release of RNA strand from the polymerase under certain 
conditions. The value of urλ  is estimated in our model as being close to 110 s− ; 
corresponding calculations are provided below. 
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When transitions between the basic and excited states are fast, it was proved in [51] 
that transition rate constants between the states can be substituted by average values, 
probabilities β  and (1 )−β  of the states, to express transition rate constants of the shift 
and slippage of the polymerase in Eq. (8). Thus, 

 polν = β ⋅λ   and  (1 ) urμ = −β ⋅λ . (8) 

In our assumption, β  is determined only by the secondary structure (here, by macrostate 
Ω ) of the region between the polymerase and ribosome, or, without ribosome, the region 
stretching from the upstream of polymerase up to the transcription start: 

 ( )( ) ( ) ( ) (1 )pol pol pol
pol

FF Ω
ν Ω = β Ω ⋅λ = λ − Ω = λ ⋅ −

λ
, (9) 

where ( )F Ω  is a “force” which corresponds to effective decrease of the rate constant of 
polymerase shifting on DNA strand in inverse seconds, 1s− . The second multiplier in (9) 
is dimensionless quantity, the factor of the reduction of normative polymerase rate by 
macrostate Ω . Eq. (9) introduces function F  without specifying its form and thus, 
unlike Eq. (8), does not represent a new hypothesis, except for the statement that ν  is 
determined only by the secondary structure. This statement is in strong agreement with 
the experiment, and there is no evidence to expect it otherwise. 

Under no assumption of fast transitions between the basic and excited states, a 
Boolean variable is to be introduced in the model to specify the current state of 
polymerase. In our study, introducing this variable did not have considerable effect on 
results (ref. Sec. 4).  

Let us now express μ  from Eqs. (8-9) explicitly: 

 ( )ur

pol

Fλ
μ = ⋅ Ω

λ
 (10) 

A crucial step is to determine the form of function ( )F Ω . More precisely, ( )F Ω  is 
defined for any macrostate Ω  as mathematic expectation over all its realizing 
microstates ( )p p c= : 

 ( ) ( ) ( )F p F
ω∈Ω

Ω = ω ⋅ ω∑   (11) 

which reduces the problem to determining the dependence for ( )F ω . We will define 
( )F ω  assuming that ω  is a hairpin and that ω  is an arbitrary microstate, thus rendering 

definitions Eqs. (8-11) complete. 
Consider the first case. Let ω  be a hairpin consisting of a handle without bulges and 

a negligibly small loop, with handle length h  (the number of its constituent 
complementary base pairs). Four experimental points are known from [52]: 7;0.11 ,  

8;0.4 , 9;0.54 , 12;0.2 , where the first entry in the pairs is handle length h  and the 
last one is premature termination probability within a U-run of length N . We will now 
derive an equation to describe premature termination probability in the form 1 ( )P N− , 
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where ( )P N  is probability of the polymerase reaching the end of N bases-long U-run 
without a slippage event. Besides, three other experimental points were given in lectures 
by R. Landic (2004): 3;0.05 , 7;0.91 , 14;0.3  with the same notation of the entries. 

We will use this evidence to determine the form of dependency for ( )F ω  and then 
to estimate parameters in ( )F ω . First, ( )P N  is to be explicitly expressed. Probability 
of the polymerase shifting from n- to (n+1)-nucleotide without termination is obviously 

( )ν ν + μ  and is not unity only within a U-run and only in presence of hairpins, i.e. when 
0μ >  or, identically, 0F > . Hence the probability of making N shifts within a U-run 

without slippage is approximately 

 1( )
1

N

N

ur

pol pol

P N
F

F

⎛ ⎞
⎜ ⎟⎛ ⎞ν ⎜ ⎟= =⎜ ⎟ λ⎜ ⎟ν + μ⎝ ⎠ + ⋅⎜ ⎟λ λ −⎝ ⎠

. (12) 

Probability 1 ( )P N−  is in direct proportion to the value of F . 
Only now the abovementioned sets of experimental evidence can be interpreted: as 

length h  of hairpin handle grows, “force” F  of polymerase deceleration by hairpin ω  
increases, reaches its maximum and then decreases under fixed distance r . The 
deceleration is seemingly nonsymmetric over this maximum at certain value 0h  of the 
handle length. A naïve comment can be made here: a positively charged region exists in 
the negatively charged polymerase molecule that might be in Coulomb interaction with 
the negatively charged hairpin. In particular, it might explain nonsymmetric (over 0h ) 
form of function ( )F h . Therefore, we assume 

 2
02

1
0

( , ) exp
1 1 1

rF h r
r

L
h h

⎛ ⎞δ
= ⋅ −⎜ ⎟

⎛ ⎞ ⎝ ⎠
⋅ − +⎜ ⎟
⎝ ⎠

 (13) 

where parameters 1 0 0, , ,L h rδ  depend on polymerase characteristics. Thus, the first 
multiplier ( )F h  in Eq. (13) indicates that the dependency of ( )F h  is of resonant type. 
The second multiplier ( )F r  in Eq. (13) implies exponential decrease of value ( )F r  of 
the polymerase deceleration by a hairpin with the decrease of distance r  between them, 
which seems natural. 

