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8 Harmonic functions for a class of integro-differential operators.

Mohammud Foondun

Abstract

We consider the operator L defined on C2(Rd) functions by

Lf(x) =
1

2

d∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑

i=1

bi(x)
∂f(x)

∂xi

+

∫

Rd\{0}
[f(x+ h) − f(x) − 1(|h|≤1)h · ∇f(x)]n(x, h)dh.

Under the assumption that the local part of the operator is uniformly elliptic and with suitable
conditions on n(x, h), we establish a Harnack inequality for functions that are nonnegative in Rd

and harmonic in a domain. We also show that the Harnack inequality can fail without suitable
conditions on n(x, h). A regularity theorem for those nonnegative harmonic functions is also
proved.
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1 Introduction

Researchers are increasingly using integro-differential operators (or equivalently, processes with
jumps) to model problems from economics and the natural sciences. For instance, geometric
Brownian motion is a standard model for a stock price. But this model is sometimes not satis-
factory because it does not take into account sudden shifts of the stock price. To model this, one
would like to use a process with some jumps, to represent the stock price. So understanding the
properties of those operators is very important.

The purpose of this paper is to consider functions that are harmonic with respect to the
operator L, where

Lf(x) =
1

2

d∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑

i=1

bi(x)
∂f(x)

∂xi

+

∫

Rd

[f(x+ h) − f(x) − 1(|h|≤1)h · ∇f(x)]n(x, h)dh (1.1)

is defined on C2(Rd) functions. This is a typical example of a non-local operator, in the sense
that the behavior of the harmonic function at a point depends on values of the function at points
some distance away rather than just at nearby points. In probabilistic terms, the local part of L
corresponds to the continuous part of the process while the non-local part controls the jumps of
the process. The jump kernel n(x, h) represents the intensity of jumps from a point x to the point
x+ h and will be assumed to be nonnegative.

We prove a Harnack inequality as well as a regularity theorem for harmonic functions with
respect to the operator L without assuming any continuity of the coefficients aij, bi and of the
kernel n(x, h). We say that a function u is harmonic with respect to L in a domain D if Lu = 0
in D; we give a precise definition in Section 2. Roughly speaking, the Harnack inequality states
that the values of a non-negative harmonic function are comparable in a region. In other words,
for all x and y lying away from the boundary of D, there exists a constant C not depending on u
such that

u(x) ≤ Cu(y).

We show, with the aid of an example, that if n(x, h) does not satisfy some suitable conditions, then
a Harnack inequality fails, while under mild conditions on n(x, h), a Harnack inequality holds.

Since the fundamental work of Moser on Harnack inequalities for second order elliptic[20]
and parabolic[?] partial differential equations with bounded and measurable coefficients, these
inequalities have become increasingly important. Major contributions to this area have also been
made by Krylov-Safonov[16] and Fabes-Stroock[10]. While there has been a lot of research on
Harnack inequalities for functions that are harmonic with respect to differential operators, not
much have been done for non-local operators. It is only recently that these results have been
obtained for harmonic functions associated with purely non-local operators; see [6], [4] and [8].
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The techniques we use to prove the Harnack inequality in this paper are similar to those in [6] and
in [4], but have their roots in [16] where a non-divergence form elliptic operator was considered.

As for the regularity theorem, we show that there exist α ∈ (0, 1) and a positive constant C
not depending on u such that for all x and y lying away from the boundary of D, the following
holds

|u(x) − u(y)| ≤ C‖u‖∞|x− y|α.

Continuity estimates of the above type have a long history. Morrey[19] proved such an es-
timate for second order elliptic partial differential operators in divergence form with bounded
coefficients. His result, which was proved in two dimensions only, was independently extended to
higher dimensions by DeGiorgi[11] and Nash[23]. Another proof was later given by Moser[20]. The
corresponding result for operators in non-divergence form was established by Krylov-Safonov[16].
In [7] and [5], the authors considered purely non-local operators and proved a regularity theorem
using probabilistic methods. It is also interesting to compare our result with the one obtained
by Mikulevicius-Pragarauskas [22]. They considered a parabolic integro-differential operators and
obtained a continuity estimate. However, their result, when specialized to the elliptic case, is a
bit weaker than our regularity theorem. In that paper, the jump kernel n(x, h) satisfies a stronger
condition than in our paper. Moreover, our techniques are different.

Another paper which is related to our work here is that of Song-Vondracek [26]. Their result is
a Harnack inequality for some discontinuous process. However, the jump kernel considered there
is that of a α-stable process. Our result thus holds for a much wider class of processes. Related
work also include a Harnack inequality for subordinate Brownian motion which has been obtained
in [24].

The local part of our operator L is of non-divergence form. In a forthcoming paper [9], we
consider an operator whose local part is of divergence form and whose jump kernel is symmetric.
In that paper, the problem will be framed in terms of Dirichlet forms and a Harnack inequality
together with a regularity theorem will be given.

After stating the results in Section 2, we prove some preliminary estimates in Section 3. In
Section 4, we prove a support theorem which is essential to our method. The proof of the Harnack
inequality and regularity theorem are given in Section 5 and 6 respectively. In Section 7, we
show that if the jump kernel n(x, h) does not satisfy some suitable conditions, then the Harnack
inequality fails.

2 Statement of results

We begin this section with some notations and preliminaries. We use B(x, r) for the open ball
of radius r with center x. We also use | · | for the Euclidean norm of points in Rd, for the norm
of vectors and for the norm of matrices. The letter c with subscripts will denote positive finite
constants whose exact values are unimportant. The Lebesgue measure of a Borel set A will be
denoted by |A|.
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We consider the operator L defined by (1.1) and make the following assumptions:

Assumption 2.1 We assume that the diffusion part of the operator is symmetric and uniformly
elliptic and that the bis are uniformly bounded. In other words, there exist positive constants Λ1

and Λ2 such that

(a) the diffusion coefficients aij satisfy the following

Λ1|y|
2 ≤

d∑

i,j=1

yiaij(x)yj ≤ Λ−1
1 |y|2, y ∈ Rd, x ∈ Rd,

(b)
sup

i
‖b‖∞ ≤ Λ2.

We let N (Λ1,Λ2) denote the set of operators of the form (1.1) satisfying Assumption 2.1.
Besides nonnegativity, the following assumptions will also be imposed on n(x, h).

Assumption 2.2

(a) There exists a positive constant K such that

∫

Rd

(|h|2 ∧ 1)n(x, h)dh ≤ K, ∀x ∈ Rd.

(b) For any r ∈ (0, 1], any x0 ∈ Rd, any x, y ∈ B(x0, r/2) and z ∈ B(x0, r)
c, we have

n(x, z − x) ≤ krn(y, z − y), where kr satisfies 1 < kr ≤ kr−β with k and β being posi-
tive constants.

n(x, h) can be thought of as the intensity of the number of jumps from x to x+ h. n(x, z − x)
thus represents the intensity of the number of jumps from x to z. So Assumption 2.2(b) says that
the probability of jumping to a point z is comparable if x, y are relatively far from z but relatively
close to each other. In Section 7, we show that such an assumption is needed for the Harnack
inequality to hold.

