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2] Lecture 1. Fair coin tossing

2 gamers A,B play with a symmetric coin P({0/1}) = 1/2. Each
has a winning pattern (a finite number of consecutive binary digits)
called A / B. The game stops when one of the patterns shows up.
Questions:

(a) Does the game stops in finite time?

(b) Let the pattern length (i) |A| = |B], (ii) |A| < |B|. Who will

win?

(@) P | e =1-27)""=F 0 k=A|

n
each k-pattern # A.
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i3] Lecture 1. Fair coin tossing 2

(b. i) Counterexample. A := 000, B := 100 = |A| =3 = |B]|.
1,60, ... ,6n, ..., 5;6{0,1}.

Claim. If & =1 then B will show up before A: 101100....
Corollary. A wins iff £1£2€3 = 000.

Hence P(A — wins) = 273 = 1/8 < 7/8 = P(B—wins).

(b. ii) Counterexample. Let
A =000, B =1000 = |A| = 3 < |B|. To compensate the length
difference the winning counts from the beginning of the pattern.

(c) 3 of the “best” pattern of a given length? Mirror symmetry.
100 ~ 011 > 000 ~ 111, 001 ~ 110, 101 ~ 010, 100—7 — 101
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4 Lecture 1. Fair coin tossing 3

Table of winning probabilities for the case |A] = |B| =3
(courtesy of Anna Tutubalina and Martin Gardner):
A/B 000 001 010 011 100 101 110 111

000 — 1/2 2/5 2/5 1/8 5/12 3/10 1/2
001 1/2 — 2/3 2/3 1/4 5/8 1/2 7/10
010 3/5 1/3 — 1/2 1/2 1/2 3/8 7/12
011 3/5 1/3 1/2 — 1/2 1/2 3/4 7/8
100 7/8 3/4 1/2 1/2 — 1/2 1/3 3/5

101 7/12 3/8 1/2 1/2 1/2 — 1/3 3/5
110 7/10 1/2 5/8 1/4 2/3 2/3 — 1/2
111 1/2 3/10 5/12 1/8 2/5 2/5 1/2 —

“Best” patterns for the case of an unfair coin with P(1) = p # 57
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5] Lecture 1. Random variables (r.v.)

rv. £:(Q,F,P) — (X, B) — a measurable map, Vx € B.
§~n<=PE#n) =P({weQ: {(w)#n(w)})=0-
equivalence. F¢ := 0({-1B) — o-algebra generated by &.
M(X) 3 ®¢(A) :=P(£ € A), A e B~ distribution of &.
Pe,.en(A) :i=P((&1,- .-, 6n) € A), Ae B" - joint distribution.
&1,...,&n are independent if ¢, o =], P¢;.

P AneB)=P( e AP(neB)
If n = oo independence if Yk < 0o of them are independent.
o-algebras F, C F are independent if VA, € F, are independent
for different «.
If (X, p) is a metric space, we consider convergences:

n—oo

e in probability (P) nIi_}n;(Jﬁ,, =Eif P(p(&r,&) >e) — 0.

o in LP(Q, F,P): ||&, — £ll, =3 0.
o weak: &g, "% & in the weak sense.
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6] Lecture 1. Independence

Example of independence in pairs but not jointly.
{A;}4_| - independent events with P(A;) = 1/4 Vi.

{Bj = {Aj, A}}}, = P(Bj) =1/4 V.

P(BinB;) = P(A4) =1/4 =P(B;)P( é) Vi # j (pairs).
P(N2_,5)) = P(Aq) = 1/4 # 1/64 = [2_, P(;) (joint).

Q:=[0,1,P:=Leb=m, & n:(Q,Bor,m)— (R,Bor).

Check independence: P(£ € A;ne B)=P(£ € A)P(ne B)

(a) {(w) := a+ bw, N(w) :==c+ dw

(b) §(w) = aw, n(w) := buw?

(c) ¢{(w) = asm(27rw) n(w) := bcos(2mw)

(e) &(w) := 1j(w) cos(2amw), n(w) := 14(w)cos(2brw), I, J € Bor
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(71 Lecture 1 Conditional probabilities - usage

Let Bin(n,p) :=>.1, &, & €{0,1}, P(&=1)=p.
Calculate 7, := P(B, := {Bin(n,p) = 2k — even}).

Tn+1 = P(Bn+1) = P(Bn+1 N Bn) + P(Bn+1 N Bﬁ)
= P(§n+1 = 0|Bn)P(Bn) + P(£n+1 = 1‘BE)P(B,$)
= (1= p)mn+p(L —mn) = (1 —2p)mn + p.

How to solve this difference equation with my = 17
Solution: mp :=a(l —2p)"+ b= a=b=1/2.

n—oo

Finally 7, = ((1 — 2p)" +1)/2 — 1/2.
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8] Lecture 1. Mathematical expectation

Ef(&) :=P(fo&): ff(§ ))P(dw), where f : X — R.

Variance DF(€) = E(F(€) — EF())? = P((f o & — EF(¢))?),

Covariance cov(f(¢),g(n)) := E (((£) — Ef())(g(n) — Eg(n))")-

Chebyshev ineg-ty: P(f(§) > ¢) < Ef(§)/¢ f>0,e>0.
P(|¢ — E¢| > ¢) < DgJe® € € R

i-th Marginal distribution of £ := (&1,...,&p) is ®y.

Characteristic function p¢(t) := Ee'(t4) for X = R.

£ € R" is Gaussian N(a, A) if pe(t) := ei(ta)=3(Att) A >

with density f(x) := \/(27) "detA-Te~ (A (x~a).(x~2))/2,
Claim. & € £ € N(a, A) are independent iff A is diagonal.
Claim. Let &,n be independent with densities f¢, £, then

fean(x) = fe x ) = [ f(t)fy(x — t)dt.
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9 List 1 — deadline 24.02.20

(1) Let {&}, be independent r.v. with E&; = 0, D&; < oo and let

Nk = SOk | &. Prove/disprove that

P(maxk<p x| > €) <2P(n, > e — /2Dn,) Ve € R.

(2) Let ¢(x) = ¢(—x) > 0 be a nonincreasing for x > 0 function, and let
&, 1 be r.v. Prove/disprove

P(l¢] <e)>P(In| <e) Ve > 0= Ep(§) > E¢(n) and vice versa.

(3) Let {&}; be independent r.v. with the same distribution function
F(x). Let £_ := min; &, &, := max; &. Find the distribution function of
the vector (£_,&,).