Hence, a non-trivial task in hypothesis Eq. (13) is to determine dependency between 
( , )F h r  and length h , i.e. to select function  

 
( )22

1 0

( )
1 1 1

F h
L h h

δ
=

⋅ − +
 

under fixed distance r . Under fixed r , ( , )F h r  is denoted as ( )F h . Function ( )F h  is 
maximal at handle length 0h h= , converges to 0 at h  converging to 0 and converges to 
constant ( ) 12 2

1 0/ 1L h
−

δ +  at increasing h . Large values of h  are not obtained in 
modeling. Dependency (13) was varied over a class of rational functions, therefore an 
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alternative form of dependency for ( )F h , if exists, will have to be of completely 
different form. Hypothesis Eq. (13) accepted in this study is in agreement with the model 
predictions (ref. Sec. 4). 

Unfortunately, Eq. (13) alone does not suffice for modeling. It is necessary to define 
the dependency between value F  of the polymerase deceleration by a hairpin and length 
l of terminal loop, i.e. function ( , )F h l . Besides, minor single- and double-stranded 
bulges occurring in the hairpin’s handle are also to be accounted for. In modeling (ref. 
Sec. 3) bulges in the handle exceeding certain threshold in length (typically, 2) are 
precluded. Although hairpins with long loops in classic attenuation occur seldom in 
biological sequences, function ( , )F h l  is to be formally defined in the model. 

Mathematically rigor, albeit based on assumptions, generalization of ( )F h  to ( , )F h l  
is provided in [47]. Let us now obtain ( , )F h l  using heuristic approach. Dependency 
Eq. (13) can be rewritten as follows: 

 2 2
2 0 0

( ) exp
( ) 1

rF
L p p r

⎛ ⎞δ
ω = ⋅ −⎜ ⎟⋅ − + ⎝ ⎠

,  (14) 

where 2 12L L= π  and 2p h= π , 0 02p h= π . The generalization of ( )F h  to ( , )F h l  
will be obtained by selecting function ( , )p p h l=  to insert in Eq. (14). Dependency (14) 
will then be the unknown ( , )F h l . 

The sought dependency is of type 

 
1 2

( , , )
2

p h l l
h l l

π′′ =
′′+ θ ⋅ + θ ⋅

,  (15) 

where 1 2,θ θ  are certain parameters with negligible effect on modeling, hence we can 
assume 1 2 1θ = θ = , and l′′  is total length of all bulges in the hairpin’s handle. 
Assumption Eq. (15), i.e. dependency ( )2p h l l′′= π + + , implies that loop and small 
bulges are considered as extensions of the handle, which seems natural. However, 
function ( , , )p h l l′′  in this form is not applicable, as under large l  values in modeling the 
dependency from h  becomes negligible. Therefore, under lack of bulges in the handle, 
i.e. under 0l′′ = , we define function ( , )p h l  with the equation commonly used in 
physics: 

 2( )
( )

tg p h
p l

⋅ =
⋅ β ⋅

, 0
2

p h π
< ⋅ ≤ .  (16) 

Parameter β  defines the effect of the hairpin’s loop on its interaction with the 
polymerase. The meaning of β  is not discussed here, and we assume 1β = . Heuristically, 
Eq. (16) is justified as follows. Let us express function ( , )p h l  defined with Eq. (16) as a 
product of 2hπ  and a power series of reasonable dimensionless parameter 2l h . It 
becomes obvious that the free term of the series under 2 0l h =  equals unity, i.e. then 

2p h= π , which gives dependency Eq. (13), while to agree within a linear term under 
small 2l h , we obtain ( )2p h l= π + , which is what we expected to find under 0l′′ = . 
This power series of 2l h  is easily expressed explicitly by rewriting (16) in the form of 



 Modeling Classic Attenuation Regulation of Gene Expression in Bacteria 
 

11 

 ( )2
2

tg phl
h ph

π −
= , 

expanding the second member of the equation into power series of 2 phπ −  and 
inverting this series. Comparison to ( )2h lπ +  also requires expanding it into power 
series of 2l h . 

Let us now assume presence of small bulges in the hairpin, i.e. revert to the general 
hairpin definition given in the Sec. 2.2. For hairpin ω  with a set of paired segments 
separated by bulges and with a terminal loop let us define: if ω  contains s  segments of 
lengths 1,..., sh h , and 1s −  bulges of lengths 1 1, ..., sl l −  and a loop of length l , then 

 1
2

lp p
h l
′′⎛ ⎞= ⋅ −⎜ ⎟+⎝ ⎠

 (17) 

and p  is found with Eq. (16), where p  replaces p . In a similar heuristic justification of 
Eq. (17), the same values are obtained when p  is approximated with ( )2p h l= π +  in 
Eq. (17), and only linear terms are left in the expansion of ( )2p h l l′′= π + +  into power 
series of reasonable dimensionless parameter ( )2l h l′′ + . 