Since our method is probabilistic, we need to work with the Markov process associated with L.
Let Ω = D([0,∞)) denote the set of paths that are right continuous with left limits, endowed with
the Skorokhod topology. Let Xt(ω) = ω(t) for ω ∈ Ω and Ft be the right continuous filtration
generated by the process X. We say a strong Markov process (Px,Xt) is associated with L if for
each x, we have Px(X0 = x) = 1 and for each x and for each u ∈ C2 that is bounded and with
bounded first and second partial derivatives, u(Xt) − u(X0) −

∫ t
0 Lu(Xs)ds is a local martingale

under Px. This is equivalent to saying that Px solves the martingale problem for L started at x.
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We assume that the martingale problem is well posed. In other words, we assume that the ais
and bis are continuous so that there exists a unique solution to the martingale problem. We make
sure that none of our estimates are dependent on the modulus of continuity of the ais and bis so
that one can then use an approximation procedure to remove the continuity assumptions.

For any Borel set A, let

TA = inf{t : Xt ∈ A}, τA = inf{t : Xt /∈ A},

be the first hitting time and first exit time, respectively, of A. We say that the function u is
harmonic in a domain D if u(Xt∧τD

) is a Px-martingale for each x ∈ D. If u satisfies some
regularity conditions and Lu = 0 in D, it is easy to see that u is harmonic in D. Since our
operator contains a non-local part, our process will be have discontinuities. We write

Xt− = lim
s↑t

Xs, ∆Xt = Xt −Xt−.

Our first result concerns the continuity of harmonic functions. Note that our hypotheses do
not require Assumption 2.2(b) to hold.

Theorem 2.3 Suppose Assumptions 2.1 and 2.2 (a) hold. Let z0 ∈ Rd and R ∈ (0, 1]. Suppose
u is a function which is bounded in Rd and harmonic in B(z0, R) with respect to L. Then there
exist α ∈ (0, 1), C > 0 depending only on the Λi

′s and K such that

|u(x) − u(y)| ≤ C‖u‖∞

(
|x− y|

R

)α

, x, y ∈ B(z0, R/2).

Our main result is the following Harnack inequality.

Theorem 2.4 Suppose Assumptions 2.1 and 2.2 hold. Let z0 ∈ Rd and R ∈ (0, 1]. Suppose u is
nonnegative and bounded on Rd and harmonic in B(z0, R) with respect to L. Then there exists a
positive constant C depending on the Λi

′s, k, β, R and K but not on z0, u, or ‖u‖∞ such that

u(x) ≤ Cu(y), x, y ∈ B(z0, R/2).

Remark 2.5 A chaining argument shows that both results above hold if R > 1 with C = C(R)
depending on R. Theorem 2.3 does not hold for R > 1 with a constant which is independent of R.

Remark 2.6 For the Harnack inequality, it is essential that u be nonnegative everywhere. Kass-
mann [13] has shown that a Harnack inequality can fail for functions u that are harmonic with
respect to symmetric stable processes of index α and where u fails to be nonnegative everywhere.
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3 Some Estimates

We start off this section with a proposition which allows us to assume Λ2 = 0 when necessary.
The proof is very similar to that of Theorem VI 1.2 in [2]. See also [25]. Define

L̃f(x) =
1

2

d∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj

+

∫

Rd

[f(x+ h) − f(x) − 1(|h|≤1)h · ∇f(x)]n(x, h)dh.

Proposition 3.1 Suppose L ∈ N (Λ1,Λ2). If there exists a solution, say P̃, to the martingale
problem for L̃ started at x where L̃ is defined as above, then there exists a solution P to the mar-
tingale problem for L started at x.

Proposition 3.2 There exist constants c1 and c2 not depending on x0 such that if r ≤ 1, then
Px(τB(x0,r) ≤ c1t) ≤ tr−2 for x ∈ B(x0, r) and hence

Px(τB(x0,r) ≤ c2r
2) ≤

1

2
.

Proof. Let u be a nonnegative C2 function that is equal to |x − x0|
2 for |x − x0| ≤

r
2 , which is

equal to r2 for |x− x0| ≥ r and such that its first and second derivatives are bounded by cr and c
respectively. Since Px solves the martingale problem, we have

Exu(Xt∧τB(x0 ,r)
) − u(x0) = Ex

∫ t∧τB(x0,r)

0
Lu(Xs)ds. (3.1)

Let us write the operator L as L = Lc + Ld where

Lcu(x) =
1

2

d∑

i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

d∑

i=1

bi(x)
∂u(x)

∂xi
,

and

Ldu(x) =

∫
[u(x+ h) − u(x) − 1(|h|≤1)h · ∇u(x)]n(x, h)dh.

Since the first and second derivatives of u(x) are bounded, we have Lcu(x) ≤ c3 for x ∈ B(x0, r)
and hence ∣∣∣

∫ t∧τB(x0,r)

0
Lcu(Xs)ds

∣∣∣ ≤ c3t. (3.2)
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Now let us look at Ldu(x) for x ∈ B(x0, r)

|Ldu(x)| =
∣∣∣
∫

[u(x+ h) − u(x) − 1|h|≤1h · ∇u(x)]n(x, h)dh
∣∣∣

≤
∣∣∣
∫

|h|≤1
[u(x+ h) − u(x) − 1(|h|≤1)h · ∇u(x)]n(x, h)dh

∣∣∣

+
∣∣∣
∫

|h|≥1
[u(x+ h) − u(x)]n(x, h)dh

∣∣∣

= I1 + I2.

By our assumptions and the fact that the second derivatives of u(x) are bounded, we get

I1 =
∣∣∣
∫

|h|≤1
[u(x+ h) − u(x) − 1(|h|≤1)h · ∇u(x)]n(x, h)dh

∣∣∣

≤ c3

∫

|h|≤1
|h|2‖D2u‖∞n(x, h)dh ≤ c4,

I2 =
∣∣∣
∫

|h|≥1
[u(x+ h) − u(x)]n(x, h)dh

∣∣∣

≤ 2‖u‖∞

∫

|h|≥1
n(x, h)dh ≤ c5.

Hence we have
∣∣∣
∫ t∧τB(x0,r)

0 Ldu(Xs)ds
∣∣∣ ≤ c6t. This together with (3.1) and (3.2) yield

Exu(Xt∧τB(x0 ,r)
) ≤ c7t,

and so from r2Px(τB(x0,r) ≤ t) ≤ Exu(Xt∧τB(x0,r)
), we get the first part of the proposition. The

second part is obtained by choosing t = 1
2r

2. �

We have the following Lévy system formula:

Proposition 3.3 If A and B are disjoint Borel sets, then for each x,

∑

s≤t

1(Xs−∈A,Xs∈B) −

∫ t

0

∫

B
1A(Xs)n(Xs, u−Xs)duds (3.3)

is a Px-martingale.