(4) Let £ be a r.v. with the median m,. Prove/disprove that

mee =eme Ve € R

(5) Let {&}"_, be independent r.v. with E&; = a, D&; = 02 < oo and let
Ny =237, &. Find a function ¢(n) such that

Eo(m) ST 1 (6 — ma)? = o2

(6) Let A be a n x n matrix with independent random entries a;; with
Ea; =0, Da; = o2. Calculate D(detA).

(7) Let {& 1} beiid r.v. with 0 < D&; < oo. Find all possible values of
the function ¢(x) := lim,o P(31_, & < x), x €R.
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o] Lecture 2. Explicit construction of independent r.v.

Q:=1[0,1], F := Bor,P =Leb, Q3w = > 27%uwy, wy € {0,1}.
k>1

Claim 1. {{,(w) := wn}n>1 are iid Bernoulli(1/2) r.v. with

P(fn = 0) = P(gn = 1) = %

Claim 2. Let {{,}5>1 be iid Bernoulli(1/2) r.v., then

nw) =2 k=1 27k¢, (w) is uniformly distributed r.v. on [0, 1].

W] W3 We Wig - . - Enk(w) is the (n, k) element
Wy W5 Wg ... of this triangle table.
Wqg Wg ...

wr ...

Claim 3. {&, := >, -, 2 %€k } a1 are uniformly distributed iid r.v.
on X :=[0,1]. -
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1 Lecture 2. Explicit construction of independent r.v. 2

Claim 4. Let £ be a uniformly distributed r.v. on [0,1] and let F be
an arbitrary distribution function. Then 7 := F~1(¢) is a r.v. with
the distribution F¢ = F.

Here F~1(t) :=inf{s: F(s) > t} - a generalized inverse function.

Claim 5. Let {Fi}4>1 be an arbitrary sequence of distribution
functions. Then there exists a sequence of independent r.v.

{nk}kZI with Fﬁk = Fk.

Construction: 7y = ~,:1(@() with iid uniformly distributed {&x}.

Independent events: P(A, B) = P(A)P(B). Possibilities:
ANB=0,A=B,AN B # () - which is correct?

3 of independent events in ([0, 1], Bor, P)?
P(O)=3%P})= %, P(1) = % — no independent events.

11/65



2 Lecture 2. Conditional mathematical expectation £ € R

wrt an event Be F, P(B) >0: E({B):=E(-1g)/P(B) .
Observations: E(¢ = 1A]B) = (1AmB)/P( ) = PUAAB)  p(AlB).
d

E(¢|B) = PEls) = [ ¢ iy
P(B) — B¢

= [5&dP(w|B) = [, dP(w|B).
E¢ = Zi P(B,’)E(ﬂB,’) if ;B =Q, A:= {B,‘} e F.
P(A|A)(w) := >, P(A|Bi) - 1,(w) — random variable:
(a) ANB=0= P(AUB|A) = P(A|A) + P(A|A)
(b) P(A[2) = P(A), (c)E(P(A|A)) = P(A).
If #(n(2)) < oo then A, := {B;} — partition generated by 7 and
P(Aln) := P(A[Ay).
E(|A)(w) :==>_; E(|Bi) - 1;(w) — random variable:
(a) E(ag + bn|A) = aE(i\A) +bE(n|A)  (b) E(E[Q) = E(S)
(c) E(1alA) = P(A[A)  (d) E(E(£]A)) = E(¢)
(e) n:= 2 zilp, = E(&n|A)(w) = n(w)E(§|A)(w) .
(f): w € B = E(&n]A)(w) = E(En|Bj) = ziE(¢]B))
= n(w)E(&]Bi) = n(w)E(§]A)(w).
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3 Lecture 2. Conditional mathematical expectation 2

E(¢|A), A C Fis a random variable in R U 400 such that:

(a) E(¢JA) is A-measurable,  (b) P(¢-14) = [, E(£]A)dP.
Properties: linearity, monotonicity +

- E(¢n|A) =& - E(n]A) if £ is A-measurable.

— E(E(¢]A)|A) = E(¢|A) if AC AC F. Equalities are P-a.e.

E(&|n) :== E(&]By), where B, :==0a(n). P(Aln) = P(1a|B,).

T1. Let A, := {B;}] be a partition of (Q, F), B:=0c(A) and
|EE| < 0o = E(&|B) = E(&]A) with probability 1.

Proof. By B-measurability P(E({|g;|B) = z; = const) = 1. Hence
E(&IB) = X izils; = >, E(¢]B;) - 1g; = E(£]A). QED

JE¢ < oo implies 3! E(&]A)(w).

E(&|n) := E(&|o(n)). Here E(&|n = x)(x) — conditional ME.

Conditional density p¢(x|n = y) = pey(x, y)/pPy(y):
E(f(&m)n=y) = [ f(x,y)pe(x|n = y)dx for f € L.
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4] Lecture 2. Conditional measures

In general E(£|B) cannot be calculated explicitly, however in some
simple cases this is still possible.

Let dP(x,y) = p(x,y)dxdy be a prob. measure on R? with p > 0
(P(A) := m(1a - p) for the Lebesgue m).

Consider o-algebras By generated by the coordinate function x and
let Py be the projection (marginal distribution) of P to the
x-coordinate with py(x) = my(p(x,-)).

The conditional measure P* on ¢, := {(x,y) : y € R} has the
density p*(y) = p(x,¥)/px(y) = p(x,¥)/ | p(x,y)dy - prob.
measure.

E(€]B.) = my(&(x, olx, ) = Lebelebonds,
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is] Lecture 2. Choice of the largest unknown number

The numbers A # B are in closed envelopes. | take one at random
(say A) and read it. Is it possible to construct an algorithm
(deterministic or random) answering the question if the second
(unknown) number is larger?

Algorithm. Let £ be a Gaussian r.v. If £ > A | decide that B > A
and vice versa. How this helps?
A

B
® ®

&1 &2 &3

1+P((A=£)(B=£)<0
(A-9(B-9)<0) 1

The probability to win =
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6] lest 1

(1) (2, F,P), Q=[0,1], F = Bor, P = Leb,

{&n =w"tpez,, weQ Ay i ={weQ:§ <1/n}
Calculate: P(Up>1A,) = 1, P(Np>145) = 1/7/3.
Solution: A, ={0 <w <1/¥/n} = A1 =10,1],
further use that /n — 1 and max, ¢/n = V/3.

(2) Find all a,e > 0 such that P(¢ > a) < e727°Eef, V.
P(£ > a) < e @E(e* - 1¢>,) < e ?Ee® (Chernoff inequality)
Answer: e =0,Va > 0, sincefor{ =e? = P({ >a)=1> e °.

