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Abstract. These lecture notes concentrate on some general facts and
ideas of the theory of stochastic processes. The main objects of study
are the Wiener process, the stationary processes, the infinitely divisible
processes, and the Itô stochastic equations.

Although it is not possible to cover even a noticeable portion of the
topics listed above in a short course, the author sincerely hopes that
after having followed the material presented here the reader acquires a
good understanding of what kind of results are available and what kind
of techniques are used to obtain them.

These notes are intended for graduate students and scientists in
mathematics, physics and engineering interested in the theory of Ran-
dom Processes and its applications.
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Preface

For about ten years between 1973 and 1986 the author was delivering a one-
year topics course “Random Processes” at the Department of Mechanics and
Mathematics of Moscow State University. This topics course was obligatory
for third-fourth year undergraduate students (about 20 years of age) with
major in probability theory and its applications. With great sympathy I
remember my first students in this course: M. Safonov, A. Veretennikov,
S. Anulova, and L. Mikhailovskaya. During these years the contents of the
course gradually evolved, simplifying and shortening to the shape which has
been presented in two 83 and 73 page long rotaprint lecture notes published
by Moscow State University in 1986 and 1987. In 1990 I emigrated to the
USA and in 1998 got the opportunity to present parts of the same course
as a one-quarter topics course in probability theory for graduate students at
the University of Minnesota. I thus had the opportunity to test the course
in the USA as well as on several generations of students in Russia. What
the reader finds below is a somewhat extended version of my lectures and
the recitations which went along with the lectures in Russia.

The theory of random processes is an extremely vast branch of math-
ematics which cannot be covered even in ten one-year topics courses with
minimal intersection of contents. Therefore, the intent of this book is to
get the reader acquainted only with some parts of the theory. The choice
of these parts was mainly defined by the duration of the course and the au-
thor’s taste and interests. However, there is no doubt that the ideas, facts,
and techniques presented here will be useful if the reader decides to move
on and study some other parts of the theory of random processes.

From the table of contents the reader can see that the main topics of
the book are the Wiener process, stationary processes, infinitely divisible
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xii Preface

processes, and Itô integral and stochastic equations. Chapters 1 and 3 are
devoted to some techniques needed in other chapters. In Chapter 1 we
discuss some general facts from probability theory and stochastic processes
from the point of view of probability measures on Polish spaces. The re-
sults of this chapter help construct the Wiener process by using Donsker’s
invariance principle. They also play an important role in other issues, for
instance, in statistics of random processes. In Chapter 3 we present basics
of discrete time martingales, which then are used in one way or another in
all subsequent chapters. Another common feature of all chapters excluding
Chapter 1 is that we use stochastic integration with respect to random or-
thogonal measures. In particular, we use it for spectral representation of
trajectories of stationary processes and for proving that Gaussian station-
ary processes with rational spectral densities are components of solutions to
stochastic equations. In the case of infinitely divisible processes, stochas-
tic integration allows us to obtain a representation of trajectories through
jump measures. Apart from this and from the obvious connection between
the Wiener process and Itô’s calculus, all other chapters are independent
and can be read in any order.

The book is designed as a textbook. Therefore it does not contain any
new theoretical material but rather a new compilation of some known facts,
methods and ways of presenting the material. A relative novelty in Chapter
2 is viewing the Itô stochastic integral as a particular case of the integral of
nonrandom functions against random orthogonal measures. In Chapter 6 we
give two proofs of Itô’s formula: one is more or less traditional and the other
is based on using stochastic intervals. There are about 128 exercises in the
book. About 41 of them are used in the main text and are marked with an
asterisk. The bibliography contains some references we use in the lectures
and which can also be recommended as a source of additional reading on
the subjects presented here, deeper results, and further references.

The author is sincerely grateful to Wonjae Chang, Kyeong-Hun Kim,
and Kijung Lee, who read parts of the book and pointed out many errors,
to Dan Stroock for his friendly critisizm of the first draft, and to Naresh
Jain for useful suggestions.

Nicolai Krylov
Minneapolis, January 2001



Chapter 1

Generalities

This chapter is of an introductory nature. We start with recalling some basic
probabilistic notions and facts in Sec. 1. Actually, the reader is supposed to
be familiar with the material of this rather short section, which in no way is
intended to be a systematic introduction to probability theory. All missing
details can be found, for instance, in excellent books by R. Dudley [Du]
and D. Stroock [St]. In Sec. 2 we discuss measures on Polish spaces. Quite
often this subject is also included in courses on probability theory. Sec. 3
is devoted to the notion of random process, and in Sec. 4 we discuss the
relation between continuous random processes and measures on the space of
continuous functions.

1. Some selected topics from probability theory

The purpose of this section is to remember some familiar tunes and get
warmed up. We just want to refresh our memory, recall some standard
notions and facts, and introduce the notation to be used in the future.

Let Ω be a set and F a collection of its subsets.

1. Definition. We say that F is a σ-field if
(i) Ω ∈ F ,
(ii) for every A1, ..., An, ... such that An ∈ F , we have

⋃
nAn ∈ F ,

(iii) if A ∈ F , then Ac := Ω \A ∈ F .

In the case when F is a σ-field the couple (Ω,F) is called a measurable
space, and elements of F are called events.

2. Example. Let Ω be a set. Then F := {∅,Ω} is a σ-field which is called
the trivial σ-field.

1



2 Chapter 1. Generalities, Sec 1

3. Example. Let Ω be a set. Then the family Σ of all its subsets is a
σ-field.

Example 3 shows, in particular, that if F is a family of subsets of Ω, then
there always exists at least one σ-field containing F : F ⊂ Σ. Furthermore,
it is easy to understand that, given a collection of σ-fields Fα of subsets of
Ω, where α runs through a set of indices, the set of all subsets of Ω each
of which belongs to every σ-field Fα is again a σ-field. In other words the
intersection of every nonempty collection of σ-fields is a σ-field. In view
of Example 3, it makes sense to consider the intersection of all σ-fields
containing a given family F of subsets of Ω, and this intersection is a σ-
field. Hence the smallest σ-field containing F exists. It is called the σ-field
generated by F and is denoted by σ(F).

If X is a closed subset of R
d, the σ-field of its subsets generated by the

collection of intersections of all closed balls in R
d with X is called the Borel

σ-field and is denoted by B(X). Elements of B(X) are called Borel subsets
of X.

Assume that F is a σ-field (then of course σ(F) = F). Suppose that to
every A ∈ F there is assigned a number P (A).

4. Definition. We say that P (·) is a probability measure on (Ω,F) or on
F if

(i) P (A) ≥ 0 and P (Ω) = 1,
(ii) for every sequence of pairwise disjoint A1, ..., An, ... ∈ F , we have

P
(⋃

n

An

)
=
∑
n

P (An).

If on a measurable space (Ω,F) there is defined a probability measure P ,
the triple (Ω,F , P ) is called a probability space.

5. Example. The triple, consisting of [0, 1] (= Ω), the σ-field B([0, 1]) of
Borel subsets of [0, 1] (taken as F) and Lebesgue measure � (as P ) is a
probability space.

Let (Ω,F , P ) be a probability space and A ⊂ Ω (not necessarily A ∈ F).

6. Definition. We say that A has zero probability and write P (A) = 0 if
there exists a set B ∈ F such that A ⊂ B and P (B) = 0. The family of
all subsets of Ω of type C ∪ A, where C ∈ F and A has zero probability, is
denoted by FP and called the completion of F with respect to P . If G ⊂ F
is a sub-σ-field of F , one completes G in the same way by using again events
of zero probability (from (Ω,F , P ) but not (Ω,G, P )).

7. Exercise*. Prove that FP is a σ-field.
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The measure P extends to FP by the formula P (C ∪ A) = P (C) if
C ∈ F and P (A) = 0. It is easy to prove that this extension is well defined,
preserves the values of P on F and yields a probability measure on FP .

8. Definition. The σ-field F is said to be complete (with respect to P ) if
FP = F . The probability space (Ω,F , P ) is said to be complete if FP = F ,
that is, if F contains all sets of zero probability. If G ⊂ F is a sub-σ-field of
F containing all sets of zero probability, it is also called complete.

The above argument shows that every probability space (Ω,F , P ) admits
a completion (Ω,FP , P ). In general there are probability spaces which are
not complete. In particular, in Example 5 the completion of B([0, 1]) with
respect to � is the σ-field of Lebesgue sets (or Lebesgue σ-field), which does
not coincide with B([0, 1]). In other words, there are sets of measure zero
which are not Borel.

9. Exercise. Let f be the Cantor function on [0, 1], and let C be a non-
Borel subset of [0, 1]\ρ, where ρ is the set of all rational numbers. Existence
of such C is guaranteed, for instance, by Vitali’s example. Prove that {x :
f(x) ∈ C} has Lebesgue measure zero and is not Borel.

By definition, for every B ∈ FP , there exists C ∈ F such that P (B\C) =
0. Therefore, the advantages of considering FP may look very slim. How-
ever, sometimes it turns out to be very convenient to pass to FP , because
then more sets become measurable and tractable in the framework of mea-
sure theory. It is worth noting the following important result even though it
will not be used in the future. It turns out that the projection on the x-axis
of a Borel subset of R

2 is not necessarily Borel, but is always a Lebesgue
set (see, for instance, [Me]). Therefore, if f(x, y) is a Borel function on R

2,
then for the function f̄(x) := sup{f(x, y) : y ∈ R} and every c ∈ R we have

{x : f̄(x) > c} = {x : ∃ y such that f(x, y) > c} ∈ B�(R).

It follows that f̄ is Lebesgue measurable (but not necessarily Borel measur-
able) and it makes sense to consider its integral against dx. On the other
hand, one knows that for every FP -measurable function there exists an F-
measurable one equal to the original almost surely , that is, such that the set
where they are different has zero probability. It follows that there exists a
Borel function equal to f̄(x) almost everywhere. However the last sentence
is just a long way of saying that f̄(x) is measurable, and it also calls for new
notation for the modification, which can make exposition quite cumbersome.

10. Lemma. Let Ω and X be sets and let ξ be a function defined on Ω with
values in X. For every B ⊂ X set ξ−1(B) = {ω ∈ Ω : ξ(ω) ∈ X}. Then
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(i) ξ−1 as a mapping between sets preserves all set-theoretic operations
(for instance, if we are given a family of subsets Bα of X indexed by α, then
ξ−1(

⋃
αB

α) =
⋃

α ξ
−1(Bα), and so on),

(ii) if F is a σ-field of subsets of Ω, then

{B : B ⊂ X, ξ−1(B) ∈ F}

is a σ-field of subsets of X.

We leave the proof of these simple facts to the reader.
If ξ : Ω → X and there is a σ-field B of subsets of X, we denote

σ(ξ) := ξ−1(B) := {ξ−1(B) : B ∈ B}. By Lemma 10 (i) the family ξ−1(B)
is a σ-field. It is called the σ-field generated by ξ. Observe that, by definition,
each element of σ(ξ) is representable as {ω : ξ(ω) ∈ B} for some B ∈ B.

11. Definition. Let (Ω,F) and (X,B) be measurable spaces, and let ξ :
Ω → X be a function. We say that ξ is a random variable if σ(ξ) ⊂ F .

If, in addition, (Ω,F , P ) is a probability space and ξ is a random variable,
the function defined on B by the formula

Pξ−1(B) = P (ξ−1(B)) = P{ω : ξ(ω) ∈ B}

is called the distribution of ξ. By Lemma 10 (i) the function Pξ−1 is a
probability measure on B. One also uses the notation

Fξ = Pξ−1 .

It turns out that every probability measure is the distribution of a ran-
dom variable.

12. Theorem. Let µ be a probability measure on a measurable space (X,B).
Then there exist a probability space (Ω,F , P ) and an X-valued random vari-
able defined on this space such that Fξ = µ.

Proof. Let (Ω,F , P ) = (X,B, µ) and ξ(x) = x. Then {x : ξ(x) ∈ B} =
B. Hence for every B ∈ B we have Fξ(B) = µ(B), and the theorem is
proved.

Remember that if ξ is a real-valued random variable defined on a prob-
ability space (Ω,F , P ) and at least one of the integrals∫

Ω
ξ+(ω)P (dω),

∫
Ω
ξ−(ω)P (dω)

(ξ± := (|ξ| ± ξ)/2) is finite, then by the expectation of ξ we mean
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Eξ :=
∫

Ω
ξ(ω)P (dω) :=

∫
Ω
ξ+(ω)P (dω) −

∫
Ω
ξ−(ω)P (dω).

The next theorem relates expectations to distributions.

13. Theorem. Let (Ω,F , P ) be a probability space, (X,B) a measurable
space and ξ : Ω → X a random variable. Let f be a measurable mapping
from (X,B) to ([0,∞),B[0,∞)). Then f(ξ) is a random variable and

Ef(ξ) =
∫

X
f(x)Fξ(dx). (1)

Proof. For t ≥ 0, let [t] be the integer part of t and κn(t) = 2−n[2nt].
Drawing the graph of κn makes it clear that 0 ≤ t−κn(t) ≤ 2−n, κn increases
when n increases, and κn are Borel functions. Furthermore, the variables
f(ξ), κn(f(ξ)), κn(f(x)) are appropriately measurable and, by the monotone
convergence theorem,

Ef(ξ) = lim
n→∞Eκn(f(ξ)),

∫
X
f(x)Fξ(dx) = lim

n→∞

∫
X
κn(f(x))Fξ(dx).

It follows that it suffices to prove the theorem for functions κn(f). Each
of them is measurable and only takes countably many nonnegative values;
that is, it has the form ∑

k

ckIBk
(x),

where Bk ∈ B and ck ≥ 0. It only remains to notice that by definition

EIBk
(ξ) = P{ξ ∈ Bk} = Fξ(Bk) =

∫
X
IBk

(x)Fξ(dx)

and by the monotone convergence theorem

E
∑

k

ckIBk
(ξ) =

∑
k

ckEIBk
(ξ) =

∫
X

∑
k

ckIBk
(x)Fξ(dx).

The theorem is proved.
Notice that (1) also holds for f taking values of different signs whenever

at least one side of (1) makes sense. This follows easily from the equality
f = f+ − f− and from (1) applied to f±.

2. Some facts from measure theory on Polish spaces

In this book the only Polish spaces we will be dealing with are Euclidean
spaces and the space of continuous functions defined on [0, 1].
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2:1. Definitions and simple facts. A complete separable metric space
is called a Polish space. Let X be a Polish space with metric ρ(x, y). By
definition the closed ball of radius r centered at x is

Br(x) = {y : ρ(x, y) ≤ r}.

The smallest σ-field of subsets of X containing all closed balls is called
the Borel σ-field and is denoted B(X). Elements of B(X) are called Borel
sets.

The structure of an arbitrary Borel set, even in R, is extremely complex.
However, very often working with all Borel sets is rather convenient.

Observe that

{y : ρ(x, y) < r} =
⋃
n

{y : ρ(x, y) ≤ r − 1/n}.

Therefore, open balls are Borel. Furthermore, since X is separable, each
open set can be represented as the countable union of certain open balls.
Therefore, open sets are Borel. Their complements, which are arbitrary
closed sets, are Borel sets as well. By the way, it follows from this discussion
that one could equivalently define the Borel σ-field as the smallest σ-field of
subsets of X containing all open balls.

If X and Y are Polish spaces, and f : X → Y , then the function f is
called a Borel function if

f−1(B) := {x : f(x) ∈ B} ∈ B(X) ∀B ∈ B(Y ).

In other words f is a Borel function if f : X → Y is a random variable with
respect to the σ-fields B(X) and B(Y ). An example of Borel functions is
given in the following theorem.

1. Theorem. Let X and Y be Polish spaces, and let f : X → Y be a
continuous function. Then f is Borel.

Proof. Remember that by Lemma 1.10 the collection

Σ := {B ⊂ Y : f−1(B) ∈ B(X)}

is a σ-field. Next, for every Br(y) ⊂ Y the set f−1(Br(y)) is closed because
of the continuity of f . Hence Br(x) ∈ Σ. Since B(Y ) is the smallest σ-field
containing all Br(x), we have B(Y ) ⊂ Σ, which is the same as saying that
f is Borel. The theorem is proved.

Let us emphasize a very important feature of the above proof. Instead
of taking a particular B ∈ B(Y ) and proving that f−1(B) ∈ B(X), we took
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the collection of all sets possessing a desired property. This device will be
used quite often.

Next, we are going to treat measures on Polish spaces. We recall that a
measure is called finite if all its values belong to (−∞,∞). Actually, it is safe
to say that everywhere in the book we are always dealing with nonnegative
measures. The only exception is encountered in Remark 17, and even there
we could avoid using signed measures if we rely on π- and λ-systems, which
come somewhat later in Sec. 2.3.

2. Theorem. Let X be a Polish space and µ a finite nonnegative measure
on (X,B(X)). Then µ is regular in the sense that for every B ∈ B(X) and
ε > 0 there exist an open set G and a closed set Γ satisfying

G ⊃ B ⊃ Γ, µ(G \ Γ) ≤ ε. (1)

Proof. Take a finite nonnegative measure µ on (X,B(X)) and call a
set B ∈ B(X) regular if for every ε > 0 there exist open G and closed Γ
satisfying (1).

Let Σ be the set of all “regular” sets. We are going to prove that
(i) Σ is a σ-field, and
(ii) Br(x) ∈ Σ.
Then by the definition of B(X) we have B(X) ⊂ Σ, and this is exactly

what we need.
Statement (ii) is almost trivial since, for every n ≥ 1,

Γ := Br(x) ⊂ Br(x) ⊂ {x : ρ(x, y) < r + 1/n} =: Gn,

where Γ is closed, the Gn are open and µ(Gn \ Γ) → 0 since the sets Gn \ Γ
are nested and their intersection is empty.

To prove (i), first notice that X ∈ Σ as a set open and closed simulta-
neously. Furthermore, the complement of an open (closed) set is a closed
(respectively, open) set and if G ⊃ B ⊃ Γ, then Γc ⊃ Bc ⊃ Gc with

Γc \Gc = G \ Γ.

This shows that if B ∈ Σ, then Bc ∈ Σ. It only remains to check that
countable unions of elements of Σ belong to Σ.

Let Bn ∈ Σ, n = 1, 2, 3, ..., ε > 0, and let Gn be open and Γn be closed
and such that

Gn ⊃ Bn ⊃ Γn, µ(Gn \ Γn) ≤ ε2−n.

Define
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B =
⋃
n

Bn, G =
⋃
n

Gn, Dn =
n⋃

i=1

Γi.

Then G is open, Dn is closed, and obviously G \Dn are nested, so that

lim
n→∞µ(G \Dn) = µ(G \D∞) ≤

∑
n

µ(Gn \ Γn) ≤ ε.

Hence, for appropriate n we have µ(G \Dn) ≤ 2ε, and this brings the proof
to an end.

3. Corollary. If µ1 and µ2 are finite nonnegative measures on (X,B(X))
and µ1(Γ) = µ2(Γ) for all closed Γ, then µ1 = µ2.

Indeed, then µ1(X) = µ2(X) (X is closed) and hence the µi’s also coin-
cide on all open subsets of X. But then they coincide on all Borel sets, as
seen from

µi(Gi) ≥ µi(B) ≥ µi(Γi), µi(G \ Γ) ≤ ε,

where G = G1 ∩G2, Γ = Γ1 ∪ Γ2 and G \ Γ is open.

4. Theorem. If µ1 and µ2 are finite nonnegative measures on (X,B(X))
and ∫

X
f(x)µ1(dx) =

∫
X
f(x)µ2(dx)

for every bounded continuous f , then µ1 = µ2.

Proof. By the preceding corollary we only need to check that µ1 = µ2

on closed sets. Take a closed set Γ and let

ρ(x,Γ) = inf{ρ(x, y) : y ∈ Γ}.

Since the absolute value of a difference of inf’s is not greater than the
sup of the absolute values of the differences and since |ρ(x, y) − ρ(z, y)| ≤
ρ(x, z), we have that |ρ(x,Γ)− ρ(z,Γ)| ≤ ρ(x, z), which implies that ρ(x,Γ)
is continuous. Furthermore,

ρ(x,Γ) > 0 ⇐⇒ x �∈ Γ

since Γ is closed. Hence, for the continuous function

fn(x) := (1 + nρ(x,Γ))−1

we have 1 ≥ fn(x) ↓ IΓ(x), so that by the dominated convergence theorem

µ1(Γ) =
∫
IΓ µ1(dx) = lim

n→∞

∫
fn µ1(dx) = lim

n→∞

∫
fn µ2(dx) = µ2(Γ).
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The theorem is proved.

2:2. Tightness and convergence of measures. As we have mentioned
in the Preface, the results of this chapter help construct the Wiener process
by using a version of the central limit theorem for random walks known as
Donsker’s invariance principle. Therefore we turn our attention to studying
convergence of measures on Polish spaces. An important property of a
measure on a Polish space is its tightness, which is expressed in the following
terms.

5. Theorem (Ulam). Let µ be a finite nonnegative measure on (X,B(X)).
Then for every ε > 0 there exists a compact set K ⊂ X such that µ(Kc) ≤ ε.

Proof. Let {xi : i = 1, 2, 3, ...} be a dense subset of X. Observe that for
every n ≥ 1 ⋃

i

B1/n(xi) = X.

Therefore, there exists an in such that

µ
( ⋃

i≤in

B1/n(xi)
) ≥ µ(X) − ε2−n. (2)

Now define

K =
⋂
n≥1

⋃
i≤in

B1/n(xi). (3)

Observe that K is totally bounded in the sense that, for every ε > 0,
there exists a finite set A = {x1, ..., xi(ε)}, called an ε-net, such that every
point of K is in the ε-neighborhood of at least one point in A. Indeed, it
suffices to take i(ε) = in with any n ≥ 1/ε.

In addition
⋃

i≤in
B1/n(xi) is closed as a finite union of closed sets, and

then K is closed as the intersection of closed sets. It follows that K is a
compact set (see Exercise 6). Now it only remains to notice that

µ(Kc) ≤
∑

n

µ
(( ⋃

i≤in

B1/n(xi)
)c) ≤∑

n

ε2−n.

The theorem is proved.
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6. Exercise*. Prove that the following are equivalent:
(i) K is a totally bounded closed set.
(ii) For every sequence of points xn ∈ K, there is a subsequence xn′

which converges to an element of K.

7. Corollary. For every Borel B and ε > 0 there exists a compact set
Γ ⊂ B such that µ(B \ Γ) ≤ ε.

Now we consider the issue of convergence of measures on X.

8. Definition. Let µ and µn be finite nonnegative measures on (X,B(X)).
We say that µn converge weakly to µ and write µn

w→ µ if for every bounded
continuous function f

∫
X
f µn(dx) →

∫
X
f µ(dx) (4)

A family M of finite measures on (X,B(X)) is called relatively weakly (se-
quentially) compact if every sequence of elements of M has a weakly con-
vergent subsequence.

9. Exercise*. Let ξ, ξn be random variables with values in X defined on
some probability spaces. Assume that the distributions of ξn on (X,B(X))
converge weakly to the distribution of ξ. Let f(x) be a real-valued contin-
uous function on X. Prove that the distributions of f(ξn) converge weakly
to the distribution of f(ξ).

10. Exercise*. Let M = {µ1, µ2, ...} be a sequence of nonnegative finite
measures on (X,B(X)) and let µ be a nonnegative measure on (X,B(X)).
Prove that if every sequence of elements of M has a subsequence weakly
convergent to µ, then µn

w→ µ.

11. Theorem. Let µ, µn, n = 1, 2, 3, ..., be nonnegative finite measures on
(X,B(X)). Then the following conditions are equivalent:

(i) µn
w→ µ,

(ii) µ(Γ) ≥ lim
n→∞µn(Γ) for every closed Γ and µ(X) = lim

n→∞µn(X),

(iii) µ(G) ≤ lim
n→∞

µn(G) for every open G and µ(X) = lim
n→∞µn(X),

(iv) µ(B) = lim
n→∞µn(B) for every Borel B such that µ(∂B) = 0,

(v)
∫
f µn(dx) → ∫

f µ(dx) for every Borel bounded f such that µ(∆f ) =
0, where ∆f is the set of all points at which f is discontinuous.
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Proof. (i) =⇒(ii). Take a closed set Γ and define fn as in the proof of
Theorem 4. Then for every m ≥ 1∫

fm µ(dx) = lim
n→∞

∫
fm µn(dx) ≥ lim

n→∞µn(Γ)

since fm ≥ IΓ. In addition, the left hand sides converge to µ(Γ) as m→ ∞,
so that µ(Γ) ≥ lim

n→∞µn(Γ). The second equality in (ii) is obvious since∫
1µn(dx) → ∫

1µ(dx).
Obviously (ii)⇐⇒(iii).
(ii)&(iii)=⇒(iv). Indeed,

B̄ ⊃ B ⊃ B̄ \ ∂B,
where B̄ is closed, B̄ \ ∂B is open, ∂B ⊂ B̄, µ(B̄ \ (B̄ \ ∂B)) = µ(∂B) = 0.
Hence

µ(B̄) = µ(B̄ \ ∂B) = µ(B)

and

µ(B) = µ(B̄) ≥ lim
n→∞µn(B̄) ≥ lim

n→∞µn(B) ≥ lim
n→∞

µn(B)

≥ lim
n→∞

µn(B̄ \ ∂B) ≥ µ(B̄ \ ∂B) = µ(B).

(iv)=⇒(v). First, since ∂X = ∅, µn(X) → µ(X). It follows that we can
add any constant to f without altering (4), which allows us to concentrate
only on f ≥ 0. For such a bounded f we have∫

f µn(dx) =
∫ ( ∫ M

0
If(x)>t dt

)
µn(dx) =

∫ M

0
µn{x : f(x) > t} dt,

where M = sup f . It is seen now that, to prove (4), it suffices to show that

µn{x : f(x) > t} → µ{x : f(x) > t} (5)

for almost all t. We will see that this convergence holds at every point t at
which µ{x : f(x) = t} = 0; that is, one needs to exclude not more than a
countable set.

Take a t > 0 such that µ{x : f(x) = t} = 0 and let B = {x : f(x) > t}.
If y ∈ ∂B and f is continuous at y, then f(y) = t. Hence ∂B ⊂ {f(x) =
t} ∪ ∆f , µ(∂B) = 0, and (5) follows from the assumption.

Finally, since the implication (v)=⇒(i) is obvious, the theorem is proved.
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Before stating the following corollary we remind the reader that we have
defined weak convergence (Definition 8) only for nonnegative finite measures.

12. Corollary. Let X be a closed subset in R
d and µn

w→ �, where � is
Lebesgue measure. Then (4) holds for every Borel Riemann integrable func-
tion f , since for such a function �(∆f ) = 0.

13. Exercise. If α is an irrational number in (0, 1), then, for every integer
m �= 0 and every x ∈ R,

1
n+1

n∑
k=0

eim2π(x+kα) = eim2πx eim2π(n+1)α − 1
(n+ 1)(eim2πα − 1)

→ 0 as n→ ∞. (6)

Also, if m = 0, the limit is just 1. By using Fourier series, prove that

1
n+1

n∑
k=0

f(x+ kα) →
∫ 1

0
f(y) dy (7)

for every x ∈ [0, 1] and every 1-periodic continuous function f . By writing
the sum in (7) as the integral against a measure µn and applying Corollary
12 for indicators, prove that, for every 0 ≤ a < b ≤ 1, the asymptotic
frequency of fractional parts of numbers α, 2α, 3α, ... in the interval (a, b) is
b− a.

14. Exercise. Take the sequence 2n, n = 1, 2, ..., and, for each n, let an be
the first digit in the decimal form of 2n. Here is the sequence of the first 45
values of an obtained by using Matlab:

2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4,

8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3.

We see that there are no 7s or 9s in this sequence. Let Nb(n) denote the
number of appearances of digit b = 1, ..., 9 in the sequence a1, ..., an. By
using Exercise 13 find the limit of Nb(n)/n as n → ∞ and, in particular,
show that this limit is positive for every b = 1, ..., 9.

15. Exercise. Prove that for every function f (measurable or not) the set
∆f is Borel.

We will use the following theorem, the proof of which can be found in
[Bi].
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16. Theorem (Prokhorov). A family M of probability measures on the
space (X,B(X)) is relatively weakly compact if and only if it is tight in the
sense that for every ε > 0 there exists a compact set K such that µ(Kc) ≤ ε
for every µ ∈ M.

Let us give an outline of a proof of this theorem (a complete proof can
be found, for instance, in [Bi], [Du], [GS]). The necessity is proved in the
same way as Ulam’s theorem. Indeed, use the notation from its proof and
first prove that for every n ≥ 1

inf{µ( ⋃
i≤m

B1/n(xi)
)

: µ ∈ M} → 1 (8)

as m → ∞. By way of getting a contradiction, assume that this is wrong.
Then, for an ε > 0 and every m, there would exist a measure µm ∈ M such
that

µm

( ⋃
i≤m

B1/n(xi)
) ≤ 1 − ε.

By assumption there exists a (probability) measure µ which is a weak limit
point of {µm}. By Ulam’s theorem there is a compact set K such that
1−ε/2 ≤ µ(K). Since K admits a finite 1/(2n)-net, there exists k such that
K ⊂ ⋃i≤kB

o
1/n(xi), where Bo

r (x) is the open ball of radius r centered at x.
By Theorem 11 (iii)

1 − ε/2 ≤ µ
( ⋃

i≤k

Bo
1/n(xi)

) ≤ lim
m→∞µm

( ⋃
i≤k

Bo
1/n(xi)

)

≤ lim
m→∞µm

( ⋃
i≤k

B1/n(xi)
) ≤ 1 − ε.

We have a contradiction which proves (8). Now it is clear how to choose in
in order to have (2) satisfied for all µ ∈ M, and then the desired set K can
be given by (3).

Proof of sufficiency can be based on Riesz’s remarkable theorem on the
general form of continuous linear functionals defined on the set of continuous
functions on a compact set. Let K be a compact subset of X, C(K) the
set of all continuous functions on K, and assume that on C(K) we have a
linear function �(f) such that

|�(f)| ≤ N sup{|f(x)| : x ∈ K}
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for all f ∈ C(K) with N independent of f . Then it turns out that there is
a measure µ such that

�(f) =
∫

K
f µ(dx).

Now fix ε > 0 and take an appropriate K(ε). For every countable set of
fm ∈ C(K(ε)) and every sequence of measures µ ∈ M, by using Cantor’s
diagonalization method one can extract a subsequence µn such that

∫
K(ε)

fm µn(dx)

would have limits as n → ∞. One can choose such a sequence of f ’s to
be dense in C(K(ε)), and then limn→∞

∫
K(ε) f µn(dx) exists for every con-

tinuous f and defines a linear bounded functional on C(K(ε)), and hence
defines a measure on K(ε). It remains to paste these measures obtained for
different ε and get a measure on X, and also arrange for one sequence µn

to be good for all K(ε) with ε running through 1, 1/2, 1/3, ....

17. Remark. In the above explanation we used the fact that if µ is a
finite measure on (X,B(X)) and

∫
f µ(dx) ≥ 0 for all nonnegative bounded

continuous functions f , then µ ≥ 0.
To prove that this is indeed true, remember that by Hahn’s theorem

there exist two measurable (Borel) sets B1 and B2 such that B1 ∪B2 = X,
B1 ∩ B2 = ∅, and µi(B) = (−1)iµ(B ∩ Bi) ≥ 0 for i = 1, 2 and every
B ∈ B(X).

Then µ = µ2−µ1,
∫
f µ2(dx) ≥

∫
f µ1(dx) for all nonnegative continuous

f . One derives from here as in the proof of Theorem 4 that µ2(Γ) ≥ µ1(Γ) for
all closed Γ, and by regularity µ2(B) ≥ µ1(B) for all B ∈ B(X). Plugging
in B ∩B1 in place of B, we get 0 = µ2(B ∩B1) ≥ µ1(B ∩B1) = µ1(B) ≥ 0
and µ1(B) = 0, as claimed.

3. The notion of random process

Let T be a set, (Ω,F , P ) a probability space, (X,B) a measurable space,
and assume that, for every t ∈ T , we are given an X-valued F-measurable
function ξt = ξt(ω). Then we say that ξt is a random process on T with
values in X. For individual ω the function ξt(ω) as a function of t is called
a path or a trajectory of the process.

The set T may be different in different settings. If T = {0, 1, 2, ...}, then
ξt is called a random sequence. If T = (a, b), then ξt is a continuous-time
random process. If T = R

2, then ξt is called a two-parameter random field .
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In the following lemma, for a measurable space (X,B) and integer n,
we denote by (Xn,Bn) the product of n copies of (X,B), that is,

Xn = {(x1, ..., xn) : x1, ..., xn ∈ X},

and Bn is the smallest σ-field of subsets of Xn containing every B(n) of type

B1 × ...×Bn,

where Bi ∈ B(X).

1. Lemma. Let t1, ..., tn ∈ T . Then (ξt1 , ..., ξtn ) is a random variable with
values in (Xn,Bn).

Proof. The function η(ω) := (ξt1(ω), ..., ξtn (ω)) maps Ω into Xn. The
set Σ of all subsets B(n) of Xn for which η−1(B(n)) ∈ F is a σ-field. In
addition, Σ contains every B(n) of type B1 × ... × Bn, where Bi ∈ B(X).
This is seen from the fact that

η−1(B1 × ...×Bn) = {ω : η(ω) ∈ B1 × ...×Bn}

= {ω : ξt1(ω) ∈ B1, ..., ξtn(ω) ∈ Bn} =
⋂
i

{ω : ξti(ω) ∈ Bi} ∈ F .

Hence Σ contains the σ-field generated by those B(n). Since the latter
is Bn by definition, we have Σ ⊃ B(X), i.e. η−1(B(n)) ∈ F for every
B(n) ∈ Bn. The lemma is proved.

2. Remark. In particular, we have proved that {ω : ξ2(ω) + η2(ω) ≤ 1} is
a random event if ξ and η are random variables.

The random variable (ξt1 , ..., ξtn ) has a distribution on (Xn,Bn). This
distribution is called the finite-dimensional distribution corresponding to
t1, ..., tn.

So-called cylinder sets play an important role in the theory of random
processes.

Let (X,B(X)) be a Polish space and T a set. Denote by XT the set of
all X-valued functions on T . This notation is natural if one observes that if
T only consists of two points, T = {1, 2}, then every X-valued function on
T is just a pair (x, y), where x is the value of the function at t = 1 and y is
the value of the function at t = 2. So the set of X-valued functions on T is
just the set of all pairs (x, y), and XT = X ×X = X2.

We denote by x· the points in XT and by xt the value of x· at t. Every
set of type
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{x· : (xt1 , ..., xtn) ∈ B(n)},
where ti ∈ T and B(n) ∈ Bn, is called the finite dimensional cylinder set
with base B(n) attached to t1, ..., tn. The σ-field generated by all finite
dimensional cylinder sets is called the cylinder σ-field .

3. Exercise*. Prove that the family of all finite dimensional cylinder sets
is an algebra, that is, XT is a cylinder set and complements and finite unions
and intersections of cylinder sets are cylinder sets.

4. Exercise. Let Σ denote the cylinder σ-field of subsets of the set of all X-
valued functions on [0, 1]. Prove that for every A ∈ Σ there exists a countable
set t1, t2, ... ∈ [0, 1] such that if x· ∈ A and y· is a function such that ytn = xtn

for all n, then y· ∈ A. In other words, elements of Σ are defined by specifying
conditions on trajectories only at countably many points of [0, 1].

5. Exercise. Give an example of a Polish space (X,B(X)) such that the
set C([0, 1],X) of all bounded and continuous X-valued functions on [0, 1]
is not an element of the σ-field Σ from the previous exercise. Thus you will
see that there exists a very important and quite natural set which is not
measurable.

4. Continuous random processes

For simplicity consider real-valued random processes on T = [0, 1]. Such a
process is called continuous if all its trajectories are continuous functions
on T . In that case, for each ω, we have a continuous trajectory or in other
words an element of the space C = C([0, 1]) of continuous functions on [0, 1].
You know that this is a Polish space when provided with the metric

ρ(x·, y·) = sup
t∈[0,1]

|xt − yt|.

Apart from the Borel σ-field, which is convenient as far as convergence of
distributions is concerned, there is the cylinder σ-field Σ(C), defined as the
σ-field of subsets of C generated by the collection of all subsets of the form

{x· ∈ C : xt ∈ Γ}, t ∈ [0, 1],Γ ∈ B(R).

Observe that Σ(C) is not the cylinder σ-field in the space of all real-valued
functions on [0, 1] as defined before Exercise 3.3.

1. Lemma. Σ(C) = B(C).

Proof. For t fixed, denote by πt the function on C defined by

πt(x·) = xt.
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Obviously πt is a real-valued continuous function on C. By Theorem 2.1 it
is Borel, i.e. for every B ∈ B(R) we have π−1

t (B) ∈ B(C), i.e. {x· : xt ∈
B} ∈ B(C). It follows easily (for instance, as in the proof of Theorem 2.1)
that Σ(C) ⊂ B(C).

To prove the opposite inclusion it suffices to prove that all closed balls
are cylinder sets. Fix x0· ∈ C and ε > 0. Then obviously

Bε(x0
· ) = {x· ∈ C : ρ(x0

· , x·) ≤ ε} =
⋂

{x· ∈ C : xr ∈ [x0
r − ε, x0

r + ε]},

where the intersection is taken for all rational r ∈ [0, 1]. This intersection
being countable, we have Bε(x0· ) ∈ Σ(C), and the lemma is proved.

The following theorem allows one to treat continuous random processes
just like C-valued random elements.

2. Theorem. If ξt(ω) is a continuous process on [0, 1], then ξ· is a C-valued
random variable. Conversely, if ξ· is a C-valued random variable, then ξt(ω)
is a continuous process on [0, 1].

Proof. To prove the direct statement, it suffices to notice that, by defi-
nition, the σ-field of all those B ⊂ C for which ξ−1· (B) ∈ F contains all sets
of the type

{x· : xt ∈ Γ}, t ∈ [0, 1],Γ ∈ B(R),

and hence contains all cylinder subsets of C, that is, by Lemma 1, all Borel
subsets of C.

The converse follows at once from the fact that ξt = πt(ξ·), which shows
that ξt is a superposition of two measurable functions. The lemma is proved.

By Ulam’s theorem the distribution of a process with continuous tra-
jectories is concentrated up to ε on a compact set Kε ⊂ C. Remember the
following necessary and sufficient condition for a subset of C to be compact
(the Arzelà-Ascoli theorem).

3. Theorem. Let K be a closed subset of C. It is compact if and only if
the family of functions x· ∈ K is uniformly bounded and equicontinuous, i.e.
if and only if

(i) there is a constant N such that

sup
t

|xt| ≤ N ∀x· ∈ K

and
(ii) for each ε > 0 there exists a δ > 0 such that |xt − xs| ≤ ε whenever

x· ∈ K and |t− s| ≤ δ, t, s ∈ [0, 1].
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4. Lemma. Let xt be a real-valued function defined on [0, 1] (independent
of ω). Assume that there exist a constant a > 0 and an integer n ≥ 0 such
that

|x(i+1)/2m − xi/2m | ≤ 2−ma

for all m ≥ n and 0 ≤ i ≤ 2m − 1. Then for all binary rational numbers
t, s ∈ [0, 1] satisfying |t− s| ≤ 2−n we have

|xt − xs| ≤ N(a)|t− s|a,
where N(a) = 22a+1(2a − 1)−1.

Proof. Let t, s ∈ [0, 1] be binary rational. Then

t =
∞∑
i=0

ε1(i)2−i, s =
∞∑
i=0

ε2(i)2−i, (1)

where εk(i) = 0 or 1 and the series are actually finite sums. Let

tk =
k∑

i=0

ε1(i)2−i, sk =
k∑

i=0

ε2(i)2−i. (2)

Observe that if |t − s| ≤ 2−k, then tk = sk or |tk − sk| = 2−k. This
follows easily from the following picture in which | shows numbers of type
r2−k with integral r, the short arrow shows the set of possible values for t
and the long one the set of possible values of s.

| | | | | |
�

tk

�

Now let k ≥ n and |t− s| ≤ 2−k. Write

xt = xtk +
∞∑

m=k

(xtm+1 − xtm),

write similar representation for xs and subtract these formulas to get

|xt − xs| ≤ |xtk − xsk
| +

∞∑
m=k

{|xtm+1 − xtm | + |xsm+1 − xsm|}. (3)
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Here tk = r2−k for an integer r, and there are only three possibility for sk:
sk = (r−1)2−k or = r2−k or = (r+1)2−k. In addition, |tm+1−tm| ≤ 2−(m+1)

since, for an integer p, we have tm = p2−m = (2p)2−(m+1) and tm+1 equals
either tm or tm + 2−(m+1). Therefore, by the assumption,

|xt − xs| ≤ 2
∞∑

m=k

2−ma = 2−ka2a+1(2a − 1)−1. (4)

We have proved this inequality if

k ≥ n and |t− s| ≤ 2−k.

It is easy to prove that, for every t and s satisfying |t − s| ≤ 2−n, one
can take k = [log2(1/|t − s|)] and then one has k ≥ n, |t − s| ≤ 2−k, and
2−ka ≤ 2a|t− s|a. This proves the lemma.

For integers n ≥ 0 and a > 0 denote

Kn(a) = {x· ∈ C : |x0| ≤ 2n, |xt − xs| ≤ N(a)|t− s|a ∀|t− s| ≤ 2−n}.

5. Exercise*. Prove that Kn(a) are compact sets in C.

6. Theorem. Let ξt be a continuous process and let α > 0, β > 0, N ∈
(0,∞) be constants such that

E|ξt − ξs|α ≤ N |t− s|1+β ∀s, t ∈ [0, 1].

Then for 0 < a < βα−1 and for every ε > 0 there exists n such that

P{ξ· ∈ Kn(a)} ≥ 1 − ε.

(observe that P{ξ· ∈ Kn(a)} makes sense by Theorem 2).

Proof. Denote

An = {ω : |ξ0| ≥ 2n} ∪ {ω : sup
m≥n

max
i=0,...,2m−1

|ξ(i+1)/2m − ξi/2m |2ma > 1}.

For ω �∈ An, we have ξ· ∈ Kn(a) by the previous lemma. Hence by
Chebyshev’s inequality

P{ξ· �∈ Kn(a)} ≤ P (An) ≤ P{|ξ0| ≥ 2n}
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+E sup
m≥n

max
i=0,...,2m−1

|ξ(i+1)/2m − ξi/2m |α2maα.

We replace the sup and the max with sums of the random variables involved
and we find

P{ξ· �∈ Kn(a)} ≤ P (An) ≤ P{|ξ0| ≥ 2n} (5)

+
∞∑

m=n

2m−1∑
i=0

2maαE|ξ(i+1)/2m − ξi/2m |α ≤ P{|ξ0| ≥ 2n} +N

∞∑
m=n

2−m(β−aα).

It only remains to notice that the last expression tends to zero as n → ∞.
The theorem is proved.

Remember that if ξ· is a C-valued random variable, then the measure
P{ξ· ∈ B}, B ∈ B(C), is called the distribution of ξ·. From (5) and
Prokhorov’s theorem we immediately get the following.

7. Theorem. Let ξk
t , k = 1, 2, 3, ..., be continuous processes on [0, 1] such

that, for some constants α > 0, β > 0, N ∈ (0,∞), we have

E|ξk
t − ξk

s |α ≤ N |t− s|1+β ∀s, t ∈ [0, 1], k ≥ 1.

Also assume that supk P{|ξk
0 | ≥ c} → 0 as c → ∞. Then the sequence of

distributions of ξk· on C is relatively compact.

Lemma 4 is the main tool in proving Theorems 6 and 7. It also allows
us to prove Kolmogorov’s theorem on existence of continuous modifications.

If T is a set on which we are given two processes ξ1t and ξ2t such that
P (ξ1t = ξ2t ) = 1 for every t ∈ T , then we call ξ1· a modification of ξ2· (and
vice versa).

8. Theorem (Kolmogorov). Let ξt be a process defined for t ∈ [0,∞) such
that, for some α > 0, β > 0, N <∞, we have

E|ξt − ξs|α ≤ N |t− s|1+β ∀t, s ≥ 0.

Then the process ξt has a continuous modification.

Proof. Take a = β/(2α) and define

Ωkn = {ω : sup
m≥n

max
i=0,...,k2m−1

2ma|ξ(i+1)/2m − ξi/2m | ≤ 1}, Ω′ =
⋂
k≥1

⋃
n

Ωkn.

If ω ∈ Ω′, then for every k ≥ 1 there exists n such that for all m ≥ n
and i = 0, ..., k2m − 1 we have
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|ξ(i+1)/2m(ω) − ξi/2m(ω)| ≤ 2−ma.

It follows by Lemma 4 that, for ω ∈ Ω′ and every k, the function ξt(ω) is
uniformly continuous on the set {r/2m} of binary fractions intersected with
[0, k]. By using Cauchy’s criterion, it is easy to prove that, for ω ∈ Ω′ and
every t ∈ [0,∞), there exists

lim
r/2m→t

ξr/2m(ω) =: ξ̃t(ω),

and in addition, ξ̃t(ω) is continuous and ξ̃t(ω) = ξt(ω) for all binary rational
t. We have defined ξ̃t(ω) for ω ∈ Ω′. For ω �∈ Ω′ define ξ̃t(ω) ≡ 0. The
process ξ̃t is continuous, and it only remains to prove that it is a modification
of ξt.

First we claim that P (Ω′) = 1. To prove this it suffices to prove that
P (
⋃

n Ωkn) = 1. Since (
⋃

n Ωkn)c =
⋂

n Ωc
kn and

Ωc
kn =

⋃
m≥n

k2m−1⋃
i=0

{ω : |ξ(i+1)/2m − ξi/2m | > 2−ma},

we have (cf. (5))

1 − P
(⋃

n

Ωkn

) ≤ lim
n→∞

∑
m≥n

kN2m(aα−β) = 0.

Thus P (Ω′) = 1. Furthermore, we noticed above that ξ̃r/2m = ξr/2m on
Ω′. Therefore,

P{ξ̃r/2m = ξr/2m} = 1.

For other values of t, by Fatou’s theorem

E|ξ̃t − ξt|α ≤ lim
r/2k→t

E|ξr/2k − ξt|α ≤ N lim
r/2k→t

|r/2k − t|1+β = 0.

Hence P{ξ̃t = ξt} = 1 for every t ∈ [0,∞), and the theorem is proved.
For Gaussian processes the above results can be improved. Remember

that a random vector ξ = (ξ1, ..., ξk) with values in R
k is called Gaussian or

normal if there exist a vector m ∈ R
k and a symmetric nonnegative k × k

matrix R = (Rij) such that

ϕ(λ) := E exp(i(ξ, λ)) = exp(i(λ,m) − (Rλ, λ)/2) ∀λ ∈ R
k,

where
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(λ, µ) =
k∑

i=1

λiµi

is the scalar product in R
k and

(Rλ, λ) =
k∑

i,j=1

Rijλiλj.

In this case one also writes ξ ∼ N(m,R). One knows that

m = Eξ, Rij = E(ξi −mi)(ξj −mj),

so that m is the mean value of ξ and R is its covariance matrix. It is known
that linear transformations of Gaussian vectors are Gaussian. In particular,
(ξ2, ξ1, ξ3, ..., ξk) is Gaussian.

9. Definition. A real-valued process ξt is called Gaussian if all its finite-
dimensional distributions are Gaussian. The function mt = Eξt is called the
mean value function of ξt and R(t, s) = cov (ξt, ξs) = E(ξt −mt)(ξs −ms) is
called the covariance function of ξt.

10. Remark. Very often it is useful to remember that (xt1 , ..., xtk ) is a k-
dimensional Gaussian vector if an only if, for arbitrary constants c1, ..., ck,
the random variable

∑
i cixti is Gaussian.

11. Exercise. Let xt be a real-valued function defined on [0, 1] (indepen-
dent of ω). Let g(x) be a nonnegative increasing function defined on (0, 1/2]
and such that

G(x) =
∫ x

0
y−1g(y) dy

is finite for every x ∈ [0, 1/2]. Assume that there exists an integer n ≥ 3
such that

|x(i+1)/2m − xi/2m | ≤ g(2−m)

for all m ≥ n and 0 ≤ i ≤ 2m−1. By analyzing the proof of Lemma 4, show
that for all binary rational numbers t, s ∈ [0, 1] satisfying |t − s| ≤ 2−n we
have

|xt − xs| ≤ NG(4|t− s|), N = 2/ ln 2 .

12. Exercise. Let ξ be a normal random variable with zero mean and
variance less than or equal to σ2, where σ > 0. Prove that, for every x > 0,

√
2π P (|ξ| ≥ x) ≤ 2σx−1 exp(−x2/(2σ2)).
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13. Exercise. Let ξt be a Gaussian process with zero mean given on [0, 1]
and satisfying E|ξt − ξs|2 ≤ R(|t − s|), where R is a continuous function
defined on (0, 1]. Denote g(x) =

√
R(x)(− lnx) and suppose that g satisfies

the assumptions of Exercise 11. For a constant a >
√

2 and n ≥ 3 define

Ωn = {ω : sup
m≥n

max
i=0,...,2m−1

|ξ(i+1)/2m(ω) − ξi/2m(ω)|/g(2−m) ≤ a},

Ω′ =
⋃

n≥3 Ωn. Notice that

Ωc
n =

∞⋃
m=n

2m−1⋃
i=0

{
ω : |ξ(i+1)/2m(ω) − ξi/2m(ω)| > ag(2−m)

}

and, by using Exercise 12, prove that

P (Ωc
n) ≤ N1

∑
m≥n

2m

√
R(2−m)
g(2−m)

exp
(− a2g2(2−m)

2R(2−m)
)

= N2

∑
m≥n

1√
m

2m(1−a2/2),

where the Ni are independent of n. Conclude that P (Ω′) = 1. By using
Exercise 11, derive from here that ξt has a continuous modification. In
particular, prove that, if

E|ξt − ξs|2 ≤ N(− ln |t− s|)−p ∀t, s ∈ [0, 1], |t − s| ≤ 1/2

with a constant N and p > 3, then ξt has a continuous modification.

14. Exercise. Let ξt be a process satisfying the assumptions in Exercise
13 and let ξ̃t be its continuous modification. Prove that, for almost every
ω, there exists n ≥ 1 such that for all t, s ∈ [0, 1] satisfying |t− s| ≤ 2−n we
have

|ξ̃t − ξ̃s| ≤ 8G(4|t − s|). (
G(x) =

∫ x

0
y−1g(y) dy

)

Sometimes one needs the following multidimensional version of Kol-
mogorov’s theorem. To prove it we first generalize Lemma 4. Denote
by Z

d
n the lattice in [0, 1]d consisting of all points (k12−n, ..., kd2−n) where

ki = 0, 1, 2, ..., 2n . Also let

||t− s|| = max{|ti − si| : i = 1, ..., d}.
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15. Lemma. Let d ≥ 1 be an integer and xt a real-valued function defined
for t ∈ [0, 1]d. Assume that there exist a > 0 and an integer n ≥ 0 such that

m ≥ n, t, s ∈ Z
d
m, ||t− s|| ≤ 2−m =⇒ |xt − xs| ≤ 2−ma.

Then, for every t, s ∈ ⋃m Z
d
m satisfying ||t− s|| ≤ 2−n we have

|xt − xs| ≤ N(a)||t − s||a.

Proof. Let t, s ∈ Z
d
m, t = (t1, ..., td), s = (s1, ..., sd). Represent tj and sj

as (cf. (1))

tj =
∞∑
i=0

εj12
−i, sj =

∞∑
i=0

εj22
−i,

define tjk and sj
k as these sums for i ≤ k (cf. (2)), and let

tk = (t1k, ..., t
d
k), sk = (s1k, ..., s

d
k).

Then ||t − s|| ≤ 2−k implies |tjk − sj
k| ≤ 2−k, and as in Lemma 4 we get

tk, sk ∈ Z
d
k, |tjk − sj

k| ≤ 2−k and ||tk − sk|| ≤ 2−k. We use (3) again and the
fact that, as before, tm+1, tm ∈ Z

d
m+1, ||tm+1 − tm|| ≤ 2−(m+1). Then we get

(4) again and finish the proof by the same argument as before. The lemma
is proved.

Now we prove a version of Theorem 6. For an integer n ≥ 0 denote

Γn(a) ={x· : xt is a real-valued function given on [0, 1]d such that

|xt − xs| ≤ N(a)||t − s||a for all t, s ∈
⋃
m

Z
d
m with ||t− s|| ≤ 2−n}.

16. Lemma. Let a random field ξt be defined on [0, 1]d. Assume that there
exist constants α > 0, β > 0, K <∞ such that

E|ξt − ξs|α ≤ K||t− s||d+β

provided t, s ∈ [0, 1]d. Then, for every 0 < a < β/α,

P{ξ· �∈ Γn(a)} ≤ 2−n(β−aα)KN(d, α, β, a).
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Proof. Let

An =
{
ω : sup

m≥n
sup{2ma|ξt − ξs| : t, s ∈ Z

d
m, ||t− s|| ≤ 2−m} > 1

}
.

For ω �∈ An we get ξ·(ω) ∈ Γn(a) by Lemma 15. Hence, P{ξ· �∈ Γn(a)} ≤
P (An). The probability of An we again estimate by Chebyshev’s inequality
and estimate the α power of the sup through the sum of α powers of the
random variables involved. For eachm the number of these random variables
is not greater than the number of couples t, s ∈ Z

d
m for which ||t− s|| ≤ 2−m

(and the number of disjoint ones is less than half this number). This number
is not bigger than the number of points in Z

d
m times 3d, the latter being the

number of neighbors of t. Hence

P (An) ≤
∞∑

m=n

(1 + 2m)d3dK2maα2−m(d+β) ≤ 6dK

∞∑
m=n

2−m(β−aα)

= 2−n(β−aα)K6d(1 − 2−(β−aα))−1.

The lemma is proved.

17. Theorem (Kolmogorov). Under the conditions of Lemma 16 the ran-
dom field ξt has a continuous modification.

Proof. By Lemma 16, with probability one, ξ· belongs to one of the sets
Γn(a). The elements of these sets are uniformly continuous on

⋃
m Z

d
m and

therefore can be redefined outside
⋃

m Z
d
m to become continuous on [0, 1]d.

Hence, with probability one there exists a continuous function ξ̃t coinciding
with ξt on

⋃
m Z

d
m. To finish the proof it suffices to repeat the end of the

proof of Theorem 8. The theorem is proved.

5. Hints to exercises

1.7 It suffices to prove that Ac ∈ FP if P (A) = 0.
2.6 To prove (i)=⇒(ii), observe that, for every k ≥ 1, in the 1/k-neighbor-
hood of a point from a 1/k-net there are infinitely many elements of xn,
which allows one to choose a Cauchy subsequence. To prove (ii)=⇒(i),
assume that for an ε > 0 there is no finite ε-net, and find a sequence of
xn ∈ K such that ρ(xn, xm) ≥ ε/3 for all n,m.
2.10 Assume the contrary.
2.14 Observe that Nb(n) is the number of i = 1, ..., n such that 10kb ≤ 2i <
10k(b+ 1) for some k = 0, 1, 2, ..., and then take log10.
2.15 Define
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f̄(x) = lim
ε↓0

sup
y:|y−x|<ε

f(y), f(x) = lim
ε↓0

inf
y:|y−x|<ε

f(y)

and prove that ∆f = {f̄ �= f} and the sets {x : f̄(x) < c} and {x : f(x) > c}
are open.
3.3 Attached points t1, ..., tn and n may vary and t1, ..., tn are not supposed
to be distinct.
3.4 Show that the set of all such A is a σ-field.
4.12 Let α2 = Eξ2. Observe that P (|ξ| ≥ x) = P (|ξ/α| ≥ x/α). Then in
the integral

∫∞
x/α exp(−y2/2) dy first replace α with σ and after that divide

and multiply the integrand by y.



Chapter 2

The Wiener Process

1. Brownian motion and the Wiener process

Robert Brown, an English botanist, observed (1828) that pollen grains sus-
pended in water perform an unending chaotic motion. L. Bachelier (1900)
derived the law governing the position wt at time t of a single grain perform-
ing a one-dimensional Brownian motion starting at a ∈ R at time t = 0:

Pa{wt ∈ dx} = p(t, a, x) dx, (1)

where

p(t, a, x) =
1√
2πt

e−(x−a)2/(2t)

is the fundamental solution of the heat equation

∂u

∂t
=

1
2
∂2u

∂a2
.

Bachelier (1900) also pointed out the Markovian nature of the Brownian
path and used it to establish the law of maximum displacement

Pa{max
s≤t

ws ≤ b} =
2√
2πt

∫ b

0
e−x2/(2t) dx, t > 0, b ≥ 0.

Einstein (1905) also derived (1) from statistical mechanics considerations
and applied it to the determination of molecular diameters. Bachelier was
unable to obtain a clear picture of the Brownian motion, and his ideas were

27
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unappreciated at the time. This is not surprising, because the precise math-
ematical definition of the Brownian motion involves a measure on the path
space, and even after the ideas of Borel, Lebesgue, and Daniell appeared,
N. Wiener (1923) only constructed a Daniell integral on the path space
which later was revealed to be the Lebesgue integral against a measure, the
so-called Wiener measure.