We also considered two cases similar to Eq. (17): 

 ( )
1

2
2

1

11 sin ( )
2 sin ( )

s

i
i

p p l p h i
h l p h

−

=

⎛ ⎞
= ⋅ − ⋅ ⋅ ⋅⎜ ⎟+ ⋅ ⋅⎝ ⎠

∑  (18) 

and 

 ( )
1

2
2

1

11 cos ( )
2 cos ( )

s

i
i

p p l p h i
h l p h

−

=

⎛ ⎞
= ⋅ − ⋅ ⋅ ⋅⎜ ⎟+ ⋅ ⋅⎝ ⎠

∑  (19) 

where by definition 1( ) ... ih i h h= + + , 1( ) ... nh h n h h= = + + . Because 0 / 2p h< ⋅ < π , 
factors in ( )2sin ( )p h i⋅  monotonously grow over all ( )h i , while factors in 

( )2cos ( )p h i⋅  decrease. Unlike Eq. (17), Eq. (18) accounts for a larger effect of a bulge 
nearby the loop under same total lengths ( )h i , and its lower effect in Eq. (19).  

In our modeling Eqs. (17-19) produce similar results due to absence in our data of 
any large bulges in the handle. It is assumed that polδ < λ , which gives ( ) 0ν Ω >  in (9). 

Let us now consider the case of microstate ω . A diagram of microstate ω  can be 
decomposed into a set of elementary diagrams characterized by presence of the handle, 
i.e. the outer pair of parentheses with assigned hypohelix. The initial diagram is uniquely 
defined as a linear succession of elementary diagrams from this set. In this set, the i-th 
elementary diagram corresponds to hypohelix iγ  with termini Аi and Di assigned to the 
outer pair of parentheses. Hairpin i′ω  is defined by ,i iA D  and ω  as follows: i′ω  starts 
with base pair ,i iA D< >  and then expands into RNA region between iA  and iD  of the 
primary sequence with base pairings according to ω  that preserves minor bulges until the 
first major bulge (default bulge size threshold is 2) or a fork is encountered in ω . 
Regions before the major bulge or fork form the handle of hairpin i′ω , and those after – 
the loop of i′ω . 
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Let us now define strength ( )F ω  of the effect of any microstate ω  on RNA-
polymerase by reducing it to the defined set of hairpins { }i′ω , the root of microstate ω . 
We considered two cases of defining ( )F ω : 

 ( ) ( )i
i

F F ′ω = ω∑  (20) 

and 

 ( ) max { ( )}i iF F ′ω = ω .  (21) 

In Eq. (20) values ir  are defined as above indicated; the sum contains an exponent 
rapidly decreasing with growth of distance ir , which permits application of ordinary 
exponentially damped weight summing. In Eq. (21) ir  is another value called straight 
distance that is defined without accounting for all hairpins between the i -hairpin and 
polymerase, i.e. only two terminal nucleotides, jA  and jD , are considered in all j-th 
hairpins occurring between the fixed i-th hairpin and polymerase. 

Each leader region was analyzed using both Eq. (20) and Eq. (21). The results suggest 
that both approaches produce similar functions of premature termination probability in 
response to charged tRNA concentration. This similarity is accounted for by the fact that 
in all analyses of biological data one of the items in Eq. (20) is much larger and 
corresponds to the largest hairpin in set { }i′ω  of those closer to polymerase. But this item 
is difficult to determine formally. 

 

2.3.  Premature termination of RNA-polymerase on DNA strand and parameter 
values in function F(h)  

Now consider the scenario of polymerase premature termination at a residue within a U-
rich region. Polymerase with z n=  is found on U-rich nucleotide n  with probability β  
in basic state and with probability (1 )−β  in excited state. Termination of the polymerase 
with rate constant urλ  is possible only in excited state. According to Eqs. (8-9), the 
probability is 

 2 2
2 0

/( )1 1
( ) 1

pol

pol

F
L p p

δ λΩ
β = − = −

λ − +
  (22) 

and the rate constant of premature termination is 

 ( )ur

pol

Fλ ⋅ Ω
μ =

λ
. (23) 

Let us now obtain parameters 1, Lδ  and 0h  in the expression for ( )F h  in Eq. (13), 
i.e. for ( , )F h r  under fixed r , using two different sets of experimental evidence. After 
inserting the four already mentioned data points in Eqs. (12, 13) under N=2 and 0r =  
from [52], we obtain a set of four nonlinear equations with three unknowns, 1, Lδ  and 0h . 
Solving this set under 110 sur

−λ =  from [2] gives 1 027, 45, 9.1L hδ = = = . Solving 
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similar set of equations using the data points from R. Landic under N=7 and 0r =  gives 
1 025, 22.8, 7L hδ = = = . The obtained values are of the same order of magnitude. 

Importantly, using independent experimental data from [52] will provide very similar 
estimates of 1 0, ,L hδ  in ( )F h . In [52] four data points are given, 7;0.11 , 8;0.32 ,  

9;0.35 , 12;0.09 , where, in each pair, the first term is handle length h  and second – 
probability q  of premature termination, at the same fixed nucleotide and a fixed terminal 
loop. Then using 

 1 q ν
− =

ν + μ
  and  ( )

( )
ur

pol pol

F h
F h

λμ
= ⋅

ν λ λ −
, 0r = , 

we obtain 1 030, 42.5, 8.6L hδ = = = , 0 0.1826p = . There is high agreement between the 
experimentally derived value of q  and that predicted in our model using the latter 
parameter estimates. It is not trivial because exact approximation of four points by 
function 1 0( , , , )F h L hδ  with only three parameters δ, L1, h0 is not always possible. 
Solving it with so high accuracy (ref. Table 1) substantiates our choice of function ( )F h . 

