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[2] Lecture 1. Fair coin tossing

2 gamers A,B play with a symmetric coin P({0/1}) = 1/2. Each
has a winning pattern (a �nite number of consecutive binary digits)
called A / B. The game stops when one of the patterns shows up.

Questions:

(a) Does the game stops in �nite time?
(b) Let the pattern length (i) |A| = |B|, (ii) |A| < |B|. Who will
win?

(a) P

 . . .︸︷︷︸
k

. . .︸︷︷︸
k

. . . . . .︸︷︷︸
k︸ ︷︷ ︸

n

 = (1− 2−k)n
n→∞−→ 0 k = |A|,

each k-pattern 6= A.
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[3] Lecture 1. Fair coin tossing 2

(b. i) Counterexample. A := 000,B := 100 =⇒ |A| = 3 = |B|.
ξ1, ξ2, . . . , ξn, . . . , ξi ∈ {0, 1}.
Claim. If ξ1 = 1 then B will show up before A: 101100. . . .
Corollary. A wins i� ξ1ξ2ξ3 = 000.
Hence P(A− wins) = 2−3 = 1/8 < 7/8 = P(B−wins).

(b. ii) Counterexample. Let
A = 000,B = 1000 =⇒ |A| = 3 < |B|. To compensate the length
di�erence the winning counts from the beginning of the pattern.

(c) ∃ of the �best� pattern of a given length? Mirror symmetry.
100 ∼ 011 > 000 ∼ 111, 001 ∼ 110, 101 ∼ 010, 100−?− 101
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[4] Lecture 1. Fair coin tossing 3

Table of winning probabilities for the case |A| = |B| = 3
(courtesy of Anna Tutubalina and Martin Gardner):
A/B 000 001 010 011 100 101 110 111
000 − 1/2 2/5 2/5 1/8 5/12 3/10 1/2
001 1/2 − 2/3 2/3 1/4 5/8 1/2 7/10
010 3/5 1/3 − 1/2 1/2 1/2 3/8 7/12
011 3/5 1/3 1/2 − 1/2 1/2 3/4 7/8
100 7/8 3/4 1/2 1/2 − 1/2 1/3 3/5
101 7/12 3/8 1/2 1/2 1/2 − 1/3 3/5
110 7/10 1/2 5/8 1/4 2/3 2/3 − 1/2
111 1/2 3/10 5/12 1/8 2/5 2/5 1/2 −

�Best� patterns for the case of an unfair coin with P(1) = p 6= 1
2?
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[5] Lecture 1. Random variables (r.v.)

r.v. ξ : (Ω,F ,P)→ (X ,B) � a measurable map, ∀x ∈ B.
ξ ∼ η ⇐⇒ P(ξ 6= η) := P({ω ∈ Ω : ξ(ω) 6= η(ω)}) = 0 �
equivalence. Fξ := σ(ξ−1B) � σ-algebra generated by ξ.
M(X ) 3 Φξ(A) := P(ξ ∈ A), A ∈ B � distribution of ξ.
Φξ1,...,ξn(A) := P((ξ1, . . . , ξn) ∈ A), A ∈ Bn � joint distribution.
ξ1, . . . , ξn are independent if Φξ1,...,ξn =

∏
i Φξi .

P(ξ ∈ A, η ∈ B) = P(ξ ∈ A)P(η ∈ B)
If n =∞ independence if ∀k <∞ of them are independent.
σ-algebras Fα ⊆ F are independent if ∀Aα ∈ Fα are independent
for di�erent α.
If (X , ρ) is a metric space, we consider convergences:
• in probability (P) lim

n→∞
ξn = ξ if P(ρ(ξn, ξ) ≥ ε)

n→∞−→ 0.

• in Lp(Ω,F ,P): ||ξn − ξ||p
n→∞−→ 0.

• weak: Φξn
n→∞−→ Φξ in the weak sense.
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[6] Lecture 1. Independence

Example of independence in pairs but not jointly.
{Ai}4i=1 � independent events with P(Ai ) = 1/4 ∀i .
{Bj := {Aj ,A4}}3j=1 =⇒ P(Bj) = 1/4 ∀j .
P(Bi ∩ Bj) = P(A4) = 1/4 = P(Bi )P(Bj) ∀i 6= j (pairs).
P(∩3j=1Bj) = P(A4) = 1/4 6= 1/64 =

∏3
j=1 P(Bj) (joint).

Ω := [0, 1],P := Leb = m, ξ, η : (Ω,Bor,m)→ (R,Bor).
Check independence: P(ξ ∈ A, η ∈ B) = P(ξ ∈ A)P(η ∈ B)
(a) ξ(ω) := a + bω, η(ω) := c + dω
(b) ξ(ω) := aω, η(ω) := bω3

(c) ξ(ω) := a sin(2πω), η(ω) := b cos(2πω)
(e) ξ(ω) := 1I (ω) cos(2aπω), η(ω) := 1J(ω) cos(2bπω), I , J ∈ Bor
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[7] Lecture 1 Conditional probabilities - usage

Let Bin(n, p) :=
∑n

i=1 ξi , ξi ∈ {0, 1}, P(ξi = 1) = p.
Calculate πn := P(Bn := {Bin(n, p) = 2k − even}).

πn+1 = P(Bn+1) = P(Bn+1 ∩ Bn) + P(Bn+1 ∩ Bc
n )

= P(ξn+1 = 0|Bn)P(Bn) + P(ξn+1 = 1|Bc
n )P(Bc

n )
= (1− p)πn + p(1− πn) = (1− 2p)πn + p.

How to solve this di�erence equation with π0 = 1?
Solution: πn := a(1− 2p)n + b =⇒ a = b = 1/2.
Finally πn = ((1− 2p)n + 1)/2

n→∞−→ 1/2.
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[8] Lecture 1. Mathematical expectation

Ef (ξ) := P(f ◦ ξ) :=
∫
Ω

f (ξ(ω))P(dω), where f : X → R.

Variance Df (ξ) = E (f (ξ)− Ef (ξ))2 = P((f ◦ ξ − Ef (ξ))2),
Covariance cov(f (ξ), g(η)) := E ((f (ξ)− Ef (ξ))(g(η)− Eg(η))∗).
Chebyshev ineq-ty: P(f (ξ) ≥ ε) ≤ Ef (ξ)/ε f ≥ 0, ε > 0.

P(|ξ − Eξ| ≥ ε) ≤ Dξ/ε2 ξ ∈ R1.

i-th Marginal distribution of ξ := (ξ1, . . . , ξn) is Φξi .
Characteristic function ϕξ(t) := Ee i(t,ξ) for X = R.

ξ ∈ Rn is Gaussian N (a,A) if ϕξ(t) := e i(t,a)− 1
2

(At,t), A ≥ 0

with density f (x) :=
√

(2π)−ndetA−1e−(A−1(x−a),(x−a))/2.
Claim. ξi ∈ ξ ∈ N (a,A) are independent i� A is diagonal.
Claim. Let ξ, η be independent with densities fξ, fη, then
fξ+η(x) = fξ ∗ fη(x) :=

∫
fξ(t)fη(x − t)dt.
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[9] List 1 � deadline 24.02.20

(1) Let {ξi}ni=1
be independent r.v. with Eξi = 0,Dξi <∞ and let

ηk :=
∑k

i=1
ξi . Prove/disprove that

P(maxk≤n |ηk | ≥ ε) ≤ 2P(ηn ≥ ε−
√
2Dηn) ∀ε ∈ R.

(2) Let ϕ(x) = ϕ(−x) ≥ 0 be a nonincreasing for x ≥ 0 function, and let
ξ, η be r.v. Prove/disprove
P(|ξ| ≤ ε) ≥ P(|η| ≤ ε) ∀ε ≥ 0 =⇒ Eϕ(ξ) ≥ Eϕ(η) and vice versa.
(3) Let {ξi}ni=1

be independent r.v. with the same distribution function
F (x). Let ξ− := mini ξi , ξ+ := maxi ξi . Find the distribution function of
the vector (ξ−, ξ+).
(4) Let ξ be a r.v. with the median mξ. Prove/disprove that
mεξ = εmξ ∀ε ∈ R.
(5) Let {ξi}ni=1

be independent r.v. with Eξi = a,Dξi = σ2 <∞ and let
ηn := 1

n

∑n

i=1
ξi . Find a function ϕ(n) such that

Eϕ(n)
∑n

i=1
(ξi − ηn)2 = σ2.