(3) Let Q:={1,2,3,4},F := 22 P({i}) = 1. Prove/disprove 3 of
iid non-constant r.v. £, : (2, F,P) — (R, Bor).

Solution: {(w) 1= 14, 2}( w), N(w) = 131(w)
P=1)=P(n=0)=

P(=0n=1)=Pwe {3}) ;1 =PE=0)P(n=1)

16/65



n7 Lecture 3. Exponential moments — Chernoff bounds

Idea of large deviations, from r.v. and up to random DS.
Chebyshev inequality with ¢ ~ — nondecreasing:

P(§ > t) =P(p(§) = p(t)) < Iif(i(f)). Set p(x) := ¥

P(¢2e) < EE, Pe<—e)=Plett > et < £

ete

Chernoff's idea is to find the value of t minimizing r.h.s.

Moment generating function:

Me(t) = Ee®® = 14 tEE + S E2 4 4 LEET 4.
Generating (proizvodyaschaya) function: Ez%, |z| < 1,
Characteristic function: Ez'¢,

Properties of M(t): (a) ES" = Mg(”)(O) (if 3 near 0)
(b) Mc(t) = My(t) |t| <0 = & =n (on distribution)
(c) &,n independent — M, = MM,

Proof. Mgy, (t) = Eet€*) = Eetel” = M:M,. QED
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s Lecture 3. Exponential moments — Chernoff bounds 2

TL & iid P(& = +1) = L = P(| 7_, &I > ) < 2e7°/(n),
Proof. We check that P(S, =Y} ;& >¢) < e—€2/(2n).

Eets = (e' +e7%)/2 = cosh(t) < et®/2_ To prove the last
inequality we compare the correspc:zr}(ding Taylor series:

cosh(t) = (e' +e7%)/2 =35 R (odd terms cancel) and

t2/2 _ t2k
e /? = 2 k>0 2FE]

(2K)! = (2k)(2k — 1) ... (k + 1) k! > 2kk!
>2k
Now since EetSr = [7_, Ee'k = cosh"(t) < e™’/2 we get

nt2 nt2
P(Sp>e)<ez [etf =ez '

Choosing t = ¢/n (minimizing rhs) we get P(S, > ¢) < e—c2/(2n).

QED
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o] Lecture 3. Exponential moments — Chernoff bounds 3

T2. Let Bin(n,p) :=>.7; &, P(&§=1)=p. Then
P(|Bin(n, p) — np| > t) < 2e~°/G") if 0 < t < np.
P(|Bin(n, p) — np| > t) < 2e~"/3 if t > np.

L. Let [¢] < 1,E€ = 0 = M(t) < e"P¢ Ve e [-1,1].
Proof. [t£| < 1,E& =0 = !¢ <1+ t& + (t6)> =
Eet® <1+ t2E€2 =1+ £2D¢ < e°P¢. QED
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r20] Lecture 3. Exponential moments — Chernoff bounds 4

T3. Let & be independent with |§; — E&;| < 1 Vi.

Set Sp:=>.1 &, 0:=+/DS,

— P(|S, — ES,| > e0) < 2max(e /4, e==7/2).

Proof. It is enough to consider E&; = 0 and due to symmetry that
P(S, > o) < e t9/2 for t = min(¢/(20),1).

S " D¢ = o2, hence by the Lemma:

P(§ < 60’) < e teo le',:l Eetéi < e teo H?:l etzDE; — e—taa-‘rtzaz_
Thus choosing t < 5 we get the result. QED (Appl.: coin tossing)

& e{0,1},p=3 ES,=2,DS, = 1.
Chebyshev: (|S — ES,| > 6ES,) < - (EIDESS,,) _ 5%
Chernoff: P(|S, — ES,| > 6ES,) < 2e=0°ESn/3 = 0g=0%n/6

much better!
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1) Lecture 3. Markov chains (unorthodox approach)

(X, B) — measurable space, M = M(X, B) — probabilistic
measures on X. Markov chain T* : M — M, t € Z,R is a family
of operators such that for u,v € M:
~THap+ (1 a)v) = aTH) + (1 - A)TH(¥), 0<a<1
— Tt (u) = T% o T*(u) — semigroup or Markov property.
If Tt =8, Vx € X and some y = y(x) € X = deterministic
and random otherwise.
Deterministic: F : (X, B) <= = T"u(A) := p(F~"A) VA.
Random Examples:
(a) Random map: Fi, Fo(X,B) <=, 0 < p <1,

T u(A) == pu(F T A) + (1 = p)u(Fy A).

(b) Finite state Markov chain: X := {0,1}, P := Poo. Po1
P10 P11

L, — *P: /’L(O) — POOM(0)+P10N(1) > no— PN
Tw=n ( (1) = porp(0) + prip(1) )’ =
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22 Lecture 3. Markov chains (unorthodox approach) 2

Tu=

w*P
pooc-bpn

(c) iid & € {0,1} Markov chain with p; =1/2.

(d) General continuous time Markov chains: transition probabilities
Pi(x,A) := P(&s1t € Alés = x).

How this corresponds to the traditional approach?
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23] Lecture 3. Asymmetry of subway rides.

Every morning you drive from home to work along the metro ring
line from Kurskaya to Kievskaya. Since the distance in both
directions is almost the same, you choose the first train in any
direction. After a while, you find that you choose the right direction
5 times more often. How can this be explained?

right
Kievskaya Kurskaya

left

left line
right line

Metro schedule: T T T T T
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124 Lecture 4. Stochastic/random processes

Stochastic function is a a family of r.v. {&}eeT, OF
&t(w) : (Q,F,P) x T — (X, B) - Vt measurable on w.
When T = Z9 or RY we identify t with time and speak about
stochastic processes. ¢(®) — r.v. for a fixed ¢.
&o(w) — realization or trajectory — nonrandom for a given w.
& ~ne it P& #ne) =0 Vi€ T — equivalence.
S (A) =P((&n, - .-, &,) € A) — a finite dimensional
distribution.
& ~ mp = ¢ = " (but not vice versa).
Question: what about realizations? - No. Example: Let T := [0, 1]
and a r.v. 7 € (0,1) have a continuous distribution. Set & = 0,

0 ift#r :
N = {1 otherwise & ~ e since P(& # ne) = P(T =1t) =0,
however each trajectory of &, is identically 0, while each trajectory
of 7 has a “jump” at time 7.
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125] Lecture 4. Existence of a random process