Table 1. Probability q of termination on a fixed nucleotide in correlation  
with the handle length in our model and the experiment [52]. 

Handle length h q in our model q in the experiment 
7 0.11 0.11 
8 0.33 0.32 
9 0.39 0.35 

12 0.08 0.09 
 
 

Let us now define parameter urλ . From [2], 110 sur
−λ = ; we will estimate urλ  in our 

model using the given 1 030, 42.5, 8.6L hδ = = = , 0 0.1826p =  and the experimentally 
obtained ratio of the polymerase delay time at the eighth nucleotide in slippage event to 
the same time in shifting event being 4 in macrostate Ω  of a hairpin with the handle and 
loop lengths 11 and 6, respectively [2]. By estimating force 0 ( )F F= Ω  we obtain 

0 15.5F = . Average time 1 μ  before slippage divided by average time 1 ν  before 
shifting is  

 4
1

pol

ur

λν β
= = ⋅
μ −β λ

, then 
0

4 1polur

pol F
λλ

⋅ = −
λ

 

and 15.8urλ = , which gives values of the same order of magnitude. 
 

2.4.  Ribosome sliding on mRNA strand 

At non-regulatory codons rate constant λrib of ribosome elongation on one codon is 
assumed to be standard 115 srib

−λ = , i.e. 145 srib
−λ =  per nucleotide. On regulatory 

codons we assume it to depend on concentration c of charged amino acyl-tRNA, 
according to the Michaelis-Menten law: 
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0

( ) rib
rib

cc
c c
λ ⋅

λ =
+

. (24) 

Here c0 is concentration of amino acyl-tRNA, at which the ribosome slides on regulatory 
codons at a rate two times less than maximal 145 srib

−λ = ; ribλ  is its value at 
concentration c that is high enough to provide for the ribosome sliding rate on regulatory 
codons being as high as on non-regulatory codons. From here on, concentration is 
expressed in 0c c  units, hence we avoid the need to define c0. In other words, it is 
assumed that c0=1. 
 

2.5.  Ribosome binding to the Shine-Dalgarno sequence 

The process is initiated with the polymerase starting from the promoter, where protein-
DNA regulation can occur. The ribosome then binds to the Shine-Dalgarno (SD) 
sequence and to the start codon of the leader peptide gene. After the SD sequence, the 
start codon of the leader peptide gene and next 0 1s s+  nucleotides ( 0 1s s+  is the distance 
between P-site of the ribosome and transcription center z of the polymerase) are 
transcribed, the ribosome can bind to mRNA. The ribosome binding may be silenced by 
secondary structures shielding the SD sequence and start codon and, probably, by 
protein-DNA interaction in these domains. To model these effects, the ribosome binding 
rate constant 0K  was incorporated in the model in its simplest form: 

 0 0
max

opend
K

d
= λ ⋅ , (25) 

where dopen is maximal number of consecutive open nucleotides in the SD sequence 
(provided that the start codon is open), dmax is the length of SD sequence (normally, 
dmax=6) and 0λ  is translation initiation rate constant, the reciprocal to the time of 
ribosome binding under absence of silencing factors. When the ribosome binds, the 
secondary downstream structure is inherited in the model. 

Because 0λ  is likely unknown, we modeled a case when the ribosome already covers 
the SD sequence and, thus, the leader peptide gene start codon. Here the required is not 
the 0λ  value but the initial instant position of the polymerase. Let sp be the distance from 
the 5'-edge of the leader peptide start codon to 5'-edge of the polymerase at the instance 
the ribosome has bound with mRNA. For a class of biological sequences, this binding 
occurs unimpeded immediately as the SD sequence, the leader peptide start codon and the 
next 0 12s =  nucleotides (here the ribosome size being 0 12s =  nucleotides) are 
transcribed. This is likely the case of bacterial operons considered below. For these, it 
was assumed that 13sp =  in modeling described in Tables 2-6, 8, 9. Widely varying 
parameter sp has a surprisingly low effect on the result of modeling (ref. Table 7). 

3. Modeling of Premature Transcription Termination and its Parameter Values 

With classic attenuation regulation, the purpose of modeling was estimation of ( )p p c= , 
the correlation between termination probability p  and concentration c of charged tRNA. 
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In equilibrium, aa aaSc c c d= ⋅ ⋅ , where aac  is amino acid concentration, aaSc  is 
concentration of amino acyl-tRNA synthetase and d is a coefficient. One of the factors 
was varied, aac  for amino acid biosynthesis operon or aaSc  for amino acyl-tRNA 
synthetase, while keeping the other one constant. To account for amino acid 
concentration in substrate, which was studied in [53], one can set aa aaOutc c d ′= ⋅ , where 

aaOutc  is amino acid concentration in substrate and d' is corresponding coefficient. Each 
of the cases produces values of c0, d and d' affecting the c-axis only, thus not 
discriminating between the cases in simulation studies. The assumption of nonlinear 
dependencies greatly complicates calculations and is beyond the scope of this work. 