(6) Let A be a n × n matrix with independent random entries aij with
Eaij ≡ 0, Daij ≡ σ2. Calculate D(detA).
(7) Let {ξi}ni=1

be iid r.v. with 0 < Dξi <∞. Find all possible values of
the function ϕ(x) := limn→∞ P(

∑n

i=1
ξi < x), x ∈ R.

9/65



[10] Lecture 2. Explicit construction of independent r.v.

Ω := [0, 1],F := Bor,P = Leb, Ω 3 ω =
∑
k≥1

2−kωk , ωk ∈ {0, 1}.

Claim 1. {ξn(ω) := ωn}n≥1 are iid Bernoulli(1/2) r.v. with
P(ξn = 0) = P(ξn = 1) = 1

2 .
Claim 2. Let {ξn}n≥1 be iid Bernoulli(1/2) r.v., then
η(ω) :=

∑
k≥1 2

−kξk(ω) is uniformly distributed r.v. on [0, 1].

ω1 ω3 ω6 ω10 . . . ξnk(ω) is the (n, k) element
ω2 ω5 ω9 . . . of this triangle table.
ω4 ω8 . . .
ω7 . . .
. . .
Claim 3. {ξn :=

∑
k≥1 2

−kξnk}n≥1 are uniformly distributed iid r.v.
on X := [0, 1].
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[11] Lecture 2. Explicit construction of independent r.v. 2

Claim 4. Let ξ be a uniformly distributed r.v. on [0, 1] and let F be
an arbitrary distribution function. Then η := F̃−1(ξ) is a r.v. with
the distribution Fξ = F .
Here F̃−1(t) := inf{s : F (s) ≥ t} � a generalized inverse function.

Claim 5. Let {Fk}k≥1 be an arbitrary sequence of distribution
functions. Then there exists a sequence of independent r.v.
{ηk}k≥1 with Fηk = Fk .

Construction: ηk := F̃−1k (ξk) with iid uniformly distributed {ξk}.

Independent events: P(A,B) = P(A)P(B). Possibilities:
A ∩ B = ∅,A = B,A ∩ B 6= ∅ � which is correct?
∃ of independent events in ([0, 1],Bor,P)?
P(0) = 1

2 ,P(12) = 1
3 ,P(1) = 1

6 � no independent events.
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[12] Lecture 2. Conditional mathematical expectation ξ ∈ R

wrt an event B ∈ F , P(B) > 0: E (ξ|B) := E (ξ · 1B)/P(B) .

Observations: E (ξ = 1A|B) = E (1A∩B)/P(B) = P(A∩B)
P(B) · P(A|B).

E (ξ|B) = P(ξ·1B)
P(B) =

∫
B
ξ(ω)dP(ω)

P(B) =
∫
B
ξdP(ω|B) =

∫
Ω ξdP(ω|B).

Eξ =
∑

i P(Bi )E (ξ|Bi ) if tiBi = Ω, ∆ := {Bi} ∈ F .
P(A|∆)(ω) :=

∑
i P(A|Bi ) · 1Bi

(ω) � random variable:
(a) A ∩ B = ∅ =⇒ P(A ∪ B|∆) = P(A|∆) + P(A|∆)
(b) P(A|Ω) = P(A), (c)E (P(A|∆)) = P(A).

If #(η(Ω)) <∞ then ∃∆η := {Bi} � partition generated by η and
P(A|η) := P(A|∆η).

E (ξ|∆)(ω) :=
∑

i E (ξ|Bi ) · 1Bi
(ω) � random variable:

(a) E (aξ + bη|∆) = aE (ξ|∆) + bE (η|∆) (b) E (ξ|Ω) = E (ξ)
(c) E (1A|∆) = P(A|∆) (d) E (E (ξ|∆)) = E (ξ)
(e) η :=

∑
i zi1Bi

=⇒ E (ξη|∆)(ω) = η(ω)E (ξ|∆)(ω) .
(f): ω ∈ Bi =⇒ E (ξη|∆)(ω) = E (ξη|Bi ) = ziE (ξ|Bi )

= η(ω)E (ξ|Bi ) = η(ω)E (ξ|∆)(ω).
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[13] Lecture 2. Conditional mathematical expectation 2

E (ξ|A),A ⊆ F is a random variable in R ∪ ±∞ such that:
(a) E (ξ|A) is A-measurable, (b) P(ξ · 1A) =

∫
A
E (ξ|A)dP.

Properties: linearity, monotonicity +
� E (ξη|A) = ξ · E (η|A) if ξ is A-measurable.
� E (E (ξ|Ã)|A) = E (ξ|A) if A ⊂ Ã ⊆ F . Equalities are P-a.e.
E (ξ|η) := E (ξ|Bη), where Bη := σ(η). P(A|η) = P(1A|Bη).

T1. Let ∆η := {Bi}n1 be a partition of (Ω,F), B := σ(∆) and
|Eξ| <∞ =⇒ E (ξ|B) = E (ξ|∆) with probability 1.
Proof. By B-measurability P(E (ξ|Bi

|B) = zi = const) = 1. Hence
E (ξ|B) =

∑
i zi1Bi

=
∑

i E (ξ|Bi ) · 1Bi
= E (ξ|∆). QED

∃Eξ <∞ implies ∃! E (ξ|A)(ω).

E (ξ|η) := E (ξ|σ(η)). Here E (ξ|η = x)(x) � conditional ME.
Conditional density pξ(x |η = y) = pξη(x , y)/pη(y):
E (f (ξ, η)|η = y) =

∫
f (x , y)pξ(x |η = y)dx for f ∈ L1.
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[14] Lecture 2. Conditional measures

In general E (ξ|B) cannot be calculated explicitly, however in some
simple cases this is still possible.

Let dP(x , y) = p(x , y)dxdy be a prob. measure on R2 with p > 0
(P(A) := m(1A · p) for the Lebesgue m).
Consider σ-algebras Bx generated by the coordinate function x and
let Px be the projection (marginal distribution) of P to the
x-coordinate with px(x) = my (p(x , ·)).
The conditional measure Px on `x := {(x , y) : y ∈ R} has the
density px(y) = p(x , y)/px(y) = p(x , y)/

∫
p(x , y)dy � prob.

measure.
E (ξ|Bx) = my (ξ(x , ·)ρ(x , ·)) =

∫
ξ(x ,y)p(x ,y)dy∫

p(x ,y)dy
.

14/65



[15] Lecture 2. Choice of the largest unknown number

The numbers A 6= B are in closed envelopes. I take one at random
(say A) and read it. Is it possible to construct an algorithm
(deterministic or random) answering the question if the second
(unknown) number is larger?

Algorithm. Let ξ be a Gaussian r.v. If ξ > A I decide that B > A

and vice versa. How this helps?

A B

ξ1 ξ2 ξ3

The probability to win = 1+P((A−ξ)(B−ξ)<0)
2 > 1

2 .
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[16] Test 1

(1) (Ω,F ,P), Ω = [0, 1], F = Bor, P = Leb,
{ξn := ωn}n∈Z+ , ω ∈ Ω. An := {ω ∈ Ω : ξn ≤ 1/n}
Calculate: P(∪n≥1An) = 1, P(∩n≥1An) = 1/ 3

√
3.

Solution: An = {0 ≤ ω ≤ 1/ n
√
n} =⇒ A1 = [0, 1],

further use that n
√
n→ 1 and maxn n

√
n = 3
√
3.

(2) Find all a, ε ≥ 0 such that P(ξ ≥ a) ≤ e−a−εEeξ, ∀ξ.
P(ξ ≥ a) ≤ e−aE (eξ · 1ξ≥a) ≤ e−aEeξ (Cherno� inequality)
Answer: ε = 0, ∀a ≥ 0, since for ξ ≡ ea =⇒ P(ξ ≥ a) = 1 > e−ε.

