
[1] Course �Introduction to Random Processes� [April 22, 2024]

Michael Lvovich Blank blank@iitp.ru
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τ
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�Human mathematics is a sort of dance around an unwritten formal

text, which if written would be unreadable.� (David Ruelle, 1998)

Result = 0.4*(class work) + 0.6*Exam

14:50-16:10 on Mondays (room 108)
http://iitp.ru/ru/userpages/74/233.htm
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[2] Main topics

Antagonistic and cooperative games/strategies.

The concept of a random process.

Elements of random analysis.

Correlation theory of random processes.

Markov processes.

Wiener and Poisson processes.

Stochastic integral. Ito's formula.

(sub/super) martingales.

In�nitesimal semi-group operator.

Large deviations and nonlinear Markov processes.

- D. Stirzaker. Elementary probability, Cambrige University Press, 2003
- À.Ä. Âåíòöåëü. Êóðñ òåîðèè ñëó÷àéíûõ ïðîöåññîâ. Ì.: Íàóêà. 1996
- N.V. Krylov. Introduction to the theory of random processes. 2002
- Á. Îêñåíäàëü. Ñòîõàñòè÷åñêèå äèôôåðåíöèàëüíûå óðàâíåíèÿ, 2003
- À.Í. Øèðÿåâ. Âåðîÿòíîñòü, 2 ò. ÌÖÍÌÎ, 2007.
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[3] Lecture 1. Antagonistic and cooperative games/strategies.

An antagonistic or zero-sum game: one player's victory means the
other players' loss (boxing, tennis). A cooperative game: players
win as a team (football), hence the choice of a cooperative strategy.

Problem

Players A and B independently (and without discussion with the
other) toss a proper coin and try to predict the result of the other
player's toss. Antagonistic: a correct prediction means victory
(otherwise, loss). Cooperative: players win as a team if at least one
of them makes the correct prediction (otherwise they lose).

Antagonistic: the probability to win is equal to 1/2.
Cooperative: it seems that the probability is 1− (1/2)2 = 3/4.
Strategy: the player A uses his result as a prediction for B, while
the player B reverts his result: Pred(A,B):=(1-B,A).
Claim. Under this strategy the team always win.
Proof. 00→ 10 01→ 00 10→ 11 11→ 01.
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[4] Lecture 1. N boxes game for N death row prisoners

Problem

N = 2n� 1 numbered prisoners must �nd their own numbers in
one of N boxes in order to survive, opening at most half of boxes.

Antagonistic strategy: the probability to survive = 2−N .
Cooperative strategy: each prisoner opens the box labeled with his
own number, then the one whose number is found in the box, etc.
Claim. The strategy ensures that the correct number is eventually
found along the cycle, regardless of its length.
Calculation. For k > n there are C k

N ways to select the numbers of
such the k-cycle, which can be arranged in (k − 1)! ways. Since the
remaining numbers can be arranged in (N − k)! ways, the number
of permutations of the numbers 1 to N with a cycle of length
k > n is equal to C k

N(k − 1)!(N − k)! = N!
k
.

Finally, the probability, that a uniformly distributed random
permutation contains no cycle of length greater than n is given by
1− 1

N!

∑n
i=1

N!
n+i
≈ 0.3.
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[5] Lecture 1. Random variables (r.v.)

De�nition

A random variable (r.v.) ξ : (Ω,F ,P)→ (X ,B) is an arbitrary
measurable map, provided ∀x ∈ B.

Equivalence:
ξ ∼ η ⇐⇒ P(ξ 6= η) := P({ω ∈ Ω : ξ(ω) 6= η(ω)}) = 0.

σ-algebra generated by ξ: Fξ := σ(ξ−1B).

Distribution of ξ: Φξ(A) := P(ξ ∈ A) ∈M(X ), ∀A ∈ B.
Joint distribution: Φξ1,...,ξn(A) := P((ξ1, . . . , ξn) ∈ A), A ∈ Bn.

De�nition

R.v. ξ1, . . . , ξn are independent if Φξ1,...,ξn =
∏

i Φξi .

Example: P(ξ ∈ A, η ∈ B) = P(ξ ∈ A)P(η ∈ B).
n =∞: independence means that ∀k <∞ are independent.
σ-algebras Fα ⊆ F are independent if ∀Aα ∈ Fα are independent
for di�erent α.
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[6] Lecture 1. Independence (2)

1 Independence in pairs but not jointly.
X :=

⊔4
i=1 Ai , P(Ai ) = 1/4 ∀i .

{Bj := Aj ∪ A4}3j=1 =⇒ P(Bj) = 1/2 ∀j .
P(Bi ∩ Bj) = P(A4) = 1/4 = P(Bi )P(Bj) ∀i 6= j (pairs).
P(∩3j=1Bj) = P(A4) = 1/4 6= 1/8 =

∏3
j=1 P(Bj) (joint).

2 X := {1, 2, 3},B := {1, {2, 3}, ∅,X},P(1) := P({2, 3}) = 1
2 .

Find all independent events. Answer: (∅,X ), (∅, ∅), (X ,X ).

3 Existence of independent random variables? Any constants

4 Ω := [0, 1],P := Leb = m, ξ, η : (Ω,Bor,m)→ (R,Bor).
Check independence: P(ξ ∈ A, η ∈ B) = P(ξ ∈ A)P(η ∈ B)
(a) ξ(ω) := a + bω, η(ω) := c + dω
(b) ξ(ω) := aω, η(ω) := bω3

(c) ξ(ω) := a sin(2πω), η(ω) := b cos(2πω)
(e) ξ(ω) := 1I (ω) cos(2aπω), η(ω) := 1J(ω) cos(2bπω),
I , J ∈ Bor
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[7] Lecture 1 Conditional probabilities - usage

Binomial sum:
Bin(n, p) :=

∑n
i=1 ξi , ξi ∈ {0, 1}, P(ξi = 1) = p.

Calculate πn := P(Bn := {Bin(n, p) = 2k − even}).

πn+1 = P(Bn+1) = P(Bn+1 ∩ Bn) + P(Bn+1 ∩ Bc
n )

= P(ξn+1 = 0|Bn)P(Bn) + P(ξn+1 = 1|Bc
n )P(Bc

n )
= (1− p)πn + p(1− πn) = (1− 2p)πn + p.

How to solve this di�erence equation with π0 = 1?
Solution: πn := a(1− 2p)n + b =⇒ a = b = 1/2.
Finally πn = ((1− 2p)n + 1)/2

n→∞−→ 1/2.

If (X , ρ) is a metric space, we consider convergences:
• in probability (P) lim

n→∞
ξn = ξ if P(ρ(ξn, ξ) ≥ ε)

n→∞−→ 0.

• in average Lp(Ω,F ,P): ||ξn − ξ||p
n→∞−→ 0.

• weak: Φξn
n→∞−→ Φξ in the weak sense.
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[8] Lecture 1. Mathematical expectation

Mathematical expectation: Ef (ξ) := P(f ◦ ξ) :=
∫
Ω

f (ξ(ω))P(dω).

Variance: Df (ξ) = E (f (ξ)− Ef (ξ))2 = E (f (ξ))2 − (Ef (ξ))2,
Covariance:
cov(f (ξ), g(η)) := E ((f (ξ)− Ef (ξ))(g(η)− Eg(η))∗).

Chebyshev ineq-ty: P(f (ξ) ≥ ε) ≤ Ef (ξ)/ε f ≥ 0, ε > 0.
P(|ξ − Eξ| ≥ ε) ≤ Dξ/ε2 ξ ∈ R1.

i-th marginal distribution of ξ := (ξ1, . . . , ξn) is Φξi .
Characteristic function ϕξ(t) := Ee i(t,ξ) for X = R.

ξ ∈ Rn is Gaussian N (a,A) if ϕξ(t) := e i(t,a)− 1
2

(At,t), A ≥ 0

with density f (x) :=
√

(2π)−ndetA−1e−(A−1(x−a),(x−a))/2.

Claim. ξi ∈ ξ ∈ N (a,A) are independent i� A is diagonal.
Question. Is it true that uncorrelated Gaussian r.v. are
independent? No

Claim. Let ξ, η be independent with densities fξ, fη. Then
fξ+η(x) = fξ ∗ fη(x) :=

∫
fξ(t)fη(x − t)dt.

8/127



[9] Lecture 2. Integrals and weak convergence

Let {X ,B, µ} be a measure space, f : X → R � measurable.

∆i

ξi

∆̃j ξ̃j f (x)

X

(R)
∫
f dµ := lim

diam∆→0

∑
i f (ξi )µ(∆i )

(L)
∫
f dµ := lim

diam∆̃→0

∑
j ξ̃jµ(f −1∆̃j)

= lim
diam∆̃→0

∑
j ξ̃j f µ(∆̃j) =: µ(f )

∃
∫ b
a
f ′(x) dx =? (R)

∫ b
a
f ′(x) dx = f |ba , (L)

∫ b
a
f ′(x) dx 6= f |ba

De�nition

The weak* topology onM(X ) is de�ned so that,
µn

n→∞−→ µ ⇐⇒ µn(ϕ)
n→∞−→ µ(ϕ) ∀ϕ ∈ C 0

bounded
(X ). The

convergence in the weak* topology is called the weak convergence.

If X is a compact set, then there is a metric generating this
convergence dist(µ, ν) := sup

|ϕ|+|ϕ′|≤1
(µ(ϕ)− ν(ϕ)).
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[10] List 1 � deadline 26.02

1 Let ξ : Ω→ R be a r.v. with the median mξ. Prove/disprove that
maξ+b = amξ + b ∀a, b ∈ R.

2 Let ξ, η, ζ : Ω→ R be r.v. and let (ξ, η) and (ξ, ζ) be independent.
Prove/disprove that (ξ, η + ζ) are independent.

3 Let {ξi}ni=1
be iid positive r.v. Prove/disprove that ∀k

E

(∑
k
i=1 ξi∑
n
i=1 ξi

)
= k

n
, 1 ≤ k ≤ n.

4 Let (X := R,B := Bor,P) be a probability space, ξ : Ω→ X - a r.v.
with distribution P, and let f : R→ R be an absolutely continuous
function with f (±∞) = a,

∫∞
−∞ f (x) dP(x) = b. Calculate

Q :=
∫∞
−∞ f ′(x) P(ξ ≥ x) dx in terms of a, b only.

5 Let {ξi}ni=1
be independent r.v. with the same distribution function

F (x). Find the distribution function of the vector (mini ξi ,maxi ξi ).

6 Let {ξi}ni=1
be iid r.v. with 0 < Dξi <∞. Find all possible values

of the function ϕ(x) := limn→∞ P(
∑n

i=1
ξi < x), x ∈ R.

Do not wait until the deadline, and send written solutions
(preferably in LaTex) by e-mail.
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[11] Lecture 2. Law of Large Numbers

De�nition

Let {ξn} be a sequence of iid real valued r.v. with a �nite Eξn = a.
We say that this sequence satis�es the Law of Large Numbers
(LLN) if ξ̃n := 1

n

∑n
k=1 ξk

n→∞−→ a. In case of the convergence in
probability this is called the weak LLN, while in case of a.s.
convergence: P(limn→∞ ξ̃n = a) = 1 this is called the strong LLN.

Kolmogorov Theorem (LLN)

If {ξn} are iid real valued r.v., then ξ̃n − E ξ̃n
n→∞−→ 0 a.s.