The simplest model describing movement of a particle subject to hits by
much smaller particles is the following. Let ηk, k = 1, 2, ..., be independent
identically distributed random variables with Eηk = 0 and Eη2

k = 1. Fix
an integer n, and at times 1/n, 2/n, ... let our particle experience instant
displacements by η1n

−1/2, η2n
−1/2, .... At moment zero let our particle be

at zero. If

Sk := η1 + ...+ ηk,

then at moment k/n our particle will be at the point Sk/
√
n and will stay

there during the time interval [k/n, (k+ 1)/n). Since real Brownian motion
has continuous paths, we replace our piecewise constant trajectory by a
continuous piecewise linear one preserving its positions at times k/n. Thus
we come to the process

ξn
t := S[nt]/

√
n+ (nt− [nt])η[nt]+1/

√
n. (2)

This process gives a very rough caricature of Brownian motion. Clearly,
to get a better model we have to let n → ∞. By the way, precisely this
necessity dictates the intervals of time between collisions to be 1/n and the
displacements due to collisions to be ηk/

√
n, since then ξn

t is asymptotically
normal with parameters (0, 1).

It turns out that under a very special organization of randomness, which
generates different {ηk; k ≥ 1} for different n, one can get the situation where
the ξn

t converge for each ω uniformly on each finite interval of time. This
is a consequence of a very general result due to Skorokhod. We do not use
this result, confining ourselves to the weak convergence of the distributions
of ξn· .

1. Lemma. The sequence of distributions of ξn· in C is relatively compact.

Proof. For simplicity we assume that m4 := Eη4
k < ∞, referring the

reader to [Bi] for the proof in the general situation. Since ξn
0 = 0, by

Theorem 1.4.7 it suffices to prove that

E|ξn
t − ξn

s |4 ≤ N |t− s|2 ∀s, t ∈ [0, 1], (3)
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where N is independent of n, t, s.
Without loss of generality, assume that s < t. Denote an = E(Sn)4.

By virtue of the independence of the ηk and the conditions Eηk = 0 and
Eη2

k = 1, we have

an+1 = E(Sn + ηn+1)4 = an + 4ES3
nηn+1 + 6ES2

nη
2
n+1

+ 4ESnη
3
n+1 +m4 = an + 6n+m4.

Hence (for instance, by induction),

an = 3n(n− 1) + nm4 ≤ 3n2 + nm4.

Furthermore, if s and t belong to the same interval [k/n, (k + 1)/n], then

|ξn
t − ξn

s | =
√
n|ηk+1| |t− s|,

E|ξn
t − ξn

s |4 = n2m4|t− s|4 ≤ m4|t− s|2. (4)

Now, consider the following picture, where s and t belong to different
intervals of type [k/n, (k + 1)/n) and by crosses we denote points of type
k/n:

× × × × × ×
s1 t1 ts

||

Clearly

s1 − s ≤ t− s, t− t1 ≤ t− s, t1 − s1 ≤ t− s, (t1 − s1)/n ≤ (t1 − s1)2,

s1 = ([ns] + 1)/n, t1 = [nt]/n, [nt] − ([ns] + 1) = n(t1 − s1).

Hence and from (4) and the inequality (a+ b+ c)4 ≤ 81(a4 + b4 + c4) we
conclude that

E|ξn
t − ξn

s |4 ≤ 81E(|ξn
t − ξn

t1 |4 + |ξn
t1 − ξn

s1
|4 + |ξn

s1
− ξn

s |4)

≤ 162(t − s)2m4 + 81E|S[nt]/
√
n− S[ns]+1/

√
n|4

= 162(t − s)2m4 + 81n−2a[nt]−([ns]+1)
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≤ 162(t − s)2m4 + 243(t− s)2 + 81(t1 − s1)m4/n ≤ 243(m4 + 1)|t− s|2.
Thus for all positions of s and t we have (3) with N = 243(m4 + 1). The
lemma is proved.

Remember yet another definition from probability theory. We say that a
sequence ξn, n ≥ 1, of R

k-valued random variables is asymptotically normal
with parameters (m,R) if Fξn converges weakly to the Gaussian distribution
with parameters (m,R) (by Fξ we denote the distribution of a random vari-
able ξ). Below we use the fact that the weak convergence of distributions is
equivalent to the pointwise convergence of their characteristic functions.

2. Lemma. For every 0 ≤ t1 < t2 < ... < tk ≤ 1 the vectors (ξn
t1 , ξ

n
t2 , ..., ξ

n
tk

)
are asymptotically normal with parameters (0, (ti ∧ tj)).

Proof. We only consider the case k = 2. Other k’s are treated similarly.
We have

λ1ξ
n
t1 + λ2ξ

n
t2 = (λ1 + λ2)S[nt1]/

√
n+ λ2(S[nt2] − S[nt1]+1)/

√
n

+η[nt1]+1{(nt1 − [nt1])λ1/
√
n+ λ2/

√
n} + η[nt2]+1(nt2 − [nt2])λ2/

√
n.

On the right, we have a sum of independent terms. In addition, the coeffi-
cients of η[nt1]+1 and η[nt2]+1 go to zero and

E exp(ianη[nt]+1) = E exp(ianη1) → 1 as an → 0.

Finally, by the central limit theorem, for ϕ(λ) = E exp(iλη1),

lim
n→∞ϕn(λ/

√
n) = e−λ2/2.

Hence,

lim
n→∞Eei(λ1ξn

t1
+λ2ξn

t2
) = lim

n→∞
(
ϕ(λ1/

√
n+λ2/

√
n)
)[nt1](ϕ(λ2/

√
n)
)[nt2]−[nt1]−1

= exp{−((λ1 + λ2)2t1 + λ2
2(t2 − t1))/2}

= exp{−(λ2
1(t1 ∧ t1) + 2λ1λ2(t1 ∧ t2) + λ2

2(t2 ∧ t2))/2}.
The lemma is proved.

3. Theorem (Donsker). The sequence of distributions Fξn· weakly converges
on C to a measure. This measure is called the Wiener measure.
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Proof. Owing to Lemma 1, there is a sequence ni → ∞ such that Fξ
ni·

converges weakly to a measure µ. By Exercise 1.2.10 it only remains to
prove that the limit is independent of the choice of subsequences.

Let Fξ
mi· be another weakly convergent subsequence and ν its limit. Fix

0 ≤ t1 < t2 < ... < tk ≤ 1 and define a continuous function on C by the
formula π(x·) = (xt1 , ..., xtk ). By Lemma 2, considering π as a random
element on (C,B(C), µ), for every bounded continuous f(x1, ..., xk), we get

∫
Rk

f(x1, ..., xk)µπ−1(dx) =
∫

C
f(xt1 , ..., xtk )µ(dx·)

= lim
i→∞

∫
C
f(xt1 , ..., xtk )Fξ

ni· (dx·) = lim
i→∞

Ef(ξni
t1 , ..., ξ

ni
tk

) = Ef(ζ1, ..., ζk),

where (ζ1, ..., ζk) is a random vector normally distributed with parameters
(0, ti ∧ tj). One gets the same result considering mi instead of ni. By Theo-
rem 1.2.4, we conclude that µπ−1 = νπ−1. This means that for every Borel
B(k) ⊂ R

k the measures µ and ν coincide on the set {x· : (xt1 , ..., xtk ) ∈
B(k)}. The collection of all such sets (with varying k, t1, ..., tk) is an alge-
bra. By a result from measure theory, a measure on a σ-field is uniquely
determined by its values on an algebra generating the σ-field. Thus µ = ν
on B(C), and the theorem is proved.

Below we will need the conclusion of the last argument from the above
proof, showing that there can be only one measure on B(C) with given
values on finite dimensional cylinder subsets of C.

4. Remark. Since Gaussian distributions are uniquely determined by their
means and covariances, finite-dimensional distributions of Gaussian pro-
cesses are uniquely determined by mean value and covariance functions.
Hence, given a continuous Gaussian process ξt, its distribution on (C,B(C))
is uniquely determined by the functions mt and R(s, t).

5. Definition. By a Wiener process we mean a continuous Gaussian pro-
cess on [0, 1] with mt = 0 and R(s, t) = s ∧ t.

As follows from above, the distributions of all Wiener processes on
(C,B(C)) coincide if the processes exist at all.

6. Exercise*. Prove that if wt is a Wiener process on [0, 1] and c is a
constant with c ≥ 1, then cwt/c2 is also a Wiener process on [0, 1]. This
property is called self-similarity of the Wiener process.

7. Theorem. There exists a Wiener process, and its distribution on
(C,B(C)) is the Wiener measure.
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Proof. Let µ be the Wiener measure. On the probability space (C,B(C),
µ) define the process wt(x·) = xt. Then, for every 0 ≤ t1 < ... < tk ≤ 1 and
continuous bounded f(x1, ..., xk), as in the proof of Donsker’s theorem, we
have

Ef(wt1 , ..., wtk ) =
∫

C
f(xt1 , ..., xtk )µ(dx·)

= lim
n→∞Ef(ξn

t1 , ..., ξ
n
tk

) = Ef(ζ1, ..., ζk),

where ζ is a Gaussian vector with parameters (0, (ti ∧ tj)). Since f is arbi-
trary, we see that the distribution of (wt1 , ..., wtk ) and (ζ1, ..., ζk) coincide,
and hence (wt1 , ..., wtk ) is Gaussian with parameters (0, (ti ∧ tj)). Thus, wt

is a Gaussian process, Ewti = 0, and R(ti, tj) = Ewtiwtj = Eζiζj = ti ∧ tj.
The theorem is proved.

This theorem and the remark before it show that the limit in Donsker’s
theorem is independent of the distributions of the ηk as long as Eηk = 0
and Eη2

k = 1. In this framework Donsker’s theorem is called the invariance
principle (although there is no more “invariance” in this theorem than in
the central limit theorem).

2. Some properties of the Wiener process

First we prove two criteria for a process to be a Wiener process.

1. Theorem. A continuous process on [0, 1] is a Wiener process if and only
if

(i) w0 = 0 (a.s.),

(ii) wt −ws is normal with parameters (0, |t− s|) for every s, t ∈ [0, 1],

(iii) wt1 , wt2 − wt1 , ...wtn − wtn−1 are independent for every n ≥ 2 and
0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1.

Proof. First assume that wt is a Wiener process. We have w0 ∼ N(0, 0),
hence w0 = 0 (a.s.). Next take 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1 and let

ξ1 = wt1 , ξ2 = wt2 −wt1 , ..., ξn = wtn − wtn−1 .

The vector ξ = (ξ1, ..., ξn) is a linear transform of (wt1 , ..., wtn ). There-
fore ξ is Gaussian. In particular ξi and, generally, wt − ws are Gaussian.
Obviously, Eξi = 0 and, for i > j,

Eξiξj = E(wti − wti−1)(wtj −wtj−1) = Ewtiwtj −Ewti−1wtj − Ewtiwtj−1

+Ewti−1wtj−1 = tj − tj − tj−1 + tj−1 = 0.
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Similarly, the equality Ewtws = s ∧ t implies that E|wt −ws|2 = |t− s|.
Thus wt − ws ∼ N(0, |t − s|), and we have proved (ii). In addition ξi ∼
N(0, ti − ti−1), Eξ2i = ti − ti−1, and

E exp{i
∑

k

λkξk} = exp{−1
2

∑
k,r

λkλrcov (ξk, ξr)}

= exp{−1
2

∑
k

λ2
k(tk − tk−1)} =

∏
k

E exp{iλkξk}.

This proves (iii).
Conversely, let wt be a continuous process satisfying (i) through (iii).

Again take 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1 and the same ξi’s. From (i) through
(iii), it follows that (ξ1, ..., ξn) is a Gaussian vector. Since (wt1 , ..., wtn ) is a
linear function of (ξ1, ..., ξn), (wt1 , ..., wtn ) is also a Gaussian vector; hence
wt is a Gaussian process. Finally, for every t1, t2 ∈ [0, 1] satisfying t1 ≤ t2,
we have

mt1 = Eξ1 = 0, R(t1, t2) = R(t2, t1) = Ewt1wt2 = Eξ1(ξ1 + ξ2)

= Eξ21 = t1 = t1 ∧ t2.
The theorem is proved.

2. Theorem. A continuous process on [0, 1] is a Wiener process if and only
if

(i) w0 = 0 (a.s.),

(ii) wt − ws is normal with parameters (0, |t − s|) for every s, t ∈ [0, 1],

(iii) for every n ≥ 2 and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1, the random variable
wtn − wtn−1 is independent of wt1 , wt2 , ...wtn−1 .

Proof. It suffices to prove that properties (iii) of this and the previous
theorems are equivalent under the condition that (i) and (ii) hold. We are
going to use the notation from the previous proof. If (iii) of the present
theorem holds, then

E exp{i
n∑

k=1

λkξk} = E exp{iλnξn}E exp{i
n−1∑
k=1

λkξk},

since (ξ1, ..., ξn−1) is a function of (wt1 , ..., wtn−1 ). By induction,

E exp{i
n∑

k=1

λkξk} =
∏
k

E exp{iλkξk}.
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This proves property (iii) of the previous theorem. Conversely if (iii) of the
previous theorem holds, then one can carry out the same computation in
the opposite direction and get that ξn is independent of (ξ1, ..., ξn−1) and of
(wt1 , ..., wtn−1), since the latter is a function of the former. The theorem is
proved.

3. Theorem (Bachelier). For every t ∈ (0, 1] we have maxs≤tws ∼ |wt|,
which is to say that for every x ≥ 0

P{max
s≤t

ws ≤ x} =
2√
2πt

∫ x

0
e−y2/(2t) dy.

Proof. Take independent identically distributed random variables ηk so
that P (ηk = 1) = P (ηk = −1) = 1/2, and define ξn

t by (1.2). First we want
to find the distribution of

ζn = max
[0,1]

ξn
t = n−1/2 max

k≤n
Sk.

Observe that, for each n, the sequence (S1, ..., Sn) takes its every par-
ticular value with the same probability 2−n. In addition, for each integer
i > 0, the number of sequences favorable for the events

{max
k≤n

Sk ≥ i, Sn < i} and {max
k≤n

Sk ≥ i, Sn > i} (1)

is the same. One proves this by using the reflection principle; that is, one
takes each sequence favorable for the first event, keeps it until the moment
when it reaches the level i and then reflects its remaining part about this
level. This implies equality of the probabilities of the events in (1). Further-
more, due to the fact that i is an integer, we have

{ζn ≥ in−1/2, ξn
1 < in−1/2} = {max

k≤n
Sk ≥ i, Sn < i}

and

{ζn ≥ in−1/2, ξn
1 > in−1/2} = {max

k≤n
Sk ≥ i, Sn > i}.

Hence,

P{ζn ≥ in−1/2, ξn
1 < in−1/2} = P{ζn ≥ in−1/2, ξn

1 > in−1/2}.
Moreover, obviously,

P{ζn ≥ in−1/2, ξn
1 > in−1/2} = P{ξn

1 > in−1/2},
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P{ζn ≥ in−1/2} = P{ζn ≥ in−1/2, ξn
1 > in−1/2}

+ P{ζn ≥ in−1/2, ξn
1 < in−1/2} + P{ξn

1 = in−1/2}.
It follows that

P{ζn ≥ in−1/2} = 2P{ξn
1 > in−1/2} + P{ξn

1 = in−1/2} (2)

for every integer i > 0. The last equality also obviously holds for i = 0. We
see that for numbers a of type in−1/2, where i is a nonnegative integer, we
have

P{ζn ≥ a} = 2P{ξn
1 > a} + P{ξn

1 = a}. (3)

Certainly, the last probability goes to zero as n → ∞ since ξn
1 is asymp-

totically normal with parameters (0, 1). Also, keeping in mind Donsker’s
theorem, it is natural to think that

P{max
s≤1

ξn
s ≥ a} → P{max

s≤1
ws ≥ a}, 2P{ξn

1 > a} → 2P{w1 > a}.

Therefore, (3) naturally leads to the conclusion that

P{max
s≤1

ws ≥ a} = 2P{w1 > a} = P{|w1| > a} ∀a ≥ 0,

and this is our statement for t = 1.
To justify the above argument, notice that (2) implies that

P{ζn = in−1/2} = P{ζn ≥ in−1/2} − P{ζn ≥ (i+ 1)n−1/2}

= 2P{ξn
1 = (i+ 1)n−1/2} + P{ξn

1 = in−1/2} − P{ξn
1 = (i+ 1)n−1/2}

= P{ξn
1 = (i+ 1)n−1/2} + P{ξn

1 = in−1/2}, i ≥ 0.

Now for every bounded continuous function f(x) which vanishes for x < 0
we get

Ef(ζn) =
∞∑
i=0

f(in−1/2)P{ζn = in−1/2} = Ef(ξn
1 − n−1/2 ) + Ef(ξn

1 ).

By Donsker’s theorem and by the continuity of the function x· → max[0,1] xt

we have

Ef(max
[0,1]

wt) = 2Ef(w1) = Ef(|w1|).
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We have proved our statement for t = 1. For smaller t one uses Exercise 1.6,
saying that cws/c2 is a Wiener process for s ∈ [0, 1] if c ≥ 1. The theorem is
proved.

4. Theorem (on the modulus of continuity). Let wt be a Wiener process
on [0, 1], 1/2 > ε > 0. Then for almost every ω there exists n ≥ 0 such that
for each s, t ∈ [0, 1] satisfying |t− s| ≤ 2−n, we have

|wt − ws| ≤ N |t− s|1/2−ε,

where N depends only on ε. In particular, |wt| = |wt − w0| ≤ Nt1/2−ε for
t ≤ 2−n.

Proof. Take a number α > 2 and denote β = α/2 − 1. Let ξ ∼ N(0, 1).
Since wt − ws ∼ N(0, |t− s|), we have wt − ws ∼ ξ|t− s|1/2. Hence

E|wt − ws|α = |t− s|α/2E|ξ|α = N1(α)|t− s|1+β.

Next, let

Kn(a) = {x· ∈ C : |x0| ≤ 2n, |xt − xs| ≤ N(a)|t− s|a ∀|t− s| ≤ 2−n}.

By Theorem 1.4.6, for 0 < a < βα−1, we have

P{w· ∈
∞⋃

n=1

Kn(a)} = 1.

Therefore, for almost every ω there exists n ≥ 0 such that for all s, t ∈ [0, 1]
satisfying |t − s| ≤ 2−n, we have |wt(ω) − ws(ω)| ≤ N(a)|t − s|a. It only
remains to observe that we can take a = 1/2 − ε if from the very beginning
we take α > 1/ε (for instance α = 2/ε). The theorem is proved.

5. Exercise. Prove that there exists a constant N such that for almost
every ω there exists n ≥ 0 such that for each s, t ∈ [0, 1] satisfying |t− s| ≤
2−n, we have

|wt − ws| ≤ N
√

|t− s|(− ln |t− s|),

The result of Exercise 5 is not far from the best possible. P. Lévy proved
that

lim
0≤s<t≤1
u=t−s→0

|wt − ws|√
2u(− ln u)

= 1 (a.s.).



Ch 2 Section 2. Some properties of the Wiener process 37

6. Theorem (on quadratic variation). Let 0 = t0n ≤ t1n ≤ ... ≤ tknn = 1
be a sequence of partitions of [0, 1] such that maxi(ti+1,n − tin) → 0 as
n→ ∞. Also let 0 ≤ s ≤ t ≤ 1. Then, in probability as n→ ∞,∑

s≤tin≤ti+1,n≤t

(wti+1,n − wtin)2 → t− s. (4)

Proof. Let

ξn :=
∑

s≤tin≤ti+1,n≤t

(wti+1,n − wtin)2

and observe that ξn is a sum of independent random variables. Also use that
if η ∼ N(0, σ2), then η = σζ, where ζ ∼ N(0, 1), and Var η2 = σ4Var ζ2.
Then, for N := Var ζ, we obtain

Var ξn =
∑

s≤tin≤ti+1,n≤t

Var [(wti+1,n − wtin)2] = N
∑

s≤tin≤ti+1,n≤t

(ti+1,n − tin)2

≤ N max
i

(ti+1,n − tin)
∑

0≤tin≤ti+1,n≤1

(ti+1,n − tin) = N max
i

(ti+1,n − tin) → 0.

In particular, ξn − Eξn → 0 in probability. In addition,

Eξn =
∑

s≤tin≤ti+1,n≤t

(ti+1,n − tin) → t− s.

Hence ξn − (t − s) = ξn − Eξn + Eξn − (t − s) → 0 in probability, and the
theorem is proved.

7. Exercise. Prove that if tin = i/2n, then the convergence in (4) holds
almost surely.

8. Corollary. It is not true that there exist functions ε(ω) and N(ω) such
that with positive probability ε(ω) > 0, N(ω) <∞, and

|wt(ω) − ws(ω)| ≤ N(ω)|t− s|1/2+ε(ω)

whenever t, s ∈ [0, 1] and |t− s| ≤ ε(ω).

Indeed, if |wt(ω) − ws(ω)| ≤ N(ω)|t − s|1/2+ε(ω) for |t − s| sufficiently
small, then∑

i

(wti+1,n(ω) − wtin(ω))2 ≤ N2
∑

i

(ti+1,n − tin)1+2ε → 0.

9. Corollary. P{Var[0,1]wt = ∞} = 1.
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This follows from the fact that, owing to the continuity of wt,∑
i

(wti+1,n(ω) − wtin(ω))2 ≤ max
i

|wti+1,n(ω) − wtin(ω)|Var[0,1]wt(ω) → 0

if Var[0,1]wt(ω) <∞.

10. Exercise. Let wt be a one-dimensional Wiener process. Find

P{max
s≤1

ws ≥ b, w1 ≤ a}.

The following exercise is a particular case of the Cameron-Martin the-
orem regarding the process wt −

∫ t
0 fs ds with nonrandom f . Its extremely

powerful generalization for random f is known as Girsanov’s Theorem 6.8.8.

11. Exercise. Let wt be a one-dimensional Wiener process on a probability
space (Ω,F , P ). Prove that

Eewt−t/2 = 1.

Introduce a new measure by Q(dω) = ew1−1/2P (dω). Prove that (Ω,F , Q)
is a probability space, and that wt − t, t ∈ [0, 1], is a Wiener process on
(Ω,F , Q).

12. Exercise. By using the results in Exercise 11 and the fact that the
distributions on (C,B(C)) of Wiener processes coincide, show that

P{max
s≤1

[ws + s] ≤ a} = Eew1−1/2Imaxs≤1 ws≤a.

Then by using the result in Exercise 10, compute the last expectation.

Unboundedness of the variation of Wiener trajectories makes it hard to
justify the following argument. In real situations the variance of Brownian
motion of pollen grains should depend on the water temperature. If the
temperature is piecewise constant taking constant value on each interval of
a partition 0 ≤ t1 < t2 < ... < tn = 1, then the trajectory can be modeled
by ∑

ti+1≤t

(wti+1 − wti)fi + (wt − wtk)fk,

where k = max{i : ti ≤ t} and the factor fi reflects the dependence of the
variance on temperature for t ∈ [ti, ti+1). The difficulty comes when one
tries to pass from piecewise constant temperatures to continuously changing
ones, because the sum should converge to an integral against wt as we make
partitions finer and finer. On the other hand, the integral against wt is not
defined since the variation of wt is infinite for almost each ω. Yet there is a
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rather narrow class of functions f , namely functions of bounded variation,
for which one can define the Riemann integral against wt pathwise (see
Theorem 3.22). For more general functions one defines the integral against
wt in the mean-square sense.

3. Integration against random orthogonal measures

The reader certainly knows the basics of the theory of Lp spaces, which can
be found, for instance, in [Du] and which we only need for p = 1 and p = 2.
Our approach to integration against random orthogonal measures requires
a version of this theory which starts with introducing step functions using
not all measurable sets but rather some collection of them. Actually, the
version is quite parallel to the usual theory, and what follows below should
be considered as just a reminder of the general scheme of the theory of Lp

spaces.
Let X be a set, Π some family of subsets of X, A a σ-algebra of subsets

of X, and µ a measure on (X,A). Suppose that Π ⊂ A and Π0 := {∆ ∈ Π :
µ(∆) < ∞} �= ∅. Let S(Π) = S(Π, µ) denote the set of all step functions,
that is, functions

n∑
i=1

ciI∆(i)(x),

where ci are complex numbers, ∆(i) ∈ Π0 (not Π!), n <∞ is an integer. For
p ∈ [1,∞), let Lp(Π, µ) denote the set of all Aµ-measurable complex-valued
functions f on X for each of which there exists a sequence fn ∈ S(Π) such
that

∫
X

|f − fn|p µ(dx) −→ 0 as n→ ∞. (1)

A sequence fn ∈ S(Π) that satisfies (1) will be called a defining sequence
for f . From the convexity of |t|p, we infer that |a+ b|p ≤ 2p−1|a|p +2p−1|b|p,
|f |p ≤ 2p−1|fn|p + 2p−1|f − fn|p and therefore, if f ∈ Lp(Π, µ), then

‖f‖p :=
(∫

X

|f |p µ(dx)
)1/p

<∞. (2)

The expression ‖f‖p is called the Lp norm of f . For p = 2 it is also
useful to define the scalar product (f, g) of elements f, g ∈ L2(Π, µ):
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(f, g) :=
∫
X

f ḡ µ(dx). (3)

This integral exists and is finite, since |f ḡ| ≤ |f |2 + |g|2. The expression
‖f−g‖p defines a distance in Lp(Π, µ) between the elements f, g ∈ Lp(Π, µ).
It is “almost” a metric on Lp(Π, µ), in the sense that, although the equality
‖f − g‖p = 0 implies that f = g only almost everywhere with respect to µ,
nevertheless ‖f − g‖p = ‖g − f‖p and the triangle inequality holds:∥∥f + g

∥∥
p
≤ ∥∥f∥∥

p
+
∥∥g∥∥

p
.

If fn, f ∈ Lp(Π, µ) and ‖fn − f‖p → 0 as n → ∞, we will naturally say
that fn converges to f in Lp(Π, µ). If ‖fn − fm‖p → 0 as n,m→ ∞, we will
call fn a Cauchy sequence in Lp(Π, µ). The following results are useful. For
their proofs we refer the reader to [Du].

1. Theorem. (i) If fn is a Cauchy sequence in Lp(Π, µ), then there exists
a subsequence fn(k) such that fn(k) has a limit µ-a.e. as k → ∞.

(ii) Lp(Π, µ) is a linear space, that is, if a, b are complex numbers and
f, g ∈ Lp(Π, µ), then af + bg ∈ Lp(Π, µ).

(iii) Lp(Π, µ) is a complete space, that is, for every Cauchy sequence
fn ∈ Lp(Π, µ), there exists an A-measurable function f for which (1) is
true; in addition, every Aµ-measurable function f that satisfies (1) for some
sequence fn ∈ Lp(Π, µ) is an element of Lp(Π, µ).

2. Exercise*. Prove that if Π is a σ-field , then Lp(Π, µ) is simply the set
of all Πµ-measurable functions f that satisfy (2).

3. Exercise. Prove that if Π0 consists of only one set ∆, then Lp(Π, µ) is
the set of all functions µ-almost everywhere equal to a constant times the
indicator of ∆.

4. Exercise. Prove that if (X,A, µ) = ([0, 1],B[0, 1], �) and Π = {(0, t] :
t ∈ (0, 1)}, then Lp(Π, µ) is the space of all Lebesgue measurable functions
summable to the pth power on [0, 1].

We now proceed to the main contents of this section. Let (Ω,F , P ) be
a probability space and suppose that to every ∆ ∈ Π0 there is assigned a
random variable ζ(∆) = ζ(ω,∆).

5. Definition. We say that ζ is a random orthogonal measure with reference
measure µ if (a) E |ζ(∆)|2 < ∞ for every ∆ ∈ Π0, (b) E ζ(∆1)ζ̄(∆2) =
µ(∆1 ∩ ∆2) for all ∆1,∆2 ∈ Π0.
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6. Example. If (X,A, µ) = (Ω,F , P ) and Π = A, then ζ(∆) := I∆ is a
random orthogonal measure with reference measure µ. In this case, for each
ω, ζ is just the Dirac measure concentrated at ω.

Generally, random orthogonal measures are not measures for each ω,
because they need not even be defined on a σ-field. Actually, the situation
is even more interesting, as the reader will see from Exercise 21.

7. Example. Let wt be a Wiener process on [0, 1] and

(X,A, µ) = ([0, 1],B([0, 1]), �).

Let Π = {[0, t] : t ∈ (0, 1]} and, for each ∆ = [0, t] ∈ Π, let ζ(∆) = wt.
Then, for ∆i = [0, ti] ∈ Π, we have

Eζ(∆1)ζ(∆2) = Ewt1wt2 = t1 ∧ t2 = �(∆1 ∩ ∆2),

which shows that ζ is a random orthogonal measure with reference mea-
sure �.

8. Exercise*. Let τn be a sequence of independent random variables ex-
ponentially distributed with parameter 1. Define a sequence of random
variables σn = τ1 + ...+ τn and the corresponding counting process

πt =
∞∑

n=1

I[σn,∞)(t).

Observe that πt is a function of locally bounded variation (at least for almost
all ω), so that the usual integral against dπt is well defined: if f vanishes
outside a finite interval, then∫ ∞

0
f(t) dπt =

∞∑
n=1

f(σn).

Prove that, for every bounded continuous real-valued function f given on R

and having compact support and every s ∈ R,

ϕ(s) := E exp{i
∫ ∞

0
f(s+ t) dπt} = exp(

∫ ∞

0
(eif(s+t) − 1) dt).

Conclude from here that πt − πs has Poisson distribution with parameter
|t− s|. In particular, prove Eπt = t and E(πt − t)2 = t. Also prove that πt

is a process with independent increments, that is, πt2 − πt1 , ..., πtk+1
− πtk

are independent as long as the intervals (tj , tj+1] are disjoint. The process
πt is called a Poisson process with parameter 1 .
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9. Example. Take the Poisson process πt from Exercise 8. Denote mt =
πt − t. If 0 ≤ s ≤ t, then

Emsmt = Em2
s + Ems(mt −ms) = Em2

s = s = s ∧ t.
Therefore, if in Example 7 we replace wt with πt, we again have a random
orthogonal measure with reference measure �.

We will always assume that ζ satisfies the assumptions of Definition 5.
Note that by Exercise 2 we have ζ(∆) ∈ L2(F , P ) for every ∆ ∈ Π0. The
word “orthogonal” in Definition 5 comes from the fact that if ∆1 ∩∆2 = ∅,
then ζ(∆1) ⊥ ζ(∆2) in the Hilbert space L2(F , P ). The word “measure” is
explained by the property that if ∆,∆i ∈ Π0, the ∆i’s are pairwise disjoint,
and ∆ =

⋃
i ∆i, then ζ(∆) =

∑
i ζ(∆i), where the series converges in the

mean-square sense. Indeed,

lim
n→∞E|ζ(∆) −

∑
i≤n

ζ(∆i)|2

= lim
n→∞[E|ζ(∆)|2 +

∑
i≤n

E|ζ(∆i)|2 − 2Re
∑
i≤n

Eζ(∆)ζ̄(∆i)]

= lim
n→∞[µ(∆) +

∑
i≤n

µ(∆i) − 2
∑
i≤n

µ(∆i)] = 0.

Interestingly enough, our explanation of the word “measure” is void in
Examples 7 and 9, since there is no ∆ ∈ Π which is representable as a
countable union of disjoint members of Π.

10. Lemma. Let ∆i,Γj ∈ Π0, and let ci, dj be complex numbers, i =
1, ..., n, j = 1, ...,m. Assume

∑
i≤n ciI∆i =

∑
j≤m djIΓj (µ-a.e.). Then

∑
i≤n

ciζ(∆i) =
∑
j≤m

djζ(Γj) (a.s.), (4)

E|
∑
i≤n

ciζ(∆i)|2 =
∫

X
|
∑
i≤n

ciI∆i |2 µ(dx). (5)

Proof. First we prove (5). We have

E|
∑
i≤n

ciζ(∆i)|2 =
∑
i,j≤n

cic̄jEζ(∆i)ζ̄(∆j) =
∑
i,j≤n

cic̄jµ(∆i ∩ ∆j)

=
∫

X

∑
i,j≤n

cic̄jI∆iI∆j µ(dx) =
∫

X
|
∑
i≤n

ciI∆i |2 µ(dx).

Hence,
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E|
∑
i≤n

ciζ(∆i) −
∑
j≤m

djζ(Γj)|2 =
∫

X
|
∑
i≤n

ciI∆i −
∑
j≤m

djIΓj |2 µ(dx) = 0.

The lemma is proved.

11. Remark. The first statement of the lemma looks quite surprising in
the situation when µ is concentrated at only one point x0. Then the equality∑

i≤n ciI∆i =
∑

j≤m djIΓj holds µ-almost everywhere if and only if∑
i≤n

ciI∆i(x0) =
∑
j≤m

djIΓj(x0),

and this may hold for very different ci,∆i, dj ,Γj. Yet each time (4) holds
true.

Next, on S(Π) define an operator I by the formula

I :
∑
i≤n

ciI∆i →
∑
i≤n

ciζ(∆i).

In the future we will always identify two elements of an Lp space which
coincide almost everywhere. Under this stipulation, Lemma 10 shows that
I is a well defined linear unitary operator from a subset S(Π) of L2(Π, µ)
into L2(F , P ). In addition, by definition S(Π) is dense in L2(Π, µ) and every
isometric operator is uniquely extendible from a dense subspace to the whole
space. By this we mean the following result, which we suggest as an exercise.

12. Lemma. Let B1 and B2 be Banach spaces and B0 a linear subset of
B1. Let a linear isometric operator I be defined on B0 with values in B2

(|Ib|B2 = |b|B1 for every b ∈ B0). Then there exists a unique linear isometric
operator Ĩ : B̄0 → B2 (B̄0 is the closure of B0 in B1) such that Ĩb = Ib for
every b ∈ B0.

Combining the above arguments, we arrive at the following.

13. Theorem. There exists a unique linear operator I : L2(Π, µ) →
L2(F , P ) such that

(i) I(
∑

i≤n ciI∆i) =
∑

i≤n ciζ(∆i) (a.s.) for all finite n, ∆i ∈ Π0 and
complex ci;

(ii) E|If |2 =
∫
X |f |2 µ(dx) for all f ∈ L2(Π, µ).

For f ∈ L2(Π, µ) we write

If =
∫

X
f(x) ζ(dx)
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and we call If the stochastic integral of f with respect to ζ. Observe
that, by continuity of I, to find If it suffices to construct step functions fn

converging to f in the L2(Π, µ) sense, and then

∫
X
f(x) ζ(dx) = l.i.m.

n→∞

∫
X
fn(x) ζ(dx).

The operator I preserves not only the norm but also the scalar product:

E

∫
X
f(x) ζ(dx)

∫
X
g(x) ζ(dx) =

∫
X
f ḡ µ(dx), f, g ∈ L2(Π, µ). (6)

This follows after comparing the coefficients of the complex parameter λ in
the equal (by Theorem 13) polynomials E|I(f +λg)|2 and

∫ |f +λg|2 µ(dx).

14. Exercise. Take πt from Example 9. Prove that for every Borel f ∈
L2(0, 1) the stochastic integral of f against πt − t equals the usual integral;
that is,

−
∫ 1

0
f(s) ds+

∑
σn≤1

f(σn).

15. Remark. If Eζ(∆) = 0 for every ∆ ∈ Π0, then for every f ∈ L2(Π, µ),
we have

E

∫
X
f ζ(dx) = 0.

Indeed, for f ∈ S(Π), this equality is verified directly; for arbitrary f ∈
L2(Π, µ) it follows from the fact that, by Cauchy’s inequality for fn ∈ S(Π),

|E
∫

X
f ζ(dx)|2 = |E

∫
X

(f − fn) ζ(dx)|2

≤ E|
∫

X
(f − fn) ζ(dx)|2 =

∫
X
|f − fn|2 µ(dx).

We now proceed to the question as to when Lp(Π, µ) and Lp(A, µ) co-
incide, which is important in applications. Remember the following defini-
tions.
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16. Definition. Let X be a set, B a family of subsets of X. Then B is
called a π-system if A1 ∩ A2 ∈ B for every A1, A2 ∈ B. It is called a
λ-system if

(i) X ∈ B and A2 \ A1 ∈ B for every A1, A2 ∈ B such that A1 ⊂ A2;

(ii) for every A1, A2, ... ∈ B such that Ai ∩Aj = ∅ when i �= j,
∞⋃

n=1
An ∈

B.

A typical example of λ-system is given by the collection of all subsets
on which two given probability measures coincide.

17. Exercise*. Prove that if B is both a λ-system and a π-system, then
it is a σ-field.

A very important property of π- and λ-systems is stated as follows.

18. Lemma. If Λ is a λ-system and Π is a π-system and Π ⊂ Λ, then
σ(Π) ⊂ Λ.

Proof. Let Λ1 denote the smallest λ-system containing Π (Λ1 is the
intersection of all λ-systems containing Π). It suffices to prove that Λ1 ⊃
σ(Π). To do this, it suffices to prove, by Exercise 17, that Λ1 is a π-system,
that is, it contains the intersection of every two of its sets. For B ∈ Λ1 let
Λ(B) denote the family of all A ∈ Λ1 such that A ∩ B ∈ Λ1. Obviously,
Λ(B) is a λ-system. In addition, if B ∈ Π, then Λ(B) ⊃ Π (since Π is a
π-system). Consequently, if B ∈ Π, then by the definition of Λ1, we have
Λ(B) ⊃ Λ1. But this means that Λ(A) ⊃ Π for each A ∈ Λ1, so that as
before, Λ(A) ⊃ Λ1 for each A ∈ Λ1, that is, Λ1 is a π-system. The lemma is
proved.

19. Theorem. Let A1 = σ(Π). Assume that Π is a π-system and that
there exists a sequence ∆(1),∆(2), ... ∈ Π0 such that ∆(n) ⊂ ∆(n + 1),
X =

⋃
n ∆(n). Then Lp(Π, µ) = Lp(A1, µ).

Proof. Let Σ denote the family of all subsets A of X such that

IAI∆(n) ∈ Lp(Π, µ)

for every n. Observe that Σ is a λ-system. Indeed for instance, if A1, A2, ... ∈
Σ are pairwise disjoint and A =

⋃
k Ak, then

IAI∆(n) =
∑

k

IAk
I∆(n),

where the series converges in Lp(Π, µ) since
⋃

k≥mAk ↓ ∅ as m → ∞,
µ(∆(n)) <∞, and
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∫
X
|
∑
k≥m

IAk
I∆(n)|p µ(dx) =

∫
X

∑
k≥m

IAk
I∆(n) µ(dx) = µ

(
∆(n)∩

⋃
k≥m

Ak

)→ 0

as m→ ∞.
Since Σ ⊃ Π, because Π is a π-system, it follows by Lemma 18 that Σ ⊃

A1. Consequently, it follows from the definition of Lp(A1, µ) that I∆(n)f ∈
Lp(Π, µ) for f ∈ Lp(A1, µ) and n ≥ 1. Finally, a straightforward application
of the dominated convergence theorem shows that ||I∆(n)f − f ||p → 0 as
n → ∞. Hence f ∈ Lp(Π, µ) if f ∈ Lp(A1, µ) and Lp(A1, µ) ⊂ Lp(Π, µ).
Since the reverse inclusion is obvious, the theorem is proved.

It turns out that, under the conditions of Theorem 19, one can extend ζ
from Π0 to the larger set A0 := σ(Π) ∩ {Γ : µ(Γ) <∞}. Indeed, for Γ ∈ A0

we have IΓ ∈ L2(Π, µ), so that the definition

ζ̃(Γ) =
∫

X
IΓ ζ(dx)

makes sense. In addition, if Γ1,Γ2 ∈ A0, then by (6)

Eζ̃(Γ1)ζ̃(Γ2) = E

∫
X
IΓ1 ζ(dx)

∫
X
IΓ2 ζ(dx)

=
∫

X
IΓ1IΓ2 µ(dx) = µ(Γ1 ∩ Γ2).

Since obviously ζ(∆) = ζ̃(∆) (a.s.) for every ∆ ∈ Π0, we have an extension
indeed. In Sec. 7 we will see that sometimes one can extend ζ even to a
larger set than A0.

20. Exercise. Let X ∈ Π0, and let Π be a π-system. Show that if ζ̃1 and
ζ̃2 are two extensions of ζ to σ(Π), then∫

X
f(x) ζ̃1(dx) =

∫
X
f(x) ζ̃2(dx)

(a.s.) for every f ∈ L2(σ(Π), µ). In particular, ζ̃1(Γ) = ζ̃2(Γ) (a.s.) for any
Γ ∈ σ(Π).

21. Exercise. Come back to Example 7. By what is said above there is an
extension of ζ to B([0, 1]). By using the independence of increments of wt,
prove that

E exp(−
∑

n

|ζ((an+1, an])|) = 0,

where an = 1/n. Derive from here that for almost every ω the function
ζ(Γ),Γ ∈ B([0, 1]), has unbounded variation and hence cannot be a measure.
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Let us apply the above theory of stochastic integration to modeling
Brownian motion when the temperature varies in time.

Take the objects introduced in Example 7. By Theorem 19 (and by
Exercise 2), for every f ∈ L2(0, 1) (where L2(0, 1) is the usual L2 space of
square integrable functions on (0, 1)) the stochastic integral

∫
X f(t) ζ(dt) is

well defined. Usually, one writes this integral as

∫ 1

0
f(t) dwt.

Observe that (by the continuity of the integral) if fn → f in L2(0, 1), then

∫ 1

0
fn(t) dwt →

∫ 1

0
f(t) dwt

in the mean-square sense. In addition, if

fn(t) =
∑

i

f(ti+1,n)Itin<t≤ti+1,n =
∑

i

f(ti+1,n)[It≤ti+1,n − It≤tin ]

with 0 ≤ tin ≤ ti+1,n ≤ 1, then (by definition and linearity)

∫ 1

0
f(t) dwt = l.i.m.

n→∞

∫ 1

0
fn(t) dwt = l.i.m.

n→∞
∑

i

f(ti+1,n)(wti+1,n − wtin).

(7)

Naturally, the integral∫ t

0
f(s) dws :=

∫ 1

0
Is≤tf(s) dws

gives us a representation of Brownian motion in the environment with chang-
ing temperature. However, for each individual t this integral is an element
of L2(F , P ) and thus is uniquely defined only up to sets of probability zero.
For describing individual trajectories of Brownian motion we should take an
appropriate representative of

∫ t
0 f(s) dws for each t ∈ [0, 1]. At this moment

it is absolutely not clear whether this choice can be performed so that we
will have continuous trajectories, which is crucial from the practical point
of view. Much later (see Theorem 6.1.10) we will prove that one can indeed
make the right choice even when f is a random function. The good news is
that this issue can be easily settled at least for some functions f .
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22. Theorem. Let t ∈ [0, 1], and let f be absolutely continuous on [0, t].
Then ∫ t

0
f(s) dws = f(t)wt −

∫ t

0
wsf

′(s) ds (a.s.).

Proof. Define tin = ti/n. Then the functions fn(s) := f(tin) for s ∈
(tin, ti+1,n] converge to f(s) uniformly on [0, t] so that (cf. (7)) we have

∫ t

0
f(s) dws =

∫ 1

0
Is≤tf(s) dws = l.i.m.

n→∞
∑

i≤n−1

f(tin)(wti+1,n − wtin)

= f(t)wt − l.i.m.
n→∞

∑
i≤n−1

wti+1,n

(
f(ti+1,n) − f(tin)

)

(summation by parts), where the last sum is written as

∫ t

0
wκ(s,n)f

′(s) ds (8)

with κ(n, s) = ti+1,n for s ∈ (tin, ti+1,n]. By the continuity of ws we have
wκ(s,n) → ws uniformly on [0, t], and by the dominated convergence theorem
(f ′ is integrable) we see that (8) converges to

∫ t
0 wsf

′(s) ds for every ω. It
only remains to remember that the mean-square limit coincides (a.s.) with
the pointwise limit if both exist. The theorem is proved.

23. Exercise*. Prove that if a real-valued f ∈ L2(0, 1), then
∫ t
0 f(s) dws,

t ∈ [0, 1], is a Gaussian process with zero mean and covariance

R(s, t) =
∫ s∧t

0
f2(u) du = (

∫ s

0
f2(u) du) ∧ (

∫ t

0
f2(u) du).

The construction of the stochastic integral with respect to a random
orthogonal measure is not specific to probability theory. We have consid-
ered the case in which ζ(∆) ∈ L2(F , P ), where P is a probability measure.
Our arguments could be repeated almost word for word for the case of an
arbitrary measure. It would then turn out that the Fourier integral of L2

functions is a particular case of integrals with respect to random orthogonal
measure. In this connection we offer the reader the following exercise.

24. Exercise. Let Π be the set of all intervals (a, b], where a, b ∈ (−∞,∞),
a < b. For ∆ = (a, b] ∈ Π, define a function ζ(∆) = ζ(ω,∆) on (−∞,∞) by
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ζ(∆) =
1
iω

(
eiωb − eiωa

)
=
∫

∆
eiωx dx.

Define Lp = Lp(Π, �) = Lp(B(R), �). Prove, using a change of variable,
that the number

(
ζ(∆1), ζ(∆2)

)
equals its complex conjugate, that is, it is

real, and that
∥∥ζ(∆)

∥∥2

2
= c �(∆) for ∆1,∆2,∆ ∈ Π, where c is a constant

independent of ∆. Use this and the observation that ζ(∆1 ∪∆2) = ζ(∆1) +
ζ(∆2) if ∆1,∆2,∆1 ∪ ∆2 ∈ Π, ∆1 ∩ ∆2 = ∅, to deduce that in that case(
ζ(∆1), ζ(∆2)

)
= 0. Using the fact that ∆1 = (∆1 \ ∆2) ∪ (∆1 ∩ ∆2)

and adding an interval between ∆1,∆2 if they do not intersect, prove that(
ζ(∆1), ζ(∆2)

)
= c �(∆1 ∩∆2) for every ∆1,∆2 ∈ Π and, consequently, that

we can construct an integral with respect to ζ, such that Parseval’s equality
holds for every f ∈ L2:

c
∥∥f∥∥2

2
=
∥∥∥∥
∫
fζ(dx)

∥∥∥∥
2

2

.

Keeping in mind that for f ∈ S(Π), obviously,

∫
fζ(dx) =

∞∫
−∞

f(x)eiωx dx (a.e.),

generalize this equality to all f ∈ L2 ∩L1. Putting f = exp(−x2) and using
the characteristic function of the normal distribution, prove that c = 2π.
Finally, use Fubini’s theorem to prove that for f ∈ L1 and −∞ < a < b <∞,
we have

b∫
a

( ∞∫
−∞

f̄(ω)eiωx dω

)
dx =

∞∫
−∞

1
iω

(
eiωb − eiωa

)
f̄(ω) dω.

In other words, if f ∈ L1 ∩ L2, then
(
ζ(∆), f

)
= c(I∆, g), where

ḡ(x) = c−1

∫
f̄(ω)ζ(x, dω),

and (by definition) this leads to the inversion formula for the Fourier trans-
form:

f(ω) =
∫
g(x)ζ(ω, dx).

Generalize this formula from the case f ∈ L1 ∩ L2 to all f ∈ L2.
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4. The Wiener process on [0,∞)

The definition of the Wiener process on [0,∞) is the same as on [0, 1] (cf. Def-
inition 1.5). Clearly for the Wiener process on [0,∞) one has the corre-
sponding counterparts of Theorems 2.1 and 2.2 about the independence of
increments and the independence of increments of previous values of the
process. Also as in Exercise 1.6, if wt is a Wiener process on [0,∞) and c is
a strictly positive constant, then cwt/c2 is also a Wiener process on [0,∞).
This property is called self-similarity of the Wiener process.

1. Theorem. There exists a Wiener process defined on [0,∞).

Proof. Take any smooth function f(t) > 0 on [0, 1) such that∫ 1

0
f2(t) dt = ∞.

Let ϕ(r) be the inverse function to
∫ t
0 f

2(s) ds. For t < 1 define

y(t) = f(t)wt −
∫ t

0
wsf

′(s) ds.

Obviously y(t) is a continuous process. By Theorem 3.22 we have

y(t) =
∫ t

0
f(s) dws =

∫ 1

0
Is≤tf(s) dws (a.s.).

By Exercise 3.23, yt is a Gaussian process with zero mean and covariance∫ s∧t

0
f2(u) du = (

∫ s

0
f2(u) du) ∧ (

∫ t

0
f2(u) du), s, t < 1.

Now, as is easy to see, x(r) := y(ϕ(r)) is a continuous Gaussian process
defined for r ∈ [0,∞) with zero mean and covariance r1 ∧ r2. The theorem
is proved.

Apart from the properties of the Wiener process on [0,∞) stated in the
beginning of this section, which are similar to the properties on [0, 1], there
are some new ones, of which we will state and prove only two.

2. Theorem. Let wt be a Wiener process for t ∈ [0,∞) defined on a prob-
ability space (Ω,F , P ). Then there exists a set Ω′ ∈ F such that P (Ω′) = 1
and, for each ω ∈ Ω′, we have

lim
t↓0

tw1/t(ω) = 0.

Furthermore, for t > 0 define
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ξt(ω) =

{
tw1/t(ω) if ω ∈ Ω′,
0 if ω �∈ Ω′,

and let ξ0(ω) ≡ 0. Then ξt is a Wiener process.

Proof. Define ξ̃t = tw1/t for t > 0 and ξ̃0 ≡ 0. As is easy to see, ξ̃t is a
Gaussian process with zero mean and covariance s ∧ t. It is also continuous
on (0,∞). It follows, in particular, that sups∈(0,t] |ξ̃s(ω)| equals the sup over
rational numbers on (0, t]. Since this sup is an increasing function of t, its
limit as t ↓ 0 can also be calculated along rational numbers. Thus,

Ω′ := {ω : lim
t↓0

sup
s∈(0,t]

|ξ̃s(ω)| = 0} ∈ F .

Next, let C ′ be the set of all (maybe unbounded) continuous functions
on (0, 1], and Σ(C ′) the cylinder σ-field of subsets of C ′, that is, the smallest
σ-field containing all sets {x· ∈ C ′ : xt ∈ Γ} for all t ∈ (0, 1] and Γ ∈ B(R).
Then the distributions of ξ̃· and w· on (C ′,Σ(C ′)) coincide (cf. Remark 1.4).

Define

A = {x· ∈ C ′ : lim
t↓0

sup
s∈(0,t]

|xs| = 0}.

Since x· ∈ C ′ are continuous in (0, 1], it is easy to see that A ∈ Σ(C ′).
Therefore,

P (ξ̃· ∈ A) = P (w· ∈ A),

which is to say,

P (lim
t↓0

sup
s∈(0,t]

|ξ̃s| = 0) = P (lim
t↓0

sup
s∈(0,t]

|ws| = 0).

The last probability being 1, we conclude that P (Ω′) = 1, and it only
remains to observe that ξt is a continuous process and ξt = ξ̃t on Ω′ or almost
surely, so that ξt is a Gaussian process with zero mean and covariance s∧ t.
The theorem is proved.

3. Corollary. Let 1/2 > ε > 0. By Theorem 2.4 for almost every ω there
exists n(ω) < ∞ such that |ξt(ω)| ≤ Nt1/2−ε for t ≤ 2−n(ω), where N

depends only on ε. Hence, for wt, for almost every ω we have |wt| ≤ Nt1/2+ε

if t ≥ 2n(ω).
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4. Remark. Having the Wiener process on [0,∞), we can repeat the con-
struction of the stochastic integral and define

∫∞
0 f(t) dwt for every f ∈

L2([0,∞)) starting with the random orthogonal measure ζ(0, a] = wa de-
fined for all a ≥ 0. Of course, this integral has properties similar to those
of
∫ 1
0 f(t) dwt. In particular, the results of Theorem 3.22 on integrating by

parts and of Exercise 3.23 still hold.

5. Markov and strong Markov properties of the
Wiener process

Let (Ω,F , P ) be a probability space carrying a Wiener process wt, t ∈ [0,∞).
Also assume that for every t ∈ [0,∞) we are given a σ-field Ft ⊂ F such
that Fs ⊂ Ft for t ≥ s. We call such a collection of σ-fields an (increasing)
filtration of σ-fields.

A trivial example of filtration is given by Ft ≡ F .

1. Definition. Let Σ be a σ-field, Σ ⊂ F and ξ a random variable taking
values in a measurable space (X,B). We say that ξ and Σ are independent
if P (A, ξ ∈ B) = P (A)P (ξ ∈ B) for every A ∈ Σ and B ∈ B.

2. Exercise*. Prove that if ξ and Σ are independent, f(x) is a measurable
function, and η is Σ-measurable, then f(ξ) and η are independent as well.

3. Definition. We say that wt is a Wiener process relative to the filtration
Ft if wt is Ft-measurable for every t and wt+h −wt is independent of Ft for
every t, h ≥ 0. In that case the couple (wt,Ft) is called a Wiener process.

Below we assume that (wt,Ft) is a Wiener process, explaining first that
there always exists a filtration with respect to which wt is a Wiener process.

4. Lemma. Let

Fw
t := σ{{ω : ws(ω) ∈ B}, s ≤ t, B ∈ B(R)}.

Then (wt,Fw
t ) is a Wiener process.

Proof. By definition Fw
t is the smallest σ-field containing all sets {ω :

ws(ω) ∈ B} for s ≤ t and Borel B. Since each of them is (as an element) in
F , Fw

t ⊂ F . The inclusion Fw
s ⊂ Fw

t for t ≥ s is obvious, since {ω : wr(ω) ∈
B} belong to Fw

t for r ≤ s and Fw
s is the smallest σ-field containing them.

Therefore Fw
t is a filtration.

Next, {ω : wt(ω) ∈ B} ∈ Fw
t for B ∈ B(R); hence wt is Fw

t -measurable.
To prove the independence of wt+h − wt and Fw

t , fix a B ∈ B(R), t, h ≥ 0,
and define

µ(A) = P (A,wt+h −wt ∈ B), ν(A) = P (A)P (wt+h − wt ∈ B).
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One knows that µ and ν are measures on (Ω,F). By Theorem 2.2 these
measures coincide on every A of type {ω : (wt1(ω), ..., wtn (ω)) ∈ B(n)} pro-
vided that ti ≤ t and B(n) ∈ B(Rn). The collection of these sets is an
algebra (Exercise 1.3.3). Therefore µ and ν coincide on the smallest σ-field,
say Σ, containing these sets. Observe that Fw

t ⊂ Σ, since the collection
generating Σ contains {ω : ws(ω) ∈ D} for s ≤ t and D ∈ B(R). Hence µ
and ν coincide on Fw

t . It only remains to remember that B is an arbitrary
element of B(R). The lemma is proved.

We see that one can always take Fw
t as Ft. However, it turns out that

sometimes it is very inconvenient to restrict our choice of Ft to Fw
t . For

instance, we can be given a multi-dimensional Wiener process (w1
t , ..., w

d
t )

(see Definition 6.4.1) and study only its first coordinate. In particular, while
introducing stochastic integrals of random processes against dw1

t we may be
interested in integrating functions depending not only on w1

t but on all other
components as well.

5. Exercise*. Let F̄w
t be the completion of Fw

t . Prove that (wt, F̄w
t ) is a

Wiener process.

6. Theorem (Markov property). Let (wt,Ft) be a Wiener process. Fix t,
h1, .., hn ≥ 0. Then the vector (wt+h1 − wt, ..., wt+hn − wt) and the σ-field
Ft are independent. Furthermore, wt+s − wt, s ≥ 0, is a Wiener process.

Proof. The last statement follows directly from the definitions. To
prove the first one, without losing generality we assume that h1 ≤ ... ≤ hn

and notice that, since (wt+h1 − wt, ..., wt+hn − wt) is obtained by a linear
transformation from ηn, where ηk = (wt+h1 −wt+h0, ..., wt+hk

−wt+hk−1
) and

h0 = 0, we need only show that ηn and Ft are independent. We are going to
use the theory of characteristic functions. Take A ∈ Ft and a vector λ ∈ R

n.
Notice that

EIA exp(iλ · ηn) = EIA exp(iµ · ηn−1) exp(iλn(wt+hn − wt+hn−1)),

where µ = (λ1, ..., λn−1). Here IA is Ft-measurable and, since Ft ⊂ Ft+hn−1 ,
it is Ft+hn−1-measurable as well. It follows that IA exp(iµ ·ηn−1) is Ft+hn−1-
measurable. Furthermore, wt+hn−wt+hn−1 is independent of Ft+hn−1 . Hence,
by Exercise 2

EIA exp(iλ · ηn) = EIA exp(iµ · ηn−1)E exp(iλn(wt+hn − wt+hn−1)),

and by induction and independence of increments of wt

EIA exp(iλ·ηn) = EIA

n∏
j=1

E exp(iλn(wt+hj
−wt+hj−1

)) = P (A)E exp(iλ·ηn).
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It follows from the theory of characteristic functions that for every Borel
bounded g

EIAg(ηn) = P (A)Eg(ηn).

It only remains to substitute here the indicator of a Borel set in place of g.
The theorem is proved.