(3) Let Ω := {1, 2, 3, 4},F := 2Ω,P({i}) = 1
4 . Prove/disprove ∃ of

iid non-constant r.v. ξ, η : (Ω,F ,P)→ (R,Bor).
Solution: ξ(ω) := 1{1,2}(ω), η(ω) := 1{2,3}(ω)

P(ξ = 1) = P(η = 0) = 1
2 ,

P(ξ = 0, η = 1) = P(ω ∈ {3}) = 1
4 = P(ξ = 0)P(η = 1) . . .
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[17] Lecture 3. Exponential moments � Cherno� bounds

Idea of large deviations, from r.v. and up to random DS.
Chebyshev inequality with ϕ↗ � nondecreasing:
P(ξ ≥ t) = P(ϕ(ξ) ≥ ϕ(t)) ≤ Eϕ(ξ)

ϕ(t) . Set ϕ(x) := etx

P(ξ ≥ ε) ≤ Eetξ

etε
, P(ξ ≤ −ε) = P(e−tξ ≥ etε) ≤ Ee−tξ

etε
.

Cherno�'s idea is to �nd the value of t minimizing r.h.s.

Moment generating function:
Mξ(t) := Eetξ = 1 + tEξ + t2

2 Eξ
2 + · · ·+ tn

n!Eξ
n + . . .

Generating (proizvodyaschaya) function: Ezξ, |z | < 1,
Characteristic function: Ez itξ.

Properties of Mξ(t): (a) Eξ
n = M

(n)
ξ (0) (if ∃ near 0)

(b) Mξ(t) = Mη(t) |t| < δ =⇒ ξ = η (on distribution)
(c) ξ, η independent =⇒ Mξ+η = MξMη

Proof. Mξ+η(t) = Eet(ξ+η) = Eetξetη = MξMη. QED
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[18] Lecture 3. Exponential moments � Cherno� bounds 2

T1. ξi iid P(ξi = ±1) = 1
2 =⇒ P(|

∑n
k=1 ξk | > ε) < 2e−ε

2/(2n).

Proof. We check that P(Sn :=
∑n

k=1 ξk > ε) < e−ε
2/(2n).

Eetξk = (et + e−t)/2 = cosh(t) ≤ et
2/2. To prove the last

inequality we compare the corresponding Taylor series:

cosh(t) = (et + e−t)/2 =
∑

k≥0
t2k

(2k)! (odd terms cancel) and

et
2/2 =

∑
k≥0

t2k

2kk!

(2k)! = (2k)(2k − 1) . . . (k + 1)︸ ︷︷ ︸
≥2k

k! ≥ 2kk!

Now since EetSn =
∏n

k=1 Ee
tξk = coshn(t) ≤ ent

2/2 we get

P(Sn > ε) ≤ e
nt2

2 /etε = e
nt2

2
−tε.

Choosing t = ε/n (minimizing rhs) we get P(Sn > ε) ≤ e−ε
2/(2n).

QED
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[19] Lecture 3. Exponential moments � Cherno� bounds 3

T2. Let Bin(n, p) :=
∑n

i=1 ξi , P(ξi = 1) = p. Then

P(|Bin(n, p)− np| > t) < 2e−t
2/(3np) if 0 ≤ t ≤ np.

P(|Bin(n, p)− np| > t) < 2e−np/3 if t > np.

L. Let |ξ| ≤ 1,Eξ = 0 =⇒ Mξ(t) ≤ et
2Dξ ∀t ∈ [−1, 1].

Proof. |tξ| ≤ 1,Eξ = 0 =⇒ etξ ≤ 1 + tξ + (tξ)2 =⇒
Eetξ ≤ 1 + t2Eξ2 = 1 + t2Dξ ≤ et

2Dξ. QED
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[20] Lecture 3. Exponential moments � Cherno� bounds 4

T3. Let ξi be independent with |ξi − Eξi | ≤ 1 ∀i .
Set Sn :=

∑n
i=1 ξi , σ :=

√
DSn

=⇒ P(|Sn − ESn| ≥ εσ) ≤ 2max(e−ε
2/4, e−εσ/2).

Proof. It is enough to consider Eξi = 0 and due to symmetry that
P(Sn ≥ εσ) ≤ e−tεσ/2 for t = min(ε/(2σ), 1).∑n Dξi = σ2, hence by the Lemma:
P(ξ < εσ) ≤ e−tεσ

∏n
i=1 Ee

tξi ≤ e−tεσ
∏n

i=1 e
t2Dξi = e−tεσ+t2σ2 .

Thus choosing t ≤ ε
2σ we get the result. QED (Appl.: coin tossing)

ξi ∈ {0, 1}, p = 1
2 ,ESn = n

2 ,DSn = n
4 .

Chebyshev: P(|Sn − ESn| ≥ δESn) ≤ DSn
δ2(ESn)2

= 1
δ2n

Cherno�: P(|Sn − ESn| ≥ δESn) ≤ 2e−δ
2ESn/3 = 2e−δ

2n/6

much better!
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[21] Lecture 3. Markov chains (unorthodox approach)

(X ,B) � measurable space,M =M(X ,B) � probabilistic
measures on X . Markov chain T t :M→M, t ∈ Z,R is a family
of operators such that for µ, ν ∈M:
� T t(aµ+ (1− a)ν) = aT t(µ) + (1− a)T t(ν), 0 ≤ a ≤ 1
� T t+s(µ) = T s ◦ T t(µ) � semigroup or Markov property.
If T tδx = δy ∀x ∈ X and some y = y(x) ∈ X =⇒ deterministic

and random otherwise.
Deterministic: F : (X ,B)←↩ =⇒ T nµ(A) := µ(F−nA) ∀A.
Random Examples:
(a) Random map: F1,F2(X ,B)←↩, 0 < p < 1,

T 1µ(A) := pµ(F−11 A) + (1− p)µ(F−12 A).

(b) Finite state Markov chain: X := {0, 1}, P :=

(
p00 p01
p10 p11

)
,

T 1µ := µ∗P :

(
µ(0)→ p00µ(0) + p10µ(1)
µ(1)→ p01µ(0) + p11µ(1)

)
, T nµ = µ∗Pn.

21/65



[22] Lecture 3. Markov chains (unorthodox approach) 2

T µ = µ∗P .

0 1

p01

p10

p00 p11

(c) iid ξi ∈ {0, 1} Markov chain with pij = 1/2.
(d) General continuous time Markov chains: transition probabilities
Pt
s (x ,A) := P(ξs+t ∈ A|ξs = x).

How this corresponds to the traditional approach?
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[23] Lecture 3. Asymmetry of subway rides.

Every morning you drive from home to work along the metro ring
line from Kurskaya to Kievskaya. Since the distance in both
directions is almost the same, you choose the �rst train in any
direction. After a while, you �nd that you choose the right direction
5 times more often. How can this be explained?

KurskayaKievskaya

right

left

Metro schedule:
left line

right line
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[24] Lecture 4. Stochastic/random processes

Stochastic function is a a family of r.v. {ξt}t∈T , or
ξt(ω) : (Ω,F ,P)× T → (X ,B) � ∀t measurable on ω.
When T = Zd or Rd we identify t with time and speak about
stochastic processes. ξt(•) � r.v. for a �xed t.
ξ•(ω) � realization or trajectory � nonrandom for a given ω.
ξt ∼ ηt if P(ξt 6= ηt) = 0 ∀t ∈ T � equivalence.
Φt1,...,tn(A) := P((ξt1 , . . . , ξtn) ∈ A) � a �nite dimensional

distribution.
ξt ∼ ηt =⇒ Φξ = Φη (but not vice versa).
Question: what about realizations? - No. Example: Let T := [0, 1]
and a r.v. τ ∈ (0, 1) have a continuous distribution. Set ξt ≡ 0,

ηt :=

{
0 if t 6= τ
1 otherwise

. ξt ∼ ηt since P(ξt 6= ηt) = P(τ = t) = 0,

however each trajectory of ξt is identically 0, while each trajectory
of ηt has a �jump� at time τ .
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[25] Lecture 4. Existence of a random process

Let F (x) be a probability distribution. Is there a probability space
(Ω,F ,P) and a r.v. ξ(ω) such that P(ω : ξ(ω) ≤ x) = F (x)?
Set Ω := R,F := Bor(R). Then ∃!P : P((a, b]) = F (b)− F (a)
and thus for the r.v. ξ(ω) := ω we have Fξ(x) ≡ F (x).