Counterexample

Let {ηn} be iid r.v. such that ηn = ±1 with probability 1
2 . Then

(provided log log log(N) > 0) the sequence
{ξn := ηn

√
(n + N)/ log log log(n + N)} satis�es the weak LLN,

but the strong LLN fails.
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[12] Lecture 2. Ant on a Rubber Rope

Initially, the ant stands on the left end of a rubber rope L0 = ` = 1
meter long and crawls along the rope with a speed vn � 1 at time
n. At the n-th minute of time, the speed of the ant instantly
changes from vn to vn+1, and the rope stretches uniformly from Ln
to Ln+1 := Ln + ξn. We assume that {vn} and {ξn} are nonnegative
independent random variables with 0 < Evn = v � Eξn = ` <∞.

vn+1(ω)

xn(ω)0 Ln(ω) := Ln−1(ω) + ξn

x0(ω) ≡ 0, L0(ω) ≡ `

Question: Will the ant ever reach the right end of the rubber rope?

xn+1 = Ln+1

Ln
xn + vn+1 =⇒ xn

Ln
= xn−1

Ln−1
+ vn

Ln
=
∑n

k=1
vk
Lk
.

E [ xn
Ln

] =
∑n

k=1
Evk
ELk

=
∑n

k=1
v
k` = v

`

∑n
k=1

1
k

n→∞−→ ∞.

This argument hints that the answer should be yes, but does not
really prove anything. =⇒
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[13] Lecture 2. Ant on a Rubber Rope 2

Claim

Let {vn} be positive, independent, and identically distributed
random variables (iid r.v.) with Evn = v > 0, and let {ξn} be
positive iid r.v. with Eξn = ` <∞. Let Ln := Ln−1 + ξn,
L0 := 1 ∀n ≥ 1. Then

∑
k≥0

vk
Lk

=∞ almost surely.

Proof. Let Ω be the sample space. By the strong law of large
numbers ∃Ω′ with P(Ω′) = 1, such that
1
n

∑n
k=1 vk

n→∞−→ v and 1
n

∑n
k=1 ξk

n→∞−→ ` ∀ω ∈ Ω′.

Hence ∀ω ∈ Ω′, ε > 0 ∃N:
| 1
n

∑n
k=1 vk − v | < ε, | 1

n

∑n
k=1 ξk − `| < ε if n > N.

Thus ∀p ∈ N we have:

| 1
N

∑pN
k=(p−1)N vk − v | = | 1

N

∑pN
k=1 vk −

1
N

∑(p−1)N
k=1 vk − v |

= |p 1
pN

∑pN
k=1 vk − pv + (p − 1)v − (p − 1) 1

(p−1)N

∑(p−1)N
k=1 vk |

≤ pε+ (p − 1)ε = (2p − 1)ε. =⇒
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[14] Lecture 2. Ant on a Rubber Rope 3

Hence∑
n≥1

vn
Ln
≥
∑N

k=1
vk
Lk

+
∑2N

k=N+1
vk
Lk

+ . . .+
∑pN

k=(p−1)N+1
vk
Lk

=
∑p

q=1

∑qN
k=(q−1)N+1

vk
Lk

≥
∑p

q=1

∑qN
k=(q−1)N+1

vk
LqN

=
∑p

q=1
1
q

∑qN

k=(q−1)N+1

vk
N

LqN
qN

≥
∑p

q=1
1
q
v−ε
`+ε

ε→0+−→ v
`

∑p
q=1

1
q

p→∞−→ ∞.

Question:

Will the ant ever reach the right end of the rubber rope if

1 Ln+1 := Ln + ( Ln
2024)αn , where {αn} are iid r.v. with

Eαn = α ∈ (0, 2).

2 Ln(ω) := Ln−1(ω) · λn(ω), where {λn} are iid r.v. with
Eλn = λ ∈ (1, 2).
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[15] Test 1

1 (Ω,F ,P), Ω = [0, 1], F = Bor, P = Leb,
{ξn := ωn}n∈Z+ , ω ∈ Ω. An := {ω ∈ Ω : ξn ≤ 1/n}
Calculate: P(∪n≥1An) = 1, P(∩n≥1An) = 1/ 3

√
3.

Solution: An = {0 ≤ ω ≤ 1/ n
√
n} =⇒ A1 = [0, 1],

further use that n
√
n→ 1 and maxn n

√
n = 3
√
3.

2 Find all a, ε ≥ 0 such that P(ξ ≥ a) ≤ e−a−εEeξ, ∀ξ.
P(ξ ≥ a) ≤ e−aE (eξ · 1ξ≥a) ≤ e−aEeξ (Cherno� inequality)
Answer: ε = 0,∀a ≥ 0, since for
ξ ≡ ea =⇒ P(ξ ≥ a) = 1 > e−ε.

3 Let Ω := {1, 2, 3, 4},F := 2Ω,P({i}) = 1
4 . Prove/disprove ∃

of iid non-constant r.v. ξ, η : (Ω,F ,P)→ (R,Bor).
Solution: ξ(ω) := 1{1,2}(ω), η(ω) := 1{2,3}(ω)

P(ξ = 1) = P(η = 0) = 1
2 ,

P(ξ = 0, η = 1) = P(ω ∈ {3}) = 1
4 = P(ξ = 0)P(η = 1) . . .

Solution: (problem number) Answer. Short proof.
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[16] Lecture 3. Explicit construction of independent r.v.

Ω := [0, 1],F := Bor,P = Leb, Ω 3 ω =
∑
k≥1

2−kωk , ωk ∈ {0, 1}.

Claim 1

{ξn(ω) := ωn}n≥1 are iid Bernoulli(1/2) r.v. with
P(ξn = 0) = P(ξn = 1) = 1

2 .

Claim 2

Let {ξn}n≥1 be iid Bernoulli(1/2) r.v., then
η(ω) :=

∑
k≥1 2

−kξk(ω) is uniformly distributed r.v. on [0, 1].

Let ξ̃nk(ω) be the (n, k) element in the following triangle table:

ω1 ω3 ω6 ω10 . . .
ω2 ω5 ω9 . . .
ω4 ω8 . . .
ω7 . . .
. . .
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[17] Lecture 3. Explicit construction of independent r.v. 2

Claim 3

{ζn :=
∑

k≥1 2
−k ξ̃nk}n≥1 are uniformly distributed iid on [0, 1].

Claim 4

Let ξ be a uniformly distributed r.v. on [0, 1] and let F be an
arbitrary distribution function. Then η := F̃−1(ξ) is a r.v. with the
distribution Fξ = F .

Here F̃−1(t) := inf{s : F (s) ≥ t} is the generalized inverse
function (for non srictly monotone setting).

Claim 5

Let {Fk}k≥1 be an arbitrary sequence of distribution functions.
Then ∃ a sequence of independent r.v. {ηk}k≥1 with Fηk = Fk .

Construction:

ηk := F̃−1k (ξk) with iid uniformly distributed {ξk}.
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[18] Lecture 3. Conditional mathematical expectation ξ ∈ R
Wrt an event B ∈ F , P(B) > 0: E (ξ|B) := E (ξ · 1B)/P(B) .

Observation: E (ξ = 1A|B) = E (1A∩B)/P(B) = P(A∩B)
P(B) = P(A|B).

E (ξ|B) = P(ξ·1B)
P(B) =

∫
B
ξ(ω)dP(ω)

P(B) =
∫
B
ξdP(ω|B) =

∫
Ω ξdP(ω|B).

Eξ =
∑

i P(Bi )E (ξ|Bi ) if tiBi = Ω, ∆ := {Bi} ∈ F .
P(A|∆)(ω) :=

∑
i P(A|Bi ) · 1Bi

(ω) � random variable:
(a) A ∩ B = ∅ =⇒ P(A ∪ B|∆) = P(A|∆) + P(B|∆),
(b) P(A|Ω) = P(A), (c)E (P(A|∆)) = P(A).

If #(η(Ω)) <∞ then ∃∆η := {Bi} � a partition generated by η
and P(A|η) := P(A|∆η).

E (ξ|∆)(ω) :=
∑

i E (ξ|Bi ) · 1Bi
(ω) � random variable:

(a) E (aξ + bη|∆) = aE (ξ|∆) + bE (η|∆) (b) E (ξ|Ω) = E (ξ)
(c) E (1A|∆) = P(A|∆) (d) E (E (ξ|∆)) = E (ξ)
(e) η :=

∑
i zi1Bi

=⇒ E (ξη|∆)(ω) = η(ω)E (ξ|∆)(ω)
(f) ω ∈ Bi =⇒ E (ξη|∆)(ω) = E (ξη|Bi ) = ziE (ξ|Bi )

= η(ω)E (ξ|Bi ) = η(ω)E (ξ|∆)(ω).
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[19] Lecture 3. Conditional mathematical expectation 2

E (ξ|A),A ⊆ F is a random variable in R ∪ ±∞ such that:
� E (ξ|A) is A-measurable; � P(ξ · 1A) =

∫
A
E (ξ|A)dP, A ∈ A.

Properties: linearity, monotonicity +
� E (ξη|A) = ξ · E (η|A) if ξ is A-measurable.
� E (E (ξ|Ã)|A) = E (ξ|A) if A ⊂ Ã ⊆ F . Equalities are P-a.e.

E (ξ|η) := E (ξ|Bη), where Bη := σ(η). P(A|η) = P(1A|Bη).

T1. Let ∆η := {Bi}n1 be a partition of (Ω,F), B := σ(∆) and
|Eξ| <∞ =⇒ E (ξ|B) = E (ξ|∆) with probability 1.
Proof. By B-measurability P(E (ξ|Bi

|B) = zi = const) = 1. Hence
E (ξ|B) =

∑
i zi1Bi

=
∑

i E (ξ|Bi ) · 1Bi
= E (ξ|∆).

∃Eξ <∞ implies ∃! E (ξ|A)(ω).

E (ξ|η) := E (ξ|σ(η)). Here E (ξ|η = x)(x) � conditional ME.
Conditional density pξ(x |η = y) = pξη(x , y)/pη(y):
E (f (ξ, η)|η = y) =

∫
f (x , y)pξ(x |η = y)dx for f ∈ L1.
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[20] Lecture 3. Conditional measures

In general E (ξ|B) cannot be calculated explicitly, however in some
simple cases this is still possible.

Let dP(x , y) = p(x , y)dxdy be a probability measure on R2 with
p(x , y) > 0 (P(A) := m(1A · p) for the Lebesgue m).
Consider σ-algebras Bx generated by the coordinate function x and
let Px be the projection (marginal distribution) of P to the
x-coordinate with px(x) = my (p(x , ·)).
The conditional measure Px on `x := {(x , y) : y ∈ R} has the
density px(y) = p(x , y)/px(y) = p(x , y)/

∫
p(x , y)dy � prob.

measure.
E (ξ|Bx) = my (ξ(x , ·)ρ(x , ·)) =

∫
ξ(x ,y)p(x ,y)dy∫

p(x ,y)dy
.
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[21] Lecture 3. Fair coin tossing

Problem

2 gamers play a symmetric coin P({0/1}) = 1/2. Each has a
winning pattern A and B respectively (a �nite number of
consecutive binary digits). The game stops when one of the
patterns appears.

Questions:
(a) Does the game stop after a �nite time?
(b) Let the pattern length (i) |A| = |B|, (ii) |A| < |B|.
Who will win?