Theorem 6 says that, for every fixed t ≥ 0, the process wt+s −wt, s ≥ 0,
starts afresh as a Wiener process forgetting everything that happened to wr

before time t. This property is quite natural for Brownian motion. It also
has a natural extension when t is replaced with a random time τ , provided
that τ does not depend on the future in a certain sense. To describe exactly
what we mean by this, we need the following.

7. Definition. Let τ be a random variable taking values in [0,∞] (including
∞). We say that τ is a stopping time (relative to Ft) if {ω : τ(ω) > t} ∈ Ft

for every t ∈ [0,∞).

The term “stopping time” is discussed after Exercise 3.3.3. Trivial ex-
amples of stopping times are given by nonrandom positive constants. A
much more useful example is the following.

8. Example. Fix a ≥ 0 and define

τ = τa = inf{t ≥ 0 : wt ≥ a} (inf ∅ := ∞)

as the first hitting time of the point a by wt. It turns out that τ is a stopping
time.

Indeed, one can easily see that

{ω : τ(ω) > t} = {ω : max
s≤t

ws(ω) < a}, (1)

where, for ρ defined as the set of all rational points on [0,∞),

max
s≤t

ws = sup
r∈ρ,r≤t

wr,

which shows that maxs≤tws is an Ft-measurable random variable.

9. Exercise*. Let a < 0 < b and let τ be the first exit time of wt from
(a, b):

τ = inf{t ≥ 0 : wt �∈ (a, b)}.
Prove that τ is a stopping time.
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10. Definition. Random processes η1
t , ..., η

n
t defined for t ≥ 0 are called

independent if for every t1, ..., tk ≥ 0 the vectors (η1
t1 , ..., η

1
tk

), ..., (ηn
t1 , ..., η

n
tk

)
are independent.

In what follows we consider some processes at random times, and these
times occasionally can be infinite even though this happens with probability
zero. In such situations we use the notation

xτ = xτ (ω) =

{
xτ(ω)(ω) if τ(ω) <∞,

0 if τ(ω) = ∞.

11. Lemma. Let (wt,Ft) be a Wiener process and let τ be an Ft-stopping
time. Assume P (τ <∞) = 1. Then the processes wt∧τ and Bt := wτ+t−wτ

are independent and the latter one is a Wiener process.

Proof. Take 0 ≤ t1 ≤ ... ≤ tk. As is easy to see, we need only prove that
for any Borel nonnegative functions f(x1, ..., xk) and g(x1, ..., xk)

Iτ := Ef(wt1∧τ , ..., wtk∧τ )g(Bt1 , ..., Btk )

= Ef(wt1∧τ , ..., wtk∧τ )Eg(wt1 , ..., wtk ). (2)

Assume for a moment that the set of values of τ is countable, say r1 <
r2 < .... By noticing that {τ = rn} = {τ > rn−1} \ {τ > rn} ∈ Frn and

Fn := f(wt1∧τ , ..., wtk∧τ )Iτ=rn = f(wt1∧rn , ..., wtk∧rn)Iτ=rn ,

we see that the first term is Frn-measurable. Furthermore,

Iτ=rng(Bt1 , ..., Btk ) = Iτ=rng(wrn+t1 − wrn , ..., wrn+tk − wrn),

where, by Theorem 6, the last factor is independent of Frn , and

Eg(wrn+t1 −wrn , ..., wrn+tk − wrn) = Eg(wt1 , ..., wtk ).

Therefore,

Iτ =
∑
rn

EFng(wrn+t1 − wrn , ..., wrn+tk − wrn)

= Eg(wt1 , ..., wtk )
∑
rn

EFn.

The last sum equals the first term on the right in (2). This proves the
theorem for our particular τ .
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In the general case we approximate τ and first notice (see, for instance,
Theorem 1.2.4) that equation (2) holds for all Borel nonnegative f, g if and
only if it holds for all bounded continuous f, g. Therefore, we assume f, g
to be bounded and continuous.

Now, for n = 1, 2, ..., define

τn(ω) = (k + 1)2−n for ω such that k2−n < τ(ω) ≤ (k + 1)2−n, (3)

k = −1, 0, 1, .... It is easily seen that τ ≤ τn ≤ τ + 2−n, τn ↓ τ , and for t ≥ 0

{ω : τn > t} = {ω : τ(ω) > 2−n[2nt]} ∈ F2−n[2nt] ⊂ Ft,

so that τn are stopping times. Hence, by the above result,

Iτ = lim
n→∞ Iτn = Eg(wt1 , ..., wtk ) lim

n→∞Ef(wt1∧τn , ..., wtk∧τn),

and this leads to (2). The lemma is proved.
The following theorem states that the Wiener process has the strong

Markov property.

12. Theorem. Let (wt,Ft) be a Wiener process and τ an Ft-stopping time.
Assume that P (τ <∞) = 1. Let

Fw
≤τ = σ{{ω : ws∧τ ∈ B}, s ≥ 0, B ∈ B(R)},

Fw
≥τ = σ{{ω : wτ+s − wτ ∈ B}, s ≥ 0, B ∈ B(R)}.

Then the σ-fields Fw
≤τ and Fw

≥τ are independent in the sense that for every
A ∈ Fw

≤τ and B ∈ Fw
≥τ we have P (AB) = P (A)P (B). Furthermore, wτ+t −

wτ is a Wiener process.

Proof. The last assertion is proved in Lemma 11. To prove the first one
we follow the proof of Lemma 4 and first let B = {ω : (wτ+s1−wτ , ..., wτ+sk

−
wτ ) ∈ Γ}, where Γ ∈ B(Rk). Consider two measures µ(A) = P (AB) and
ν(A) = P (A)P (B) as measures on sets A. By Lemma 11 these measures
coincide on every A of type {ω : (wt1∧τ , ..., wtn∧τ ) ∈ B(n)} provided that
B(n) ∈ B(Rn). The collection of these sets is an algebra (Exercise 1.3.3).
Therefore µ and ν coincide on the smallest σ-field, which is Fw

≤τ , containing
these sets. Hence P (AB) = P (A)P (B) for all A ∈ Fw

≤τ and our particular
B. It only remains to repeat this argument relative to B upon fixing A. The
theorem is proved.
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6. Examples of applying the strong Markov property

First, we want to apply Theorem 5.12 to τa from Example 5.8. Notice that
Bachelier’s Theorem 2.3 holds not only for t ∈ (0, 1] but for t ≥ 1 as well.
One proves this by using the self-similarity of the Wiener process (cwt/c2 is
a Wiener process for every constant c �= 0). Then, owing to (5.1), for t > 0
we find that P (τa > t) = P (|wt| < a) = P (|w1|

√
t < a), which tends to

zero as t → ∞, showing that P (τa < ∞) = 1. Now Theorem 5.12 allows us
to conclude that wτ+t − wτ = wτ+t − a is a Wiener process independent of
the trajectory on [0, τ ]. This makes rigorous what is quite clear intuitively.
Namely, after reaching a, the Wiener process starts “afresh”, forgetting
everything which happened to it before. The same happens when it reaches
a higher level b > a after reaching a, and moreover, τb − τa has the same
distribution as τb−a. This is part of the following theorem, in which, as well
as above, we allow ourselves to consider random variables like τb − τa which
may not be defined on a set of probability zero. We set τb(ω)− τa(ω) = 0 if
b > a > 0 and τb(ω) = τa(ω) = ∞.

1. Theorem. (i) For every 0 < a1 < a2 < ... < an < ∞ the random
variables τa1 , τa2 − τa1 , ..., τan − τan−1 are independent.

(ii) For 0 < a < b, the law of τb − τa coincides with that of τb−a, and τa
has Wald’s distribution with density

p(t) = (2π)−1/2at−3/2 exp(−a2/(2t)), t > 0.

Proof. (i) It suffices to prove that τan − τan−1 is independent of τa1 , ...,
τan−1 (cf. the proof of Theorem 2.2). To simplify notation, put τ(a) = τa.
Since ai ≤ an−1 for i ≤ n− 1, we can rewrite (5.1) as

{ω : τ(ai) > t} = {ω : sup
s∈ρ,s≤t

ws∧τ(an−1) < ai},

which implies that the τ(ai) are F≤τ(an−1)-measurable. On the other hand,
for t ≥ 0,

{ω : τ(an) − τ(an−1) > t}
= {ω : τ(an) − τ(an−1) > t, τ(an−1) <∞}

= {ω : sup
s∈ρ,s≤t

(wτ(an−1)+s − wτ(an−1)) < an − an−1, τ(an−1) <∞}

= {ω : 0 < sup
s∈ρ,s≤t

(wτ(an−1)+s − wτ(an−1)) < an − an−1}, (1)

which shows that τ(an) − τ(an−1) is F≥τ(an−1)-measurable. Referring to
Theorem 5.12 finishes the proof of (i).
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(ii) Let n = 2, a1 = a, and a2 = b. Then in the above notation τ(an) = τb
and τ(an−1) = τa. Since wτ(an−1)+t − wτ(an−1) = wτa+t − wτa is a Wiener
process and the distributions of Wiener processes coincide, the probability
of the event on the right in (1) equals

P ( sup
s∈ρ,s≤t

ws < an − an−1 = b− a) = P (τb−a > t).

This proves the first assertion in (ii). To find the distribution of τa, remember
that

P (τa > t) = P (max
s≤t

ws < a) = P (|w1|
√
t < a) =

2√
2π

∫ a/
√

t

0
e−y2/2 dy.

By differentiating this formula we immediately get our density. The theorem
is proved.

2. Exercise. We know that the Wiener process is self-similar in the sense
that cwt/c2 is a Wiener process for every constant c �= 0. The process τa,
a ≥ 0, also has this kind of property. Prove that, for every c > 0, the process
cτa/

√
c, a ≥ 0, has the same finite-dimensional distributions as τa, a ≥ 0.

Such processes are called stable. The Wiener process is a stable process of
order 2, and the process τa is a stable process of order 1/2.

Our second application exhibits the importance of the operator u →
u′′ in computing various expectations related to the Wiener process. The
following results can be obtained quite easily on the basis of Itô’s formula
from Chapter 6. However, the reader might find it instructive to see that
there is a different approach using the strong Markov property.

3. Lemma. Let u be a twice continuously differentiable function defined on
R such that u, u′, and u′′ are bounded. Then, for every λ > 0,

u(0) = E

∫ ∞

0
e−λt(λu(wt) − (1/2)u′′(wt)) dt. (2)

Proof. Since wt is a normal (0, t) variable, the right-hand side of (2)
equals

I :=
∫ ∞

0
e−λtE(λu(wt) − (1/2)u′′(wt)) dt

=
∫ ∞

0
e−λt

( ∫
R

(λu(x) − (1/2)u′′(x))p(t, x) dx
)
dt,

where

p(t, x) :=
1√
2πt

e−x2/(2t), t > 0.
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We continue our computation, integrating by parts. One can easily check
that

1
2
∂2p

(∂x)2
=
∂p

∂t
, e−λtλp− e−λt

2
∂2p

(∂x)2
= − ∂

∂t
(e−λtp).

Hence

I = lim
ε↓0

∫ ∞

ε
e−λt

( ∫
R

(λu(x) − (1/2)u′′(x))p(t, x) dx
)
dt

= − lim
ε↓0

∫ ∞

ε

∂

∂t

(
e−λt

∫
R

u(x)p(t, x) dx
)
dt = lim

ε↓0
e−λε

∫
R

u(x)p(ε, x) dx

= lim
ε↓0

Eu(wε) = u(0).

The lemma is proved.

4. Theorem. Let −∞ < a < 0 < b <∞, and let u be a twice continuously
differentiable function given on [a, b]. Let τ be the first exit time of wt from
the interval (a, b) (see Exercise 5.9). Then, for every λ ≥ 0,

u(0) = E

∫ τ

0
e−λt(λu(wt) − (1/2)u′′(wt)) dt + Ee−λτu(wτ ). (3)

Proof. If needed, one can continue u outside [a, b] and have a function,
for which we keep the same notation, satisfying the assumptions of Lemma
3. Denote f = λu− u′′. Notice that obviously τ ≤ τb, and, as we have seen
above, P (τb <∞) = 1. Therefore by Lemma 3 we find that, for λ > 0,

u(0) = E

∫ ∞

0
... = E

∫ τ

0
...+ E

∫ ∞

τ
...

= E

∫ τ

0
e−λtf(wt) dt +

∫ ∞

0
e−λtEe−λτf(wτ +Bt) dt =: I + J,

where Bt = wτ+t − wτ . Now we want to use Theorem 5.12. The reader
who did Exercise 5.9 understands that τ is Fw

≤τ -measurable. Furthermore,
wt∧τIτ<∞ → wτ as t→ ∞, so that wτ is also Fw

≤τ -measurable. Hence (τ, wτ )
and Bt are independent, and

J =
∫ ∞

0
e−λtEe−λτf(wτ +Bt) dt = Ee−λτv(wτ ),

where

v(y) := E

∫ ∞

0
e−λtf(y +Bt) dt = E

∫ ∞

0
e−λtf(y + wt) dt.
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Upon applying Lemma 3 to u(x + y) in place of u(x), we immediately get
that v = u, and this proves the theorem if λ > 0.

To prove (3) for λ = 0 it suffices to pass to the limit, which is possible due
to the dominated convergence theorem if we know that Eτ <∞. However,
for the function u0(x) = (x− a)(b− x) and the result for λ > 0, we get

|a|b = u0(0) = E

∫ τ

0
e−λt(λu(wt) + 1) dt ≥ E

∫ τ

0
e−λt dt,

E

∫ τ

0
e−λt dt ≤ |a|b

and it only remains to apply the monotone convergence theorem to get
Eτ ≤ |a|b <∞. The theorem is proved.

In the following exercises we suggest the reader use Theorem 4.

5. Exercise. (i) Prove that Eτ = |a|b.
(ii) By noticing that

Eu(wτ ) = u(b)P (τ = τb) + u(a)P (τ < τb)

and taking an appropriate function u, show that the probability that the
Wiener process hits b before hitting a is |a|/(|a| + b).

6. Exercise. Sometimes one is interested in knowing how much time the
Wiener process spends in a subinterval [c, d] ⊂ (a, b) before exiting from
(a, b). Of course, by this time we mean Lebesgue measure of the set {t <
τ : wt ∈ [c, d]}.

(i) Prove that this time equals

γ :=
∫ τ

0
I[c,d](wt) dt.

(ii) Prove that for any Borel nonnegative f we have

E

∫ τ

0
f(wt) dt =

2
b− a

(
b

∫ 0

a
f(y)(y − a) dy − a

∫ b

0
f(y)(b− y) dy

)
,

and find Eγ.

7. Exercise. Define xt = wt + t, and find the probability that xt hits b
before hitting a.
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7. Itô stochastic integral

In Sec. 3 we introduced the stochastic integral of nonrandom functions on
[0, 1] against dwt. It turns out that a slight modification of this procedure
allows one to define stochastic integrals of random functions as well. The
way we proceed is somewhat different from the traditional one, which will
be presented in Sec. 6.1. We decided to give this definition just in case
the reader decides to study stochastic integration with respect to arbitrary
square integrable martingales.

Let (wt,Ft) be a Wiener process in the sense of Definition 5.3, given on a
probability space (Ω,F , P ). To proceed with defining Itô stochastic integral
in the framework of Sec. 3 we take

X = Ω × (0,∞), A = F ⊗ B((0,∞)), µ = P × � (1)

and define Π as the collection of all sets A× (s, t] where 0 ≤ s ≤ t <∞ and
A ∈ Fs. Notice that, for A× (s, t] ∈ Π,

µ(A× (s, t]) = P (A)(t− s) <∞,

so that Π0 = Π. For A× (s, t] ∈ Π let

ζ(A× (s, t]) = (wt − ws)IA.

1. Definition. Denote P = σ(Π) and call P the σ-field of predictable sets.
The functions on Ω × (0,∞) which are P-measurable are called predictable
(relative to Ft).

By the way, the name “predictable” comes from the observation that
the simplest P-measurable functions are indicators of elements of Π which
have the form IAI(s,t] and are left-continuous, thus predictable on the basis
of past observations, functions of time.

2. Exercise*. Prove that Π is a π-system, and by relying on Theorem 3.19
conclude that L2(Π, µ) = L2(P, µ).

3. Theorem. The function ζ on Π is a random orthogonal measure with
reference measure µ, and Eζ(∆) = 0 for every ∆ ∈ Π.

Proof. We have to check the conditions of Definition 3.5. Let ∆1 =
A1 × (t1, t2], ∆2 = A2 × (s1, s2] ∈ Π. Define

ft(ω) = I∆1(ω, t) + I∆2(ω, t)
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and introduce the points r1 ≤ ... ≤ r4 by ordering t1, t2, s1, and s2. Obvi-
ously, for every t ≥ 0, the functions I∆i(ω, t+) are Ft-measurable and the
same holds for ft+(ω). Furthermore, for each ω, ft(ω) is piecewise constant
and left continuous in t. Therefore,

ft(ω) =
3∑

i=1

gi(ω)I(ri,ri+1](t), (2)

where the gi = fri+ are Fri-measurable.
It turns out that for every ω

ζ(∆1) + ζ(∆2) =
3∑

i=1

gi(ω)(wri+1 − wri). (3)

One can prove (3) in the following way. Fix an ω and define a continuous
function At, t ∈ [r1, r4], so that At is piecewise linear and equals wri at
all ri’s. Then by integrating through (2) against dAt, remembering the
definition of ft and the fact that the integral of a sum equals the sum of
integrals, we come to (3).

It follows from (3) that

E(ζ(∆1) + ζ(∆2))2 =
3∑

i=1

Eg2
i (wri+1 − wri)

2

+2
∑
i<j

Egigj(wri+1 − wri)(wrj+1 − wrj ),

where all expectations make sense because 0 ≤ f ≤ 2 and Ew2
t = t < ∞.

Remember that E(wrj+1 − wrj ) = 0 and E(wri+1 − wri)
2 = ri+1 − ri. Also

notice that (wri+1−wri)
2 and g2

i are independent by Exercise 5.2 and, for i <
j, the gi are Fri-measurable and Frj -measurable, owing to Fri ⊂ Frj , so that
gigj(wri+1 − wri) is Frj -measurable and hence independent of wrj+1 − wrj .
Then we see that

E(ζ(∆1) + ζ(∆2))2 =
3∑

i=1

Ef2
ri+(ri+1 − ri) = E

∫ r4

r1

f2
t dt

= E

∫ r4

r1

(I∆1 + I∆2)
2 dt = E

∫ r4

r1

I∆1 dt + 2E
∫ r4

r1

I∆1∩∆2 dt +E

∫ r4

r1

I∆2 dt
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= µ(∆1) + 2µ(∆1 ∩ ∆2) + µ(∆2). (4)

By plugging in ∆1 = ∆2 = ∆, we find that Eζ2(∆) = µ(∆). Then, devel-
oping E(ζ(∆1) + ζ(∆2))2 and coming back to (4), we get Eζ(∆1)ζ(∆2) =
µ(∆1 ∩ ∆2). Thus by Definition 3.5 the function ζ is a random orthogonal
measure with reference measure µ.

The fact that Eζ = 0 follows at once from the independence of Fs and
wt −ws for t ≥ s. The theorem is proved.

Theorem 3 allows us to apply Theorem 3.13. By combining it with
Exercise 2 and Remark 3.15 we come to the following result.

4. Theorem. In notation (1) there exists a unique linear isometric opera-
tor I : L2(P, µ) → L2(F , P ) such that, for every n = 1, 2, ..., constants ci,
si ≤ ti, and Ai ∈ Fsi given for i = 1, ..., n, we have

I(
n∑

i=1

ciIAiI(si,ti]) =
n∑

i=1

ciIAi(wti − wsi) (a.s.). (5)

In addition, EIf = 0 for every f ∈ L2(P, µ).

5. Exercise*. Formula (5) admits the following generalization. Prove that
for every n = 1, 2, ..., constants si ≤ ti, and Fsi-measurable functions gi

given for i = 1, ..., n and satisfying Eg2
i <∞, we have

I(
n∑

i=1

giI(si,ti]) =
n∑

i=1

gi(wti − wsi) (a.s.).

6. Definition. We call If , introduced in Theorem 4, the Itô stochastic
integral of f , and write

If =:
∫ ∞

0
f(ω, t) dwt.

The Itô integral between nonrandom a and b such that 0 ≤ a ≤ b ≤ ∞
is naturally defined by∫ b

a
f(ω, t) dwt =

∫ ∞

0
f(ω, t)I(a,b](t) dwt.

The comments in Sec. 3 before Theorem 3.22 are valid for Itô stochastic
integrals as well as for integrals of nonrandom functions against dwt. It is
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natural to notice that for nonrandom functions both integrals introduced in
this section and in Sec. 3 coincide (a.s.). This follows from formula (3.7),
valid for both integrals (and from the possibility of finding appropriate fn, a
possibility which is either known to the reader or will be seen from Remark
8.6).

Generally it is safe to say that the properties of the Itô integral are ab-
solutely different from those of the integral of nonrandom functions. For
instance Exercise 3.23 implies that for nonrandom integrands the integral
is either zero or its distribution has density. About 1981 M. Safonov con-
structed an example of random ft satisfying 1 ≤ ft ≤ 2 and such that the
distribution of

∫ 1
0 ft dwt is singular with respect to Lebesgue measure.

One may wonder why we took sets like A× (s, t] and not A× [s, t) as a
starting point for stochastic integration. Actually, for the Itô stochastic in-
tegral against the Wiener process this is irrelevant, and the second approach
even has some advantages, since then (cf. Exercise 5) almost by definition
we would have a very natural formula:

∫ ∞

0
f(t) dwt =

n∑
i=1

f(ti)(wti+1 − wti)

provided that f(t) is Ft-measurable and E|f(t)|2 < ∞ for every t, and
0 ≤ t1 ≤ ... ≤ tn+1 < ∞ are nonrandom and such that f(t) = f(ti) for
t ∈ [ti, ti+1) and f(t) = 0 for t ≥ tn+1. We show that this formula is indeed
true in Theorem 8.8.

However, there is a significant difference between the two approaches
if one tries to integrate with respect to discontinuous processes. Several
unusual things may happen, and we offer the reader the following exercises
showing one of them.

7. Exercise. In completely the same way as above one introduces a sto-
chastic integral against π̄t := πt − t, where πt is the Poisson process with
parameter 1. Of course, one needs an appropriate filtration of σ-fields Ft

such that πt is Ft-measurable and πt+h − πt is independent of Ft for all
t, h ≥ 0. On the other hand, one can integrate against π̄t as usual, since this
function has bounded variation on each interval [0, T ]. In connection with
this, prove that

E(usual)
∫ 1

0
πt dπ̄t �= 0,

so that either πt is not stochastically integrable or the usual integral is
different from the stochastic one. (As follows from Theorem 8.2, the latter
is true.)
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8. Exercise. In the situation of Exercise 7, prove that for every predictable
nonnegative ft we have

E(usual)
∫ 1

0
ft dπt = E

∫ 1

0
ft dt.

Conclude that πt is not predictable, and is not Pµ-measurable either.

8. The structure of Itô integrable functions

Dealing with Itô stochastic integrals quite often requires much attention to
tiny details, since often what seems true turns out to be absolutely wrong.
For instance, we will see below that the function I(0,∞)(wt)I(0,1)(t) is Itô
integrable and consequently its Itô integral has zero mean. This may look
strange due to the following.

Represent the open set {t : wt > 0} as the countable union of disjoint
intervals (αi, βi). Clearly wαi = wβi

= 0, and

I(0,∞)(wt)I(0,1)(t) =
∑

i

I(0,1)∩(αi,βi)(t). (1)

In addition it looks natural that

∫ ∞

0
I(0,1)∩(αi,βi)(t) dwt = w1∧αi − w1∧βi

, (2)

where the right-hand side is different from zero only if αi < 1, βi > 1,
and w1 > 0, i.e. if 1 ∈ (αi, βi). In that case the right-hand side of (2)
equals (w1)+, and since the integral of a sum should be equal to the sum of
integrals, formula (1) shows that the Itô integral of I(0,∞)(wt)I(0,1)(t) should
equal (w1)+. However, this is impossible since E(w1)+ > 0.

The contradiction here comes from the fact that the terms in (1) are not
Itô integrable and (2) just does not make sense.

One more example of an integral with no sense gives
∫ 1
0 w1 dwt. Again

its mean value should be zero, but under every reasonable way of defining
this integral it should equal w1

∫ 1
0 dwt = w2

1.
All this leads us to the necessity of investigating the set of Itô inte-

grable functions. Due to Theorem 3.19 and Exercise 3.2 this is equivalent
to investigating which functions are Pµ-measurable.
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1. Definition. A function ft(ω) given on Ω× (0,∞) is called Ft-adapted if
it is Ft-measurable for each t > 0. By H we denote the set of all real-valued
Ft-adapted functions ft(ω) which are F ⊗ B(0,∞)-measurable and satisfy

E

∫ ∞

0
f2

t dt <∞.

The following theorem says that all elements of H are Itô integrable.
The reader is sent to Sec. 7 for necessary notation.

2. Theorem. We have H ⊂ L2(P, µ).

Proof (Doob). It suffices only to prove that f ∈ L2(P, µ) for f ∈ H such
that ft(ω) = 0 for t ≥ T , where T is a constant. Indeed, by the dominated
convergence theorem∫

X
|ft − ftIt≤n|2 dPdt = E

∫ ∞

n
f2

t dt → 0

as n → ∞, so that, if ftIt≤n ∈ L2(P, µ), then ft ∈ L2(P, µ) due to the
completeness of L2(P, µ).

Therefore we fix an f ∈ H and T < ∞ and assume that ft = 0 for
t ≥ T . It is convenient to assume that ft is defined for negative t as well,
and ft = 0 for t ≤ 0. Now we recall that it is known from integration theory
that every L2-function is continuous in L2. More precisely, if h ∈ L2([0, T ])
and h(t) = 0 outside [0, T ], then

lim
a→0

∫ T

−T
|h(t+ a) − h(t)|2 dt = 0.

This and the inequality∫ T

−T
|ft+a − ft|2 dt ≤ 2

( ∫ T

−T
f2

t+a dt+
∫ T

−T
f2

t dt
) ≤ 4

∫ T

0
f2

t dt

along with the dominated convergence theorem imply that

lim
a→0

E

∫ T

−T
|ft+a − ft|2 dt = 0. (3)

Now let

ρn(t) = k2−n for t ∈ (k2−n, (k + 1)2−n].

Changing variables t+ s = u, t = v shows that
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∫ 1

0
E

∫ T

0
|fρn(t+s)−s − ft|2 dtds =

∫ T+1

0

(
E

∫ u∧T

u−1
|fρn(u)−u+v − fv|2 dv

)
du.

The last expectation tends to zero owing to (3) uniformly with respect to
u, since 0 ≤ u− ρn(u) ≤ 2−n. It follows that there is a sequence n(k) → ∞
such that for almost every s ∈ [0, 1]

lim
k→∞

E

∫ T

0
|fρn(k)(t+s)−s − ft|2 dt = 0. (4)

Fix any s for which (4) holds, and denote fk
t = fρn(k)(t+s)−s. Then (4)

and the inequality |a|2 ≤ 2|b|2 + 2|a− b|2 show that |fk
t |2 is µ-integrable at

least for all large k.
Furthermore, it turns out that the fk

t are predictable. Indeed,

fρn(t+s)−s =
∑

i

fi2−n−sI(i2−n−s,(i+1)2−n−s](t) =
∑

i:i2−n−s>0

. (5)

In addition, ft1I(t1,t2] is predictable if 0 ≤ t1 ≤ t2, since for any Borel B

{(ω, t) : ft1(ω)I(t1,t2](t) ∈ B}

= ({ω : ft1(ω) ∈ B} × (t1, t2]) ∪ {(ω, t) : I(t1,t2](t) = 0 ∈ B} ∈ P.
Therefore (5) yields the predictability of fk

t , and the integrability of |fk
t |2

now implies that fk
t ∈ L2(P, µ). The latter space is complete, and owing to

(4) we have ft ∈ L2(P, µ). The theorem is proved.

3. Exercise*. By following the above proof, show that left continuous Ft-
adapted processes are predictable.

4. Exercise. Go back to Exercise 7.7 and prove that if ft is left continuous,
Ft-adapted, and E

∫ 1
0 f

2
t dt < ∞, then the usual integral

∫ 1
0 ft dπ̄t coincides

with the stochastic one (a.s.). In particular, prove that the usual integral∫ 1
0 πt− dπ̄t coincides with the stochastic integral

∫ 1
0 πt dπ̄t (a.s.).

5. Exercise. Prove that if f ∈ L2(P, µ), then there exists h ∈ H such that
f = h µ-a.e. and in this sense H = L2(P, µ).

6. Remark. If ft is independent of ω, (4) implies that for almost any s ∈
[0, 1]

lim
k→∞

∫ T

0
|fρn(k)(t+s)−s − ft|2 dt = 0,

∫ T

0
ft dt = lim

k→∞

∫ T

0
fρn(k)(t+s)−s dt.
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This means that appropriate Riemann sums converge to the Lebesgue inte-
gral of f .

7. Remark. It is seen from the proof of Theorem 2 that, if f ∈ H, then for
any integer n ≥ 1 one can find a partition 0 = tn0 < tn1 < ... < tnk(n) = n
such that maxi(tn,i+1 − tni) ≤ 1/n and

lim
n→∞E

∫ ∞

0
|ft − fn

t |2 dt = 0,

where fn ∈ H are defined by fn
t = ftni for t ∈ (tni, tn,i+1], i ≤ k(n)− 1, and

fn
t = 0 for t > n. Furthermore, the fn

t are predictable, and by Theorem 7.4

∫ ∞

0
ft dwt = l.i.m.

n→∞

∫ ∞

0
fn

t dwt. (6)

One can apply the same construction to vector-valued functions f , and then
one sees that the above partitions can be taken the same for any finite
number of f ’s.

Next we prove two properties of the Itô integral. The first one justifies
the notation

∫∞
0 ft dwt, and the second one shows a kind of local property

of this integral.

8. Theorem. (i) If f ∈ H, 0 = t0 < t1 < ... < tn < ..., ft = fti for
t ∈ [ti, ti+1) and i ≥ 0, then in the mean square sense

∫ ∞

0
ft dwt =

∞∑
i=0

fti(wti+1 − wti).

(ii) If g, h ∈ H, A ∈ F , and ht(ω) = gt(ω) for t ≥ 0 and ω ∈ A, then∫∞
0 gt dwt =

∫∞
0 ht dwt on A (a.s.).

Proof. (i) Define f i
t = ftiI(ti,ti+1] and observe the simple fact that f =∑

i f
i µ-a.e. Then the linearity and continuity of the Itô integral show that

to prove (i) it suffices to prove that

∫ ∞

0
gI(r,s](t) dwt = (ws − wr)g (7)

(a.s.) if g is Fr-measurable, Eg2 <∞, and 0 ≤ r < s <∞.
If g is a step function (having the form

∑n
i=1 ciIAi with constant ci and

Ai ∈ Fr), then (7) follows from Theorem 7.4. The general case is suggested
as Exercise 7.5.
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To prove (ii), take common partitions for g and h from Remark 7 and
on their basis construct the sequences gn

t and hn
t . Then by (i) the left-hand

sides of (6) for fn
t = gn

t and fn
t = hn

t coincide on A (a.s.). Formula (6)
then says that the same is true for the integrals of g and h. The theorem is
proved.

Much later (see Sec. 6.1) we will come back to Itô stochastic integrals
with variable upper limit. We want these integrals to be continuous. For
this purpose we need some properties of martingales which we present in
the following chapter. The reader can skip it if he/she is only interested in
stationary processes.

9. Hints to exercises

2.5 Use Exercise 1.4.14, with R(x) = x, and estimate
∫ x
0

√
(− ln y)/y dy

through
√
x(− lnx) by using l’Hospital’s rule.

2.10 The cases a ≤ b and a > b are different. At some moment you may
like to consult the proof of Theorem 2.3 taking there 22n in place of n.

2.12 If P (ξ ≤ a, η ≤ b) =
∫ b
−∞ f(x) dx for every b, then Eg(η)Iξ≤a =∫

R
g(x)f(x) dx. The result of these computations is given in Sec. 6.8.

3.4 It suffices to prove that the indicators of sets (s, t] are in Lp(Π, µ).
3.8 Observe that

ϕ(s) = E exp(i
∞∑

n=1

f(s+ σn)),

and by using the independence of the τn and the fact that EF (τ1, τ2, ...) =
EΦ(τ1), where Φ(t) = EF (t, τ2, ...), show that

ϕ(s) =
∫ ∞

0
eif(s+t)−tϕ(s+ t) dt = es

∫ ∞

s
eif(t)(e−tϕ(t)) dt.

Conclude first that ϕ is continuous, then that ϕ(s)e−s is differentiable, and
solve the above equation. After that, approximate by continuous functions
the function which is constant on each interval (tj, tj+1] and vanishes outside
of the union of these intervals.
3.14 Prove that, for every Borel nonnegative f , we have

E
∑
σn≤1

f(σn) =
∫ 1

0
f(s) ds,

and use it to pass to the limit from step functions to arbitrary ones.
3.21 For bn > 0 with bn → 1, we have

∏
bn = 0 if and only if

∑
n(1− bn) =

∞.
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3.23 Use Remark 1.4.10 and (3.6).
5.9 Take any continuous function u(x) defined on [a, b] such that u < 0 in
(a, b) and u(a) = u(b) = 0, and use it to write a formula similar to (5.1).
6.7 Define τ as the first exit time of xt from (a, b) and, similarly to (6.3),
prove that

u(0) = E

∫ τ

0
e−λt(λu(xt) − u′(xt) − (1/2)u′′(xt)) dt + Ee−λτu(xτ ).

7.7 Observe that
∫
(0,t] πs dπs = πt(πt + 1)/2.

7.8 First take ft = I∆.
8.4 Keep in mind the proof of Theorem 8.2, and redo Exercise 7.5 for πt in
place of wt.
8.5 Take a sequence of step functions converging to f µ-a.e., and observe
that step functions are Ft-adapted.



Chapter 3

Martingales

1. Conditional expectations

The notion of conditional expectation plays a tremendous role in probability
theory. In this book it appears in the first place in connection with the theory
of martingales, which we will use several times in the future, in particular,
to construct a continuous version of the Itô stochastic integral with variable
upper limit.

Let (Ω,F , P ) be a probability space, G a σ-field and G ⊂ F .

1. Definition. Let ξ and η be random variables, and moreover let η be
G-measurable. Assume that E|ξ|, E|η| <∞ and for every A ∈ G we have

EξIA = EηIA.

Then we call η a conditional expectation of ξ given G and write E{ξ|G} = η.
If G is generated by a random element ζ, one also uses the notation η =
E{ξ|ζ}. Finally, if ξ = IA with A ∈ F , then we write P (A|G) = E(IA|G).

The notation E{ξ|G} needs a justification.

2. Theorem. If η1 and η2 are conditional expectations of ξ given G, then
η1 = η2 (a.s.).

Proof. By definition, for any A ∈ G,

Eη1IA = Eη2IA, E(η1 − η2)IA = 0.

Since η1 − η2 is G-measurable, one can take A = {ω : η1(ω) − η2(ω) > 0}.
Then one gets E(η1−η2)+ = 0, (η1−η2)+ = 0, and η1 ≤ η2 (a.s.). Similarly,
η2 ≤ η1 (a.s.). The theorem is proved.

71
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The definition of conditional expectation involves expectations. There-
fore, if η = E(ξ|G), then any G-measurable function coinciding with η almost
surely also is a conditional expectation of ξ given G. Theorem 2 says that
the converse is also true. To avoid misunderstanding, let us emphasize that
if η1 = E(ξ|G) and η2 = E(ξ|G), then we cannot say that η1(ω) = η2(ω) for
all ω, although this equality does hold for almost every ω.

3. Exercise. Let Ω =
⋃

nAn be a partition of Ω into disjoint sets An ∈ F ,
n = 1, 2, .... Let G = σ(An, n = 1, 2, ...). Prove that

E(ξ|G) =
1

P (An)
EξIAn

( 0
0

:= 0
)

almost surely on An for any n.

4. Exercise. Let (ξ, η) be an R
2-valued random variable and p(x, y) a non-

negative Borel function on R
2. Remember that p is called a density of (ξ, η)

if for any Borel B ∈ B(R2) we have

P ((ξ, η) ∈ B) =
∫

B
p(x, y) dxdy.

Denote ζ =
∫

R
p(x, η) dx, assume E|ξ| <∞, and prove that (a.s.)

E(ξ|η) =
1
ζ

∫
R

xp(x, η) dx
( 0

0
:= 0

)
.

We need some properties of conditional expectations.

5. Theorem. Let E|ξ| <∞. Then E(ξ|G) exists.

Proof. On the probability space (Ω,G, P ) consider the set function
µ(A) = Eξ+IA, A ∈ G. Obviously µ ≥ 0 and µ(Ω) = Eξ+ < ∞. Fur-
thermore, from measure theory we know that µ is a measure and µ(A) = 0
if P (A) = 0. Thus µ is absolutely continuous with respect to P , and by the
Radon-Nikodým theorem there is a G-measurable function η(+) ≥ 0 such
that

µ(A) =
∫

A
η(+) P (dω) = Eη(+)IA

for any A ∈ G. Similarly, there is a G-measurable η(−) such that Eξ−IA =
Eη(−)IA for any A ∈ G. The random variable η(+) − η(−) is obviously a
conditional expectation of ξ given G. The theorem is proved.

The next theorem characterizes computing conditional expectation as a
linear operation.
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6. Theorem. Let E|ξ| <∞. Then
(i) for any constant c we have E(cξ|G) = cE(ξ|G) (a.s.), in particular,

E(0|G) = 0 (a.s.);

(ii) we have EE(ξ|G) = Eξ;

(iii) if E|ξ1|, E|ξ2| <∞, then E(ξ1 ± ξ2|G) = E(ξ1|G) ± E(ξ2|G) (a.s.);

(iv) if ξ is G-measurable, then E(ξ|G) = ξ (a.s.);

(v) if a σ-field G1 ⊂ G, then

E
{
E(ξ|G1)|G

}
= E

{
E(ξ|G)|G1

}
= E(ξ|G1)

(a.s.), which can be expressed as the statement that the smallest σ-field pre-
vails.

Proof. Assertions (i) through (iv) are immediate consequences of the
definitions and Theorem 2. To prove (v), let η = E(ξ|G), η1 = E(ξ|G1).
Since η1 is G1-measurable and G1 ⊂ G, we have that η1 is G-measurable.
Hence E(η1|G) = η1 (a.s.) by (iv); that is,

E
{
E(ξ|G1)|G

}
= E(ξ|G1).

Furthermore, if A ∈ G1, then A ∈ G and EηIA = EξIA = Eη1IA
by definition. The equality of the extreme terms by definition means that
E(η|G1) = η1. The theorem is proved.

Next we study the properties of conditional expectations related to in-
equalities and limits.

7. Theorem. (i) If E|ξ1|, E|ξ2| < ∞, and ξ2 ≥ ξ1 (a.s.), then E(ξ2|G) ≥
E(ξ1|G) (a.s.).

(ii) (The monotone convergence theorem) If E|ξi|, E|ξ| < ∞, ξi+1 ≥ ξi
(a.s.) for i = 1, 2, ... and ξ = lim

i→∞
ξi (a.s.), then

lim
i→∞

E(ξi|G) = E(ξ|G) (a.s.).

(iii) (Fatou’s theorem) If ξi ≥ 0, Eξi < ∞, i = 1, 2, ..., and E lim
i→∞

ξi <

∞, then

E{ lim
i→∞

ξi|G} ≤ lim
i→∞

E{ξi|G} (a.s.).

(iv) (The dominated convergence theorem) If |ξi| ≤ η, Eη <∞, and the
limit lim

i→∞
ξi =: ξ exists, then



74 Chapter 3. Martingales, Sec 1

E(ξ|G) = lim
i→∞

E(ξi|G) (a.s.).

(v) (Jensen’s inequality) If φ(t) is finite and convex on R and E|ξ| +
E|φ(ξ)| <∞, then E(φ(ξ)|G) ≥ φ(E(ξ|G)) (a.s.).

Proof. (i) Let ηi = E(ξi|G), A = {ω : η2(ω) − η1(ω) ≤ 0}. Then

E(η2 − η1)− = Eη1IA − Eη2IA = Eξ1IA −Eξ2IA ≤ 0.

Hence E(η2 − η1)− = 0 and η2 ≥ η1 (a.s.).
(ii) Again let ηi = E(ξi|G). Then the sequence ηi increases (a.s.) and

if η := limi→∞ ηi on the set where the limit exists, then by the monotone
convergence theorem

EξIA = lim
i→∞

EξiIA = lim
i→∞

EηiIA = EηIA

for every A ∈ G. Hence by definition η = E(ξ|G).
(iii) Observe that if an, bn are two sequences of numbers and the lim an

exists and an ≤ bn, then lim an ≤ lim bn. Since inf(ξi, i ≥ n) increases with
n and is less than ξn for each n, by the above we have

E( lim
n→∞ inf(ξi, i ≥ n)|G) = lim

n→∞E(inf(ξi, i ≥ n)|G) ≤ lim
n→∞

E(ξn|G) (a.s.).

(iv) Owing to (iii),

lim
i→∞

E(ξi|G) = lim
i→∞

E(ξi + η|G) − E(η|G) ≥ E(ξ + η|G) − E(η|G) = E(ξ|G)

(a.s.). Upon replacing ξi and ξ with −ξi and −ξ, we also get

lim
i→∞

E(ξi|G) ≤ E(ξ|G)

(a.s.). The combination of these two inequalities proves (iv).
(v) It is well known that there exists a countable set of pairs (ai, bi) ∈ R

2

such that for all t

φ(t) = sup
i

(ait+ bi).

Hence, for any i, φ(t) ≥ ait + bi and E(φ(ξ)|G) ≥ aiE(ξ|G) + bi (a.s.). It
only remains to take the sup with respect to countably many i’s (preserving
(a.s.)). The theorem is proved.

8. Corollary. If ξ ≥ 0 and Eξ <∞, then E(ξ|G) ≥ 0 (a.s.).

9. Corollary. If p ≥ 1 and E|ξ|p < ∞, then |E(ξ|G)|p ≤ E(|ξ|p|G) (a.s.).
In particular, |E(ξ|G)| ≤ E(|ξ||G) (a.s.).
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10. Corollary. If E|ξ| <∞ and E|ξ − ξi| → 0 as i→ ∞, then

E|E(ξ|G) − E(ξi|G)| ≤ E|ξ − ξi| → 0.

11. Remark. The monotone convergence theorem can be used to define
E(ξ|G) as the limit of the increasing sequence E(ξ ∧ n|G) as n → ∞ for
any ξ satisfying Eξ− < ∞. With this definition we would not need the
condition E|φ(ξ)| <∞ in Theorem 7 (v), and some other results would hold
true under less restrictive assumptions. However, in this book the notation
E(ξ|G) is only used for ξ with E|ξ| <∞.

The following theorem shows the relationship between conditional ex-
pectations and independence.

12. Theorem. (i) Let E|ξ| <∞ and assume that ξ and G are independent
(see Definition 2.5.1). Then E(ξ|G) = Eξ (a.s.). In particular, E(c|G) = c
(a.s.) for any constant c.

(ii) Let E|ξ| <∞ and B ∈ G. Then E(ξIB |G) = IBE(ξ|G) (a.s.).

(iii) Let E|ξ| < ∞, let ζ be G-measurable, and let E|ξζ| < ∞. Then
E(ξζ|G) = ζE(ξ|G) (a.s.).

Proof. (i) Let κn(t) = 2−n[2nt] and ξn = κn(ξ). Take A ∈ G and notice
that |ξ − ξn| ≤ 2−n. Then our assertion follows from

EξIA = lim
n→∞E(ξnIA) = lim

n→∞

∞∑
k=−∞

k

2n
P (k2−n ≤ ξ < (k + 1)2−n, A)

= lim
n→∞

∞∑
k=−∞

k

2n
P (k2−n ≤ ξ < (k + 1)2−n)P (A)

= P (A) lim
n→∞

∞∑
k=−∞

k

2n
P (k2−n ≤ ξ < (k + 1)2−n) = P (A)Eξ = E(IAEξ).

(ii) For η = E(ξ|G) and any A ∈ G we have

E(ξIB)IA = EξIAB = EηIAB = E(ηIB)IA,

which yields the result by definition.
(iii) Denote ζn = κn(ζ) and observe that |ζnξ| ≤ |ζξ|. Therefore, Eζnξ

and E(ζnξ|G) exist. Also let Bnk = {ω : k2−n ≤ ζ < (k + 1)2−n}. Then

IBnk
E(ζnξ|G) = E(IBnk

ζnξ|G) = k2−nIBnk
E(ξ|G) = IBnk

ζnE(ξ|G)
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(a.s.). In other words, E(ζnξ|G) = ζnE(ξ|G) on Bnk (a.s.). Since
⋃

k Bnk =
Ω, this equality holds almost surely. By letting n→ ∞ and using |ζn − ζ| ≤
2−n, we get the result. The theorem is proved.

Sometimes the following generalization of Theorem 12 (iii) is useful.

13. Theorem. Let f(x, y) be a Borel nonnegative function on R
2, and let

ζ be G-measurable and ξ independent of G. Assume Ef(ξ, ζ) < ∞. Denote
Φ(y) := Ef(ξ, y). Then Φ(y) is a Borel function of y and

E(f(ξ, ζ)|G) = Φ(ζ) (a.s.). (1)

Proof. We just repeat part of the usual proof of Fubini’s theorem. Let
Λ be the collection of all Borel sets B ⊂ R

2 such that EIB(ξ, y) is a Borel
function and

E(IB(ξ, ζ)|G) = (EIB(ξ, y))|y=ζ (a.s.). (2)

On the basis of the above results it is easy to check that Λ is a λ-system.
In addition, Λ contains the π-system Π of all sets A×B with A,B ∈ B(R),
since IA×B(ξ, y) = IB(y)IA(ξ). Therefore, Λ contains the smallest σ-field
generated by Π. Since σ(Π) = B(R2), EIB(ξ, y) is a Borel function for all
Borel B ∈ R

2.
Now a standard approximation of nonnegative Borel functions by linear

combinations of indicators shows that Φ(y) is indeed a Borel function and
leads from (2) to (1). The theorem is proved.

In some cases one can find conditional expectations by using Exercise 3
and the following result, the second assertion of which is called the normal
correlation theorem.

14. Theorem. (i) Let G be a σ-field, G ⊂ F . Denote H = L2(F , P ),
H1 = L2(G, P ), and let πG be the orthogonal projection operator of H on
H1. Then, for each random variable ξ with Eξ2 <∞, we have E(ξ|G) = πGξ
(a.s.). In particular,

E(ξ − πGξ)2 = inf{E(ξ − η)2 : η is G-measurable}.

(ii) Let (ξ, ξ1, ..., ξn) be a Gaussian vector and G the σ-field generated by
(ξ1, ..., ξn). Then E(ξ|G) = a+ b1ξ1 + ...+ bnξn (a.s.), where (a, b1, ..., bn) is
any solution of the system

Eξ =a+ b1Eξ1 + ...+ bnEξn,

Eξξi =aEξi + b1Eξ1ξi + ...+ bnEξnξi, i = 1, ..., n.
(3)
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Furthermore, system (3) always has at least one solution.

Proof. (i) We have that πGξ is G-measurable, or at least has a G-
measurable modification for which we use the same notation. Furthermore,
ξ − πGξ ⊥ η for any η ∈ H1, so that E(ξ − πGξ)η = 0. For η = IA with
A ∈ G this yields EξIA − EIAπGξ = 0, which by definition means that
E(ξ|G) = πGξ.

(ii) The function E(ξ−(a+b1ξ1+ ...+bnξn))2 is a nonnegative quadratic
function of (a, b1, ..., bn).

15. Exercise. Prove that any nonnegative quadratic function attains its
minimum at at least one point.

Now take a point (a, b1, ..., bn) at which E(ξ − (a + b1ξ1 + ... + bnξn))2

takes its minimum value, and write that all first derivatives with respect to
(a, b1, ..., bn) vanish at this point. The most convenient way to do this is
to express E(ξ − (a + b1ξ1 + ... + bnξn))2 by developing the second power
and factoring out all products of constants. Then we will see that system
(3) has a solution. Next, notice that for any solution of (3) and η = ξ −
(a+ b1ξ1 + ...+ bnξn) we have

Eηξi = 0, Eη = 0.

It follows that in the Gaussian vector (η, ξ1, ..., ξn) the first component is
uncorrelated with the others. The theory of characteristic functions implies
that in that case η is independent of (ξ1, ..., ξn). Since any event A ∈ G has
the form {ω : (ξ1, ..., ξn) ∈ Γ} with Borel Γ ⊂ R

n, we conclude that η and
G are independent. Hence E(η|G) = Eη = 0 (a.s.), and, adding that ξi are
G-measurable, we find that

0 = E(η|G) = E(ξ|G) − (a+ b1ξ1 + ...+ bnξn)

(a.s.). The theorem is proved.

16. Remark. Theorem 14 (i) shows another way to introduce the condi-
tional expectations on the basis of Hilbert space theory without using the
Radon-Nikodým theorem.

17. Exercise. Let (ξ, ξ1, ..., ξn) be a Gaussian vector with mean zero, and
L the set of all linear combinations of ξi with constant coefficients. Prove
that E(ξ|G) coincides with the orthogonal projection in L2(F , P ) of ξ on L.
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2. Discrete time martingales

A notion close to martingale was used by S.N. Bernstein. According to
J. Doob [Do] the notion of martingale was introduced in 1939 by J. Ville,
who is not very well known in the theory of probability. At the present
time the theory of martingales is a very wide and well developed branch of
probability theory with many applications in other areas of mathematics.
Many mathematicians took part in developing this theory, J. Doob, P. Lévy,
P.-A. Meyer, H. Kunita, H. Watanabe, and D. Burkholder should be named
in any list of the main contributors to the theory.

Let (Ω,F , P ) be a complete probability space and let Fn, n = 1, ..., N ,
be a sequence of σ-fields satisfying F1 ⊂ F2 ⊂ ... ⊂ FN ⊂ F .

1. Definition. A sequence of real-valued random variables ξn, n = 1, ..., N ,
such that ξn is Fn-measurable and E|ξn| <∞ for every n is called

(i) a martingale if, for each 1 ≤ n ≤ m ≤ N ,

E(ξm|Fn) = ξn (a.s.);

(ii) a submartingale if, for each 1 ≤ n ≤ m ≤ N ,

E(ξm|Fn) ≥ ξn (a.s.);

(iii) a supermartingale if, for each 1 ≤ n ≤ m ≤ N ,

E(ξm|Fn) ≤ ξn (a.s.).

In those cases in which the σ-field Fn should be mentioned one says,
for instance, that ξn is a martingale relative to Fn or that (ξn,Fn) is a
martingale.

Obviously, ξn is a supermartingale if and only if −ξn is a submartingale,
and ξn is a martingale if and only if ±ξn are supermartingales. Because
of these simple facts we usually state the results only for submartingales
or supermartingales, whichever is more convenient. Also trivially, Eξn is
constant for a martingale, increases with n for submartingales and decreases
for supermartingales.

2. Exercise*. By using properties of conditional expectations, prove that:
(i) If E|ξ| <∞, then ξn := E(ξ|Fn) is a martingale.
(ii) If η1, ..., ηN are independent, Fn = σ(η1, ..., ηn), and Eηn = 0, then

ξn := η1 + ...+ ηn is an Fn-martingale.
(iii) If wt is a Wiener process and Fn = σ(w1, ..., wn), then (wn,Fn) and

(exp(wn − n/2),Fn) are martingales.
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(iv) If ξn is a martingale, φ is convex and E|φ(ξn)| <∞ for any n, then
φ(ξn) is a submartingale. In particular, |ξn| is a submartingale.

(v) If ξn is a submartingale and φ is a convex increasing function satis-
fying E|φ(ξn)| <∞ for any n, then φ(ξn) is a submartingale. In particular,
(ξn)+ is a submartingale.

3. Exercise. By Definition 1 and properties of conditional expectations, a
sequence of real-valued random variables ξn, n = 1, ..., N , such that ξn is Fn-
measurable and E|ξn| <∞ for every n, is a martingale if and only if, for each
1 ≤ n ≤ N , ξn = E(ξN |Fn) (a.s.). This describes all martingales defined
for a finite number of times. Prove that a sequence of real-valued random
variables ξn ≥ 0, n = 1, ..., N , such that ξn is Fn-measurable and E|ξn| <∞
for every n, is a submartingale if and only if, for each 1 ≤ n ≤ N , we have
ξn = E(ηn|Fn) (a.s.), where ηn is an increasing sequence of nonnegative
random variables such that ηN = ξN .

One also has a different characterization of submartingales.

4. Exercise. (i) (Doob’s decomposition) Prove that a sequence of real-
valued random variables ξn, n = 1, ..., N , such that ξn is Fn-measurable and
E|ξn| < ∞ for every n, is a submartingale if and only if ξn = An + mn,
where mn is an Fn-martingale and An is an increasing sequence such that
A1 = 0 and An is Fn−1-measurable for every n ≥ 2.

(ii) (Multiplicative decomposition) Prove that a sequence of real-valued
random variables ξn ≥ 0, n = 1, ..., N , such that ξn is Fn-measurable and
E|ξn| < ∞ for every n, is a submartingale if and only if ξn = Anmn, where
mn is a nonnegative Fn-martingale and An is an increasing sequence such
that A1 = 1 and An is Fn−1-measurable for every n ≥ 2.

5. Exercise. As a generalization of Exercise 2 (iii), prove that if (wt,Ft) is
a Wiener process, 0 ≤ t0 ≤ t1 ≤ ... ≤ tN , and bn are Ftn -measurable random
variables, then

(
exp

{ n−1∑
i=0

bi(wti+1 − wti) − (1/2)
n−1∑
i=0

b2i (ti+1 − ti)
}
,Ftn

)
,

n = 1, ..., N , is a martingale with expectation 1.

The above definition describes martingales with discrete time parameter.
Similarly one introduces martingales defined on any subset of R. A distin-
guished feature of discrete time martingales is described in the following
lemma.

6. Lemma. (ξn,Fn)Nn=1 is a martingale if and only if the ξn are Fn-measur-
able and
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E|ξn| <∞ ∀n ≤ N, E(ξn+1|Fn) = ξn (a.s.) ∀n ≤ N − 1.

Similar assertions are true for sub- and supermartingales.

Proof. The “only if” part is obvious. To prove the “if” part, notice that,
for m = n, ξn is Fn-measurable and E(ξm|Fn) = ξn (a.s.). For m = n + 1
this equality holds by the assumption. For m = n+ 2, since Fn ⊂ Fn+1 we
have

E(ξm|Fn) = E(E(ξn+2|Fn+1)|Fn) = E(ξn+1|Fn) = ξn (a.s.).

In the same way one considers other m ∈ {n, ...,N}. The lemma is proved.

7. Definition. Let real-valued random variables ξn and σ-fields Fn ⊂ F
be defined for n = 1, 2, ... and be such that ξn is Fn-measurable and

E|ξn| <∞, Fn+1 ⊂ Fn, E(ξn|Fn+1) = ξn+1

(a.s.) for all n. Then we say that (ξn,Fn) is a reverse martingale.

An important and somewhat unexpected example of a reverse martingale
is given in the following theorem.

8. Theorem. Let η1, ..., ηN be independent identically distributed random
variables with E|η1| <∞. Define

ξn = (η1 + ...+ ηn)/n, Fn = σ(ξm : m = n, ...,N).

Then (ξn,Fn) is a reverse martingale.

Proof. Simple manipulations show that it suffices to prove that

E(ηi|ξn, ..., ξN ) = ξn (a.s.) (1)

for n = 1, ..., N and i = 1, ..., n. In turn (1) will be proved if we prove that

E(η1|ξn, ..., ξN ) = E(ηi|ξn, ..., ξN ) i = 1, ..., n (2)

(a.s.). Indeed, then, upon letting ζ = E(η1|ξn, ..., ξN ), we find that

ξn = E(ξn|ξn, ..., ξN ) =
1
n
E
(
(η1 + ...+ ηn)|ξn, ..., ξN

)
=

1
n
nζ

(a.s.), which implies (1).
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To prove (2), observe that any event A ∈ σ(ξn, ..., ξN ) can be written as
{ω : (ξn, ..., ξN ) ∈ B}, where B is a Borel subset of R

N−n+1. In addition,
the vectors (η1, η2, ..., ηN ) and (η2, η1, η3, ..., ηN ) have the same distribution.
Therefore, the vectors

(η1, η1 + η2 + ...+ ηn, ..., η1 + η2 + ...+ ηN )

and

(η2, η2 + η1 + η3 + ...+ ηn, ..., η2 + η1 + η3 + ...+ ηN )

have the same distribution. In particular, for n ≥ 2,

Eη2I(ξn,...,ξN)∈B = Eη1I(ξn,...,ξN)∈B = EζI(ξn,...,ξN)∈B .

Hence ζ = E(η2|ξn, ..., ξN ) (a.s.). Similarly one proves (2) for other values
of i. The theorem is proved.

3. Properties of martingales

First we adapt the definition of filtration of σ-fields from Sec. 2.7 to the case
of sequences.

