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15. Theorem (Doob’s inequality). If (ξn,Fn), n = 0, 1, ..., is a nonnega-
tive submartingale and p > 1, then

E
[
sup

n
ξn

]p ≤ qp sup
n

Eξp
n, (3)

where q = p/(p − 1). In particular,

E
[
sup

n
ξn

]2 ≤ 4 sup
n

Eξ2
n.

Proof. Without losing generality we assume that the right-hand side of
(3) is finite. Then for any integer N

[
sup
n≤N

ξn

]p ≤ [ ∑
n≤N

ξn

]p ≤ Np
∑
n≤N

ξp
n, E

[
sup
n≤N

ξn

]p
< ∞.

Next, by the Doob-Kolmogorov inequality, for c > 0,

P{ sup
n≤N

ξn ≥ c} ≤ 1
c

EξNIsupn≤N ξn≥c.

We multiply both sides by pcp−1, integrate with respect to c ∈ (0,∞), and
use

P (η ≥ c) = EIη≥c, ηp = p

∫ ∞

0
cp−1Iη≥c dc,

where η is any nonnegative random variable. We also use Hölder’s inequality.
Then we find that

E
[

sup
n≤N

ξn

]p ≤ qEξN

[
sup
n≤N

ξn

]p−1 ≤ q
(
Eξp

N

)1/p(
E

[
sup
n≤N

ξn

]p)1−1/p
.

Upon dividing through by the last factor (which is finite by the above) we
conclude that

E
[

sup
n≤N

ξn

]p ≤ qp sup
n

Eξp
n.

It only remains to use Fatou’s theorem and let N → ∞. The theorem is
proved.
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4. Limit theorems for martingales

Let (ξn,Fn), n = 0, 1, ..., N , be a submartingale, and let a and b be fixed
numbers such that a < b. Define consecutively the following:

τ1 = inf(n ≥ 0 : ξn ≤ a) ∧ N, σ1 = inf(n ≥ τ1 : ξn ≥ b) ∧ N,

τn = inf(n ≥ σn−1 : ξn ≤ a) ∧ N, σn = inf(n ≥ τn : ξn ≥ b) ∧ N.

Clearly 0 ≤ τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ ... and τN+i = σN+i = N for all i ≥ 0. We
have seen before that τ1 is a stopping time.

1. Exercise*. Prove that all τn and σn are stopping times.

The points (n, ξn) belong to R
2. We join the points (n, ξn) and (n +

1, ξn+1) for n = 0, ..., N − 1 by straight segments. Then we obtain a piece-
wise linear function, say l. Let us say that if ξτm ≤ a and ξσm ≥ b, then
on [τm, σm] the function l upcrosses (a, b). Denote β(a, b) the number of
upcrossings of the interval (a, b) by l. It is seen that β(a, b) = m if and only
if ξτm ≤ a, ξσm ≥ b and either ξτm+1 > a or ξσm+1 < b.

The following theorem is the basis for obtaining limit theorems for mar-
tingales.

2. Theorem (Doob’s upcrossing inequality). If (ξn,Fn), n = 0, 1, ..., N , is
a submartingale and a < b, then

Eβ(a, b) ≤ 1
b − a

E(ξN − a)+.

Proof. Notice that β(a, b) is also the number of upcrossing of (0, b − a)
by the piecewise linear function constructed from (ξn − a)+. Furthermore,
ξn−a and (ξn−a)+ are submartingales along with ξn. It follows that without
loss of generality we may assume that ξn ≥ 0 and a = 0. In that case notice
that any upcrossing of (0, b) can only occur on an interval of type [τi, σi]
with ξσi − ξτi ≥ b. Also in any case, ξσn − ξτn ≥ 0. Hence,

bβ(a, b) ≤ (ξσ1 − ξτ1) + (ξσ2 − ξτ2) + ... + (ξσN
− ξτN

).

Furthermore, τn+1 ≥ σn and Eξτn+1 ≥ Eξσn . It follows that

bEβ(a, b)

≤ −Eξτ1 + (Eξσ1 −Eξτ2) + (Eξσ2 −Eξτ3) + ... + (EξσN−1
− EξτN

) + EξσN

≤ EξσN
− Eξτ1 ≤ EξσN

= EξN ,

thus proving the theorem.
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3. Exercise. For ξn ≥ 0 and a = 0 it seems that typically ξσn ≥ b and
ξτn+1 = 0. Then why do we have Eξτn+1 ≥ Eξσn ?