(a) P

 . . .︸︷︷︸
k

. . .︸︷︷︸
k

. . . . . .︸︷︷︸
k︸ ︷︷ ︸

n

 ≤ (1− 2−k)n
n→∞−→ 0 k = |A|,

each k-pattern 6= A.
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[22] Lecture 3. Fair coin tossing 2

(b. i) Counterexample. A := 000,B := 100 =⇒ |A| = 3 = |B|.
ξ1, ξ2, . . . , ξn, . . . , ξi ∈ {0, 1}.
Claim. If ξ1 = 1 then B will show up before A: 101100. . . .
Corollary. A wins i� ξ1ξ2ξ3 = 000.
Hence P(A−wins) = 2−3 = 1/8 < 7/8 = P(B−wins).

(b. ii) Counterexample. Let
A = 000,B = 1000 =⇒ |A| = 3 < |B|. To compensate the length
di�erence the winning counts from the beginning of the pattern.

(c) ∃ of the �best� pattern of a given length? Mirror symmetry.
100 ∼ 011 > 000 ∼ 111, 001 ∼ 110, 101 ∼ 010, 100−?− 101
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[23] Lecture 3. Exponential moments � Cherno� bounds

Idea of large deviations, from r.v. and up to random DS.
Chebyshev inequality with 0 < ϕ↗ � nondecreasing:
P(ξ ≥ t) ≤ P(ϕ(ξ) ≥ ϕ(t)) ≤ Eϕ(ξ)

ϕ(t) . Set ϕ(x) := etx

P(ξ ≥ ε) ≤ Eetξ

etε
, P(ξ ≤ −ε) = P(e−tξ ≥ etε) ≤ Ee−tξ

etε
.

Cherno�'s idea is to �nd the value of t minimizing r.h.s.

Moment generating function:
Mξ(t) := Eetξ = 1 + tEξ + t2

2 Eξ
2 + · · ·+ tn

n!Eξ
n + . . .

Generating (proizvodyaschaya) function: Ezξ, |z | < 1,
Characteristic function: Ee itξ.

Properties of Mξ(t): (a) Eξn = dn

dtn
Mξ(0) (if ∃ near 0)

(b) Mξ(t) = Mη(t) |t| < δ =⇒ ξ = η (on distribution)
(c) ξ, η independent =⇒ Mξ+η = MξMη

Proof. Mξ+η(t) = Eet(ξ+η) = Eetξetη = MξMη.
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[24] Lecture 3. Exponential moments � Cherno� bounds 2

Theorem 1

ξi iid P(ξi = ±1) = 1
2 =⇒ P(|

∑n
k=1 ξk | > ε) < 2e−ε

2/(2n).

Proof. We check that P(Sn :=
∑n

k=1 ξk > ε) < e−ε
2/(2n).

Eetξk = (et + e−t)/2 = cosh(t) ≤ et
2/2. To prove the last

inequality we compare the corresponding Taylor series:

cosh(t) = (et + e−t)/2 =
∑

k≥0
t2k

(2k)! (odd terms cancel) and

et
2/2 =

∑
k≥0

t2k

2kk!

(2k)! = (2k)(2k − 1) . . . (k + 1)︸ ︷︷ ︸
≥2k

k! ≥ 2kk!

Now since EetSn =
∏n

k=1 Ee
tξk = coshn(t) ≤ ent

2/2 we get

P(Sn > ε) ≤ e
nt2

2 /etε = e
nt2

2
−tε.

Choosing t = ε/n (minimizing rhs) we get
P(Sn > ε) ≤ e−ε

2/(2n).
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[25] Lecture 3. Exponential moments � Cherno� bounds 3

Theorem 2

Let Bin(n, p) :=
∑n

i=1 ξi , P(ξi = 1) = p. Then

P(|Bin(n, p)− np| > t) < 2e−t
2/(3np) if 0 ≤ t ≤ np.

P(|Bin(n, p)− np| > t) < 2e−np/3 if t > np.

Lemma

Let |ξ| ≤ 1,Eξ = 0 =⇒ Mξ(t) ≤ et
2Dξ ∀t ∈ [−1, 1].

Proof. |tξ| ≤ 1,Eξ = 0 =⇒ etξ ≤ 1 + tξ + (tξ)2 =⇒
=⇒ Eetξ ≤ 1 + t2Eξ2 = 1 + t2Dξ ≤ et

2Dξ.
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[26] Lecture 3. Exponential moments � Cherno� bounds 4

Theorem 3

Let ξi be independent with |ξi − Eξi | ≤ 1 ∀i .
Set Sn :=

∑n
i=1 ξi , σ :=

√
DSn

=⇒ P(|Sn − ESn| ≥ εσ) ≤ 2max(e−ε
2/4, e−εσ/2).

Proof. It is enough to consider Eξi = 0. Due to symmetry we get
P(Sn ≥ εσ) ≤ e−tεσ/2 for t = min(ε/(2σ), 1).∑n Dξi = σ2, hence by the Lemma:
P(Sn ≥ εσ) ≤ e−tεσ

∏n
i=1 Ee

tξi ≤ e−tεσ
∏n

i=1 e
t2Dξi = e−tεσ+t2σ2 .

Thus choosing t ≤ ε
2σ we get the result.

Application: coin tossing:
ξi ∈ {0, 1}, p = 1

2 ,ESn = n
2 ,DSn = n

4 .

Chebyshev: P(|Sn − ESn| ≥ δESn) ≤ DSn
δ2(ESn)2

= 1
δ2n

Cherno�: P(|Sn − ESn| ≥ δESn) ≤ 2e−δ
2ESn/3 = 2e−δ

2n/6

much better!
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[27] Lecture 4. Markov chains (unorthodox approach)

(X ,B) � a measurable space,M =M(X ,B) � probabilistic
measures on X . Markov chain T t :M→M, t ∈ Z or R is a
family of operators such that ∀µ, ν ∈M:
� T t(aµ+ (1− a)ν) = aT t(µ) + (1− a)T t(ν), 0 ≤ a ≤ 1
� T t+s(µ) = T s ◦ T t(µ) � semigroup or Markov property.
If T tδx = δy ∀x ∈ X and some y = y(x) ∈ X =⇒ deterministic

and random otherwise.
Deterministic: F : (X ,B)→ (X ,B) =⇒ T nµ(A) := µ(F−nA) ∀A.
Random Examples:
(a) Random map: F1,F2 : (X ,B)→ (X ,B), 0 < p < 1,

T 1µ(A) := pµ(F−11 A) + (1− p)µ(F−12 A).

(b) Finite state Markov chain: X := {0, 1}, P :=

(
p00 p01
p10 p11

)
,

T 1µ := µ∗P :

(
µ(0)→ p00µ(0) + p10µ(1)
µ(1)→ p01µ(0) + p11µ(1)

)
, T nµ = µ∗Pn.
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[28] Lecture 4. Markov chains (unorthodox approach) 2

T µ = µ∗P .

0 1

p01

p10

p00 p11

(c) iid ξi ∈ {0, 1} Markov chain with pij = 1/2.
(d) General continuous time Markov chains: transition probabilities
Pt
s (x ,A) := P(ξs+t ∈ A|ξs = x).

How this corresponds to the traditional approach?
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[29] Lecture 4. Stochastic/random processes

Stochastic function is a a family of r.v. {ξt}t∈T , or
ξt(ω) : (Ω,F ,P)× T → (X ,B) � ∀t measurable on ω.
When T = Zd or Rd we identify t with time and speak about
stochastic processes. ξt(•) � r.v. for a �xed t.
ξ•(ω) � realization or trajectory � nonrandom for a given ω.
ξt ∼ ηt if P(ξt 6= ηt) = 0 ∀t ∈ T � equivalence.
Φt1,...,tn(A) := P((ξt1 , . . . , ξtn) ∈ A) � a �nite dimensional

distribution.
ξt ∼ ηt =⇒ Φξ = Φη (but not vice versa).
Question: what about realizations? - No.
Example: Let T := [0, 1] and a r.v. τ ∈ (0, 1) have a continuous

distribution. Set ξt ≡ 0, ηt :=

{
0 if t 6= τ
1 otherwise

. ξt ∼ ηt since

P(ξt 6= ηt) = P(τ = t) = 0, however each trajectory of ξt is
identically 0, while each trajectory of ηt has a �jump� at time τ .
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[30] Lecture 4. Existence of a random process

Let F (x) be a probability distribution. Is there a probability space
(Ω,F ,P) and a r.v. ξ(ω) such that P(ω : ξ(ω) ≤ x) = F (x)?
Set Ω := R,F := Bor(R). Then ∃!P : P((a, b]) = F (b)− F (a)
and thus for the r.v. ξ(ω) := ω we have Fξ(x) ≡ F (x).

Now we consider the same problem for a random process
ξt , t ∈ T ⊆ R with �nite dimensional distributions

Ft1,...,tn(x1, . . . , xn) = P(ω : ξt1 ≤ x1, . . . , ξtn ≤ xn).

Theorem (Kolmogorov)

Let Ft1,...,tn(x1, . . . , xn) be a given family of �nite dimensional
distributions, satisfying the following consistency conditions:

Ft1,...,tk−1,tk ,tk+1,...,tn(x1, . . . , xk−1,∞, xk+1, . . . , xn)
= Ft1,...,tk−1, tk+1,...,tn(x1, . . . , xk−1, xk+1, . . . , xn).

Then ∃(Ω,F ,P) and a random process ξt , t ∈ T such that
P(ω : ξt1 ≤ x1, . . . , ξtn ≤ xn) = Ft1,...,tn(x1, . . . , xn).
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[31] Lecture 4. General Markov chains

A random process ξt : (Ω,F ,P)→ (X ,B,m) acting on a Borel
(X ,B) space with a �nite reference measure m ( 6= m(ξt)) is a
Markov chain de�ned by transition probabilities

Qt
s (x ,A) := P(ξs+t ∈ A|ξs = x), A ∈ B,

with standard properties:

Qt
s (x , ·) is a probability measure on the σ-algebra B.

For �xed s, t,A the function Qt
s (·,A) is B-measurable.

For t = 0 Qt
s (x ,A) = δx(A).

For each s, 0 ≤ t ≤ t ′ and A ∈ B we have

Qt′
s (x ,A) =

∫
X

Qt
s (x , dy)Qt′−t

t (y ,A).
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[32] Lecture 4. General Markov chains 2

The process ξt induces an action on measures:

Qt
sµ(A) :=

∫
Qt
s (x ,A) dµ(x)

and an action on functions:

Qt
sϕ(x) :=

∫
ϕ(y)Qt

s (x , dy).

De�nition

A Borel measure µ is said to be invariant or stationary for the
Markov chain ξt if it is a solution to the equation

Qt
sµ = µ ∀s, t.

A system is deterministic i� Qt
s δx is a δ-measure ∀x , s, t.

This agrees with the discussion of the unorthodox approach.
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[33] Lecture 4. Discrete time random processes

(1) iid r.v. ξt : (Ω,F ,P)→ (X , 2X ), t ∈ Z+, X := {0, 1},
P(ξt = 1) = p,P(ξt = 0) = 1− p.

Let b := {bk} be a binary sequence and let SN(b) be its left shift
by N positions, i.e. (SN(b))i := bi+N . W (b, n) := (b1, b2, . . . , bn).