1. Definition. Let Fn be σ-fields defined for n = 0, 1, 2, ... and such that
Fn ⊂ F and Fn ⊂ Fn+1. Then we say that we are given an (increasing)
filtration of σ-fields Fn.

2. Definition. Let τ be a random variable with values in {0, 1, ...,∞}. We
say that τ is a stopping time (relative to Fn) if {ω : τ(ω) > n} ∈ Fn for all
n = 0, 1, 2, ....

Observe that we do not assume τ to be finite, on a subset of Ω it may be
equal to ∞. The simplest examples of stopping time are given by nonrandom
nonnegative integers.

3. Exercise*. Prove that a nonnegative integer-valued random variable τ
is a stopping time if and only if {ω : τ = n} ∈ Fn for all n ≥ 0. Also prove
that τ ∧σ, τ ∨σ, and τ +σ are stopping times if τ and σ are stopping times.

In applications, quite often the σ-field Fn is interpreted as the set of all
events observable or happening up to moment of time n when we conduct a
series of experiments. Assume that we decided to stop our experiments at a
random time τ and then, of course, stop observing its future development.
Then, for every n, the event τ = n definitely either occurs or does not occur
on the interval of time [0, n], which is transformed into the requirement
{τ = n} ∈ Fn. This is the origin of the term “stopping time”.
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4. Example. Let ξn, n = 0, 1, 2, ..., be a sequence of Fn-measurable ran-
dom variables, and let c ∈ R be a constant. Define

τ = inf{n ≥ 0 : ξn(ω) ≥ c} (inf ∅ := ∞)

as the first time when ξn hits [c,∞) (making the definition inf ∅ := ∞
natural). It turns out that τ is a stopping time.

Intuitively it is clear, since, for every ω, knowing ξ0, ..., ξn we know
whether one of them is higher than c or not, that is, whether τ > n or
not, which shows that {ω : τ > n} ∈ σ(ξ0, ..., ξn) ⊂ Fn. To get a rigorous
argument, observe that

{ω : τ > n} = {ω : ξ0 < c, ..., ξn(ω) < c}

and this set is in Fn since, for i = 0, 1, ..., n, the ξi are Fi-measurable, and
because Fi ⊂ Fn they are Fn-measurable as well.

5. Exercise. Let ξn be integer valued and c an integer. Assume that τ
from Example 4 is finite. Is it true that ξτ = c ?

If ξn, n = 0, 1, 2, ..., is a sequence of random variables and τ is an integer-
valued variable, then the sequence ηn = ξn∧τ coincides with ξn for n ≤ τ and
equals ξτ after that. Therefore, we say that ηn is the sequence ξn stopped at
time τ .

6. Theorem (Doob). Let (ξn,Fn), n = 0, 1, 2, ..., be a submartingale, and
let τ be an Fn-stopping time. Then (ξn∧τ ,Fn), n = 0, 1, 2, ..., is a sub-
martingale.

Proof. Observe that

ξn∧τ = ξ0Iτ=0 + ...+ ξnIτ=n + ξnIτ>n, Iτ≤nξτ = ξ0Iτ=0 + ...+ ξnIτ=n.

It follows by Exercise 3 that ξn∧τ and Iτ≤nξτ are Fn-measurable. By fac-
toring out Fn-measurable random variables, we find that

E(ξ(n+1)∧τ |Fn) = E(Iτ>nξn+1|Fn)+E(Iτ≤nξτ |Fn) ≥ Iτ>nξn+Iτ≤nξτ = ξn∧τ

(a.s.). The theorem is proved.

7. Corollary. If τ is a bounded stopping time, then on the set {ω : τ ≥ n}
we have (a.s.)

E(ξτ |Fn) ≥ ξn.
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Indeed, if τ(ω) ≤ N , then ξτ = ξ(N+n)∧τ and

E(ξτ |Fn) = E(ξ(N+n)∧τ |Fn) ≥ ξn∧τ ,

where the last term equals ξn if τ ≥ n.

8. Definition. Let τ be a stopping time. Define Fτ as the family of all
events A ∈ F such that

A ∩ {ω : τ(ω) ≤ n} ∈ Fn ∀n = 0, 1, 2, ... .

9. Exercise*. The notation Fτ needs a justification. Prove that, if for an
integer n we have τ ≡ n, then Fτ = Fn.

Clearly, if τ ≡ ∞, then Fτ = F . Also it is not hard to see that Fτ is
always a σ-field and Fτ ⊂ F . This σ-field is interpreted as the collection
of all events which happen during the time interval [0, τ ]. The simplest
properties of σ-fields Fτ are collected in the following lemma.

10. Lemma. Let τ and σ be stopping times, let ξ, ξn, n = 0, 1, 2, ...,∞, be
random variables, let ξn be Fn-measurable (F∞ := F), and let E|ξ| < ∞.
Then

(i) A ∈ Fτ ⇐⇒ A ∩ {ω : τ(ω) = n} ∈ Fn ∀n = 0, 1, 2, ...,∞;

(ii) {ω : τ ≤ σ} ∈ Fτ ∩ Fσ and, if τ ≤ σ, then Fτ ⊂ Fσ;

(iii) τ , ξτ , ξnIτ=n are Fτ -measurable for all n = 0, 1, 2, ...,∞;

(iv) E(ξ|Fτ ) = E(ξ|Fn) (a.s.) on the set {τ = n} for any n = 0, 1, 2, ...,∞.

Proof. We set the proof of (i) as an exercise. To prove (ii) notice that

{τ ≤ σ} ∩ {σ = n} = {τ ≤ n} ∩ {σ = n} ∈ Fn,

{τ ≤ σ} ∩ {τ = n} = {τ = n, σ ≥ n} ∈ Fn.

Hence {ω : τ ≤ σ} ∈ Fτ ∩Fσ by (i). In addition, if τ ≤ σ and A ∈ Fτ , then

A ∩ {σ = n} =
n⋃

i=1

A ∩ {τ = i} ∩ {σ = n} ∈ Fn

because A ∩ {τ = i} ∈ Fi ⊂ Fn. Therefore, A ∈ Fσ for each A ∈ Fτ ; that
is, Fτ ⊂ Fσ.

(iii) Since constants are stopping times, (ii) leads to {τ ≤ n} ∈ Fτ , so
that τ is Fτ -measurable. Furthermore, for A := {ξτ < c}, where c is a
constant, we have

A ∩ {τ = n} = {ξn < c, τ = n} ∈ Fn
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for any n = 0, 1, 2, ...,∞. Hence A ∈ Fτ and ξτ is Fτ -measurable. That the
same holds for ξnIτ=n follows from ξnIτ=n = ξτIτ=n.

(iv) Define η = Iτ=nE(ξ|Fτ ) and ζ = Iτ=nE(ξ|Fn). Notice that by (i),
for any constant c

{η < c} = {τ �= n, 0 < c} ∪ ({τ = n} ∩ {E(ξ|Fτ ) < c}) ∈ Fn.

Hence η is Fn-measurable. Also ζ is Fn-measurable due to Exercise 3.
Furthermore, for any A ∈ Fn assertion (iii) (with ξn = IA and ξk = 0 for
k �= n) implies that

EIAη = EIAIτ=nE(ξ|Fτ ) = EIAIτ=nξ = EIAζ.

Since both η and ζ are Fn-measurable, we conclude that η = E(η|Fn) = ζ
(a.s.). The lemma is proved.

11. Theorem (Doob’s optional sampling theorem). Let (ξn,Fn), n ≥ 0,
be a submartingale, and let τi, i = 1, ...,m, be bounded stopping times satis-
fying τ1 ≤ ... ≤ τm. Then (ξτi ,Fτi), i = 1, ...,m, is a submartingale.

Proof. The Fτi-measurability of ξτi follows from Lemma 10. This lemma
and Corollary 7 imply also that on the set {τi = n} we have

E(ξτi+1 |Fτi) = E(ξτi+1 |Fn) ≥ ξn = ξτi (a.s.)

since τi+1 ≥ n. Upon noticing that the union of {τi = n} is Ω, we get the
result. The theorem is proved.

12. Corollary. If τ and σ are bounded stopping times and τ ≤ σ, then
ξτ ≤ E(ξσ|Fτ ) and Eξτ ≤ Eξσ.

Surprisingly enough the inequality Eξτ ≤ Eξσ in Corollary 12 can be
taken as a definition of submartingale. An advantage of this definition is
that it allows one to avoid using the theory of conditional expectations
altogether. In connection with this we set the reader the following exercise.

13. Exercise. Let ξn be summable Fn-measurable random variables given
for n = 0, 1, .... Assume that for any bounded stopping times τ ≤ σ we have
Eξτ ≤ Eξσ, and prove that (ξn,Fn) is a submartingale.

14. Theorem (Doob-Kolmogorov inequality). (i) If (ξn,Fn), n = 0, 1, ...,
is a submartingale, c > 0 is a constant, and N is an integer, then

P{max
n≤N

ξn ≥ c} ≤ 1
c
EξN Imaxn≤N ξn≥c ≤ 1

c
E(ξN )+, (1)
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P{sup
n
ξn ≥ c} ≤ 1

c
sup

n
E(ξn)+. (2)

(ii) If (ξn,Fn), n = 0, 1, ..., is a supermartingale, ξn ≥ 0, and c > 0 is a
constant, then

P{sup
n
ξn ≥ c} ≤ 1

c
Eξ0.

Proof. (i) First we prove (1). Since the second inequality in (1) obviously
follows from the first one, we only need to prove the latter. Define

τ = inf(n ≥ 0 : ξn ≥ c).

By applying Corollary 12 with N ∧ τ and N in place of τ and σ and also
using Chebyshev’s inequality we find that

P{max
n≤N

ξn ≥ c} = P{ξτIτ≤N ≥ c} ≤ 1
c
EξτIτ≤N =

1
c
EξN∧τ Iτ≤N∧τ

≤ 1
c
EIτ≤N∧τE(ξN |FN∧τ ) =

1
c
EIτ≤N∧τ ξN =

1
c
EξNImaxn≤N ξn≥c.

To prove (2) notice that, for any ε > 0,

{sup
n
ξn ≥ c} ⊂

⋃
N

{max
n≤N

ξn ≥ c− ε}

and the terms in the union expand as N grows. Hence, for ε < c

P{sup
n
ξn ≥ c} ≤ lim

N→∞
P{max

n≤N
ξn ≥ c− ε}

≤ lim
N→∞

1
c− ε

E(ξN )+ ≤ 1
c− ε

sup
n
E(ξn)+.

The arbitrariness of ε proves (2).
(ii) Introduce τ as above and fix an integer N . Then, as in the beginning

of the proof,

P{max
n≤N

ξn ≥ c} ≤ 1
c
EξτIτ≤N =

1
c
EξN∧τIτ≤N ≤ 1

c
EξN∧τ ≤ 1

c
Eξ0.

Now one can let N → ∞ as above. The theorem is proved.
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15. Theorem (Doob’s inequality). If (ξn,Fn), n = 0, 1, ..., is a nonnega-
tive submartingale and p > 1, then

E
[
sup

n
ξn
]p ≤ qp sup

n
Eξp

n, (3)

where q = p/(p − 1). In particular,

E
[
sup

n
ξn
]2 ≤ 4 sup

n
Eξ2n.

Proof. Without losing generality we assume that the right-hand side of
(3) is finite. Then for any integer N

[
sup
n≤N

ξn
]p ≤ [ ∑

n≤N

ξn
]p ≤ Np

∑
n≤N

ξp
n, E

[
sup
n≤N

ξn
]p
<∞.

Next, by the Doob-Kolmogorov inequality, for c > 0,

P{ sup
n≤N

ξn ≥ c} ≤ 1
c
EξNIsupn≤N ξn≥c.

We multiply both sides by pcp−1, integrate with respect to c ∈ (0,∞), and
use

P (η ≥ c) = EIη≥c, ηp = p

∫ ∞

0
cp−1Iη≥c dc,

where η is any nonnegative random variable. We also use Hölder’s inequality.
Then we find that

E
[

sup
n≤N

ξn
]p ≤ qEξN

[
sup
n≤N

ξn
]p−1 ≤ q

(
Eξp

N

)1/p(
E
[

sup
n≤N

ξn
]p)1−1/p

.

Upon dividing through by the last factor (which is finite by the above) we
conclude that

E
[

sup
n≤N

ξn
]p ≤ qp sup

n
Eξp

n.

It only remains to use Fatou’s theorem and let N → ∞. The theorem is
proved.
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4. Limit theorems for martingales

Let (ξn,Fn), n = 0, 1, ..., N , be a submartingale, and let a and b be fixed
numbers such that a < b. Define consecutively the following:

τ1 = inf(n ≥ 0 : ξn ≤ a) ∧N, σ1 = inf(n ≥ τ1 : ξn ≥ b) ∧N,

τn = inf(n ≥ σn−1 : ξn ≤ a) ∧N, σn = inf(n ≥ τn : ξn ≥ b) ∧N.
Clearly 0 ≤ τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ ... and τN+i = σN+i = N for all i ≥ 0. We
have seen before that τ1 is a stopping time.

1. Exercise*. Prove that all τn and σn are stopping times.

The points (n, ξn) belong to R
2. We join the points (n, ξn) and (n +

1, ξn+1) for n = 0, ..., N − 1 by straight segments. Then we obtain a piece-
wise linear function, say l. Let us say that if ξτm ≤ a and ξσm ≥ b, then
on [τm, σm] the function l upcrosses (a, b). Denote β(a, b) the number of
upcrossings of the interval (a, b) by l. It is seen that β(a, b) = m if and only
if ξτm ≤ a, ξσm ≥ b and either ξτm+1 > a or ξσm+1 < b.

The following theorem is the basis for obtaining limit theorems for mar-
tingales.

2. Theorem (Doob’s upcrossing inequality). If (ξn,Fn), n = 0, 1, ..., N , is
a submartingale and a < b, then

Eβ(a, b) ≤ 1
b− a

E(ξN − a)+.

Proof. Notice that β(a, b) is also the number of upcrossing of (0, b − a)
by the piecewise linear function constructed from (ξn − a)+. Furthermore,
ξn−a and (ξn−a)+ are submartingales along with ξn. It follows that without
loss of generality we may assume that ξn ≥ 0 and a = 0. In that case notice
that any upcrossing of (0, b) can only occur on an interval of type [τi, σi]
with ξσi − ξτi ≥ b. Also in any case, ξσn − ξτn ≥ 0. Hence,

bβ(a, b) ≤ (ξσ1 − ξτ1) + (ξσ2 − ξτ2) + ...+ (ξσN
− ξτN

).

Furthermore, τn+1 ≥ σn and Eξτn+1 ≥ Eξσn . It follows that

bEβ(a, b)

≤ −Eξτ1 + (Eξσ1 −Eξτ2) + (Eξσ2 −Eξτ3) + ...+ (EξσN−1
−EξτN

) +EξσN

≤ EξσN
− Eξτ1 ≤ EξσN

= EξN ,

thus proving the theorem.
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3. Exercise. For ξn ≥ 0 and a = 0 it seems that typically ξσn ≥ b and
ξτn+1 = 0. Then why do we have Eξτn+1 ≥ Eξσn ?

If we have a submartingale (ξn,Fn) defined for all n = 0, 1, 2, ..., then
we can construct our piecewise linear function on (0,∞) and define β∞(a, b)
as the number of upcrossing of (a, b) on [0,∞) by this function. Obviously
β∞(a, b) is the monotone limit of upcrossing numbers on [0, N ]. By Fatou’s
theorem we obtain the following.

4. Corollary. If (ξn,Fn), n = 0, 1, 2, ..., is a submartingale, then

Eβ∞(a, b) ≤ 1
b− a

sup
n
E(ξn − a)+ ≤ 1

b− a
(sup

n
E(ξn)+ + |a|).

5. Theorem. Let one of the following conditions hold:
(i) (ξn,Fn), n = 0, 1, 2, ..., is a submartingale and supn E(ξn)+ <∞;

(ii) (ξn,Fn), n = 0, 1, 2, ..., is a supermartingale and supn E(ξn)− <∞;

(iii) (ξn,Fn), n = 0, 1, 2, ..., is a martingale and supn E|ξn| <∞.

Then the limit lim
n→∞ ξn exists with probability one.

Proof. Obviously we only need prove the assertion under condition (i).
Define ρ as the set of all rational numbers on R, and notice that almost
obviously

{ω : lim
n→∞ ξn(ω) > lim

n→∞
ξn(ω)} =

⋃
a,b∈ρ,a<b

{ω : β∞(a, b) = ∞}.

Then it only remains to notice that the events on the right have probability
zero since

Eβ∞(a, b) ≤ 1
b− a

(sup
n
E(ξn)+ + |a|) <∞,

so that β∞(a, b) <∞ (a.s.). The theorem is proved.

6. Corollary. Any nonnegative supermartingale converges at infinity with
probability one.

7. Corollary (cf. Exercise 2.2). If (ξn,Fn), n = 0, 1, 2, ..., is a martingale
and ξ is a random variable such that |ξn| ≤ ξ for all n and Eξ < ∞, then
ξn = E(ξ∞|Fn) (a.s.), where ξ∞ = lim

n→∞ ξn.
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Indeed, by the dominated convergence theorem for martingales

ξn = E(ξn+m|Fn) = lim
m→∞E(ξn+m|Fn) = E(ξ∞|Fn).

Corollary 7 describes all bounded martingales. The situation with un-
bounded, even nonnegative, martingales is much more subtle.

8. Exercise. Let ξn = exp(wn − n/2), where wt is a Wiener process. By
using Corollary 2.4.3, show that ξ∞ = 0, so that ξn > E(ξ∞|Fn). Conclude
that E supn ξn = ∞ and, moreover, that for every nonrandom sequence
n(k) → ∞, no matter how sparse it is, E supk ξn(k) = ∞.

In the case of reverse martingales one does not need any additional
conditions for its limit to exist.

9. Theorem. Let (ξn,Fn), n = 0, 1, 2, ..., be a reverse martingale. Then
lim

n→∞ ξn exists with probability one.

Proof. By definition (ξ−n,F−n), n = ...,−2,−1, 0, is a martingale. De-
note by βN (a, b) the number of upcrossing of (a, b) by the piecewise linear
function constructed from ξ−n restricted to [−N, 0]. By Doob’s theorem,
EβN (a, b) ≤ (E|ξ0| + |a|)/(b − a). Hence E lim

N→∞
βN (a, b) < ∞, and we get

the result as in the proof of Theorem 5.

10. Theorem (Lévy-Doob). Let ξ be a random variable such that E|ξ| <
∞, and let Fn be σ-fields defined for n = 0, 1, 2, ... and satisfying Fn ⊂ F .

(i) Assume Fn ⊂ Fn+1 for each n, and denote by F∞ the smallest σ-field
containing all Fn (F∞ =

∨
n Fn). Then

lim
n→∞E(ξ|Fn) = E(ξ|F∞) (a.s.), (1)

lim
n→∞E|E(ξ|Fn) −E(ξ|F∞)| = 0. (2)

(ii) Assume Fn ⊃ Fn+1 for all n and denote F∞ =
⋂

n Fn. Then (1)
and (2) hold again.

To prove the theorem we need the following remarkable result.

11. Lemma (Scheffé). Let ξ, ξn, n = 1, 2, ..., be nonnegative random vari-
ables such that ξn

P→ ξ and Eξn → Eξ as n→ ∞. Then E|ξn − ξ| → 0.
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This lemma follows immediately from the dominated convergence theo-
rem and from the relations

|ξ − ξn| = 2(ξ − ξn)+ − (ξ − ξn), (ξ − ξn)+ ≤ ξ+, (ξ − ξn)+
P→ 0.

Proof of Theorem 10. (i) Writing ξ = ξ+ − ξ− shows that we may
concentrate on ξ ≥ 0. Then Lemma 11 implies that we only need to prove
(1).

Denote η = E(ξ|F∞) and observe that

ηn := E(ξ|Fn) = E(E(ξ|F∞)|Fn) = E(η|Fn).

Therefore it only remains to prove that if η is F∞-measurable, η ≥ 0, and
Eη <∞, then ηn := E(η|Fn) → η (a.s.).

Obviously (ηn,Fn) is a nonnegative martingale. By Theorem 5 it has a
limit at infinity, which we denote η∞. Since the ηn are F∞-measurable, η∞
is F∞-measurable as well. Now for each k = 0, 1, 2, ... and A ∈ Fk we have
A ∈ Fn for all large n, and by Fatou’s theorem

EIAη∞ ≤ lim
n→∞

EIAηn = lim
n→∞

EIAE(η|Fn) = EIAη. (3)

Hence EIA(η−η∞) is a nonnegative measure defined on the algebra
⋃

n Fn.
This measure uniquely extends to F∞ and yields a nonnegative measure on
F∞. Since EIA(η−η∞) considered on F∞ is obviously one of the extensions,
we have EIA(η−η∞) ≥ 0 for all A ∈ F∞. Upon taking A = {ω : η−η∞ ≤ 0},
we see that E(η − η∞)− = 0, that is, η ≥ η∞ (a.s.).

Furthermore, if η is bounded, then the inequality in (3) becomes an
equality, implying η = η∞ (a.s.). Thus, in general η ≥ η∞ (a.s.) and, if
η is bounded, then η = η∞ (a.s.). It only remains to notice that, for any
constant a ≥ 0,

η ≥ η∞ = lim
n→∞E(η|Fn) ≥ lim

n→∞E(η ∧ a|Fn) = η ∧ a (a.s.),

that is, η ≥ η∞ ≥ η ∧ a (a.s.), and let a→ ∞. This proves (i).
(ii) As in (i) we may and will assume that ξ ≥ 0. Denote ξn = E(ξ|Fn).

Then (ξn,Fn) is a reverse martingale, and limn→∞ ξn exists with probability
one. We define ξ∞ to be this limit where it exists, and 0 otherwise. Ob-
viously ξ∞ is Fn-measurable for any n, and therefore F∞-measurable. Let
ξ̂ := E(ξ|F∞) and for any A ∈ F∞ write

EIAξ ≤ lim
n→∞

EIAξn = EIAξ = EIAξ̂.
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It follows that ξ∞ ≤ ξ̂ (a.s.). Again, if ξ is bounded, then ξ∞ = ξ̂ (a.s.).
Next,

ξ̂ ≥ ξ∞ = lim
n→∞E(ξ|Fn) ≥ lim

n→∞E(ξ ∧ a|Fn) = E(ξ ∧ a|F∞)

(a.s.). By letting a → ∞ and using the monotone convergence theorem we
conclude that

ξ̂ ≥ ξ∞ ≥ lim
a→∞E(ξ ∧ a|F∞) = E(ξ|F∞) = ξ̂

(a.s.). The theorem is proved.
From the Lévy-Doob theorem one gets one more proof of the strong law

of large numbers.

12. Theorem (Kolmogorov). Let η1, η2, ... be independent identically dis-
tributed random variables with E|η1| <∞. Denote m = Eη1. Then

lim
n→∞

1
n

(η1 + ...+ ηn) = m (a.s.), lim
n→∞E

∣∣ 1
n

(η1 + ...+ ηn) −m
∣∣ = 0.

Proof. Without losing generality we assume that m = 0. Define

ξn = (η1 + ...+ ηn)/n, FN
n = σ(ξn, ..., ξN ), Fn =

∨
N≥n

FN
n .

We know that (ξn,FN
n ), n = 1, 2, ..., N , is a reverse martingale (Theorem

2.8). In particular, ξn = E(ξ1|FN
n ) (a.s.), whence by Lévy’s theorem ξn =

E(ξ1|Fn) (a.s.). Again by Lévy’s theorem, ζ := limn→∞ ξn exists almost
surely and in L1(F , P ). It only remains to prove that ζ = 0 (a.s.).

Since E|η1| <∞ and Eη1 = 0, the function φ(t) = Eeitη1 is continuously
differentiable and φ′(0) = 0. In particular, φ(t) = 1 + o(t) as t→ 0 and

Eeitζ = lim
n→∞(φ(t/n))n = lim

n→∞(1 + o(t/n))n = 1

for any t. This implies ζ = 0 (a.s.). The theorem is proved.
One application of martingales outside of probability theory is related

to differentiating.

13. Exercise. Prove the following version of Lebesgue’s differentiation the-
orem. Let f(t) be a finite monotone function on [0, 1]. For x ∈ [0, 1] and
integer n ≥ 0 write x = k2−n + ε, where k is an integer and 0 ≤ ε < 2−n,
and define an(x) = k2−n and bn(x) = (k + 1)2−n. Prove that

lim
n→∞

f(bn(x)) − f(an(x))
bn(x) − an(x)
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exists for almost every x ∈ [0, 1].

The following exercise bears on a version of Lebesgue’s differentiation
theorem for measures.

14. Exercise. Let (Ω,F) be a measurable space and (Fn) an increasing
filtration of σ-fields Fn ⊂ F . Assume F =

∨
n Fn. Let µ and ν be two

probability measures on (Ω,F). Denote by µn and νn the restrictions of
µ and ν respectively on (Ω,Fn), and show that for any n and nonnegative
Fn-measurable function f we have

∫
Ω
f ν(dω) =

∫
Ω
f νn(dω). (4)

Next, assume that νn is absolutely continuous with respect to µn and let
ρn(ω) be the Radon-Nikodým derivative νn(dω)/µn(dω). Prove that:

(i) lim
n→∞ ρn exists µ-almost everywhere and, if we denote

ρ(ω) =

{
lim

n→∞ ρn(ω) if ρ∗ := supn ρn <∞,

∞ otherwise,

then
(ii) if ν is absolutely continuous with respect to µ, then ρ = ν(dω)/µ(dω)

and ρn → ρ in L1(F , µ), while
(iii) in the general case ν admits the following decomposition into the

sum of absolutely continuous and singular parts: ν = νa + νs, where

νa(A) =
∫

Ω
IAρµ(dω), νs(A) = ν(A ∩ {ρ = ∞}).

5. Hints to exercises

1.4 Notice that, for any Borel f(y) with E|f(η)| <∞, we have

Ef(η) =
∫

R2

f(y)p(x, y) dxdy.

2.2 In (iii) notice that wm = wn +(wm−wn), where wm−wn is independent
of Fn.
2.3 In the proof of necessity start by writing (0 · 0−1 := 0)

ξn = ξn
(
E(ξn+1|Fn)

)−1
E(ξn+1|Fn) = ζnE(ξn+1|Fn) = E(ζnξn+1|Fn),

where ζn := ξn
(
E(ξn+1|Fn)

)−1 ≤ 1, then iterate.
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2.4 (ii) If the decomposition exists, then E(ξn|Fn−1) = Anmn−1.
2.5 Use Theorem 1.13.
3.3 Consider the event {τ ≤ n}.
3.5 In some cases the answer is “no”.
3.13 For A ∈ Fn define τ = n on A and τ = n+ 1 on Ac.
4.13 On the probability space ([0, 1],B([0, 1]), �) take the filtration of σ-
fields Fn each of which is defined as the σ-field generated by the sets

[k2−n, (k + 1)2−n), k = 0, 1, ..., 2n − 1.

Then check that {f(bn(x)) − f(an(x))}2n is a martingale relative to Fn.
4.14 (i) By using (4.4) prove that ρn is an Fn-martingale on (Ω,F , µ). (iii)
For each a > 0 define τa = inf{n ≥ 0 : ρn > a} and show that for every n,
A ∈ Fn, and m ≥ n

ν(A) = νn(A) =
∫

A
Iτa>m(ρm ∧ a)µ(dω) + ν(A ∩ {τa ≤ m}).

By letting m→ ∞, derive that

ν(A) =
∫

A
Iρ∗≤aρµ(dω) + ν(A ∩ {ρ∗ > a}).

Next let a → ∞ and extend the formula from A ∈ Fn to all of F . (ii) Use
(iii), remember that ν is a probability measure, and use Scheffé’s lemma.





Chapter 4

Stationary Processes

1. Simplest properties of second-order
stationary processes

1. Definition. Let T ∈ [−∞,∞). A complex-valued random process ξt
defined on (T,∞) is called second-order stationary if E|ξt|2 < ∞, Eξt is
constant, and the function Eξsξ̄t depends only on the difference s − t for
t, s > T .

The function R(s − t) = Eξsξ̄t is called the correlation function of ξt.
We will always assume that Eξt ≡ 0 and that R(t) is continuous in t.

2. Exercise*. Prove that R is continuous if and only if the function ξt is
continuous in t in the mean-square sense, that is, as a function from (T,∞)
to L2(F , P ).

Notice some simple properties of R. Obviously, R(0) = Eξtξ̄t = E|ξt|2
is a real number. Also R(t) = Eξtξ̄0 if 0 ∈ (T,∞), and generally

R(t) = Eξr+tξ̄r, R(−t) = Eξ̄s−tξs = Eξsξ̄s−t = R̄(t) (1)

provided r, r+ t, s, s− t ∈ (T,∞). The most important property of R is that
it is positive definite.

3. Definition. A complex-valued function r(t) given on (−∞,∞) is called
positive definite if for every integer n ≥ 1, t1, ..., tn ∈ R, and complex
z1, ..., zn we have

95
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n∑
j,k=1

r(tj − tk)zj z̄k ≥ 0 (2)

(in particular, it is assumed that the sum in (2) is a real number).

That R is positive definite, one proves in the following way: take s large
enough and write

n∑
j,k=1

R(tj − tk)zj z̄k = E

n∑
j,k=1

zj z̄kξs+tj ξ̄s+tk = E|
n∑

j=1

zjξs+tj |2 ≥ 0.

Below we prove the Bochner-Khinchin theorem on the general form of
positive definite functions. We need the following.

4. Lemma. Let r(t) be a continuous positive definite function. Then
(i) r(0) ≥ 0,

(ii) r̄(t) = r(−t), |r(t)| ≤ r(0) and, in particular, r(t) is a bounded
function,

(iii) if
∫∞
−∞ |r(t)| dt <∞, then∫ ∞

−∞
r(t) dt ≥ 0,

(iv) for every x ∈ R, the function eitxr(t), as a function of t, is positive
definite.

Proof. Assertion (i) follows from (2) with n = 1, z = 1. Assertion (iv)
also trivially follows from (2) if one replaces zk with zkeitkx.

To prove (ii), take n = 2, t1 = t, t2 = 0, z1 = z, z2 = λ, where λ is a real
number. Then (2) becomes

r(0)(|z|2 + λ2) + λr(t)z + λr(−t)z̄ ≥ 0. (3)

It follows immediately that r(t)z+r(−t)z̄ is real for any complex z. Further-
more, since r(−t)z̄+ r̄(−t)z = 2Re r(−t)z̄ is real, the number (r(t)− r̄(−t))z
is real for any complex z, which is only possible when r(t) − r̄(−t) = 0.

Next, from (3) with z = r̄(t) we get

r(0)|r(t)|2 + r(0)λ2 + 2λ|r(t)|2 ≥ 0
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for all real λ. It follows that |r(t)|4 − r2(0)|r(t)|2 ≤ 0. This proves asser-
tion (ii).

Turning to assertion (iii), remember that r is continuous and its integral
is the limit of appropriate sums. Viewing dt and ds as zj and z̄k, respectively,
from (2), we get∫ N

−N

∫ N

−N
r(t− s) dtds ∼

∑
i,j

r(ti − tj)∆ti∆tj ≥ 0,

0 ≤ 1
N

∫ N

−N

∫ N

−N
r(t− s) dtds =

∫ ∞

−∞
r(t)(2 − |t|

N )I|t|≤2N dt,

where the equality follows after the change of variables t− s = t′, t+ s = s′.
By the Lebesgue dominated convergence theorem the last integral converges
to 2

∫∞
−∞ r(t) dt. This proves assertion (iii) and finishes the proof of the

lemma.

5. Theorem (Bochner-Khinchin). Let r(t) be a continuous positive definite
function. Then there exists a unique nonnegative measure F on R such that
F (R) = r(0) and

r(t) =
∫

R

eitxF (dx) ∀t ∈ R. (4)

Proof. The uniqueness follows at once from the theory of characteristic
functions. In the proof of existence, without loss of generality, one may
assume that r(0) �= 0 and even that r(0) = 1.

Assuming that r(0) = 1, we first prove (4) in the particular case in which

∫
R

|r(t)| dt <∞. (5)

Then by Lemma 4 (ii) we have∫
R

|r(t)|2 dt <∞.

Next, define f as the Fourier transform of r:

f(x) =
1
2π

∫
R

e−itxr(t) dt.

By Lemma 4 (iii), (iv) we have f(x) ≥ 0. From the theory of the Fourier
transform we obtain that f ∈ L2(R) and
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r(t) =
∫

R

eitxf(x) dx (6)

for almost all t, where the last integral is understood in the sense of L2 (as
the limit in L2 of

∫
|x|≤n e

itxf(x) dx). To finish the proof of the theorem in
our particular case, we prove that f is integrable, so that the integral in (6)
exists in the usual sense and is a continuous function of t, which along with
the continuity of r implies that (6) holds for all t rather than only almost
everywhere.

By Parseval’s identity, for s > 0,∫
R

e−sx2/2f(x) dx =
1√
2πs

∫
R

e−t2/(2s)r(t) dt

(knowing the characteristic function of the normal law, we know that the
function √

s/(2π)e−sx2/2

is the Fourier transform of e−t2/(2s)). The last integral is rewritten as
Er(

√
s ξ), where ξ ∼ N(0, 1), and it is seen that, owing to boundedness

and continuity of r, this integral converges to r(0) as s ↓ 0. Now the mono-
tone convergence theorem (f ≥ 0) shows that∫

R

f(x) dx = r(0) <∞.

This proves the theorem under condition (5).
In the general case, for ε > 0, define

rε(t) := r(t)e−ε2t2/2 = Er(t)eitεξ .

The second equality and Lemma 4 (iv) show that rε is positive definite. Since
rε(0) = 1 and

∫
R
|rε| dt < ∞, there exists a distribution for which rε is the

characteristic function. Now remember that in probability theory one proves
that if a sequence of characteristic functions converges to a function which
is continuous at zero, then this function is also the characteristic function
of a distribution. Since obviously rε → r as ε ↓ 0, the above-mentioned fact
brings the proof of our theorem to an end.

6. Definition. The measure F , corresponding to R, is called the spectral
measure of R or of the corresponding second-order stationary process. If F
is absolutely continuous, its density is called a spectral density of R.

From the first part of the proof of Theorem 5 we get the following.
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7. Corollary. If
∫

R
|R(t)| dt < ∞, then R admits a bounded continuous

spectral density.

From the uniqueness of representation and from (1) one easily obtains
the following.

8. Corollary. If R is real valued (R̄ = R) and the spectral density f exists,
then R is even and f is even (f(x) = f(−x) (a.e.)). Conversely, if f is
even, then R is real valued and even.

Yet another description of positive definite functions is given in the fol-
lowing theorem.

9. Theorem. A function r(t) is continuous and positive definite if and only
if it is the correlation function of a second-order stationary process.

Proof. The sufficiency has been proved above. While proving the neces-
sity, without loss of generality, we may and will assume that r(0) = 1. By the
Bochner-Khinchin theorem the spectral distribution F exists. By Theorem
1.1.12 there exists a random variable ξ with distribution F and character-
istic function r. Finally, take a random variable ϕ uniformly distributed on
[−π, π] and independent of ξ, and define

ξt = ei(ξt+ϕ), t ∈ R.

Then

Eξt = r(t)Eeiϕ = 0, Eξsξ̄t = Eeiξ(s−t) = r(s− t),

which proves the theorem.

10. Remark. We have two representations for correlation functions of second-
order stationary processes:

R(s− t) = Eξsξ̄t and R(s− t) =
∫

R

eisxeitx F (dx).

Hence, in some sense, the random variable ξt given on Ω corresponds to the
function eitx on R. We will see in the future that this correspondence turns
out to be very deep.

11. Exercise. In a natural way one gives the definition of a second-order
stationary sequence ξn given only for integers n ∈ (T,∞). For a second-order
stationary sequence ξn its correlation function R(n) is defined on integers
n ∈ R. Prove that, for each such R(n), there exists a nonnegative measure
F on [−π, π] such that R(n) =

∫ π
−π e

inxF (dx) for all integers n ∈ R.
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Various representation formulas play an important role in the theory of
second-order stationary processes. We are going to prove several of them,
starting with the following.

12. Theorem (Kotel’nikov-Shannon). Let the spectral measure F of a
second-order stationary process ξt, given on R, be concentrated on (−π, π),
so that F (−π, π) = F (R). Then for every t

ξt =
∞∑

n=−∞

sinπ(t− n)
π(t− n)

ξn

(
sin 0

0
:= 1

)
,

which is understood as

ξt = l.i.m.
m→∞

m∑
n=−m

sinπ(t− n)
π(t− n)

ξn.

Proof. We have to prove that

lim
m→∞E

∣∣ξt − m∑
n=−m

sinπ(t− n)
π(t− n)

ξn
∣∣2 = 0. (7)

This equality can be expressed in terms of the correlation function alone.
It follows that we need only prove (7) for some second-order stationary
process with the same correlation function R. We choose the process from
Theorem 9. Then we see that the expression in (7) under the limit sign
equals

E
∣∣eiηt −

m∑
n=−m

sinπ(t− n)
π(t− n)

eiηn
∣∣2 = 0. (8)

Since the function eitx is continuously differentiable in x, its partial
Fourier sums are uniformly bounded and converge to eitx on (−π, π). The
random variable η takes values in (−π, π) by assumption, and the sum in
(8) is a partial Fourier sum of eitx evaluated at x = η. Now the assertion of
the theorem follows from the Lebesgue dominated convergence theorem.

13. Exercise. Let ϕ be a uniformly distributed random variable on (−π, π)
and ξt := ei(πt+ϕ), so that the corresponding spectral measure is concen-
trated at π. Prove that (for all ω)

∞∑
n=−∞

sinπ(t− n)
π(t− n)

ξn = eiϕ cos πt �= ξt.
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14. Exercise*. Remember the way the one-dimensional Riemann integral
of continuous functions is defined. It turns out that this definition is easily
extendible to continuous functions with values in Banach spaces. We mean
the following definition.

Let f(t) be a continuous function defined on a finite interval [0, 1] with
values in a Banach space H. Then

∫ 1

0
f(t) dt := lim

n→∞

2n−1∑
i=0

f(i2−n)2−n,

where the limit is understood in the sense of convergence inH. Similarly one
defines the integrals over finite intervals [a, b]. Prove that the limit indeed
exists.

15. Exercise. The second-order stationary processes that we concentrate
on are assumed to be continuous as L2(F , P )-valued functions. Therefore,
according to Exercise 14 for finite a and b, the integral

∫ b
a ξt dt is well-defined

as the integral of an L2(F , P )-valued continuous function ξt. We say that
this is the mean-square integral .

By using the same method as in the proof of Theorem 9, prove that if
ξt is a second-order stationary process defined for all t, then

l.i.m.
T→∞

1
2T

∫ T

−T
ξt dt

always exists. Also prove that this limit equals zero if and only if F{0} = 0.
Finally prove that F{0} = 0 if R(t) → 0 as t→ ∞.

2. Spectral decomposition of trajectories

H. Cramér discovered a representation of trajectories of second-order sta-
tionary processes as “sums” of harmonics with random amplitudes. To prove
his result we need the following.

1. Lemma. Let F be a finite measure on B(R). Then the set of all func-
tions

f(x) =
n∑

j=1

cje
itjx, (1)

where cj , tj, and n are arbitrary, is everywhere dense in L2(B(R), F ).
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Proof. If the assertion of the lemma is false, then there exists a nonzero
element g ∈ L2(B(R), F ) such that∫

R

g(x)eitx F (dx) = 0

for all t. Multiply this by a function f̃(t) ∈ L1(B(R), �) and integrate with
respect to t ∈ R. Then by Fubini’s theorem and the inequality∫

R

|g(x)|F (dx) ≤ ( ∫
R

|g(x)|2 F (dx)
)1/2

<∞

we obtain ∫
R

g(x)f(x)F (dx) = 0, f(x) :=
∫

R

f̃(t)eitx dt.

One knows that every smooth function f with compact support can be
written in the above form. Therefore, g is orthogonal to all such functions.
The same obviously holds for its real and imaginary parts, which we denote
gr and gi, respectively. Now for the measures µ±(dx) = gr±(x)F (dx) we
have

∫
R

f(x)µ+(dx) =
∫

R

f(x)µ−(dx) (2)

for every smooth function f with compact support. Then, as in Theorem
1.2.4, we obtain that µ+ = µ−, so that (2) holds for all f ≥ 0. Substituting
f = gr+ and noticing that the right-hand side of (2) vanishes, we see that
gr+ = 0 F -almost everywhere. Similarly gr− = 0 and gi± = 0 F -almost
everywhere, so that g = 0 F -almost everywhere, contradicting the choice of
g. The lemma is proved.

2. Theorem (Cramér). Let ξt be a (mean-square continuous) second-order
stationary process on R. Let F be the spectral measure of ξt. Then, on
the collection of all sets of type (−∞, a], there exists a random orthogonal
measure ζ with reference measure F such that Eζ(−∞, a] = 0 and

ξt =
∫

R

eitx ζ(dx) (a.s.) ∀t. (3)

If ζ1 is another random orthogonal measure having these properties, then,
for any a ∈ R, we have ζ1(−∞, a] = ζ(−∞, a] (a.s.).
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Proof. Instead of finding ζ in the first place, we will find the stochastic
integral against ζ. To do so, define an operator Φ : L2(B(R), F ) → L2(F , P )
in the following way. For f given by (1), define (cf. (3) and Remark 1.10)

Φf =
n∑

j=1

cjξtj .

It is easy to check that if f is as in (1), then

|f |2L2(B(R),F ) = E
∣∣ n∑

j=1

cjξtj
∣∣2 = E|Φf |2, EΦf = 0. (4)

It follows, in particular, that the operator Φ is well defined on f of type (1)
(cf. the argument after Remark 2.3.11). By the way, the fact that it is well
defined does not follow from the fact that, if we are given some constants
cj, tj , c

′
j , t

′
j , j = 1, ..., n, t1 < ... < tn, t′1 < ... < t′n, and

n∑
j=1

cje
itjx =

n∑
j=1

c′je
it′jx

for all x, then the families (cj , tj) and (c′j , t
′
j) are the same.

We also see that the operator Φ is a linear isometry defined on the
linear subspace of functions (1) as a subspace of L2(B(R), F ) and maps
it into L2(F , P ). By Lemma 2.3.12 it admits a unique extension to an
operator defined on the closure in L2(B(R), F ) of this subspace. We keep
the notation Φ for this extension and remember that the closure in question
coincides with L2(B(R), F ) by Lemma 1. Thus, we have a linear isometric
operator Φ : L2(B(R), F ) → L2(F , P ) such that Φeit· = ξt (a.s.).

Next, observe that I(−∞,a] ∈ L2(B(R), F ) and define

ζ(−∞, a] = ΦI(−∞,a]. (5)

Since Φ preserves scalar products, we have

Eζ(−∞, a]ζ̄(−∞, b] = F
(
(−∞, a] ∩ (−∞, b]

)
.

Hence ζ is a random orthogonal measure with reference measure F . Fur-
thermore, it follows from (5) that
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Φf =
∫

R

f(x) ζ(dx) (6)

if f is a step function. Since Φ and the stochastic integral are continuous
operators, (6) holds (a.s.) for any f ∈ L2(B(R), F ). For f = eitx we
conclude that

ξt = Φf =
∫

R

eitx ζ(dx) (a.s.).

Finally, as has been noticed in (4), we have EΦf = 0 if f is a function
of type (1). For any f ∈ L2(B(R), F ), take a sequence of functions fn of
type (1) converging to f in L2(B(R), F ) and observe that

|EΦf | = |E(Φf − Φfn)| ≤ (E|Φf − Φfn|2
)1/2

,

where the last expression tends to zero by the isometry of Φ and the choice
of fn. Thus, EΦf = 0 for any f ∈ L2(B(R), F ). By taking f = I(−∞,a], we
conclude that Eζ(−∞, a] = 0.

We have proved the “existence” part of our theorem. To prove the
uniqueness, define Φ1f =

∫
R
f ζ1(dx). The isometric operators Φ and Φ1

coincide on all functions of type (1), and hence on L2(B(R), F ). In partic-
ular, ζ(−∞, a] = ΦI(−∞,a] = Φ1I(−∞,a] = ζ1(−∞, a] (a.s.). The theorem is
proved.

3. Remark. We have seen in the proof that, for each f ∈ L2(B(R), F ),

E

∫
R

f ζ(dx) = 0.

4. Remark. Let Lξ
2 be the smallest linear closed subspace of L2(F , P ) con-

taining all ξt, t ∈ R. Obviously the operator Φ in the proof of Theorem 2
is acting from L2(B(R), F ) into Lξ

2. Therefore, ζ(−∞, a] and each integral∫
R
g ζ(dx) with g ∈ L2(B(R), F ) belong to Lξ

2.

Furthermore, every element of Lξ
2 is representable as

∫
R
g ζ(dx) with g ∈

L2(B(R), F ), due to the equality ξt =
∫

R
exp(itx) ζ(dx) and the isometric

property of stochastic integrals.

5. Definition. We say that a complex-valued random vector (ξ1, ..., ξn) is
Gaussian if for any complex numbers λ1, ..., λn we have

∑
j ξ

jλj = η1 +
iη2, where η = (η1, η2) is a two-dimensional Gaussian vector (with real
coordinates). As usual, a complex-valued or a real-valued Gaussian process
is one whose finite-dimensional distributions are all Gaussian.
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6. Corollary. If ξt is a Gaussian process, then

(
∫

R

f1(x) ζ(dx), ...,
∫

R

fn(x) ζ(dx))

is a Gaussian vector for any fj ∈ L2(B(R), F ).

This assertion follows from the facts that Φf is Gaussian for trigonomet-
ric polynomials and mean-square limits of Gaussian variables are Gaussian.

7. Corollary. If ξt is a real valued second-order stationary process, then∫
R

f(x) ζ(dx) =
∫

R

f̄(−x) ζ(dx) (a.s.) ∀f ∈ L2(B(R), F ).

This follows from the fact that the equality holds for f = eitx.

8. Exercise. Prove that if both ξt and ζ are real valued, then ξt is inde-
pendent of t in the sense that ξt = ξs (a.s.) for any s, t.

9. Exercise. Let ζ be a random orthogonal measure, defined on all sets
(−∞, a], satisfying Eζ(−∞, a] = 0 and having finite reference measure.
Prove that ∫

R

eitx ζ(dx)

is a mean square continuous second-order stationary process.

10. Definition. The random orthogonal measure whose existence is as-
serted in Theorem 2 is called the random spectral measure of ξt, and formula
(3) is called the spectral representation of the process ξt.

For processes with spectral densities which are rational functions, one
can give yet another representation of their trajectories. In order to under-
stand how to do this, we start with an important example.

3. Ornstein-Uhlenbeck process

The Wiener process is not second-order stationary because Ew2
t = t is not

a constant and the distribution of wt spreads out when time is growing.
However, if we add to wt a drift which would keep the variance moderate,
then we can hope to construct a second-order stationary process on the basis
of wt. The simplest way to do so is to consider the following equation:

ξt = ξ0 − α

∫ t

0
ξs ds+ βwt, (1)
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where α and β are real numbers, α > 0, ξ0 is a real-valued random variable
independent of w·, and wt is a one dimensional Wiener process. For each
ω, equation (1) has a unique solution ξt defined for all t ≥ 0, which follows
after writing down the equation for ηt := ξt − βwt. Indeed,

η̇t = −α(ηt + βwt), η0 = ξ0,

ηt = ξ0e
−αt − αβ

∫ t

0
eα(s−t)ws ds,

ξt = ξ0e
−αt − αβ

∫ t

0
eα(s−t)ws ds+ βwt. (2)

By Theorem 2.3.22 bearing on integration by parts (cf. Remark 2.4.4), the
last formula reads

ξt = ξ0e
−αt + β

∫ t

0
eα(s−t) dws (a.s.). (3)

1. Theorem. Let ξ0 ∼ N(0, β2/(2α)). Then the solution ξt of equation
(1) is a Gaussian second-order stationary process on [0,∞) with zero mean,
correlation function

R(t) =
β2

2α
e−α|t|,

and spectral density

f(x) =
β2

2π
1

x2 + α2
.

Proof. It follows from (3) that Eξt = 0 and E|ξt|2 < ∞. The reader
who did Exercise 2.3.23 will understand that the fact that ξt is a Gaussian
process is proved as in this exercise with the additional observation that, by
assumption, ξ0 is Gaussian and independent of w·.

Next, for t1 ≥ t2 ≥ 0, from (3) and the isometric property of stochastic
integrals, we get

Eξt1ξt2 =
β2

2α
e−α(t1+t2) + β2

∫ t2

0
eα(2s−t1−t2) ds =

β2

2α
e−α(t2−t1).

It follows that ξt is second-order stationary with correlation function R. The
fact that f is indeed its spectral density is checked by simple computation.
The theorem is proved.
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2. Definition. A real-valued Gaussian second-order stationary process de-
fined on R is called an Ornstein-Uhlenbeck process if its correlation function
satisfies R(t) = R(0) exp(−α|t|), where α is a nonnegative constant.

3. Exercise. Prove that if ξt is a real-valued Gaussian second-order station-
ary Markov process defined on R, then it is an Ornstein-Uhlenbeck process.
Also prove the converse.

Here by the Markov property we mean that

E{f(ξt)|ξt1 , ..., ξtn} = E{f(ξt)|ξtn} (a.s.)

for any t1 ≤ ... ≤ tn ≤ t and Borel f satisfying E|f(ξt)| <∞.

Theorem 1 makes it natural to conjecture that any Ornstein-Uhlenbeck
process ξt should satisfy equation (1) for t ≥ 0 with some Wiener process
wt. To prove the conjecture, for ξt satisfying (1), we find wt in terms of the
random spectral measure ζ of ξt if α > 0 and β > 0. We need a stochastic
version of Fubini’s theorem, the proof of which we suggest as an exercise.

4. Exercise*. Let Π be a family of subsets of a set X. Let ζ be a random
orthogonal measure defined on Π with reference measure µ defined on σ(Π).
Take a finite interval [a, b] ⊂ R and assume that on [a, b] ×X we are given
a bounded function g(t, x) which is continuous in t ∈ [a, b] for any x ∈ X,
belongs to L2(Π, µ) for any t ∈ [a, b], and satisfies∫

X
sup

t∈[a,b]
|g(t, x)|2 µ(dx) <∞.

Prove that
∫
X g(t, x) ζ(dx) is continuous in t as an L2(F , P )-valued func-

tion and ∫ b

a

( ∫
X
g(t, x) ζ(dx)

)
dt =

∫
X

( ∫ b

a
g(t, x) dt

)
ζ(dx),

where the first integral against dt is the mean-square integral (see Exercise
1.14) and the second one is the Riemann integral of a continuous function.

By using this result, we find that

βwt = ξt − ξ0 + α

∫ t

0
ξs ds =

∫
R

(
eitx − 1 + α

∫ t

0
eisx ds

)
ζ(dx)

=
∫

R

eitx − 1
ix

(ix+ α) ζ(dx),
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wt =
∫

R

eitx − 1
ix

ix+ α

β
ζ(dx). (4)

This representation of wt will look more natural and invariant if one
replaces

√
2π(ix+α)β−1 ζ(dx) with a differential of a new random orthogonal

measure. To do this rigorously, let Π̄ = {(a, b] : −∞ < a ≤ b < ∞} and for
(a, b] ∈ Π̄ define

λ(a, b] =
√

2π
∫

R

I(a,b](x)
ix+ α

β
ζ(dx).

It turns out that λ is a random orthogonal measure with reference measure
�. Indeed,

E

∫
R

I(a1,b1](x)
ix+ α

β
ζ(dx)

∫
R

I(a2,b2](x)
ix+ α

β
ζ(dx)

=
∫

R

I(a1,b1](x)I(a2,b2](x)
ix+ α

β

−ix+ α

β
f(x) dx

=
1
2π

∫
R

I(a1,b1](x)I(a2,b2](x) dx =
1
2π
�((a1, b1] ∩ (a2, b2])

(remember that f = β2(x2 + α2)−1(2π)−1 and the product of indicators is
the indicator of the intersection). By the way, random orthogonal measures
with reference measure � are called standard random orthogonal measures.
Next for any g ∈ S(Π̄, �), obviously,∫

R

g(x)λ(dx) =
√

2π
∫

R

g(x)
ix+ α

β
ζ(dx) (a.s.).

Actually, this equality holds for any g ∈ L2(B(R), �), which is proved by
standard approximation after noticing that if gn ∈ S(Π̄, �) and gn → g in
L2(B(R), �), then∫

R

∣∣gn(x)
ix+ α

β
− g(x)

ix+ α

β

∣∣2f(x) dx =
1
2π

∫
R

|gn(x) − g(x)|2 dx→ 0.

In terms of λ formula (4) takes the form

wt =
1√
2π

∫
R

eitx − 1
ix

λ(dx), t ≥ 0. (5)

Also
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ξt =
1√
2π

∫
R

eitx
β

ix+ α
λ(dx), t ∈ R. (6)

Now we want to prove that every Ornstein-Uhlenbeck process ξt satisfies
(1) with the Wiener process wt defined by (5). First of all we need to
prove that wt is indeed a Wiener process. In the future we need a stronger
statement, which we prove in the following lemma.

5. Lemma. Let ξt be a real-valued Gaussian second-order stationary pro-
cess defined on R. Assume that it has a spectral density f(x) �≡ 0 which
is represented as ϕ(x)ϕ̄(x), where ϕ(x) is a rational function such that
ϕ̄(x) = ϕ(−x) and all poles of ϕ(z) lie in the upper half plane Im z > 0. Let
ζ be the random spectral measure of ξt. For −∞ < a < b <∞ define

λ(a, b] =
∫

R

I(a,b](x)
1

ϕ(x)
ζ(dx)

( 1
ϕ(x)

:= 0 if ϕ(x) = 0
)
,

wt =
1√
2π

∫
R

eitx − 1
ix

λ(dx), t ≥ 0. (7)

Then wt has a continuous modification which is a Wiener process indepen-
dent of ξs, s ≤ 0.

Proof. Notice that the number of points where φ(x) = 0 is finite and has
zero Lebesgue measure. Therefore, in the same way as before the lemma,
it is proved that λ is a standard random orthogonal measure, and since
(exp(itx) − 1)/(ix) ∈ L2(B(R), �), the integral in (7) is well defined and

wt =
1√
2π

∫
R

eitx − 1
ix

1
ϕ(x)

ζ(dx).

By Corollary 2.6 the process wt is Gaussian. By virtue of ϕ̄(−x) = ϕ(x)
and Corollary 2.7 we get

w̄t =
1√
2π

∫
R

eitx − 1
ix

1
ϕ̄(−x) ζ(dx) = wt,

so that wt is real valued. In addition, w0 = 0, Ewt = 0, and

Ewtws = Ewtw̄s =
1
2π

∫
R

eitx − 1
ix

e−isx − 1
−ix dx. (8)
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One can compute the last integral in two ways. First, if we take ξt from
Theorem 1, then (4) holds with its left-hand side being a Wiener process by
construction. For this process (8) holds, with the first expression known to
be t ∧ s.

On the other hand, the Fourier transform of I(0,s](z) is easily computed
and turns out to be proportional to (eisx −1)/(ix). Therefore, by Parseval’s
identity

1
2π

∫
R

eitx − 1
ix

e−isx − 1
−ix dx =

∫
R

I(0,t](z)I(0,s](z) dz = t ∧ s.

It follows in particular that E|wt − ws|2 = |t − s| and E|wt − ws|4 =
c|t − s|2, where c is a constant. By Kolmogorov’s theorem, wt has a con-
tinuous modification. This modification, again denoted wt, is the Wiener
process we need.

It only remains to prove that wt, t ≥ 0, and ξs, s ≤ 0, are independent.
Since (wt1 , ..., wtn , ξs1, ..., ξsm) is a Gaussian vector for any t1, ..., tn ≥ 0,
s1, ..., sm ≤ 0, we need only prove that Ewtξs = 0 for all t ≥ 0 ≥ s. From

ξs =
∫

R

eisx ζ(dx) =
∫

R

eisxϕ(x)λ(dx)

and (7) we obtain

Eξswt =
1√
2π

∫
R

eisxϕ(x)
(eitx − 1

ix

)
dx =

1√
2π

∫
R

eisxϕ(x)
e−itx − 1

−ix dx.

Remember that ϕ(z) is square integrable over the real line and is a rational
function with poles in the upper half plane. Also the functions eisz and e−itz

are bounded in the lower half plane. It follows easily that

|ϕ(z)| = O

(
1
|z|
)
,

∣∣∣∣eiszϕ(z)
e−itz − 1

−iz
∣∣∣∣ = O

(
1
|z|2

)

for |z| → ∞ with Im z ≤ 0. By adding to this the fact that the function

eiszϕ(z)
e−itz − 1

−iz
has no poles in the lower half plane, so that by Jordan’s lemma its integral
over the real line is zero, we conclude that Eξswt = 0. The lemma is proved.

6. Remark. We know that the Wiener process is not differentiable in t.
However, especially in technical literature, its derivative, called the white
noise, is used quite often.
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Mathematically speaking, the white noise is a generalized function de-
pending on ω. We want to discuss why it is called “white”. There is a
complete analogy with white light, which is a mixture of colors correspond-
ing to electromagnetic waves with different frequencies. If one differentiates
(7) formally, then

ẇt =
1√
2π

∫
R

eitx λ(dx),

which shows that ẇt is a mixture of all harmonics eitx each taken with the
same mean amplitude (2π)−1E|λ(dx)|2 = (2π)−1dx, and the amplitudes
corresponding to different frequencies are uncorrelated and moreover inde-
pendent.