Now we consider the same problem for a random process
ξt , t ∈ T ⊆ R with �nite dimensional distributions

Ft1,...,tn(x1, . . . , xn) = P(ω : ξt1 ≤ x1, . . . , ξtn ≤ xn).

T(Kolmogorov) Let Ft1,...,tn(x1, . . . , xn) be a given family of �nite
dimensional distributions, satisfying the following conditions of
consistency: Ft1,...,tk ,...,tn(x1, . . . ,∞, . . . , xn)

= Ft1,...,tk−1,tk+1,...,tn(x1, . . . , xk−1, xk+1, . . . , xn). Then ∃(Ω,F ,P)
and a random process ξt , t ∈ T such that
P(ω : ξt1 ≤ x1, . . . , ξtn ≤ xn)) = Ft1,...,tn(x1, . . . , xn).
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[26] Lecture 4. General Markov chains

A random process ξt : (Ω,F ,P)→ (X ,B,m) acting on a Borel
(X ,B) space with a �nite reference measure m ( 6= m(ξt)) is a
Markov chain de�ned by transition probabilities

Qt
s (x ,A) := P(ξs+t ∈ A|ξs = x), A ∈ B,

with standard properties:
� For �xed s, t, x the function Qt

s (x , ·) is a probability measure on
the σ-algebra B.
� For �xed s, t,A the function Qt

s (·,A) is B-measurable.
� For t = 0 Qt

s (x ,A) = δx(A).
� For each s, 0 ≤ t ≤ t ′ and A ∈ B we have

Qt′
s (x ,A) =

∫
X

Qt
s (x , dy)Qt′−t

t (y ,A).
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[27] Lecture 4. General Markov chains 2

The process ξt induces the action on measures:

Qt
sµ(A) :=

∫
Qt
s (x ,A) dµ(x)

and the action on functions:

Qt
sϕ(x) :=

∫
ϕ(y)Qt

s (x , dy).

A Borel measure µ is said to be invariant or stationary for the
Markov chain ξt if it is a solution to the equation

Qt
sµ = µ ∀s, t.

A system is deterministic i� Qt
s δx is a δ-measure ∀x , s, t.

This agrees with the discussion of the unorthodox approach.
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[28] Lecture 4. Discrete time random processes

(1) iid r.v. ξt : (Ω,F ,P)→ (X , 2X ), t ∈ Z+, X := {0, 1},
P(ξt = 1) = p,P(ξt = 0) = 1− p.

Let b := {bk} be a binary sequence and let SN(b) be its left shift
by N positions, i.e. (SN(b))i := bi+N . W (b, n) := (b1, b2, . . . , bn).
We say that a sequence b is strongly recurrent if ∀n0, n ∈ Z+ there
exists N = N(b, n0, n) such that W (Sn0b, n) = W (Sn0+Nb, n); and
uniformly strongly recurrent if ∃ an in�nite sequence of shifts {Nk},
such that supk |Nk+1 − Nk | <∞.
Calculate: P(ξt is s.recurrent), P(ξt is uniformly s.recurrent).

(2) Simple random walks: ηt : (Ω,F ,P)→ (X , 2X ), t ∈ Z+,
X := Z, ηt+1 := ηt + ξt , where ξt ∈ {−1, 1} are iid with
P(ξt = 1) = p,P(ξt = −1) = 1− p.
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[29] Lecture 4. Discrete time random processes 2

(3) Collective random walks � the exclusion process EP.
A con�guration ζt := (. . . , ζ−1t , ζ0t , ζ

1
t , . . . ), ζ it ∈ Z describes

positions of �particles� on the lattice Z at time t. Each particle
performs the random walk if it does not interfere with other
particles.

t TASEP

t + 1
p p

t + 2
p p

The main problem in the analysis is an in�nite number of
simultaneous interactions between neighboring particles.
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[30] Lecture 4. Basic examples of random processes

(0) Random sin oscillations: ξt := A cos(ηt + ϕ), r.v. A, η ≥ 0, ϕ.
ϕ is uniformly distributed on [0, 2π) and does not depend on A, η.

(I) Poisson process ξt with the parameter a > 0 on T := R+:
(0) ξ0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆ξti ,ti−1 := ξti − ξti−1 independent.
(ii) r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Poisson distributed:

P(∆ξt,s = k) = (a(t − s))ke−a(t−s)/k!, k ∈ Z+.
(iii) Trajectories of ξt are right continuous.

(II) Cauchy process: (0) + (i) +
(ii') r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Cauchy distributed with

the density p(x) = π−1(t − s)/((t − s)2 + x2).

(III) Wiener process wt : (0) + (i) +
(ii�) r.v. ∆wt,s := wt − ws , 0 ≤ s ≤ t are Gaussian N (0, t − s).
(iii') Trajectories of wt are continuous.
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[31] Lecture 4. Recurrence of random walks

Let ηt [p] be a random walk on Z with P(ηt+1 − ηt = 1) = p. A
sequence {bk}, bk ∈ Z is recurrent if ∀i ∃n = n(i) > 0 : bi = bi+n.

Find all values of the parameter p ∈ [0, 1] such that
(a) ηt [p] is recurrent,
(b) ηt [p] is strongly recurrent,
(c) ηt [p] is uniformly strongly recurrent.

L. Let Ωk
n := {ω : a return to k occurs after 2n time steps} =⇒

P(∪n≥0Ωk
n) = 1 i�

∑
n≥0 P(Ωk

n) =∞.

We have
P(Ωk

n) = Cn
2n(pq)n = (2n)!(pq)n

n!n! ∼ (4pq)n√
πn

(by the Stirling formula).

Thus recurrence occurs i� p = q = 1/2. see next slide
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[32] Lecture 4. Recurrence of random walks 2

General framework. Let ξn be a Markov chain on Z+ with transition

probabilities p
(n)
i ,j .

T. v := maxn P(ξn = k |ξ0 = k) = 1 i�
∑

n≥1 p
(n)
k,k =∞ ∀k ∈ Z+.

Proof. Let vn := P(the 1st return to k occurs after n steps), let
v :=

∑
n≥1 vn. By the formula of total probability we have

(*) p
(n)
i ,i =

∑n
j=0 p

(j)
i ,i vn−j . Set additionally un := p

(n)
i ,i and

introduce the generating functions U(z) :=
∑

m≥0 umz
m,

V (z) :=
∑

m≥0 vmz
m, which are analytic for |z | ≤ 1 . Then (*) is

equivalent to U(z)− u0 = U(z)V (z), u0 = 1 =⇒ U(z) = 1
1−V (z) .

limz→1 U(z) = limz→1
1

1−V (z) = 1
1−v =∞ if v = 1. On the other

hand, limz→1 U(z) = limz→1
∑

m≥0 umz
m =

∑
m≥0 um =∞. QED
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[33] Lecture 5. Properties of basic random processes

(0) Random sin oscillations: ξt := A cos(ηt + ϕ), r.v. A, η ≥ 0, ϕ.
ϕ is uniformly distributed on [0, 2π) and does not depend on A, η.
Claim. Finite dimensional distributions of ξt , t ∈ T := R are
translationally invariant: µt̄+h = µt̄ ∀t̄ = (t1, . . . , tn), h ∈ R.
Proof. We need to show that
Z := P({A cos(η(t1 + h) + ϕ), . . . ,A cos(η(tn + h) + ϕ)} ∈ C )
= P({A cos(ηt1 + ϕ), . . . ,A cos(ηtn + ϕ)} ∈ C ).
B := {(x , y , z) : x , y ≥ 0, z ∈ [0, 2π),

{x cos(yt1 + z), . . . , x cos(ytn + z)} ∈ C} is a Borel set.
Denoting by {z}2π the fractional part of z mod 2π we get
Z = P((A, η, {ϕ+ yh}2π) ∈ B) = P((A, η, ϕ) ∈ B).
(A, η) and ϕ are independent =⇒ µA,η,ϕ = µA,η × µϕ. Thus
Z =

∫∞
0

∫∞
0 µA,η(dxdy) µϕ(C1 := {z : (x , y , {z + yh}2π) ∈ B})

=
∫∞
0

∫∞
0 µA,η(dxdy) µϕ(C2 := {z : (x , y , z + y) ∈ B}), since

C1 is obtained from C2 by the translation by yh and mod 2π. Now
µϕ is uniform on [0, 2π) and does not change under translations.
QED
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[34] Lecture 5. Poisson process

(I) Poisson process ξt with the parameter a > 0 on T := R+:
(0) ξ0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆ξti ,ti−1 := ξti − ξti−1 independent.
(ii) r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Poisson distributed:

P(∆ξt,s = k) = (a(t − s))ke−a(t−s)/k!, k ∈ Z+.
(iii) Trajectories of ξt are right continuous.

