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15. Theorem (Doob’s inequality). If (&, Fn), n = 0,1,..., is a nonnega-
tive submartingale and p > 1, then

E[sup&,]’ < ¢?sup E€2, (3)

where ¢ = p/(p —1). In particular,

E[supﬁn]2 <d4sup Eﬁz.
n n

Proof. Without losing generality we assume that the right-hand side of
(3) is finite. Then for any integer N

P p P p p
[sggﬁn] S[n%:v&n] <N g;vﬁm E[:gﬁn] < 0.

Next, by the Doob-Kolmogorov inequality, for ¢ > 0,

1
P{sup & > c} < — E{nIsup, _\ tn>e
n<N c -

We multiply both sides by pcP~!, integrate with respect to ¢ € (0, 00), and
use

P(n>c)=FEL>, n'= p/ P s de,
0

where 7 is any nonnegative random variable. We also use Holder’s inequality.
Then we find that

Elom &ol” < aew[sup 60]"" < a(B5) " (BLswp &))"

Upon dividing through by the last factor (which is finite by the above) we
conclude that

E|[ sup £n]p < ¢Psup E€P.
n<N n

It only remains to use Fatou’s theorem and let N — oo. The theorem is
proved.
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4. Limit theorems for martingales

Let (&,,Fn), n = 0,1,...,N, be a submartingale, and let a and b be fixed
numbers such that a < b. Define consecutively the following:

mm=infn>0:§{,<a)AN, o;=inf(n>m:&,>0) AN,

Tn=inf(n > 0,-1:&,<a)AN, o, =inf(n>7,:§,>0b)AN.

Clearly 0 <71 <01 < <09 <..and Tyy; =0ong; = N forall ¢ > 0. We
have seen before that 7 is a stopping time.

1. Exercise*. Prove that all 7, and o, are stopping times.

The points (n,&,) belong to R2. We join the points (n,&,) and (n +
1,&p41) for n = 0,..., N — 1 by straight segments. Then we obtain a piece-
wise linear function, say [. Let us say that if &, < a and &,,, > b, then
on [Ty, 0m] the function | upcrosses (a,b). Denote ((a,b) the number of
upcrossings of the interval (a,b) by I. It is seen that ((a,b) = m if and only
if ¢, <a, &, >bandeither § ., >aoré, , <b.

The following theorem is the basis for obtaining limit theorems for mar-
tingales.

2. Theorem (Doob’s upcrossing inequality). If (§,, Fn), n=0,1,..., N, is
a submartingale and a < b, then

EB(a,b) < = B(éx — a)s.

Proof. Notice that (3(a,b) is also the number of upcrossing of (0,0 — a)
by the piecewise linear function constructed from (&, — a)4+. Furthermore,
&n—aand (&, —a)y are submartingales along with &,. It follows that without
loss of generality we may assume that &, > 0 and a = 0. In that case notice
that any upcrossing of (0,b) can only occur on an interval of type [7;, o}]
with &, — &, > b. Also in any case, &, — &7, > 0. Hence,

bﬂ(a, b) < (501 - §7'1) + (502 - 57'2) +ot (gUN - gTN)'
Furthermore, 7,41 > 0, and E¢,, ., > E¢,, . It follows that
bE(3(a,b)

S _Egﬁ + (E£U1 - EE’TQ) + (Ega'g - Eng) +...+ (EEO'N,1 - EETN) + Ega'N
< EEO’N - EETl < EgGN = EgNa

thus proving the theorem.
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3. Exercise. For &, > 0 and a = 0 it seems that typically &,, > b and
§rnin = 0. Then why do we have F¢,, | > E;, 7

If we have a submartingale (&,,F,) defined for all n = 0,1,2, ..., then
we can construct our piecewise linear function on (0, 00) and define By (a, b)
as the number of upcrossing of (a,b) on [0,00) by this function. Obviously
Boo(a,b) is the monotone limit of upcrossing numbers on [0, N]. By Fatou’s
theorem we obtain the following.

4. Corollary. If (&,,Fn), n=0,1,2,..., is a submartingale, then

1 1
Bfo(a,b) < 7= sup B(é — )+ < —— (sup B(En) s + la]).
5. Theorem. Let one of the following conditions hold:

(1) (§nsFn), n=10,1,2,..., is a submartingale and sup,, E(&,)+ < 0o;
(i) (&nyFn), n=0,1,2,..., is a supermartingale and sup,, E(&,)— < oo;
(i1) (§ny Fn), n=0,1,2,..., is a martingale and sup,, E|¢,| < occ.

Then the limit lim &, exists with probability one.
n—oo

Proof. Obviously we only need prove the assertion under condition (i).
Define p as the set of all rational numbers on R, and notice that almost
obviously

{w: n@oﬁn(w) > lim &, (w)} = U {w : Boo(a,b) = co}.

o0 a,bep,a<b

Then it only remains to notice that the events on the right have probability
Zero since

1

Efsc(a,b) < 7—

(s%p E(&n)+ + la]) < oo,

so that foo(a,b) < 0o (a.s.). The theorem is proved.

6. Corollary. Any nonnegative supermartingale converges at infinity with
probability one.

7. Corollary (cf. Exercise 2.2). If (&,,Fn), n =0,1,2,..., is a martingale
and & is a random wvariable such that |&,| < £ for all n and E{ < oo, then

&n = E(éo)Fn) (a.s.), where {oo = nlin;o &n.
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Indeed, by the dominated convergence theorem for martingales
En = E(&ntm|Fn) = n}gﬂoo E(&ntm|Fn) = E(€so| Fn).-

Corollary 7 describes all bounded martingales. The situation with un-
bounded, even nonnegative, martingales is much more subtle.

8. Exercise. Let &, = exp(w, — n/2), where w; is a Wiener process. By
using Corollary 2.4.3, show that £, = 0, so that &, > E({x|F,). Conclude
that E'sup, & = oo and, moreover, that for every nonrandom sequence
n(k) — oo, no matter how sparse it is, £ supy En(k) = 0.

In the case of reverse martingales one does not need any additional
conditions for its limit to exist.

9. Theorem. Let (&,,Fn), n = 0,1,2,..., be a reverse martingale. Then
nh—{%o &, exists with probability one.

Proof. By definition (¢_,,F_,), n = ...,—2,—1,0, is a martingale. De-
note by Oy (a,b) the number of upcrossing of (a,b) by the piecewise linear
function constructed from ¢_,, restricted to [—N,0]. By Doob’s theorem,
Epn(a,b) < (E|&|+ |a])/(b — a). Hence EJ\}EIlOOBN(a, b) < oo, and we get

the result as in the proof of Theorem 5.

10. Theorem (Lévy-Doob). Let & be a random variable such that E|§| <
oo, and let F,, be o-fields defined for n =0,1,2,... and satisfying F,, C F.

(1) Assume F, C Fpy1 for each n, and denote by Foo the smallest o-field
containing all F, (Feo = \,, Fn). Then

nangoE(é‘fn) = E(é‘foo) (a's')7 (1)
Tim EIB(E[F,) — B(E|F.)] = 2)

(ii) Assume Fp, O Fpq1 for all n and denote Foo = (), Fn. Then (1)
and (2) hold again.

To prove the theorem we need the following remarkable result.

11. Lemma (Scheffé). Let £.&,, n = 1,2, ..., be nonnegative random vari-
ables such that &, £l ¢ and E¢, — E{ asn — oo. Then E|§, —&| — 0.