Let F(x) be a probability distribution. Is there a probability space
(Q,F,P) and a r.v. {(w) such that P(w: &(w) < x) = F(x)?
Set 2 := R, F := Bor(R). Then 3P : P((a,b]) = F(b) — F(a)
and thus for the r.v. {(w) := w we have F¢(x) = F(x).
Now we consider the same problem for a random process
&, t € T C R with finite dimensional distributions
Feoota(x1, o oixn) =Pw: & <x1,...,&, < xp).
T(Kolmogorov) Let Fy, . +.(x1,...,xn) be a given family of finite
dimensional distributions, satisfying the following conditions of
consistency: F, ¢ ta(X1,...,00,...,Xp)

= Ftyrote 1otistsostn(XLs -+ o Xk—1, Xk41, - - - s Xn). Then 3(Q, F,P)
and a random process &;, t € T such that
Plw: & <x1,....&, <xn)) = Fey,.. ta(x1,. .., Xn).
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6] Lecture 4. General Markov chains

A random process &; : (2, F, P) — (X, B, m) acting on a Borel
(X, B) space with a finite reference measure m (# m(&;)) is a
Markov chain defined by transition probabilities

QL(x,A) := P(és4r € Alés = x), A€ B,

with standard properties:

— For fixed s, t, x the function QZ(x,-) is a probability measure on
the o-algebra B.

— For fixed s, t, A the function Q{(-, A) is B-measurable.
—Fort=0 QL(x,A) = 0x(A).

— For each 5,0 <t <t' and A € B we have

Q! (x, A) = /X Qi (x. dy) Q! ~{(y. A).
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271 Lecture 4. General Markov chains 2

The process ; induces the action on measures:
Qiu(A) 1= [ @i(x,A) dulx)
and the action on functions:
o) = [ ely) Qi ).

A Borel measure p is said to be invariant or stationary for the
Markov chain &; if it is a solution to the equation

Qép=p Vs, t.

A system is deterministic iff QLdy is a §-measure Vx, s, t.
This agrees with the discussion of the unorthodox approach.
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28] Lecture 4. Discrete time random processes

(1) iid rv. & 1 (Q, F,P) — (X,2%), t € Z,, X := {0,1},

P =1)=p,P(=0)=1-p.
Let b:= {b;} be a binary sequence and let SV(b) be its left shift
by N positions, i.e. (SV(b)); := birn. W(b,n) := (b1, ba, ..., by).
We say that a sequence b is strongly recurrent if Vg, n € Z, there
exists N = N(b, no, n) such that W(S™b, n) = W(5™*Np n); and
uniformly strongly recurrent if 3 an infinite sequence of shifts { Ny},
such that sup; |Ny1 — Ni| < oo.
Calculate: P(¢; is s.recurrent), P(&; is uniformly s.recurrent).

(2) Simple random walks: n; : (2, F,P) — (X,2X), t € Z,
X =7, ney1 = e + &, where & € {—1,1} are iid with
P& = 1) = p.P(E = —1) =1 p.
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l29] Lecture 4. Discrete time random processes 2

(3) Collective random walks — the exclusion process EP.
A configuration (; :== (.. .,(;I,C?,Ctl, ...), (€7 describes
positions of “particles” on the lattice Z at time t. Each particle
performs the random walk if it does not interfere with other
particles.

$ 1 S $ 1 1 t TASEP

1 S 1 P } t+1
NN
1 ® 1 ® 1 é— t+2

The main problem in the analysis is an infinite number of
simultaneous interactions between neighboring particles.
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o] Lecture 4. Basic examples of random processes

(0) Random sin oscillations: & := Acos(nt + ¢), rv. A;n>0,¢.
¢ is uniformly distributed on [0,27) and does not depend on A, 7.

(I) Poisson process & with the parameter a > 0on T :=R.:

(0) & = 0.

(YVO<ty <ty <- - <tyrv. Ay r, , :=&; — &, independent.

(i) rv. Aéps ==& —&s, 0 < s <t are Poisson distributed:
P(Aés = k) = (a(t — s))ke 2t=9) /Kl k € 7.

(iii) Trajectories of &; are right continuous.

(1) Cauchy process: (0) + (i) +
(i") rv. Adps =& — &, 0 < s < t are Cauchy distributed with
the density  p(x) = 77 1(t — 5)/((t — 5)? + x3).

(1) Wiener process we: (0) + (i) +
(i") r.v. Awes i = wy — ws, 0 < s < t are Gaussian N(0,t — s).
(iii") Trajectories of w; are continuous.
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;31 Lecture 4. Recurrence of random walks

Let n¢[p] be a random walk on Z with P(n;41 —mr =1) =p. A
sequence { by}, by € Z is recurrent if Vi 3n = n(i) > 0: b; = bjtp.

Find all values of the parameter p € [0,1] such that
(a) ne[p] is recurrent,

(b) n¢[p] is strongly recurrent,

(c) nt[p] is uniformly strongly recurrent.

L. Let Qk := {w: a return to k occurs after 2n time steps} =
P(Un>0Qk) = 1 iff > om0 P(QK) = o0.

We have
P(Q%) = C5 (pq)" = @nlpa)” (% (by the Stirling formula).

n'n!

Thus recurrence occurs iff p =g =1/2.
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132 Lecture 4. Recurrence of random walks 2

General framework. Let &, be a Markov chain on Z™ with transition

probabilities p( ).

T. v i=max,P(& = kléo = k) = Liff Y2, p\") = 00 Vk € Z..
Proof. Let v, := P(the 1st return to k occurs after n steps), let
vi= Zn21 vn. By the formula of total probability we have

*) p,('}) = ZJ 0p,(J,)v,7 _j- Set additionally u, := p(,) nd
introduce the generating functions U(z) =3 50 Umz™

V(z) := 3,50 Vmz™, which are analytic for |z] <1. Then (*)is
equivalent to U(z) — up = U(2)V(2),up =1 = U(z) = %\/(z)
lim,—1 U(z) = lim,_,1 %‘/(Z) = i—v = o0 if v = 1. On the other
hand, lim,_1 U(z) = limz51 )" 50 Umz™ = > o0 Um = 00. QED
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i3] Lecture 5. Properties of basic random processes

(0) Random sin oscillations: & := Acos(nt + ¢), r.v. An>0,¢.
@ is uniformly distributed on [0,27) and does not depend on A, 7.
Claim. Finite dimensional distributions of &;,t € T :=R are
translationally invariant: uz,p = uz Vt = (t1,...,ts), h € R.
Proof. We need to show that
Z :=P({Acos(n(ty1 + h) + ¢),...,Acos(n(ta + h) + ¢)} € C)
=P({Acos(nty + ¢),...,Acos(ntp, + )} € C).
B:={(x,y,z): x,y >0,z € [0,27),
{xcos(yt; + z),...,xcos(yt, +z)} € C} is a Borel set.