Claim. a.a. trajectories are non-decreasing integer valued functions
with jumps of size 1.
Proof. Main idea. Show that probabilities of the events
A := {ξt ∈ Z ∀t = k2−n}, B := {ξs ≤ ξt ∀s ≤ t = k2−n},
CN := {∀k ∈ Z ∩ [0, ξN ] ∃t = k2−n ∈ [0,N] : ξt = k} are equal 1.
To this end one approximates them by events depending only on a
�nite number of values ξt .

see next slide
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[35] Lecture 5. Poisson process 2

Proof. The event A =
⋂

t=k·2−n(At := {ξt ∈ Z+})

P(ξt ∈ Z+) = P(ξt − ξt0 ∈ Z+) =
∞∑

i=−∞
P(ξt = i) = 1 = P(A).

B is the intersection of the events:
Bn := {ξ0 ≤ ξ1·2−n ≤ . . . ξk·k−n ≤ . . . } =

⋂
k{ξk·k−n ≤ ξ(k+1)·k−n}.

Since P(ξk·k−n ≤ ξ(k+1)·k−n) = 1, we have 1 = P(Bn) = P(B).

CN ⊇
⋂2nN−1

k=0 {ξ(k+1)·k−n − ξk·k−n ∈ {0, 1}} =⇒ by (i)+(ii)

P(CN) ≥
∏2nN−1

k=0 P({ξ(k+1)·k−n − ξk·k−n ∈ {0, 1}})
≥ (e−a2

−n
+ a2−ne−a2

−n
)2

nN ≥ (1− o(a2−n))2
nN n→∞−→ 1,

since e−x + xe−x = 1− o(x) as x → 0 =⇒ P(CN) = 1.
Finally, the event that the jumps are equal to 1 coincides (by the
right continuity) with the event Z := AB ∩N CN with P(Z ) = 1.
QED

A trajectory of ξt
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[36] Lecture 5. Wiener process

(III) Wiener process wt starting from 0 on T := R+:
(0) w0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆wti ,ti−1 := wti − wti−1 are
independent.
(ii) r.v. ∆wt,s := wt − ws , 0 ≤ s ≤ t are Gaussian N (0, t − s).
(iii) Trajectories of wt are continuous.

T1. ∀0 ≤ a ≤ t0 < t1 < · · · < tn = b

(L2) lim
diam{ti}→0

n−1∑
i=0

(wti+1
− wti )

2 = b − a.

Proof. Let Z :=
n−1∑
i=0

(wti+1
− wti )

2. Then by independence

EZ =
n−1∑
i=0

E (wti+1
− wti )

2 =
n−1∑
i=0

D(wti+1
− wti )

=
n−1∑
i=0

(ti+1 − ti ) = b − a. (see next slide)
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[37] Lecture 5. Wiener process 2

Similarly

DZ =
n−1∑
i=0

D(wti+1
− wti )

2 (evaluaing
∫
x4e−

x2

2σ2 dx by parts u = x3

=
n−1∑
i=0

[E (wti+1
− wti )

4 − (E (wti+1
− wti )

2)2] dv = xe−
x2

2σ2 dx)

=
n−1∑
i=0

[3(ti+1 − ti )
2 − (ti+1 − ti )

2] =
n−1∑
i=0

(ti+1 − ti )
2

≤ max(ti+1 − ti )×
n−1∑
i=0

(ti+1 − ti ) = (b − a)diam{ti} → 0.

Thus E (
n−1∑
i=0

(wti+1
− wti )

2 − (b − a))2 = D
n−1∑
i=0

(wti+1
− wti )

2 → 0,

which implies the convergence in L2. QED

Important observation. An increment of a smooth function is of the
same order as the increment of its argument, while the sum of
squares of increments goes to 0. In the case of wt the situation is
rather di�erent.
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[38] Lecture 5. Wiener process 3

Statistics:
Holder exponent for the Wiener process wt . For t > s we have

E wt−ws

|t−s|β = 0, D wt−ws

|t−s|β = t−s
|t−s|2β = (t − s)1−2β

t−s→0−→ 0 i�

0 < β < 1/2. Further one applies the Chebyshev inequality.

Variation var(wt). For ∆ := {(ti , ti+1)}ni ⊂ [a, b] denote
V (wt ,∆) :=

∑n
i |wti − wti+1

|. Find (E/D)V (wt ,∆) =?

E |wt+h − wt | = 1
σ
√
2π

∫∞
−∞ |x |e

−x2/2σ2dx (σ2 = h)

= 2σ2

σ
√
2π

∫∞
0 e−x

2/2σ2d x2

2σ2
=
√

2h
π .

Thus for |ti − ti+1| = 1
n
, a = t0 < · · · < tn = b we have

EV (wt ,∆) =
√

2
π (b − a) ·

√
n
n→∞−→ ∞, DV (wt ,∆)

n→∞−→ b − a.

Now again the Chebyshev inequality gives the result.
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[39] Lecture 5. Wiener process 4

Statistics:
Claim. Let fn(t) be piecewise linear with with vertices at points
{k2−n,

∑k−1
i=0 (w(i+1)2−k − wi2−k )2}. Then

P(|fn(t)− t| n→∞−→ 0) = 1 uniformly on [0,T ].
Proof. The functions fn(t) are nondecreasing. Thus it is enough to
prove the convergence on a dense set, say for all t = k2−m. Why?

For n ≥ m we have
E (fn(t)− t)2 = 2t2−nE

∑
n≥0

(fn(t)− t)2 =
∑
n≥0

E (fn(t)− t)2 <∞.

Since the mathematical expectation is �nite, the series converges
by the Chebyshev inequality with probability 1. Hence,
fn(t)− t → 0. QED

Theorem (Continuity of trajectories:). Let ξt , t ∈ T = [a, b] be a
random process such that
∃α, ε,C > 0: E |ξt − ξs |α ≤ C |t − s|1+ε ∀t, s ∈ T . Then ∃ a
modi�cation of ξt with continuous trajectories.

39/65



[40] Lecture 5. Wiener process 5

(III) Multidimensional Wiener process. wt := (w1
t , . . . ,w

d
t ) ∈ Rd ,

t ∈ R+, w0 = x0. The de�nition is exactly the same as in the 1D
case, except that the increments wt − ws have the covariation
matrix diag(t-s) instead of a single number.
Claim. The events from Fw i

t
are independent, which implies that

the d -dimensional Wiener process is simply a collection of d
independent 1D processes.
Proof.∀0 ≤ t1 < · · · < tn consider random vectors
W i := (w i

t1
, . . . ,w i

tn
). Their joint distribution is Gaussian. Hence

for independence it is enough to observe that the coordinates of
W i and W j for i 6= j are uncorrelated. QED

The density of the joint distribution of (w1
t , . . . ,w

d
t ) is

pw1
t ,...,w

n
t

(x1, . . . , xn) =
n∏

i=1

1
(2π(ti−ti−1)2)

exp(−
n∑

i=1

(xi−xi−1)2

2(ti−ti−1) ).
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[41] Lecture 5. Wiener process 6

Statistics:
Claim. Let a = t0 < · · · < tn = b. Then

n−1∑
i=0

(w1
ti+1
− w1

ti
)(w2

ti+1
− w2

ti
)
n→∞−→ 0 in L2.