The proof is identical to that of the purely non-local operator and can be found in [6].
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Lemma 3.4 There exist c1 and c2 such that if r ≤ 1
2 ,

(a) ExτB(x0,r) ≥ c1r
2 for x ∈ B(x0, r/2) and

(b) ExτB(x0,r) ≤ c2r
2 for x ∈ B(x0, r).

Proof. By Proposition 3.2, there exists c3 such that Px(τB(x0,r) ≤ c3r
2) ≤ Px(τB(x,r/2) ≤ c3r

2) ≤
1
2 . The first inequality follows by writing

ExτB(x0,r) ≥ c3r
2Px(τB(x,r) ≥ c3r

2),

and using the above. Now let us look at the proof of the second inequality. For simplicity we
assume that L ∈ N (Λ1, 0). The general case follows by using Proposition 3.1 (and a change of
measure argument). Since Px solves the martingale problem, we have

Exu(Xt∧τB(x0 ,r)
) − u(x0) = Ex

∫ t∧τB(x0,r)

0
Lu(Xs)ds. (3.4)

As before, let us write L = Lc + Ld. Let us choose a bounded smooth function u(x) so that
u(x) = |x − x0|

2 for x ∈ B(x0, 2) and u(x) equals some constant greater than 4 outside the
ball B(x0, 4). Some calculus shows that

∑d
i,j=1 ∂iju(x) =

∑d
i=1 ∂iiu(x) and is a constant for

x ∈ B(x0, 2). This and the uniform ellipticity of the local part of L implies that there exists a
positive constant c4 such that Lcu(Xs) ≥ c4 whenever Xs ∈ B(x0, r).

To deal with the non-local part, we write

Ldu(x) =

∫

|h|≤1
[u(x+ h) − u(x) − h · ∇u(x)]n(x, h)dh

+

∫

|h|>1
[u(x+ h) − u(x)]n(x, h)dh

= I1 + I2.

Note that for |h| ≤ 1, we have x + h ∈ B(x0, 3/2) for x ∈ B(x0, r), so by convexity and the fact
that n(x, h) ≥ 0, we obtain I1 ≥ 0. As for the second term, we have

I2 ≥

∫

|h|>1
[|x+ h− x0|

2 − |x− x0|
2]n(x, h)dh

≥ 0.

The facts that x ∈ B(x0, r) and |h| > 1 imply that x+h /∈ B(x0, r) which means that the integrand
is always non-negative. Combining the above, we have Ldu(Xs) ≥ 0 whenever Xs ∈ B(x0, r) and
hence

Ex

∫ t∧τB(x0,r)

0
Lu(Xs)ds ≥ c4Ex(t ∧ τB(x0,r)).
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Now the left hand side of (3.4) satisfies:

Exu(Xt∧τB(x0 ,r)
) − u(x0) ≤ r2.

Combining the above and letting t→ ∞, we get the second inequality. �

Corollary 3.5 For each p ≥ 1, there exists c1 depending on p such that for r ≤ 1
2 and x ∈ B(x0, r),

Ex(τp
B(x0,r)) ≤ c1r

2p.

Proof. Note that
Ex(τB(x0,r)) ≥ tPx(τB(x0,r) ≥ t).

Letting t = 2r2 and using Lemma 3.4, we obtain Px(τB(x0,r) ≥ 2r2) ≤ 1
2 . If θt is the shift operator

from the theory of Markov processes, then by the Markov property

Px(τB(x0,r) ≥ (m+ 1)r2) ≤ Px(τB(x0,r) ≥ mr2, τB(x0,r) ◦ θmr2 ≥ r2)

= Ex[PXmr2 (τB(x0,r) ≥ r2); τB(x0,r) ≥ mr2]

≤
1

2
Px(τB(x0,r) ≥ mr2).

By induction Px(τB(x0,r) ≥ mr2) ≤ (1
2 )m. The required result then follows easily from this. �

The following result was first proved in the continuous case by Krylov in [15]. Since then, this
inequality has been extended for diffusions with jumps. See for instance Theorem III15 of [17].
What follows is a consequence of Corollary 2 of [22].

Proposition 3.6 Consider L ∈ N (Λ1,Λ2) and suppose that Assumption 2.2(a) holds. Let x ∈ Rd

and R ∈ (0, 1]. If (Px,Xt) is a solution to the martingale problem associated with L ∈ N (Λ1,Λ2),
then for any bounded measurable function f , the following holds:

Ex

∫ τB(x0,R)

0
f(Xs)ds ≤ NR‖f‖Ld(B(x0,R)), (3.5)

where N depends on the Λ′
is, and K.

Remark 3.7 In the above, the constant N depends on the non-local part only through the constant
K. It also does not depend on the radius R but the upper bound does depend on the radius as shown
in (3.5).
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The following gives a lower bound on the probability that our process hits a set A before
leaving a ball. However, the set A should fill most of the ball. We will extend this result in the
next section.

Proposition 3.8 Let ǫ > 0 and r ∈ (0, 1/2]. If x ∈ B(x0,
r
2), A ⊂ B(x0, r) and |B(x0, r)−A| ≤ ǫ,

then Px(TA ≤ τB(x0,r)) ≥ ρ(r, ǫ), where there exists some ǫ0 such that ρ(r, ǫ) > 0 for 0 < ǫ ≤ ǫ0.

Proof. From inequality (3.5), we have

∣∣∣∣E
x

∫ τB(x0,r)

0
1Ac(Xs)ds

∣∣∣∣ =

∣∣∣∣E
x

∫ τB(x0,r)

0
1(B(x0,r)−A)(Xs)ds

∣∣∣∣

≤ Nr|B(x0, r) −A|1/d

≤ Nrǫ1/d.

So we can write

ExτB(x0,r) ≤ Ex(τB(x0,r);TA ≤ τB(x0,r)) + Ex

∫ τB(x0,r)

0
1Ac(Xs)ds

≤
(
Exτ2

B(x0,r)

)1/2 (
Px(TA ≤ τB(x0,r))

)1/2
+Nrǫ1/d.

From Lemma 3.4 and Corollary 3.5 we have ExτB(x0,r) ≥ c1r
2 and Exτ2

B(x0,r) ≤ c2r
4. So the above

yields

Px(TA ≤ τB(x0,r)) ≥

(
c1r

2 −Nrǫ1/d

c3r2

)2

.

The proposition is then proved with ρ(r, ǫ) = ( c1r2−Nrǫ1/d

c3r2 )2. �

The following will be used only in the proof of the Harnack inequality. So far, this is the only
place where we use Assumption 2.2(b).