Denoting by {z}2, the fractional part of z mod 27 we get
Z = P((A,n,{¢ + yh}2x) € B) = P((A,n, ) € B).
(A,n) and ¢ are independent = p1a ., = ftay X fip. Thus
Z= fooo fooo NAm(dXdY) /Ltp(cl = {z : (Xa)/7 {Z +yh}27r) € B})

= Jo° Jo " man(dxdy) po(C:={z: (x,y,z+y) € B}), since
(3 is obtained from C, by the translation by yh and mod 27. Now
tie is uniform on [0, 27) and does not change under translations.
QED
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;34] Lecture 5. Poisson process

(I) Poisson process & with the parameter a >0 on T :=R:

(0) & = 0.

(VO <ty <ty <---<tyrv. Ayt 4 =&, — &, independent.

(i) rv. Aéps ==& — &, 0 < s <t are Poisson distributed:
P(Aés = k) = (a(t —s))ke 2t=9) /Kl k€ 7.

(iii) Trajectories of &; are right continuous.

Claim. a.a. trajectories are non-decreasing integer valued functions
with jumps of size 1.

Proof. Main idea. Show that probabilities of the events

A={& eZVt=k27"}, B:={& <& Vs <t=k2™"},

Cn :={Vk e ZN[0,&n] Tt = k27" € [0, N] : & = k} are equal 1.
To this end one approximates them by events depending only on a
finite number of values &;.
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35] Lecture 5. Poisson process 2

Proof. The event A= ,_;,-n(Ar = {& € Z4})
P((t € Z4) =P(& =& €24) = > P(&e=1)=1=P(A)

i=—o00

B is the intersection of the events:
Bn:={6 <&on <. hkn <o b = ek < Ehtr) k-

Since P(&.p-n < §(k+1 «-n) =1, we have 1 = P(B,) = P(B).
Cn 2 Mpto €1y k- — Ekn—n € {0,1}} = by (i)+(ii)
P(Cn) > [Tee " P& w41k — Ekkn € {0,1}})

> (e—a2*" + az—ne—aQ*")Q"N > (1 _ 0(82_”))2nN ”2)0 1,
since e ¥ +xe ¥ =1—-o0(x)asx - 0= P(Cy) =1.
Finally, the event that the jumps are equal to 1 coincides (by the
right continuity) with the event Z := AB Ny Cy with P(Z) = 1.
QED

 —
_—
—_—

N A trajectory of &;
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6] Lecture 5. Wiener process

(I11) Wiener process w; starting from 0 on T :=R,:

(0) wo = 0.

(YVO<to <ty < <tprv. Awp ¢ | = Wy, — Wy, are
independent.

(i) rv. Awes == wy — ws, 0 <s <t are Gaussian N'(0,t — s).
(iii) Trajectories of w; are continuous.

Tl.VO<a<tmp<th <---<th=0b
n—1

(L)  lim Y (wy,, —wy)?=b—a.

diam{t;}—0 [ —p
n—1
Proof. Let Z:= 3 (wy,, — wy;)?. Then by independence

i=0

n—1
EZ = Z E(Wt;+1 Wti)2 = Z D(Wt:’+1 - Wti)

l— i=0

= Z(t:+1 t)=b—a
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;371 Lecture 5. Wiener process 2

Similarly
n—1 ) 2
DZ = Y D(wy,, — wy,)? (evaluaing [ x*e 202 dx by parts u = x°
i=0
n—1 I 2
= > [E(Wti+1 - Wti)4 - (E(Wti+1 - Wti)2)2] dv = xe 2% dx)
i=0
rl771 ) ) n—1 5
= 2Bty — &) — (tip1 — 1)) = X (tiy1 — 1)
i=0 i=0
n—1
< max(tiy1 — t) x > (tiy1 — ti) = (b — a)diam{t;} — 0.
i=0

Thus E("zl(wm w2 — (b— a))? = D"zl(wt,+l w2 — 0,

which |mp||es the convergence in L. QED

Important observation. An increment of a smooth function is of the
same order as the increment of its argument, while the sum of
squares of increments goes to 0. In the case of w; the situation is
rather different.
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;38] Lecture 5. Wiener process 3

Statistics:

Holder exponent for the Wiener process w;. For t > s we have
We—Ws __ We—Ws . E—S 1—28 t—5—0 .

Efs =0, Dyl = i = (t—s)' 27 =570 iff

0 < 8 < 1/2. Further one applies the Chebyshev inequality.

Variation var(wt). For A := {(¢;, t;y1)}! C [a, b] denote
V(we, A) := 37 [wy; — wy,,, |- Find (E/D)V (we, A) =7

Elwepn — we| = —2= [°2 [x[e™/2dx (02 = h)
o 2 2 o0 __y2 2 2 2 o 2h
= 027r e x%/20 d2)i7 _ 2h,

Thus for [t; — tj11] :%, a=1ty<---<t, = b we have
EV(we, A) = /2(b—a) - v/n =5 oo, DV(we, A) =F b— a.

Now again the Chebyshev inequality gives the result.
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;39] Lecture 5. Wiener process 4

Statistics:

Claim. Let £,(t) be piecewise linear with with vertices at points
{k27", Z;(:_Ol(w(i+1)2*k — Wjp-«)*}. Then

P(|f,(t) — t| =37 0) = 1 uniformly on [0, T].

Proof. The functions f,(t) are nondecreasing. Thus it is enough to
prove the convergence on a dense set, say for all t = k27, Why?

For n > m we have

E(fa(t) — t)?> = 2t27"E S (fo(t) — t)? = Y. E(fa(t) — t)? < 0.
n>0 n>0

Since the mathematical expectation is finite, the series converges

by the Chebyshev inequality with probability 1. Hence,

fo(t) —t — 0. QED

Theorem (Continuity of trajectories:). Let &, t € T = [a, b] be a
random process such that

Ja,e,C > 0: E|&; — &|* < C|t —s|*** Vt,s € T. Then T a
modification of & with continuous trajectories.
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o] Lecture 5. Wiener process 5

(I1) Multidimensional Wiener process. w; := (w}, ..., wf) € RY,
t € Ry, wyp = xp. The definition is exactly the same as in the 1D
case, except that the increments w; — ws have the covariation
matrix diag(t-s) instead of a single number.

Claim. The events from ]-'W;- are independent, which implies that
the d-dimensional Wiener process is simply a collection of d
independent 1D processes.