Proof. w̃t := (w1
t + w2

t )/
√
2 is again the Wiener process. Thus

lim
n−1∑
i=0

(w1
ti+1
− w1

ti
)(w2

ti+1
− w2

ti
)

= 1
2 [lim

n−1∑
i=0

2(w̃ti+1
− w̃ti )

2 −
2∑

j=1
lim

n−1∑
i=0

(w j
ti+1
− w j

ti
)2]

= 1
2 [2(b − a)− (b − a)− (b − a)] = 0. QED
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[42] Lecture 5. Wiener process 7

(III) Existence. Let ξn be a simple symmetric random walk on Z
with ξ0 = 0 and P(ξn+1 = i + 1|ξn = i) = 1/2. We interpolate it
and rescale to [0, 1], namely ∀n ∈ Z+, (i0, i1, . . . , in) ∈ Zn+1 de�ne
h(i0,i1,...,in)(t) := 1√

n
(1− nt + [nt])ξ[nt] + (nt − [nt])ξ[nt]+1,

which linearly interpolates the points {1/n, ik/
√
n}k .

µn({f }) := 2−n1h(0,i1,...,in)
(f ) for some (i1, . . . , in) ∈ Zn is a measure

on {f } ∈ C ([0, 1]). {µn}n describes the random motion of a
particle which performs many tiny steps during each time moment.

T. µn
n→∞−→ W weakly � probability measure on C ([0, 1]), called the

Wiener measure. W ({f : f (ti+1)− f (ti ) ∈ Ii , i = 1, 2, . . . , n})

=
∏n

i=1
1√

2π(ti+1−ti )

∫
Ii
e

x2

2(ti+1−ti ) dx .

Here Ii are intervals from [0, 1]. W corresponds to a random
process called Brownian motion and satisfying all properties of the
Wiener process.
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[43] Lecture 5. Subway escalator

t TASEP, p = 1

t + 1
p p

t + 2
p p

Let V be the escalator's velocity, ρ � the density of passengers.
Then the passengers �ow F (ρ,V ) := (1− |1− 2ρ|)/2 + V ρ.

ρ

F

1
2

0 11
2

V ρ

Case V < 1

ρ

F

1
2

0 11
2

V ρCase V > 1

F (12 ,V ) > F (1,V ) i� 1+V
2 > V =⇒ V < 1.
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[44] Lecture 6. Wiener processes 8

Moments (d = 1): Eξt = E (ξt − ξ0) = 0, Dξt = D(ξt − ξ0) = t.
For 0 ≤ s ≤ t we have
cov(ξt , ξs) = E (wt − ws)ws + Ew2

s = D(ws − w0) = s = t ∧ s.

Continuity: E (ξt+h − ξt) = 0,D(ξt+h − ξt) = h. Therefore ξt → ξt0
as t → t0 ∀t0 in probability.

A Brownian bridge is a process Bt whose law is the conditional
probability distribution of a Wiener process on [0,T ] subject to the
condition wT = 0, i.e. Bt := (wt |wT = 0), t ∈ [0,T ]. Then

EBt ≡ 0, but DBt = t(T−t)
T

=⇒ the most uncertainty is in the

middle. cov(Bt ,Bs) = s(T−t)
T

if s < t.
Remark. The increments in a Brownian bridge are not independent.
Representations: Bt = wt − t

T
wT = T−t√

T
w t

T−t
.
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[45] Lecture 6. Wiener processes 9

A d -dimensional random process ξt is Gaussian if all its �nite
dimensional distributions are Gaussian, i.e. they are de�ned by 2
functions mt := Eξt and Rs,t := E (ξs −ms)(ξt −mt).
Let ξt , t ∈ R+ be Gaussian and (0) ξ0 = 0, (a) Eξt = 0,
(b) Eξtξs = min(t, s) = t ∧ s, (c) ξt is continuous on t a.e.
Claim. ξt is a Wiener process.
Proof. ∀0 ≤ t1 ≤ · · · ≤ tn r.v. (ξti+1

− ξti ) have a joint Gaussian
distribution. (b) implies that the increments are uncorrelated, and
the Gaussian distribution implies their independence. Finally,
E (ξt − ξs)2 = Eξ2t + Eξ2s − Eξtξs = t + s − 2(t ∧ s) = t − s. QED

Remark. E |ξt − ξs | =
√

2(t−s)
π .
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[46] Lecture 6. Wiener processes 10

Let τa be the 1st moment of time when ξt = a > 0.
Claim. P(ξt ≥ a|τa ≤ t) = 1

2 .
Proof. ξt = a at t = τa, while for t > τa by the symmetry. QED
Corollary. For t > 0

P(τa ≤ t) = P(ξt≥a)
P(ξt≥a|τa≤t) = 2P(ξt ≥ a) =

√
2
π

∞∫
a/
√
t

e−x
2/2dx . (*)

Hence P(τa <∞) = 1. Moreover, we can �nd the maximal value of
ξs during the time t:

P( max
0≤s≤t

ξs ≥ x) = P(τx ≤ t) =
√

2
π

∞∫
x/
√
t

e−y
2/2dy

=
√

2
πt

∞∫
x

e−y
2/(2t)dy = 2P(ξt ≥ x) � the doubled normal law.

Similarly for the minimum value. Observe also that
P( max

0≤s≤t
ξs > 0) = P( min

0≤s≤t
ξs < 0) = 1.
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[47] Lecture 6. Wiener processes 11

Claim. The arcsin law for the maximum of ξs :

P(τmax ≤ s) =
s∫
0

dy

π
√

y(t−y)
= 2

π arcsin
√

s
t

for 0 ≤ s ≤ t.

Proof. After the moment τa the process obeys the same laws as
when starting from 0. Therefore ξmax := max

0≤u≤t
ξu ≡ max

s≤u≤t
ξu if

τa = s ≤ t, and ξmax has the same probability distribution as
a + max

0≤u≤t−s
ξu. According to (*) this r.v. has the following

conditional probability density:

pξmax(x |τa = s) =
√

2
π(t−s) exp(− (x−a)2

2(t−s) ), a ≤ x <∞. Hence

pτa,ξmax(s, x) = pτa(s)pξmax(x |τa = s) = 1

π
√

s(t−s)

a
s
e−

a2

2s e
− (x−a)2

2(t−s) .

Denote by τ and ξ the (time) position and the value of the global
maximum of ξu on the interval [0, t]. see next slide
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[48] Lecture 6. Wiener processes 12

The density of the r.v. (τ, ξ) at a point (τ = s, ξ = a) coincides
with the density of (τa, ξ) at the same point, since
pτ,ξ(s, a) = pτ (s|ξ = a)pξ(a) = pτa(s|ξ = a)pξ(a) = pτa,ξ(s, a).

=⇒ pτ,ξ(s, a) = 1

π
√

s(t−s)

a
s
e−

a2

2s for 0 < s < t, 0 < a <∞; and

=⇒ pτ (s) =
∫∞
0 pτ,s(s, x)dx = 1

π
√

s(t−s)

∫∞
0

x
s
e−

x2

2s dx = 1

π
√

s(t−s)
.

Therefore P(τ ≤ s) =
∫ s
0

du

π
√

u(t−u)
= 2

π arcsin
√

s
t
. QED

0 t/2 t

pτ (s) = 1

π
√

s(t−s)

Thus the maximum is near one of the end-points.
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[49] Lecture 6. Coupling

A coupling of measures Pi on (Ωi ,F i ), i = 1, 2 is a new measure
P̃ on (Ω̃ := Ω1 × Ω2, F̃ := F1 ×F2) such that
P̃(A1 × Ω2) = P1(A1), P̃(Ω1 × A2) = P2(A2) ∀Ai ∈ F i .
A coupling of r.v. ξi , i = 1, 2 is a new r.v. ξ̃ := (ξ̃1, ξ̃2) on (Ω̃, F̃)
such that its distribution is the coupling of the distributions of ξi .
Remark. Couplings are not uniquely de�ned.
Let (Ωi ,F i ) = (Ω,F), then the total variation distance
||P1 − P2||tv := supA∈F |P1(A)− P2(A)|.
T1(Coupling inequality). Given r.v. ξi , i = 1, 2 with probability
distributions Pi for any coupling ||P1 − P2||tv ≤ P̃(ξ̃1 6= ξ̃2).
Proof. P1(ξ1 ∈ A)− P2(ξ2 ∈ A) = P̃(ξ̃1 ∈ A)− P̃(ξ̃2 ∈ A)
= P̃(ξ̃1 ∈ A, ξ̃1 = ξ̃2) + P̃(ξ̃1 ∈ A, ξ̃1 6= ξ̃2)
−P̃(ξ̃2 ∈ A, ξ̃1 = ξ̃2)− P̃(ξ̃2 ∈ A, ξ̃1 6= ξ̃2) ≤ P̃(ξ̃1 6= ξ̃2). QED

see next slide
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[50] Lecture 6. Coupling 2

A coupling of r. processes ξit , i = 1, 2 on the same space (Ω,F ,P)
is a new r. process ξ̃t := (ξ̃1t , ξ̃

2
t ) on (Ω1 × Ω2,F1 ×F2, P̃).