7. Theorem. Let ξt be an Ornstein-Uhlenbeck process with

R(t) = β2(2α)−1e−α|t|, α > 0, β > 0.

Then, for t ≥ 0, the process ξt admits a continuous modification ξ̃t and there
exists a Wiener process wt such that

ξ̃t = ξ̃0 − α

∫ t

0
ξ̃s ds+ βwt ∀t ≥ 0 (9)

and wt, t ≥ 0, and ξs, s ≤ 0, are independent.

Proof. Define wt by (4). Obviously Lemma 5 is applicable with ϕ(x) =
β(2π)−1/2(ix + α)−1. Therefore, the process wt has a continuous modifica-
tion, which is a Wiener process independent of ξs, s ≤ 0, and for which we
keep the same notation. Let

ξ̃t = ξ0e
−αt − αβ

∫ t

0
eα(s−t)ws ds+ βwt.

By the stochastic Fubini theorem

ξ̃t =
∫

R

[
e−αt − αβ

∫ t

0
eα(s−t) e

isx − 1
ix

ix+ α

β
ds+

eitx − 1
ix

(ix+ α)
]
ζ(dx)

=
∫

R

eitx ζ(dx) = ξt

(a.s.). In addition ξ̃t is continuous and satisfies (9), which is shown by
reversing the arguments leading to (2). The theorem is proved.

8. Exercise. We assumed that α > 0. Prove that if α = 0, then ξt = ξ0
(a.s.) for any t.
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4. Gaussian stationary processes with rational
spectral densities

Let ξt be a real-valued Gaussian second-order stationary process. Assume
that it has a spectral density f(x) and f(x) = Pn(x)/Pm(x), where Pn

and Pm are polynomials of degree n and m respectively. Without loss of
generality we assume that Pn and Pm do not have common roots and Pm

has the form xm + ....

1. Exercise*. Assume that f(x) = P̃ñ(x)/P̃m̃(x), where P̃ñ and P̃m̃ do not
have common roots and P̃m̃(x) = xm̃ + .... Prove that P̃m̃(x) ≡ Pm(x) and
P̃ñ(x) ≡ Pn(x).

Exercise 1 shows that n,m, Pn and Pm are determined uniquely. More-
over, since f̄ = f , we get that P̄n = Pn and P̄m = Pm, so that Pn and Pm

are real valued. Furthermore, f is summable, so that the denominator Pm

does not have real zeros, m is even, and certainly n < m. Next, f ≥ 0 and
therefore each real zero of Pn has even multiplicity. Since ξt is real valued,
by Corollary 1.8, we have f(x) = f(−x), which along with the uniqueness
of representation implies that

Pn(x) = Pn(−x), Pm(x) = Pm(−x).

In turns it follows at once that if a is a root of Pm, then ā, −ā, and −a
are also roots of Pm. Remember that m is even, and define

Q+(x) = im/2
∏

Im aj>0

(x− aj), Q−(x) = i−m/2
∏

Im aj<0

(x− aj),

where {aj , j = 1, ...,m} are the roots of Pm. Notice that Q+(x)Q−(x) =
Pm(x) and that, as follows from the above analysis, for real x,

Q+(x) = Q−(x) = i−m/2(−1)m/2
∏

Im aj<0

(−x− (−aj))

= i−m/2(−1)m/2
∏

Im aj>0

(−x− aj) = Q+(−x), Q+(x)Q+(x) = Pm(x).

Similarly, if Pn does not have real roots, then there exist polynomials
P+ and P− such that

P−(x) = P+(x) = P+(−x), P+(x)P+(x) = Pn(x).

Such polynomials exist in the general case as well. In order to prove this, it
suffices to notice that, for real a,
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(x− a)2k(x+ a)2k = (x2 − a2)k(x2 − a2)k, x2k = (ix)k(−ix)k.

We have proved the following fact with ϕ = P+/Q+.

2. Lemma. Let the spectral density f(x) of a real-valued second-order sta-
tionary process ξt be rational, namely f(x) = Pn(x)/Pm(x), where Pn and
Pm are nonnegative polynomials of degree n and m respectively without com-
mon roots. Then m is even and f(x) = ϕ(x)ϕ(x), where the rational func-
tion ϕ(z) has exactly m/2 poles all of which lie in the upper half plane and
ϕ̄(x) = ϕ(−x) for all x ∈ R.

3. Exercise. From the equality ϕ̄(x) = ϕ(−x), valid for all x ∈ R, derive
that ϕ(ix) is real valued for real x.

4. Theorem. Let the spectral density f(x) of a real-valued Gaussian second-
order stationary process ξt be a rational function with simple poles. Then
there exist an integer k ≥ 1, (complex ) constants αj and βj , and continuous
Gaussian processes ηj

t and wt defined for t ∈ [0,∞) and j = 1, ..., k such
that

(i) wt is a Wiener process, (η1
0 , ..., η

k
0 ) is independent of w·, and wt,

t ≥ 0, is independent of ξs, s ≤ 0;

(ii) ηj
t = ηj

0 − αj

∫ t
0 η

j
s ds+ βjwt for any t ≥ 0;

(iii) for t ≥ 0 we have

ξt = η1
t + ...+ ηk

t (a.s.).

Proof. As in the case of Ornstein-Uhlenbeck processes, we replace the
spectral representation ξt =

∫
R

exp(itx) ζ(dx) with

ξt =
∫

R

ϕ(x)eitx λ(dx),

where ϕ is taken from Lemma 2 and

λ(a, b] =
∫

R

I(a,b]
1

ϕ(x)
ζ(dx)

(
1
0

:= 0
)
.

Such replacement is possible owing to the fact that ϕ 1
ϕ = 1 almost every-

where. It is also seen that λ is a standard orthogonal measure.
Next let

ϕ(x) =
β1

ix+ α1
+ ...+

βk

ix+ αk
(1)
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be the decomposition of ϕ into partial fractions. Since the poles of ϕ lie
only in the upper half plane, we have Reαj > 0. For t ≥ 0 denote

wt =
1√
2π

∫
R

eitx − 1
ix

λ(dx), ξj
t =

∫
R

βj

ix+ αj
eitx λ(dx).

Observe that ξj
t are Gaussian processes by Corollary 2.6 and wt is a

Wiener process by Lemma 3.5. Furthermore, by following our treatment of
the Ornstein-Uhlenbeck process one proves existence of a continuous modi-
fication ηj

t of ξj
t , the independence of η0 = (η1

0 , ..., η
k
0 ) and w·, and the fact

that

ηj
t = ηj

0 − αj

∫ t

0
ηj

s ds+ βjwt, t ≥ 0.

It only remains to notice that ξt = ξ1t + ...+ ξk
t = η1

t + ...+ηk
t (a.s.). The

theorem is proved.
Consider the following system of equations:



η1
t = η1

0 − α1

∫ t
0 η

1
s ds+ β1wt,

. . .

. . .

ηk
t = ηk

0 − αk

∫ t
0 η

k
s ds+ βkwt,

ξt = ξ0 −
∑k

j=1 αj

∫ t
0 η

j
s ds+ wt

∑k
j=1 βj ,

and the system obtained from it for the real and imaginary parts of ηj
t . Then

we get the following result.

5. Theorem. Under the conditions of Theorem 4, for t ≥ 0 the process ξt
has a continuous modification which is represented as the last coordinate of
a multidimensional real-valued Gaussian continuous process ζt satisfying

ζt = ζ0 −
∫ t

0
Aζs ds+ wtB, t ≥ 0, (2)

where A,B are nonrandom, A is a matrix, B is a vector, wt is a one-
dimensional Wiener process, and ζ0 and w· are independent.

6. Remark. Theorem 5 is also true if the multiplicities of the poles are
greater than 1. To explain this, observe that then in (1) we also have terms
which are constants times higher negative powers of ix+αj , so that we need
to understand what kind of equation holds for
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κn
t (α) :=

∫
R

β

(ix+ α)n+1
eitx λ(dx), (3)

where n ≥ 1, β and α are some complex numbers, and Reα > 0. Arguing
formally, one sees that

dn

dαn
κ0

t (α) = (−1)nn!κn
t (α),

and this is the clue. From above we know that there is a continuous modi-
fication χ0

t (α) of κ0
t (α) satisfying the equation

χ0
t (α) = κ0

0(α) − α

∫ t

0
χ0

s(α) ds + βwt.

If we are allowed to differentiate this equation with respect to α, then for

χj
t(α) = (−1)j(j!)−1djχ0

t (α)/dαj ,

after simple manipulations we get



χ1

t (α) = κ1
0(α) − α

∫ t
0 χ

1
s(α) ds +

∫ t
0 χ

0
s(α) ds,

...

χn
t (α) = κn

0 (α) − α
∫ t
0 χ

n
s (α) ds +

∫ t
0 χ

n−1
s (α) ds.

(4)

After having produced (4), we forget the way we did it and derive the
result we need rigorously. Define

χj
0 =

∫
R

β

(ix+ α)j+1
λ(dx)

and solve the system




χ0
t = χ0

0 − α
∫ t
0 χ

0
s ds+ βwt,

χ1
t = χ1

0 − α
∫ t
0 χ

1
s ds+

∫ t
0 χ

0
s ds,

...

χn
t = χn

0 − α
∫ t
0 χ

n
s ds+

∫ t
0 χ

n−1
s ds,

(5)

which is equivalent to a system of first-order linear ordinary differential
equations. It turns out that
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χj
t =

∫
R

β

(ix+ α)j+1
eitx λ(dx) (6)

(a.s.) for each t ≥ 0 and j = 0, ..., n. One proves this by induction, noticing
that for j = 0 this fact is known and, for j ≥ 1,

χj
t = χj

0e
−αt +

∫ t

0
eα(s−t)χj−1

s ds,

so that if (6) holds with j − 1 in place of j, then, owing to the stochastic
Fubini theorem,

χj
t =

∫
R

(
β

(ix+ α)j
e−αt +

∫ t

0
eα(s−t) β

(ix+ α)j−1
eisx ds

)
λ(dx)

=
∫

R

β

(ix+ α)j
eitx λ(dx) (a.s.).

This completes the induction. Furthermore, χj
0 and w· are independent,

which is proved in the same way as in Lemma 3.5.
Thus, we see that the processes (3) are also representable as the last

coordinates of solutions of linear systems of type (5), and the argument
proving Theorem 5 works again.

7. Remark. Equation (2) is a multidimensional version of (3.1). In the
same way in which we arrived at (3.3), one proves that the solution to (2)
is given by

ζt = e−Atζ0 +
∫ t

0
eA(s−t)B dws = e−Atζ0 + e−At

∫ t

0
eAsB dws, (7)

where the vector ζ0 is composed of

ηjk :=
∫

R

1
(ix+ αj)k

λ(dx), (8)

where k = 1, ..., nj , the iαj ’s are the roots of Q+, and the nj are their
multiplicities.
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8. Remark. Similarly to the one-dimensional case, one gives the definition
of stationary vector-valued process and, as in Section 3, one proves that
the right-hand side of (7) is a Gaussian stationary process even if B is a
matrix and wt is a multidimensional Wiener process, provided that ζ0 is
appropriately distributed and A only has eigenvalues with strictly positive
real parts.

9. Remark. We will see later (Sec. 6.11) that solutions of stochastic equa-
tions even more complex than (2) have the Markov property, and then we
will be able to say that real-valued Gaussian second-order stationary pro-
cesses with rational spectral density are just components of multidimensional
Gaussian Markov processes.

5. Remarks about predicting Gaussian stationary
processes with rational spectral densities

We follow the notation from Sec. 4 and again take a real-valued Gaussian
second-order stationary process ξt and assume that it has a spectral density
f(x) which is a rational function. In Sec. 4 we showed that there is a rep-
resentation of the form f = |ϕ|2 and constructed ϕ satisfying ϕ = P+/Q+.
Actually, all results of Sec. 4 also hold if we take ϕ = P−/Q+. It turns out
that the choice of ϕ = P+/Q+ is crucial in applications, in particular, in
solving the problem of predicting ξt for t ≥ 0 given observations of ξs for
s ≤ 0. We explain this in the series of exercises and remarks below.

1. Exercise. Take ϕ = P+/Q+. Prove that for each g ∈ L2(B(R), �),∫
R

eitxg(x)ϕ(x) dx = 0 ∀t < 0 =⇒
∫

R

g(x)
1

(ix + αj)k
dx = 0,

where k = 1, ..., nj , the iαj ’s are the roots of Q+, and the nj are their
multiplicities.

2. Exercise. Let Lξ
2(a, b) be the smallest linear closed subspace of L2(F , P )

containing all ξt, t ∈ (a, b). By using Exercise 1 prove that (see (4.8))

ηjk,

∫
R

1
Q+(x)

λ(dx) ∈ Lξ
2(−∞, 0). (1)

3. Remark. Now we can explain why we prefer to take P+/Q+ and not
P−/Q+. Here it is convenient to assume that the space (Ω,F , P ) is complete,
so that, if a complete σ-field G ⊂ F and for some functions ζ and η we have
ζ = η (a.s.) and ζ is G-measurable, so is η. Let Fξ

0 be the completion of the
σ-field generated by the ξt, t ≤ 0. Notice that in formula (4.7) the random
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vector ζ0 is Fξ
0 -measurable by Exercise 2. Owing to the independence of

wt, t ≥ 0, and ξs, s ≤ 0, for any bounded Borel h(ζ) (for instance, depending
only on the last coordinate of the vector ζ), we have (a.s.)

E[h(ζt)|Fξ
0 ] = [Eh(ζ +

∫ t

0
eA(s−t)B dws)]|ζ=ζ0e−At .

We see that now the problem of prediction is reduced to the problem
of expressing ζ0 or equivalently ηjk in terms of ξt, t ≤ 0. The following few
exercises are aimed at showing how this can be done.

4. Exercise. As a continuation of Exercise 2, prove that if all roots of
P+ are real, then in (1) one can replace Lξ

2(−∞, 0) with Lξ
2(0,∞) or with

Lξ
2(−∞, 0)∩Lξ

2(0,∞). By the way, this intersection can be much richer than
only multiples of ξ0. Consider the case ϕ(x) = ix/(ix+ 1)2 and prove that

η :=
∫

R

1
(ix+ 1)2

λ(dx) ∈ Lξ
2(−∞, 0) ∩ Lξ

2(0,∞) and η ⊥ ξ0.

5. Exercise*. We say that a process κt, given in a neighborhood of a point
t0, is differentiable in the mean-square sense at the point t = t0 and its
derivative equals χ if

l.i.m.
t→t0

κt − κt0

t− t0
= χ.

In an obvious way one gives the definition of higher order mean-square
derivatives. Prove that ξt has (m− n)/2 − 1 mean-square derivatives. Fur-
thermore, for j ≤ (m− n)/2 − 1

dj

dtj
ξt = ij

∫
R

eitxxjϕ(x)λ(dx),

where by dj/dtj we mean the jth mean-square derivative.

6. Exercise*. As we have seen in the situation of Exercise 4, Lξ
2(−∞, 0)∩

Lξ
2(0,∞) is not a linear subspace generated by ξ0. Neither is this a linear

subspace generated by ξ0 and the derivatives of ξt at zero, which is seen
from the same example given in Exercise 4. In this connection, prove that if
P+ = const, then ηjk from (4.8) and ζ0 do admit representations as values
at zero of certain ordinary differential operators applied to ξt.

7. Remark. In what concerns ζ0, the general situation is not too much
more complicated than the one described in Exercise 6. Observe that by
Exercise 5, the process
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ξ̃t =
∫

R

1
Q+(x)

eitx λ(dx)

satisfies the equation P+(−iDt)ξ̃t = ξt, t ≤ 0, which is understood as an
equation for L2-valued functions with appropriate conditions at −∞ (cf. the
hint to Exercise 1 and Exercise 8). The theory of ordinary differential equa-
tions for Banach-space-valued functions is quite parallel to that of real-
valued functions. In particular, well known formulas for solutions of linear
equations are available. Therefore, there are formulas expressing ξ̃t through
ξs, s ≤ 0. Furthermore, as in Exercise 6 the random variables ηjk from (4.8)
are representable as values at zero of certain ordinary differential operators
applied to ξ̃t.

8. Exercise. For ε > 0, let P ε
+(x) = P+(x− iε). Prove that there exists a

unique solution of P ε
+(−iDt)ξ̃ε

t = ξt on (−∞, 0) in the class of functions ξ̃ε
t

for which E|ξ̃ε
t |2 is bounded. Also prove that l.i.m.ε↓0 ξ̃ε

t = ξ̃t.

6. Stationary processes and the
Birkhoff-Khinchin theorem

For second-order stationary processes the covariance between ξt and ξt+s is
independent of the time shift. There are processes possessing stronger time
shift invariance properties.

1. Definition. A real-valued process ξn given for integers n ∈ (T,∞) is
said to be stationary if for any integers k1, ..., kn ∈ (T,∞) and i ≥ 0 the
distributions of the vectors (ξk1 , ..., ξkn) and (ξk1+i, ..., ξkn+i) coincide.

Usually we assume that T = −1, so that ξn is given for n = 0, 1, 2, ....
Observe that, obviously, if ξn is stationary, then f(ξn) is stationary for any
Borel f .

2. Exercise*. Prove that ξn, n = 0, 1, 2, ..., is stationary if and only if
for each integer n, the vectors (ξ0, ..., ξn) and (ξ1, ..., ξn+1) have the same
distribution.

3. Example. The sequence ξn ≡ η is stationary for any random variable η.

4. Example. Any sequence of independent identically distributed random
variables is stationary.

5. Example. This example generalizes both Examples 3 and 4. Remember
that a random sequence ξ0, ξ1, ... is called exchangeable if for every n and
every permutation π of {0, 1, 2, ..., n}, the distribution of (ξπ(0), ..., ξπ(n))
coincides with that of (ξ0, ..., ξn).

It turns out that if a sequence ξ0, ξ1, ... is exchangeable, then it is sta-
tionary. Indeed, for any Borel bounded f
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Ef(ξ0, ..., ξn+1) = Ef(ξ1, ..., ξn+1, ξ0).

By taking f independent of the last coordinate, we see that the laws of
the vectors (ξ1, ..., ξn+1) and (ξ0, ..., ξn) coincide, so that ξn is stationary by
Exercise 2.

6. Example. Clearly, if ξ0, ξ1, ... is stationary and E|ξk|2 < ∞ for some
k, the same holds for any k > T and Eξnξk does not change under the
translations n → n + i, k → k + i. Therefore, Eξnξk depends only on the
difference k − n, and ξn is a mean-square stationary process (sequence).
The converse is also true if ξn is a Gaussian sequence, since then the finite-
dimensional distributions of ξ·, which are uniquely determined by the mean
value and the covariance function, do not change under translations of time.
In particular, the Ornstein-Uhlenbeck process (considered at integral times)
is stationary.

7. Example. Let Ω be a circle of length 1 centered at zero with Borel σ-
field and linear Lebesgue measure. Fix a point x0 ∈ Ω and think of any
other point x ∈ Ω as the length of the arc from x0 to x in the clockwise
direction. Then the operation x1 + x2 is well defined. Fix α ∈ Ω and define
ξn(ω) = ω+ nα. Since the distribution of ω+ x is the same as that of ω for
any x, we have that the distribution of (ξ0(ω + x), ..., ξn(ω + x)) coincides
with that of (ξ0(ω), ..., ξn(ω)) for any x. By taking x = α, we conclude that
ξn is a stationary process.

For stationary processes we will prove only one theorem, namely the
Birkhoff-Khinchin theorem. This theorem was first proved by Birkhoff, then
generalized by Khinchin. Kolmogorov, F. Riesz, E. Hopf and many others
invented various proofs and generalizations of the theorem. All these proofs,
however, were quite involved. Only at the end of the sixties did Garsia
find an elementary proof of the key Hopf inequality which made it possible
to present the proof of the Birkhoff-Khinchin theorem in this introductory
book.

The proof, given below, consists of two parts, the first being the proof
of the Hopf maximal inequality, and the second being some more or less
general manipulations. In order to get acquainted with these manipulations,
we show them first not for stationary processes but for reverse martingales.
We will see again that they have (a.s.) limits as n → ∞, this time without
using Doob’s upcrossing theorem.

Remember that a sequence (ηn,Fn) is called a reverse martingale if the
σ-fields Fn ⊂ F decrease in n, ηn is Fn-measurable, E|ηn| <∞ and

E{ηn|Fn+1} = ηn+1 (a.s.).
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Then ηn = E{η0|Fn} and, as we know (Theorem 3.4.9), the limit of ηn exists
almost surely as n→ ∞.

Let us prove this fact starting with the Kolmogorov-Doob inequality:
for any p ∈ R (and not only p > 0),

Eη0Imaxi≤n ηi>p =
n−1∑
i=0

Eη0Iηn,...,ηn−i≤p,ηn−i−1>p + Eη0Iηn>p

=
n−1∑
i=0

Eηn−i−1Iηn,...,ηn−i≤p,ηn−i−1>p +EηnIηn>p

≥ p

(
n−1∑
i=0

P (ηn, ..., ηn−i ≤ p, ηn−i−1 > p) + P (ηn > p)

)
= pP (max

i≤n
ηi > p).

From the above proof it is also seen that if A ∈ F∞ :=
⋂

n Fn, then

Eη0IA,maxi≤n ηi>p ≥ pP (A,max
i≤n

ηi > p). (1)

Take here

A = B ∩Cp, Cp := {ω : lim
n→∞ ηn > p}, B ∈ F∞.

Clearly, for n ≥ n0, the random variable sup
i≥n

ηi is Fn- and Fn0-measurable.

Hence, Cp ∈ Fn0 and Cp ∈ F∞. Furthermore, Cp ∩ {max
i≤n

ηi > p} ↑ Cp as

n → ∞. Therefore, employing also the dominated convergence theorem,
from (1), we get

Eη0IB∩Cp,maxi≤n ηi>p ≥ pP (B ∩Cp,max
i≤n

ηi > p), (2)

Eη0IB∩Cp ≥ pP (B ∩ Cp). (3)

By replacing ηn with −ηn and p with −p, for any q ∈ R, we obtain

Eη0IB∩Dq ≤ qP (B ∩Dq) with Dq := {ω : lim
n→∞

ηn < q}. (4)

Now take B = Dq in (3) and B = Cp in (4). Then
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pP ( lim
n→∞

ηn < q, lim
n→∞ ηn > p) ≤ Eη0IDq∩Cp ≤ qP ( lim

n→∞
ηn < q, lim

n→∞ ηn > p).

For p > q, these inequalities are only possible if

P ( lim
n→∞

ηn < q, lim
n→∞ ηn > p) = 0.

Therefore, the set

{ω : lim
n→∞

ηn < lim
n→∞ ηn} =

⋃
rational p,q

p>q

{ω : lim
n→∞

ηn < q, lim
n→∞ ηn > p}

has probability zero, and this proves that limn→∞ ηn exists almost surely.
Coming back to stationary processes, we give the following definition.

8. Definition. An event A is called invariant if for each n ≥ 0 and Borel
f(x0, ..., xn) such that E|f(ξ0, ..., ξn)| <∞, we have

Ef(ξ1, ..., ξn+1)IA = Ef(ξ0, ..., ξn)IA.

Denote

Sn = ξ0 + ...+ ξn n ≥ 0, l̄ = lim
n→∞

Sn

n
, l = lim

n→∞
Sn

n
.

9. Lemma. For any Borel B ⊂ R
2, the event {ω : (l̄, l) ∈ B} is invariant.

Proof. Fix n ≥ 0 and without loss of generality only concentrate on
Borel bounded f ≥ 0. Define

µi(B) = Ef(ξi, ..., ξn+i)I(l̄,l)∈B .

We need to prove that µ0(B) = µ1(B). Since the µi’s are finite measures
on Borel B’s, it suffices to prove that the integrals of bounded continuous
functions against µi’s coincide. Let g be such a function. Then∫

R2

g(x, y)µi(dxdy) = Ef(ξi, ..., ξn+i)g(l̄, l).

Next, let S′
n = ξ1 + ...+ ξn+1. Then, by using the stationarity of ξk and

the dominated convergence theorem and denoting Fi = f(ξi, ..., ξn+i), we
find that

EF0g(l̄, l) = lim
k1→∞

EF0g(l̄, inf
r≥k1

[Sr/(r + 1)])

= lim
k1→∞

lim
k2→∞

EF0g(l̄, min
k2≥r≥k1

[Sr/(r + 1)])
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= lim
k1→∞

lim
k2→∞

lim
k3→∞

lim
k4→∞

EF0g( max
k4≥r≥k3

[Sr/(r + 1)], min
k2≥r≥k1

[Sr/(r + 1)])

= EF1g( lim
n→∞[S′

n/(n+ 1)], lim
n→∞

[S′
n/(n + 1)]) = EF1g(l̄, l).

The lemma is proved.
Now comes the key lemma.

10. Lemma (Hopf). Let A be an invariant event and E|ξ0| < ∞. Then
for all p ∈ R and n = 1, 2, ..., we have

Eξ0IA,max0≤i≤n[Si/(i+1)]>p ≥ pP{A, max
0≤i≤n

[Si/(i+ 1)] > p}.

Proof (Garsia). First assume p = 0 and use the obvious equality

max
0≤i≤n

Si = ξ0 + max{0, S1
1 , ..., S

1
n} = ξ0 + ( max

1≤i≤n
S1

i )+,

where S1
n = ξ1 + ...+ ξn. Also notice that

E max
0≤i≤n

|Si| ≤ E(|ξ0| + ...+ |ξn|) = (n+ 1)E|ξ0| <∞.

Then, for any invariant A,

Eξ0IA,max0≤i≤n[Si/(i+1)]>0 = Eξ0IA,max0≤i≤n Si>0

= E( max
0≤i≤n

Si)IA,max0≤i≤n Si>0 − E( max
1≤i≤n

S1
i )+IA,max0≤i≤n Si>0

≥ E( max
0≤i≤n

Si)+IA − E( max
1≤i≤n+1

S1
i )+IA.

The last expression is zero by definition, since A is invariant.
This proves the lemma for p = 0. In the general case, it suffices to

consider ξi − p instead of ξi and notice that Si/(i + 1) > p if and only if
(ξ0 − p) + ...+ (ξi − p) > 0. The lemma is proved.

11. Theorem (Birkhoff-Khinchin). Let ξn be a stationary process and f(x)
a Borel function such that E|f(ξ0)| <∞. Then (i) the limit

f∗ := lim
n→∞

1
n+ 1

[f(ξ0) + ...+ f(ξn)]

exists almost surely, and (ii) we have

E|f∗| ≤ E|f(ξ0)|, lim
n→∞E

∣∣f∗ − 1
n+ 1

[f(ξ0) + ...+ f(ξn)]
∣∣ = 0. (5)
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Proof. (i) Since f(ξn) is a stationary process, without loss of generality
we may and will take f(ξn) = ξn and assume that E|ξ0| < ∞. In this
situation we just repeat almost word for word the above proof of convergence
for reverse martingales.

Denote ηn = Sn/(n+1). Then Hopf’s lemma says that (2) holds provided
B ∩Cp is invariant. By letting n→ ∞ we obtain (3). Changing signs leads
to (4) provided B ∩Dq is invariant. Lemma 9 allows us to take B = Dq in
(3) and B = Cp in (4). The rest is exactly the same as above, and assertion
(i) follows.

(ii) The first equation in (5) follows from (i), Fatou’s lemma, and the
fact that E|f(ξk)| = E|f(ξ0)|. The second one follows from (i) and the
dominated convergence theorem if f is bounded. In the general case, take
any ε > 0 and find a bounded Borel g such that E|f(ξ0)− g(ξ0)| ≤ ε. Then

lim
n→∞E

∣∣f∗ − 1
n+ 1

[f(ξ0) + ...+ f(ξn)]
∣∣

≤ lim
n→∞E

∣∣f∗ − g∗ − 1
n+ 1

[{f(ξ0) − g(ξ0)} + ...+ {f(ξn) − g(ξn)}]∣∣

≤ E|(f − g)∗| + E|f(ξ0) − g(ξ0)| ≤ 2E|f(ξ0) − g(ξ0)| ≤ 2ε.

Since ε > 0 is arbitrary, we get the second equation in (5). The theorem is
proved.

12. Exercise. We concentrated on real-valued stationary processes only for
the sake of convenience of notation. One can consider stationary processes
with values in arbitrary measure spaces, and the Birkhoff-Khinchin theorem
with its proof carries over to them without any change. Moreover, obviously
instead of real-valued f one can take R

d-valued functions. In connection
with this, prove that if ξn is a (real-valued) stationary process, f is a Borel
function satisfying E|f(ξ0)| < ∞, and z is a complex number with |z| = 1,
then the limit

lim
n→∞

1
n+ 1

[z0f(ξ0) + ...+ znf(ξn)]

exists almost surely.

The Birkhoff-Khinchin theorem looks like the strong law of large num-
bers, and its assertion is most valuable when the limit is nonrandom. In
that case (5) implies that f∗ = Ef(ξ0). In other words,

lim
n→∞

1
n+ 1

[f(ξ0) + ...+ f(ξn)] = Ef(ξ0) (a.s.). (6)
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Let us give some conditions for the limit to be constant.

13. Definition. A stationary process ξn is said to be ergodic if any invari-
ant event A belonging to σ(ξ0, ξ1, ...) has probability zero or one.

14. Theorem. If ξn is a stationary ergodic process, then (6) holds for any
Borel function f satisfying E|f(ξ0)| <∞.

Proof. By Lemma 9, for any constant c, the event {f∗ ≤ c} is invariant
and, obviously, belongs to σ(ξ0, ξ1, ...). Because of ergodicity, P (f∗ ≤ c) = 0
or 1. Since this holds for any constant c, f∗ = const (a.s.) and, as we have
seen before the theorem, (6) holds indeed. The theorem is proved.

The Birkhoff-Khinchin theorem for ergodic processes is important in
physics. For instance, take the problem of finding the average magnitude
of the speed of molecules of a gas in a given volume. Assume that the gas
is in a stationary regime, so that, in particular, this average is independent
of time. It is absolutely impossible to measure the speeds of all molecules
at a given time and then compute the average in question. The Birkhoff-
Khinchin theorem guarantees, on the intuitive level, that if we take “almost
any” particular molecule and measure its speed at moments 0, 1, 2, ..., then
the arithmetic means of magnitudes of these measurements will converge
to the average magnitude of speed of all molecules. Physical intuition tells
us that in order for this to be true, the molecules of gas should intermix
“well” during their displacements. In mathematical terms this translates to
the requirement of ergodicity. We may say that if there is a good mixing or
ergodicity, then the individual average over time coincides with the average
over the ensemble of all molecules.

Generally, stationary processes need not be ergodic, as it is seen from
Example 3. For many of those that are ergodic, proving ergodicity turns out
to be very hard. On the other hand, there are some cases in which checking
ergodicity is rather simple.

15. Theorem. Any sequence of i.i.d. random variables is ergodic.

Proof. Let ξn be a sequence of i.i.d. random variables and let A be an
invariant event belonging to σ := σ(ξ0, ξ1, ...). Define Π =

⋃
n σ(ξ0, ξ1, ...ξn).

Then, for each n and Borel Γ, we have

{ω : ξn ∈ Γ} ∈ σ(ξ0, ξ1, ...ξn) ⊂ Π ⊂ σ(Π),

so that σ ⊂ σ(Π). On the other hand, Π ⊂ σ and σ(Π) ⊂ σ. Thus σ(Π) = σ,
which by Theorem 2.3.19 implies that L1(σ, P ) = L1(Π, P ). In particular,
for any ε ∈ (0, 1), there are an n and a σ(ξ0, ξ1, ...ξn)-measurable random
variable f such that
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E|IA − f | ≤ ε.

Without loss of generality, we may assume that |f | ≤ 2 and that f takes
only finitely many values.

Next, by using the fact that any element of σ(ξ0, ξ1, ...ξn) has the form
{ω : (ξ0, ξ1, ...ξn) ∈ B}, where B is an appropriate Borel set in R

n+1, it is
easy to prove that f = f(ξ0, ..., ξn), where f(x0, ..., xn) is a Borel function.
Therefore, the above assumptions imply that

P (A) = EIAIA ≤ ε+ Ef(ξ0, ..., ξn)IA

= ε+ Ef(ξn+1, ..., ξ2n+1)IA ≤ 3ε+ Ef(ξn+1, ..., ξ2n+1)f(ξ0, ..., ξn)

= 3ε+ [Ef(ξ0, ..., ξn)]2 ≤ 3ε+ [P (A) + ε]2.

By letting ε ↓ 0, we conclude that P (A) ≤ [P (A)]2, and our assertion follows.
The theorem is proved.

From this theorem and the Birkhoff-Khinchin theorem we get Kolmo-
gorov’s strong law of large numbers for i.i.d. random variables with E|ξ0| <
∞. This theorem also allows one to get stronger results even for the case
of ξn which are i.i.d. As an example let ηn = f(ξn, ξn+1, ...), where f is
independent of n. Assume E|η0| < ∞. Then ηn is a stationary process and
the event

{ω : lim
n→∞

1
n+ 1

(η0 + ...+ ηn) < c}

is invariant with respect to the process ξn. Therefore, the limit is constant
with probability 1. As above, one proves that the limit equals Eη0 (a.s.).

In Example 7, for α irrational, one could also prove that ξn is an ergodic
process (see Exercise 16), and this would lead to (1.2.7) for almost every x.
Notice that in Exercise 1.2.13 we have already seen that actually (1.2.7) holds
for any x provided that f is Borel and Riemann integrable. The application
of the Birkhoff-Khinchin theorem allows one to extend this result for any
Borel function that is integrable with convergence for almost all x.

16. Exercise. Prove that the process from Example 7 is ergodic if α is
irrational.

Finally, let us prove that if ξn is a real-valued Gaussian second order
stationary process with correlation function tending to zero at infinity, then
f∗ = Ef(ξ0) (a.s.) for any Borel f such that E|f(ξ0)| <∞. By the way, f∗

exists due to Example 6 and the Birkhoff-Khinchin theorem.
Furthermore, owing to the first relation in (5), to prove f∗ = Ef(ξ0)

it suffices to concentrate on bounded and uniformly continuous f . In that
case, g(ξn) := f(ξn) − Ef(ξ0) is a second order stationary process. As in
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Exercise 1.14 (actually easier because there is no need to use mean-square
integrals) one proves that

l.i.m.
1

n+ 1
(g(ξ0) + ...+ g(ξn)) = 0 (7)

if

lim
n→∞Eg(ξ0)g(ξn) → 0. (8)

By the Birkhoff-Khinchin theorem, the limit in (7) exists pointwise (a.s.)
and it coincides, of course, with the mean-square limit. It follows that we
need only prove (8).

Without loss of generality assume R(0) = 1. Then ηn := ξn−R(n)ξ0 and
ξ0 are uncorrelated and hence independent. By using this and the uniform
continuity of g we conclude that

lim
n→∞Eg(ξ0)g(ξn) = lim

n→∞Eg(ξ0)g(ηn +R(n)ξ0)

= lim
n→∞Eg(ξ0)g(ηn) = lim

n→∞Eg(ξ0)Eg(ηn) = 0,

the last equality being true because Eg(ξ0) = 0.

7. Hints to exercises

1.11 Instead of Fourier integrals, consider Fourier series.
1.14 Use that continuous H-valued functions are uniformly continuous.
1.15 Observe that our assertions can be expressed in terms of R only, since,
for every continuous nonrandom f ,

E
∣∣ ∫ b

a
ξtft dt

∣∣2 = E
∣∣ ∫ b

a
ηtft dt

∣∣2
whenever ξt and ηt have the same correlation function. Another useful
observation is that, if R(0) = 1, then R(t) = Eeitξ = F{0}+EeitξIξ �=0, and

1
T

∫ T

0
R(t) dt = F{0} + EIξ �=0[eiT ξ − 1]/(iT ξ).

3.3 In the proof of the converse, notice that, if R(0) = 1, then ξr and
ξt+s − e−αsξt are uncorrelated, hence independent for r ≤ t, s ≥ 0.
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3.4 Write the left-hand side as the mean-square limit of integral sums, and
use the isometric property of the stochastic integral along with the domi-
nated convergence theorem to find the L2-limit.
4.1 From Pm(x)P̃ñ(x) ≡ P̃m̃(x)Pn(x) conclude that any root of Pm is a root
of P̃m̃, but not of Pn since Pm and Pn do not have common roots. Then
derive that P̃m̃(x) ≡ Pm(x).
4.3 Observe that ϕ̄(x)|x=z = ϕ(−x)|x=z for all complex z and ϕ̄(x)|x=−iy =
ϕ(iy) for real y.
5.1 Define

G(t) =
∫

R

eitxg(x)
1

Q+(x)
dx

and prove that G is m/2−1 times continuously differentiable in t and tends
to zero as |t| → ∞ as the Fourier transform of an L1 function. Then prove
that G satisfies the equation P+(−iDt)G(t) = 0 for t ≤ 0, where Dt = d/dt.
Solutions of this linear equation are linear combinations of some integral
powers of t times exponential functions. Owing to the choice of P+, its
roots lie in the closed upper half plane, which implies that the exponential
functions are of type exp(at) with Re a ≤ 0, none of which goes to zero as
t → −∞. Since G(t) → 0 as t → −∞, we get that G(t) = 0 for t ≤ 0. Now
apply linear differential operators to G to get the conclusion.

5.2 Remember the definition of Lξ
2 from Remark 2.4. By this remark, if

η ∈ Lξ
2, then η =

∫
R
g(x)λ(dx) with g ∈ L2(B(R), �). If in addition η ⊥

Lξ
2(−∞, 0), then

∫
R
ḡ(x)eitxϕ(x) dx = 0 for t ≤ 0. Exercise 5.1 shows then

that η is orthogonal to the random variables in (5.1).
5.8 For the uniqueness see the hint to Exercise 5.1. Also notice that P ε

+

does not have real roots, and

ξ̃ε
t =

∫
R

P+(x)
P ε

+(x)Q+(x)
eitx λ(dx).

6.2 If the distributions of two vectors coincide, the distributions of their
respective subvectors coincide too. Therefore, for any i ≤ n, the vectors
(ξi, ..., ξn) and (ξi+1, ..., ξn+1) have the same distribution.
6.12 Notice that the process ηn := zneiω, where ω is Ω = [0, 2π] with
Lebesgue measure, is stationary. Also notice that the product of two inde-
pendent stationary processes is stationary.
6.16 For an invariant set A and any integers m ∈ R and k ≥ 0 we have∫

Ω
e2πimωIA(ω) dω = e2πimα

∫
Ω
e2πimωIA(ω) dω
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= e2πimkα

∫
Ω
e2πimωIA(ω) dω,

where dω is the differential of the linear Lebesgue measure and k is any
integer. By using (1.2.6), conclude that, for any square-integrable random
variable f , EfIA = P (A)Ef . Then take f = IA.





Chapter 5

Infinitely Divisible
Processes

The Wiener process has independent increments and the distribution of each
increment depends only on the length of the time interval over which the
increment is taken. There are many other processes possessing this property;
for instance, the Poisson process or the process τa, a ≥ 0, from Example 2.5.8
are examples of those (see Theorem 2.6.1).

In this chapter we study what can be said about general processes of
that kind. They are supposed to be given on a complete probability space
(Ω,F , P ) usually behind the scene. The assumption that this space is com-
plete will turn out to be convenient to use starting with Exercise 5.5. One
more stipulation is that unless explicitely stated otherwise, all the processes
under consideration are assumed to be real valued . Finally, after Theorem
1.5 we tacitly assume that all processes under consideration are stochasti-
cally continuous without specifying this each time.

1. Stochastically continuous processes with
independent increments

We start with processes having independent increments. The main goal of
this section is to show that these processes, or at least their modifications,
have rather regular trajectories (see Theorem 11).

1. Definition. A real- or vector-valued random process ξt given on [0,∞)
is said to be a process with independent increments if ξ0 = 0 (a.s.) and
ξt1 , ξt2 − ξt1 , ..., ξtn − ξtn−1 are independent provided 0 ≤ t1 ≤ ... ≤ tn <∞.

131
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We will be only dealing with stochastically continuous processes.

2. Definition. A real- or vector-valued random process ξt given on [0,∞)
is said to be stochastically continuous at a point t0 ∈ [0,∞) if ξt

P→ ξt0
as t → t0. We say that ξt is stochastically continuous on a set if it is
stochastically continuous at each point of the set.

Clearly, ξt is stochastically continuous at t0 if E|ξt − ξt0 | → 0 as t→ t0.
Stochastic continuity is very weakly related to the continuity of trajectories.
For instance, for the Poisson process with parameter 1 (see Exercise 2.3.8)
we have E|ξt − ξt0 | = |t − t0|. However, all trajectories of ξt are discontin-
uous. By the way, this example shows also that the requirement β > 0 in
Kolmogorov’s Theorem 1.4.8 is essential. The trajectories of τa, a ≥ 0, are
also discontinuous, but this process is stochastically continuous too since
(see Theorem 2.6.1 and (2.5.1))

P (|τb − τa| > ε) = P (τ|b−a| > ε) = P (max
t≤ε

ws < |b− a|) → 0 as b→ a.

3. Exercise. Prove that, for any ω, the function τa, a > 0, is left continuous
in a.

4. Definition. A (real-valued) random process ξt given on [0,∞) is said to
be bounded in probability on a set I ⊂ [0,∞) if

lim
c→∞ sup

t∈I
P (|ξt| > c) = 0.

As in usual analysis, one proves the following.

5. Theorem. If the process ξt is stochastically continuous on [0, T ] (T <
∞), then

(i) it is uniformly stochastically continuous on [0, T ], that is, for any
γ, ε > 0 there exists δ > 0 such that

P (|ξt1 − ξt2 | > ε) < γ,

whenever t1, t2 ∈ [0, T ] and |t1 − t2| ≤ δ;

(ii) it is bounded in probability on [0, T ].

The proof of this theorem is left to the reader as an exercise.
From this point on we will only consider stochastically continuous pro-

cesses on [0,∞), without specifying this each time.
To prove that processes with independent increments admit modifica-

tions without second-type discontinuities, we need the following lemma.
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6. Lemma (Ottaviani’s inequality). Let ηk, k = 1, ..., n, be independent
random variables, Sk = η1 + ...+ ηk, a ≥ 0, 0 ≤ α < 1, and

P{|Sn − Sk| ≥ a} ≤ α ∀k.

Then for all c ≥ 0

P{max
k≤n

|Sk| ≥ a+ c} ≤ 1
1 − α

P{|Sn| ≥ c}. (1)

Proof. The probability on the left in (1) equals

n∑
k=1

P{|Si| < a+ c, i < k, |Sk| ≥ a+ c}

≤ 1
1 − α

n∑
k=1

P{|Si| < a+ c, i < k, |Sk| ≥ a+ c, |Sn − Sk| < a}

≤ 1
1 − α

n∑
k=1

P{|Si| < a+c, i < k, |Sk| ≥ a+c, |Sn| ≥ c} ≤ 1
1 − α

P{|Sn| ≥ c}.

The lemma is proved.

7. Theorem. Let ξt be a process with independent increments on [0,∞),
T ∈ [0,∞), and let ρ be the set of all rational points on [0, T ]. Then

P{sup
r∈ρ

|ξr| <∞} = 1.

Proof. Obviously it suffices to prove that for some h > 0 and all t ∈ [0, T ]
we have

P{ sup
r∈[t,t+h]∩ρ

|ξr| <∞} = 1. (2)

Take h > 0 so that P{|ξu − ξu+s| ≥ 1} ≤ 1/2 for all s, u such that
0 ≤ s ≤ h and s + u ≤ T . Such a choice is possible owing to the uniform
stochastic continuity of ξt on [0, T ]. Fix t ∈ [0, T ] and let

r1, ..., rn ∈ [t, t+ h] ∩ ρ, r1 ≤ ... ≤ rn.

Observe that ξrk
= ξr1 +(ξr2 − ξr1)+ ...+(ξrk

− ξrk−1
), where the summands

are independent. In addition, P{|ξrn − ξrk
| ≥ 1} ≤ 1/2. Hence by Lemma 6
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P{sup
k≤n

|ξrk
| ≥ 1 + c} ≤ 2 sup

t∈[0,T ]
P{|ξt| ≥ c}. (3)

The last inequality is true for any arrangement of the points rk ∈ [t, t+h]∩ρ
which may not be necessarily ordered increasingly. Therefore, now we can
think of the set {r1, r2, ...} as being the whole ρ ∩ [t, t + h]. Then, passing
to the limit in (3) as n→ ∞ and noticing that

sup{|ξrk
| : k = 1, 2, ...} ↑ sup{|ξr| : r ∈ ρ ∩ [t, t+ h]},

we find that

P{ sup
r∈[t,t+h]∩ρ

|ξr| > 1 + c} ≤ 2 sup
t∈[0,T ]

P{|ξt| ≥ c}.

Finally, by letting c → ∞ and using the uniform boundedness of ξr in
probability, we come to (2). The theorem is proved.

Define D[0,∞) to be the set of all complex-valued right-continuous func-
tions on [0,∞) which have finite left limits at each point t ∈ (0,∞). Similarly
one defines D[0, T ]. We say that a function x· is a cadlag function on [0, T ]
if x· ∈ D[0, T ], and just cadlag if x· ∈ D[0,∞).

8. Exercise*. Prove that if xn· ∈ D[0,∞), n = 1, 2, ..., and the xn
t converge

to xt as n→ ∞ uniformly on each finite time interval, then x· ∈ D[0,∞).

9. Lemma. Let ρ = {r1, r2, ...} be the set of all rational points on [0, 1], xt

a real-valued (nonrandom) function given on ρ. For a < b define βn(x·, a, b)
to be the number of upcrossings of the interval (a, b) by the function xt

restricted to the set r1, r2, ..., rn. Assume that

lim
n→∞βn(x·, a, b) <∞

for any rational a and b. Then the function

x̃t := lim
ρr↓t

xr

is well defined for any t ∈ [0, 1), is right continuous on [0, T ), and has
(perhaps infinite) left limits on (0, T ].

This lemma is set as an exercise on properties of lim and lim.
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10. Lemma. Let ψ(t, λ) be a complex-valued function defined for λ ∈ R

and t ∈ [0, 1]. Assume that ψ(t, λ) is continuous in t and never takes the
zero value. Let ξt be a stochastically continuous process such that

(i) sup
r∈ρ

|ξr| <∞ (a.s.);

(ii) lim
n→∞Eβn(ηi· (λ), a, b) < ∞ for any −∞ < a < b < ∞, λ ∈ R,

i = 1, 2, where

η1
t (λ) = Re [ψ(t, λ)eiλξt ], η2

t (λ) = Im [ψ(t, λ)eiλξt ].

Then the process ξt admits a modification, all trajectories of which belong
to D[0, 1].

Proof. Denote ηt(λ) = ψ(t, λ)eiλξt and

Ω′ =
∞⋂

m=1

⋂
a<b

a,b rational

{ lim
n→∞βn(ηi

· (
1
m), a, b) <∞, i = 1, 2} ∩ {sup

r∈ρ
|ξr| <∞}.

Obviously, P (Ω′) = 1. For ω ∈ Ω′ Lemma 9 allows us to let

η̃t( 1
m) = lim

ρr↓t
ηr( 1

m), t < 1, η̃1( 1
m) = η1( 1

m).

For ω �∈ Ω′ let η̃t( 1
m) ≡ 0. Observe that, since ψ is continuous in t and

P (Ω′) = 1 and ξt is stochastically continuous, we have that

η̃t( 1
m) = P - lim

ρr↓t
ηr( 1

m) = ηt( 1
m) (a.s.) ∀t < 1,

η̃1( 1
m) = η1( 1

m).
(4)

Furthermore, |η̃t( 1
m)ψ−1(t, 1

m)| ≤ 1 for all ω and t.
Now define µ = µ(ω) = [supr∈ρ |ξr|] + 1 and

ξ̃t = µ arcsin Im η̃t(1/µ)ψ−1(t, 1/µ)IΩ′ .

By Lemma 9, η̃·( 1
m) ∈ D[0, 1] for any ω. Hence, ξ̃t ∈ D[0, 1] for any ω.

It only remains to prove that P{ξ̃t = ξt} = 1 for any t ∈ [0, 1]. For t ∈ ρ
we have this equality from (4) and from the formula

ξt = µ arcsin Im ηt(1/µ)ψ−1(t, 1/µ),

which holds for ω ∈ Ω′. For other t, owing to the stochastic continuity of ξt
and the right continuity of ξ̃t, we have
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ξt = P - lim
ρr↓t

ξr = P - lim
ρr↓t

ξ̃r = ξ̃t

(a.s.). The lemma is proved.

11. Theorem. Stochastically continuous processes with independent incre-
ments admit modifications which are right continuous and have finite left
limits for any ω.

Proof. Let ξt be a process in question. It suffices to construct a modifi-
cation with the described properties on each interval [n, n+1], n = 0, 1, 2, ....
The reader can easily combine these modifications to get what we want on
[0,∞). We will confine ourselves to the case n = 0. Let ρ be the set of all
rational points on [0, 1], and let

ϕ(t, λ) = Eeiξtλ, ϕ(t1, t2, λ) = Eeiλ(ξt2−ξt1).

Since the process ξt is stochastically continuous, the function ϕ(t1, t2, λ)
is continuous in (t1, t2) ∈ [0, 1] × [0, 1] for any λ. Therefore, this function
is uniformly continuous on [0, 1] × [0, 1], and, because ϕ(t, t, λ) = 1, there
exists δ(λ) > 0 such that |ϕ(t1, t2, λ)| ≥ 1/2 whenever |t1 − t2| < δ(λ) and
t1, t2 ∈ [0, 1]. Furthermore, for any t ∈ [0, 1] and λ ∈ R one can find n ≥ 1
and 0 = t1 ≤ t2 ≤ ... ≤ tn = t such that |tk − tk−1| < δ(λ). Then, using the
independence of increments, we find that

ϕ(t, λ) = ϕ(t1, t2, λ) · ... · ϕ(tn−1, tn, λ),

which implies that ϕ(t, λ) �= 0. In addition, ϕ(t, λ) is continuous in t.
For fixed λ consider the process

ηt = ηt(λ) = ϕ−1(t, λ)eiλξt .

Let s1, s2, ..., sn be rational numbers in [0, 1] such that s1 ≤ ... ≤ sn. Define

Fk = σ{ξs1 , ξs2 − ξs1, ..., ξsk
− ξsk−1

}.
Notice that (Re ηsk

,Fk) and (Im ηsk
,Fk) are martingales. Indeed, by virtue

of the independence of ξsk+1
− ξsk

and Fk, we have

E{Re ηsk+1
|Fk} = ReE{eiλξskϕ−1(sk+1, λ)eiλ(ξsk+1

−ξsk
)|Fk}

= Re eiλξskϕ−1(sk+1, λ)ϕ(sk, sk+1, λ) = Re ηsk
(a.s.).

Hence by Doob’s upcrossing theorem, if ri ∈ ρ, {r1, ..., rn} = {s1, ..., sn},
and 0 ≤ s1 ≤ ... ≤ sn, then

Eβn(Re η·, a, b) ≤ (E|Re ηsn | + |a|)/(b − a)
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≤ ( sup
t∈[0,1]

ϕ−1(t, λ) + |a|)/(b − a) <∞,

sup
n
Eβn(Im η·, a, b) <∞.

It only remains to apply Lemma 10. The theorem is proved.

12. Exercise* (cf. Exercise 3). Take the stable process τa, a ≥ 0, from
Theorem 2.6.1. Observe that τa increases in a and prove that its cadlag
modification, the existence of which is asserted in Theorem 11, is given by
τa+, a ≥ 0.

2. Lévy-Khinchin theorem

In this section we prove a remarkable Lévy-Khinchin theorem. It is worth
noting that this theorem was originally proved for so-called infinitely divisi-
ble laws and not for infinitely divisible processes. As usual we are only deal-
ing with one-dimensional processes (the multidimensional case is treated,
for instance, in [GS]).

1. Definition. A process ξt with independent increments is called time
homogeneous if, for every h > 0, the distribution of ξt+h − ξt is independent
of t.

2. Definition. A stochastically continuous time-homogeneous process ξt
with independent increments is called an infinitely divisible process.

3. Theorem (Lévy-Khinchin). Let ξt be an infinitely divisible process on
[0,∞). Then there exist a finite nonnegative measure on (R,B(R)) and a
number b ∈ R such that, for any t ∈ [0,∞) and λ ∈ R, we have

Eeiλξt = exp{t
∫

R

f(λ, x)µ(dx) + itbλ}, (1)

where

f(λ, x) = (eiλx − 1 − iλ sin x)
1 + x2

x2
, x �= 0, f(λ, 0) := −λ

2

2
.

Proof. Denote ϕ(t, λ) = Eeiλξt . In the proof of Theorem 1.11 we saw
that ϕ(t, λ) is continuous in t and ϕ(t, λ) �= 0. In addition ϕ(t, λ) is contin-
uous with respect to the pair (t, λ). Define

a(t, λ) = argϕ(t, λ), l(t, λ) = ln |ϕ(t, λ)|.
By using the continuity of ϕ and the fact that ϕ �= 0, one can uniquely
define a(t, λ) to be continuous in t and in λ and satisfy a(0, λ) = a(t, 0) = 0.
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Clearly, l(t, λ) is a finite function which is also continuous in t and in λ.
Furthermore,

ϕ(t, λ) = exp{l(t, λ) + ia(t, λ)}.

Next, it follows from the homogeneity and independence of increments
of ξt that

ϕ(t+ s, λ) = ϕ(t, λ)ϕ(s, λ).

Hence, by definition of a, we get that, for each λ, it satisfies the equation

f(t+ s) = f(t) + f(s) + 2πk(s, t),

where k(s, t) is a continuous integer-valued function. Since k(t, 0) = 0, in
fact, k ≡ 0, and a satisfies f(t+ s) = f(t)+ f(s). The same equation is also
valid for l. Any continuous solution of this equation has the form ct, where
c is a constant. Thus,

a(t, λ) = ta(λ), l(t, λ) = tl(λ),

where a(λ) = a(1, λ) and l(λ) = l(1, λ). By defining g(λ) := l(λ) + ia(λ),
we write

ϕ(t, λ) = etg(λ),

where g is a continuous function of λ and g(0) = 0. We have reduced our
problem to finding g.

Observe that

g(λ) = lim
t↓0

etg(λ) − 1
t

= lim
t↓0

ϕ(t, λ) − 1
t

. (2)

Moreover, from Taylor’s expansion of exp(tg(λ)) with respect to t one easily
sees that the convergence in (2) is uniform on each set of values of λ on
which g(λ) is bounded. In particular, this is true on each set [−h, h] with
0 ≤ h <∞.

By taking t of type 1/n and denoting Ft the distribution of ξt, we con-
clude that

n

∫
R

(eiλx − 1)F1/n(dx) → g(λ) (3)

as n→ ∞ uniformly in λ on any finite interval. Integrate this against dλ to
get
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lim
n→∞n

∫
R

(
1 − sinxh

xh

)
F1/n(dx) = − 1

2h

∫ h

−h
g(λ) dλ. (4)

Notice that the right-hand side of (4) can be made arbitrarily small by
choosing h small, since g is continuous and vanishes at zero. Furthermore,
as is easy to see, 1 − sinxh/xh ≥ 1/2 for |xh| ≥ 2. It follows that, for any
ε > 0, there exists h > 0 such that

lim
n→∞(n/2)

∫
|x|≥2/h

F1/n(dx) ≤ ε.

In turn, it follows that, for all large n,

n

∫
|x|≥2/h

F1/n(dx) ≤ 4ε. (5)

By reducing h one can accommodate any finite set of values of n and find
an h such that (5) holds for all n ≥ 1 rather than only for large ones.

To derive yet another consequence of (4), notice that there exists a
constant γ > 0 such that

1 − sinx
x

≥ γ
x2

1 + x2
∀x ∈ R.

Therefore, from (4) with h = 1, we obtain that there exists a finite constant
c such that for all n

n

∫
R

x2

1 + x2
F1/n(dx) ≤ c. (6)

Finally, upon introducing measures µn by the formula

µn(dx) = n
x2

1 + x2
F1/n(dx),

and noticing that µn ≤ nF1/n, from (5) and (6), we see that the family
{µn, n = 1, 2, ...} is weakly compact. Therefore, there exist a subsequence
n′ → ∞ and a finite measure µ such that∫

R

f(x)µn′(dx) →
∫

R

f(x)µ(dx)
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for every bounded and continuous f . As is easy to check f(λ, x) is bounded
and continuous in x. Hence,

g(λ) = lim
n→∞n

∫
R

(eiλx − 1)F1/n(dx)

= lim
n→∞[

∫
R

f(λ, x)µn(dx) + iλn

∫
R

sinxF1/n(dx)]

= lim
n′→∞

[
∫

R

f(λ, x)µn′(dx) + iλn′
∫

R

sinxF1/n′(dx)]

=
∫

R

f(λ, x)µ(dx) + iλb,

where

b := lim
n′→∞

n′
∫

R

sinxF1/n′(dx),

and the existence and finiteness of this limit follows from above computations
in which all limits exist and are finite. The theorem is proved.