De�nition

A sequence b is strongly recurrent if ∀n0, n ∈ Z+ there exists
N = N(b, n0, n) such that W (Sn0b, n) = W (Sn0+Nb, n); and
uniformly strongly recurrent if ∃ an in�nite sequence of shifts {Nk},
such that supk |Nk+1 − Nk | <∞.

Calculate: P(ξt is s.recurrent), P(ξt is uniformly s.recurrent).

(2) Simple random walk: ηt : (Ω,F ,P)→ (X , 2X ), t ∈ Z+,
X := Z, ηt+1 := ηt + ξt , where ξt ∈ {−1, 1} are iid with
P(ξt = 1) = p,P(ξt = −1) = 1− p.
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[34] Lecture 5. Discrete time random processes 2

(3) Collective random walks � the exclusion process EP.
A con�guration ζt := (. . . , ζ−1t , ζ0t , ζ

1
t , . . . ), ζ it ∈ Z describes

positions of �particles� on the lattice Z at time t. Each particle
performs the random walk if it does not interfere with other
particles.

t TASEP

t + 1
p p

t + 2
p p

The main problem in the analysis of such systems is an in�nite
number of simultaneous interactions between neighboring particles.
An example will be discussed on the next slide.
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[35] Lecture 5. Subway escalator

t TASEP, p = 1

t + 1
p p

t + 2
p p

Let V be the escalator's velocity, ρ � the density of passengers.
Then the passengers �ow F (ρ,V ) := (1− |1− 2ρ|)/2 + V ρ.

ρ

F

1
2

0 11
2

V ρ

Case V < 1

ρ

F

1
2

0 11
2

V ρCase V > 1

F (12 ,V ) > F (1,V ) i� 1+V
2 > V =⇒ V < 1.
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[36] Lecture 5. Recurrence of random walks

Let ηt [p] be a random walk on Z with P(ηt+1 − ηt = 1) = p. A
sequence {bk}, bk ∈ Z is recurrent if ∀i ∃n = n(i) > 0 : bi = bi+n.

Find all values of the parameter p ∈ [0, 1] such that
(a) ηt [p] is recurrent,
(b) ηt [p] is strongly recurrent,
(c) ηt [p] is uniformly strongly recurrent.

Claim

Let Ωk
n := {ω : a return to k occurs after 2n time steps} =⇒

P(∪n≥0Ωk
n) = 1 i�

∑
n≥0 P(Ωk

n) =∞.

=⇒ see a more general statement on the next slide.

Discussion. Set q := 1− p. We have
P(Ωk

n) = Cn
2n(pq)n = (2n)!(pq)n

n!n! ∼ (4pq)n√
πn

(by the Stirling formula).

Thus recurrence occurs i� p = q = 1/2.
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[37] Lecture 5. Recurrence of random walks 2

General framework. Let ξn be a Markov chain on Z+ with

transition probabilities p
(n)
i ,j .

Theorem

v := maxn P(ξn = k |ξ0 = k) = 1 i�
∑

n≥1 p
(n)
k,k =∞ ∀k ∈ Z+.

Proof. Let vn := P(the 1st return to k occurs after n steps), and
let v :=

∑
n≥1 vn. By the formula of total probability we have

(*) p
(n)
i ,i =

∑n
j=0 p

(j)
i ,i vn−j .

Set additionally un := p
(n)
i ,i and introduce the generating functions

U(z) :=
∑

m≥0 umz
m, V (z) :=

∑
m≥0 vmz

m, which are analytic for
|z | ≤ 1 . Then (*) is equivalent to
U(z)− u0 = U(z)V (z), u0 = 1 =⇒ U(z) = 1

1−V (z) .

limz→1 U(z) = limz→1
1

1−V (z) = 1
1−v =∞ if v = 1. On the other

hand, limz→1 U(z) = limz→1
∑

m≥0 umz
m =

∑
m≥0 um =∞.
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[38] Lecture 5. Basic examples of random processes

(0) Random sin oscillations: ξt := A cos(ηt +ϕ), r.v. A, η ≥ 0, ϕ.
ϕ is uniformly distributed on [0, 2π) and does not depend on A, η.

(I) Poisson process ξt with the parameter a > 0 on T := R+:
(0) ξ0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆ξti ,ti−1 := ξti − ξti−1 independent.
(ii) r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Poisson distributed:

P(∆ξt,s = k) = (a(t − s))ke−a(t−s)/k!, k ∈ Z+.
(iii) Trajectories of ξt are right continuous.

(II) Cauchy process: (0) + (i) +
(ii') r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Cauchy distributed with

the density p(x) = π−1(t − s)/((t − s)2 + x2).

(III) Wiener process wt : (0) + (i) +
(ii�) r.v. ∆wt,s := wt − ws , 0 ≤ s ≤ t are Gaussian N (0, t − s).
(iii') Trajectories of wt are continuous.
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[39] Test 2

1 Prove that stochastically equivalent processes (i.e.
P(ξ(t) 6= η(t)) = 0 ∀t) have the same �nite dimensional
distributions. P(ξ(ti ) ∈ Bi i ∈ {1, . . . , n}) = (∀ti ,Bi ∈ B)

= P(∩i{ξ(ti ) ∈ Bi} ∩ ∩i{ξ(ti ) = η(ti )})
= P(∩i{η(ti ) ∈ Bi} ∩ ∩i{ξ(ti ) = η(ti )})
= P(η(ti ) ∈ Bi i ∈ {1, . . . , n}).

2 Construct stochastically non-equivalent processes, having the
same �nite dimensional distributions. ξ, η : Ω→ {−1, 1},
P(ξ = ±1) = P(η = ±1) = 1

2 , ξ(ω) = −η(ω) ∀ω ∈ Ω.
3 Let ξ have the standard normal distribution N (0, 1). Check if

P(ξ ≥ a) ≤ e−a
2/2 ∀a ≥ 0.

P(ξ ≥ a) = 1√
2π

∫∞
a

e−x
2/2dx ≤ 1√

2π

∫∞
a

x

a
e−x

2/2dx

= 1

a
√
2π
e−a

2/2 ≤ e−a
2/2 if a

√
2π ≥ 1. Otherwise, if a

√
2π < 1:

P(ξ ≥ a) ≤ P(ξ ≥ 0) = 1

2
≤ e−

1

2
(
√
2π)−2 ≤ e−a

2/2

since ln 2 ∼ 0.69 > 1/(4π). [Wrong if a < 0]

Solution: (problem number) Answer. Short proof.
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[40] Lecture 6. Properties of basic random processes

(0) Random sin oscillations: ξt := A cos(ηt +ϕ), r.v. A, η ≥ 0, ϕ.
ϕ is uniformly distributed on [0, 2π) and does not depend on A, η.

Claim

Finite dimensional distributions of ξt , t ∈ T := R are translationally
invariant: µt̄+h = µt̄ ∀t̄ = (t1, . . . , tn), h ∈ R.

Proof. We need to prove the following equality:
(*) Z := P({A cos(η(t1 + h) + ϕ), . . . ,A cos(η(tn + h) + ϕ)} ∈ C )

= P({A cos(ηt1 + ϕ), . . . ,A cos(ηtn + ϕ)} ∈ C ).
B := {(x , y , z) : x , y ≥ 0, z ∈ [0, 2π),

{x cos(yt1 + z), . . . , x cos(ytn + z)} ∈ C} is a Borel set.
Denoting by {z}2π the fractional part of z mod 2π, from (*) we get
Z = P((A, η, {ϕ+ ηh}2π) ∈ B) = P((A, η, ϕ) ∈ B).
(A, η) and ϕ are independent =⇒ µA,η,ϕ = µA,η × µϕ. Thus
Z =

∫∞
0

∫∞
0
µA,η(dxdy) µϕ(C1 := {z : (x , y , {z + yh}2π) ∈ B})

=
∫∞
0

∫∞
0
µA,η(dxdy) µϕ(C2 := {z : (x , y , z) ∈ B}), since C1 is

obtained from C2 by the translation by yh and taking mod 2π. Finally,
µϕ is uniform on [0, 2π) and does not change under translations.
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[41] Lecture 6. Poisson process

(I) Poisson process ξt with the parameter a > 0 on T := R+:
(0) ξ0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆ξti ,ti−1 := ξti − ξti−1 independent.
(ii) r.v. ∆ξt,s := ξt − ξs , 0 ≤ s ≤ t are Poisson distributed:

P(∆ξt,s = k) = (a(t − s))ke−a(t−s)/k!, k ∈ Z+.
(iii) Trajectories of ξt are right continuous.

Claim

a.a. trajectories are non-decreasing integer valued functions with
jumps of size 1.

Proof. Main idea. Show that probabilities of the events
A := {ξt ∈ Z ∀t = k2−n}, B := {ξs ≤ ξt ∀s ≤ t = k2−n},
CN := {∀k ∈ Z ∩ [0, ξN ] ∃t = k2−n ∈ [0,N] : ξt = k} are equal 1.
To this end one approximates them by events depending only on a
�nite number of values ξt .

see next slide
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[42] Lecture 6. Poisson process 2

Proof. The event A =
⋂

t=k·2−n(At := {ξt ∈ Z+})

P(ξt ∈ Z+) = P(ξt − ξt0 ∈ Z+) =
∞∑
i=0

P(ξt = i) = 1 = P(A).

B is the intersection of the events:
Bn := {ξ0 ≤ ξ1·2−n ≤ . . . ξk·2−n ≤ . . . } =

⋂
k{ξk·2−n ≤ ξ(k+1)·2−n}.

Since P(ξk·2−n ≤ ξ(k+1)·2−n) = 1, we have 1 = P(Bn) = P(B).

CN ⊇
⋂2nN−1

k=0 {ξ(k+1)·2−n − ξk·2−n ∈ {0, 1}} =⇒ by (i)+(ii)

P(CN) ≥
∏2nN−1

k=0 P({ξ(k+1)·2−n − ξk·2−n ∈ {0, 1}})
≥ (e−a2

−n
+ a2−ne−a2

−n
)2

nN ≥ (1− o(a2−n))2
nN n→∞−→ 1,

since e−x + xe−x = 1− o(x) as x → 0 =⇒ P(CN) = 1.
Finally, the event that the jumps are equal to 1 coincides (by the
right continuity) with the event Z := AB ∩N CN with P(Z ) = 1.

A trajectory of ξt
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[43] Lecture 6. Wiener process

(III) Wiener process wt starting from 0 on T := R+:
(0) w0 = 0.
(i) ∀0 ≤ t0 < t1 < · · · < tn r.v. ∆wti ,ti−1 := wti − wti−1 are
independent.
(ii) r.v. ∆wt,s := wt − ws , 0 ≤ s ≤ t are Gaussian N (0, t − s).
(iii) Trajectories of wt are continuous.

Theorem 1

∀0 ≤ a ≤ t0 < t1 < · · · < tn = b

(L2) lim
diam{ti}→0

n−1∑
i=0

(wti+1
− wti )

2 = b − a.

Proof. Let Z :=
n−1∑
i=0

(wti+1
− wti )

2. Then by independence

EZ =
n−1∑
i=0

E (wti+1
− wti )

2 =
n−1∑
i=0

D(wti+1
− wti )

=
n−1∑
i=0

(ti+1 − ti ) = b − a. (see next slide)
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[44] Lecture 6. Wiener process 2

Similarly

DZ =
n−1∑
i=0

D(wti+1
− wti )

2 (evaluaing
∫
x4e−

x2

2σ2 dx by parts u = x3

=
n−1∑
i=0

[E (wti+1
− wti )

4 − (E (wti+1
− wti )

2)2] dv = xe−
x2

2σ2 dx)

=
n−1∑
i=0

[3(ti+1 − ti )
2 − (ti+1 − ti )

2] = 2
n−1∑
i=0

(ti+1 − ti )
2

≤ 2max(ti+1 − ti )×
n−1∑
i=0

(ti+1 − ti ) = 2(b − a)diam{ti} → 0.