Proof.V0 < t; < --- < t, consider random vectors

W= (w],.. n). Their joint distribution is Gaussian. Hence
for mdependence it is enough to observe that the coordinates of
W' and W/ for i # j are uncorrelated. QED

The density of the joint distribution of (wi,.. Wtd) is
pW},...,W{’ (X]_, .. ) H m exp( 2 (X:t’:(:t’ 13))
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(s1] Lecture 5. Wiener process 6

Statistics:
Claim. Leta=ty <--- < t, = b. Then
,?il(th,-H — th,-)(Wt2,~+1 - Wt2’) 730 in L.
Proof. v"lvjo:: (w} + w?)/V/2 is again the Wiener process. Thus
lim r;i:(wtl+1 — W, )(Wt+1 — Wg)

2[|'m22(Wt+1—~) Z'lm Z( s — wh)?]

i=0 =1

32(b—a)—(b—a)— (b —a)] _o. QED
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a2] Lecture 5. Wiener process 7

(II1) Existence. Let &, be a simple symmetric random walk on Z
with §o = 0 and P({p41 = i + 1|, = i) = 1/2. We interpolate it
and rescale to [0, 1], namely Vn € Z, (i, i1, ... ,in) € Z"* define
Ao izein) (£) 1= (L = 0t + [02])Ea + (0t = [0E])E]ne1 1.

which linearly interpolates the points {1/n, ik /\/n}.

un({f}) =2~ BT (f) for some (i1, ..., i) € Z" is a measure
on {f} € C([0,1]). {in}n describes the random motion of a
particle which performs many tiny steps during each time moment.

T. un =5 W weakly — probability measure on C([0,1]), called the
Wiener measure. W({f : f(tiy1) —f(ti) € li, i=1,2,...,n})

2
:+1_ X.

:H: =1 /727Tt+1 ) f/

Here /; are intervals from [0,1]. W corresponds to a random
process called Brownian motion and satisfying all properties of the
Wiener process.
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3] Lecture 5. Subway escalator
T T t TASEP, p = ].
o o

B3 g
©
B3 g

———————— t+1
AL N
—— ¢~ t+2

Let V be the escalator’s velocity, p — the density of passengers.
Then the passengers flow F(p, V) := (1 — |1 —2p|)/2 + Vp.

F Case V <1 F Case V > 1 Vp
1 1
2 Vp 2

0 1'00

FG3.V)> F(LV)iff Y. >V —= VvV < 1.

NIy
N
—
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1s4] Lecture 6. Wiener processes 8

Moments (d = 1): E{ = E(§ — &) =0, D& = D(& — &o) = t.
For 0 < s < t we have
COV(£t7€$) — E(Wt — WS)WS —+ EWS? = D(WS — Wo) =s=tASs.

Continuity: E(&;4p — &) = 0, D(&4n — &) = h. Therefore & — &4,
as t — tg Vip in probability.

A Brownian bridge is a process B; whose law is the conditional
probability distribution of a Wiener process on [0, T] subject to the
condition wr =0, i.e. By := (wg|wy =0), t € [0, T]. Then

EB; =0, but DB; = L{t) — the most uncertainty is in the
middle. cov(By, Bs) = 2 if s < ¢.

Remark. The increments in a Brownian bridge are not independent.
Representations: B; = w; — ~wy = W e
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5] Lecture 6. Wiener processes 9

A d-dimensional random process &; is Gaussian if all its finite
dimensional distributions are Gaussian, i.e. they are defined by 2
functions m; := E&; and Ry := E(& — ms)(& — my).

Let &, t € Ry be Gaussian and  (0) & =0, (a) E& =0,

(b) E&tés = min(t,s) =t A's, (c) & is continuous on t a.e.
Claim. & is a Wiener process.

Proof. VO < t; <--- < t, rv. (&;,, — &) have a joint Gaussian
distribution. (b) implies that the increments are uncorrelated, and
the Gaussian distribution implies their independence. Finally,

E(& — &) =B+ EE2 —E&é=t+s—2(tAs)=t—s. QED
Remark. E|¢, — &| = /22,
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6] Lecture 6. Wiener processes 10

Let 7, be the 1st moment of time when & = a > 0.

Claim. P(& > a|m, < t) = %

Proof. {; = a at t = 7,, while for t > 7, by the symmetry. QED
Corollary. For t > 0

P(rs < 1) = pediiily = 2P(s = 2) = |2 J el ()
a t

Hence P(7, < o0) = 1. Moreover, we can find the maximal value of
& during the time t:
o
> x) = <t)=,/2 -y?/2

P(max, & = x) = P(rx < 1) \ﬁx/{ﬁ eV /2dy

[e.@]
=\/Z/ eV /@) dy = 2P(& > x) — the doubled normal law.

X

Similarly for the minimum value. Observe also that

P(Orgsaétg > 0) = P(Ogslgtﬁs <0)=1.
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a1 Lecture 6. Wiener processes 11

Claim. The arcsin law for the maximum of &;:

for0<s<t.

P( <) < arcs n

(Tmar. < f iy = Raresin/i

Proof. After the moment 7, the process obeys the same laws as

when starting from 0. Therefore {max == 0max &y = max fu if
$

T = s < t, and £max has the same probability dlstrlbutlon as
a+ max &, According to (*) this r.v. has the following

0<u<t—s
conditional probability density:
)2
Pemax (X|Ta = 5) = rt{s) exp(—(;ztfz) ), a<x < oo.Hence
22 _(xfa)2
Pramn(5:%) = Pry ()P (3l7a = 5) = — b gemBre He

Denote by 7 and £ the (time) position and the value of the global
maximum of &, on the interval [0, t].
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s8] Lecture 6. Wiener processes 12

The density of the r.v. (7,£) at a point (7 = 5,£ = a) coincides
with the density of (7,,&) at the same point, since

pre(s;a) = pr(sl§ = a)pe(a) = pr.(sl¢ = a)pe(a) = pr, e(s. 2).
= pre(s,a) = 2e” 2sfor0<s<t 0 < a < oo; and

my/s(t—s) S

:>p‘r fo PrsSX) \/75‘[0 *e QSdX_F\/m

Therefore P(1 < s) fo (t = %arcsm \/; QED
_ 1
0 t/2 t

Thus the maximum is near one of the end-points.
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1o Lecture 6. Coupling

A coupling of measures P on (Q,F), i =1,2is a new measure
Pon (Q:=Q! x Q% F := F* x F?) such that

P(A! x Q) = P1(A1) P(Q! x A%) = P?(A%) VA ¢ F'.