Formula (1) is called Khinchin’s formula. The following Lévy’s formula
sheds more light on the structure of the process xt:

ϕ(t, λ) = exp t{
∫

R

(eiλx − 1 − iλ sin x)Λ(dx) + ibλ− σ2λ2/2},

where Λ is called the Lévy measure of ξt. This is a nonnegative, generally
speaking, infinite measure on B(R) such that

∫
R

x2

1 + x2
Λ(dx) <∞, Λ({0}) = 0. (7)

Any such measure is called a Lévy measure. One obtains one formula from
the other by introducing the following relations between µ and the pair
(Λ, σ2):

µ({0}) = σ2, Λ(Γ) =
∫

Γ\{0}

1 + x2

x2
µ(dx).

4. Exercise*. Prove that if one introduces (Λ, σ2) by the above formulas,
then one gets Lévy’s formula from Khinchin’s formula, and, in addition, Λ
satisfies (7).
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5. Exercise*. Let a measure Λ satisfy (7). Define

µ(Γ) =
∫

Γ

x2

1 + x2
Λ(dx) + IΓ(0)σ2.

Show that µ is a finite measure for which Lévy’s formula transforms into
Khinchin’s formula.

6. Theorem (uniqueness). There can exist only one finite measure µ and
one number b for which ϕ(t, λ) is representable by Khinchin’s formula. There
can exist only one measure Λ satisfying (7) and unique numbers b and σ2

for which ϕ(t, λ) is representable by Lévy’s formula.

Proof. Exercises 4 and 5 show that we may concentrate only on the first
part of the theorem. The exponent in Khinchin’s formula is continuous in λ
and vanishes at λ = 0. Therefore it is uniquely determined by ϕ(t, λ), and
we only need prove that µ and b are uniquely determined by the function

g(λ) :=
∫

R

f(λ, x)µ(dx) + ibλ.

Clearly, it suffices only to show that µ is uniquely determined by g.
For h > 0, we have

g(λ) − g(λ+ h) + g(λ− h)
2

=
∫

R

eiλx 1 − cos xh
x2

(1 + x2)µ(dx) (8)

with the agreement that (1 − cos xh)/x2 = h2/2 if x = 0. Define a new
measure

νh(Γ) =
∫

Γ
ρ(x, h)µ(dx), ρ(x, h) =

1 − cosxh
x2

(1 + x2)

and use ∫
R

f(x) νh(dx) =
∫

R

f(x)ρ(x, h)µ(dx)

for all bounded Borel f . Then we see from (8) that the characteristic func-
tion of νh is uniquely determined by g. Therefore, νh is uniquely determined
by g for any h > 0.

Now let Γ be a bounded Borel set and h be such that Γ ⊂ [−1/h, 1/h].
Take f(x) = ρ−1(x, h) for x ∈ Γ and f(x) = 0 elsewhere. By the way,
observe that f is a bounded Borel function. For this f∫

R

f(x) νh(dx) =
∫

R

f(x)ρ(x, h)µ(dx) = µ(Γ),
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where the left-hand side is uniquely determined by g. The theorem is proved.

7. Corollary. Define

µt(dx) =
x2

t(1 + x2)
Ft(dx), bt =

1
t

∫
R

sinxFt(dx).

Then µt → µ weakly and bt → b as t ↓ 0.

Indeed, similarly to (3) we have

1
t

∫
R

(eiλx − 1)Ft(dx) → g(λ),

which as in the proof of the Lévy-Khinchin theorem shows that the family
{µt; t ≤ 1} is weakly compact. Next, if µtn′

w→ ν, then, again as in the proof
of the Lévy-Khinchin theorem, btn′ converges, and if we denote its limit by c,
then Khinchin’s formula holds with µ = ν and b = c. Finally, the uniqueness
implies that all weak limit points of µt, t ↓ 0, coincide with µ and hence
(cf. Exercise 1.2.10) µ(t) w→ µ as t ↓ 0. This obviously implies that bt also
converges and its limit is b.

8. Corollary. In Lévy’s formula

σ2 = lim
n→∞ lim

t↓0
1
t
Eξ2t I|ξt|≤εn

,

where εn is a sequence such that εn > 0 and εn ↓ 0. Moreover, Ft/t converges
weakly on R \ {0} as t ↓ 0 to Λ, that is,

lim
t↓0

1
t

∫
R

f(x)Ft(dx) = lim
t↓0

1
t
Ef(ξt) =

∫
R

f(x)Λ(dx) (9)

for each bounded continuous function f which vanishes in a neighborhood
of 0.

Proof. By the definition of Λ and Corollary 7, for each bounded contin-
uous function f which vanishes in a neighborhood of 0, we have∫

R

f(x)Λ(dx) =
∫

R

f(x)
1 + x2

x2
µ(dx)

= lim
t↓0

∫
R

f(x)
1 + x2

x2
µt(dx) = lim

t↓0
1
t

∫
R

f(x)Ft(dx).

This proves (9).
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Let us prove the first assertion. By the dominated convergence theorem,
for every sequence of nonnegative εn → 0 we have

σ2 = µ({0}) =
∫

R

I[0,0](x)µ(dx)

=
∫

R

I[0,0](x)(1 + x2)µ(dx) = lim
n→∞

∫
R

I[−εn,εn](x)(1 + x2)µ(dx).

By Theorem 1.2.11 (v), if µ({εn}) = µ({−εn}) = 0, then∫
R

I[−εn,εn](x)(1 + x2)µ(dx)

= lim
t↓0

1
t

∫
R

I[−εn,εn](x)x
2 Ft(dx) = lim

t↓0
1
t
Eξ2t I|ξt|≤εn

.

It only remains to notice that the set of x such that µ({x}) > 0 is count-
able, so that there exists a sequence εn such that εn ↓ 0 and µ({εn}) =
µ({−εn}) = 0. The corollary is proved.

9. Exercise. Prove that, if ξt ≥ 0 for all t ≥ 0 and ω, then Λ((−∞, 0]) = 0.
One can say more in that case, as we will see in Exercise 3.15.

We know that the Wiener process has independent increments, and also
that it is homogeneous and stochastically continuous (even just continuous).
In Lévy’s formula, to get E exp(iλwt) one takes Λ = 0, b = 0, and σ = 1.

If in Lévy’s formula we take σ = 0, Λ(Γ) = IΓ(1)µ, and b = µ sin 1,
where µ is a nonnegative number, then the corresponding process is called
the Poisson process with parameter µ.

If σ = b = 0 and Λ(dx) = ax−2 dx with a constant a > 0, the corre-
sponding process is called the Cauchy process.

Clearly, for the Poisson process πt with parameter µ we have

Eeiλπt = etµ(eiλ−1),

so that πt has Poisson distribution with parameter tµ. In particular,

E|πt+h − πt| = Eπh = hµ

for t, h ≥ 0. The values of πt are integers and πt is not identically constant
(the expectation grows). Therefore πt does not have continuous modifica-
tion, which shows, in particular, that the requirement β > 0 in Theorem
1.4.8 is essential. For µ = 1 we come to the Poisson process introduced in
Exercise 2.3.8.
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10. Exercise. Prove that for the Cauchy process we have ϕ(t, λ) =
exp(−ct|λ|), with a constant c > 0.

11. Exercise*. Prove that the Lévy measure of the process τa+, a ≥ 0 (see
Theorem 2.6.1, and Exercise 1.12) is concentrated on the positive half line
and is given by Ix>0(2π)−1/2x−3/2 dx. This result will be used in Sec. 6.

You may also like to show that

ϕ(t, λ) = exp(−t|λ|1/2(a− ib sign λ)),

where

a = (2π)−1/2

∫ ∞

0
x−3/2(1 − cos x) dx, b = (2π)−1/2

∫ ∞

0
x−3/2 sinx dx,

and, furthermore, that a = b = 1.

12. Exercise. Prove that if in Lévy’s formula we have Λ = 0 and σ = 0,
then ξt = bt (a.s.) for all t, where b is a constant.

3. Jump measures and their relation to Lévy measures

Let ξt be an infinitely divisible cadlag process on [0,∞). Define

∆ξt = ξt − ξt−.

For any set Γ ⊂ R+ × R := [0,∞) × R let p(Γ) be the number of points
(t,∆ξt) ∈ Γ. It may happen that p(Γ) = ∞. Obviously p(Γ) is a σ-additive
measure on the family of all subsets of R+ × R. The measure p(Γ) is called
the jump measure of ξt.

For T, ε ∈ (0,∞) define

RT,ε = [0, T ] × {x : |x| ≥ ε}.

1. Remark. Notice that p(RT,ε) < ∞ for any ω, which is to say that on
[0, T ] there may be only finitely many t such that |∆ξt| ≥ ε. This property
follows immediately from the fact that the trajectories of ξt do not have
discontinuities of the second kind. It is also worth noticing that p(Γ) is
concentrated at points (t,∆ξt) and each point of this type receives a unit
mass.

We will need yet another measure defined on subsets of R. For any
B ⊂ R define

pt(B) = p((0, t] ×B).
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2. Remark. By Remark 1, if B is separated from zero, then pt(B) is finite.
Moreover, let f(x) be a Borel function (perhaps unbounded) vanishing for
|x| < ε, where ε > 0. Then, the process

ηt := ηt(f) :=
∫

R

f(x) pt(dx)

is well defined and is just equal to the (finite) sum of f(∆ξs) for all s ≤ t
such that |∆ξs| ≥ ε.

The structure of ηt is pretty simple. Indeed, fix an ω and let 0 ≤ s1 <
... < sn < ... be all s for which |∆ξs| ≥ ε (if there are only m < ∞ such s,
we let sn = ∞ for n ≥ m + 1). Then, of course, sn → ∞ as n → ∞. Also
s1 > 0, because ξt is right continuous and ξ0 = 0. With this notation

ηt =
∑
sn≤t

f(∆ξsn). (1)

We see that ηt starts from zero, is constant on each interval [sn−1, sn),
n = 1, 2, ... (with s0 := 0), and

∆ηsn = f(∆ξsn). (2)

3. Lemma. Let f(x) be a function as in Remark 2. Assume that f is
continuous. Let 0 ≤ t <∞ and tni be such that

s = tn1 < ... < tnk(n)+1 = t, max
j=1,...,k(n)

(tnj+1 − tnj ) → 0

as n→ ∞. Then for any ω

ηt(f) − ηs(f) =
∫

R+×R

I(s,t](u)f(x) p(dudx) = lim
n→∞

k(n)∑
j=1

f(ξtnj+1
− ξtnj ). (3)

Proof. We have noticed above that the set of all u ∈ (s, t] for which
|∆ξu| ≥ ε is finite. Let {u1, ..., uN} be this set. Single out those intervals
(thj , t

n
j+1] which contain at least one of the ui’s. For large n we will have

exactly N such intervals. First we prove that, for large n,

|ξtnj+1
− ξtnj | < ε, f(ξtnj+1

− ξtnj ) = 0

if the interval (tnj , t
n
j+1] does not contain any of the ui’s. Indeed, if this were

not true, then one could find a sequence sk, tk such that |ξtk − ξsk
| ≥ ε,

sk, tk ∈ (s, t], sk < tk, tk − sk → 0, and on (sk, tk] there are no points ui.
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Without loss of generality, we may assume that sk, tk → u ∈ (s, t] (actually,
one can obviously assume that u ∈ [s, t], but since the trajectories are right
continuous, ξsk

, ξtk → ξs if sk, tk → s, so that u �= s).
Furthermore, there are infinitely many sk’s either to the right or to the

left of u. Therefore, using subsequences if needed, we may assume that the
sequence sk is monotone and then that tk is monotone as well. Then, since ξt
has finite right and left limits, we have that sk ↑ u, sk < u, and tk ↓ u, which
implies that |∆ξu| ≥ ε. But then we would have a point u ∈ {u1, ..., uN}
which belongs to (sk, tk] for all k (after passing to subsequences). This is a
contradiction, which proves that for all large n the sum on the right in (3)
contains at most N nonzero terms. These terms correspond to the intervals
(tj, tj+1] containing ui’s, and they converge to f(∆ξui).

It only remains to observe that the first equality in (3) is obvious and,
by Remark 2,

∫
R+×R

I(s,t](u)f(x) p(dudx) =
N∑

i=1

f(∆ξui).

The lemma is proved.

4. Definition. For 0 ≤ s < t < ∞ define Fξ
s,t as the completion of the

σ-field generated by ξr − ξs, r ∈ [s, t]. Also set Fξ
t = Fξ

0,t.

5. Remark. Since the increments of ξt are independent, the σ-fields Fξ
0,t1

,
Fξ

t1,t2 ,..., Fξ
tn−1,tn are independent for any 0 < t1 < ... < tn.

Next remember Definition 2.5.10.

6. Definition. Random processes η1
t , ..., η

n
t defined for t ≥ 0 are called

independent if for any t1, ..., tk ≥ 0 the vectors (η1
t1 , ..., η

1
tk

), ..., (ηn
t1 , ..., η

n
tk

)
are independent.

7. Lemma. Let ζt be an R
d-valued process starting from zero and such that

ζt − ζs is Fξ
s,t-measurable whenever 0 ≤ s < t < ∞. Also assume that, for

all 0 ≤ s < t <∞, the random variables ζ1
t − ζ1

s ,..., ζd
t − ζd

s are independent.
Then the process ζt has independent increments and the processes ζ1

t ,..., ζd
t

are independent.

Proof. That ζt has independent increments follows from Remark 5. To
prove that the vectors

(ζ1
t1 , ..., ζ

1
tn), ..., (ζd

t1 , ..., ζ
d
tn) (4)
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are independent if 0 = t0 < t1 < ...,< tn, it suffices to prove that

(ζ1
t1 − ζ1

t0 , ζ
1
t2 − ζ1

t1 , ..., ζ
1
tn − ζ1

tn−1
), ..., (ζd

t1 − ζd
t0 , ζ

d
t2 − ζd

t1 , ..., ζ
d
tn − ζ1

tn−1
)
(5)

are independent. Indeed, the vectors in (4) can be obtained after applying a
linear transformation to the vectors in (5). Now take λk

j ∈ R for k = 1, ..., d
and j = 1, .., n, and write

E exp
(
i
∑
k,j

λk
j (ζ

k
tj − ζk

tj−1
)
)

= E exp
(
i
∑

j≤n−1,k

λk
j (ζ

k
tj − ζk

tj−1
)
)
E{exp

(
i
∑

k

λk
n(ζk

tn − ζk
tn−1

)
)|Fξ

0,tn−1
}

= E exp
(
i
∑

j≤n−1,k

λk
j (ζ

k
tj − ζk

tj−1
)
)
E exp

(
i
∑

k

λk
n(ζk

tn − ζk
tn−1

)
)

= E exp
(
i
∑

j≤n−1,k

λk
j (ζ

k
tj − ζk

tj−1
)
)∏

k

E exp
(
iλk

n(ζk
tn − ζk

tn−1
)
)
.

An obvious induction allows us to represent the characteristic function of
the family {ζk

tj − ζk
tj−1

, k = 1, ..., d, j = 1, ..., n} as the product of the char-
acteristic functions of its members, thus proving the independence of all
ζk
tj − ζk

tj−1
and, in particular, of the vectors (5). The lemma is proved.

8. Lemma. Let f be as in Remark 2 and let f be continuous. Take α ∈ R

and denote ζt = ηt(f) + αξt. Then

(i) for every 0 ≤ s < t < ∞, the random variable ζt − ζs is Fξ
s,t-

measurable;
(ii) the process ζt is an infinitely divisible cadlag process and

Eeiζt = exp t
{∫

R

(ei(f(x)+αx) − 1 − iα sinx)Λ(dx) + iαb− α2σ2/2
}
. (6)

Proof. Assertion (i) is a trivial consequence of (3). In addition, Remark
5 shows that ζt has independent increments.

(ii) The homogeneity of ζt follows immediately from (3) and the similar
property of ξt. Furthermore, Remark 2 shows that ζt is cadlag. From the
homogeneity and right continuity of ζt we get

lim
s↑t

Eeiλ(ζt−ζs) = lim
s↑t

Eeiλζt−s = Eeiλζ0 = 1, t > 0.
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Similar equations hold for s ↓ t with t ≥ 0. Therefore, ζs
P→ ζt as s→ t, and

ζt is stochastically continuous.
To prove (6), take Khinchin’s measure µ and take µt and bt from Corol-

lary 2.7. Also observe that

lim
n→∞ an

n = lim
n→∞ en log an = lim

n→∞ en(an−1)

provided an → 1 and one of the limits exists. Then we have

Eei(ηt+αξt) = lim
n→∞

(
Eei(f(ξt/n)+αξt/n)

)n

= lim
n→∞ expn

∫
R

(ei(f(x)+αx) − 1)Ft/n(dx),

with

lim
n→∞n

∫
R

(ei(f(x)+αx) − 1)Ft/n(dx)

= lim
n→∞ t

∫
R

(ei(f(x)+αx) − 1 − iα sinx)(1 + x2)/x2 µt/n(dx) + iαtb

= t

∫
R

(ei(f(x)+αx) − 1 − iα sinx)(1 + x2)/x2 µ(dx) + iαtb.

Now to get (6) one only has to refer to Exercise 2.4. The lemma is proved.

9. Theorem. (i) For ab > 0 the process pt(a, b] is a Poisson process with
parameter Λ((a, b]), and, in particular,

Ept(a, b] = tΛ((a, b]); (7)

(ii) if am < bm, ambm > 0, m = 1, ..., n, and the intervals (am, bm] are
pairwise disjoint, then the processes pt(a1, b1], ..., pt(an, bn] are independent.

Proof. To prove (i), take a sequence of bounded continuous functions
fk(x) such that fk(x) → λI(a,b](x) as k → ∞ and fk(x) = 0 for |x| < ε :=
(|a| ∧ |b|)/2. Then, for each ω,

∫
R

fk(x) pt(dx) → λpt(a, b]. (8)

Moreover, | exp{ifk(x)} − 1| ≤ 2I|x|≥ε and
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∫
R

I|x|≥ε Λ(dx) ≤ 1 + ε2

ε2

∫
R

x2

1 + x2
Λ(dx) <∞. (9)

Hence, by Lemma 8 and by the dominated convergence theorem,

Eeiλpt(a,b] = exp t
∫

R

(eiλI(a,b](x) − 1)Λ(dx) = exp{tΛ((a, b])(eiλ − 1)}.

The homogeneity of pt(a, b] and independence of its increments follow
from (8) and Lemma 8. Remark 2 shows that pt(a, b] is a cadlag process.
As in Lemma 8, this leads to the conclusion that pt(a, b] is stochastically
continuous. This proves (i).

(ii) Formula (8) and Lemma 8 imply that pt(a, b] − ps(a, b] is Fξ
s,t-

measurable if s < t. By Lemma 7, to prove that the processes pt(a1, b1],...,
pt(an, bn] are independent, it suffices to prove that, for any s < t, the random
variables

pt(a1, b1] − ps(a1, b1], ..., pt(an, bn] − ps(an, bn] (10)

are independent.
Take λ1, ..., λn ∈ R and define f(x) = λm for x ∈ (am, bm] and f = 0

outside the union of the (am, bm]. Also take a sequence of bounded continu-
ous functions fn vanishing in a neighborhood of zero such that fn(x) → f(x)
for all x ∈ R. Then

ηt(fn) − ηs(fn) → ηt(f) − ηs(f) =
n∑

m=1

λm{pt(am, bm] − ps(am, bm]}.

Hence and from Lemma 8 we get

E exp(i
n∑

m=1

λm{pt(am, bm] − ps(am, bm]}) = lim
n→∞Eei(ηt(fn)−ηs(fn))

= lim
n→∞Eeiηt−s(fn) = lim

n→∞ exp{(t− s)
∫

R

(eifn(x) − 1)Λ(dx)}

= exp{(t− s)
∫

R

(eif(x) − 1)Λ(dx)} =
n∏

m=1

exp{(t− s)Λ((am, bm])(eiλm − 1)}.

This and assertion (i) prove that the random variables in (5) are indepen-
dent. The theorem is proved.
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10. Corollary. Let f be a Borel nonnegative function. Then, for each t ≥
0, ∫

R\{0}
f(x) pt(dx)

is a random variable and

E

∫
R\{0}

f(x) pt(dx) = t

∫
R

f(x)Λ(dx). (11)

Notice that on the right in (11) we write the integral over R instead of
R\{0} because Λ({0}) = 0 by definition. To prove the assertion, take ε > 0
and let Σ be the collection of all Borel Γ such that pt(Γ\(−ε, ε)) is a random
variable and

νε(Γ) := Ept(Γ \ (−ε, ε)) = tΛε(Γ) := tΛ(Γ \ (−ε, ε)).

It follows from (7) and from the finiteness of Λ(R \ (−ε, ε)) that R ∈
Σ. By adding an obvious argument we conclude that Σ is a λ-system.
Furthermore, from Theorem 9 (i) we know that Σ contains Π := {(a, b] :
ab > 0}, which is a π-system. Therefore, Σ = B(R). Now a standard
measure-theoretic argument shows that, for every Borel nonnegative f , we
have

E

∫
R\(−ε,ε)

f(x) pt(dx) =
∫

R

f(x) νε(dx)

= t

∫
R

f(x)Λε(dx) = t

∫
R\(−ε,ε)

f(x)Λ(dx).

It only remains to let ε ↓ 0 and use the monotone convergence theorem.

11. Corollary. Every continuous infinitely divisible process has the form
bt+ σwt, where σ and b are the constants from Lévy’s formula and wt is a
Wiener process if σ �= 0 and wt ≡ 0 if σ = 0.

Indeed, for a continuous ξt we have pt(α, β] = 0 if αβ > 0. Hence
Λ((α, β]) = 0 and ϕ(t, λ) = exp{ibtλ − σ2λ2t/2}. For σ �= 0, it follows
that ηt := (ξt − bt)/σ is a continuous process with independent increments,
η0 = 0, and ηt − ηs ∼ N(0, |t − s|). As we know, ηt is a Wiener process. If
σ = 0, then ξt − bt = 0 (a.s.) for any t and, actually, ξt − bt = 0 for all t at
once (a.s.) since ξt − bt is continuous.

12. Corollary. Let an open set G ⊂ R \ {0} be such that Λ(G) = 0. Then
there exists Ω′ ∈ F such that P (Ω′) = 1 and, for each t ≥ 0 and ω ∈ Ω′,
∆ξt(ω) �∈ G.
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Indeed, represent G as a countable union (perhaps with intersections)
of intervals (am, bm]. Since Λ((am, bm]) = 0, we have Ept(am, bm] = 0 and
pt(am, bm] = 0 (a.s.). Adding to this that pt(am, bm] increases in t, we
conclude that pt(am, bm] = 0 for all t (a.s.). Now let

Ω′ =
⋂
m

{ω : pt(am, bm] = 0 ∀t ≥ 0}.

Then P (Ω′) = 1 and

p((0, t] ×G) ≤
∑
m

pt(am, bm] = 0

for each ω ∈ Ω′ and t ≥ 0, as asserted.
The following corollary will be used for deriving an integral representa-

tion of ξt through jump measures.

13. Corollary. Denote qt(a, b] = pt(a, b] − tΛ((a, b]). Let some numbers
satisfying ai ≤ bi and aibi > 0 be given for i = 1, 2. Then, for all t, s ≥ 0,

Eqt(a1, b1]qs(a2, b2] = (s ∧ t)Λ((a1, b1] ∩ (a2, b2]). (12)

Indeed, without loss of generality assume t ≥ s. Notice that both parts
of (12) are additive in the sense that if, say, (a1, b1] = (a3, b3] ∪ (a4, b4] and
(a3, b3] ∩ (a4, b4] = ∅, then

qt(a1, b1] = qt(a3, b3] + qt(a4, b4],

Λ((a1, b1] ∩ (a2, b2]) = Λ((a3, b3] ∩ (a2, b2]) + Λ((a4, b4] ∩ (a2, b2]).

It follows easily that to prove (12) it suffices to prove it only for two cases:
(i) (a1, b1] ∩ (a2, b2] = ∅ and (ii) a1 = a2, b1 = b2.

In the first case (12) follows from the independence of the processes
p·(a1, b1] and p·(a2, b2] and from (7). In the second case, it suffices to remem-
ber that the variance of a random variable having the Poisson distribution
with parameter Λ is Λ and use the fact that

qt(a, b] = qs(a, b] + (qt(a, b] − qs(a, b]),

where the summands are independent.
We will also use the following theorem, which is closely related to The-

orem 9.
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14. Theorem. Take a > 0 and define

ηt =
∫

[a,∞)
x pt(dx) +

∫
(−∞,−a]

x pt(dx). (13)

Then:
(i) the process ηt is infinitely divisible, cadlag, with σ = b = 0 and Lévy

measure Λ(Γ \ (−a, a));

(ii) the process ξt − ηt is infinitely divisible, cadlag, and does not have
jumps larger in magnitude than a;

(iii) the processes ηt and ξt − ηt are independent.

Proof. Assertion (i) is proved like the similar assertion in Theorem 9
on the basis of Lemma 8. Indeed, take a sequence of continuous functions
fk(x) → x(1 − I(−a,a)(x)) such that fk(x) = 0 for |x| ≤ a/2. Then, for any
ω,

∫
R

fk(x) pt(dx) → ηt. (14)

This and Lemma 8 imply that ηt is a homogeneous process with independent
increments. That it is cadlag follows from Remark 2. The stochastic conti-
nuity of ηt follows from its right continuity and homogeneity as in Lemma 8.
To find the Lévy measure of ηt, observe that | exp{iλfk(x)}− 1| ≤ 2I|x|≥a/2.
By using (9), Lemma 8, and the dominated convergence theorem, we con-
clude that

Eeiληt = exp t
∫

R

(eiλx(1−I(−a,a)(x))−1)Λ(dx) = exp t
∫

R\(−a,a)
(eiλx−1)Λ(dx).

In assertion (ii) the fact that ξt − ηt is an infinitely divisible cadlag
process is proved as above on the basis of Lemma 8. The assertion about
its jumps is obvious because of Remark 2. Another explanation of the same
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fact can be obtained from Lemma 8, which implies that

Eei(ληt+αξt)

= exp t
{∫

R

(eiλx(1−I(−a,a)(x))+iαx − 1 − iα sinx)Λ(dx) + iαb− α2σ2/2
}

= exp t
{∫

(−a,a)
(eiαx − 1 − iα sinx)Λ(dx)

+
∫

R\(−a,a)
(ei(λ+α)x − 1 − iα sinx)Λ(dx) + iαb− α2σ2/2

}
, (15)

where, for λ = −α, the expression in the last braces is

∫
(−a,a)

(eiαx − 1 − iα sinx)Λ(dx) + iα(b−
∫

R\(−a,a)
sinxΛ(dx)) − α2σ2/2,

which shows that the Lévy measure of ξt − ηt is concentrated on (−a, a).
To prove (iii), first take λ = β − α in (15). Then we see that

Eeiβηt+iα(ξt−ηt) = etg,

where

g =
∫

R\(−a,a)
(eiβx − 1)Λ(dx)

+
∫

(−a,a)
(eiαx−1−iα sinx)Λ(dx)+iα(b−

∫
R\(−a,a)

sinxΛ(dx))−α2σ2/2,

so that Eeiβηt+iα(ξt−ηt) = EeiβηtEeiα(ξt−ηt). Hence, for any t, ηt and ξt − ηt

are independent.
Furthermore, for any constants λ, α ∈ R, the process ληt + α(ξt − ηt) =

(λ − α)ηt + αξt is a homogeneous process, which is proved as above by
using Lemma 8. It follows that the two-dimensional process (ηt, ξt − ηt)
has homogeneous increments. In particular, if s < t, the distributions of
(ηt−s, ξt−s−ηt−s) and (ηt−ηs, ξt−ηt− (ξs−ηs)) coincide, and since the first
pair is independent, so is the second. Now the independence of the processes
ηt and ξt − ηt follows from Lemma 7 and from the fact that ηt − ηs, ξt − ξs,
and (ηt − ηs, ξt − ηt − (ξs − ηs)) are Fξ

s,t-measurable (see (14) and Lemma
8). The theorem is proved.

The following exercise describes all nonnegative infinitely divisible cadlag
processes.
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15. Exercise. Let ξt be an infinitely divisible cadlag process satisfying ξt ≥
0 for all t ≥ 0 and ω. Take ηt = ηt(a) from Theorem 14.

(i) By using Exercise 2.9, show that all jumps of ξt are nonnegative.
(ii) Prove that for every t ≥ 0, we have P (ηt(a) = 0) = exp(−tΛ([a,∞))).
(iii) From Theorem 14 and (ii), derive that ξt − ηt(a) ≥ 0 (a.s.) for each

t ≥ 0.
(iv) Since obviously ηt(a) increases as a decreases, conclude that ηt(0+) ≤

ξt < ∞ (a.s.) for each t ≥ 0. From (15) with α = 0 find the characteristic
function of ηt(0+) and prove that ξt − ηt(0+) has normal distribution. By
using that ξt − ηt(0+) ≥ 0 (a.s.), prove that ξt = ηt(0+) (a.s.).

(v) Prove that

∫ 1

0
xΛ(dx) <∞, ξt =

∫
(0,∞)

x p(t, dx) (a.s.),

and, in particular, ξt is a pure jump process with nonnegative jumps.

4. Further comments on jump measures

1. Exercise. Let f(t, x) be a Borel nonnegative function such that f(t, 0) =
0. Prove that

∫
R+×R

f(s, x) p(dsdx) is a random variable and

E

∫
R+×R

f(s, x) p(dsdx) =
∫

R+×R

f(s, x) dsΛ(dx). (1)

2. Exercise. Let f(t, x) = f(ω, t, x) be a bounded function such that f = 0
for |x| < ε and for t ≥ T , where the constants ε, T ∈ (0,∞). Also assume
that f(ω, t, x) is left continuous in t for any (ω, x) and Fξ

t ⊗B(R)-measurable
for any t. Prove that the following version of (1) holds:

E

∫
R+×R

f(s, x) p(dsdx) =
∫

R+×R

Ef(s, x) dsΛ(dx).

The following two exercises are aimed at generalizing Theorem 3.9.

3. Exercise. Let f(t, x) be a bounded Borel function such that f = 0 for
|x| < ε, where the constant ε > 0. Prove that, for t ∈ [0,∞),

ϕ(t) := E exp{i
∫

(0,t]×R

f(s, x) p(dsdx)} = exp{
∫

(0,t]×R

(eif(s,x)−1) dsΛ(dx)}.
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4. Exercise. By taking f in Exercise 3 as linear combinations of the indica-
tors of Borel subsets Γ1, ...,Γn of R+×R, prove that, if the sets are disjoint,
then p(Γ1), ..., p(Γn) are independent. Also prove that, if Γ1 ⊂ RT,ε, then
p(Γ1) is Poisson with parameter (�× Λ)(Γ1).

The following exercise shows that Poisson processes without common
jumps are independent.

5. Exercise. Let (Ω,F , P ) be a probability space, and let Ft be σ-fields
defined for t ≥ 0 such that Fs ⊂ Ft ⊂ F for s ≤ t. Assume that ξt and ηt

are two Poisson processes with parameters µ and ν respectively defined on
Ω, and such that ξt and ηt are F-measurable for each t and ξt+h − ξt and
ηt+h − ηt are independent of Ft for all t, h ≥ 0. Finally, assume that ξt and
ηt do not have common jumps, that is, (∆ξt)∆ηt = 0 for all t and ω. Prove
that the processes ξt and ηt are independent.

5. Representing infinitely divisible processes
through jump measures

We start with a simple result.

1. Theorem. Let ξt be an infinitely divisible cadlag process with parameters
σ, b, and Lévy measure concentrated at points x1, ..., xn.

(i) If σ �= 0, then there exist a Wiener process wt and Poisson pro-
cesses p1

t ,..., pn
t with parameters Λ({x1}), ...,Λ({xn}), respectively, such that

wt, p
1
t ,..., pn

t are mutually independent and

ξt = x1p
1
t + ...+ xnp

n
t + bt+ σwt ∀t ≥ 0 (a.s.). (1)

(ii) If σ = 0, assertion (i) still holds if one does not mention wt and
drops the term σwt in (1).

Proof. (i) Of course, we assume that xi �= xj for i �= j. Notice that
Λ({0}) = 0. Therefore, xm �= 0. Also

Λ(R \ {x1, ..., xn}) = 0.

Hence, by Corollary 3.12, we may assume that all jumps of ξt belong to the
set {x1, ..., xn}.

Now take a > 0 such that a < |xi| for all i, and define ηt by (3.13).
By Theorem 3.14 the process ξt − ηt does not have jumps and is infinitely
divisible. By Corollary 3.11 we conclude that

ξt − ηt = bt+ σwt.
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In addition, formula (3.1) shows also that

ηt = x1pt({x1}) + ...+ xnpt({xn}) = x1pt(a1, b1] + ...+ xnpt(an, bn],

where am, bm are any numbers satisfying ambm > 0, am < xm ≤ bm,
and such that (am, bm] are mutually disjoint. This proves (1) with pm

t =
pt(am, bm], which are Poisson processes with parameters Λ({xm}).

To prove that wt, p
1
t ,..., pn

t are mutually independent, introduce pη as
the jump measure of ηt and observe that by Theorem 3.14 the processes
ξt − ηt = bt + σwt and ηt (that is, wt and ηt) are independent. It follows
from Lemma 3.3 that, if we take any continuous functions f1, ..., fn vanishing
in the neighborhood of the origin, then the process wt and the vector-valued
process ( ∫

R

f1(x) p
η
t (dx), ...,

∫
R

fn(x) pη
t (dx)

)
are independent. By taking appropriate approximations we conclude that
the process wt and the vector-valued process

(pη
t (a1, b1], ..., p

η
t (an, bn])

are independent. Finally, by observing that, by Theorem 3.9, the processes
pη

t (a1, b1],..., p
η
t (an, bn] are independent and, obviously (cf. (3.2)), pη = p,

we get that wt, p
1
t ,..., pn

t are mutually independent. The theorem is proved.
The above proof is based on the formula

ξt = ζa
t + ηa

t , (2)

where

ηa
t =

∫
R\(−a,a)

x pt(dx), ζa
t = ξt − ηa

t , a > 0,

and the fact that for small a all processes ηa
t are the same. In the general

case we want to let a ↓ 0 in (2). The only trouble is that generally there is
no limit of ηa

t as a ↓ 0. On the other hand, the left-hand side of (2) does
have a limit, just because it is independent of a. So there is a hope that if we
subtract an appropriate quantity from ζa

t and add it to ηa
t , the results will

converge. This appropriate quantity turns out to be the stochastic integral
against the centered Poisson measure q introduced by

qt(a, b] = pt(a, b] − tΛ((a, b]) if ab > 0.
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2. Lemma. Let Π = {(0, t] × (a, b] : t > 0, a < b, ab > 0} and for A =
(0, t] × (a, b] ∈ Π let q(A) = qt(a, b]. Then Π is a π-system and q is a
random orthogonal measure on Π with reference measure �× Λ.

Proof. Let A = (0, t1] × (a1, b1], B = (0, t2] × (a2, b2] ∈ Π. Then

AB = (0, t1 ∧ t2] × (c, d], (c, d] := (a1, b1] ∩ (a2, b2],

which shows that Π is a π-system. That q is a random orthogonal measure
on Π with reference measure �× Λ is stated in Corollary 3.13. The lemma
is proved.

3. Remark. We may consider Π as a system of subsets of R+ × R \ {0}.
Then as is easy to see, σ(Π) = B(R+) ⊗ B(R \ {0}). By Theorem 2.3.19,
L2(Π,Λ) = L2(σ(Π), �×Λ). Therefore, Lemma 2 and Theorem 2.3.13 allow
us to define the stochastic integral∫

R+×(R\{0})
f(t, x) q(dtdx)

for every Borel f satisfying∫
R+×R

|f(t, x)|2 dtΛ(dx) <∞

(we write this integral over R+×R instead of R+×(R\{0}) because Λ({0}) =
0 by definition). Furthermore,

E|
∫

R+×(R\{0})
f(t, x) q(dtdx)|2 =

∫
R+×R

|f(t, x)|2 dtΛ(dx),

E

∫
R+×(R\{0})

f(t, x) q(dtdx) = 0,

(3)

the latter following from the fact that Eq(A) = 0 if A ∈ Π (see Remark
2.3.15).

4. Remark. Denote

∫
R\{0}

f(x) qt(dx) =
∫

R+×(R\{0})
I(0,t](u)f(x) q(dudx). (4)

Then (3) shows that, for each Borel f satisfying
∫

R
|f(x)|2 Λ(dx) < ∞ and

every t, s ∈ [0,∞),
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E
∣∣ ∫

R\{0}
f(x) qt(dx) −

∫
R\{0}

f(x) qs(dx)|2 = |t− s|
∫

R

|f(x)|2 Λ(dx),

E
∣∣ ∫

R\{0}
f(x) qt(dx)|2 = t

∫
R

|f(x)|2 Λ(dx).

In the following exercise we use for the first time our assumption that
(Ω,F , P ) is a complete probability space. This assumption allowed us to
complete σ(ξs : s ≤ t) and have this completion, denoted Fξ

t , to be part
of F . This assumption implies that, if we are given two random variables
satisfying ζ = η (a.s) and ζ is Fξ

t -measurable, so is η.

5. Exercise*. Prove that if f is a bounded Borel function vanishing in a
neighborhood of zero, then

∫
R
|f(x)|2 Λ(dx) <∞ and

∫
R\{0}

f(x) qt(dx) =
∫

R

f(x) pt(dx) − t

∫
R

f(x)Λ(dx) (a.s.). (5)

By using Lemma 3.8, conclude that the left-hand side of (5) is Fξ
t -measur-

able for every f ∈ L2(B(R),Λ).

6. Exercise*. As a continuation of Exercise 5, prove that (5) holds for
every Borel f satisfying f(0) = 0 and

∫
R
(|f | + |f |2)Λ(dx) <∞.

7. Lemma. For every Borel f ∈ L2(B(R),Λ) the stochastic integral

ηt :=
∫

R\{0}
f(x) qt(dx)

is an infinitely divisible Fξ
t -adapted process such that, if 0 ≤ s ≤ t < ∞,

then ηt−ηs and Fξ
s are independent. By Theorem 1.11 the process ηt admits

a modification with trajectories in D[0,∞). If we keep the same notation
for the modification, then for every T ∈ [0,∞)

E sup
t≤T

η2
t ≤ 4T

∫
R

|f(x)|2 Λ(dx). (6)

Proof. If f is a bounded continuous function vanishing in a neighborhood
of zero, the first statement follows from Exercise 5 and Lemma 3.8. An
obvious approximation argument and Remark 4 allow us to extend the result
to arbitrary f in question.

To prove (6) take 0 ≤ t1 ≤ ... ≤ tn ≤ T and observe that, owing to the
independence of ηtk+1

− ηtk and Fξ
tk

, we have
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E(ηtk+1
− ηtk |Fξ

tk
) = E(ηtk+1

− ηtk) = 0.

Therefore, (ηtk ,Fξ
tk

) is a martingale. By Doob’s inequality

E sup
k
η2

tk
≤ 4Eη2

T = 4T
∫

R

|f(x)|2 Λ(dx).

Clearly the inequality between the extreme terms has nothing to do with
ordering tk. Therefore by ordering the set ρ of all rationals on [0, T ] and
taking the first n rationals as tk, k = 1, ..., n, and then sending n to infinity,
by Fatou’s theorem we find that

E sup
r∈ρ,r<T

η2
r ≤ 4T

∫
R

|f(x)|2 Λ(dx).

Now equation (6) immediately follows from the right continuity and the
stochastic continuity (at point T ) of η·, since (a.s.)

sup
t≤T

η2
t = sup

t<T
η2

t = sup
r∈ρ,r<T

η2
r .

The lemma is proved.

8. Theorem. Let ξt be an infinitely divisible cadlag process with parameters
σ, b, and Lévy measure Λ.

(i) If σ �= 0, then there exist a constant b̄ and a Wiener process wt, which
is independent of all processes pt(c, d], such that, for each t ≥ 0,

ξt = b̄t+ σwt +
∫

(−1,1)
x qt(dx) +

∫
R\(−1,1)

x pt(dx) (a.s.). (7)

(ii) If σ = 0, assertion (i) still holds if one does not mention wt and
drops the term σwt in (7).

Proof. For a ∈ (0, 1) write (2) as

ξt = ζa
t +

∫
(−1,1)\(−a,a)

x pt(dx) +
∫

R\(−1,1)
x pt(dx).

Here, by Exercise 5,∫
(−1,1)\(−a,a)

x pt(dx) =
∫

(−1,1)\(−a,a)
x qt(dx) + t

∫
(−1,1)\(−a,a)

xΛ(dx),

so that
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ξt = κa
t +

∫
(−1,1)\(−a,a)

x qt(dx) +
∫

R\(−1,1)
x pt(dx), (8)

where

κa
t = ζa

t + t

∫
(−1,1)\(−a,a)

xΛ(dx).

By Lemma 7, for any T ∈ (0,∞),

E sup
t≤T

|
∫

(−1,1)\(−a,a)
x qt(dx) −

∫
(−1,1)

x qt(dx)|2 → 0

as a ↓ 0. Therefore, there exists a sequence an ↓ 0, along which with
probability one the first integral on the right in (8) converges uniformly on
each finite time interval to the first integral on the right in (7). It follows
from (8) that almost surely κan

t also converges uniformly on each finite time
interval to a process, say κt. Bearing in mind that the κa

t are cadlag and
using Exercise 1.8, we see that κt is cadlag too. By Theorem 3.14, the
process ζa

t is infinitely divisible cadlag. It follows that κa
t and κt are infinitely

divisible cadlag as well.
Furthermore, since ζa

t does not have jumps larger in magnitude than a,
the process κt does not have jumps at all and hence is continuous (the last
conclusion is easily proved by contradiction). Again by Theorem 3.14, the
process ζa

t is independent of ηa
t and, in particular, is independent of the jump

measure of ηa
t (cf. Lemma 3.3). The latter being pt((c, d]\(−a, a)) (cf. (3.2))

shows that ζa
t as well as κa

t are independent of all processes pt((c, d]\(−a, a)).
By letting a ↓ 0, we conclude that κt is independent of all processes pt(c, d].

To conclude the proof it only remains to use Corollary 3.11. The theorem
is proved.

9. Exercise. It may look as though assertion (i) of Theorem 8 holds even
if σ = 0. Indeed, in this case σwt ≡ 0 anyway. However, generally this
assertion is false if σ = 0. The reader is asked to give an example in which
this happens.

6. Constructing infinitely divisible processes

Here we want to show that for an arbitrary Lévy measure and constants b
and σ there exists an infinitely divisible process ξt, defined on an appropriate
probability space, such that
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Eeiλξt = exp t{
∫

R

(eiλx − 1 − iλ sinx)Λ(dx) + ibλ− σ2λ2/2}. (1)

By the way, this will show that generally there are no additional properties
of Λ apart from those listed in (2.7).

The idea is that if we have at least one process with “arbitrarily” small
jumps, then by “redirecting” the jumps we can get jump measures corre-
sponding to arbitrary infinitely divisible process. We know that at least one
such “test” process exists, the increasing 1/2-stable process τa+, a ≥ 0 (see
Theorem 2.6.1 and Exercises 1.12).

The following lemma shows how to redirect the jumps of τa+.

1. Lemma. Let Λ be a positive measure on B(R) such that Λ(R\(−a, a)) <
∞ for any a > 0 and Λ({0}) = 0. Then there exists a finite Borel function
f(x) on R such that f(0) = 0 and for any Borel Γ

Λ(Γ) =
∫

f−1(Γ)
|x|−3/2 dx.

Proof. For x > 0, define 2F (x) = Λ{(x,∞)}. Notice that F (x) is right
continuous on (0,∞) and F (∞) = 0. For x > 0 let

f(x) = inf{y > 0 : 1 ≥ xF 2(y)}.
Since F (∞) = 0, f is a finite function.

Next notice that, if t > 0 and f(x) > t, then for any y > 0 satisfying
1 ≥ xF 2(y), we have y > t, which implies that 1 < xF 2(t). Hence,

{x > 0 : f(x) > t} ⊂ {x > 0 : xF 2(t) > 1}. (2)

On the other hand, if t > 0 and xF 2(t) > 1, then due to the right continuity
of F also xF 2(t+ ε) > 1, where ε > 0. In that case, f(x) ≥ t+ ε > t. Thus
the sets in (2) coincide if t > 0, and hence

Λ{(t,∞)} = 2F (t) =
∫ ∞

1/F 2(t)
x−3/2 dx =

∫
x:xF 2(t)>1

x−3/2 dx = ν{(t,∞)},

where

ν(Γ) =
∫

x>0:f(x)∈Γ
x−3/2 dx.

A standard measure-theoretic argument allows us to conclude that
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Λ(Γ ∩ (0,∞)) = ν(Γ)

not only for Γ = (t,∞), t > 0, but for all Borel Γ ⊂ (0,∞).
Similarly, one constructs a negative function g(x) on (−∞, 0) such that

Λ(Γ ∩ (−∞, 0)) =
∫

x<0:g(x)∈Γ
|x|−3/2 dx.

Finally, the function we need is given by f(x)Ix>0 + g(x)Ix<0. The lemma
is proved.

We also need the following version of Lemma 3.8.

2. Lemma. Let pt be the jump measure of an infinitely divisible cadlag
process with Lévy measure Λ, and let f be a finite Borel function such that
f(0) = 0 and Λ({x : f(x) �= 0}) <∞. Then

(i) we have ∫
R\{0}

|f(x)| pt(dx) <∞

(a.s.), and

ξt :=
∫

R\{0}
f(x) pt(dx)

is well defined and is cadlag;
(ii) ξt is an infinitely divisible process, and

Eeiξt = exp t
∫

R

(eif(x) − 1)Λ(dx). (3)

Proof. (i) By Corollary 3.10

Ept({x : f(x) �= 0}) = tΛ({x : f(x) �= 0}) <∞.

Since the measure pt is integer valued, it follows that (a.s.) there are only
finitely many points in {x : f(x) �= 0} to which pt assigns a nonzero mass.
This proves (i).

To prove (ii) we use approximations. The inequality |eif − 1| ≤ 2If �=0

and the dominated convergence theorem show that, if assertion (ii) holds
for some functions fn(x) such that fn

Λ→ f , Λ({x : supn |fn(x)| > 0}) < ∞,
and
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∫
R\{0}

|f − fn| pt(dx)
P→ 0, (4)

then (ii) is also true for f . By taking fn = (−n) ∨ f ∧ n, we see that it
suffices to prove (ii) for bounded f . Then considering fn = fI1/n<|x|<n

reduces the general case further to bounded functions vanishing for small
and large |x|. Any such function can be approximated in L1(B(R),Λ) by
continuous functions fn, for which (4) holds automatically due to Corollary
3.10 and (3) holds due to Lemma 3.8 (ii) with α = 0. The lemma is proved.

Now let Λ be a Lévy measure and b and σ some constants. Take a
probability space carrying two independent copies η±t of the process τt+,
t ≥ 0, and a Wiener process wt independent of (η+

t , η
−
t ). By Exercise 2.11,

the Lévy measure of η±t is given by c0x−3/2Ix>0 dx, where c0 is a constant.
Define

Λ0(dx) = c0|x|−3/2 dx

and take the function f from Lemma 1 constructed from Λ/c0 in place of
Λ, so that, for any Γ ∈ B(R),

Λ(Γ) = Λ0f
−1(Γ) = Λ0({x : f(x) ∈ Γ}). (5)

3. Remark. Equation (5) means that, for any Γ ∈ B(R) and h = IΓ,

∫
R

h(x)Λ(dx) =
∫

R

h(f(x))Λ0(dx). (6)

A standard measure-theoretic argument shows that (6) is true for each Borel
nonnegative h and also for each Borel h for which at least one of

∫
R

|h(x)|Λ(dx) and
∫

R

|h(f(x))|Λ0(dx)

is finite. In particular, if h is a Borel function, then h ∈ L2(B(R),Λ) if and
only if h(f) ∈ L2(B(R),Λ0).

4. Theorem. Let p± be the jump measures of η±t and q± the centered Pois-
son measures of η±t . Define
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ξ±t =
∫

R\{0}
f(±x)I|f(±x)|<1 q

±
t (dx) +

∫
R\{0}

f(±x)I|f(±x)|≥1 p
±
t (dx)

=: α±
t + β±t .

Then, for a constant b̄, the process

ξt = b̄t+ σwt + ξ+t + ξ−t

is an infinitely divisible process satisfying (1).

Proof. Observe that∫
R

f2(±x)I|f(±x)|<1 Λ0(dx) =
∫

(−1,1)
x2 Λ(dx) <∞.

Therefore, the processes α±
t are well defined. In addition,

Λ0({x > 0 : |f(±x)| ≥ 1}) ≤ Λ0({x : |f(x)| ≥ 1}) = Λ(|x| ≥ 1) <∞.

Hence, β±t is well defined due to Lemma 2.
Next, in order to find the characteristic function of ξ±t , notice that

fI|f |<a → 0 in L2(B(R),Λ0) as a ↓ 0, so that upon remembering the prop-
erties of stochastic integrals, in particular, Exercise 5.6, we obtain

α±
t = l.i.m.

a↓0
( ∫

R\{0}
f(±x)Ia≤|f(±x)|<1 p

±
t (dx)

− t

∫ ∞

0
f(±x)Ia≤|f(±x)|<1 Λ0(dx)

)
.

It follows that

ξ±t = P - lim
a↓0
( ∫

R\{0}
f(±x)Ia≤|f(±x)| p±t (dx)

− t

∫ ∞

0
f(±x)Ia≤|f(±x)|<1 Λ0(dx)

)
.

Now Lemma 2 implies that ξ±t are infinitely divisible and

Eeiλξ±t

= lim
a↓0

exp t
∫ ∞

0

{
(eiλf(±x) − 1)Ia≤|f(±x)| − iλf(±x)Ia≤|f(±x)|<1)

}
Λ0(dx).
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In the next few lines we use the fact that |eiλx − 1 − iλxI|x|<1| is less
than λ2x2 if |x| < 1 and less than 2 otherwise. Then, owing to Remark 3,
we find that

g(λ, a) :=
∫ ∞

0

{
(eiλf(x) − 1)Ia≤|f(x)| − iλf(x)Ia≤|f(x)|<1

}
Λ0(dx)

+
∫ ∞

0

{
(eiλf(−x) − 1)Ia≤|f(−x)| − iλf(−x)Ia≤|f(−x)|<1

}
Λ0(dx)

=
∫

R

{
(eiλf(x) − 1)Ia≤|f(x)| − iλf(x)Ia≤|f(x)|<1

}
Λ0(dx)

=
∫

R\(−a,a)

{
eiλx − 1 − iλxI|x|<1

}
Λ(dx).

This along with the dominated convergence theorem implies that

g(λ, a) →
∫

R

(eiλx−1− iλxI|x|<1)Λ(dx) =
∫

R

(eiλx−1− iλ sinx)Λ(dx)+ iλb̃,

where

b̃ =
∫

R

(sin x− xI|x|<1)Λ(dx)

is a well-defined constant because | sinx− xI|x|<1| ≤ 2 ∧ x2.

Finally, upon remembering that the processes wt, p+
t , p−t are indepen-

dent, we conclude that ξt is infinitely divisible and

Eeiλξt = lim
a↓0

exp t
(
iλb̄− σ2λ2/2 + g(λ, a)

)
,

which equals the right-hand side of (1) if b̄+ b̃ = b. The theorem is proved.
The theory in this chapter admits a very natural generalization for

vector-valued infinitely divisible processes, which are defined in the same
way as in Sec. 2. Also as above, having an infinitely divisible process with
jumps of all sizes in all directions allows one to construct all other infinitely
divisible processes. In connection with this we set the reader the following.

5. Exercise. Let wt, w
1
t , ..., w

d
t be independent Wiener processes. Define

τt = inf{s ≥ 0 : ws ≥ t} and

ηt = (w1
t , ..., w

d
t ), ξt = ητt .

Prove that:
(i) The process ξt is infinitely divisible.
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(ii) E exp(iλ·ξt) = exp(−ct|λ|) for any λ ∈ R
d, where c > 0 is a constant,

so that ξt has a multidimensional Cauchy distribution.
(iii) It follows from (ii) that the components of ξt are not independent.

On the other hand, the components of ηt are independent random processes
and we do a change of time in ηt, random but yet independent of η. Explain
why this makes the components of ξt = ητt depend on each other. What
kind of nontrivial information about the trajectory of ξ2t can one get if one
knows the trajectory ξ1t , t > 0 ?

7. Hints to exercises

1.8 Assume the contrary.

1.12 For any cadlag modification ξ̃t of a process ξt we have ξt
P→ ξ̃s as t ↓ s.

2.10 Use
∫

R
(λ sin(x/λ) − sinx)x−2 dx = 0, which is true since sin x is an

odd function.
2.11 To show that a = b = 1, observe that

Ψ(z) :=
∫ ∞

0
x−3/2(e−zx − 1) dx

is an analytic function for Re z > 0 which is continuous for Re z ≥ 0. Fur-
thermore, for real z, changing variables, prove that Ψ(z) =

√
zΨ(1) and

express Ψ(1) through the gamma function by integrating by parts. Then
notice that

√
2πΨ(i) = −a− ib.

3.15 (ii) P (ηt(a) = 0) = P (p[a,∞) = 0). (iii) Use that ξt − ηt(a) and ηt(a)
are independent and their sum is positive. (iv)&(v) Put α = 0 in (3.15) to
get the characteristic function of ηt(0+) and also the fact that

lim
a↓0

∫
[a,∞)

(eiλx − 1)Λ(dx)

exists.
4.1 Corollary 3.10 says that the finite measures

νε,T (Γ) := Ep{((0, T ] × (R \ (−ε, ε))) ∩ Γ}
and

(�× Λ){((0, T ] × (R \ (−ε, ε))) ∩ Γ}

coincide on sets Γ of the form (0, t] × (a, b].
4.2 Assume f ≥ 0, approximate f by the functions f([tn]/n, x), and prove
that
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E

∫
(k/n,(k+1)/n]×R

f(k/n, x) p(dsdx)

= E

∫
(k/n,(k+1)/n]×R

(Ef(k/n, x)) p(dsdx).

To do this step, use π- and λ-systems in order to show that it suffices to
take f(k/n, x) equal to IA×Γ(ω, x), where A and p(k+1)/n(Γ) − pk/n(Γ) are
independent.
4.3 First let there be an integer n such that f(t, x) = f((k + 1)2−n, x)
whenever k is an integer and t ∈ (k2−n, (k+1)2−n], and let f((k+1)2−n, x)
be continuous in x. In that case use Lemma 3.8. Then derive the result for
any continuous function f(t, x) vanishing for |x| < ε. Finally, pass to the
limit from continuous functions to arbitrary ones by using (4.1).
4.5 Take some constants α and β and define ζt = αξt + βηt, ϕ(t) = Eeiζt .
Notice that

eiζt = 1 +
∫

(0,t]
eiζt−{[eiα − 1] dξt + [eiβ − 1] dηt},

where on the right we just have a telescoping sum. By taking expectations
derive that

ϕ(t) = 1 +
∫ t

0
ϕ(s){[eiα − 1]µ+ [eiβ − 1]ν} ds.

This will prove the independence of ξt and ηt for any t. To prove the inde-
pendence of the processes, repeat part of the proof of Lemma 3.7.
5.5 First check (5.5) for f = I(a,b] with ab > 0, and then use Corollary
3.10, the equality L2(Π,Λ) = L2(σ(Π),Λ), and (2.7), which shows that
Λ(R \ (−a, a)) <∞ for any a > 0.
5.6 The functions (n ∧ f)I|x|>1/n converge to f in L1(B(R),Λ) and in
L2(B(R),Λ).
6.5 (i) Use Theorem 2.6.1. (ii) Add that

E exp(iλ · ξt) =
∫ ∞

0
E exp(iλ · ηs)P (τt ∈ ds).

(iii) Think of jumps.





Chapter 6

Itô Stochastic Integral

The reader may have noticed that stochastic integrals or stochastic integral
equations appear in every chapter in this book. Here we present a systematic
study of the Itô stochastic integral against the Wiener process. This integral
has already been introduced in Sec. 2.7 by using an approach which is equally
good for defining stochastic integrals against martingales. This approach
also exhibits the importance of the σ-field of predictable sets. Traditionally
the Itô stochastic integral against dwt is introduced in a different way, with
discussion of which we start the chapter.

1. The classical definition

Let (Ω,F , P ) be a complete probability space, Ft, t ≥ 0, an increasing
filtration of σ-fields Ft ⊂ F , and wt, t ≥ 0, a Wiener process relative to Ft.

1. Definition. Let ft = ft(ω) be a function defined on Ω × [0,∞). We
write f ∈ H0 if there exist nonrandom points 0 = t0 ≤ t1 ≤ ... ≤ tn < ∞
such that the fti are Fti-measurable, Ef2

ti <∞, and ft = fti for t ∈ [ti, ti+1)
if i ≤ n, whereas ft = 0 for t ≥ tn.

