15. Theorem (Doob's inequality). If (ξ_n, \mathcal{F}_n) , n = 0, 1, ..., is a nonnegative submartingale and <math>p > 1, then

$$E\left[\sup_{n}\xi_{n}\right]^{p} \le q^{p}\sup_{n}E\xi_{n}^{p},\tag{3}$$

where q = p/(p-1). In particular,

$$E\Big[\sup_{n}\xi_{n}\Big]^{2} \leq 4\sup_{n}E\xi_{n}^{2}.$$

Proof. Without losing generality we assume that the right-hand side of (3) is finite. Then for any integer N

$$\left[\sup_{n\leq N}\xi_n\right]^p\leq \left[\sum_{n\leq N}\xi_n\right]^p\leq N^p\sum_{n\leq N}\xi_n^p,\quad E\left[\sup_{n\leq N}\xi_n\right]^p<\infty.$$

Next, by the Doob-Kolmogorov inequality, for c > 0,

$$P\{\sup_{n\leq N}\xi_n\geq c\}\leq \frac{1}{c}E\xi_N I_{\sup_{n\leq N}\xi_n\geq c}.$$

We multiply both sides by pc^{p-1} , integrate with respect to $c \in (0, \infty)$, and use

$$P(\eta \ge c) = EI_{\eta \ge c}, \quad \eta^p = p \int_0^\infty c^{p-1} I_{\eta \ge c} \, dc,$$

where η is any nonnegative random variable. We also use Hölder's inequality. Then we find that

$$E\big[\sup_{n\leq N}\xi_n\big]^p\leq qE\xi_N\big[\sup_{n\leq N}\xi_n\big]^{p-1}\leq q\big(E\xi_N^p\big)^{1/p}\big(E\big[\sup_{n\leq N}\xi_n\big]^p\big)^{1-1/p}.$$

Upon dividing through by the last factor (which is finite by the above) we conclude that

$$E\Big[\sup_{n\leq N}\xi_n\Big]^p\leq q^p\sup_n E\xi_n^p.$$

It only remains to use Fatou's theorem and let $N \to \infty$. The theorem is proved.

4. Limit theorems for martingales

Let (ξ_n, \mathcal{F}_n) , n = 0, 1, ..., N, be a submartingale, and let a and b be fixed numbers such that a < b. Define consecutively the following:

$$\tau_1 = \inf(n \ge 0 : \xi_n \le a) \land N, \quad \sigma_1 = \inf(n \ge \tau_1 : \xi_n \ge b) \land N,$$

$$\tau_n = \inf(n \ge \sigma_{n-1} : \xi_n \le a) \land N, \quad \sigma_n = \inf(n \ge \tau_n : \xi_n \ge b) \land N.$$

Clearly $0 \le \tau_1 \le \sigma_1 \le \tau_2 \le \sigma_2 \le \dots$ and $\tau_{N+i} = \sigma_{N+i} = N$ for all $i \ge 0$. We have seen before that τ_1 is a stopping time.

1. Exercise*. Prove that all τ_n and σ_n are stopping times.

The points (n, ξ_n) belong to \mathbb{R}^2 . We join the points (n, ξ_n) and $(n + 1, \xi_{n+1})$ for n = 0, ..., N - 1 by straight segments. Then we obtain a piecewise linear function, say l. Let us say that if $\xi_{\tau_m} \leq a$ and $\xi_{\sigma_m} \geq b$, then on $[\tau_m, \sigma_m]$ the function l upcrosses (a, b). Denote $\beta(a, b)$ the number of upcrossings of the interval (a, b) by l. It is seen that $\beta(a, b) = m$ if and only if $\xi_{\tau_m} \leq a$, $\xi_{\sigma_m} \geq b$ and either $\xi_{\tau_{m+1}} > a$ or $\xi_{\sigma_{m+1}} < b$.

The following theorem is the basis for obtaining limit theorems for martingales.