We determined function ( )p p c=  for many leader regions of various bacterial amino 
acid operons and amino acyl-tRNA synthetases. Function ( )p c  was built with repeating 
the modeled process certain number of times (usually 103 -104) under some increment of 
c. Each run gives one of two possible outcomes: premature termination of the polymerase 
on a U-run within primary sequence or its successful passing of the U-run, therefore 

( )p c  was calculated as a fraction of times the termination occurred. 
Apart from the secondary structure kinetic parameters that were fixed in Sec. 2.1 with 

their typical values, others were varied: r0 within the range 0.1–5, 230, 27.1,Lδ = =  
1

0 0.1826, 31 2000 s , 13 50p sp−= κ = − = − . The “size” of the ribosome from its P-site 
to its 3'-end is 0 12s =  nt, and that of the polymerase, from its beginning y  on RNA 
strand to the transcription center, 1 5s =  nt. All modeling on biological and artificial 
sequences was done under fixed parameter values, unless explicitly indicated 
otherwise. Thus, in Tables 2, 4, 9 containing numerical values of ( )p c , all the below 
mentioned sequences were modeled under 3 1

0 1, 10 s ,r −= κ =  13sp = . Concentration c  
of loaded tRNAs was varied from 0 to 0.5 with increment 0.05. In point 0.5 dependency 

( )p c  stabilized in all cases. The concentration is expressed in conventional units 0/c c ; 
therefore interval min max( , )c c  of concentrations where attenuation really occurs cannot be 
derived from our data. It might be surmised from the form of function ( )p c : regulation 
occurs within the region of its monotonous increase. In this work we do not consider an 
important issue of transition from nondimensional concentration to its physical units and 
from nondimensional probability (frequency) ( )p c  to physical units of enzyme activity, 
except in Table 3. The latter data can be used to tackle this issue but it is unfortunately 
very scarce. 

Given a fixed primary sequence, the modeling process contains: the window between 
3'-end x  of the ribosome and beginning y  of the polymerase. The transcription center is 
designated z , i.e. 1z y s= + . In the window, transition occurs from macrostate Ω  to ′Ω , 
with macrostates allowed to contain only hypohelices overlapping with the window by at 
least three nucleotides, thus defining macrostates in current window; and there is 
macrostate Ω , i.e. a non-empty diagram. Macrostates describe the secondary RNA 
structure in the window. The window does not exist before binding of the polymerase (an 
empty macrostate), and before binding of the ribosome the window opens at the first 
nucleotide of the primary sequence and closes at the 5'-edge y  of the polymerase. 

The primary steps of the modeling are: after transcribing the start codon and 
subsequent 0 1s s+  nucleotides, the ribosome attempts to bind with the SD sequence and 
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the start of leader peptide gene according to the described rule. As it occurs, the ribosome 
occupies the start of the leader peptide and the following characteristics become fixed: 
left boundary x  of the window at the position “start of the leader peptide gene plus s0”, 
right window boundary y  at the position determined by the beginning of the polymerase, 
and the secondary structure inherited in the window from the past.  

We also modeled binding of the polymerase to the promoter, but with our sequences 
it did not affect the values of ( )p c . In data below, the ribosome started immediately from 
the SD domain, and, at the same time, the 5'-edge of the polymerase was located at sp 
nucleotides downstream the 5'-edge of the start codon. 

Standard Monte-Carlo technique is used for modeling. Current state is described with 
parameters , , , ,x y z T< Ω > . During initiations, description of the state includes condition 
ς  of whether or not binding of the polymerase or ribosome occurred; this condition is not 
considered on further steps. The neighborhood of given state Ω , centered in Ω , is a set 
of all states with non-zero probability of transition from Ω . If given neighborhood 
contains n states, and corresponding transition rate constants are 1, , nk k…  with ik k= ∑ , 
the transition state (next state in the trajectory) is determined by choice of i  with 
probability ik k . 

Physical time in seconds between each two successive transitions in the model is 
calculated giving the overall transcription time of regulatory region in the model, which 
can approximate this time in biological reality. Physical time t  is taken to have 
exponential distribution 1 exp( )kt− − . Notably, the values of , , , ( )sd rib pol K ′λ λ λ Ω→Ω  
are of considerably different orders of magnitude, thus causing certain inconveniencies. 

4. Simulation Results and Discussion 

4.1.  The case of proteobacteria 

(1) Results of modeling are shown partially, mainly for the leader regions of trpE-
containing operons of alpha- and gamma-proteobacteria and for corresponding 
mutants. Experimentally known mutations are taken from [25]: in the leader region 
of tryptophan operon in E. coli G was replaced by A at the 75th and 132nd positions 
from the transcription start. These mutants are designated trpL75 and trpL132, 
respectively. The trpL75 mutation destabilizes the antiterminator secondary structure 
and leads to inevitable termination. The trpL132 mutation results in destabilization 
of the terminator structure and thus reduces the termination frequency, Table 2. 
Similar results of modeling are published in [54, 28] for other bacteria, while any 
experimental evidence on their mutations is lacking. 
Thus, Table 2 shows the values of function ( )p p c=  for trpE-gene containing 
operons of Rhodopseudomonas palustris, Rhizobium leguminosarum, Sinorhizobium 
meliloti, Escherichia coli, Vibrio cholerae. Presence of classic attenuation in these 
bacteria is corroborated partly by experiment [55, 25] and partly by analyses of 
multiple alignments of native leader regions. Alignment data is available for 
actinobacteria [19] and proteobacteria [11]. 