A coupling of rv. €, i =1,2is a new r.v. & := (£1,€2) on (Q, F)
such that its distribution is the coupling of the distributions of ¢'.
Remark. Couplings are not uniquely defined.

Let (Q/, F') = (Q, F), then the total variation distance

1P — P?[|y, = supacr [P(A) — P2(A)].

T1(Coupling inequality). Given r.v. {', i = 1,2 with probability
distributions P’ for any coupling HP1 P2||; < P(f1 £ £2).
Proof. P}(¢! € A) — P2(62 € A) =P(' € A) - P(&2 € A)
=P e A =2)+P( eAl £

PE Al =C)-P@eAd #£E)<PE #8&). QED
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is0] Lecture 6. Coupling 2

A coupling of r. processes £t, i =1,2 on the same space (2, F,P)

is a new r. process &; = (£1,€2) on (Q x Q2, F x F2,P).
=inf{t € T: & = &2} - the coupling time.

A coupling P is called successful if P(£} # £2) =0 YVt > 7.

o o
a7

T2, |PY(el e ) —P3(2 e )|l <P(r>t) VteT.

Proof. {¢} # €2} C {r <t} by T1. QED

Application: convergence of Markov chains.
Problem. Let & := a'w{ + b', i =1,2 and let w/ be independent
Wiener processes on RY. Check existence of the successful coupling.
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511 Lecture 7. Main classes of random processes

(1) & € RY is called a Gaussian random function if all its finite
dimensional distributions are Gaussian.

When the random sin oscillations: &; := Acos(nt + ) are
Gaussian? (Jyp : P(n = yp) = 1) and A has the density ae~?¥.)
(2) & € R? is called a process with independent increments if all
its increments over non-intersecting time intervals are independent.
(2') A similar notion in the broad sense — a process with
uncorrelated increments: cov(&s, — &4y, &by — &) = 0 for

t1 < tp < t3 < ty. Recall that cov(&,n) := E(§ — E&)(n — En).
(3) & € RY is called stationary if all its finite dimensional
distributions are shift-invariant: pz., = uz.

(3') & € Rl is called stationary in broad sense if the first two
moments exist and

E&ip=E&, K(t+h,s+h)=K(ts):=cov(&,Es).

This is equivalent to E§ = m, K(t+ h,s+ h) = K(t — s).
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521 Lecture 7. Main classes of random processes 2

(4) & € Rl is called a process with stationary increments if joint
distributions of its increments are shift invariant.

Obviously all stationary processes have stationary increments, but
not all of them have independent increments. Give an example:
& = Acos(nt + ¢) + at + 3, where ¢ does not depend on
(A,n,a,B) and is uniformly distributed on [0, 27).

(5) Markov chains — the future and the past are independent if the
present state is fixed.
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s3] Lecture 7. Convergence and finite dim. distributions

T1. Let E‘£t|2 < 0 Vt. Then E'(L2) |imt_>t0 St |fF 3 |imt75_>t0 Eftgs.
Proof. The necessity follows from the continuity of the scalar
product, while the sufficient part follows from the Cauchy condition

lim E|& — &% = lim [E[&]? — E&s — E&Ee + E|&6[°] = 0.
t,s—to t,s—to

Problem 1. Let {¢,} be uncorrelated. Then 3(L?)lim Y-, &, iff

the series -, E§p and 3 - D&, converge.
Proof. Let n, := "7 ;& = Kypp(n,m) = Y. DE;. Now use
i<min(n,m)

T1 above.
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is4] Lecture 7. Convergence and finite dim. distributions 2

T2. (P)lime_s, & exists iff exists the weak limy sz pie, ¢, =: .

Proof. (a) Necessity. (P)lim¢ st (&t €s) = (1, m). Hence the
2-dim. distributions ¢, ¢, converge weakly.
(b) Adequacy. lim; sz, pig, ¢, is supported by the diagonal (since
(&:, &) is there). Let £ € C°, £(0) = 0 and £(x) =1 for |x| > e.
Then by the Chebyshev inequality

P& — &s| > €) < Ef(&e — &) = [ [ fo(x — y)ig, . (dxdy)
PO E(x - dxdy) = 0 since - € C0 and p is supported
by the diagonal {x = y}. Hence the sequence in fundamental in
probability. QED

Problem. Prove/disprove that if & is stationary and
P(&: = const) = 0, then (P)lim¢_, & does not exist.
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[s5] Lecture 7. Stochastic continuity in probability

&t is stochastically continuous at tg € T if (P)lime_¢, & = &,
This property is defined by 2-dim. distributions. All above examples
of random processes are stochastically continuous. Even that
realizations of the Poisson process are discontinuous. Why?
Answer: P(a discontinuity happens at a given point)=0.

Problem. Prove/disprove that if & are independent Vt and has the
same density p(x), then &; is stochastically discontinuous Vt.

Proof. P(\ft—§t0| > ¢) :ffx y|>£ p(x)p(y)dxdy

0
= ffx;éy y)dxdy = [ [ p(x)p(y)dxdy = 1.
Hence 3¢ > 0 such that P(|&r — &, | 2 £) > 1/2 = there is no
convergence in probability. QED
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6] Lecture 7. Stochastic continuity in LP

&t is stochastically continuous in LP if (LP)lim¢_yz, & = &4y -

Problem. Prove/disprove that &; is (a) stochastically continuous
on T iff pg, ¢, is weakly continuous on (t,s) € T x T; and is (b)
stochastically continuous in L2 iff E€£ is continuous.
(a) Follows from T1; (b) from T2 (about continuity).

Problem. Prove/disprove that if & is stochastically continuous in
LP, p > 1 on a compact set A, then (a) it is uniformly continuous;
(b) supsea E[&[P < oo

Follows from standard mathematical analysis arguments.
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571 Lecture 7. Coupling for TASEP

¢ 1 S 1 — t TASEP, 0 <p<1
EN EN
1 S 1 $ — t+1
PN
1 ¢ 1 ¢ 1 é— t+42

& } I w I t Pairing
1 1 t+1

¢
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s8] List 2 — deadline 20.04.20

(1) Let wy, t > 0 be a standard Wiener process. Find ALL increasing
functions ¢(t) and constants a, b > 0 such that & := ¢~ (at)w,(sy) is a
stationary process and calculate its correlation function.

(2) Let {&}7_, beiid r.v. with E§ =0, D = 0% > 0 and let

Nn = %ﬁ S, &. Prove/disprove existence of (P)lim,_ o 1.

(3) Find ALL stationary processes &;, t > 0 such that 3(P) lim;— &;.
(4) Let wy, t > 0 be a standard Wiener process. Find a joint distribution
of w; and fot wsds.