2. Theorem (Doob's upcrossing inequality). If (ξ_n, \mathcal{F}_n) , n = 0, 1, ..., N, is a submartingale and a < b, then

$$E\beta(a,b) \le \frac{1}{b-a}E(\xi_N-a)_+.$$

Proof. Notice that $\beta(a, b)$ is also the number of upcrossing of (0, b - a)by the piecewise linear function constructed from $(\xi_n - a)_+$. Furthermore, $\xi_n - a$ and $(\xi_n - a)_+$ are submartingales along with ξ_n . It follows that without loss of generality we may assume that $\xi_n \ge 0$ and a = 0. In that case notice that any upcrossing of (0, b) can only occur on an interval of type $[\tau_i, \sigma_i]$ with $\xi_{\sigma_i} - \xi_{\tau_i} \ge b$. Also in any case, $\xi_{\sigma_n} - \xi_{\tau_n} \ge 0$. Hence,

$$b\beta(a,b) \le (\xi_{\sigma_1} - \xi_{\tau_1}) + (\xi_{\sigma_2} - \xi_{\tau_2}) + \dots + (\xi_{\sigma_N} - \xi_{\tau_N}).$$

Furthermore, $\tau_{n+1} \geq \sigma_n$ and $E\xi_{\tau_{n+1}} \geq E\xi_{\sigma_n}$. It follows that

$$bE\beta(a,b) \le -E\xi_{\tau_1} + (E\xi_{\sigma_1} - E\xi_{\tau_2}) + (E\xi_{\sigma_2} - E\xi_{\tau_3}) + \dots + (E\xi_{\sigma_{N-1}} - E\xi_{\tau_N}) + E\xi_{\sigma_N} \le E\xi_{\sigma_N} - E\xi_{\tau_1} \le E\xi_{\sigma_N} = E\xi_N,$$

thus proving the theorem.

3. Exercise. For $\xi_n \ge 0$ and a = 0 it seems that typically $\xi_{\sigma_n} \ge b$ and $\xi_{\tau_{n+1}} = 0$. Then why do we have $E\xi_{\tau_{n+1}} \ge E\xi_{\sigma_n}$?

If we have a submartingale (ξ_n, \mathcal{F}_n) defined for all n = 0, 1, 2, ..., then we can construct our piecewise linear function on $(0, \infty)$ and define $\beta_{\infty}(a, b)$ as the number of upcrossing of (a, b) on $[0, \infty)$ by this function. Obviously $\beta_{\infty}(a, b)$ is the monotone limit of upcrossing numbers on [0, N]. By Fatou's theorem we obtain the following.

4. Corollary. If (ξ_n, \mathcal{F}_n) , n = 0, 1, 2, ..., is a submartingale, then

$$E\beta_{\infty}(a,b) \le \frac{1}{b-a} \sup_{n} E(\xi_{n}-a)_{+} \le \frac{1}{b-a} (\sup_{n} E(\xi_{n})_{+} + |a|).$$

- 5. Theorem. Let one of the following conditions hold:
 - (i) (ξ_n, \mathcal{F}_n) , n = 0, 1, 2, ..., is a submartingale and $\sup_n E(\xi_n)_+ < \infty$;
 - (ii) (ξ_n, \mathcal{F}_n) , n = 0, 1, 2, ..., is a supermartingale and $\sup_n E(\xi_n) \langle \infty \rangle$;
 - (iii) $(\xi_n, \mathcal{F}_n), n = 0, 1, 2, ..., is a martingale and <math>\sup_n E|\xi_n| < \infty$.

Then the limit $\lim_{n\to\infty} \xi_n$ exists with probability one.

Proof. Obviously we only need prove the assertion under condition (i). Define ρ as the set of all rational numbers on \mathbb{R} , and notice that almost obviously

$$\{\omega: \lim_{n \to \infty} \xi_n(\omega) > \lim_{n \to \infty} \xi_n(\omega)\} = \bigcup_{a, b \in \rho, a < b} \{\omega: \beta_\infty(a, b) = \infty\}.$$

Then it only remains to notice that the events on the right have probability zero since

$$E\beta_{\infty}(a,b) \le \frac{1}{b-a} \left(\sup_{n} E(\xi_{n})_{+} + |a| \right) < \infty,$$

so that $\beta_{\infty}(a,b) < \infty$ (a.s.). The theorem is proved.