(2) In silico mutations were introduced at a very limited number of positions only in the 
left box of antiterminators, which had a great impact on modeling result (ref. Fig. 1 



 Modeling Classic Attenuation Regulation of Gene Expression in Bacteria 
 

17 

and Table 4). More precisely, with biological sequences probability ( )p c  under high 
concentration c was at least twice as high as under low c, while it almost did not 
depend on concentration with mutants. In other words, termination effectiveness 

(0.5) (0)p p  was about 2 at the lowest for native leader regions, and about 1 – for 
the mutants. Somewhat an exception is the trpE leader region in S. meliloti, where 
termination effectiveness was about 2 in the mutant but about 7 in wild type. 

Table 2. Modeled termination probability p(c) (%) vs. concentration c of charged trp-tRNA in  
E. coli and its mutants trpL75 and trpL132, as well as in other proteobacteria. 

c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
E. coli (wild type) 22 36 53 60 65 69 67 70 68 72 70 
E. coli (trpL75) 75 70 72 72 71 73 73 71 71 71 70 
E. coli (trpL132) 2 6 11 14 14 18 19 17 20 19 19 
V. cholerae 11 22 41 56 61 66 71 72 74 74 72 
R. leguminosarum 12 22 34 42 48 52 52 60 58 60 59 
R. palustris 1 11 25 31 33 35 38 38 37 40 37 
S. meliloti 10 12 19 26 32 36 37 40 39 41 39 

 
(3) In [25] expression of the trpE operon in E. coli was studied in vitro. Anthranilate 

concentrations were obtained over 30 min under high and low concentrations of 
tryptophanyl-tRNA, and ratios shown in the second column of the Table 3. The third 
column contains antitermination probability ratios estimated in the model under 
fixed parameter values. The sequences used in modeling are shown in Fig 1. 

Table 3. Comparison of expression effectiveness of gene trpE in E. coli under different  
tryptophanyl-tRNA concentrations in experiment [25] and the model. 

Genome Anthranilic acid produced 
without/with translation of 

leader peptide 

1 (0.05)
1 (0.5)

p
p

−
−

 

E. coli (wild type) 2.1 2.1 
E. coli (trpL75) 1.2 1.0 
E. coli (trpL132) 1.7 1.2 

 
(4) Total estimated time between each pair of successive transitions between states along 

the same modeling trajectory gives physical time of the whole attenuation process, 
typically 2-3 sec. These estimates are of the same order of magnitude as would be 
expected in biological reality from the average polymerase rate and length of 
primary sequence. Notably, in all our simulations computing one trajectory is 
considerably (4 to 1000 times) less than this physical timing, i.e. the model is faster 
than the biological process. 

(5) In addition, our program and server [3] implement a special mode to ignore the 
behavior of the ribosome and polymerase to model only secondary structure kinetics 
in a long run. Modeling a fixed nucleotide sequence over sufficiently long time 
produces the following results. 
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(a) For sequences up to 170 bases in length, the program and server [3] always 
compute the minimal energy secondary structure with accuracy either ±12% or 
±2.8 kcal/mol over 45 10⋅  transitions. It was proved for sequences up to 120 
bases-long under parameter ρ  value 70 (maximal allowed loop length), and for 
up to 170 bases-long sequences under parameter ρ  value no less than the 
maximal loop length in structures computed by the RNAstructure (Mfold) 
program v.4.2 [41, 44] (e.g., 87 for the hisL operon of Escherichia coli K12, 125 
for the trpE operon of Rhodopseudomonas palustris, 136 for the trpE operon of 
Vibrio cholerae). Exceptional was the trpBEGDC operon of Corynebacterium 
diphtheriae, where this pattern was observed for 96% model trajectories, and 
with slightly less accuracy – for the rest 4%. For sequences with length 120-170 
bases under 70ρ =  the lowest accuracy of the server predictions is ±21%, since 
the RNAstructure program only computes structures with loop length above 70 
and so our server should not find such structures a priory. However, even that 
accuracy level seems acceptable. The RNAstructure program [44] implements a 
slightly different approach to compute energies and different rules to find 
secondary structures. E.g., server [41] outputs structures that do not meet the 
completeness requirement and contain hypohelices with lengths 1 and 2 not 
allowed in our model and program. Thus, certain inconsistency between the 
energy and secondary structure predictions between servers [3] and [41] is 
unavoidable. Parameter ρ  can be explicitly specified in our program and server 
[3], with 70ρ =  set by default. 

(b) For all sequences shorter than 120 bases, among 3τ =  of computed minimal 
structures, 100% modeled trajectories contained a minimal energy structure 
found by the RNAstructure program (sometimes, accurate within one 
hypohelix). This structure is further referred to as an equilibrium structure, and 
its corresponding energy – as minimal energy. Exceptional appeared the same 
sequence from Corynebacterium diphtheriae, for which this pattern was 
observed in 93% trajectories. Number of minimal energy structures τ  is 
specified by the user. 