τ := inf{t ∈ T : ξ1t = ξ2t } � the coupling time.
A coupling P̃ is called successful if P̃(ξ̃1t 6= ξ̃2t ) = 0 ∀t ≥ τ .

ξ̃2t

ξ̃1t
τ

ξ̃1t ≡ ξ̃2t

T2. ||P1(ξ1t ∈ ·)− P2(ξ2t ∈ ·)||tv ≤ P̃(τ > t) ∀t ∈ T .
Proof. {ξ1t 6= ξ2t } ⊆ {τ ≤ t} by T1. QED

Application: convergence of Markov chains.
Problem. Let ξit := aiw i

t + bi , i = 1, 2 and let w i
t be independent

Wiener processes on R1. Check existence of the successful coupling.
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[51] Lecture 7. Main classes of random processes

(1) ξt ∈ Rd is called a Gaussian random function if all its �nite
dimensional distributions are Gaussian.
When the random sin oscillations: ξt := A cos(ηt + ϕ) are
Gaussian? (∃y0 : P(η = y0) = 1) and A has the density ae−ax .)

(2) ξt ∈ Rd is called a process with independent increments if all
its increments over non-intersecting time intervals are independent.
(2') A similar notion in the broad sense � a process with
uncorrelated increments: cov(ξt2 − ξt1 , ξt4 − ξt3) = 0 for
t1 ≤ t2 ≤ t3 ≤ t4. Recall that cov(ξ, η) := E (ξ − Eξ)(η − Eη).
(3) ξt ∈ Rd is called stationary if all its �nite dimensional
distributions are shift-invariant: µt̄+h = µt̄ .
(3') ξt ∈ R1 is called stationary in broad sense if the �rst two
moments exist and
Eξt+h = Eξt , K (t + h, s + h) = K (t, s) := cov(ξt , ξs).
This is equivalent to Eξt = m, K (t + h, s + h) = K (t − s).
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[52] Lecture 7. Main classes of random processes 2

(4) ξt ∈ R1 is called a process with stationary increments if joint
distributions of its increments are shift invariant.
Obviously all stationary processes have stationary increments, but
not all of them have independent increments. Give an example:
ξt := A cos(ηt + ϕ) + αt + β, where ϕ does not depend on
(A, η, α, β) and is uniformly distributed on [0, 2π).

(5) Markov chains � the future and the past are independent if the
present state is �xed.
Discuss connections with the transition function.
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[53] Lecture 7. Convergence and �nite dim. distributions

T1. Let E |ξt |2 <∞ ∀t. Then ∃(L2) limt→t0 ξt i� ∃ limt,s→t0 Eξtξs .
Proof. The necessity follows from the continuity of the scalar
product, while the su�cient part follows from the Cauchy condition
lim

t,s→t0
E |ξt − ξs |2 = lim

t,s→t0
[E |ξt |2 − Eξtξs − Eξsξt + E |ξs |2] = 0.

Problem 1. Let {ξn} be uncorrelated. Then ∃(L2) lim
∑

n≥1 ξn i�
the series

∑
n≥1 Eξn and

∑
n≥1Dξn converge.

Proof. Let ηn :=
∑n

i=1 ξi =⇒ Kηη(n,m) =
∑

i≤min(n,m)

Dξi . Now use

T1 above.
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[54] Lecture 7. Convergence and �nite dim. distributions 2

T2. (P) limt→t0 ξt exists i� exists the weak limt,s→t0 µξt ,ξs =: µ.

Proof. (a) Necessity. (P) limt,s→t0(ξt , ξs) = (η, η). Hence the
2-dim. distributions µξt ,ξs converge weakly.
(b) Adequacy. limt,s→t0 µξt ,ξs is supported by the diagonal (since
(ξt , ξt) is there). Let fε ∈ C 0, fε(0) = 0 and fε(x) = 1 for |x | > ε.
Then by the Chebyshev inequality
P(|ξt − ξs | ≥ ε) ≤ Efε(ξt − ξs) =

∫ ∫
fε(x − y)µξt ,ξs (dxdy)

t,s→t0−→
∫ ∫

fε(x − y)µ(dxdy) = 0 since fε ∈ C 0 and µ is supported
by the diagonal {x = y}. Hence the sequence in fundamental in
probability. QED

Problem. Prove/disprove that if ξt is stationary and
P(ξt = const) = 0, then (P) limt→t0 ξt does not exist.
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[55] Lecture 7. Stochastic continuity in probability

ξt is stochastically continuous at t0 ∈ T if (P) limt→t0 ξt = ξt0 .
This property is de�ned by 2-dim. distributions. All above examples
of random processes are stochastically continuous. Even that
realizations of the Poisson process are discontinuous. Why?
Answer: P(a discontinuity happens at a given point)=0.

Problem. Prove/disprove that if ξt are independent ∀t and has the
same density p(x), then ξt is stochastically discontinuous ∀t.
Proof. P(|ξt − ξt0 | ≥ ε) =

∫ ∫
|x−y |≥ε p(x)p(y)dxdy

ε→0−→
∫ ∫

x 6=y
p(x)p(y)dxdy =

∫ ∫
p(x)p(y)dxdy = 1.

Hence ∃ε0 > 0 such that P(|ξt − ξt0 | ≥ ε) > 1/2 =⇒ there is no
convergence in probability. QED
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[56] Lecture 7. Stochastic continuity in L
p

ξt is stochastically continuous in Lp if (Lp) limt→t0 ξt = ξt0 .

Problem. Prove/disprove that ξt is (a) stochastically continuous
on T i� µξt ,ξs is weakly continuous on (t, s) ∈ T × T ; and is (b)
stochastically continuous in L2 i� Eξt ξ̄s is continuous.
(a) Follows from T1; (b) from T2 (about continuity).

Problem. Prove/disprove that if ξt is stochastically continuous in
Lp, p ≥ 1 on a compact set A, then (a) it is uniformly continuous;
(b) supt∈A E |ξt |p <∞.
Follows from standard mathematical analysis arguments.
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[57] Lecture 7. Coupling for TASEP

t TASEP, 0 < p ≤ 1

t + 1
p p

t + 2
p p

t Pairing

t + 1
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[58] List 2 � deadline 20.04.20

(1) Let wt , t ≥ 0 be a standard Wiener process. Find ALL increasing
functions ϕ(t) and constants a, b > 0 such that ξt := ϕ−1(at)wϕ(bt) is a
stationary process and calculate its correlation function.
(2) Let {ξi}ni=1

be iid r.v. with Eξi = 0,Dξi = σ2 > 0 and let
ηn := 1

σ
√
n

∑n

i=1
ξi . Prove/disprove existence of (P) limn→∞ ηn.

(3) Find ALL stationary processes ξt , t ≥ 0 such that ∃(P) limt→∞ ξt .
(4) Let wt , t ≥ 0 be a standard Wiener process. Find a joint distribution

of wt and
∫ t

0
wsds.

(5) Prove/disprove existence of a Gaussian process ξt , 0 ≤ t ≤ 1 with
Eξt ≡ 0 and a correlation function K (t, s) := t ∧ s − ts, such that almost
all its realizations are continuous.
(6) Let ξt , 0 ≤ t ≤ 1 be a Cauchy process and let ηt := ξt + Ct. Find
ALL constants C ∈ R such that distributions of these processes are
absolutely continuous wrt each other.
(7) Let wt be a standard Wiener process. Find a distribution of a r.v.
η := max0≤t≤T (wt + Ct) as a function of C ∈ R.
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[59] Lecture 8. Stochastic di�erentiation

A derivative of ξt at t ∈ T is (ξt)
′ := lims→t

ξt−ξs
t−s in various senses.

