
QUICK REMAINDERS

1. A quick remainder on conditional expectations

Definitions and first properties. Let (Ω,F,P) be a probability space, namely Ω is a non-empty set, F is a
σ-algebra on Ω and P is a probability measure on (Ω,F). In this framework, specifying the σ-algebra F is a way to
precisely asses how much information is available in our model space Ω, in other words what are the measurable
sets or equivalently the measurable functions. As such, it is nor surprising that measurable sets are called events
in this framework, and measurable functions are called random variables or observables.

Now, let G be a σ-algebra coarser than F, namely G ⊂ F. One may for instance think that F and G corresponds
to the σ-algebra of events regarding some phenomenon, relative to two different persons, the first one having more
information than the second (so that they can see more events or measure more things than the second one).
If we know the probability space (Ω,F,P), there is a natural way to equip the space (Ω,G) with a probability
measure, which is just the restriction of P to G. In other words (Ω,G,P|G) is the probability space modeling the
same random phenomenon under a smaller amount of information.

So, given G ⊂ F , we can create, somehow trivially, a corresponding probability space. Can we also associate
to a random variables on (Ω,F,P) some corresponding random variables on (Ω,G,P|G)? Say that X is an F-
measurable function X : Ω → R, can we define a G-measurable function X ′ : Ω → R that somehow correspond
to X? If we get back to our idea that F and G correspond to the different amount of information of two people
observing the same phenomenon, and X is a function depending on the phenomenon, a natural way to do it, is
to take X ′ so that it somehow coincides in some weak sense with X when only events in G are considered (see
below).

Example 1. We roll two cubic dice, and we receive an amount of roubles X given by the sum of the squares of
their results. We can model this game in several ways (as probability is concerned with quantities that are defined
regardless of the space we use to represent them), for instance we can take Ω := {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
corresponding to the results of the two dice, F to be the σ-algebra of the power set of Ω (any subset is measurable),
P to be uniform and

X : Ω→ R

X(i, j) = i2 + j2

corresponding to the payoff.
Now suppose that some observer has less information than us, they can only see the result of the first die. It

is still useful to consider the same space Ω but with a small σ-algebra G, corresponding to the observations of the
first die. Namely a set E ⊂ Ω is G-measurable iff E = A × {1, 2, 3, 4, 5, 6} for some A ⊂ {1, 2, 3, 4, 5, 6}. Now,
this observer cannot know the value of the payoff, since they do not see the second die. The best guess they can
have, is some X ′ that should be G-measurable (namely only depend on the result of the first die) and somehow
corresponding to the real payoff X averaged on all the possible results of the second die. Namely we look for X ′

such that for all the results i of the first die

E[X ′1first die=i] = E[X1first die=i] (1)

Since the payoff associated to the second die is
∑6
j=1 j

2/6 = 91/6, we have that X ′(i, j) = i2 + 91/6 satisfies (1)
and is G-measurable (depending only on the result i of the first die and not on j).

We can easily generalize the above idea to any probability space (Ω,F,P) and σ-algebra G ⊂ F and F-measurable
X : Ω → E such that E[|X|] :=

∫
|X|(ω)dP(ω) < ∞. The resulting random variable X ′ is called the expected

value of X conditioned to G, and it is denoted E[X|G]. To proceed formally, consider the following remark.

Remark 2. Let, as above, (Ω,F,P) be a probability space and G a σ-algebra with G ⊂ F. Let X be a real integrable
random variable on (Ω,F,P). Then there exists a unique, up to a.e. equivalence, random variable X ′ : Ω→ R that
is G-measurable and integrable and such that

E[X1A] = E[X ′1A] for all A ∈ G. (2)

Moreover if X1 = X2 a.e., then X ′1 = X ′2 a.e. and E[|X ′|] <∞.

Proof. Denote by µ the finite measure on (Ω,G) given by µ(A) = E[X1A]. If P(A) = 0 then µ(A) = 0 so that µ
is absolutely continuous w.r.t. P|G. Then X ′ = dµ

dP|G
has the required properties due to Radon-Nikodym theorem.

A.e. equivalences are easily checked. �

The above remark defines X ′ up to a.e. equivalence, given X up to a.e. equivalence. Thus the following
definition is well-posed.
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Definition 3. Given X ∈ L1(Ω,F,P), the conditional expectation E[X|G] ∈ L1(Ω,F,P) is defined as the unique
G-measurable X ′ such that (2) holds.

Thus the conditional expectation defines a (measurable) map on L1(Ω,F,P), whose image is actually in
L1(Ω,G,P), and thus it can also be regarded as a map L1(Ω,F,P)→ L1(Ω,G,P).

Let’s check some properties, that can be easily proved.