(c) Average time of finding structures from items (a), (b) under 4
1 5 10N = ⋅  

transitions and 70ρ =  for sequences up to 100 bases-long is less than a second, 
maximal time – 6 sec.; for sequences up to 120 bases-long those are 18 and 220 
sec, respectively; for sequences up to 170-bases long – 4 and 89 min. Under 
maximal loop lengths obtained from RNAstructure program (typical lengths 
shown in item (a)) timing is 5 and 115 min, respectively. All above figures are 
for 3GHz PC. 
A heuristic approach was used in this mode to speed up computations of 
equilibrium structures and minimal energies based on coercive decrease (e.g., 
following logarithmic law) of the computed slow transition rate under increase 
of multiple hits into the resulting macrostate. After computing transition rates 
from current macrostate Ω  into each neighboring macrostate ′Ω , value 

( )K ′Ω →Ω  estimated with Eq. (7) was substituted by 

 ( ) ( )
ln ( )

QK K
Q N

′ ′Ω →Ω = Ω→Ω ⋅
′+ Ω

� , 
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where ( )N ′Ω  is final number of hits in macrostate ′Ω , and 0Q >  is a 
parameter that allows to keep the base of the logarithm when customizing the 
dependency. With this correction, cycles occur less frequently along the 
trajectory thus decreasing CPU time. Particularly, good results are often 
obtained with parameter pairs 4

1 2 10 , 1N Q< = ⋅ = >  and 4
1 10 , 5N Q< = = > .  

Typical characteristics of performance to find equilibrium structures and 
minimal energies are available at server [3]. 

The authors interpret the results of items (1)–(5) in support to the model logic. The 
choice of parameter settings and form of dependencies needs further discussion and is 
greatly dependant on additional experimental evidence. Methodology of developing such 
models and analyzing relevant experimental data are proposed above. 

Therefore, among primary results of this work one can consider developing a 
versatile program implementing the described logic of the model with a possibility to 
modify any equation and/or variable upon need. The program is available from the 
authors, with its current online implementation available online as a web server [3]. 
Requests for computations with custom nucleotide sequences and/or parameter 
settings/dependencies (otherwise, default settings will be used) are welcome at 
lin@iitp.ru. 

The model output is not limited to p(c) values under given concentrations. A default 
program output of each run contains final positions of the ribosome and polymerase 
including codon type, number of transitions, physical time to termination or 
antitermination events, etc., with statistic characteristics of these variables over a series of 
runs in the final output, thus facilitating analysis of model behavior under given c. 
Special effort was made to facilitate studies of secondary structure kinetics. Conventional 
2-D representation of the structure is a poor description of transition between the states. 
Instead, we used natural 1-D representation in the form of initial sequence with color-
coding of hypohelices in current state. The model trajectory is thus a chronological 
succession of such representations with cumulative modeled time to the current transition 
over previous transitions in seconds. For better visualization, any recurring cycles of any 
length and depth are excluded, and local stability of color schemes for same hypohelices 
is maintained. The authors are unaware of a similar representation of secondary structure 
dynamics. Representation of the model trajectory allowed the program to find secondary 
structures forming between the events of the ribosome or polymerase move. With wide 
windows in the leader region of gene trpE in E. coli these structures are always far from 
equilibrium, which seems natural. 
(6) As to the authors’ knowledge, there is only one alternative public resource that 

implements secondary structure kinetics modeling [1]. Comparing performance of 
this server and our server reveals certain differences in modeling results. Thus, for 
the region between the leader peptide stop codon and the end of the terminator U-run 
in the leader region of operon trpBEGDC in Corynebacterium diphtheriae the 
compared server always computes a structure with energy value significantly 
different from the minimal energy. The output structure does not belong to the set of 
equilibrium structures, all, unlike the output structure, containing a conservative 
terminator. A similar situation is observed for the tryptophan operon of 
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Sinorhizobium meliloti in 90% cases. For other sequences, e.g. the above discussed 
leader region of operon trpEGDCBA in Corynebacterium glutamicum the server fails 
to compute the solution after an hour of CPU time. This behavior is observed under 
maximum allowed computing time of the latest version 5 of the server with its 
default parameter settings. Computing time of our server is orders of magnitude less 
for the same input sequences; in both cases 7 110 s−κ =  was used. 

(7) Model parameters were varied to estimate robustness of the result. Tables 5-7 show 
the values of probability (0)p  under varied parameters 0 , ,r spκ  in turn, with other 
parameters fixed. As mentioned earlier, data in Table 7 reveals only minor effect of 
varying parameter sp in a wide range of values (initial distance between the ribosome 
and polymerase) on modeling results. Hence, translation initiation and delay timing 
have negligible impact in modeling. Similar data (not shown) on probability (0)p  
vs. parameter δ , which was varied between 15 and 40, suggests that our assumed 

130 s−δ =  is optimal in the same sense. 