Proposition 3.9 Under Assumption 2.2, there exists a constant c1 which depends on K, such
that if r ≤ 1/2, z ∈ B(x0,

r
4) and H is a bounded non-negative function supported in B(x0, r)

c,
then

Ex0H(XτB(x0, r
2 )

) ≤ c1krE
zH(XτB(x0, r

2 )
). (3.6)

Proof. By linearity and a limit argument, it suffices to consider only H(x) = 1C(x) for a set
C contained in B(x0, r)

c. From Assumption 2.2(b), we have n(w, v − w) ≤ krn(y, v − y) for all
w, y ∈ B(x0,

r
2) and v ∈ B(x0, r)

c. Hence we have,

sup
y∈B(x0, r

2
)
n(y, v − y) ≤ kr inf

y∈B(x0, r
2
)
n(y, v − y). (3.7)

10



By optional stopping and the Lévy system formula, we have

Ez1(Xt∧τB(x0, r
2 )

∈C) = Ez
∑

s≤t∧τB(x0, r
2 )

1(|Xs−Xs−|≥ r
2
,Xs∈C).

= Ez

∫ t∧τB(x0, r
2 )

0

∫

C
n(Xs, v −Xs)dvds.

≥ Ez(t ∧ τB(x0, r
2
))

∫

C
inf

y∈B(x0, r
2
)
n(y, v − y)dv.

Letting t → ∞ and using the dominated convergence theorem on the left and monotone conver-
gence on the right, we obtain

Pz(XτB(x0, r
2 )

∈ C) ≥ EzτB(x0, r
2
)

∫

C
inf

y∈B(x0, r
2
)
n(y, v − y)dv.

Since EzτB(x0, r
2
) ≥ EzτB(z, r

4
), we have

Pz(XτB(x0, r
2 )

∈ C) ≥ EzτB(z, r
4
)

∫

C
inf

y∈B(x0, r
2
)
n(y, v − y)dv. (3.8)

Similarly we have

Px0(XτB(x0, r
2 )

∈ C) ≤ Ex0τB(x0, r
2
)

∫

C
sup

y∈B(x0, r
2
)
n(y, v − y)dv. (3.9)

Combining inequalities (3.7), (3.8) and (3.9) and using Lemma 3.4, we get our result. �

Our process is a discontinuous one consisting of small jumps as well as big jumps. In many
cases it is more convenient to discard the big jumps and add them later. This can be done by
using a construction which is due to Meyer [18]. We will use this in the next section for the proof
of the support theorem.

Meyer’s construction:

Suppose that we have two jump kernels n0(x, h) and n(x, h) with n0(x, h) ≤ n(x, h) and such that
for all x ∈ Rd,

N(x) =

∫

Rd

(n(x, h) − n0(x, h))dh ≤ c.

Let L and L0 be the operators corresponding to the kernels n(x, h) and n0(x, h) respectively. If X
0
t

is the process corresponding to the operator L0, then we can construct a process Xt corresponding
to the operator L as follows. Let S1 be an exponential random variable of parameter 1 independent

11



of Xt, let Ct =
∫ t
0 N(Xs)ds, and let U1 be the first time that Ct exceeds S1. At the time U1,

we introduce a jump from XU1− to y, where y is chosen at random according to the following
distribution:

n(XU1−, h) − n0(XU1−, h)
N(XU1−)

dh.

This procedure is repeated using an independent exponential variable S2. Since N(x) is finite,
this procedure adds only a finite number of big jumps on each finite time intervals. In [18], it is
proved that the new process corresponds to the operator L.

4 Support theorem

The main result of this section is the support theorem. Before stating and proving this result,
we present some ideas which will be crucial for its proof. More precisely, we will represent the
solution of the martingale problem as a solution to a stochastic differential equation. We begin by
representing the jumps of our discontinuous process as a function of a Poisson point process.

Suppose that Px is a solution to the martingale problem associated with L ∈ N (Λ1,Λ2) started
at x. Let Ys be the point process associated with Xs, that is, Ys = ∆Xs if ∆Xs 6= 0 and 0
otherwise. Then there exists a measurable function F (x, z) such that Ys = F (Xs−, Ŷs) where Ŷs

is a Poisson point process with intensity measure λ̃. To make this statement more precise, let
F (x,A) = {F (x, z) : z ∈ A} and define

Nt(A) =
∑

s≤t

1(∆Xs∈F (Xs−,A)).

Then under Px, Nt(·) is a Poisson point process with intensity measure λ̃. Moreover the measure
λ̃ satisfies the following

(a) ∫
(|z|2 ∧ 1) λ̃(dz) <∞, (4.1)

(b) ∫
1A(h)n(x, h)dh =

∫
1A(F (x, z))λ̃(dz). (4.2)

Remark 4.1 The second condition above gives the relationship between the jump kernel n(x, h)
and the Poisson process Nt(·). Moreover, the indicator function in (4.2) can be replaced by a larger
class of functions. For a more precise statement and proof of the above, see Theorem 12 in [14].
See also Chapter XIV of [12].
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We now relate (Px,X), the solution of the martingale problem to that of a stochastic differential
equation. Set µ([0, t]×A) = Nt(A) and ν([0, t]×A) = tλ̃(A). Let Wt be a Brownian motion with
respect to the filtration Ft. Then Xt solves the following stochastic differential equation

dXt = σ(Xt)dWt + b(Xt)dt +

∫

|F (Xt−,z)|≤1
F (Xt−, z)(µ− ν)(dz, dt)

+

∫

|F (Xt−,z)|>1
F (Xt−, z)µ(dz, dt), X0 = x, (4.3)

where σσT has aij as entries and σT denotes the transpose of σ. The above has been taken from
[17]. Chapter XIV of [12] contains more information about this relation. In fact, according to
Theorem II10 of [17], this representation holds under a more stringent condition on the big jumps
of the process Ŷt (see Property M in [17]). Since the proof of the theorem below involves dealing
with small jumps only and then adding the big jumps later, this does not affect our result (see the
proof below). Here is our support theorem:

Theorem 4.2 Suppose L ∈ N (Λ1,Λ2) and Px0 is a solution to the martingale problem for L
started at x0. Let ǫ > 0 and suppose that φ : [0, t0] → Rd is differentiable with φ(0) = x0. There
exist constants c1, c2 and c3 depending on Λ1, Λ2, t0, K and supt≤t0 |φ

′(t)| but not on ǫ such that
for all λ > 0,

Px0(sup
t≤t0

|Xt − φ(t)| < ǫ) ≥ c1

[
1 − exp

[
− λǫ+

λ2t0
2

(c2 + c3e
|λ|)
]]2

. (4.4)

The support theorem says that the graph of Xs stays inside an ǫ-tube about φ. In other words,
if Gǫ

φ = {(s, y) : |y − φ(s)| < ǫ, s ≤ t}, then {(s,Xs) : s ≤ t} is contained in Gǫ
φ with a positive

probability.