Remark 4. It holds

(1) If X is G-measurable, then E[X|G] = X. In particular E[X|F] = X.
(2) If X is independent of G, then E[X|G] = E[X]. In particular if G = {∅,Ω}, the E[X|G] = E[X].
(3) If H ⊂ G, then E[[X|G]|H] = E[X|H].
(4) If f : R → R is a convex function f(X) ∈ L1, then E[f(E[X|G]) ≤ E[f(X)]. In particular if X ∈ Lp for

p ≥ 1, then E[X|G] ∈ Lp.
(5) If X ∈ L2, then

E[(X − E[X|G])2] ≤ E[(X − Y )2] (3)

for every Y ∈ L2 that is G-measurable, with equality holding off Y = E[X|G]. In particular, for
square-integrable variables, the conditional expectation can be regarded as the orthogonal projection from
L2(Ω,F,P) to L2(Ω,G,P).

(6) The conditional expectation X ′ = E[X|G] can also be characterized requiring that

E[X Y ] = E[X ′Y ]

for all Y ∈ L∞(Ω,G,P), which is a slight generalization of (2).

Remark 5. If X ∈ L1 and Y is another random variables, then E[X|Y ] is a short-hand notation for E[X|G]
where G is the weakest σ-algebra such that Y is G-measurable. Since any G-measurable variable is a function of
Y , we have that E[X|Y ] = f(Y ) for some measurable f : R→ R. f is defined up to a.e. equivalence of f(Y ).

Examples. Let X and Y such that the law θ ∈ P(E × F ) of (X,Y ) has a density w.r.t. Lebesgue

dθ(x, y) = %(x, y)dxdy

Given a measurable function f : R2 → R, such that f(X,Y ) ∈ L1, one has that E[f(X,Y )|Y ] = g(Y ) where g is
given by

g(y) =

∫
f(x, y)%(x, y)dx∫

%(x, y)dx
(4)

Indeed, it is enough to check that (5), namely that E[f(X, y)h(Y )] = E[g(Y )h(Y )] for each bounded measurable
h, which easily holds.

At the seminar, we discussed the following examples.

Example 6. Let X = (X1, X2) be a Gaussian R2 valued random variable with (X1, X2) ∼ N (m,S) where m ∈ R2

and S is an positive definite 2x2 symmetric tensor.
Then, by (1), E[X1|X2] = g(X2) where

E[X1|X2] =

∫
x1 exp(− 1

2
〈S−1(x1 −m1, x2 −m2), (x1 −m1, x2 −m2)dx1〉∫

exp(− 1
2
〈S−1(x1 −m1, x2 −m2), (x1 −m1, x2 −m2)dx1

= m1 +
S12

S22
(x2 −m2)

The case where S22 = 0 can be treated separately. In this case X2 = m2 a.s., so that E[X1|X2] = E[X1] = m1.

Example 7. Let X and Y be discrete random variables, with P(X = xi, Y = yj) = pi,j for some countable values
(xi)i∈N and (yi)i∈N with yi 6= yj for i 6= j. Then E[X|Y ] = g(Y ) where g(Y ) is defined up to a.e.-equivalence, and
thus it is enough to define g on the yj as

g(yj) =

∑
i xipi,j∑
i pi,j

This is sometimes informally written E[X|Y = yj ] =
∑

i xipi,j∑
i pi,j

.

Example 8. Let X and Y be discrete random variables, with P(X = xi, Y = yj) = pi,j for some countable values
(xi)i∈N and (yi)i∈Z with yi 6= yj for i 6= j. Then E[X|Y 2] = g(Y 2). Again it is enough to define

g(yj) = g(y−j) =

∑
i xi(pi,j + pi,−j)∑
i pi,j + pi,−j



Generalizations. If X takes values in a topological vector space V , one can still say that E[X] = ` for some
` ∈ V ∗∗ provided E[〈X,h〉] = 〈`, h〉 for all h ∈ V ∗. This idea goes through conditional expectation as E[X|G] = X ′

if X ′ is G-measurable and E[〈X,h〉|G] = 〈X ′, h〉 for all h ∈ V ∗.
Another possible generalization holds for variables with values in metric spaces E, provided the d(X,x) ∈ L2

for some fixed (any fixed) point x ∈ E. One may say in this case that X ′ = E[X|G] if

E[d(X,X ′)2] ≤ E[d(X,Y )2]

for all G-measurable Y such that d(Y, x) ∈ L2.
On Rn or Hilbert spaces these definitions coincide, and on separable Hilbert spaces they can be constructed by

standard integration tools. All the elementary properties are then easily verified. In complete generality however,
such conditional expectation may fail to exist or to be uniquely defined.

In any case, even when variable takes value in rather wild spaces, one may often be interested in conditional
expectations of some functions of the variable.