Thus E (
n−1∑
i=0

(wti+1
− wti )

2 − (b − a))2 = D
n−1∑
i=0

(wti+1
− wti )

2 → 0,

which implies the convergence in L2.

Important observation. An increment of a smooth function is of the
same order as the increment of its argument, while the sum of
squares of increments goes to 0. In the case of wt the situation is
rather di�erent.
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[45] Lecture 6. Wiener process 3

Statistics:
Holder exponent for the Wiener process wt . Estimate wt−ws

|t−s|β .

For t > s we have
E wt−ws

|t−s|β = 0, D wt−ws

|t−s|β = t−s
|t−s|2β = (t − s)1−2β

t−s→0−→ 0 i�

0 < β < 1/2. Further one applies the Chebyshev inequality.

Variation var(wt). For ∆ := {[ti , ti+1)}ni ⊂ [a, b] denote
V (wt ,∆) :=

∑n
i |wti − wti+1

|. Find (E/D)V (wt ,∆) =?

E |wt+h − wt | = 1
σ
√
2π

∫∞
−∞ |x |e

−x2/2σ2dx (σ2 = h)

= 2σ2

σ
√
2π

∫∞
0 e−x

2/2σ2d x2

2σ2
=
√

2h
π .

Thus for |ti − ti+1| = 1
n
, a = t0 < · · · < tn = b we have

EV (wt ,∆) =
√

2
π (b − a) ·

√
n

n→∞−→ ∞, DV (wt ,∆)
n→∞−→ b − a.

Now again the Chebyshev inequality gives the result.
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[46] Lecture 6. Wiener process 4

Claim [Statistics]

Let fn(t) be piecewise linear with with vertices at points
{k2−n,

∑k−1
i=0 (w(i+1)2−k − wi2−k )2}. Then

P(|fn(t)− t| n→∞−→ 0) = 1 uniformly on [0,T ].

Proof. The functions fn(t) are nondecreasing =⇒ it is enough to
prove the convergence on a dense set, say for all t = k2−m. Why?

For n ≥ m we have
E (fn(t)− t)2 = 2t2−n, E

∑
n≥0

(fn(t)− t)2 =
∑
n≥0

E (fn(t)− t)2 <∞.

Hence by the Chebyshev inequality the series converges with
probability 1. Thus fn(t)− t → 0.

Theorem (Continuity of trajectories:)

Let ξt , t ∈ T = [a, b] be a random process such that
∃α, ε,C > 0: E |ξt − ξs |α ≤ C |t − s|1+ε ∀t, s ∈ T . Then ∃ a
modi�cation of ξt with continuous trajectories.
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[47] Lecture 6. Wiener process 5

(III) Multidimensional Wiener process. wt := (w1
t , . . . ,w

d
t ) ∈ Rd ,

t ∈ R+, w0 = x0. The de�nition is exactly the same as in the 1D
case, except that the increments wt − ws have the covariation
matrix diag(t-s) instead of a single number.

Claim

The events from Fw i
t
are independent, which implies that the

d -dimensional Wiener process is simply a collection of d
independent 1D processes.

Proof. ∀0 ≤ t1 < · · · < tn consider random vectors
W i := (w i

t1
, . . . ,w i

tn). Their joint distribution is Gaussian. Hence
for independence it is enough to observe that the coordinates of
W i and W j for i 6= j are uncorrelated.

The density of the joint distribution of (w1
t , . . . ,w

d
t ) is

pw1
t ,...,w

n
t

(x1, . . . , xn) =
n∏

i=1

1
(2π(ti−ti−1)2)

exp(−
n∑

i=1

(xi−xi−1)2

2(ti−ti−1) ).
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[48] Lecture 6. Wiener process 6

Statistics:

Claim

Let a = t0 < · · · < tn = b. Then
n−1∑
i=0

(w1
ti+1
− w1

ti
)(w2

ti+1
− w2

ti
)
n→∞−→ 0 in L2.

Proof. w̃t := (w1
t + w2

t )/
√
2 is again the Wiener process. Thus

lim
n−1∑
i=0

(w1
ti+1
− w1

ti
)(w2

ti+1
− w2

ti
)

= 1
2 [lim

n−1∑
i=0

2(w̃ti+1
− w̃ti )

2 −
2∑

j=1
lim

n−1∑
i=0

(w j
ti+1
− w j

ti
)2]

= 1
2 [2(b − a)− (b − a)− (b − a)] = 0.
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[49] Lecture 6. Wiener process (Existence 1)

Existence. Let ξn be the simple symmetric random walk on Z with
ξ0 = 0 and P(ξn+1 = i ± 1|ξn = i) = 1/2. We interpolate it and
rescale to [0, 1], namely ∀n ∈ Z+, (i0, i1, . . . , in) ∈ Zn+1 de�ne

Z
(n)
t := 1√

n
(1− nt + [nt])ξ[nt] + 1√

n
(nt − [nt])ξ[nt]+1,

which linearly interpolates the points of the rescaled random walk.

Let Φn be the �nite dimensional distribution of the process Z
(n)
t .

Theorem

Φn
n→∞−→ µw weakly, which is a probability measure on C ([0, 1]),

called the Wiener measure.

µw ({f : f (ti ) ∈ Bi , i = 1, 2, . . . , k})

=
∏k

i=1
1√

2π(ti+1−ti )

∫
Bi
e

x2

2(ti+1−ti ) dx .

Here Bi are measurable sets from [0, 1]. The measure µw corresponds to
a random process called Brownian motion, which satis�es all properties of
the Wiener process.
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[50] Lecture 6. Wiener process (Existence 2)

Let ξn be the simple symmetric random walk on Z with ξ0 = 0.

Theorem

A piecewise constant r.p. Z
(n)
t := n−1/2ξ[nt], t ∈ [0,∞) converges

in distribution as n→∞ to the r.process satisfying the conditions
(0-ii) of the Wiener process wt .

Proof. By the CLT the normalized symmetric random walk n−1/2ξn
converges in distribution to N (0, 1) as n→∞.

Let us check that at a �xed time t > 0, the r.p. Z
(n)
t converges as

n→∞ to a r.v. with the distribution to N (0, t):

Z
(n)
t := n−1/2ξ[nt] =

ξ[nt]√
[nt]

√
[nt]√
n
,

which converges in distribution to a r.v. distributed as N (0, t).
Independence of increments over non-intersecting time intervals
follows from the construction.
Only continuity of trajectories is under question.
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[51] Lecture 7. Wiener process (properties)

Theorem

Let ξn be iid r.v. with the standard normal distribution N (0, 1).

Then Zt :=
√

2
π

∑∞
k=1

sin(kt)
k

ξk is the Wiener process on [0, π].

Theorem (Feynman-Kac)

The solution of the di�usion equation ∂u
∂t = 1

2
∂2u
∂x2

, u(x , 0) := f (x)
can be represented as u(x , t) = Ef (x + wt), provided f ∈ C 2.

Proof. Due to the independence of wt+s − wt and wt , we have
u(x , t + s) = Ef (x + wt+s) = Ef (x + (wt+s − wt) + wt)

= Eu(x + (wt+s −wt), t) ≡ Eu(x + ws , t). Therefore,
∂u
∂t (x , t) = lims→0

1
s

(u(x , t + s)− u(x , t))
= lims→0

1
s
E (u(x + ws , t)− u(x , t))

= lims→0
1
s

(
∂u
∂x Ews + 1

2
∂2u
∂x2

Ew2
s + o(s)

)
= 1

2
∂2u
∂x2

.

The result follows by noting that Ews = 0, Ew2
s = s.
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[52] Lecture 7. Wiener process 8

Moments(d = 1): Ewt = E (wt −w0) = 0, Dwt = D(wt −w0) = t.
For 0 ≤ s ≤ t we have
cov(wt ,ws) = E (wt − ws)ws + Ew2

s = D(ws − w0) = s = t ∧ s.

Continuity: E (wt+h − wt) = 0,D(wt+h − wt) = h. Therefore
wt → wt0 as t → t0 ∀t0 in probability.

A Brownian bridge is a process Bt whose law is the conditional
probability distribution of a Wiener process on [0,T ] subject to the
condition wT = 0, i.e. Bt := (wt |wT = 0), t ∈ [0,T ]. Then

EBt ≡ 0, but DBt = t(T−t)
T

=⇒ the most uncertainty is in the

middle. cov(Bt ,Bs) = s(T−t)
T

if s < t.
Remark. The increments of a Brownian bridge are not
independent.

Representation of the Brownian bridge:

Bt = wt − t
T
wT = T−t√

T
w t

T−t
.
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[53] Lecture 7. Wiener process 9

De�nition

A d -dimensional random process ξt is Gaussian if all its �nite
dimensional distributions are Gaussian, i.e. they are de�ned by 2
functions mt := Eξt and Rs,t := E (ξs −ms)(ξt −mt).

Let ξt , t ∈ R+ be Gaussian and (0) ξ0 = 0, (a) Eξt = 0,
(b) Eξtξs = min(t, s) = t ∧ s, (c) ξt is continuous on t a.e.

Claim

ξt is a Wiener process.

Proof. ∀0 ≤ t1 ≤ · · · ≤ tn r.v. (ξti+1
− ξti ) have a joint Gaussian

distribution. (b) implies that the increments are uncorrelated, and
the Gaussian distribution implies their independence. Finally,
E (ξt − ξs)2 = Eξ2t + Eξ2s − Eξtξs = t + s − 2(t ∧ s) = t − s.

Remark. E |ξt − ξs | =
√

2(t−s)
π .
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[54] Lecture 7. Wiener process 10

Claim

P(ξt ≥ a|τa ≤ t) = 1
2 , where ξτa = a > 0, ξt < a ∀t < τa.

Proof. The event ξt ≥ a is a subset of τa ≤ t and
P(ξt ≥ a|τa ≤ t) = P(ξt≥a)

P(τa≤t) . By the symmetry, the probability, that

after starting at the point a, to be to the right of a at time t is the
same as to be to the left of it. The result follows.
Corollary. For t > 0

P(τa ≤ t) = P(ξt≥a)
P(ξt≥a|τa≤t) = 2P(ξt ≥ a) =

√
2
π

∞∫
a/
√
t

e−x
2/2dx . (*)

Hence P(τa <∞) = 1. Moreover:

P( max
0≤s≤t

ξs ≥ x) = P(τx ≤ t) =
√

2
π

∞∫
x/
√
t

e−y
2/2dy

=
√

2
πt

∞∫
x

e−y
2/(2t)dy = 2P(ξt ≥ x) � the doubled normal law.

Similarly for the minimum value. Observe also that
P( max

0≤s≤t
ξs > 0) = P( min

0≤s≤t
ξs < 0) = 1.
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[55] Lecture 7. Wiener process 11

Claim The arcsin law for the maximum of ξs :

P(τmax ≤ s) =
s∫
0

dy

π
√

y(t−y)
= 2

π arcsin
√

s
t

for 0 ≤ s ≤ t.