Proof of theorem 4.2. We will assume L ∈ N (Λ1, 0). The general case follows from Proposi-
tion 3.1. We first consider the special case when the jump kernel of L is defined by n0(x, h) =
n(x, h)1(|h|<1) and denote the corresponding process by X t. We will later use Meyer’s construction
to remove this restriction. We now use the stochastic differential equation representation of the
solution to the martingale problem. In other words, we use the fact that X t satisfies (4.3). Since
our process do not have jumps of size greater than 1, the last term of (4.3) can be taken to be
identically zero. More precisely, replacing 1A(h) by |h|1(|h|>1) and n(x, h) by n0(x, h) in (4.2), we

obtain
∫
|F (x,z)|>1 |F (x, z)|λ̃(dz) = 0. Define a new measure Q by

dQ

dPx0
= exp

[
−

∫ t0

0
φ′(s)σ−1(Xs−)dWs −

1

2

∫ t0

0
|φ′(s)σ−1(Xs−)|2ds

]
. (4.5)

Let

Zt = Xt −

∫ t

0

∫

|F (Xs−,z)|≤1
F (Xs−, z)(µ− ν)(dz, ds).

13



We see that
〈
−

∫ t

0
φ′(s)σ−1(Xs−)dWs, Zt

〉
=

〈
−

∫ t

0
φ′(s)σ−1(Xs−)dWs,

∫ t

0
σ(Xs−)dWs

〉

= −

∫ t

0
φ′(s)ds = −φ(t) + φ(0).

So by Girsanov’s theorem, under Q, each component of Zt is a semi-martingale. If

Ŵt =

∫ t

0
σ−1(Xs−)dXs −

∫ t

0

∫

|F (Xs−,z)|≤1
σ−1(Xs−)F (Xs−, z)(µ − ν)(dz, ds)

−

∫ t

0
σ−1(Xs−)φ′(s)ds,

then Ŵt is a continuous martingale and d〈Ŵ i
t , Ŵ

j
t 〉=δijdt under Q. Hence Ŵt is a d-dimensional

Brownian motion under Q. Note

d(X t − φ(t)) = σ(X t−)dŴt +

∫

|F (Xt−,z)|≤1
F (X t−, z)(µ− ν)(dt, dz). (4.6)

If we prove the following:
Q(sup

t≤t0

|Xt − φ(t)| < ǫ) ≥ c4, (4.7)

then the theorem will be proved, for if A is the event {sups≤t0 |Xs − φ(s)| < ǫ}, then

c5 ≤ Q(A) =

∫

A
(dQ/dPx0)dPx0 ≤ (Ex0(dQ/dPx0)2)

1
2 (Px0(A))

1
2 . (4.8)

The theorem then follows easily by noting the dQ/dPx0 has a finite second moment which is
bounded by a constant depending on t0, Λ1 and supt≤t0 |φ

′(t)|; see page 188 of [2]. Now let us

look at the proof of (4.7). Let us write the left hand side of (4.6) as dDt i.e, Dt := X t − φ(t).
Let λ be a constant to be chosen later. Define

Nt = λDt −
λ2

2

∫ t

0
|σ(Xs−)|2ds−

∫ t

0

∫

|z|≤1
(eλz − 1 − λz)n(Xs−, z)dzds. (4.9)

Set Y λ
t = eNt . Then, by Ito’s formula (for processes with jumps), we obtain

Y λ
t = 1 + λ

∫ t

0
eNs−dDt −

∫ t

0

∫

|z|≤1
eNs−(eλz − 1 − λz)n(Xs−, z)dzds

+
∑

s≤t

[eNs − eNs− − eNs∆Ns].

14



From Assumptions 2.1(a) and 2.2(a), there exist constants c5 and c6 such that

∫ t

0
|σ(Xs)|

2ds ≤ c6t,

and
∫

|z|≤1
(eλz − 1 − λz)n(Xs−, z)dz ≤

λ2

2
e|λ|
∫

|z|≤1
|z|2n(Xs−, z)dz

≤ c7
λ2

2
e|λ|.

By noting that ∆Ns = λ∆Ds, and using Theorem 10 of [17] together with the above, we see that
Y λ

t is a martingale. The above bounds, together with (4.9) also yield

Q(sup
t≤t0

|Dt| ≥ ǫ) ≤ Q(sup
t≤t0

eNt ≥ exp[λǫ−
λ2

2
c6t0 −

λ2

2
e|λ|c7t0]).

Since Y λ
t = eNt , we can apply Doob’s inequality as follows:

Q(sup
t≤t0

|Dt| ≥ ǫ) ≤ Q(sup
t≤t0

Y λ
t ≥ exp[λǫ−

λ2

2
c6t0 −

λ2

2
e|λ|c7t0])

≤ EQY
λ
t0 exp[−λǫ+

λ2

2
c6t0 +

λ2

2
e|λ|c7t0]

= EQY
λ
0 exp[−λǫ+

λ2

2
c6t0 +

λ2

2
e|λ|c7t0]

≤ exp[−λǫ+
λ2

2
c6t0 +

λ2

2
e|λ|c7t0]. (4.10)

From the above we conclude that

Q(sup
t≤t0

|Dt| < ǫ) ≥ 1 − exp
[
− λǫ+

λ2t0
2

(c6 + c7e
|λ|)
]
. (4.11)

We now use Meyer’s construction to recover the process Xt so that (Px,Xt) is a solution to
the martingale problem associated with the operator L whose jump kernel satisfies the weaker
Assumption 2.2(a). The trajectories of Xt now have jumps greater than 1. Recall that U1 is the
first time that Ct exceeds S1 where S1 is an exponential random variable with parameter 1. More
precisely, we have

Q(sup
t≤t0

|Xt − φ(t)| < ǫ) = Q(sup
t≤t0

|Xt − φ(t)| < ǫ;U1 ≤ t0) + Q(sup
t≤t0

|Xt − φ(t)| < ǫ;U1 > t0)

≥ Q(sup
t≤t0

|X t − φ(t)| < ǫ)Q(U1 > t0). (4.12)
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Using the fact that

Q(U1 ≤ t0) ≤ Q(S1 ≤ (supN)t0) = 1 − e−(sup N)t0 ,

inequality (4.12) reduces to Q(supt≤t0 |Xt − φ(t)| < ǫ) ≥ c8Q(supt≤t0 |Xt − φ(t)| < ǫ) for some
positive constant c8. This inequality, together with (4.11) and (4.8) complete the proof. �

Remark 4.3 By taking λ = ǫ2 in inequality (4.4), we obtain upon choosing ǫ small enough,

Px0(sup
t≤t0

|Xt − φ(t)| < ǫ) ≥ c1[1 − e−ǫ3/2]2.

We now use the fact that 1 − e−x ≥ (1 − e−1)x whenever 0 ≤ x ≤ 1 to obtain

Px0(sup
t≤t0

|Xt − φ(t)| < ǫ) ≥ c2ǫ
6, (4.13)

for some positive constant c2 not depending on ǫ. However, c2 does depend on φ via supt≤t0 |φ
′(t)|;

see (4.8) and the discussion following it.