2. A quick remainder on change of variables

Definitions and basic properties. If (E,E) and (F,F) are two measurable spaces, π : E → F is a measurable
function and µ is a measure on E, we can build a new measure µ on F simply composing ν := m ◦ π−1. This
means that for a set A in F we define

ν(A) := µ(π−1(A)) = µ({e ∈ E : π(e) ∈ A}

Notice that

• If µ is additive, ν is additive.
• If µ is σ-additive, ν is σ-additive.
• If µ is σ-finite, ν is σ-finite.
• If µ is positive, ν is positive.
• If µ is a probability, ν is a probability.
• If µ is discrete, ν is discrete.
• If µ is absolutely continuous w.r.t. µ′, then ν is absolutely continuous w.r.t. ν′ = µ′ ◦ π−1.

This is the unique canonical way to lift π to a map π] from measures on E to measures on F . π], defined
by π]µ := µ ◦ π−1 is called the pushforward of µ via π. Notice that π]δx = δπ(x) and π](αµ1 + (1 − α)µ2 =
απ]µ1 + (1− α)µ2.

If X is random variables taking values in E and µ is its law, then the random variable Y = π(X) has law
µ ◦ π−1, as indeed P(Y ∈ B) = P(X ∈ π−1(B)) = µ(π−1(B)).

Change of variables. In the same framework as above, the change of variables formula (2) below holds in full
generality. It is indeed enough to (trivially) check it on simple functions, and then to extend it to any integrable
function. If f : F → R is measurable, then f ◦ π ∈ L1(µ) iff f ∈ L1(µ ◦ π−1) and in such a case∫

E

f(π(x)) dµ(x) =

∫
F

f(y)d(µ ◦ π−1)(y) (5)

One can actually calculate µ ◦ π−1 explicitly (явно) in some cases. The first two examples follow from direct
computations.

Example 9. If π is constant, π(x) = c ∈ F for every x, then for every probability measure µ on E it holds
µ ◦ π−1 = δc.

More generally, if π takes countable many values, namely there is a countable partition of E = E1 ∪ E2 ∪ . . .
such that π(x) = yi for all x ∈ Ei, then mu ◦ π−1 =

∑
i βiδyi where βi = µ(Ei).

Example 10. If µ is discrete, namely it is concentrated on a countable set say µ =
∑
i αiδxi , then µ ◦ π−1 =∑

i αiδπ(xi).

Example 11. Another class of functions for which it is possible to calculate the pushforward explicitely are
differentiable functions between manifold. Suppose that π : Rn → Rn is injective, with smooth left inverse π−1.
Assume that µ has a density w.r.t. the Lebesgue measure on Rn, dµ(x) = %(x)dx. Recall that this just means

µ(A) =

∫
A

%(x)dx for every measurable A ⊂ Rn.

Then

µ ◦ π−1(B) =

∫
π−1(B)

%(x)dx =

∫
B

%(π−1(y))|Jπ−1 |(y) dy

where |Jπ−1 | is the absolute value of the Jacobian determinant of π−1. Thus, µ ◦ π−1 has density %(π−1)|Jπ−1 |.



General change of variables. Actually (2) has a more general version to represent
∫
f(x)dµ(x), even if f in

a generic function of x (and not of π(x)). We assume here that µ is σ-finite and E and F are Polish spaces
(completely metrizable and separable), and the the σ-algebras are Borel. Then there exists a measurable map
(kernel) p : F → P(E) (that associates to an y ∈ F , a probability measure on E) such that p(y, ·) is concentrated
on π−1(y) and for each f ∈ L1(µ)∫

f(x)dµ(x) =

∫
F

d(µ ◦ π−1)(y)

∫
E

p(y, dx) f(x)

If E = F , p is nothing but a Markov kernel. This is sometimes called the transfer operator associated to the
transformation (or some more general algebraic action) π. But indeed, is nothing but the usual formal of change
of variables!

If π1 : E → G and π2 : G→ F , and p1 and p2 are the respective kernels, then it is easily seem that π2 ◦ pi1 is
associated with the kernel p(y, dx) :=

∫
G
p2(y, dz) p1(z, dx). If E = F = G, this is the usual formula for iteration

of Markov kernels or transfer operators for actions of semigroups.

Example 12. Suppose that the law of real random variables X and Y has density %(x, y). Let R = X2 + Y 2.
Let us find the law of the random variable R. We can for instance consider the change of variable related to polar
coordinates, x = r cos(θ), y = r sin(θ). The Jacobian is r. We gather that the density of the corresponding random
variables (R,Θ) w.r.t. dr dθ on R+ × S1 (up to measure zero) is r%(R cos(θ), r sin(Θ)), so that for R we obtain
the density

h(r) := r 1r≥0

∫ 2π

0

%(r cos(θ), r sin(θ)) dθ

Notice that the steps we described in full generality before read in this example as follows. For every measurable
A ⊂ R

P(R ∈ A) = P(X2 + Y 2 ∈ A) =

∫
{(x,y) : x2+y2∈A

%(x, y) dx dy =

∫
{(r,θ) : r∈A, r≥0}

r %(r cos(θ), r sin(θ)) dr dθ =

∫
A

h(r) dr

Since P(R ∈ A) writes as the integral of A of some h for every measurable A, h is indeed the density of the law
of R.
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