Proof. After the moment τa the process obeys the same laws as
when starting from 0. Therefore ξmax := max

0≤u≤t
ξu ≡ max

s≤u≤t
ξu if

τa = s ≤ t, and ξmax has the same probability distribution as
a + max

0≤u≤t−s
ξu. According to (*) this r.v. has the following

conditional probability density:

pξmax(x |τa = s) =
√

2
π(t−s) exp(− (x−a)2

2(t−s) ), a ≤ x <∞. Hence

pτa,ξmax(s, x) = pτa(s)pξmax(x |τa = s) = 1

π
√

s(t−s)

a
s
e−

a2

2s e
− (x−a)2

2(t−s) .

Denote by τ and ξ the (time) position and the value of the global
maximum of ξu on the interval [0, t]. see next slide
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[56] Lecture 7. Wiener process 12

The density of the r.v. (τ, ξ) at a point (τ = s, ξ = a) coincides
with the density of (τa, ξ) at the same point, since
pτ,ξ(s, a) = pτ (s|ξ = a)pξ(a) = pτa(s|ξ = a)pξ(a) = pτa,ξ(s, a).

=⇒ pτ,ξ(s, a) = 1

π
√

s(t−s)

a
s
e−

a2

2s for 0 < s < t, 0 < a <∞; and

=⇒ pτ (s) =
∫∞
0 pτ,s(s, x)dx = 1

π
√

s(t−s)

∫∞
0

x
s
e−

x2

2s dx = 1

π
√

s(t−s)
.

Therefore P(τ ≤ s) =
∫ s
0

du

π
√

u(t−u)
= 2

π arcsin
√

s
t
.

0 t/2 t

pτ (s) = 1

π
√

s(t−s)

Thus the maximum is near one of the end-points.
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[57] List 2 � deadline 22.04

1 Construct uncorrelated but dependent normally distributed r.v.

2 Prove/disprove existence of a Gaussian process ξt , 0 ≤ t ≤ 1 with
Eξt ≡ 0 and a correlation function K (t, s) := t ∧ s − ts, such that
almost all its realizations are continuous.

3 Let wt be a standard Wiener process, and let ti := i

n
, 0 ≤ i ≤ n.

Calculate lim
n→∞

P(
∑n−1

i=0
|wti+1

− wti
| > nα) as a function of α ∈ R.

4 Let {ξi}ni=1
be iid r.v. with Eξi = 0, Dξi = 1. Let ηn :=

√
n

∑
n
i=1 ξi∑
n
i=1 ξ

2

i

.

Prove that ηn is asymptotically normal as n→∞.

5 Let {ξi}ni=1
be iid r.v. and let 1

n

∑n

i=1
ξi

n→∞−→ 1 almost surely. Prove
that E |ξ1| <∞ and calculate Eξ1.

6 Let {ξi}ni=1
be iid r.v. with Eξi = 0,Dξi = σ2 > 0 and let

ηn := 1

σ
√
n

∑n

i=1
ξi . Prove/disprove existence of (P) limn→∞ ηn.

7 Find ALL stationary processes ξt , t ≥ 0 such that ∃(P) limt→∞ ξt .

Do not wait until the deadline, and send written solutions
(preferably in LaTex) by e-mail.
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[58] Lecture 7. Choice of the largest unknown number

The numbers A 6= B are in closed envelopes. I take one at random
(say A) and read it. Is it possible to construct an algorithm
(deterministic or random) answering the question if the second
(unknown) number is larger?

Algorithm. Let ξ be a Gaussian r.v. If ξ > A I decide that B > A

and vice versa. How this helps?

A B

ξ1 ξ2 ξ3

The probability to win
= 1

2 · (1− P((A− ξ)(B − ξ) < 0)) + 1 · P((A− ξ)(B − ξ) < 0)

= 1+P((A−ξ)(B−ξ)<0)
2 > 1

2 .
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[59] Lecture 7. Coupling

De�nition

A coupling of measures Pi on (Ωi ,F i ), i = 1, 2 is a new measure
P̃ on (Ω̃ := Ω1 × Ω2, F̃ := F1 ×F2) such that
P̃(A1 × Ω2) = P1(A1), P̃(Ω1 × A2) = P2(A2) ∀Ai ∈ F i .

De�nition

A coupling of r.v. ξi , i = 1, 2 is a new r.v. ξ̃ := (ξ̃1, ξ̃2) on (Ω̃, F̃)
such that its distribution is the coupling of the distributions of ξi .

Remark. Couplings are not uniquely de�ned.

De�nition

Let (Ωi ,F i ) = (Ω,F), then the total variation distance
||P1 − P2||tv := supA∈F |P1(A)− P2(A)|.

see next slide
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[60] Lecture 7. Coupling 2

Theorem 1 Coupling inequality

Given r.v. ξi , i = 1, 2 with probability distributions Pi for any
coupling P̃ we have ||P1 − P2||tv ≤ P̃(ξ̃1 6= ξ̃2).

Proof. P1(ξ1 ∈ A)− P2(ξ2 ∈ A) = P̃(ξ̃1 ∈ A)− P̃(ξ̃2 ∈ A)
= P̃(ξ̃1 ∈ A, ξ̃1 = ξ̃2) + P̃(ξ̃1 ∈ A, ξ̃1 6= ξ̃2)
−P̃(ξ̃2 ∈ A, ξ̃1 = ξ̃2)− P̃(ξ̃2 ∈ A, ξ̃1 6= ξ̃2) ≤ P̃(ξ̃1 6= ξ̃2).

De�nition

A coupling of r. processes ξit , i = 1, 2 on the same space (Ω,F ,P)
is a new r. process ξ̃t := (ξ̃1t , ξ̃

2
t ) on (Ω1 × Ω2,F1 ×F2, P̃).

τ := inf{t ∈ T : ξ1t = ξ2t } � the coupling time.

see next slide
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[61] Lecture 7. Coupling 3

De�nition

A coupling P̃ is called successful if P̃(ξ̃1t 6= ξ̃2t ) = 0 ∀t ≥ τ .

ξ̃2t

ξ̃1t
τ

ξ̃1t ≡ ξ̃2t

Theorem 2

||P1(ξ1t ∈ ·)− P2(ξ2t ∈ ·)||tv ≤ P̃(τ > t) ∀t ∈ T .

Proof. {ξ1t 6= ξ2t } ⊆ {τ ≤ t} by Theorem 1.

Application: convergence of Markov chains.

Problem. Let ξit := aiw i
t + bi , i = 1, 2 and let w i

t be independent
Wiener processes on R1. Check existence of the successful
coupling.
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[62] Lecture 7. Coupling for TASEP

t TASEP, 0 < p ≤ 1

t + 1
p p

t + 2
p p

Realizations pairing

Unpaired particles (empty circles) from di�erent realizations
become paired (�lled circles) when they share the same position.
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[63] Lecture 8. Main classes of random processes

De�nition

ξt ∈ Rd is called a Gaussian random function if all its �nite
dimensional distributions are Gaussian.

Problem. When the random sin oscillation ξt := A cos(ηt + ϕ) is a
Gaussian random function?

De�nition

ξt ∈ Rd is called a process with independent increments if all its
increments over non-intersecting time intervals are independent.

De�nition

A similar notion in the broad sense � a process with uncorrelated

increments: cov(ξt2 − ξt1 , ξt4 − ξt3) = 0 for t1 ≤ t2 ≤ t3 ≤ t4.
Recall that cov(ξ, η) := E (ξ − Eξ)(η − Eη).
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[64] Lecture 8. Main classes of random processes 2

De�nition

ξt ∈ Rd is called stationary if all its �nite dimensional distributions
are translationally invariant: µt̄+h = µt̄ .

De�nition

ξt ∈ R1 is called stationary in a broad sense if the �rst two
moments exist and
Eξt+h = Eξt , K (t + h, s + h) = K (t, s) := cov(ξt , ξs).
This is equivalent to Eξt = m, K (t + h, s + h) = K (t − s).

De�nition

ξt ∈ R1 is called a process with stationary increments if joint
distributions of its increments are shift invariant.

Obviously all stationary processes have stationary increments, but
not all of them have independent increments. Counterexample:
ξt := A cos(ηt + ϕ) + αt + β, where ϕ does not depend on
(A, η, α, β) and is uniformly distributed on [0, 2π). 64/127



[65] Lecture 8. Convergence and �nite dim. distributions

Theorem 1

Let E |ξt |2 <∞ ∀t. Then ∃(L2) lim
t→t0

ξt i� ∃ lim
t,s→t0

Eξtξs .

Proof. The necessity follows from the continuity of the scalar
product, while the su�cient part follows from the Cauchy condition
lim

t,s→t0
E |ξt − ξs |2 = lim

t,s→t0
[E |ξt |2−Eξtξs −Eξsξt +E |ξs |2] = 0.

Claim

Let {ξn} be uncorrelated. Then ∃(L2) lim
∑

n≥1 ξn i� the series∑
n≥1 Eξn and

∑
n≥1Dξn converge.

Proof. Let ηn :=
∑n

i=1 ξi =⇒ Kηη(n,m) =
∑

i≤min(n,m)

Dξi .

Use Theorem 1 above to get the claim.
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[66] Lecture 8. Convergence and �nite dim. distributions 2

Theorem 2

(P) limt→t0 ξt exists i� exists the weak limt,s→t0 µξt ,ξs =: µ.

Proof. (a) Necessity. (P) limt,s→t0(ξt , ξs) = (η, η). Hence the
2-dim. distributions µξt ,ξs converge weakly.
(b) Adequacy. limt,s→t0 µξt ,ξs is supported by the diagonal (since
(ξt , ξt) is there).
Let fε ∈ C 0, fε(0) = 0 and fε(x) = 1 for |x | > ε.
Then by the Chebyshev inequality
P(|ξt − ξs | ≥ ε) ≤ Efε(ξt − ξs) =

∫ ∫
fε(x − y)µξt ,ξs (dxdy)

t,s→t0−→
∫ ∫

fε(x − y)µ(dxdy) = 0
since fε ∈ C 0 and µ is supported by the diagonal {x = y}.
Hence the sequence is fundamental in probability.

Problem. Prove/disprove that if ξt is stationary and
P(ξt = const) = 0, then (P) limt→t0 ξt does not exist.
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[67] Lecture 8. Kolmogorov consistency conditions

Theorem (Kolmogorov)

Let Ft1,...,tn(x1, . . . , xn) be a given family of �nite dimensional
distributions, satisfying the following consistency conditions:
(a) Ft1,...,tn(A1 × A2 · · · × An) = Fti1 ,...,tin (Ai1 × · · · × Ain),
(b) Ft1,...,tk−1,tk ,tk+1,...,tn(x1, . . . , xk−1,∞, xk+1, . . . , xn)

= Ft1,...,tk−1, tk+1,...,tn(x1, . . . , xk−1, xk+1, . . . , xn).
Then ∃(Ω,F ,P) and a random process ξt , t ∈ T such that
P(ω : ξt1 ≤ x1, . . . , ξtn ≤ xn) = Ft1,...,tn(x1, . . . , xn).

Proof. Necessity follows from the de�nition of the �nite
dimensional distribution.
Adequacy. ∃F on (RT ,BT ), corresponding to the given family of
�nite dimensional distributions (nontrivial and we skip its proof).
Now we choose a new probability space (RT ,BT ,F ), where each
elementary event ω is a function z∗ : T → R. Then the random
variable ξt(ω) de�ned as ξt(ω = z∗) = zt satis�es all required
conditions.