T1. Let E |ξt |2 <∞ ∀t. Then ∃(L2) limt→t0 ξt i� ∃ limt,s→t0 Eξtξs .
T2. (P) limt→t0 ξt exists i� exists the weak limt,s→t0 µξt ,ξs =: µ.
Conditions of the di�erentiation in probability and in L2 are given
by T1 and T2. Hence the di�erentiability is de�ned by �nite
dimensional distributions of the process of order ≤ 3.

Wiener process has no derivative even in probability. Why?
wt − ws is Gaussian N (0, 1

|t−s|), i.e. (wt)
′ := d

dt
wt diverges.

Poisson process has a derivative in probability, but not in Lp, p ≥ 1.
Why?
(P) lims→t(ξt − ξs)/(t − s) = 0. Hence the Lp limit if it exists
should be equal to 0 almost surely. However,
E |ξt − ξs |/|t − s| ≥ P(ξt 6=ξs)

|t−s|p ∼ a|t − s|1−p, which does not vanish
as t − s → 0.
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[60] Lecture 8. Stochastic di�erentiation 2

A random function is not uniquely de�ned by its derivative in
probability, while in L2 the situation is much better.
Claim 1. If ∃ξ′t ∈ Lp and ξ′s ≡ 0 ∀s ∈ [a, b] =⇒ ξt ≡ ξa ∀t ∈ [a, b].
Proof. ∀ε > 0, s ∈ [a, b] ∃Os : |ξt − ξs | ≤ ε|t − s| ∀t ∈ Os .
Assume that s := lim inf{t ∈ [a, b] : ξt 6= ξa} > a.
=⇒ ∃ε > 0 : |ξt − ξa| > ε|t − a| ∀t > s and (by continuity of ξt)
|ξs − ξa| = ε|s − a| =⇒ for Os 3 t > s we have
|ξt − ξa| ≤ |ξt − ξs |+ |ξs − ξa| ≤ ε|t − s|+ ε|s − a| = ε|t − a|,
which contradicts to the de�nition of s. QED
Claim 2. (ξt)

′ ∈ C 1 in L2-sense on (a, b) i� Eξtξs has a continuous

derivative ∂2Eξtξs
∂t∂s

on (a, b)2. (Follows from standard analysis).

Corollary.
∂2K(t,s)
∂t∂s

is the correlation function of (ξt)
′ and the joint

correlation function of ξt and (ξt)
′ is:(

Kξξ Kξξ′

Kξ′ξ Kξ′ξ′

)
(t, s) =

(
Kξξ ∂Kξξ/∂s

∂Kξξ/∂t ∂2Kξξ/∂t∂s

)
(t, s).
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[61] Lecture 8. Deterministic integration

If ξt ∈ C 0 then
∫ b
a
ξtdt can be de�ned as lim

∑n−1
i (ti+1 − ti )ξsi ,

where a = t0 < · · · < tn = b and non-random points si ∈ [ti , ti+1].
Again everything is ok in Lp, p ≥ 1-sense but not in probability.

Claim 1. If ξt ∈ C 0 in Lp([a, b]), then ∃
∫ b
a
ξtdt in terms of

Lp-convergence. (Standard analysis + uniform continuity.)

Claim 2. Let τ be a r.v. uniformly distributed on T := [0, 1]. Then
the process ξt := (1− τ)−11t>τ is stochastically continuous on T ,

but
∫ 1
0 ξtdt does not exist in L2-sense.

One can di�erentiate the integral over lower and upper limits and
we have the Newton-Leibniz formula.
Application: if ξt � Poisson process, then d

dt

(
(Lp)

∫ b
a
ξtdt

)
= ξt .

Realizations of Lp-integrable ξt need not be integrable and one
needs to distinguish the integral as a r.v. and as a function∫ b
a
ξt(ω)dt for ω ∈ Ω, which might not be even measurable.
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[62] Lecture 8. Deterministic integration 2

Q: Under which conditions
(

(Lp)
∫ b
a
ξtdt

)
(ω) ∼

∫ b
a
ξt(ω)dt?

(a) If all realizations are Riemann-integrable. Indeed, the Lp-integral
is the limit of sums on average, and hence on probability. On the
other hand, J(ω) :=

∫ b
a
ξt(ω)dt is the same limit ∀ω. Now a.e.

convergence implies the convergence in probability. Moreover, by
from the Riemann-integrable assumption J(ω) is measurable. QED

(b) If the realization are only Lebesgue-integrable the situation is
more complex. See next slide
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[63] Lecture 8. Deterministic integration 3

Claim. Let ξt is measurable in [a, b] and continuous in

Lp, p ≥ 1-sense. Then
(

(Lp)
∫ b
a
ξtdt

)
(ω) ∼

∫ b
a
ξt(ω)dt (*).

Proof. It is enough to consider the case p = 1 (other convergences
will follow). By Fubini's theorem the rhs of (*) exists and∫ b
a

∫
Ω |ξt(ω)|dtP(dω) ≤ (b − a)maxt∈[a,b] E |ξt | <∞.

Consider the lhs of (*) as the limit of integral sums while the rhs as
the limit of sums

∑
i

∫ ti
ti−1

ξtdt. Then

E |(ti+1 − ti )ξsi −
∫ ti
ti−1

ξtdt| = E |
∫ ti
ti−1

(ξt − ξsi )dt|
≤
∫ ti
ti−1

E |ξt − ξsi |dt ≤ (ti − ti−1) ·maxt∈[ti−1,ti ] E |ξt − ξsi |.
The continuity on average implies the uniform continuity on
average. Hence ∃δ > 0 ∀|t − s| < δ =⇒ E |ξt − ξs | < ε.
Therefore if diam{ti} < δ the math. expectation between the
integral sums corresponding to lhs and rhs of (*) is ≤ ε(b − a).
Since ε > 0 is arbitrary the integrals in both senses coincide a.e.
QED
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[64] Lecture 8. Deterministic integration 4

Computing of moments of integrals is rather simple.
Claim. Let ξt be continuous in L2-sense and E |ξt |2 <∞. Then

E
∫ b
a
ξtdt =

∫ b
a
Eξtdt, cov(

∫ b
a
ξtdt, ξs) =

∫ b
a
Kξξ(t, s)dt,

cov(
∫ b
a
ξtdt,

∫ d
c
ξsds) =

∫ b
a

∫ d
c
Kξξ(t, s)dtds.

Follows from the continuity of the scalar product on its arguments:
Indeed, E

∫ b
a
ξtdt = E (L2) lim

∑
i (ti+1 − ti )ξsi

= (E (L2) lim
∑

i (ti+1 − ti )ξsi , 1) = (L2) lim(E
∑

i (ti+1 − ti )ξsi , 1)

= (L2) lim
∑

i (ti+1 − ti )Eξsi =
∫ b
a
Eξtdt.

This proves the 1-st equality. Two others for homework.
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[65] Test 2

(1) Let ξt be a L2-continuous stationary process with Eξt 6= 0.
Prove/disprove existence of a nontrivial r.v. η, such that

∫ tη
0 ξsds is

a stationary process.
No. The derivative of a (broad sense) stationary process ≡ 0.

(2) Let ξt be a L2-continuous stationary process and let its
correlation function K (t)→ 0 as t →∞. Calculate
(L2) lims→∞

1
s

∫ t+s

t
ξudu.

Answer: Eξt =: m. Indeed,
E |1

s

∫ t+s

t
ξudu −m| = 2

s

∫ s
0 (s − u)K (u)du → 0 i�

lims→0

∫ s
0 K (u)du = 0.

(3) Let a sequence of independent r.v. {ξn} converge with
probability 1. Prove/disprove existence of a number C such that
P(limn→∞ ξn = C ) = 1.
Answer: Consider ϕ(x) := P(limn→∞ ξn ≤ x). Then ϕ(x) ∈ {0, 1}
and C is the point, where ϕ makes a jump.
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