If we have a submartingale (ξn,Fn) defined for all n = 0, 1, 2, ..., then
we can construct our piecewise linear function on (0,∞) and define β∞(a, b)
as the number of upcrossing of (a, b) on [0,∞) by this function. Obviously
β∞(a, b) is the monotone limit of upcrossing numbers on [0, N ]. By Fatou’s
theorem we obtain the following.

4. Corollary. If (ξn,Fn), n = 0, 1, 2, ..., is a submartingale, then

Eβ∞(a, b) ≤ 1
b − a

sup
n

E(ξn − a)+ ≤ 1
b − a

(sup
n

E(ξn)+ + |a|).

5. Theorem. Let one of the following conditions hold:
(i) (ξn,Fn), n = 0, 1, 2, ..., is a submartingale and supn E(ξn)+ < ∞;

(ii) (ξn,Fn), n = 0, 1, 2, ..., is a supermartingale and supn E(ξn)− < ∞;

(iii) (ξn,Fn), n = 0, 1, 2, ..., is a martingale and supn E|ξn| < ∞.

Then the limit lim
n→∞ ξn exists with probability one.

Proof. Obviously we only need prove the assertion under condition (i).
Define ρ as the set of all rational numbers on R, and notice that almost
obviously

{ω : lim
n→∞ ξn(ω) > lim

n→∞
ξn(ω)} =

⋃
a,b∈ρ,a<b

{ω : β∞(a, b) = ∞}.

Then it only remains to notice that the events on the right have probability
zero since

Eβ∞(a, b) ≤ 1
b − a

(sup
n

E(ξn)+ + |a|) < ∞,

so that β∞(a, b) < ∞ (a.s.). The theorem is proved.

6. Corollary. Any nonnegative supermartingale converges at infinity with
probability one.

7. Corollary (cf. Exercise 2.2). If (ξn,Fn), n = 0, 1, 2, ..., is a martingale
and ξ is a random variable such that |ξn| ≤ ξ for all n and Eξ < ∞, then
ξn = E(ξ∞|Fn) (a.s.), where ξ∞ = lim

n→∞ ξn.
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Indeed, by the dominated convergence theorem for martingales

ξn = E(ξn+m|Fn) = lim
m→∞E(ξn+m|Fn) = E(ξ∞|Fn).

Corollary 7 describes all bounded martingales. The situation with un-
bounded, even nonnegative, martingales is much more subtle.

8. Exercise. Let ξn = exp(wn − n/2), where wt is a Wiener process. By
using Corollary 2.4.3, show that ξ∞ = 0, so that ξn > E(ξ∞|Fn). Conclude
that E supn ξn = ∞ and, moreover, that for every nonrandom sequence
n(k) → ∞, no matter how sparse it is, E supk ξn(k) = ∞.

In the case of reverse martingales one does not need any additional
conditions for its limit to exist.

9. Theorem. Let (ξn,Fn), n = 0, 1, 2, ..., be a reverse martingale. Then
lim

n→∞ ξn exists with probability one.

Proof. By definition (ξ−n,F−n), n = ...,−2,−1, 0, is a martingale. De-
note by βN (a, b) the number of upcrossing of (a, b) by the piecewise linear
function constructed from ξ−n restricted to [−N, 0]. By Doob’s theorem,
EβN (a, b) ≤ (E|ξ0| + |a|)/(b − a). Hence E lim

N→∞
βN (a, b) < ∞, and we get

the result as in the proof of Theorem 5.

10. Theorem (Lévy-Doob). Let ξ be a random variable such that E|ξ| <
∞, and let Fn be σ-fields defined for n = 0, 1, 2, ... and satisfying Fn ⊂ F .

(i) Assume Fn ⊂ Fn+1 for each n, and denote by F∞ the smallest σ-field
containing all Fn (F∞ =

∨
n Fn). Then

lim
n→∞E(ξ|Fn) = E(ξ|F∞) (a.s.), (1)

lim
n→∞E|E(ξ|Fn) − E(ξ|F∞)| = 0. (2)

(ii) Assume Fn ⊃ Fn+1 for all n and denote F∞ =
⋂

n Fn. Then (1)
and (2) hold again.

To prove the theorem we need the following remarkable result.

11. Lemma (Scheffé). Let ξ, ξn, n = 1, 2, ..., be nonnegative random vari-
ables such that ξn

P→ ξ and Eξn → Eξ as n → ∞. Then E|ξn − ξ| → 0.