67/127



[68] Lecture 8. Applications of consistency conditions

(I) Existence of a sequence of independent r.v. with given
distributions {Fn}. It is enough to set Ft1,...,tn := Fi1 × · · · × Fin .
(II) Existence of a Gaussian random process.

Claim

For any function m : T → R and any non-negative de�nite function
K (t, s) :=

∑
i ,j cicjK (ti , tj) there exists a Gaussian process ξt with

Eξt = m(t) and cov(ξt , ξs) = K (t, s).

Proof. Choose Ft1,...,tn as the n-dimensional Gaussian distribution
with the vector of mathematical expectations (m(t1), . . . ,m(tn))
and the covariance matrix (K (ti , tj)).
To check the consistency conditions, observe that
(i) the Gaussian distribution is completely determined by m,K ,
(ii) each sub-vector of a Gaussian vector is again Gaussian.
Corollary. Existence of the Wiener process follows from this result
with m ≡ 0, K (t, s) := t ∧ s.
Homework: K is non-negative de�nite?
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[69] Lecture 8. Stochastic continuity in probability

De�nition

ξt is stochastically continuous at t0 ∈ T if (P) limt→t0 ξt = ξt0 .

This property is de�ned by 2-dim. distributions. All above examples
of random processes are stochastically continuous. Despite that the
realizations of the Poisson process are discontinuous. Explain?
Answer: P(a discontinuity happens at a given point)=0.

Claim

Prove/disprove that if ξt are independent ∀t and has the same
density p(x), then ξt is stochastically discontinuous ∀t.

Proof. P(|ξt − ξt0 | ≥ ε) =
∫ ∫
|x−y |≥ε p(x)p(y)dxdy

ε→0−→
∫ ∫

x 6=y
p(x)p(y)dxdy =

∫ ∫
p(x)p(y)dxdy = 1.

Hence ∃ε > 0 such that P(|ξt − ξt0 | ≥ ε) > 1/2 =⇒ there is no
convergence in probability.
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[70] Lecture 8. Stochastic continuity in L
p

De�nition

ξt is stochastically continuous in Lp if (Lp) limt→t0 ξt = ξt0 .

Problem

Prove/disprove that ξt is (a) stochastically continuous on T i�
µξt ,ξs is weakly continuous on (t, s) ∈ T × T ; and is
(b) stochastically continuous in L2 i� Eξt ξ̄s is continuous.

(a) Follows from Theorem 1; (b) from Theorem 2 (about
continuity).

Problem

Prove/disprove that if ξt is stochastically continuous in Lp, p ≥ 1
on a compact set A, then (a) it is uniformly continuous;
(b) supt∈A E |ξt |p <∞.

Follows from standard mathematical analysis arguments.
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[71] Lecture 8. Stochastic di�erentiation

De�nition

A derivative of ξt at t ∈ T is (ξt)
′ := lims→t

ξt−ξs
t−s in various senses.

Theorem T1

Let E |ξt |2 <∞ ∀t. Then ∃(L2) limt→t0 ξt i� ∃ limt,s→t0 Eξtξs .

Theorem T2

(P) limt→t0 ξt exists i� exists the weak limt,s→t0 µξt ,ξs =: µ.

Conditions of the di�erentiation in probability and in L2 are given
by T1 and T2. Hence the di�erentiability is de�ned by �nite
dimensional distributions of the process of order ≤ 3.

Claim

Wiener process has no derivative even in probability.

Proof. ξt−ξs
t−s is Gaussian N (0, 1

|t−s|) =⇒ (wt)
′ := d

dt
wt

diverges. 71/127



[72] Lecture 8. Asymmetry of subway rides.

Every morning you drive from home to work along the metro ring
line from Kurskaya to Kievskaya. Since the distance in both
directions is almost the same, you choose the �rst train in any
direction. After a while, you �nd that you choose the right
direction 5 times more often. How can this be explained?

KurskayaKievskaya

right

left

Metro schedule:
left line

right line
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[73] Lecture 8. Stochastic di�erentiation 2

Claim

Poisson process has a derivative in probability, but not in Lp, p ≥ 1.

Proof. (P) lims→t(ξt − ξs)/(t − s) = 0. Hence if the Lp limit
exists, it should be equal to 0 almost surely. However,
E |ξt−ξs |

p

|t−s|p ≥
P(ξt 6=ξs)
|t−s|p ∼ a|t − s|1−p, which does not vanish as

t − s → 0.
A random function is not uniquely de�ned by its derivative in
probability, while in L2 the situation is much better.

Claim 1

If ∃ξ′t ∈ Lp and ξ′s ≡ 0 ∀s ∈ [a, b] =⇒ ξt ≡ ξa ∀t ∈ [a, b].

Proof. ∀ε > 0, s ∈ [a, b] ∃Os : |ξt − ξs | ≤ ε|t − s| ∀t ∈ Os .
Assume that s := lim inf{t ∈ [a, b] : ξt 6= ξa} > a.
=⇒ ∃ε > 0 : |ξt − ξa| > ε|t − a| ∀t > s and (by continuity of ξt)
|ξs − ξa| = ε|s − a| =⇒ for Os 3 t > s we have
|ξt − ξa| ≤ |ξt − ξs |+ |ξs − ξa| ≤ ε|t − s|+ ε|s − a| = ε|t − a|,
which contradicts to the de�nition of s.
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[74] Lecture 8. Stochastic di�erentiation 3

Claim 2

(ξt)
′ ∈ C 1 in L2-sense on (a, b) i� Eξtξs has a continuous

derivative ∂2Eξtξs
∂t∂s on (a, b)2.

Proof. Follows from standard analysis.

Corollary.

∂2K(t,s)
∂t∂s is the correlation function of (ξt)

′, while the joint
correlation function of ξt and (ξt)

′ is:(
Kξξ Kξξ′

Kξ′ξ Kξ′ξ′

)
(t, s) =

(
Kξξ

∂Kξξ
∂s

∂Kξξ
∂t

∂2Kξξ
∂t∂s

)
(t, s).
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[75] Lecture 9. Deterministic integration

If ξt ∈ C 0 then
∫ b
a
ξtdt can be de�ned as lim

∑n−1
i (ti+1 − ti )ξsi ,

where a = t0 < · · · < tn = b and non-random points si ∈ [ti , ti+1].
Again everything is ok in Lp, p ≥ 1-sense but not in probability.

Claim 1

If ξt ∈ C 0 in Lp([a, b]), then ∃
∫ b
a
ξtdt in terms of Lp-convergence.

Proof. Standard analysis + uniform continuity.

Question

Let τ be a r.v. uniformly distributed on T := [0, 1]. Check if the
process ξt := (1− τ)−11t>τ is stochastically continuous on T , and

if
∫ 1
0 ξtdt exists in L2-sense.

One can di�erentiate the integral over lower and upper limits which
yields the Newton-Leibniz formula.

Application: if ξt is a Poisson process =⇒ d
dt

(
(Lp)

∫ t
a
ξsds

)
= ξt .
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[76] Lecture 9. Deterministic integration 2

Realizations of Lp-integrable ξt need not be integrable and one
needs to distinguish the integral as a r.v. and as a function∫ b
a
ξt(ω)dt for ω ∈ Ω, which might not be even measurable.

Question

Under which conditions
(

(Lp)
∫ b
a
ξtdt

)
(ω) ∼

∫ b
a
ξt(ω)dt?

Answers:
(a) If all realizations are Riemann-integrable.
Indeed, the Lp-integral is the limit of sums on average, and hence
on probability. On the other hand, J(ω) :=

∫ b
a
ξt(ω)dt has the

same limit ∀ω. Now a.e. convergence implies the convergence in
probability. Moreover, from the Riemann-integrable assumption
J(ω) is measurable.
(b) If the realizations are only Lebesgue-integrable the situation is
more complex. See next slide
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[77] Lecture 9. Deterministic integration 3

Claim

Let ξt is measurable in [a, b] and continuous in Lp, p ≥ 1-sense.

Then
(

(Lp)
∫ b
a
ξtdt

)
(ω) ∼

∫ b
a
ξt(ω)dt (*).

Proof. It is enough to consider the case p = 1 (other convergences
will follow). By Fubini's theorem the rhs of (*) exists, since∫ b
a

∫
Ω |ξt(ω)|dtP(dω) ≤ (b − a)maxt∈[a,b] E |ξt | <∞.

Consider the lhs of (*) as the limit of integral sums while the rhs as
the limit of sums

∑
i

∫ ti
ti−1

ξtdt. Then

E |(ti+1 − ti )ξsi −
∫ ti
ti−1

ξtdt| = E |
∫ ti
ti−1

(ξt − ξsi )dt|
≤
∫ ti
ti−1

E |ξt − ξsi |dt ≤ (ti − ti−1) ·maxt∈[ti−1,ti ] E |ξt − ξsi |.
The continuity on average implies the uniform continuity on
average. Hence ∃δ > 0 ∀|t − s| < δ =⇒ E |ξt − ξs | < ε.
Thus diam{ti} < δ =⇒ the math. expectation of the di�erence of
integral sums corresponding to lhs and rhs of (*) ≤ ε(b− a). Since
ε > 0 is arbitrary, the integrals in both senses coincide a.e.
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[78] Lecture 9. Deterministic integration 4

Computation of moments of integrals is rather simple.

Claim

Let ξt be continuous in L2-sense and E |ξt |2 <∞. Then

E
∫ b
a
ξtdt =

∫ b
a
Eξtdt, cov(

∫ b
a
ξtdt, ξs) =

∫ b
a
Kξξ(t, s)dt,

cov(
∫ b
a
ξtdt,

∫ d
c
ξsds) =

∫ b
a

∫ d
c
Kξξ(t, s)dtds.

Proof. Follows from the continuity of the scalar product 〈·, ·〉 on its
arguments. Indeed,
E
∫ b
a
ξtdt = E (L2) lim

∑
i (ti+1 − ti )ξsi

= 〈(L2) lim
∑

i (ti+1 − ti )ξsi , 1〉
= lim〈

∑
i (ti+1 − ti )ξsi , 1〉

= lim
∑

i (ti+1 − ti )Eξsi
=
∫ b
a
Eξtdt.

This proves the 1-st equality. Two others for homework.
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[79] Lecture 9. Correlation functions

Kξξ(t, s) = K (t, s) := E (ξt−Eξt)(ξs−Eξs)∗ ≤
√
K (t, t) · K (s, s).

K (t, s) = (K (s, t))∗, K (t, t) ≥ 0,
∑

i ,j K (ti , sj)zi (zj)
∗ ≥ 0.

Let us check the last claim for the case Eξt ≡ 0:∑
i ,j K (ti , sj)zi (zj)

∗ = E [
∑

i ,j ξti (ξsj )
∗zi (zj)

∗]

= E [
∑

i ξti zi ·
∑

j(ξsj )
∗(zj)

∗] = E |
∑

i ξti zi |2 ≥ 0
In fact this is a characteristic property of the class of correlation
functions.

Claim 1

Let Eξ2t <∞. Then ξt is L
2-continuous at t0 i� K (s, t) is

continuous at (t0, t0).