We now present a corollary of the above support theorem.

Corollary 4.4 Suppose L ∈ N (Λ1,Λ2) and Px0 is a solution to the martingale problem for L
started at x0. Let ǫ > 0 and suppose that φ : [0, t0] → Rd is continuous with φ(0) = x0. There
exist constants c1, c2 and c3 depending on ǫ, Λ1, Λ2, t0 and the modulus of continuity of φ such
that for all λ > 0,

Px0(sup
t≤t0

|Xt − φ(t)| < ǫ) ≥ c1

[
1 − exp

[
− λǫ+

λ2t0
2

(c2 + c3e
|λ|)
]]2

. (4.14)

Proof. Let us choose a differentiable function φd with derivative bounded by say c4 and such
that sups≤t |φ(s) − φd(s)| ≤ ǫ. Moreover, we can choose φd(s) such that ‖φ′d‖∞ depends only on
t, ǫ and the modulus of continuity of φ; see Page 60 of [1]. Hence proving the following

Px0(sup
t≤t0

|Xt − φd(t)| < ǫ) ≥ c6

[
1 − exp

[
− λǫ+

λ2t0
2

(c7 + c8e
|λ|)
]]2

will imply (4.14) but with 2ǫ instead of ǫ. But the above inequality follows from Theorem 4.2.
Hence the corollary is proved. �

Remark 4.5 The above corollary only requires the function φ to be continuous but the downside
of this generalization is that we can longer keep track of the dependence of the constants on ǫ.
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Let Q(x, r) denote the cube of side length r centered at x. If Ri denotes a cube with side length
r, then R̂i also denotes a cube with the same center but with side length r/3. The next result
is not a probabilistic result. It enables us to decompose Q(0, 1) into smaller subcubes such that
a subset A of Q(0, 1) fills a percentage of each of the smaller subcubes. Since this is Proposition
V.7.2 of [2], we do not include a proof here.

Proposition 4.6 Let q ∈ (0, 1). If A ⊆ Q(0, 1) and |A| ≤ q, then there exists D such that (i) D is
the union of cubes R̂i such that the interiors of the Ri are pairwise disjoint, (ii) |A| ≤ q|D∩Q(0, 1)|,
and (iii) for each i, |A ∩Ri| ≥ q|Ri|.

A corollary of the support theorem is the following:

Corollary 4.7 Let r ∈ (0, R) and R ∈ (0, 1]. Let y ∈ Q(0, R) with dist(y, ∂Q(0, R)) ≥ r,
L ∈ N (Λ1,Λ2), and P be the solution to the martingale problem started at y. If Q(z, r) ⊆ Q(0, R),
then P(TQ(z,r) ≤ τQ(0,R)) ≥ ζ(r) where ζ(r) > 0 depends only on r, K and the Λis.

The above two results together with the Proposition 3.8 are the main ingredients in obtaining the
estimate below. The proof is essentially the same as that of Theorem V7.4 in [2] so we omit it
here.

Proposition 4.8 There exists a non-decreasing function ψ : (0, 1) → (0, 1) such that if B ⊆
Q(0, R), |B| > 0, R ∈ (0, 1] and x ∈ Q(0, R/2), then

Px(TB ≤ τQ(0,R)) ≥ ψ(|B|/Rd).

We now give a different version of the above proposition. This will allow us to use balls instead of
cubes.

Corollary 4.9 There exists a non-decreasing function φ, such that if B ⊆ B(0, R), |B| > 0,
R ∈ (0, 1] and x ∈ B(0, R/2), then

Px(TB ≤ τB(0,R)) ≥ φ(|B|/Rd).

Proof. For simplicity, we assume d = 2. Higher dimensional cases differ only in notation. Let k
be a large positive integer and let Rij be squares of the form [(i−1)R/k, iR/k]×[(j−1)R/k, jR/k],
where i, j ∈ {−k + 1, ...,−1, 0, 1, ..., k}.

Take ǫ > 0 small enough and k sufficiently large so that

C = {Rij : |Rij ∩B| > 0, and Rij ⊂ B(0, (1 − ǫ)R)}

is nonempty. Let M be the number of elements in C. Let R∗
ij be the cube with the same center

as Rij but side length half as long. Let D = ∪Rij∈CR
∗
ij . Pick z ∈ R∗

ij , where Rij satisfies
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|Rij ∩B| ≥ |B|
M . We can choose k larger if necessary so that we can find such a cube. Then using

Proposition 4.8 and the fact that |Rij | = R2

k2 , we have

Pz(TRij∩B < τRij ) ≥ ψ(|B|k2/MR2)

≥ ψ(|B|/R2),

where the last inequality is obtained by noting that M ≤ k2. Since dist(x, ∂B(0, R)) ≥ R/2 and
D ⊂ B(0, R), we can use Corollary 4.7 to obtain

Px(TD < τB(0,R)) ≥ c1,

where c1 is a constant. Using the Markov property and the above inequalities, we obtain

Px(TB < τB(0,R)) ≥ Ex[P
XTR∗

ij (TB < τRij );TR∗

ij
< τB(0,R)]

≥ c1ψ(|B|/R2).

�

5 The Regularity Theorem

Now we are ready to prove the regularity theorem.
Proof of Theorem 2.3. Let us suppose u is bounded by M in Rd and z1 ∈ B(z0, R/2). Set

rn = θ2ρ
n, sn = θ1a

n, for n ∈ N,

where a < 1, ρ < 1/2, and θ1 ≥ 2M are constants to be chosen later. We choose θ2 small enough
that B(z1, 2r1) ⊂ B(z0, R/2). Write Bn = B(z1, rn) and τn = τBn . Set

Mn = sup
x∈Bn

u(x), mn = inf
x∈Bn

u(x).

We will use induction to show thatMn−mn ≤ sn for all n. The Hölder continuity at z1 follows from
this. Let n0 be a positive number to be chosen later. Suppose Mi −mi ≤ si for all i = 1, 2, ..., n,
where n ≥ n0; we want to show

Mn+1 −mn+1 ≤ sn+1.

Let ǫ > 0 and choose z, y ∈ Bn+1 such that u(y) ≤ mn+1 + ǫ and u(z) ≥ Mn+1 − ǫ. We will
show that u(z)− u(y) ≤ sn+1 and since ǫ > 0 is arbritary, this will imply Mn+1 −mn+1 ≤ sn+1 as
desired.