(5) Prove/disprove existence of a Gaussian process &;, 0 <t <1 with
E&; = 0 and a correlation function K(t,s) := t As — ts, such that almost
all its realizations are continuous.

(6) Let &, 0 <t <1 be a Cauchy process and let ; := & + Ct. Find
ALL constants C € R such that distributions of these processes are
absolutely continuous wrt each other.

(7) Let w; be a standard Wiener process. Find a distribution of a r.v.

7 1= maxo<:<7(ws + Ct) as a function of C € R.
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9] Lecture 8. Stochastic differentiation

A derivative of & at t € T is (&) = lims_; % in various senses.

Conditions of the differentiation in probability and in L? are given
by T1 and T2. Hence the differentiability is defined by finite
dimensional distributions of the process of order < 3.

Wiener process has no derivative even in probability. Why?
we — ws is Gaussian N(0, ;= s‘) ie. (w;) := Zw; diverges.

Poisson process has a derivative in probability, but not in LP,p > 1.
Why?

(P)lims_(& — &) /(t —s) = 0. Hence the LP limit if it exists
should be equal to 0 almost surely. However,

E|& — &/t —s| > P(ftﬁg‘ ~ a|t — s|*P, which does not vanish
ast—s—0.
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60] Lecture 8. Stochastic differentiation 2

A random function is not uniquely defined by its derivative in
probability, while in L? the situation is much better.

Claim 1. If 3¢, € LP and £, =0 Vs € [a, b] = & = &, VE € [a, b).
Proof. Ve > 0,s € [a,b] 305 : |& — &| < |t —s| Vt € Os.
Assume that s ;= liminf{t € [a,b] : & # &} > a.

= Je>0: [& —&| >e|t —a| Vt> s and (by continuity of &)
|€s — &a] = €ls —a| = for Os > t > s we have

€0 — &0l < |60 — &l +[€ — &l < elt— | +els — a| = <[t —al,
which contradicts to the definition of s. QED

Claim 2. (Et) € C'in L2%-sense on (a, b) iff E&,&s has a continuous
derivative & EE‘& on (a, b)2. (Follows from standard analysis).
Corollary. 78 {;(tg %) is the correlation function of (&) and the joint
correlation function of & and (&) is

Kee  Keer _ Kee 5Ks&/55
(Kglf Kerer (t75)_ 3K§§/8t 82K55/8t35 (t75)'
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61] Lecture 8. Deterministic integration

If & € CO then fab &:dt can be defined as lim 27_1(ti+1 — t;)s,,
where a =ty < --- < t, = b and non-random points s; € [t;, tj11].
Again everything is ok in LP p > 1-sense but not in probability.
Claim 1. If & € C%in LP([a, b]), then Elfabgtdt in terms of
LP-convergence. (Standard analysis + uniform continuity.)

Claim 2. Let 7 be a r.v. uniformly distributed on T :=[0,1]. Then
the process & := (1 — 7)"11;~, is stochastically continuous on T,
but fol £+ dt does not exist in L2-sense.

One can differentiate the integral over lower and upper limits and
we have the Newton-Leibniz formula.
Application: if & — Poisson process, then < ( (LP) J, ftdt) = &;.

Realizations of LP-integrable &; need not be integrable and one
needs to distinguish the integral as a r.v. and as a function
f &r(w)dt for w € , which might not be even measurable.
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2] Lecture 8. Deterministic integration 2

Q: Under which conditions ( (LP) J, ftdt> f &e(w)dt?

(a) If all realizations are Riemann-integrable. Indeed, the LP-integral
is the limit of sums on average and hence on probability. On the
other hand, J(w f &t(w)dt is the same limit Vw. Now a.e.
convergence |mp||es the convergence in probability. Moreover, by
from the Riemann-integrable assumption J(w) is measurable. QED

(b) If the realization are only Lebesgue-integrable the situation is
more complex.
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63] Lecture 8. Deterministic integration 3

Claim. Let & is measurable in [a, b] and continuous in
LP. p > 1-sense. Then ( LP) [, ftdt) f &t(w (*).

Proof. It is enough to consider the case p =1 (other convergences
will follow). By Fubini's theorem the rhs of (*) exists and

f fQ |€¢(w)|dtP(dw) < (b — a) MaX¢e(a, p] E|&:| < oo.
Consider the lhs of (*) as the limit of integral sums while the rhs as

the limit of sums 3=, [,7 & dt. Then
E|(tiy1 — ti)&s; — [, Sedtl = E| [.[ (& — &) dt]

< t' E’ﬁt s dt < (ti — t,,l) maxee(s; ] El&r — &5 -
The contlnmty on average implies the uniform continuity on
average. Hence 30 >0 V|t —s| < d = E|& —&6| < e.
Therefore if diam{t;} < J the math. expectation between the
integral sums corresponding to lhs and rhs of (*) is < (b — a).

Since € > 0 is arbitrary the integrals in both senses coincide a.e.
QED
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64] Lecture 8. Deterministic integration 4

Computing of moments of integrals is rather simple.
Claim. Let & be continuous in L2-sense and E|¢;|?> < oo. Then

E [P¢edt = [PECdt, cov([P¢edt, &) = [ Kee(t, s)dt,
cov( [P &edt, [7 &sds) = [P [ Kee(t, 5)dtds.

Follows from the continuity of the scalar product on its arguments:
Indeed, E [P ¢,dt = E(L2)1im Y2;(tip1 — t1)Es,

= (E(L?)lim 3;(tis1 — t1)6s;, 1) = (L2)lim(E 32 (tin — t1)és;, 1)
= (L2)lim Y2;(ti1 — t)E€s, = [7 E&,dt.

This proves the 1-st equality. Two others for homework.
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[65] lest 2

(1) Let & be a [2-continuous stationary process with E&; # 0.
Prove/disprove existence of a nontrivial r.v. 7, such that fom &sds is
a stationary process.

No. The derivative of a (broad sense) stationary process = 0.

(2) Let & be a L?-continuous stationary process and let its
correlation function K(t) — 0 as t — oo. Calculate

(L2) limg_s00 L S ft+s§udu.
Answer E& =: m. Indeed,
E|L [ cudu—m| =2 [5(s (u)du — 0 iff

lims_so fo K(u)du = 0.

(3) Let a sequence of independent r.v. {{,} converge with
probability 1. Prove/disprove existence of a number C such that
P(limpsocép=C) = 1.

Answer: Consider ¢(x) := P(limp_o0 &n < x). Then (x) € {0,1}
and C is the point, where ¢ makes a jump.
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