6. Corollary. Any nonnegative supermartingale converges at infinity with probability one.

7. Corollary (cf. Exercise 2.2). If (ξ_n, \mathcal{F}_n) , n = 0, 1, 2, ..., is a martingale and ξ is a random variable such that $|\xi_n| \leq \xi$ for all n and $E\xi < \infty$, then $\xi_n = E(\xi_\infty | \mathcal{F}_n)$ (a.s.), where $\xi_\infty = \lim_{n \to \infty} \xi_n$.

Indeed, by the dominated convergence theorem for martingales

$$\xi_n = E(\xi_{n+m}|\mathcal{F}_n) = \lim_{m \to \infty} E(\xi_{n+m}|\mathcal{F}_n) = E(\xi_{\infty}|\mathcal{F}_n).$$

Corollary 7 describes all bounded martingales. The situation with unbounded, even nonnegative, martingales is much more subtle.

8. Exercise. Let $\xi_n = \exp(w_n - n/2)$, where w_t is a Wiener process. By using Corollary 2.4.3, show that $\xi_{\infty} = 0$, so that $\xi_n > E(\xi_{\infty} | \mathcal{F}_n)$. Conclude that $E \sup_n \xi_n = \infty$ and, moreover, that for every nonrandom sequence $n(k) \to \infty$, no matter how sparse it is, $E \sup_k \xi_{n(k)} = \infty$.

In the case of reverse martingales one does not need any additional conditions for its limit to exist.

9. Theorem. Let (ξ_n, \mathcal{F}_n) , n = 0, 1, 2, ..., be a reverse martingale. Then $\lim_{n \to \infty} \xi_n$ exists with probability one.

Proof. By definition $(\xi_{-n}, \mathcal{F}_{-n})$, n = ..., -2, -1, 0, is a martingale. Denote by $\beta_N(a, b)$ the number of upcrossing of (a, b) by the piecewise linear function constructed from ξ_{-n} restricted to [-N, 0]. By Doob's theorem, $E\beta_N(a, b) \leq (E|\xi_0| + |a|)/(b-a)$. Hence $E \lim_{N \to \infty} \beta_N(a, b) < \infty$, and we get the result as in the proof of Theorem 5.

10. Theorem (Lévy-Doob). Let ξ be a random variable such that $E|\xi| < \infty$, and let \mathcal{F}_n be σ -fields defined for n = 0, 1, 2, ... and satisfying $\mathcal{F}_n \subset \mathcal{F}$.

(i) Assume $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each n, and denote by \mathcal{F}_∞ the smallest σ -field containing all \mathcal{F}_n ($\mathcal{F}_\infty = \bigvee_n \mathcal{F}_n$). Then

$$\lim_{n \to \infty} E(\xi | \mathcal{F}_n) = E(\xi | \mathcal{F}_\infty) \quad (a.s.), \tag{1}$$

$$\lim_{n \to \infty} E|E(\xi|\mathcal{F}_n) - E(\xi|\mathcal{F}_\infty)| = 0.$$
(2)

(ii) Assume $\mathcal{F}_n \supset \mathcal{F}_{n+1}$ for all n and denote $\mathcal{F}_{\infty} = \bigcap_n \mathcal{F}_n$. Then (1) and (2) hold again.

To prove the theorem we need the following remarkable result.

11. Lemma (Scheffé). Let $\xi, \xi_n, n = 1, 2, ..., be nonnegative random variables such that <math>\xi_n \xrightarrow{P} \xi$ and $E\xi_n \to E\xi$ as $n \to \infty$. Then $E|\xi_n - \xi| \to 0$.