2. Exercise. Why does it not make much sense to consider functions sat-
isfying ft = fti for t ∈ (ti, ti+1] ?

For f ∈ H0 we set

If =
n−1∑
i=0

(wti+1 − wti)fti .

169
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Obviously this definition is independent of the partition {ti} of [0,∞) pro-
vided that f ∈ H0. In particular, the notation If makes sense, and I is a
linear operator on H0.

3. Lemma. If f ∈ H0, then

E(If)2 = E

∫ ∞

0
f2

t dt, EIf = 0.

Proof. We have (see Theorem 3.1.12)

Ef2
tj (wtj+1 − wtj )

2 = Ef2
tjE{(wtj+1 − wtj )

2|Ftj} = Ef2
tj (tj+1 − tj),

since wtj+1 − wtj is independent of Ftj and ftj is Ftj -measurable. This and
Cauchy’s inequality imply that the first expression in the following relations
makes sense:

Efti(wti+1 − wti)ftj (wtj+1 − wtj )

= Efti(wti+1 − wti)ftjE{(wtj+1 − wtj )|Ftj} = 0

if i < j, since ti+1 ≤ tj and ftj , wti+1 − wti , fti are Ftj -measurable, whereas
wtj+1 − wtj is independent of Ftj . Hence

E(If)2 =
n−1∑
j=0

Ef2
tj (wtj+1 −wtj )

2 +2
∑

i<j≤n−1

Efti(wti+1 −wti)ftj (wtj+1 −wtj )

=
n−1∑
j=0

Ef2
tj (tj+1 − tj) = E

∫ ∞

0
f2

t dt.

Similarly, Eftj (wtj+1 − wtj ) = 0 and EIf = 0. The lemma is proved.
The next step was not done in Secs. 2.7 and 2.8 because we did not have

the necessary tools at that time. In the following lemma we use the notion
of continuous time martingale, which is introduced in the same way as in
Definition 3.2.1, just allowing m and n to be arbitrary numbers satisfying
0 ≤ n ≤ m.

4. Lemma. For f ∈ H0, define Isf = I(I[0,s)f). Then (Isf,Fs) is a mar-
tingale for s ≥ 0.

Proof. Fix s and without loss of generality assume that s ∈ {t0, ..., tn}.
If s = tk, then

I[0,s)ft =
k−1∑
i=0

ftiI[ti,ti+1)(t), Isf =
k−1∑
i=0

fti(wti+1 − wti).
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It follows that Isf is Fs-measurable. Furthermore, if t ≤ s, t, s ∈ {t0, ..., tn},
t = tr, and s = tk, then

E{Isf − Itf |Ft} =
k−1∑
i=r

E{ftiE{wti+1 − wti |Fti}|Ft} = 0.

The lemma is proved.
Next by using the theory of martingales we derive an inequality allowing

us to define stochastic integrals with variable upper limit as continuous
processes.

5. Lemma (Doob’s inequality). For f ∈ H0, we have

E sup
s≥0

(Isf)2 ≤ 4E
∫ ∞

0
f2

t dt. (1)

Proof. First, notice that

Isf =
n−1∑
i=0

fti(wti+1∧s − wti∧s).

Therefore, the process Isf is continuous in s and the sup in (1) can be taken
over the set of rational s. In particular, the sup is a random variable, and
(1) makes sense.

Next, let 0 ≤ s0 ≤ ... ≤ sm < ∞. Since (Isk
f,Fsk

) is a martingale, by
Doob’s inequality

E sup
k≤m

(Isk
f)2 ≤ 4E(Ismf)2 = 4E

∫ sm

0
f2

t dt ≤ 4E
∫ ∞

0
f2

t dt.

Clearly the inequality between the extreme terms holds for any s0, ..., sm,
not necessarily ordered. In particular, one can number all rationals on [0,∞)
and then take the first m + 1 rational numbers as s0, ..., sm. If after that
one lets m → ∞, then one gets (1) by the monotone convergence theorem.
The lemma is proved.

Lemma 3 allows us to follow an already familiar pattern. Namely, con-
sider H0 as a subset of L2(F ⊗ B[0,∞), µ), where µ(dωdt) = P (dω)dt. On
H0 we have defined the operator I which maps H0 isometrically to a subset
of L2(F , P ). By Lemma 2.3.12 the operator I admits a unique extension
to an isometric operator acting from H̄0 into L2(F , P ). We keep the same
notation I for the extension, and for a function f ∈ H̄0 we define its Itô
stochastic integral by the formula



172 Chapter 6. Itô Stochastic Integral, Sec 1

∫ ∞

0
ft dwt = If.

We have to explain that this integral coincides with the one introduced
in Sec. 2.7.

6. Remark. Obviously

H0 ⊂ H,

where H is introduced in Definition 2.8.1 as the set of all real-valued Ft-
adapted functions ft(ω) which are F ⊗ B(0,∞)-measurable and belong to
L2(F ⊗ B[0,∞), µ).

7. Remark. Generally the processes from H0 are not predictable, since
they are right continuous in t. However, if one redefines them at points of
discontinuity by taking the left limits, then one gets left-continuous, hence
predictable, processes (see Exercise 2.8.3) coinciding with the initial ones
for almost all t. It follows that H0 ⊂ L2(P, µ).

Observe that H̄0, which is the closure of H0 in L2(F ⊗B[0,∞), µ), coin-
cides with the closure ofH0 in L2(P, µ), since L2(P, µ) ⊂ L2(F⊗B[0,∞), µ).
Furthermore, replacing the left continuous ρn(t) in the proof of Theorem
2.8.2 with the right continuous 2−n[2nt], we see that f ∈ H̄0 if ft is an Ft-
adapted F⊗B(0,∞)-measurable function belonging to L2(F ⊗B(0,∞), µ).
In other words,

H ⊂ H̄0.

8. Remark. It follows by Theorem 2.8.8 (i) that If coincides with the Itô
stochastic integral introduced in Sec. 2.7 on functions f ∈ H0. SinceH0 ⊂ H
and H0 is dense in H (Remarks 6 and 7) and H = L2(P, µ) in the sense
described in Exercise 2.8.5, we have that H̄0 = L2(P, µ), implying that both
stochastic integrals are defined on the same set and coincide there.

9. Definition. For f ∈ H̄0 and s ≥ 0 define∫ s

0
ft dwt =

∫ ∞

0
I[0,s)(t)ft dwt.

This is the traditional way of introducing the stochastic Itô integral
against the Wiener process with variable upper limit. Notice that for many
other martingales such as mt := πt − t, where πt is a Poisson process with
parameter one, it is much more natural to replace I[0,s) with I[0,s], since
then

∫ s
0 1 dmt = ms on each trajectory. In our situation the integral on each

particular trajectory makes no sense, and taking I[0,s] leads to the same
result since I[0,s] = I[0,s) as elements of L2(F ⊗ B(0,∞), µ).
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Defining the stochastic integral as result of a mapping into L2(F , P )
specifies the result only almost surely, so that for any s ≥ 0 there are many
candidates for

∫ s
0 ft dwt. If one chooses these candidates arbitrary for each s,

one can easily end up with a process which has nonmeasurable trajectories
for each ω. It is very important for the theory of stochastic integration
that one can arrange the choosing in such a way that almost all trajectories
become continuous in s.

10. Theorem. Let f ∈ H̄0. Then the process
∫ s
0 ft dwt admits a continuous

modification.

Proof. Take fn ∈ H0 such that

E

∫ ∞

0
|ft − fn

t |2 dt ≤ 2−n.

Then for each s ≥ 0 in the sense of convergence in L2(F ⊗ B(0,∞), µ) we
have

I[0,s)(t)ft = I[0,s)(t)f
1
t + I[0,s)(t)(f

2
t − f1

t ) + ...+ I[0,s)(t)(f
n+1
t − fn

t ) + ....

Hence by continuity (or isometry), in the sense of the mean-square conver-
gence we have

∫ s

0
ft dwt =

∫ s

0
f1

t dwt +
∫ s

0
(f2

t − f1
t ) dwt + ...+

∫ s

0
(fn+1

t − fn
t ) dwt + ....

(2)

Here each term is continuous as the integral of an H0-function, so that
to prove the theorem it suffices to prove that the series in (2) converges
uniformly for almost every ω.

By Doob’s inequality

E sup
s≥0

∣∣ ∫ s

0
(fn+1

t − fn
t ) dwt

∣∣2 ≤ 4E
∫ ∞

0
(fn+1

t − fn
t )2 dt ≤ 16 · 2−n.

By Chebyshev’s inequality

P{sup
s≥0

∣∣ ∫ s

0
(fn+1

t − fn
t ) dwt

∣∣ ≥ n−2} ≤ 16n42−n,

and since the series
∑
n42−n converges, by the Borel-Cantelli lemma with

probability one for all large n we have
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sup
s≥0

∣∣ ∫ s

0
(fn+1

t − fn
t ) dwt

∣∣ < n−2.

Finally, we remember that
∑
n−2 <∞. The theorem is proved.

2. Properties of the stochastic integral on H

The Itô integral is defined on the set H̄0, which is a space of equivalence
classes. By Remarks 1.7 and 1.8, in each equivalence class there is a function
belonging to H. As usual we prefer to deal not with equivalence classes
but rather with their particular representatives, and now we concentrate on
integrating processes of class H. Furthermore, Theorem 1.10 allows us to
consider only continuous versions of stochastic integrals.

1. Theorem. Let f, g ∈ H, a, b ∈ R. Then:
(i) (linearity) for all t at once with probability one

∫ t

0
(afs + bgs) dws = a

∫ t

0
fs dws + b

∫ t

0
gs dws; (1)

(ii) E
∫∞
0 ft dwt = 0;

(iii) the process
∫ t
0 fs dws is a martingale relative to FP

t ;

(iv) Doob’s inequality holds:

E sup
t

( ∫ t

0
fs dws

)2 ≤ 4E
∫ ∞

0
f2

t dt;

(v) if A ∈ F , T ∈ [0,∞], and ft(ω) = gt(ω) for all ω ∈ A and t ∈ [0, T ),
then

IA

∫ t

0
fs dws = IA

∫ t

0
gs dws (2)

for all t ∈ [0, T ] at once with probability one.

Proof. (i) For each t ≥ 0 equation (1) (a.s.) follows by definition (see
Lemma 2.3.12). Furthermore, both sides of (1) are continuous in t, and
hence they coincide for all t if they coincide for all rational t. Since for
each rational t, (1) holds almost surely and the set of rational numbers is
countable and the intersection of countably many events of full probability
has probability one, (1) indeed holds for all t ≥ 0 on a set of full probability.



Ch 6 Section 2. Properties of the stochastic integral on H 175

(ii) Take fn ∈ H0 such that fn → f in L2(F ⊗ B(0,∞), µ). Then use
Cauchy’s inequality and Lemma 1.3 to find that

|EIf | = |EI(f − fn)| ≤ [EI(f − fn)2
]1/2 =

[
E

∫ ∞

0
(ft − fn

t )2 dt
]1/2 → 0.

(iii) Take the same sequence fn as above and remember that Lemma 1.4
allows us to write

E
{∫ t

0
fn

s dws|Fr

}
=
∫ r

0
fn

s dws (a.s.) ∀0 ≤ r ≤ t. (3)

Furthermore, E
( ∫ t

0 f
n
s dws −

∫ t
0 fs dws

)2 = E
∫ t
0 (fn

s − fs)2 ds→ 0, and eval-
uating conditional expectation is a continuous operator in L2(F , P ) as a
projection operator in L2(F , P ) (Theorem 3.1.14). Hence upon passing to
the limit in (3) in the mean-square sense, we get an equality which shows
that

(a)
∫ r
0 fs dws is FP

r -measurable as a function almost surely equal to an
Fr-measurable E(·|Fr);

(b) the martingale equality holds.
This proves (iii). Assertion (iv) is proved in the same way as Lemma 1.5.
(v) By the argument in (i) it suffices to prove that (2) holds with prob-

ability one for each particular t ∈ [0, T ]. In addition, Itf = I(I[0,t)f), which
shows that it only remains to prove that

IA

∫ ∞

0
fs dws = IA

∫ ∞

0
gs dws

(a.s.) if fs(ω) = gs(ω) for all ω ∈ A and s ≥ 0. But this is just statement
(ii) of Theorem 2.8.8. The theorem is proved.

Further properties of the stochastic integral are related to the notion of
stopping time (Definition 2.5.7), which, in particular, will allow us to extend
the domain of definition of the stochastic integral from H to a larger set.

2. Exercise*. Prove that if a random process ξt is right continuous for
each ω (or left continuous for each ω), then it is F ⊗ B[0,∞)-measurable.

3. Exercise*. Let τ be an Ft-stopping time. Prove that It<τ and It≤τ are
Ft-adapted and F ⊗ B[0,∞)-measurable, and that {ω : t ≤ τ} ∈ Ft for
every t ≥ 0.
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4. Exercise*. Let ξt be an Ft-adapted continuous real-valued process, and
take real numbers a < b. Define τ = inf{t ≥ 0 : ξt �∈ (a, b)} (inf ∅ := ∞) so
that τ is the first exit time of ξt from (a, b). Prove that τ is an Ft-stopping
time.

The major part of stopping times we are going to deal with will be
particular applications of Exercise 4 and the following.

5. Lemma. Let f = ft(ω) be nonnegative, Ft-adapted, and F ⊗ B[0,∞)-
measurable. Assume that the σ-fields Ft are complete, that is, Ft = FP

t .
Then, for any t ≥ 0,

∫ t
0 fs ds is Ft-measurable.

Proof. If the assertion holds for f ∧ n in place of f , then by letting
n → ∞ and using the monotone convergence theorem we get the result for
our f . It follows that without losing generality we may assume that f is
bounded. Furthermore, we can cut off the function f in t by taking t ≥ 0
and setting fs = 0 for s ≥ t. Then we see that it suffices to prove our
assertion for f ∈ H.

In that case, as in the proof of Theorem 2.8.2 we conclude that there
exist fn ∈ H0 such that

E
∣∣ ∫ t

0
fs ds−

∫ t

0
fn

s ds
∣∣ ≤ E

∫ t

0
|fs−fn

s | ds ≤
√
t
(
E

∫ ∞

0
|fs−fn

s |2 ds
)1/2 → 0.

Furthermore,
∫ t
0 f

n
s ds is obviously written as a sum in which all terms are

Ft-measurable. The mean-square limit of Ft-measurable variables is at least
FP

t -measurable, and the lemma is proved.

6. Remark. Due to this lemma, everywhere below we assume that FP
t =

Ft. This assumption does not restrict generality at all, since, as is easy to
see, (wt,FP

t ) is again a Wiener process and passing from Ft to FP
t only

enlarges the set H. Actually, the change of H is almost unnoticeable, since
the set H̄0 remains unchanged as well as the stochastic integral and the
inclusions H0 ⊂ H ⊂ H̄0 hold true as before. Also, as we have pointed out
before, we always take continuous versions of stochastic integrals, which is
possible due to Theorem 1.10.

Before starting to use stopping times we point out two standard ways of
approximating an arbitrary stopping time τ with discrete ones τn. One can
use (2.5.3), or alternatively one lets

τn(ω) = (k + 1)2−n if τ(ω) ∈ [k2−n, (k + 1)2−n)

and τn(ω) = ∞ if τ(ω) = ∞. In other words,
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τn = 2−n[2nτ ] + 2−n. (4)

Then τ ≤ τn, τn − τ ≤ 2−n, and

{ω : t < τn(ω)} = {ω : 2−n[2nt] ≤ τ} ∈ F2−n[2nt] ⊂ Ft,

so that τn are stopping times.

7. Theorem. Let f ∈ H. Denote ξt =
∫ t
0 fs dws, t ∈ [0,∞], and let τ be

an Ft-stopping time. Then

ξτ =
∫ ∞

0
Is<τfs dws =

∫ ∞

0
Is≤τfs dws (5)

(a.s.) and (Wald’s identity)

E
( ∫ τ

0
fs dws

)2 = E

∫ τ

0
f2

s ds. (6)

Proof. To prove (5), first assume that τ takes only countably many
values {t1, t2, ...}. On the set Ωk := {ω : τ(ω) = tk} we have Is<tkfs = Is<τfs

for all s ≥ 0. By definition, on Ωk (a.s.) we have

ξτ = ξtk =
∫ ∞

0
Is<tkfs dws,

and by Theorem 1 (v) on Ωk (a.s.)∫ ∞

0
Is<tkfs dws =

∫ ∞

0
Is<τfs dws.

Thus the first equality in (5) holds on any Ωk (a.s.). Since
⋃

k Ωk = Ω, this
equality holds almost surely. To prove it in the general case it suffices to
define τn by (4) and notice that ξτn → ξτ because ξt is continuous, whereas

E
( ∫ ∞

0
Is<τfs dws −

∫ ∞

0
Is<τnfs dws

)2 = E

∫ ∞

0
Iτ≤s<τnf

2
s ds→ 0

by the dominated convergence theorem. The second equality in (5) is obvious
since the integrands coincide for almost all (ω, s).

On the basis of (5) and the isometry of stochastic integration we conclude
that
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Eξ2τ = E

∫ ∞

0
Is<τf

2
s ds = E

∫ τ

0
f2

s ds.

The theorem is proved.
The following fundamental inequality can be extracted from the original

memoir of Itô [It].

8. Theorem. Let f ∈ H, and let N, c > 0, and T ≤ ∞ be constants. Then

P
{

sup
t≤T

∣∣ ∫ t

0
fs dws

∣∣ ≥ c
} ≤ P

{∫ T

0
f2

s ds ≥ N
}

+
1
c2
E
(
N ∧

∫ T

0
f2

s ds
)
.

Proof. We use the standard way of stopping stochastic integrals

ξt =
∫ t

0
fs dws

by using their “brackets”, defined as

〈ξ〉t :=
∫ t

0
f2

s ds.

Let τ = inf{t ≥ 0 : 〈ξ〉t ≥ N}, so that τ is the first exit time of 〈ξ〉t from
(−1, N). By Exercise 4 and Lemma 5 we have that τ is a stopping time.
Furthermore,

{ω : τ < T} ⊂ {ω : 〈ξ〉T ≥ N}
and on the set {ω : τ ≥ T} we have Is<τfs = fs if s < T . Therefore, upon
denoting

A = {ω : sup
t≤T

|ξt| ≥ c},

by the Doob-Kolmogorov inequality for submartingales we get

P (A, τ ≥ T ) = P
{
τ ≥ T, sup

t≤T

∣∣ ∫ t

0
Is<τfs dws

∣∣ ≥ c
}

≤ P
{

sup
t≤T

∣∣ ∫ t

0
Is<τfs dws

∣∣2 ≥ c2
} ≤ 1

c2
E
( ∫ T

0
Is<τfs dws

)2

=
1
c2
E

∫ T∧τ

0
Is<τf

2
s ds =

1
c2
E
( ∫ T

0
Is<τf

2
s ds ∧

∫ τ

0
Is<τf

2
s ds

)

≤ 1
c2
E
(
N ∧

∫ T

0
f2

s ds
)
,
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where in the last inequality we have used the fact that, if τ < ∞, then
obviously 〈ξ〉τ = N , and if τ = ∞, then 〈ξ〉τ ≤ N . Hence

P (A) = P (A, τ < T ) + P (A < τ ≥ T ) ≤ P (τ < T ) + P (A, τ ≥ T )

≤ P
{∫ T

0
f2

s ds ≥ N
}

+
1
c2
E
(
N ∧

∫ T

0
f2

s ds
)
.

The theorem is proved.

9. Exercise. Under the assumptions of Theorem 8, prove that

P (〈ξ〉T ≥ N) ≤ 1
N
E
(
c2 ∧ sup

t≤T
ξ2t
)

+ P (sup
t≤T

|ξt| ≥ c).

10. Exercise. Prove Davis’s inequality: If f ∈ H, then

1
3
E〈ξ〉1/2

T ≤ E sup
t≤T

|ξt| ≤ 3E〈ξ〉1/2
T .

3. Defining the Itô integral if
∫ T

0
f 2

s ds < ∞
Denote by S the set of all Ft-adapted, F ⊗ B(0,∞)-measurable processes
ft such that ∫ T

0
f2

s ds <∞ (a.s.) ∀T <∞.

Our task here is to define
∫ t
0 ft dwt for f ∈ S.

Define

τ(n) = inf{t ≥ 0 :
∫ t

0
f2

s ds ≥ n}.

In Sec. 2 we have already seen that τ(n) are stopping times and

∫ τ(n)

0
f2

s ds ≤ n.

Furthermore, obviously τ(n) ↑ ∞ (a.s.) as n → ∞. Finally, notice that
Is<τ(n)fs ∈ H. Indeed, the fact that this process is Ft-adapted follows from
Exercise 2.3. Also

E

∫ ∞

0
Is<τ(n)f

2
s ds = E

∫ τ(n)

0
f2

s ds ≤ n <∞.

It follows from the above that the stochastic integrals
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ξt(n) :=
∫ t

0
Is<τ(n)fs dws

are well defined. If
∫ t
0 fs dws were defined, it would certainly satisfy

∫ t

0
Is<τ(n)fs dws =

∫ t∧τ(n)

0
fs dws.

This observation is a clue to defining
∫ t
0 fs dws.

1. Lemma. Let f ∈ S. Then there exists a set Ω′ ⊂ Ω such that P (Ω′) = 1
and, for every ω ∈ Ω′, m ≥ n, and t ∈ [0, τ(n, ω)], we have ξt(n) = ξt(m).

Proof. Fix t and n, and notice that on the set A = {ω : t ≤ τ(n)} we
have

Is<t∧τ(n)fs = Is<t∧τ(m)fs

for all s. By Theorem 2.1, almost surely on A

∫ t

0
Is<τ(n)fs dws =

∫ ∞

0
Is<t∧τ(n)fs dws =

∫ t

0
Is<τ(m)fs dws.

In other words, almost surely

It≤τ(n)

∫ t

0
Is<τ(n)fs dws = It≤τ(n)

∫ t

0
Is<τ(m)fs dws (1)

for any t and m ≥ n. Clearly, the set Ω′ of all ω for each of which (1)
holds for all m ≥ n and rational t has full probability. If ω ∈ Ω′, then (1) is
actually true for all t, since both sides are left continuous in t. This is just
a restatement of our assertion, so the lemma is proved.

2. Corollary. If f ∈ S, then with probability one the sequence ξt(n) con-
verges uniformly on each finite time interval.

3. Definition. Let f ∈ S. For those ω for which the sequence ξt(n) con-
verges uniformly on each finite time interval we define

∫ t

0
fs dws = lim

n→∞

∫ t

0
Is<τ(n)fs dws.

For all other ω we define
∫ t
0 fs dws = 0.
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Of course, one has to check that Definition 3 does not lead to anything
new if f ∈ H. Observe that if f ∈ H, then by Fatou’s theorem and the
dominated convergence theorem

E
∣∣ lim

n→∞

∫ t

0
Is<τ(n)fsdws −

∫ t

0
fsdws

∣∣2 ≤ lim
n→∞E

∫ t

0
(1 − Is<τ(n))f

2
s ds = 0.

Therefore both definitions give the same result almost surely for any given
t. Since Definition 3 yields a continuous process, we see that, for f ∈ H, the
new integral is also the integral in the previous sense.

Also notice that f ≡ 1 ∈ S, τ(n) = n, and hence (a.s.)∫ t

0
1 · dws = lim

n→∞

∫ t

0
Is<n dws = lim

n→∞

∫ ∞

0
Is<n∧t dws = lim

n→∞wn∧t = wt.

Now come some properties of the stochastic integral on S.

4. Exercise. By using Fatou’s theorem and Exercise 2.10, prove Davis’s
inequality for f ∈ S.

5. Theorem. Let f, fn, g ∈ S, and let δ, ε > 0, T ∈ [0,∞) be constants.
Then:

(i) the stochastic integral
∫ t
0 fs dws is continuous in t and Ft-adapted;

(ii) we have

P
{

sup
t≤T

∣∣ ∫ t

0
fs dws −

∫ t

0
gs dws

∣∣ ≥ ε
} ≤ P

{∫ T

0
|fs − gs|2 ds ≥ δ

}

+
1
ε2
Eδ ∧

∫ T

0
(fs − gs)2 ds ≤ P

{∫ T

0
|fs − gs|2 ds ≥ δ

}
+

δ

ε2
; (2)

(iii) we have∫ T

0
|fn

s − fs|2 ds P→ 0 =⇒ sup
t≤T

∣∣ ∫ t

0
fn

s dws −
∫ t

0
fs dws

∣∣ P→ 0.

Proof. (i) The continuity of
∫ t
0 fs ds follows from Definition 3, in which∫ t

0
Is<τ(n)fs ds

are continuous and Ft-adapted (even Ft-martingales). Their limit is also
Ft-adapted.

To prove (ii), first notice that all expressions in (2) are monotone and
right continuous in ε and δ. Therefore, it suffices to prove (2) only at points
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of their continuity. Also notice that the second inequality in (2) is obvious
since δ ∧ · ≤ δ.

Now fix appropriate ε, and δ and define

τ(n) = inf{t ≥ 0 :
∫ t

0
f2

s ds ≥ n}, σ(n) = inf{t ≥ 0 :
∫ t

0
g2
s ds ≥ n},

fn
s = Is<τ(n)fs, gn

s = Is<σ(n)gs.

Since fn and gn belong to H, inequality (2) holds with fn, gn in place of
f, g due to the linearity of the stochastic integral on H and Theorem 2.8.
Furthermore, almost surely, as n→ ∞,

sup
t≤T

∣∣ ∫ t

0
fn

s dws −
∫ t

0
gn
s dws

∣∣→ sup
t≤T

∣∣ ∫ t

0
fs dws −

∫ t

0
gs dws

∣∣,
∫ T

0
|fn

s − gn
s |2 ds →

∫ T

0
|fs − gs|2 ds.

These convergences of random variables imply convergence of the corre-
sponding distribution functions at all points of their continuity. Adding to
this tool the dominated convergence theorem, we get (2) from its version for
fn, gn.

To prove (iii) it suffices to take g = fn in (2) and let first n → ∞ and
then δ ↓ 0. The theorem is proved.

6. Exercise. Prove that the converse implication in assertion (iii) of The-
orem 5 is also true.

Before discussing further properties of the stochastic integral we denote

χn(x) = (−n) ∨ x ∧ n,

so that χn(x) = x for |x| ≤ n and χn(x) = n signx otherwise. Observe that,
if f ∈ S, T ∈ [0,∞), and fn

s := χn(fs)Is<T , then fn ∈ H and (a.s.)

∫ T

0
|fn

s − fs|2 ds→ 0.

This way of approximating f ∈ S along with Theorem 5 and known proper-
ties of the stochastic integral on H immediately yields assertions (i) through
(iii) of the following theorem.
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7. Theorem. (i) If f, g ∈ S, a, b ∈ R, then (a.s.)

∫ t

0
(afs + bgs) dws = a

∫ t

0
fs dws + b

∫ t

0
gs dws ∀t ∈ [0,∞).

(ii) If fs = fti for s ∈ [ti, ti+1), 0 = t0 < t1 < ..., ti → ∞ as i→ ∞, and
the fti are Fti-measurable, then f ∈ S and (a.s.) for every t ≥ 0

∫ t

0
fs dws =

∑
ti+1<t

fti(wti+1 − wti) + ftk(wt − wtk),

where k is such that tk ≤ t and tk+1 > t.
(iii) If f, g ∈ S, T <∞, A ∈ F , and fs(ω) = gs(ω) for all s ∈ [0, T ] and

ω ∈ A, then almost surely on A

∫ t

0
fs dws =

∫ t

0
gs dws ∀t ≤ T.

(iv) If f ∈ S, T < ∞, and τ is a stopping time satisfying τ ≤ T , then
(a.s.)

∫ τ

0
fs dws =

∫ T

0
Is<τfs dws. (3)

Assertion (iv) is obtained from the fact that due to Theorem 2.7, if
f ∈ H, then the left-hand side of (3) equals (a.s.)

∫ τ∧T

0
fs dws =

∫ ∞

0
Is<τ∧T fs dws =

∫ ∞

0
Is<T Is<τfs dws =

∫ T

0
Is<τfs dws.

In the statement of the following theorem we use the fact that if f ∈ S,
τ is a stopping time, and

E

∫ τ

0
f2

s ds = E

∫ ∞

0
Is<τf

2
s ds <∞,

then Is<τfs ∈ H and
∫∞
0 Is<τfs dws makes sense.

8. Theorem. Let f ∈ S, T ≤ ∞, and let τ be an almost surely finite
stopping time (that is, τ(ω) <∞ for almost every ω).

(i) If E
∫ τ
0 f

2
s ds <∞, then
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∫ τ

0
fs dws =

∫ ∞

0
Is<τfs dws (a.s.) (4)

and Wald’s identities hold:

E
( ∫ τ

0
fs dws

)2 = E

∫ τ

o
f2

s ds, E

∫ τ

0
fs dws = 0. (5)

In particular (for f ≡ 1), if Eτ <∞, then Ew2
τ = Eτ and Ewτ = 0.

(ii) If E
∫ T
0 f2

t dt < ∞, then
∫ t
0 fs dws is a martingale for t ∈ [0, T ] ∩

[0,∞).

Proof. To prove (4) it suffices to remember what has been said before
the theorem and use Theorems 7 and 2.7, which imply that (a.s.)∫ τ

0
fs dws = lim

n→∞

∫ τ∧n

0
fs dws = lim

n→∞

∫ n

0
Is<τ∧nfs dws

= lim
n→∞

∫ ∞

0
Is<nIs<τ∧nfs dws = lim

n→∞

∫ ∞

0
Is<τ∧nfs dws =

∫ ∞

0
Is<τfs dws,

where the last equality holds (a.s.) because

E

∫ ∞

0
|Is<τ∧nfs − Is<τfs|2 ds→ 0.

Equation (5) follows from (4) and the properties of the stochastic integral
on H.

To prove (ii) it suffices to notice that

∫ t

0
fs dws =

∫ t

0
Is<Tfs dws for t ≤ T, Is<Tfs ∈ H,

and that stochastic integrals of elements of H are martingales. The theorem
is proved.

9. Example. Sometimes Wald’s identities can be used for concrete com-
putations. To show an example, let a, b > 0, and let τ be the first exit time
of wt from (−a, b). Then, for each t, we have |wt∧τ | ≤ a+ b and

(a+ b)2 ≥ Ew2
t∧τ = E

( ∫ t

0
Is<τ dws

)2 = E

∫ t

0
Is<τ ds = Et ∧ τ.
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Since this is true for any t, by the monotone convergence theorem Eτ ≤
(a+ b)2 <∞.

It follows that Wald’s identities hold true for this τ , so that, in particular,
Ewτ = 0, which is written as

−aP (wτ = −a) + bP (wτ = b) = 0.

Adding to this that P (wτ = −a) + P (wτ = b) = 1 since τ < ∞ (a.s.), we
get

P (wτ = −a) =
b

a+ b
, P (wτ = b) =

a

a+ b
.

Furthermore, Ew2
τ = Eτ . In other words,

Eτ = a2P (wτ = −a) + b2P (wτ = b) = ab.

We thus rediscover the results of Exercise 2.6.5.

10. Remark. Generally Wald’s identities are wrong if E
∫ τ
0 f

2
s ds = ∞.

For instance, let τ = inf{t ≥ 0 : wt ≥ 1}. We know that τ has Wald’s
distribution, so that P (τ <∞) = 1 and wτ = 1 (a.s.). Hence Ewτ = 1 �= 0,
and one of identities is violated. It follows that Eτ = ∞ and Ew2

τ = 1 �= Eτ .

11. Exercise. In Remark 10 we have that E
√
τ = ∞, which follows from

the explicit formula for Wald’s distribution. In connection with this, prove
that, if E(

∫ τ
0 f

2
s ds)

1/2 <∞, then E
∫ τ
0 fs dws = 0.

Regarding assertion (ii) of Theorem 8, it is worth noting that generally
stochastic integrals are not martingales. We give two exercises to that effect:
Exercises 12 and 7.4.

12. Exercise. For t < 1 consider the process 1 +
∫ t
0 (1− s)−1 dws and let τ

be the first time it hits zero. Prove that τ < 1 (a.s.) and∫ t

0

1
1 − s

Is<τ dws + 1 = 0

(a.s.) for all t ≥ 1.

13. Exercise. Prove that if E
( ∫ T

0 f2
s ds

)1/2
<∞, then

∫ t
0 fs dws is a mar-

tingale for t ≤ T .

In the future we also use the stochastic integral with variable lower
limit. If 0 ≤ t1 ≤ t2 < ∞, ft(ω) is measurable with respect to (ω, t) and
Ft-adapted, and ∫ t2

t1

f2
t dt <∞ (a.s.),
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then define

∫ t2

t1

fs dws =
∫ t2

0
I[t1,t2)(s)fs dws. (6)

We have I[t1,t2) = I[0,t2) − I[0,t1). Hence, if f ∈ S, then (a.s.)

∫ t2

t1

fs dws =
∫ t2

0
fs dws −

∫ t1

0
fs dws. (7)

14. Theorem. Let f ∈ S, 0 ≤ t1 ≤ t2 < ∞, and let g be Ft1-measurable.
Then (a.s.)

g

∫ t2

t1

fs dws =
∫ t2

t1

gfs dws, (8)

that is, one can factor out appropriately measurable random variables.

Proof. First of all, notice that the right-hand side of (8) is well defined
by virtue of definition (6) but not (7). Next, (8) is trivial for f ∈ H0, since
both sides are just simple sums. If f ∈ H, one can approximate f with
fn ∈ H0 so that∫ ∞

0
|fn

t − ft|2 dt P→ 0,
∫ ∞

0
|gfn

t − gft|2 dt P→ 0.

Then one can pass to the limit on the basis of Theorem 5. After having
proved (8) for f ∈ H, one easily gets (8) in the general case by noticing that
in the very Definition 3 we use fn ∈ H such that

∫ T
0 |fn

t − ft|2 dt → 0 (a.s.)
for every T <∞. The theorem is proved.

4. Itô integral with respect to a
multidimensional Wiener process

1. Definition. Let (Ω,F , P ) be a complete probability space, let Ft,t ≥ 0,
be a filtration of complete σ-fields Ft ⊂ F , and let wt = (w1

t , ..., w
d
t ) be a d-

dimensional process on Ω. We say that wt is a d-dimensional Wiener process
relative to Ft, t ≥ 0, or that (wt,Ft) is a d-dimensional Wiener process, if

(i) wk
t are Wiener processes for each k = 1, ..., d,

(ii) the processes w1
t , ..., w

d
t are independent,
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(iii) wt is Ft-adapted and wt+h − wt is independent of Ft if t, h ≥ 0.

If ft = (f1
t , ..., f

d
t ) is a d-dimensional process, we write f ∈ S whenever

f i ∈ S for any i. If ft = (f1
t , ..., f

d
t ) ∈ S, we define

∫ t

0
fs dws =

∫ t

0
f1

s dw
1
s + ...+

∫ t

0
fd

s dw
d
s , (1)

so that fs dws is interpreted as the scalar product of fs and dws.
The stochastic integral against multidimensional Wiener processes pos-

sesses properties quite similar to the ones in the one-dimensional case. We
neither list nor prove all of them, pointing out only that, if f, g ∈ S, T <∞,
and E

∫ T
0 (|fs|2 + |gs|2) ds <∞, then

E

∫ T

0
fs dws

∫ T

0
gs dws = E

∫ T

0
fs · gs ds.

This property is easily proved on the basis of (1) and the fact that, for
instance,

E

∫ T

0
f1

s dw
1
s

∫ T

0
g2
s dw

2
s = 0,

which in turn is almost obvious for f, g ∈ H0 and extends to f, g ∈ S by
standard passages to the limit.

We also need to integrate matrix-valued processes. If σt = (σik
t ), i =

1, ..., d1, k = 1, ..., d, and σij ∈ S, then we write σ ∈ S and by∫ t

0
σs dws

we naturally mean the d1-dimensional process, the ith coordinate of which
is given by

d∑
k=1

∫ t

0
σik

s dwk
s .

In other terms we look at σs dws as the product of the matrix σs and the
column vector dws.

2. Exercise*. Prove that if E
∫ t
0 tr σsσ

∗
s ds <∞, then

E
∣∣ ∫ t

0
σs dws

∣∣2 = E

∫ t

0
tr σsσ

∗
s ds.
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3. Exercise. Let bt be a d-dimensional process, bt ∈ S. Prove that

(
exp(

∫ t

0
bt dwt − (1/2)

∫ t

0
|bt|2 dt),Ft

)
is a supermartingale.

5. Itô’s formula

In the usual calculus, after the notion of integral is introduced one discusses
the rules of integration and compiles the table of “elementary” integrals. The
most important tools of integration are change of variable and integration
by parts, which are proved on the basis of the formula for differentiating
superpositions. The formula for the stochastic differential of a superposition
is called Itô’s formula. This formula was discovered in [It] as a curious fact
and then became the main tool of modern stochastic calculus.

1. Definition. Let (Ω,F , P ) be a complete probability space carrying a
d1-dimensional Wiener process (wt,Ft) and a continuous d-dimensional Ft-
adapted process ξt. Assume that we are also given a d × d1 matrix valued
process σt and a d-dimensional process bt such that σ ∈ S and b is jointly
measurable in (ω, t), Ft-adapted, and

∫ T
0 |bs| ds < ∞ (a.s.) for any T < ∞.

Then we write

dξt = σt dwt + bt dt

if and only if (a.s.) for all t

ξt = ξ0 +
∫ t

0
σs dws +

∫ t

0
bs ds. (1)

In that case one says that ξt has stochastic differential equal to σt dwt+bt dt.

From calculus we know that if f(x) and g(t) are differentiable, then

df(g(t)) = f ′(g(t)) dg(t).

It turns out that stochastic differentials possess absolutely different proper-
ties. For instance, consider d(w2

t ) for one-dimensional wt. If the usual rules
were true, we would have dw2

t = 2wt dwt, that is,

w2
t = 2

∫ t

0
ws dws.

However, this is impossible since
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Ew2
t = t, E

∫ t

0
w2

s ds <∞, E

∫ t

0
ws dws = 0.

Still, there is a case in which the usual formula holds. This case was
found by Hitsuda. Let (w′

t, w
′′
t ) be a two-dimensional Wiener process and

define the complex Wiener process by

zt = w′
t + iw′′

t .

It turns out (see Exercise 5) that, for any analytic function f(z), we have
df(zt) = f ′(zt) dzt, that is,

f(zt) = f(0) +
∫ t

0
f(zs) dzs. (2)

We have what would be “the usual formula” if zt were piecewise differen-
tiable.

We have introduced formal d1-dimensional expressions σt dwt + bt dt.
Now we define rules of operating with them. We assume that while multi-
plying them by constants, adding up, and evaluating their scalar products
the usual algebraic rules of factoring out and combining similar terms are
enforced along with the following multiplication table (which, by the way,
keeps the products of stochastic differentials in the set of stochastic differ-
entials):

dwi
tdw

j
t = δij dt, dwi

tdt = (dt)2 = 0. (3)

A crucial role in the proof of Itô’s formula is played by the following.

2. Lemma. Let ξt, ηt be real-valued processes having stochastic differentials.
Then ξtηt also has a stochastic differential, and

d(ξtηt) = ηt dξt + ξt dηt + (dξt)dηt.

Proof. Let

ξt = ξ0 +
∫ t

0
σs dws +

∫ t

0
bs ds, ηt = η0 +

∫ t

0
σ̃s dws +

∫ t

0
b̃s ds,

where σs and σ̃s are vector-valued processes and bs and b̃s are real-valued
ones. By the above rules, assuming the summation convention, we can write
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ηtdξt = ηt(σk
t dw

k
t + bt dt) = ηtσ

k
t dw

k
t + ηtbt dt = ηtσt dwt + ηtbt dt,

ξtdηt = ξtσ̃t dwt + ξtb̃t dt, (dξt)dηt = σj
t dw

j
t σ̃

k
t dw

k
t = σj

t σ̃
j
t dt = σt · σ̃t dt.

Therefore our assertion means that, for all t ∈ [0,∞) at once, with proba-
bility one,

ξtηt = ξ0η0 +
∫ t

0
(ηsσs + ξsσ̃s) dws +

∫ t

0
(ηsbs + ξsb̃s + σs · σ̃s) ds. (4)

First, notice that the right-hand side of (4) makes sense because (a.s.)∫ t

0
|ηsbs| ds ≤ max

s≤t
|ηs|

∫ t

0
|bs| ds <∞,

∫ t

0
|ηsσ

j
s|2 ds ≤ max

s≤t
|ηs|

∫ t

0
|σj

s|2 ds <∞,

∫ t

0
|σs · σ̃s| ds ≤

∫ t

0
|σs|2 ds+

∫ t

0
|σ̃s|2 ds <∞.

Next, notice that if dξ′t = σ′t dwt + b′t dt and dξ′′t = σ′′t dwt + b′′t dt and
(4) holds with ξ′, σ′, b′ and ξ′′, σ′′, b′′ in place of ξ, σ, b, then it also holds
for ξ′ + ξ′′, σ′ + σ′′, b′ + b′′. It follows that we may concentrate only on two
possibilities for dξt: dξt = σt dwt and dξt = bt dt. We have the absolutely
similar situation with η. Therefore, we have to deal only with four pairs of
dξt and dηt. To finish our preparation, we also notice that both sides of (4)
are continuous in t, so that to prove that they coincide with probability one
for all t at once, it suffices to prove that they are equal almost surely for
each particular t.

Thus, fix t, and first let dξt = bt dt and dηt = b̃t dt. Then (4) follows
from the usual calculus (or is proved as in the following case).

The two cases, (i) dξt = σt dwt and dηt = b̃t dt and (ii) dξt = bt dt and
dηt = σ̃t dwt, are similar, and we concentrate on (i).

Let 0 = tm0 ≤ tm1 ≤ ... ≤ tmkm = t be a sequence of partitions of [0, t]
such that maxi(tm,i+1 − tmi) → 0 as m→ ∞. Define

κm(s) = tmi, κ̃m(s) = tm,i+1 if s ∈ [tmi, tm,i+1).

Obviously κm(s), κ̃m(s) → s uniformly on [0, t]. In addition, the formula

ab− cd = (a− c)d+ (b− d)a

and Theorem 3.14 show that (a.s.)
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ξtηt − ξ0η0 =
km−1∑
i=0

(ξtm,i+1ηtm,i+1 − ξtmiηtmi)

=
km−1∑
i=0

ηtmi

∫ tm,i+1

tmi

σs dws +
km−1∑
i=0

ξtm,i+1

∫ tm,i+1

tmi

b̃s ds

=
∫ t

0
ηκm(s)σs dws +

∫ t

0
ξκ̃m(s)b̃s ds. (5)

Furthermore, as m→ ∞, we have (a.s.)

∣∣ ∫ t

0
ξκ̃m(s)b̃s ds−

∫ t

0
ξsb̃s ds

∣∣ ≤ sup
s≤t

|ξκ̃m(s) − ξs|
∫ t

0
|b̃s| ds → 0,

∫ t

0
|ηκm(s) − ηs|2(σj

s)
2 ds ≤ sup

s≤t
|ηκm(s) − ηs|2

∫ t

0
(σj

s)
2 ds → 0,

and the last relation by Theorem 3.5 (iii) implies that

∫ t

0
ηκm(s)σs dws

P→
∫ t

0
ηsσs dws. (6)

Now by letting m→ ∞ in (5) we get (4) (a.s.) in our particular case.
Thus it only remains to consider the case dξt = σt dwt, dηt = σ̃t dwt, and

prove that

ξtηt = ξ0η0 +
∫ t

0
(ηsσs + ξsσ̃s) dws +

∫ t

0
σs · σ̃s ds. (7)

Notice that we may assume that ξ0 = η0 = 0, since in the initial reduction
to four cases we could absorb the initial values in the terms with dt.

Now we again use bilinearity and conclude that, since σ and σ̃ can
be represented as sums of vector-valued processes each of which has only
one nonidentically zero element, we only have to prove (7) for such simple
vector-valued processes. Furthermore, keeping in mind that each f ∈ S can
be approximated by fn ∈ H0 (see, for instance, the proof of Theorem 3.14),
we see that we may assume that σj , σ̃j ∈ H0.

In this way we conclude that to prove (7) in the general case, it suffices
to prove that, if f, g ∈ H0, ξr =

∫ r
0 fs dw

i
s, and ηr =

∫ r
0 gs dw

j
s, then (a.s.)
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ξtηt =
∫ t

0
fsηs dw

i
s +

∫ t

0
gsξs dw

j
s +

∫ t

0
fsgsδ

ij ds. (8)

Remember that t is fixed, and without losing generality assume that the
partitions corresponding to f and g coincide and t is one of the partition
points. Let {t0, t1, ...} be the common partition with t = tk. Next, as above
we take the sequence of partitions defined by tmi of [0, t] and again without
loss of generality assume that each ti lying in [0, t] belongs to {tmi : i =
0, 1, ...}. We use the formula

ab− cd = (a− c)d+ (b− d)c + (a− c)(b− d) (9)

and Theorem 3.14. Fix a q = 0, ..., k − 1 and, by default summing up with
respect to those r for which tq ≤ tmr < tq+1, write (a.s.)

ξtq+1ηtq+1 − ξtqηtq =
∑

(ξtm,r+1ηtm,r+1 − ξtmrηtmr )

=
∑

ηtmr

∫ tm,r+1

tmr

fs dw
i
s +

∑
ξtmr

∫ tm,r+1

tmr

gs dw
j
s

+
∑∫ tm,r+1

tmr

fs dw
i
s

∫ tm,r+1

tmr

gs dw
j
s =

∫ tq+1

tq

ηκm(s)fs dw
i
s+

+
∫ tq+1

tq

ξκm(s)gs dw
j
s + ftqgtq

∑
(wi

tm,r+1
− wi

tmr
)(wj

tm,r+1
− wj

tmr
). (10)

In the expression after the last equality sign the first two terms converge in
probability to ∫ tq+1

tq

ηsfs dw
i
s,

∫ tq+1

tq

ξsgs dw
j
s

respectively, which is proved in the same way as (6). If i = j, the last term
converges in probability to

ftqgtq (tq+1 − tq) =
∫ tq+1

tq

fsgs ds

by Theorem 2.2.6. Consequently, by letting m→ ∞ in (10) and then adding
up the results for q = 0, ..., k − 1, we come to (7) if i = j. For i �= j one
uses the same argument complemented by the observation that the last
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sum in (10) tends to zero in probability, since its mean is zero due to the
independence of wi and wj , and

E
[∑

(wi
tm,r+1

− wi
tmr

)(wj
tm,r+1

− wj
tmr

)
]2 = Var

[
...
]

=
∑

E(wi
tm,r+1

− wi
tmr

)2(wj
tm,r+1

− wj
tmr

)2

=
∑

(tm,r+1 − tmr)2 ≤ max
i

(tm,i+1 − tmi)t→ 0.

The lemma is proved.

3. Exercise. Explain why in the treatment of the fourth case one cannot
use a formula similar to (5) in place of (10).

4. Theorem (Itô’s formula). Let a d1-dimensional process ξt have stochas-
tic differential, and let u(x) = u(x1, ..., xd1) be a real-valued twice continu-
ously differentiable function of x ∈ R

d1 . Then u(ξt) has a stochastic differ-
ential, and

du(ξt) = uxi(ξt) dξi
t + (1/2)uxixj(ξt) dξi

tdξ
j
t . (11)

Proof. Let C2 be the set of all real-valued twice continuously differen-
tiable function on R

d1 . We are going to use the fact that for every u ∈ C2

there is a sequence of polynomials um such that um, um
xi , u

m
xixj converge to

u, uxi , uxixj uniformly on each ball. For such a sequence and any ω, t, i, j

sup
s≤t

|um
xi(ξt) − uxi(ξt)| + sup

s≤t
|um

xixj(ξt) − uxixj (ξt)| → 0,

since each trajectory of ξs, s ≤ t, lies in a ball. It follows easily that, if (11)
is true for um, then it is also true for u.

Thus, we only need to prove (11) for polynomials, and to do this it
obviously suffices to show that (11) holds for linear function and also for the
product of any two functions u and v for each of which (11) holds.

For linear u formula (11) is obvious. If (11) holds for u and v, then by
Lemma 2

d(u(ξt)v(ξt)) = u(ξt) dv(ξt) + v(ξt) du(ξt) + (du(ξt))dv(ξt)

= [uvxi + vuxi ](ξt) dξi
t + (1/2)[uvxixj + vuxixj ](ξt) dξi

tdξ
i
t + uxivxj(ξt) dξi

tdξ
i
t

= (uv)xi(ξt) dξi
t + (1/2)(uv)xixj(ξt) dξi

tdξ
i
t.

The theorem is proved.
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Itô’s formula (11) looks very much like Taylor’s formula with two terms.
Usually one rewrites it in a different way. Namely, let dξt = σt dwt + bt dt,
a = (1/2)σtσ

∗
t . Simple manipulations show that (dξi

t)dξ
j
t = 2aij

t dt and
hence

du(ξt) = Ltu(ξt) dt + σ∗t ux(ξt) dwt,

where ux = gradu is a column vector and Lt is the second-order differential
operator given by

Ltv(x) = aij
t vxixj (x) + bitvxi(x).

In this notation (11) means that for all t (a.s.)

u(ξt) = u(ξ0) +
∫ t

0
Lsu(ξs) ds +

∫ t

0
σ∗sux(ξs) dws. (12)

5. Exercise. Prove that (2) holds for analytic functions f .

Itô’s formula leads to extremely important formulas relating the theory
of stochastic integration with the theory of partial differential equations.
One of them is the following theorem.

6. Theorem. Let ξ0 be nonrandom, let Q be a domain in R
d1 , let ξ0 ∈ Q,

let τ be the first exit time of ξt from Q, and let u be a function which
is continuous in Q̄ and has continuous first and second derivatives in Q.
Assume that

P (τ <∞) = 1, E

∫ τ

0
|Lsu(ξs)| ds <∞.

Then

u(ξ0) = Eu(ξτ ) − E

∫ τ

0
Lsu(ξs) ds.

We give no proof to this theorem because it is just a particular result,
and usually when one needs such results it is easier and shorter to prove
what is needed directly instead of trying to find the corresponding result in
the literature. We will see examples of this in Sec. 7.

Roughly speaking, to prove Theorem 6 one plugs τ in place of t in (12)
and takes expectations. The main difficulties on the way are caused by
the fact that u is not even given in the whole R

d1 and the expectation of
a stochastic integral does not necessarily exist, let alone equal zero. One
overcomes these difficulties by taking smaller domains Qm ↑ Q, extending
u outside Qm, taking τ even smaller that the first exit time from Qm, and
then passing to the limit.
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6. An alternative proof of Itô’s formula

The approach we have in mind is based on using stopping times and sto-
chastic intervals. It turns out that these tools could be used right from the
beginning, even for defining Itô integral. First we briefly outline how to do
this, to give the reader one more chance to go through the basics of the the-
ory and also to show a way which is valid for integrals against more general
martingales.

1. Definition. Let τ = τ(ω) be a [0,∞)-valued function on Ω taking only
finitely many values, say t1, ..., tn ≥ 0. We say that τ is a simple stopping
time (relative to Ft) if {ω : τ(ω) = tk} ∈ Ftk for any k = 1, ..., n. The set of
all simple stopping times is denoted by M.

Below in this section we only use simple stopping times.

2. Exercise*. (i) Prove that simple stopping times are stopping times, and
that {ω : τ(ω) ≥ t} ∈ Ft for any t.

(ii) Derive from (i) that if τ1 and τ2 are simple stopping times, then
τ1 ∧ τ2 and τ1 ∨ τ2 are simple stopping times as well.

3. Lemma. For a real-valued function γ(ω), define the stochastic interval
|(0, γ]] as the set {(ω, t) : ω ∈ Ω, 0 < t ≤ γ(ω)} and let Π be the collection
of all stochastic intervals |(0, τ ]] with τ running through the set of all simple
stopping times. Finally, for ∆ = |(0, τ ]] ∈ Π, define ζ(∆) = wτ . Then ζ is
a random orthogonal measure on Π with reference measure µ = P × � and
Eζ(∆) = 0 for any ∆ ∈ Π.

Proof. Let τ be a simple stopping time and {t1, ..., tn} the set of its
values. Then

wτ = wt1Iτ=t1 + ...+ wtnIτ=tn

and, since Ew2
s <∞, Eζ2( |(0, τ ]]) = Ew2

τ <∞.
Next we will be using the simple fact that, if τ is a simple stopping time

and the set {0 = t0 < t1 < ... < tn} contains all possible values of τ , then

wτ =
n−1∑
i=0

fti(wti+1 − wti), τ =
n−1∑
i=0

fti(ti+1 − ti), (1)

where ft := Iτ>t is Ft-measurable (Exercise 2). Since {ω : τ(ω) > ti} ∈ Fti

and wti+1 − wti is independent of Fti , we have

Efti(wti+1 − wti) = EftiE(wti+1 −wti) = 0, Eζ( |(0, τ ]]) = 0.
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Now, let τ and σ be simple stopping times, {t1, ..., tn} the ordered set of
their values, and ∆1 = |(0, τ ]] and ∆2 = |(0, σ]]. By using (1) we have

Eζ(∆1)ζ(∆2) = Ewτwσ =
n−1∑
i,j=0

Eftigtj (wti+1 − wti)(wtj+1 − wtj ),

which, in the same way as in the proofs of Theorem 2.7.3 or Lemma 1.3 used
in other approaches, is shown to be equal to

n−1∑
i=0

Eftigti(ti+1 − ti) = E

n−1∑
i=0

Iτ∧σ>ti(ti+1 − ti) = Eτ ∧ σ.

Since

Eτ ∧ σ =
∫

Ω

∫ ∞

0
I |(0,τ ]]∩ |(0,σ]](ω, t)P (dω)dt = µ(∆1 ∩ ∆2),

the lemma is proved.
From this lemma we derive the following version of Wald’s identities.

4. Corollary. Let τ1 and τ2 be simple stopping times. Then Ew2
τ1 = Eτ1

and E(wτ1 − wτ2)
2 = E|τ1 − τ2|.

Indeed, we get the first equality from the proof of Lemma 3 by taking
σ = τ . To prove the second one, define τ = τ1 ∨ τ2, σ = τ1 ∧ τ2 and notice
that

E(wτ1 − wτ2)
2 = E(wτ − wσ)2 = Ew2

τ − 2Ewτwσ + Ew2
σ

= Eτ − Eσ = E(τ − σ) = E|τ1 − τ2|.

5. Exercise. Carry over the result of Corollary 4 to all bounded stopping
times.

6. Remark. Lemma 3 and the general Theorem 2.3.13 imply that there
is a stochastic integral operator, say I, defined on L2(Π, µ) with values in
L2(F , P ). Since Π is a π-system of subsets of Ω×(0,∞), we have L2(Π, µ) =
L2(σ(Π), µ) due to Theorem 2.3.19.

7. Remark. It turns out that σ(Π) = P. Indeed, on the one hand the
indicators of the sets |(0, τ ]] generating σ(Π) are left-continuous and Ft-
adapted, hence predictable (Exercise 2.8.3). In other words, |(0, τ ]] ∈ P
and σ(Π) ⊂ P. On the other hand, if A ∈ Fs, s ≥ 0, and for n > s we define
τn = s on A and τn = n on Ω \ A, then τn are simple stopping times and

|(0, τn]] = {(ω, t) : 0 < t ≤ τn(ω)}
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= {(ω, t) : 0 < t ≤ s, ω ∈ A}
⋃

{(ω, t) : 0 < t ≤ n, ω ∈ Ac},
⋃
n

|(0, τn]] = (A× (0, s]) ∪ (Ac × (0,∞)) ∈ σ(Π),

so that (
⋃

n
|(0, τn]])c = A× (s,∞) ∈ σ(Π). It follows that the set generating

P is a subset of σ(Π) and P ⊂ σ(Π).

8. Remark. Remark 7 and the definition of L2(Π, µ) imply the somewhat
unexpected result that for every f ∈ L2(P, µ), in particular, f ∈ H, there
are simple stopping times τm

i and constants cmi defined for m = 1, 2, ... and
i = 1, ..., k(m) <∞ such that

E

∫ ∞

0
|ft −

k(m)∑
i=1

cmi I |(0,τm
i ]](t)|2 dt→ 0

as m→ ∞.

9. Exercise. Find simple stopping times τm
i and constants cmi such that,

for the one-dimensional Wiener process wt,

E

∫ ∞

0
|It≤1wt −

k(m)∑
i=1

cmi I |(0,τm
i ]](t)|2 dt→ 0

as m→ ∞.

10. Remark. The operator I from Remark 6 coincides on L2(Π, µ) with
the operator of stochastic integration introduced before Remark 1.6. This
follows easily from the uniqueness of continuation and Theorem 2.7, showing
that the old stochastic integral coincides with the new one on the indicators
of |(0, τ ]] and both are equal to wτ .

After making sure that we deal with the same objects as in Sec. 5,
we start proving Itô’s formula, allowing ourselves to use everything proved
before Sec. 5. As in Sec. 5, we need only prove Lemma 5.2. Define κn(t) =
2−n[2nt].