Table 4. Termination probability p(c) vs. charged tRNA concentration for mutant sequences shown 
in Fig. 1. In all cases, this varying completely inhibited regulation, except for S. meliloti, where it 
was partially inhibited leading to growth of p(0). 

c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
E. coli 72 72 71 73 72 71 72 72 72 71 70 
V. cholerae 71 71 71 76 73 73 74 74 73 75 75 
R. leguminosarum 63 60 56 55 55 55 53 55 55 56 56 
R. palustris 38 41 41 41 38 40 41 39 42 42 41 
S. meliloti 28 25 29 34 37 36 38 40 41 41 41 

Table 5. Premature termination frequency under null amino acid concentration p(0) vs. different r0 
values, i.e. distance between 3'-end of the hairpin and the beginning of polymerase, for trpE leader 
regions shown in Fig 1. 

r0 0.1 0.5 1 2 3 4 5 
E. coli 18 19 22 29 33 34 38 
V. cholerae 10 11 11 12 16 21 27 
R. leguminosarum 11 12 12 18 23 29 35 
R. palustris 0.2 0.4 1 2 5 7 9 
S. meliloti 8 9 10 11 17 19 20 

Table 6. Premature termination frequency under null amino acid concentration p(0) vs. different κ 
values, i.e. “cytoplasm viscosity”, for trpE leader regions shown in Fig 1. 

κ 31 62 125 250 500 1000 2000 
E. coli 53 51 44 43 30 22 23 
V. cholerae 29 17 12 11 12 11 13 
R. leguminosarum 34 35 25 18 12 12 16 
R. palustris 7 5 2 0.5 0.5 1 1.4 
S. meliloti 20 19 18 19 14 10 8 
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Table 7. Premature termination frequency under null amino acid concentration p(0) vs.  
different sp values, i.e. initial distance between the ribosome P-site (transcribed codon)  
and the 5'-edge of polymerase, for trpE leader regions shown in Fig 1. 

sp 13 20 30 40 50 
E. coli 22 23 21 21 21 
V. cholerae 11 14 12 13 11 
R. leguminosarum 12 13 14 13 13 
R. palustris 1 1 1 0.7 0.7 
S. meliloti 10 9 10 9 9 

 
 

 
Fig. 1. Biological leader sequences are shown in the first line under corresponding species names, antitermina-
tor underlined, terminator shaded, regulatory and stop codons set in bold face. Mutants are shown in the second 
line, with mutated bases set in lowercase. 

4.2.  The case of histidine operon 

Symmetric case Eq. (6) and 3 110 s−κ =  were used for the tryptophan operon discussed 
above. For the histidine operon concentration-independent function ( )p c  is obtained 
under various κ  values. In contrast, asymmetric case Eqs. (4-5) under 610κ =  produces 
a reasonable solution, Table 8. We assume that the locus of the leader region in interest 
might be essential in choosing between the two cases. Notably, regulatory regions of the 
histidine operon are considerably longer than those of tryptophan operon, with different 
consensus sequences, etc., which might suggest presence of a factor responsible for the 
difference. In the model we use different, albeit logically similar, definitions of transition 
constants between RNA secondary structures, the symmetric and asymmetric cases. 

Table 8. Termination probability p(c) vs. concentration c of charged his-tRNA. 

c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
E. coli, his 18 32 56 59 59 62 70 70 68 63 64 

 
 



Lyubetsky, Pirogov, Rubanov, Seliverstov 
 
22 

4.3.  The case of Streptomyces 

For some leader regions with attenuation regulation predicted from the structure of their 
multiple alignments and/or proved experimentally, Eq. (1) of hypohelix energy provides 
misleading estimates: termination probability ( )p c  does not grow under growing 
concentration c. This equation was used in this study in its current form known to be 
preliminary. Here we propose the following modification to it: 

 
( )max1

( )
j

j

j j
hel

l
E

l l
G

RT

γ

⎛ ⎞′
⎜ ⎟− α ⋅
⎜ ⎟′+⎝ ⎠ω =

∑
. (26) 

The difference from Eq. (1) is the additional term («correction») 

 
( )max

( )
1

lE l
l l
′

′ = −α ⋅
′+

, (27) 

which contains parameters α  and maxl , where maxl  is loop length 'l , under which ( )E l′  
equals half of its asymptotic value. In our modeling, typical settings were max 10l =  and 
α =0 or 10. For the phylogenetic lineage of proteobacteria 0α =  (then maxl  is 
eliminated), and for streptomycetes 10α = . An interaction that corresponds to this 
correction might be related to additional energy of binding the RNA region having a 
realized macrostate with stabilizer molecules, to the tertiary structure energy of this 
region, e.g., knots and pseudoknots. 

Results for two Streptomyces species are shown in Table 9; similar results were 
obtained for other Streptomyces spp. 

Table 9. Termination probability p(c) vs. concentration c of charged trp-tRNA in case of certain 
Streptomyces. Parameter settings are 10α = , max 10l =  and, here only, 0 5r = . 

c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
S. avermitilis, trpE 16 34 43 41 45 48 50 55 55 55 59 
S. coelicolor, trpE 16 27 35 40 46 45 45 47 47 48 52 

 
To conclude, let us again outline the scope of potential applications for this model. It 

can be used to obtain additional evidence in predicting attenuation regulation on the basis 
of multiple alignments by estimating function ( )p c  of termination probability vs. 
concentration of charged tRNA. The evidence is a pronounced and relatively smooth 
monotonous growth of the function. Another field is research on the effect of point 
mutations in the leader region on evolutionary stability and expression effectiveness of 
the gene under given regulation. 
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