Let
An = {x ∈ Bn : u(z) ≤ (Mn +mn)/2}.
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We may suppose that |An|/|Bn| ≥ 1/2, for if not, we can look at Mn − u instead. Let A be a
compact subset of An such that |A|/|Bn| ≥ 1/3. Corollary 4.9 gives the following

Px(TA ≤ τn) ≥ c1, (5.1)

where c1 is a constant and x ∈ Bn+1. Let z, y ∈ Bn+1. By optional stopping,

u(z) − u(y) = Ez[u(XTA
) − u(y);TA ≤ τn]

+ Ez[u(Xτn) − u(y); τn ≤ TA,Xτn ∈ Bn−1]

+

n−2∑

i=1

Ez[u(Xτn) − u(y); τn ≤ TA,Xτn ∈ Bn−i−1 −Bn−i]

+ Ez[u(Xτn) − u(y); τn ≤ TA,Xτn /∈ B1]

= I1 + I2 + I3 + I4. (5.2)

By the Lévy system formula, and Lemma 3.4 (see the proof of Proposition 3.5 of [6]) , there exist
c2 and c3 such that

sup
y∈Bn+1

Py(Xτn /∈ Bn−i) ≤ sup
y∈Bn+1

Eyτn

∫

|h|>rn−i−rn+1

n(y, h) dh

= sup
y∈Bn+1

Eyτn[

∫

|h|>1
n(y, h) dh +

∫

1≥|h|>rn−i−rn+1

n(y, h) dh]

≤ c2r
2
n + c3

(
ρi

1 − ρi

)2

. (5.3)

The first term on the right of (5.2) is bounded as follows

I1 ≤

(
Mn +mn

2
−mn

)
Py(TA ≤ τn) ≤

1

2
snPy(TA ≤ τn). (5.4)

As for the second term, we have

I2 ≤ (Mn−1 −mn−1)P
y(τn ≤ TA) ≤ sn−1(1 − Py(TA ≤ τn)). (5.5)

To bound the third term, we choose ρ =
√

a
2 ∧

√
3c1a
128c3

and note that

n−2∑

i=1

sn−i−1 = sn−1

n−2∑

i=1

a−i

≤ sn−1[
a2

an(1 − a)
]
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and
n−2∑

i=1

sn−i−1ρ
2i ≤ sn−1[

ρ2/a

1 − ρ2/a
].

Using (5.3) and the above, the third term is bounded by

n−2∑

i=1

(Mn−i−1 − mn−i−1)P
y(Xτn /∈ Bn−i)

≤ c2r
2
n

n−2∑

i=1

sn−i−1 + c3

n−2∑

i=1

sn−i−1ρ
2i

≤ sn−1[
c2a

2θ2
2ρ

2n

an(1 − a)
+

c3ρ
2/a

1 − ρ2/a
].

By our choice of ρ, we obtain 1− ρ2/a ≥ 3/4, ρ2n/an ≤ 1/22n and ρ2/a ≤ 3c1
128c3

so that the above
reduces to

n−2∑

i=1

(Mn−i−1 − mn−i−1)P
y(Xτn /∈ Bn−i)

≤ sn−1[
a2θ2

2c4
1 − a

+
4c3ρ

2/a

3
]

≤ sn−1[
a2θ2

2c4
1 − a

+
c1
32

].

We also choose θ2 smaller if necessary so that θ2 ≤
1

4

√
c1(1 − a)

2a2c4
and obtain

I3 ≤
sn−1c1

16
. (5.6)

Using (5.3) again, we see that the fourth term is bounded by

2MPy(Xτn /∈ B1) ≤ 2M [c2r
2
n + c3ρ

2(n−1)]

≤ θ1[c2a
4nθ2

2 + c3a
4n−4].

By choosing n0 bigger if necessary and recalling that a < 1, we obtain for n ≥ n0,

I4 ≤
sn−1c1

8
. (5.7)

Inequalities (5.1)-(5.7) give the following:

u(y) − u(z) ≤
1

2
asn−1P

y(TA ≤ τn) + sn−1(1 − Py(TA ≤ τn)) + sn−1[
c1
16

+
c1
8

].
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Using the fact that a is less than one, we obtain

u(z) − u(y) ≤
sn

a

[
1 −

Py(TA < τn)

2
+
c1
16

+
c1
8

]

≤
sn

a
[1 −

5c1
16

].

We now choose a as follows:

a =

√
1 −

5c1
16
.

This yields
u(z) − u(y) ≤ sna = sn+1. (5.8)

The continuity estimate now follows from [20]. �

6 Proof of the Harnack Inequality

Proof of Theorem 2.4. By looking at u + ǫ and letting ǫ ↓ 0. We may suppose that u is
bounded below by a positive constant. Also, by looking at au, for a suitable a, we may suppose
that infB(z0,R/2) u ∈ [1/4, 1]. We want to bound u above in B(z0, R/2) by a constant not depending
on u. Our proof is by contradiction.

Since u is continuous, we can choose z1 ∈ B(z0, R/2) such that u(z1) = 1
3 . Let ri = r1Ri

−2

where r1 <
1
2 is a chosen constant so that

∑
i=1 ri < R/8. Recall that from Proposition 3.9, there

exists c1 such that if r < 1
2 , y ∈ B(x, r/4) and H is a bounded non-negative function supported

in B(x, r)c, then
ExH(XτB(x,r/2)

) ≤ c1krE
yH(XτB(x,r/2)

). (6.1)

For inequality (6.1) to hold, we need Assumption 2.2(b). Let η be a constant to be chosen later.
Also, let ξ be a constant defined as follows

ξ =
1

2
∧
η

c1
.

Let c2, c3 and c4 be positive constants to be chosen later. Once these constants have been chosen,
we suppose that there exists x1 ∈ B(z0, R/2) with h(x1) = K1 for some K1 large enough so that
the following is satisfied:

ξK1e
c2jrβ+6

j c3c4

k
≥ 2, (6.2)

for all j. This is possible because of the fact that rj = r1Rj
−2. The constants k and β are taken

from Assumption 2.2(b).
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We will show that there exists a sequence {(xj ,Kj)} with xj+1 ∈ B(xj, rj) ⊂ B(xj, 2rj) ⊂
B(z0, 3R/4) with:

Kj = u(xj) and Kj ≥ K1e
c2j. (6.3)

This would imply that Kj → ∞ as j → ∞ contradicting the fact that u is bounded. Suppose
that we already have x1, x2, ..., xi such that (6.3) is satisfied. We will show that there exists
xi+1 ∈ B(xi, ri) ⊂ B(xi, 2ri) such that Ki+1 = u(xi+1) and Ki+1 ≥ K1e

c2(i+1). Then by induction,
(6.3) will hold for all j. Define

A = {y ∈ B(xi, ri/4);u(y) ≥
ξKir

β
i

k
}.

We are going to show that |A| ≤
1

2
|B(xi, ri/4)|. To prove this fact, we suppose the contrary.

Choose a compact set A′ ⊂ A with |A′| >
1

2
|B(xi, ri/4)|. Note that upon choosing r1 smaller if

necessary, we can use (4.13) to obtain

Pz1(TB(xi,ri/4) < τB(z0,R)) ≥ c5r
6
i ,

where c5 is independent of ri. To see this, consider (4.13) with ǫ = ri/8 and let φ be a line
segment joining z1 and xi (φ(0) = z1 and φ(t0) = xi). Since z1, xi ∈ B(z0, R), |φ′(t)| is bounded
by a constant which is independent of i. Hence c5 is also independent of i; see (4.8) and the
discussion following it.