Due to (5.9) we have

wi
tw

j
t =

∫ t

0
wi

κn(s) dw
j
s +

∫ t

0
wj

κn(s) dw
i
s

+
∞∑

k=0

(wi
k+1
2n ∧t

− wi
k
2n ∧t

)(wj
k+1
2n ∧t

− wj
k
2n ∧t

), i, j = 1, ..., d (a.s.). (2)
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By sending n to infinity, from the theorem on quadratic variation of the
Wiener process we get that (a.s.)

wi
tw

j
t =

∫ t

0
wi

s dw
j
s +

∫ t

0
wj

s dw
i
s + δijt, i, j = 1, ..., d. (3)

Furthermore, for γ, τ ∈ M, γ ≤ τ , by using the fact that the sets of all
values of γ, τ are finite, we obtain that

∫ ∞

0
wj

γIγ<s≤τ dw
i
s = wj

γ(wi
τ − wi

γ) (a.s.).

Hence and from (3) for i, j = 1, ..., d, τ, σ ∈ M, γ = τ ∧ σ we have (a.s.)

wi
τw

j
σ = (wi

τ − wi
γ)wj

γ + (wj
σ − wj

γ)wi
γ + wi

γw
j
γ

=
∫ ∞

0
wj

γIγ<s≤τ dw
i
s +

∫ ∞

0
wi

γIγ<s≤σ dw
j
s

+
∫ ∞

0
wj

sIs≤γ dw
i
s +

∫ ∞

0
wi

sIs≤γ dw
j
s + δijγ

=
∫ ∞

0
wj

s∧σIs≤τ dw
i
s +

∫ ∞

0
wi

s∧τIs≤σ dw
j
s +

∫ ∞

0
Is≤τIs≤σ ds.

By replacing here τ, σ by τ ∧ t, σ ∧ t, we conclude that (a.s.)

wi
t∧τ =

∫ t

0
Is≤τ dw

i
s, wj

t∧σ =
∫ t

0
Is≤σ dw

j
s,

wi
t∧τw

j
t∧σ =

∫ t

0
wj

s∧σIs≤τ dw
i
s +

∫ t

0
wi

s∧τIs≤σ dw
j
s +

∫ t

0
Is≤τIs≤σ ds. (4)

Next, similarly to our argument about (2) and (3), by replacing wj
t with

t and then wi
t with t as well, instead of (4) we get

t ∧ σ =
∫ t

0
Is≤σ ds, t ∧ τ =

∫ t

0
Is≤τ ds,



Ch 6 Section 6. An alternative proof of Itô’s formula 199

(t ∧ σ)wi
t∧τ =

∫ t

0
(s ∧ σ)Is≤τ dw

i
s +

∫ t

0
wi

s∧τIs≤σ ds,

(t ∧ τ)(t ∧ σ) =
∫ t

0
(s ∧ σ)Is≤τ ds+

∫ t

0
(s ∧ τ)Is≤σ ds.

(5)

To finish the preliminaries, we observe that for each F0-measurable ran-
dom variable ξ0, obviously

ξ0w
i
t∧τ =

∫ t

0
ξ0Is≤τ dw

i
s, (t ∧ τ)ξ0 =

∫ t

0
ξ0Is≤τ ds. (6)

Now we recall the notion of stochastic differential from before Lemma
5.2, and the multiplication table (5.3). Then we automatically have the
following.

11. Lemma. All the formulas (4), (5), and (6) can be written in one and
the same way: If ξt, ηt are real-valued processes and

dξt = σt dwt + bt dt, dξt = σ′t dwt + b′t dt, (7)

where all entries of σt, σ
′
t and of bt, b′t are indicators of elements of Π, then

d(ξtηt) = ξt dηt + ηt dξt + (dξt)(dηt). (8)

Also notice that since both sides of equality (8) are linear in ξ and in
η, equality (8) immediately extends to all processes ξt, ηt satisfying (7) with
functions σ, σ′, b, b′ of class S(Π).

Now we are ready to prove Lemma 5.2, saying that (8) holds true for all
scalar processes ξt, ηt possessing stochastic differentials. To this end, assume
first that σ′, b′ ∈ S(Π) and take a sequence of processes σn, bn of class S(Π)
such that (a.s.)

∫ T

0
(|σt − σnt|2 + |bt − bnt|) dt → 0 ∀T ∈ [0,∞).

Define also processes ξn
t , replacing σ, b in (6) by σn, bn. As is well known, in

probability
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sup
t≤T

[|
∫ t

0
(σs − σns) dws| + |

∫ t

0
(bs − bns) ds|] → 0,

sup
s≤T

|ξt − ξn
t | → 0 ∀T ∈ [0,∞). (9)

If necessary, we take a subsequence and we assume that the convergences
in (9) hold almost surely. Then by the dominated convergence theorem we
have (a.s.) ∫ T

0
|ξt − ξn

t |(|σ′t|2 + |b′t|) dt → 0,

∫ T

0
|ηt|(|σt − σnt|2 + |bt − bnt|) dt → 0,∫ T

0
|σt · σ′t − σnt · σ′t| dt

≤ (
∫ T

0
|σt − σnt|2 dt)1/2(

∫ T

0
|σ′t|2 dt)1/2 → 0 ∀T ∈ [0,∞).

This and an argument similar to the one which led us to (9) show that in
the integral form of (8), with ξn

t instead of ξt, we can pass to the limit in
probability and get (8) for the limit process ξt. Of course, after this we fix
the process ξt and we carry out a similar limit passage in (8) affecting the
second factor. In this way we get Lemma 5.2 in a straightforward way from
the quite elementary Lemma 11.

7. Examples of applying Itô’s formula

In this section wt is a d-dimensional Wiener process.

1. Example. Let τ be the first exit time of wt from BR = {x : |x| < R},
where R > 0 is a number. As we know, τ is a stopping time. Take

u(x) = (1/d)(R2 − |x|2)
and apply Itô’s formula to u(wt). Here ξt = wt, σ is the identity matrix,
b = 0, and the corresponding differential operator Lt = (1/2)∆. We have
(a.s.)

u(wt) = −t−
∫ t

0
(2/d)ws dws + (1/d)R2 ∀t.

Substitute t ∧ τ in place of t, take expectations, and notice that, since
|wt| ≤ R before τ , we have 0 ≤ u(wt∧τ ) ≤ (1/d)R2 and



Ch 6 Section 7. Examples of applying Itô’s formula 201

E

∫ t∧τ

0
|ws|2 ds ≤ R2t <∞.

Then we obtain

Eu(wt∧τ ) = −E(t ∧ τ) + (1/d)R2, E(t ∧ τ) = (1/d)R2 − Eu(wt∧τ ).

It follows in particular that

E(t ∧ τ) ≤ (1/d)R2, Eτ ≤ (1/d)R2, τ <∞ (a.s.).

Furthermore, by letting t → ∞ and noticing that on the set {τ < ∞} we
obviously have u(wt∧τ ) → u(wτ ) = 0, by the monotone convergence and
dominated convergence theorems we conclude that

Eτ = lim
t→∞E(t ∧ τ) = (1/d)R2 − lim

t→∞Eu(wt∧τ ) = (1/d)R2.

Notice that, for d = 1, we have the result which we know already:
Eτ = R2. Also notice that if we wanted to use Theorem 5.6, then we would
have to find a function u such that Ltu(wt) = −1 for s ≤ τ and u(wτ ) = 0.
In other words, we needed u such that (1/2)∆u = −1 in BR and u = 0 on
∂BR. This is exactly the one we used above. Finally, notice that in order
to apply Theorem 5.6 we have to be sure in advance that P (τ <∞) = 1.

2. Example. Fix ε > 0 and x0 ∈ R
d with |x0| > ε. Let us find the

probability P that wt will ever reach B̄ε(x0) = {x : |x− x0| ≤ ε}.
First find the probability PR that wt reaches {|x − x0| = ε} before

reaching {|x − x0| = R}, where R > |x0|. We want to apply Theorem 5.6
and therefore represent the desired probability PR as Eφ(wτ ), where τ is
the first exit time of wt from {x : ε < |x−x0| < R}, φ = 1 on {|x−x0| = ε}
and φ = 0 on {|x − x0| = R}. Notice that, owing to Example 1, we have
τ <∞ (a.s.).

Now it is natural to try to find a function u such that u = φ on {|x−x0| =
ε} ∪ {|x − x0| = R} and ∆u = 0 in {x : ε < |x− x0| < R}. This is natural,
since then PR = u(0) by Theorem 5.6. It turns out that an appropriate
function u exists and is given by

u(x) =



A(|x− x0|−(d−2) −R−(d−2)) if d ≥ 3,

A(ln |x− x0| − lnR) if d = 2,

A(|x− x0| −R) if d = 1,

where
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A =




(ε−(d−2) −R−(d−2))−1 if d ≥ 3,

(ln ε− lnR)−1 if d = 2,

(ε−R)−1 if d = 1.

Next, since the trajectories of w are continuous and for any T, ω are
bounded on [0, T ], the event that wt ever reaches B̄ε(x0) is the union of
nested events, say En that wt reaches {|x − x0| = ε} before reaching
{|x− x0| = n}. Hence P = limn→∞ Pn and

P =




εd−2

|x0|d−2 if d ≥ 3,

1 if d ≤ 2.

We see that one- and two-dimensional Wiener processes reach any neigh-
borhood of any point with probability one. For d ≥ 3 this probability is
strictly less than one, and this leads to the conjecture that |wt| → ∞ as
t→ ∞ for d ≥ 3.

3. Example. Our last example is aimed at proving the conjecture from the
end of Example 2. Fix x0 �= 0 and take ε > 0 such that ε < |x0|. Denote by
τε the first time wt reaches {x : |x− x0| ≤ ε}.

First we prove that

ξt := |wt∧τε − x0|2−d

is a bounded martingale. The boundedness of ξt is obvious: 0 < ξt ≤ ε2−d.
To prove that it is a martingale, construct a smooth function f(x) on R

d

such that f(x) = |x − x0|2−d for |x − x0| ≥ ε. Then ξt = f(wt∧τε), and by
Itô’s formula

f(wt) = f(0) +
∫ t

0
(1/2)∆f(ws) ds+

∫ t

0
fx(ws) dws.

Hence, owing to ∆f(x) = 0, which holds for |x− x0| ≥ ε, we have

ξt = f(wt∧τε) = |x0|2−d +
∫ t

0
Is≤τεfx(ws) dws.

Here the second term and the right-hand side are martingales since |fx| is
bounded. By the theorem on convergence of nonnegative (super)martingales,
limt→∞ ξt exists with probability one. We certainly have to remember that
this theorem was proved only for discrete time supermartingales. But its
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proof is based on Doob’s upcrossing inequality, and for continuous super-
martingales this inequality and the convergence theorem are extended with-
out any difficulty as in the case of Lemma 1.5.

Now use that ξt is bounded to conclude that

|x0|2−d = Eξ0 = Eξt = E lim
t→∞ ξt

= E
1

limt→∞ |wt − x0|d−2
Iτε=∞ + EIτε<∞ε2−d.

By using the result of Example 2 we get that the last expectation is |x0|2−d,
and therefore

E
1

limt→∞ |wt − x0|d−2
Iτε=∞ = 0,

so that limt→∞ |wt| = ∞ (a.s.) on the set {τε = ∞} for each ε > 0. Finally,

P
{ ⋃

ε=1/m

{τε = ∞}} = lim
m→∞P (τ1/m = ∞) = lim

m→∞(1 − 1/|mx0|d−2) = 1,

and limt→∞ |wt| = ∞ (a.s.) indeed.

4. Exercise. Let d = 2 and take τε from Example 3.
(i) Example 2 shows that τε < ∞ (a.s.). Prove that τε → ∞ (a.s.) as

ε ↓ 0, so that the probability that the two-dimensional Wiener process hits
a particular point is zero even though it hits any neigborhood of this point
with probability one.

(ii) Use the method in Example 3 to show that for d = 2 and 0 < ε < |x0|

ln |wt∧τε − x0| = ln |x0| +
∫ t

0
Is≤τε |ws − x0|−2(ws − x0) dws.

Let ε ↓ 0 here, and by using (i) conclude that |wt − x0|−2(wt − x0) ∈ S and

ln |wt − x0| = ln |x0| +
∫ t

0
|ws − x0|−2(ws − x0) dws. (1)

(iii) Prove that E ln |wt − x0| > ln |x0| for t > 0, so that the stochastic
integral in (1) is not a martingale.
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8. Girsanov’s theorem

Itô’s formula allows one to obtain an extremely important theorem about
change of probability measure. We consider here a d-dimensional Wiener
process (wt,Ft) given on a complete probability space (Ω,F , P ) and assume
that the Ft are complete.

We need the following lemma in which, in particular, we show how one
can do Exercises 3.2.5 and 4.3 by using Itô’s formula.

1. Lemma. Let b ∈ S be an R
d-valued process. Denote

ρt = ρt(b) = exp
( ∫ t

0
bs dws − (1/2)

∫ t

0
(bs)2 ds

)

= exp
( d∑

i=1

∫ t

0
bis dw

i
s − (1/2)

d∑
i=1

∫ t

0
(bis)

2 ds
)
. (1)

Then
(i) dρt = btρt dwt;

(ii) ρt is a supermartingale;

(iii) if the process bt is bounded, then ρt is a martingale and, in partic-
ular, Eρt = 1;

(iv) if T ∈ [0,∞) and EρT = 1, then (ρt,Ft) is a martingale for t ∈
[0, T ], and also for any sequence of bounded bn ∈ S such that

∫ T
0 |bns −bs|2 ds

→ 0 (a.s.) we have

E|ρT (bn) − ρT (b)| → 0. (2)

Proof. Assertion (i) follows at once from Itô’s formula. To prove (ii)
define

τn = inf{t ≥ 0 :
∫ t

0
|bs|2ρ2

s ds ≥ n}.

Then It<τnbtρt ∈ H (see the beginning of Sec. 3), and so
∫ t
0 Is<τnbsρs dws is

a martingale. By adding that

ρt∧τn = 1 +
∫ t∧τn

0
bsρs dws = 1 +

∫ t

0
Is<τnbsρs dws,

we see that ρt∧τn is a martingale. Consequently, for t1 ≥ t2 (a.s.)
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E(ρt2∧τn |Ft1) = ρt1∧τn .

As n → ∞, we have τn → ∞ and ti ∧ τn → ti, so that by Fatou’s theorem
(a.s.)

E(ρt2 |Ft1) ≤ ρt1 .

This proves (ii) and implies that

E exp
( ∫ t

0
bs dws − (1/2)

∫ t

0
|bs|2 ds

) ≤ 1. (3)

To prove (iii) let |bs| ≤ K, where K is a constant, and notice that by
virtue of (3)

E

∫ t

0
|bs|2ρ2

s ds ≤ K2E

∫ t

0
ρ2

s ds

= K2

∫ t

0
Eρ2

s(2b) exp
( ∫ t

0
|bs|2 ds

)
ds ≤ K2

∫ t

0
eK

2s ds <∞.

Hence ∫ t

0
bsρs dws and ρt = 1 +

∫ t

0
bsρs dws

are martingales.
To prove (iv), first notice that EρT (bn) = 1 by (iii), EρT (b) = 1 by the

assumption, and ρT (bn) → ρT (b) in probability by properties of stochastic
integrals. This implies (2) by Scheffé’s theorem. Furthermore, for t ≤ T
(a.s.)

ρt(bn) = E(ρT (bn)|Ft).

Letting n→ ∞ here and using Corollary 3.1.10 lead to a similar equality for
b in place of bn, and the martingale property of ρt(b) for t ≤ T now follows
from Exercise 3.2.2. The lemma is proved.

2. Remark. Notice again that ρt is a solution of dρt = btρt dwt. We know
that in the usual calculus solutions of dft = αft dt (that is, exponential
functions) play a very big role. As big a role in stochastic calculus is played
by exponential martingales ρt(b).

Inequality (3) implies the following.

3. Corollary. If bs is a bounded process or
∫ t
0 |bs|2 ds is bounded, then

E exp
∫ t

0
bs dws <∞.
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4. Exercise. (i) By following the argument in the proof of Lemma 1 (ii),
prove that if E supt≤T ρt <∞, then (ρt,Ft) is a martingale for t ∈ [0, T ].

(ii) Use the result of (i) to prove that, if p > 1 and N <∞ and Eρp
τ ≤ N

for every stopping time τ ≤ T , then (ρt,Ft) is a martingale for t ∈ [0, T ].

5. Exercise. Use Hölder’s inequality and Exercise 4 (ii) to prove that if

E exp
∫ T

0
c|bt|2 dt <∞

for a constant c > 1/2, then EρT (b) = 1.

6. Exercise. By using Exercise 5 and inspecting the inequality

1 = EρT ((1 − ε)b) ≤ [EρT (b)
]1−ε[

E exp
1 − ε

2

∫ T

0
|bt|2 dt

]ε
,

improve the result of Exercise 5 and show that it holds if

lim
ε↓0

ε lnE exp
1 − ε

2

∫ T

0
|bt|2 dt = 0, (4)

which is true if, for instance, E exp(1/2)
∫ T
0 |bt|2 dt < ∞ (A. Novikov). It

turns out that condition (4) can be relaxed even further by replacing = 0
with <∞ on the right and lim with lim on the left.

The next lemma treats ρt(b) for complex-valued d-dimensional bt. In
this situation we introduce ρt(b) by the same formula (1) and for d-vectors
f = (f1, ..., fd) with complex entries fk denote (f)2 =

∑
k f

2
k .

7. Lemma. If bt is a bounded d-dimensional complex-valued process of
class S, then ρt(b) is a (complex-valued) martingale and, in particular,
Eρt(b) = 1 for any t.

Proof. Take t2 > t1 ≥ 0 and A ∈ Ft1 . To prove the lemma it suffices to
prove that, if ft and gt are bounded R

d-valued processes of class S, then for
all complex z

EIA exp
( ∫ t2

0
(fs + zgs) dws − (1/2)

∫ t2

0
(fs + zgs)2 ds

)

= EIA exp
( ∫ t1

0
(fs + zgs) dws − (1/2)

∫ t1

0
(fs + zgs)2 ds

)
. (5)
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Observe that (5) holds for real z by Lemma 1 (iii). Therefore we will prove
(5) if we prove that both sides are analytic functions of z. In turn to prove
this it suffices to show that both sides are continuous and their integrals
along closed bounded paths vanish. Finally, due to the analyticity of the ex-
pressions under expectation signs and Fubini’s theorem we only need to show
that, for every R ∈ [0,∞) and all |z| ≤ R, these expressions are bounded
by a summable function independent of z. This boundedness follows easily
from Corollary 3, boundedness of f, g, and the fact that

∣∣ exp
∫ tj

0
(fs + zgs) dws

∣∣ = exp
∫ tj

0
(fs + gsRe z) dws

≤ exp
∫ tj

0
(fs +Rgs) dws + exp

∫ tj

0
(fs −Rgs) dws,

where we have used the inequality

eα ≤ eα + e−α ≤ eβ + e−β

if |α| ≤ |β|. The lemma is proved.

8. Theorem (Girsanov). Let T ∈ [0,∞), and let b be an R
d-valued process

of class S satisfying

EρT (b) = 1.

On the measurable space (Ω,F) introduce the measure P̃ by

P̃ (dω) = ρT (b)(ω)P (dω).

Then (Ω,F , P̃ ) is a probability space and wt is a d-dimensional Wiener
process on (Ω,F , P̃ ) for t ≤ T .

Proof. That (Ω,F , P̃ ) is a probability space follows from

P̃ (Ω) =
∫

Ω
ρT (b)P (dω) = EρT (b) = 1.

Next denote ξt = wt −
∫ t
0 bs ds. Since ξ0 = 0 and ξt is continuous in

t, to prove that ξt is a Wiener process, it suffices to show that relative to
(Ω,F , P̃ ) the joint distributions of the increments of the ξt, t ≤ T , are the
same as for wt relative to (Ω,F , P ).

Let 0 ≤ t0 ≤ t1 ≤ ... ≤ tn = T . Fix λj ∈ R
d, j = 0, ..., n − 1, and define

the function λs as iλj on [tj, tj+1), j = 0, ..., n − 1. Also denote by Ẽ the
expectation sign relative to P̃ . By Lemma 7, if b is bounded, then
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Ẽ exp i
n−1∑
j=0

λj(ξtj+1 − ξtj) = E exp
( ∫ T

0
λs dws −

∫ T

0
λs · bs ds

)
ρT (b)

= EρT (λ+ b)e(1/2)
R T
0

(λs)2 ds = e(1/2)
R T
0

(λs)2 ds.

It follows that

Ẽ exp i
n−1∑
j=0

λj(ξtj+1 − ξtj ) = exp
(− (1/2)

n−1∑
j=0

|λj |2(tj+1 − tj)
)
. (6)

This proves the theorem if b is bounded. In the general case take a sequence
of bounded bn ∈ S such that (a.s.)

∫ T
0 |bns −bs|2 ds → 0 (for instance, cutting

off large values of |bs|). Then

EρT (λ+ b) = lim
n→∞EρT (λ+ bn),

since by Lemma 1 (iv) and the dominated convergence theorem (remember
λs is imaginary)

E|ρT (λ+ bn) − ρT (λ+ b)|

= e(1/2)
R T
0

|λs|2 dsE
∣∣ρT (bn)e−

R T
0

λs·bn
s ds − ρT (b)e−

R T
0

λs·bs ds
∣∣

≤ e(1/2)
R T
0

|λs|2 ds
(
E|ρT (bn) − ρT (b)|

+E
∣∣e− R T

0
λs·bs ds − e−

R T
0

λs·bn
s ds
∣∣ρT (b)

)→ 0.

This and (6) yield the result in the general case. The theorem is proved.
Girsanov’s theorem and the lemmas proved before it have numerous

applications. We discuss only few of them.
From the theory of ODE’s it is known that the equation dxt = b(t, xt) dt

need not have a solution for any bounded Borel b. In contrast with this it
turns out that, for almost any trajectory of the Wiener process, the equation
dxt = b(t, xt +wt) dt does have a solution whenever b is Borel and bounded.
This fact is obtained from the following theorem after replacing xt with
ξt − wt.
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9. Theorem. Let b(t, x) be an R
d-valued Borel bounded function on (0,∞)×

R
d. Then there exist a probability space (Ω,F , P ), a d-dimensional continu-

ous process ξt and a d-dimensional Wiener process wt defined on that space
for t ∈ [0, T ] such that

ξt =
∫ t

0
b(s, ξs) ds + wt (7)

for all t ∈ [0, T ] and ω ∈ Ω.

Proof. Take any complete probability space (Ω,F , P̃ ) carrying a d-
dimensional Wiener process, say ξt. Define

wt = ξt −
∫ t

0
b(s, ξs) ds

and on (Ω,F) introduce a new measure P by the formula

P (dω) = exp
( ∫ T

0
b(s, ξs) dξs − (1/2)

∫ T

0
|b(s, ξs)|2 ds

)
P̃ (dω).

Then (Ω,F , P ) is a probability space, wt is a Wiener process on (Ω,F , P )
for t ∈ [0, T ], and, by definition, ξt solves (7). The theorem is proved.

The proof of this theorem looks like a trick and usually leaves the reader
unsatisfied. Indeed firstly, no real method is given such as Picard’s method of
successive approximations or Euler’s method allowing one to find solutions.
Secondly, the question remains as to whether one can find solutions on a
given probability space without changing it, so that ξt would be defined
by the Wiener process wt and not conversely. Theorem 9 was proved by
I. Girsanov around 1965. Only in 1978 did A. Veretennikov prove that
indeed the solutions can be found on any probability space, and only in
1996 did it become clear that Euler’s method allows one to construct the
solutions effectively.

Let us also show the application of Girsanov’s theorem to finding

P (max
t≤1

(wt + t) ≥ 1),

where wt is a one-dimensional Wiener process. Let b = −1 and

P̃ (dω) = e−wt−1/2P (dω).

By Girsanov’s theorem w̄t := wt + t is a Wiener process for t ∈ [0, 1]. Since
the distributions of Wiener processes in the space of continuous functions
are all the same and are given by Wiener measure, we conclude
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P (max
t≤1

(wt + t) ≥ 1) =
∫

Ω
Imaxt≤1 w̄t≥1e

w̄1−1/2e−w1−1/2P (dω)

=
∫

Ω
Imaxt≤1 w̄t≥1e

w̄1−1/2P̃ (dω) = EImaxt≤1 wt≥1e
w1−1/2.

Now remember the result of Exercise 2.2.10, which is

P (max
t≤1

wt ≥ 1, w1 ≤ x) =



P (w1 ≥ 2 − x) if x ≤ 1,

2P (w1 ≥ 1) − P (w1 ≥ x) if x ≥ 1.

Then by using the hint to Exercise 2.2.12, we get

P (max
t≤1

(wt + t) ≥ 1) =
∫ ∞

1
ex−1/2 1√

2π
e−x2/2 dx

+
∫ 1

−∞
ex−1/2 1√

2π
e−(2−x)2/2 dx =

1√
2πe

∫ ∞

1
(ex + e2−x)e−x2/2 dx.

In the following exercise we suggest the reader derive a particular case
of the Burkholder-Davis-Gundy inequalities.

10. Exercise. Let τ be a bounded stopping time. Then for any real λ we
have

Eeλwτ−λ2τ/2 = 1.

By using Corollary 3, prove that we can differentiate this equality with
respect to λ as many times as we wish, bringing all derivatives inside the
expectation sign. Then, for any integer k ≥ 1, prove that

E(a0w
2k
τ + a2w

2k−2
τ τ + a4w

2k−4
τ τ2 + ...+ a2kτ

k) = 0,

where a0, ..., a2k are certain absolute constants (depending on k) and a0 �= 0
and a2k �= 0. Finally, remembering Hölder’s inequality, prove that

Ew2k
τ ≤ NEτk, Eτk ≤ NEw2k

τ ,

where the constant N depends only on k.
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9. Stochastic Itô equations

A very wide class of continuous stochastic processes can be obtained by
modeling various diffusion processes. They are generally characterized by
being Markov and having local drift and diffusion; that is, behaving near
a point x on the time interval ∆t like σ(x)∆wt + b(x)∆t, where σ(x) is
the local diffusion coefficient and b(x) is the local drift. A quite satisfactory
model of such processes is given by solutions of stochastic Itô equations.

Let (Ω,F , P ) be a complete probability space, (wt,Ft) a d-dimensional
Wiener process given for t ≥ 0. Assume that the σ-fields Ft are complete
(which is needed, for instance, to define stochastic integrals as continuous
Ft-adapted processes). Let b(t, x) and σ(t, x) be Borel functions defined on
(0,∞) × R

d. We assume that b is R
d1-valued and σ takes values in the set

of d1×d matrices. Finally, assume that there exists a constant K <∞ such
that for all x, y, t

||σ(t, x)||+|b(t, x)| ≤ K(1 + |x|),
||σ(t, x) − σ(t, y)||+|b(t, x) − b(t, y)| ≤ K|x− y|,

(1)

where by ||σ|| for a matrix σ we mean
(∑

i,j(σ
ij)2
)1/2.

Take an F0-measurable R
d1-valued random variable ξ0 and consider the

following Itô equation:

ξt = ξ0 +
∫ t

0
σ(s, ξs) dws +

∫ t

0
b(s, ξs) ds t ≥ 0. (2)

By a solution of this equation we mean a continuous Ft-adapted process
given for t ≥ 0 and such that (2) holds for all t ≥ 0 at once with probability
one. Notice that, for any continuous Ft-adapted process ξt given for t ≥ 0,
the function ξ(ω, t) is jointly measurable in (ω, t) and the functions σ(t, ξt)
and b(t, ξt) are jointly measurable in (ω, t) and Ft-adapted. In addition,
σ(t, ξt) and b(t, ξt) are bounded for each ω on [0, t] for any t <∞. It follows
that for such processes ξt the right-hand side of (2) makes sense.

In our investigation of solvability of (2) we use the following lemma, in
which M is the set of all finite stopping times.

1. Lemma. (i) Let ξt and ηt be continuous nonnegative Ft-adapted pro-
cesses, f ∈ S, and

ηt ≤ ξt +
∫ t

0
fs dws.
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Let ξt be nondecreasing in t and Eξτ <∞ for every τ ∈ M. Then

Eητ ≤ Eξτ ∀τ ∈ M.

(ii) Let ηt be a continuous nonnegative Ft-adapted process and Eητ ≤ N
for all τ ∈ M, where N is a constant (independent of τ). Then, for every
ε > 0,

P (sup
t
ηt > ε) ≤ N/ε.

Proof. (i) Denote

τn = inf{t ≥ 0 :
∫ t

0
|fs|2 ds ≥ n}.

Then τn ↑ ∞ as n→ ∞ and Is<τnfs ∈ H. Hence, for every τ ∈ M,

ητ∧τn ≤ ξτ +
∫ τ

0
Is<τnfs dws, Eητ∧τn ≤ Eξτ .

After that, Fatou’s theorem proves (i).
(ii) Define

τ = inf{t ≥ 0 : ηt ≥ ε}.
Then

P (sup
t
ηt > ε) ≤ P (τ <∞) = lim

t→∞P (τ < t)

≤ lim
t→∞

P (ηt∧τ ≥ ε) ≤ lim
t→∞

1
ε
Eηt∧τ ≤ N

ε
.

The lemma is proved.

2. Theorem. Equation (2) has a solution.

Proof. We apply the usual Picard method of successive approximations.
For n ≥ 0 define

ξt(n+ 1) = ξ0 +
∫ t

0
σ(s, ξs(n)) dws +

∫ t

0
b(s, ξs(n)) ds, ξt(0) ≡ ξ0. (3)

Notice that all the processes ξt(n) are continuous and Ft-adapted, and our
definition makes sense for all n ≥ 0. Define

ψt = e−N0t−|ξ0|,
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where the constant N0 ≥ 1 will be specified later. We want to show by
induction that

sup
τ∈M

E
(
ψτ |ξτ (n)|2 +

∫ τ

0
ψs|ξτ (n)|2 ds) <∞. (4)

For n = 0 estimate (4) is obvious, since a2e−|a| is a bounded function
and

∫∞
0 e−N0t dt <∞. Next, by Itô’s formula we find that

d(ψt|ξt(n+ 1)|2) = |ξt(n + 1)|2dψt + ψtd|ξt(n+ 1)|2

= ψt[−N0|ξt(n+ 1)|2 + 2ξt(n+ 1) · b(t, ξt(n)) + ||σ(t, ξt(n))||2] dt
+2ψtσ

∗(t, ξt(n))ξt(n+ 1) dwt.

Here to estimate the expression in the brackets we use 2ab ≤ a2 + b2 and (1)
to find that

2ξt(n+ 1) · b(t, ξt(n)) + ||σ(t, ξt(n))||2

≤ |ξt(n+ 1)|2 + |b(t, ξt(n))|2 + ||σ(t, ξt(n))||2

≤ |ξt(n+ 1)|2 + 2K2(1 + |ξt(n)|)2 ≤ |ξt(n+ 1)|2 + 4K2(1 + |ξt(n)|2).
Hence, for N0 ≥ 2

ψt|ξt(n+ 1)|2 +
∫ t

0
ψs|ξs(n+ 1)|2 ds ≤ ψ0|ξ0|2 + 4K2

∫ t

0
(1 + |ξs(n)|2)ψs ds

+2
∫ t

0
ψsσ

∗(s, ξs(n))ξs(n+ 1) dws

Applying Lemma 1 leads to (4).
Further,

d(ψt|ξt(n+ 1) − ξt(n)|2) = ψt[−N0|ξt(n+ 1) − ξt(n)|2

+2(ξt(n+ 1) − ξt(n)) · (b(t, ξt(n)) − b(t, ξt(n− 1)))

+||σ(t, ξt(n)) − σ(t, ξt(n− 1))||2] dt
+2ψt[σ(t, ξt(n)) − σ(t, ξt(n− 1))]∗(ξt(n+ 1) − ξt(n)) dwt.

Due to (1) the expression in the brackets is less than

−(N0 − 1)|ξt(n + 1) − ξt(n)|2 + 2K2|ξt(n) − ξt(n− 1)|2.
Now we make the final choice of N0 and take it equal to 4K2 + 2, so that
N0 ≥ 2 as we needed above and c := N0 − 1 ≥ c/2 ≥ 2K2. Then we get
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d(ψt|ξt(n + 1) − ξt(n)|2) + cψt|ξt(n+ 1) − ξt(n)|2 dt
≤ (c/2)ψt|ξt(n) − ξt(n− 1)|2 dt

+2ψt[σ(t, ξt(n)) − σ(t, ξt(n− 1))]∗(ξt(n+ 1) − ξt(n)) dwt.

It follows by Lemma 1 that for any τ ∈ M

Eψτ |ξτ (n + 1) − ξτ (n)|2 + cE

∫ τ

0
ψt|ξt(n+ 1) − ξt(n)|2 dt

≤ (c/2)E
∫ τ

0
ψt|ξt(n) − ξt(n− 1)|2 dt. (5)

By iterating (5) we get

E

∫ τ

0
ψt|ξt(n+ 1) − ξt(n)|2 dt ≤ 2−nE

∫ ∞

0
ψt|ξt(1) − ξt(0)|2 dt =: N2−n.

Coming back to (5), we now see that

Eψτ |ξτ (n + 1) − ξτ (n)|2 ≤ cN2−n,

which by Lemma 1 yields

P
{

sup
t≥0

(ψt|ξt(n+ 1) − ξt(n)|2) ≥ n−4
} ≤ n4cN2−n.

By the Borel-Cantelli lemma we conclude that the series

∞∑
n=1

ψ
1/2
t |ξt(n+ 1) − ξt(n)|

converges uniformly on [0,∞) with probability one. Obviously this implies
that ξt(n) converges uniformly on each finite time interval with probability
one. Let ξt denote the limit. Then, by the dominated convergence theorem
(or just because of the uniform convergence to zero of the integrands),∫ t

0
||σ(s, ξs(n)) − σ(s, ξs)||2 ds+

∫ t

0
|b(s, ξs(n)) − b(s, ξs)| ds → 0

(a.s.). Furthermore, ξt is continuous in t and Ft-adapted. Therefore, by
letting n→ ∞ in (3) we obtain (a.s.)

ξt = ξ0 +
∫ t

0
σ(s, ξs) dws +

∫ t

0
b(s, ξs) ds.
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The theorem is proved.
It is convenient to deduce the uniqueness of solutions to (2) from the

following theorem on continuous dependence of solutions on initial data.

3. Theorem. Let F0-measurable d-vector valued random variables ξn
0 sat-

isfy ξn
0 → ξ0 (a.s.) as n→ ∞. Let (a.s.) for t ≥ 0

ξt = ξ0 +
∫ t

0
σ(s, ξs) dws +

∫ t

0
b(s, ξs) ds,

ξn
t = ξn

0 +
∫ t

0
σ(s, ξn

s ) dws +
∫ t

0
b(s, ξn

s ) ds.

Then

P
{

sup
t≤T

|ξn
t − ξt| ≥ ε

}→ 0

as n→ ∞ for any ε > 0 and T ∈ [0,∞).

Proof. Take N0 from the previous proof and denote

ψt = exp(−N0t− sup
n

|ξn
0 |).

Notice that |ξ0| ≤ supn |ξn
0 | (a.s.). Also the last sup is finite, and hence

ψt > 0 (a.s.). By Itô’s formula

d(ψt|ξt − ξn
t |2) = ψt[−N0|ξt − ξn

t |2 + 2(ξt − ξn
t ) · (b(t, ξt) − b(t, ξn

t ))

+||σ(t, ξt) − σ(t, ξn
t )||2] dt + 2[σ(t, ξt) − σ(t, ξn

t )]∗(ξt − ξn
t ) dwt.

By following the proof of Theorem 2 we see that the expression in brackets
is nonpositive. Hence for any τ ∈ M

Eψτ |ξτ − ξn
τ |2 ≤ Eψ0|ξ0 − ξn

0 |2.
Here the random variables ψ0|ξ0 − ξn

0 |2 are bounded by a constant indepen-
dent of n and tend to zero (a.s.). By the dominated convergence theorem
and Lemma 1,

P
{

sup
t≥0

ψt|ξt − ξn
t |2 > ε

} ≤ 1
ε
Eψ0|ξ0 − ξn

0 |2 → 0.

Consequently, supt≥0 ψt|ξt − ξn
t |2 converges to zero in probability and, since

sup
t≤T

|ξt − ξn
t |2 ≤ ψ−1

T sup
t≥0

ψt|ξt − ξn
t |2,



216 Chapter 6. Itô Stochastic Integral, Sec 9

the random variables supt≤T |ξt−ξn
t |2 converge to zero in probability as well.

The theorem is proved.

4. Corollary (uniqueness). If ξt and ηt are two solutions of (2), then

P (sup
t≥0

|ξt − ηt| > 0) = 0.

The following corollary states the so-called Feller property of solutions
of (2).

5. Corollary. For x ∈ R
d, let ξt(x) be a solution of equation (2) with

ξ0 ≡ x. Then, for every bounded continuous function f and t ≥ 0, the
function Ef(ξt(x)) is a continuous function of x.

6. Corollary. In notation from the proof of Theorem 3,

P
{
ψT sup

t≤T
|ξt − ξn

t |2 > ε
} ≤ 1

ε
Eψ0|ξ0 − ξn

0 |2.

10. An example of a stochastic equation

In one-dimensional space we consider the following equation:

ξt =
∫ t

0
σ(ξs) dws +

∫ t

0
b(ξs) ds (1)

with a one-dimensional Wiener process wt which is Wiener relative to a
filtration of complete σ-fields Ft. We assume that σ and b are bounded
functions satisfying a Lipschitz condition, so that there exists a unique so-
lution of (1).

Fix r ≤ 0 and let

τ(r) = inf{t ≥ 0 : ξt �∈ (r, 1)}.
By Exercise 2.4 we have that τ(r) is a stopping time relative to Ft. We
want to find Eτ(r). By Itô’s formula, for twice continuously differentiable
functions u we have

u(ξt) = u(0) +
∫ t

0
Lu(ξs) ds+

∫ t

0
σ(ξs)u′(ξs) dws, (2)

where the operator L, called the generator of the process ξt, is given by

Lu(x) = a(x)u′′(x) + b(x)u′(x), a = (1/2)σ2.
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If we can substitute τ(r) in place of t in (2) and take the expectation
of both sides and be sure that the expectation of the stochastic integral
vanishes, then we find that

u(0) = Eu(ξτ(r)) − E

∫ τ(r)

0
Lu(ξs) ds. (3)

Upon noticing after this that

Eτ(r) = E

∫ τ(r)

0
dt,

we arrive at the following way to find Eτ(r): Solve the equation Lu = −1 on
(a, 1) with boundary conditions u(r) = u(1) = 0 (in order to have u(ξτ(r)) =
0); then Eτ(r) should be equal to u(0).

1. Lemma. Let a(x) ≥ δ, where δ is a constant, δ > 0. For x, y ∈ [r, 1]
define

φ(x) = exp
(− ∫ x

0
b(s)/a(s) ds

)
, ψ =

∫ 1

r
φ(x) dx,

g(x, y) =
1

ψa(y)φ(y)

∫ 1

x∨y
φ(s) ds

∫ x∧y

r
φ(s) ds.

Then, for any continuous function f(x) given on [r, 1], the function

u(x) :=
∫ 1

r
g(x, y)f(y) dy (4)

is twice continuously differentiable on [r, 1], vanishes at the end points of
this interval, and satisfies Lu = −f on [r, 1].

The proof of this lemma is suggested as an exercise, which the reader
is supposed to do by solving the equation au′′ + bu′ = −f on [r, 1] with
boundary condition u(r) = u(1) = 0 and then transforming the result to the
right-hand side of (4).

2. Theorem. Under the assumptions of Lemma 1, for any Borel nonneg-
ative function f we have

E

∫ τ(r)

0
f(ξt) dt =

∫ 1

r
g(0, y)f(y) dy. (5)
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In particular,

Eτ(r) =
∫ 1

r
g(0, y) dy.

Proof. A standard measure-theoretic argument shows that it suffices
to prove the theorem for nonnegative bounded continuous f . For such a
function, define u(x) in [r, 1] as a solution to the equation au′′ + bu′ = −f
on [r, 1] with boundary condition u(r) = u(1) = 0. Then continue u outside
[r, 1] to get a twice continuously differentiable function on R, and keeping the
same notation for the continuation use (2) with t∧ τ(r) in place of t. After
that take expectations, and notice that the expectation of the stochastic
integral vanishes since u′(ξs) is bounded on [0, τ(r)]. Then we get

Eu(ξt∧τ(r)) = u(0) − E

∫ t∧τ(r)

0
f(ξs) ds. (6)

If we take f ≡ 1 here, then we see that E(t ∧ τ(r)) is bounded by a
constant independent of t. It follows by the monotone convergence theorem
that Eτ(r) < ∞ and τ(r) < ∞ (a.s.). Hence by letting t → ∞ in (6) and
noticing that u(ξt∧τ(r)) → u(ξτ(r)) = 0 (a.s.) due to the boundary condi-
tions, by the dominated convergence theorem and the monotone convergence
theorem (f ≥ 0) we get

u(0) = E

∫ τ(r)

0
f(ξs) ds,

which is (5) owing to Lemma 1. The theorem is proved.
As a consequence of (5), as in Exercise 2.6.6, one finds that the average

time the process ξt spends in an interval [c, d] ⊂ (r, 1) before exiting from
(r, 1) is given by ∫ d

c
g(0, y) dy.

The remaining part of this section is aimed at exhibiting a rather unex-
pected effect which happens when b ≡ 1 and a is very close to zero for x < 0
and very large for x > 0. It turns out that in this situation Eτ(r) is close to
1, and the average time spent by the process in a very small neighborhood
of zero before exiting from (r, 1) is also close to 1. Hence the process spends
almost all time near the origin and then immediately “jumps” out of (r, 1).
The unexpected here is that there is the unit drift pushing the particle to
the right, and the diffusion is usually expected to get the particle around
this deterministic motion but not to practically stop it. Furthermore, it
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turns out that the process spends almost all time in a small region where
the diffusion is small and, remember, b ≡ 1.

The following exercise makes it natural that if the diffusion on (−∞, 0) is
slow then Eτ(r) is close to 1. Assertion (i) in Exercise 3 looks quite natural
because neither diffusion vanishing for x ≤ c nor positive drift can bring our
moving particle ξt starting at zero below c ≤ 0.

3. Exercise. Assume that σ(x) = 0 for x ≤ c, where c is a constant, c ≤ 0
and b(x) ≥ 0 for all x.

(i) Prove that ξt ≥ c for all t ≥ 0 (a.s.).
(ii) Prove that, if c > r and b ≥ δ, where δ is a constant and δ > 0, then

E

∫ τ(r)

0
b(ξt) dt = 1

and, in particular, if b ≡ 1, then Eτ(r) = 1.

4. Exercise*. Let b ≡ 1. Prove that Eτ(r) ≤ 1.

We will be dealing with σ depending on r ∈ (−1, 0), which will be sent
to zero. Let

b ≡ 1, a(x) = r4 if x < 0, a(x) = |r|−1 if x > |r|,
and let a be linear on [0, |r|] with a(0) = r4 and a(|r|) = |r|−1, so that a is a
Lipschitz continuous function. Naturally, we take σ =

√
2a. Then σ is also

Lipschitz continuous, and the corresponding process ξt is well defined. Now
we can make precise what is stated before Exercise 3.

5. Theorem. As r ↑ 0 we have

Eτ(r) → 1, E

∫ τ(r)

0
I[r,0](ξt) dt → 1.

Proof. Due to Exercise 4 the first relation follows from the second one,
which in turn by virtue of Theorem 2 can be rewritten as

∫ 0

r
g(0, y) dy → 1. (7)

Next, in the notation from Lemma 1 the integral in (7) equals

ψ−1

∫ 1

0
φ(s) ds

∫ 0

r

1
a(y)φ(y)

( ∫ y

r
φ(s) ds

)
dy
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= ψ−1

∫ 1

0
φ(s) ds

∫ 0

r

( ∫ y

r
φ(s) ds

)
dφ−1(y)

= ψ−1

∫ 1

0
φ(s) ds

[ ∫ 0

r
φ(s) ds − |r|]. (8)

Furthermore, φ(s) = e|s|/r4
if s ≤ 0, whence

∫ 0

r
φ(s) ds =

∫ 0

r
e|s|/r4

ds→ ∞

as r ↑ 0. To investigate other terms in (8), observe that, for s ∈ [0, |r|],
∫ s

0
a−1(t) dt =

∫ s

0

r2

r6 + (1 − |r|5)t dt =
r2

1 − |r|5 ln(1 + (r−6 − |r|−1)s)

≤ r2

1 − |r|5 ln(1 + (|r|−5 − 1)) =
−5r2

1 − |r|5 ln |r| → 0.

For s ≥ |r|
∫ s

0
a−1(t) dt ≤ −5r2

1 − |r|5 ln |r|+
∫ s

|r|
a−1(t) dt =

−5r2

1 − |r|5 ln |r|+(s−|r|)|r| → 0.

It follows that∫ 1

0
φ(s) ds → 1, ψ =

∫ 0

r
φ(s) ds +

∫ 1

0
φ(s) ds ∼

∫ 0

r
φ(s) ds → ∞,

so that indeed the last expression in (8) tends to 1 as r ↑ 0. The theorem is
proved.

11. The Markov property of solutions of
stochastic equations

1. Definition. A vector-valued random process ξt given for t ≥ 0 is called
Markov if for every Borel bounded function f(x), n = 1, 2, ..., and t, t1, ..., tn
such that 0 ≤ t1 ≤ ... ≤ tn ≤ t we have (a.s.)

E(f(ξt)|ξt1 , ..., ξtn ) = E(f(ξt)|ξtn).
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Remember that E(f(ξt)|ξt1 , ..., ξtn ) was defined as the conditional expec-
tation of f(ξt) given the σ-field σ(ξt1 , ..., ξtn) generated by ξt1 , ..., ξtn . We
know that E(f(ξt)|ξt1 , ..., ξtn ) is the best (in the mean square sense) estimate
of f(ξt) which can be constructed on the basis of ξt1 , ..., ξtn . If we treat this
estimate as the prediction of f(ξt) on the basis of ξt1 , ..., ξtn , then we see
that for Markov processes there is no need to remember the past to predict
the future: remembering the past does not affect our best prediction.

In this section we make the same assumptions as in Sec. 9, and first we
try to explain why the solution of equation (9.2) should possess the Markov
property.

Let 0 ≤ t1 ≤ ... ≤ tn. Obviously, for t ≥ tn the process ξt satisfies

ξt = ξtn +
∫ t

tn

σ(s, ξs) dws +
∫ t

tn

b(s, ξs) ds.

This makes it more or less clear that ξt is completely defined by ξtn and the
increments of w· after time t. For t fixed one may write this fact as

ξt = g(ξtn , wu − wv, u ≥ v ≥ tn), f(ξt) = h(ξtn , wu − wv, u ≥ v ≥ tn).

Next, observe that ξt is Ft-measurable and wu −wv is independent of Ft

by definition. Then we see that wu − wv is independent of ξt if u ≥ v ≥ t,
and Theorem 3.1.13 seems to imply that

E(f(ξt)|ξt1 , ..., ξtn ) = E(h(ξtn , wu −wv, u ≥ v ≥ tn)|ξt1 , ..., ξtn )

= Eh(x,wu −wv, u ≥ v ≥ tn)|x=ξtn
(1)

(a.s.). Since one gets the same result for E(f(ξt)|ξtn), we see that ξt is
a Markov process. Unfortunately this very convincing explanation cannot
count as a proof, since to apply Theorem 3.1.13 in (1) we have to know that
h(x,wu − wv, u ≥ v ≥ tn) is measurable with respect to (x, ω). Actually,
on the basis of Kolmogorov’s theorem for random fields one can prove that
g(x,wu − wv, u ≥ v ≥ tn) has a modification which is continuous in x, so
that h(x,wu − wv, u ≥ v ≥ tn) has a modification measurable with respect
to (x, ω). However we prefer a different way of proving the Markov property,
because it is shorter and applicable in many other situations.

Let us fix x and consider the equation

ξt = x+
∫ t

tn

σ(s, ξs) dws +
∫ t

tn

b(s, ξs) ds, t ≥ tn. (2)
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Above we have investigated such equations only with tn = 0. The case
tn ≥ 0 is not any different. Therefore, for t ≥ tn equation (2) has a continu-
ous Ft-adapted solution. We denote this solution by ξt(x). As in Theorem
9.3, one proves that ξt(xn) P→ ξt(x) if xn → x. Among other things, this
implies the uniqueness of solutions to (2).

2. Lemma. For any t ≥ tn and x ∈ R
d1 the random variable ξt(x) is

measurable with respect to the completion of the σ-field Gt generated by ws−
wtn , s ∈ [t, tn].

Proof. It is easy to understand that the process w̄t := wt+tn − wtn is
a Wiener process and, by definition, Gt = F w̄

t−tn . Let S̄ be the set S con-
structed from F̄ w̄

t := (F w̄
t )P . It turns out that, for any R

d1-valued process
ζ ∈ S̄, we have It≥tnζt−tn ∈ S and (a.s.)

∫ t

0
ζs dw̄s =

∫ tn+t

tn

ζs−tn dws ∀t ≥ 0. (3)

Here the first statement is obvious since F̄ w̄
t ⊂ Ft+tn and an F̄ w̄

t -measurable
variable ζt is also Ft+tn -measurable. In (3) both sides are continuous in t.
Therefore, it suffices to prove (3) for each particular t. Since the equality
is obvious for step functions, a standard argument applied already at least
twice in previous sections proves (3) in the general case.

Next, by Theorem 9.2 there is an F̄ w̄
t -adapted solution to

ξ̄t = x+
∫ t

0
σ(s+ tn, ξ̄s) dw̄s +

∫ t

0
b(s+ tn, ξ̄s) ds.

By virtue of (3) the process ξ̄t−tn satisfies (2) for t ≥ tn and is Ft-adapted.
It follows from uniqueness that ξt(x) = ξ̄t−tn (a.s.), and since ξ̄t−tn is F̄ w̄

t−tn -
measurable (that is, Ḡt-adapted) the lemma is proved.

3. Lemma. The σ-fields Gt and Ftn are independent. That is, P (AB) =
P (A)P (B) for each A ∈ Gt and B ∈ Ftn .

Proof. Let B ∈ Ftn , Borel Γ1, ...,Γm ⊂ R
d1 , and 0 ≤ s1 ≤ ... ≤ sm. By

using properties of conditional expectations we find that

P{B, (w̄s1 , w̄s2 − w̄s1, ..., w̄sm − w̄sm−1) ∈ Γ1 × ...× Γm}
= EIBIΓ1(wtn+s1 − wtn) · ... · IΓm−1(wtn+sm−1 − wtn+sm−2)

×E{IΓm(wtn+sm − wtn+sm−1)|Ftn+sm−1}
= P{B, (w̄s1 , w̄s2 − w̄s1 , ..., w̄sm−1 − w̄sm−2) ∈ Γ1 × ...× Γm−1}
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×P (w̄sm − w̄sm−1 ∈ Γm)

= P (B)P{(w̄s1 , w̄s2 − w̄s1, ..., w̄sm − w̄sm−1) ∈ Γ1 × ...× Γm}.
Therefore, P (AB) = P (A)P (B) for A from a π-system generating

σ(w̄s1 , w̄s2 − w̄s1, ..., w̄sm − w̄sm−1) = σ(w̄s1 , w̄s2 , ..., w̄sm).

Since both sides of P (AB) = P (A)P (B) are measures in A, they coincide
on this σ-field. Now P (AB) = P (A)P (B) for any A of type

{ω : (w̄s1 , w̄s2 , ..., w̄sm) ∈ Γ1 × ...× Γm}.

The collection of those sets is again a π-system, this time generating Gt.
Since both sides of P (AB) = P (A)P (B) are measures, they coincide for all
A ∈ Gt. The lemma is proved.

Lemmas 2 and 3 imply the following.

4. Corollary. For t ≥ tn and x ∈ R
d1 the random vector ξt(x) and σ-field

Ftn are independent.

In the following lemma we use the notation [x] = ([x1], ..., [xd1 ]) for
x = (x1, ..., xd1).

5. Lemma. Let ξm = 2−m[2mξtn ], where ξt is the solution of (2). Then
ξt(ξm) P→ ξt as m→ ∞ for each t ≥ tn.

Proof. On the set {ω : ξm = x} (a.s.) for t ≥ tn the process ξt(ξm)
satisfies equation (2) with x replaced by ξm. Since the union of such sets
is Ω, the process ξt(ξm) satisfies equation (2) (a.s.) with x replaced by ξm.
We have already noticed above that ξt for t ≥ tn satisfies (2) with ξtn in
place of x. By noticing that ξm → ξtn (uniformly in ω) we get the result as
in Theorem 9.3. The lemma is proved.

6. Theorem. The solution of equation (9.2) is a Markov process.

Proof. Take t ≥ tn and a bounded continuous function f(x) ≥ 0. Define

Φ(x) = Ef(ξt(x))

and let Γm be the countable set of all values of 2−m[2mx], x ∈ R
d1 . Since

ξt(x) is continuous in probability, the function Φ is continuous. Therefore,
for B ∈ Ftn by Corollary 4 and Lemma 5 we obtain

EIBf(ξt) = lim
m→∞EIBf(ξt(ξm)) = lim

m→∞
∑

r∈Γm

EIBf(ξt(r))Iξm=r
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= lim
m→∞

∑
r∈Γm

EIB,ξm=rΦ(r) = lim
m→∞EIBΦ(ξm) = EIBΦ(ξtn).

By definition and properties of conditional expectations this yields (a.s.)

E(f(ξt)|Ftn) = Φ(ξtn),

E(f(ξt)|ξtn) = E{E(f(ξt)|Ftn)|ξtn} = E(Φ(ξtn)|ξtn) = Φ(ξtn),

E(f(ξt)|ξt1 , ..., ξtn ) = E(f(ξt)|ξtn).

It remains to extend the last equality to all Borel bounded f . Again fix
a B ∈ Ftn and consider two measures

µ(Γ) = P (B, ξt ∈ Γ), ν(Γ) = EIΓ(ξt)P (B|ξtn).

If f is a step function, one easily checks that

∫
f(x)µ(dx) = EIBf(ξt),

∫
f(x) ν(dx) = Ef(ξt)E(IB |ξtn) = EIBE(f(ξt)|ξtn).

These equalities actually hold for all Borel bounded functions, as one can
see upon remembering that such functions are approximated uniformly by
step functions. Hence, what we have proved above means that

∫
f µ(dx) =

∫
f ν(dx)

for all bounded continuous f ≥ 0. We know that in this case the measures
µ and ν coincide. Then the integrals against them also coincide, so that for
any Borel bounded f and B ∈ Ftn we have

EIBf(ξt) = EIBE(f(ξt)|ξtn).

This yields E(f(ξt)|Ftn ) = E(f(ξt)|ξtn). The theorem is proved.
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12. Hints to exercises

2.2 If ξt is right continuous, then ξt = lim ξκn(t), where κn(t) = 2−n[2nt] +
2−n.
2.4 If a = −1 and b = 1, then for every t ≥ 0

{ω : τ > t} = {ω : sup
r∈ρ∪{t}

ξ2r < 1},

where ρ is the set of all rational numbers on [0,∞).
2.9 Define τ = inf{t ≥ 0 : |ξt| ≥ c} and use Chebyshev’s inequality.
2.10 In Theorem 2.8 and Exercise 2.9 put N = c2 and integrate with respect
to c over (0,∞).
3.6 Use Exercise 2.9.
3.11 Use Davis’s inequality.
3.12 See the proof of Theorem 2.4.1 in order to get that τ < 1 and
(1 − s)−1Is<τ ∈ S. Then prove that, for each t ≥ 0, on the set {t ≥ τ}
we have (a.s.) ∫ t

0

1
1 − s

Is<τ dws =
∫ τ

0

1
1 − s

dws.

3.13 Use Davis’s inequality.
4.3 Use Exercise 3.2.5 and Fatou’s theorem for conditional expectations.
6.2 In (i) consider {τ ≤ t}.
6.5 Approximate stopping times with simple ones and use Bachelier’s the-
orem.
7.4 In (iii) use the fact that∫ n

0
s−1e−|x|2/(2s) ds−

∫ n

0
s−1e−1/(2s) ds =

∫ n|x|−2

n
s−1e−1/(2s) ds → −2 ln |x|

as n→ ∞.
8.4 For appropriate stopping times τn → ∞, the processes ρt∧τn are mar-
tingales on [0, T ] and the processes ρp

t∧τn
are submartingales. By Doob’s

inequality conclude that E supt≤T ρ
p
t∧τn

≤ N .

8.10 Observe that for µ = λτ1/2 and r = wττ
−1/2 we have

exp(λwτ − λ2τ/2) = exp(µr − µ2/2) =: f(r, µ).

Furthermore, Leibniz’s rule shows that f (2k)
µ (r, 0) is a polynomial (called a

Hermite polynomial) in r of degree 2k with nonzero free coefficient.
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10.3 In (i) take any smooth decreasing function u(x) such that u(x) > 0 for
x < c and u(x) = 0 for x ≥ c, and prove that u(ξt) =

∫ t
0 u

′(ξs)b(ξs) ds. By
comparing the signs of the sides of this formula, conclude that u(ξt) = 0.
10.4 Observe that Eξt∧τ(r) = E(t ∧ τ(r)).
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