Hence, using the strong Markov property, we can write

Pz1(TA′ < τB(z0,R)) ≥ Ez1 [P
XTB(xi,ri/4) (TA′ < τB(xi,ri));TB(xi,ri/4) < τB(z0,R)]

≥ φ

(
|A′|

|B(xi, ri)|

)
Pz1(TB(xi,ri/4) < τB(z0,R))

≥ φ((1/2)2d+1)c5r
6
i .

We now take c3 = φ
(
(1/2)2d+1

)
and c4 = c5. By optional stopping, the above inequality and

the fact that u(Xt∧TA′
) is right continuous, we obtain

1

3
= u(z1) ≥ Ez1 [u(XTA′∧τB(z0,R)

);TA′ < τB(z0,R)]

≥
ξKir

β
i

k
Pz1(TA′ < τB(z0,R))

≥
ξK1e

c2irβ+6
i c3c4
k

≥ 2.
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This is a contradiction. Therefore |A| ≤
1

2
|B(xi, ri/4)|. So we can find a compact set E such that

E ⊂ B(xi, ri/4) − A and |E| ≥ 1
3 |B(xi, ri/4)|. Let us write τri for τB(xi,ri/2). From Corollary 4.9,

we have Pxi(TE < τri) ≥ c6 where c6 is some positive constant.
Let M = supB(xi,ri) u(x). We then have

Ki = u(xi) = Exi [u(XTE∧τri
);TE < τri ]

+ Exi [u(XTE∧τri
);TE > τri ,Xτri

∈ B(xi, ri)]

+ Exi [u(XTE∧τri
);TE > τri ,Xτri

/∈ B(xi, ri)]

= I1 + I2 + I3. (6.4)

Writing pi = Pxi(TE < τri), we see that the first two terms are easily bounded as follows:

I1 ≤
ξKipir

β
i

k
, and I2 ≤M(1 − pi).

To bound the third term, we prove Exi [u(Xτri
);Xτri

/∈ B(xi, ri)] ≤ ηKi. If not, then by using
(6.1), we will have, for all y ∈ B(xi, ri/4),

u(y) ≥ Eyu(Xτri
) ≥ Ey[u(Xτri

);Xτri
/∈ B(xi, ri)]

≥
1

c1kri

Exi [u(Xτri
);Xτri

/∈ B(xi, ri)] >
ηKi

c1kri

>
ξKir

β
i

k
,

contradicting the fact that |A| ≤ 1
2 |B(xi, ri/4)|. Hence

I3 ≤ ηKi.

So (6.4) becomes

Ki ≤
ξKipir

β
i

k
+M(1 − pi) + ηKi

or

M

Ki
≥

1 − η − ξpir
β
i /k

1 − pi

= 1 +
(1 − ξrβ

i /k)pi − η

1 − pi
. (6.5)

Choosing η = c6
4 and using the definition of ξ together with the fact that pi ≥ c6 and rβ

i /k < 1, we
see that there exists a positive L, such that inequality (6.5) reduces to M ≥ Ki(1 +L). Therefore
there exists xi+1 ∈ B(xi, ri) with u(xi+1) ≥ Ki(1 + L). Setting Ki+1 = u(xi+1), we see that

Ki+1 ≥ Ki(1 + L)

= Kie
log(1+L).
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The condition (6.3) is thus satisfied provided we choose c2 = log(1 + L). Finally, note that the
fact that

∑
i=1 ri <

R
8 implies that B(xi, 2ri) ⊂ B(z0, 3R/4). �

7 An example

In this section, we show that if an assumption along the lines of Assumption 2.2(b) does not hold,
then the Harnack inequality can fail. This example is very similar to the one in [4]. But since
we need some modifications and for the sake of completeness, we give a proof of the following
proposition:

Proposition 7.1 There exists a function n(x, h) which satisfies Assumptions 2.2(a) but not (b)
and for which the Harnack inequality fails for functions harmonic with respect to the corresponding
operator.

Proof. Let B = B(0, 1), let y0 = (1/8, 0) and for m ≥ 4. let xm = (−1/8, 2−m), zm = (16, 2−m),
Cm = B(xm, 2

−m−4), and Em = B(zm, 2
−m−4). Define

n(x, h) =
∞∑

m=4

1Cm(x)1Em(x+ h).

Note that n(x, h) satisfies Assumption 2.2(a) and not 2.2(b). Now we show that Py0(TCm < τB)
is small when m is large. We see that from Lemma 3.4, Ey0τB ≤ c1 < ∞. As before we are going
to write L = Lc + Ld. Now fix m, let ǫ = 2−m−4, let g(x) = |x− xm|−β , where β ∈ (0, 1) let φ be
a non-negative C∞ function with support in B(0, 1/2) whose integral is 1, let φǫ(x) = ǫ−dφ(x/ǫ)
and let fǫ = g ∗ φǫ. Hence fǫ ∈ C∞ and we see that fǫ ≥ c2ǫ

−β on Cm. Since the local part is
uniformly elliptic, we have |Lcfǫ(x)| ≤ c3. From the definition of n(x, h), we have |Ldfǫ(x)| ≤ c4.
Hence |Lfǫ(x)| ≤ c5. Since Py0 is a solution to the martingale problem for L,

Ey0fǫ(XTCm∧τB
) − fǫ(y0) = Ey0

∫ TCm∧τB

0
Lfǫ(Xs)ds

≤ c6E
y0τB ≤ c7.

Hence
c2ǫ

−βPy0(TCm < τB) ≤ Ey0fǫ(XTCm∧τB
) ≤ c7 + fǫ(y0) ≤ c8.

Thus Py0(TCm < τB) will be small if m is large. Now suppose that the Harnack inequality does
hold for non-negative functions that are harmonic in B, that is, suppose there exists c9 such that

u(x) ≤ c9u(y) x, y ∈ B(0, 1/2),
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for any nonnegative bounded function u which is harmonic in B. Let

um(x) = Ex[1Em(XτB
)].

Then um(x) is bounded. nonnegative, and harmonic in B. Note that the only way that XτB
can

be in Em is if XτB− is in Cm. We then have, using the assumption that the Harnack inequality
holds,

um(y0) = Ey0[1Em(XτB
);TCm < τB]

= Ey0[E
XTCm [1Em(XτB

)];TCm < τB ]

= Ey0[um(XTCm
);TCm < τB ]

≤ c9um(xm)Py0(TCm < τB).

Then,
um(xm)

um(y0)
≥

1

c9Py0(TCm < τB)

which can be made arbitrary large if we take m large enough. This is a contradiction and therefore
the Harnack inequality cannot hold. �
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