Proof. For simplicity we assume that Eξt ≡ 0.
Adequacy: E |ξt − ξt0 |2 = E (ξt − ξt0)(ξt − ξt0)∗

= Eξt(ξt)
∗ − Eξt(ξt0)∗ − Eξt0(ξt)

∗ + Eξt0(ξt0)∗

= K (t, t)− K (t, t0)− K (t0, t) + K (t0, t0)
t→t0−→ 0.

=⇒ see next slide
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[80] Lecture 9. Correlation functions 2

Necessity: |K (t, s)− K (t0, s0)|
= |Eξt(ξt − ξs)∗ + E (ξt − ξt0)(ξt0)∗ + Eξt0(ξt − ξt0)∗|
≤ E |ξt − ξt0 | · |ξs − ξt0 |+ E |ξt − ξt0 | · |ξt0 |+ E |ξt0 | · |ξs − ξt0 |
≤
√
E |ξt − ξt0 |2

√
E |ξs − ξt0 |2 +

√
E |ξt − ξt0 |2

√
E |ξt0 |2

+
√
E |ξt0 |2

√
E |ξs − ξt0 |2

t,s→t0−→ 0.

Corollary

If K (t, s) is continuous on the diagonal t = s, then it is continuous
∀t, s.

Claim 2

Let Eξ
(n)
t ≡ 0 and Kξ(n)ξ(n)(t, s)

t→t0,s→t0−→ 0. Then ξ
(n)
t converges in

probability to 0 at t0.

Proof. Follows from E |ξ(n)
t |2 = Kξ(n)ξ(n)(t, t).
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[81] Test 3

1 Let ξn, ξ0 = x and ξ̃n, ξ̃0 = x̃ be nearest neighbor random
walks on Z with transition probabilities q (left), p (right),
r = 1− p − q (on place) and (p̃, q̃, r̃). Find ALL combinations
of (x , x̃ , p, q, p̃, q̃) admitting the successful coupling of ξn, ξ̃n.
p = p̃, q = q̃ (a) (x − x̃ = 2k , pq > 0),

(b) (x − x̃ = 2k + 1, r(1− r) > 0).
(a) ∃τ : P(ξτ = ξ̃τ ) > 0. If pq = 0 this is not the case.
(b) If r(1− r) = 0 then ξn − ξ̃n is always odd =⇒ no
intersection. Otherwise as in the case (a).

2 Let ξt , t ∈ [0, 1] be a stochastically continuous random process
and let ϕ : R→ R be a continuous function. Check the
stochastic continuity of ϕ ◦ ξt . Answer: Yes.

3 Let τ be a random variable uniformly distributed on [0, 1] and

let ξt :=
1(τ,1](t)

t−τ . Check stochastic continuity of ξt and

existence of (P)
∫ 1
0 ξtdt (i.e. in the probability sense). Answer:

Yes (similar to the Poisson process), No (even math. exp. 6 ∃).

Solution: (problem number) Answer. Short proof. 81/127



[82] Test 3 comments

1 Answer: r(1− r) > 0. All of you have a serious problem with
the notion �successful coupling�. Roughly speaking this means
that after a (random) �nite time the coupled processes will be
�glued together� (become equal). In the situation under study
this happens i� r(p + q) > 0.

2 Answer: Yes. We need to show: ∀ε > 0 ∃σ > 0 such that
|t − s| ≤ σ =⇒ P(|ϕ ◦ ξt − ϕ ◦ ξs | ≥ ε) ≤ ε.
For ε > 0 choose δ > 0 such that
|x − y | ≤ δ =⇒ |ϕ(x)− ϕ(y)| ≤ ε. Now we choose σ > 0
such that |t − s| ≤ σ =⇒ P(|ξt − ξs | ≥ δ) ≤ ε (by stochastic
continuity). Thus |t − s| ≤ σ =⇒
=⇒ P(|ϕ ◦ ξt − ϕ ◦ ξs | ≥ ε) ≤ P(|ξt − ξs | ≥ δ) ≤ ε.

3 Answer: Yes (similar to the Poisson process), No (even math.
exp. 6 ∃). Indeed, the probability of the discontinuity at a given
time is zero.
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[83] Lecture 10. Correlation theory of r. processes

ξt : (Ω,F ,P)→ (X ,B) := (Rd ,Bor) or = (Cd ,Bor).
In the space L2(Ω,F ,P) we de�ne the scalar product
〈ξt , ξs〉 := Eξtξ

∗
s . This function de�nes ξt uniquely up to an

isometric linear transformation. A centered version of this scalar
product is called a correlation function

Kξ(t, s) := cov(ξt , ξs) := Eξtξ
∗
s − Eξt(Eξs)

∗

= 〈ξt , ξs〉 − 〈ξt , 1〉 · 〈1, ξs〉.
For a pair ξt , ηs one de�nes a cross correlation function

Kξη(t, s) := cov(ξt , ηs) and a matrix-valued mutual correlation

function

(
Kξξ Kξη
Kηξ Kηη

)
(t, s).

In these terms one studies the correlation theory of random
processes, being curves in a Hilbert space. A serious restriction is
that only linear transformations of random processes can be studied
this way. To emphasize that only two �rst moments are taken into
consideration, we speak about a theory in the �broad sense�.

see next slide
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[84] Lecture 10. Correlation theory of r. processes 2

(1) ξt := A cos(tη + ϕ), where ϕ is uniformly distributed on [0, 2π)
and does not depend on A, η. We have Eξt = EA · E cosϕ = 0.
Kξ(t) = Eξs+tξs = EA2 cos((s + t)η + ϕ) cos(sη + ϕ)
= 1

2 [EA2 cos(tη) + EA2 cos((2s + t)η + 2ϕ)] (blue term=0)
= 1

2

∫∞
0

∫∞
0 x2 cos(ty)ΦAη(dxdy) =

∫∞
0 cos(ty)dµ(y),

where µ(B) := 1
2

∫∞
0

∫
B
x2ΦAη(dxdy) = 1

2EA
21B(η) ∀B ∈ B.

Let ν be a symmetrization on R of the measure µ, i.e.

ν([0, a]) :=

{
1
2µ([0, a]) if a ≥ 0
1
2µ([0,−a]) otherwise.

Then Kξ(t) =
∫∞
−∞ e itydν(y) is the Fourier transform of the

measure ν. For example, if dν(y) := π−1dy
1+y2

=⇒ K (t) = e−|t|.

see next slide
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[85] Lecture 10. Correlation theory of r. processes 3

A linear di�erential operator P( d
dt

) :=
∑n

k=0 ak
dk

dtk
being applied to

a stationary ξt transforms it to a stationary process ηt := P( d
dt

)ξt .

Eηt = P( d
dt

)Eξt = a0Eξt .
Kηη(t−s) = P( d

dt
)P∗( d

ds
)Kξξ(t−s) =⇒ Kηη(t) = P( d

dt
)P∗(− d

dt
)Kξξ(t).

Kηξ(t − s) = P( d
dt

)Kξξ(t − s) =⇒ Kηξ(t) = P( d
dt

)Kξξ(t).

Examples:

1 P(x) := x =⇒ Kξ′ξ′(t) = −K ′′ξξ(t) and

Kξξ′ =

(
Kξξ −K ′ξξ
K ′ξξ −K ′′ξξ

)
2 P(x) := 1 + x + x2 =⇒ P∗(−x) = P(−x) = 1− x + x2,

P(x)P∗(−x) = 1 + x2 + x4 =⇒ ηt := Pξt = ξt + ξ′t + ξ′′t =⇒
Kηη(t) = Kξξ(t) + K ′′ξξ(t) + K

(4)
ξξ (t).

85/127



[86] Lecture 10. Stieltjes integral

De�nition

(S)
∫ b
a
f (x) dg(x) :=

lim
max |xi−xi−1|→0

∑
i f (zi )(g(xi )− g(xi−1)), xi−1 < zi ≤ xi .

1 Estimate from above Q := (S)
∫ b
a
f (x) dg(x).

Q ≤ sup |f | · lim
max |xi−xi−1|→0

∑
i |g(xi )− g(xi−1)|

= sup |f | · V b
a g .

2 Integration by parts:
∫ b
a
f dg = fg |ba −

∫ b
a
g df ?

a = x0 < x1 < · · · < xn = b, a ≤ z0 < z1 < · · · < zn ≤ b∑
i f (zi )(g(xi )− g(xi−1)) = f (b)g(b)− f (a)g(a)

−
∑

i g(xi−1)(f (zi )− f (zi−1))

3 ϕ(x) := µ((−∞, x ]) ∈ C 0. Calculate Q := (L)
∫ b
a
x dµ

Q = (S)
∫ b
a
x dϕ(x) = bϕ(b)− aϕ(a)−

∫ b
a
ϕ(x) dx

4 gi ∈BV.
∫ b
a
f dg1 +

∫ b
a
f dg2 =

∫ b
a
f d(g1 + g2)?
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[87] Lecture 10. Stieltjes integral 2

1 Let K (x) be the Cantor staircase on [0, 1], i.e. on intervals of
the n-th rank it is equal to 2−n, 3 · 2−n, 5 · 2−n, . . . , 2n−1 · 2−n.
Calculate Qn :=

∫ 1
0 xn dK (x).

Self-similarity: K ( x3 ) = 1
2K (x), K ( x3 + 2

3) = 1
2K (x) + 1

2 .

Qn =
∫ 1

3
0 xn dK (x) +

∫ 1
2
3
xn dK (x)

= 3−n · 12
(∫ 1

0 yn dK (y) +
∫ 1
0 (2 + y)n dK (y)

)
= 3−nQn + 1

23
−n∑n

k=1 C
k
n 2

kQn−k . Q0 = 1,Q1 = 1
2 ,Q3 = 3

8

2 g ∈BV[a,b], N := {x : g(x) 6= 0} íå áîëåå, ÷åì ñ÷åòíî.

f ∈ C 0[a, b]. Âû÷èñëèòå Q :=
∫ b
a
f dg? = 0 (Homework)
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[88] Lecture 10. Stoch. integration of non-random functions

If ∃(ξt)
′ =⇒ J(f ) :=

∫ b
a
f (t)dξt =

∫ b
a
f (t)(ξt)

′dt.
In general one cannot use this argument. In what follows we
assume that ξt has uncorrelated increments (hence is not
di�erentiable) and Eξt ≡ 0. The idea is to represent ξt as a sum of
in�nite number of in�nitesimal addends.

Claim

∃F (t)↗ (nondecreasing): D(ξt − ξs) = F (t)− F (s).

Proof. For an arbitrary t0 ∈ T we set F (t0) = 0 and

F (t) :=

{
E |ξt − ξt0 |2 if t > t0
−E |ξt − ξt0 |2 if t ≤ t0

= F (s) + E |ξt − ξs |2 =⇒↗.

To demonstrate this we consider only the case t0 ≤ s ≤ t, then
F (t) = E |ξt − ξt0 |2 = E |ξs − ξt0 |2 + E (ξs − ξt0)(ξt − ξs)∗

+E (ξs − ξt0)∗(ξt − ξs) + E |ξt − ξs |2 = F (s) + E |ξt − ξs |2.
(uncorrelated increments!)
ξt with uncorrelated increments is L2-continuous i� F ∈ C 0, and
∃ limt→±∞ ξt i� |F (±∞)| <∞.
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[89] Lecture 10. Stoch. integration of non-random functions 2

Claim

ξt with uncorrelated increments admits L2-limits at ∀t.

Proof. It is enough to show that lim
s,u→t−

E (ξs − ξt)(ξu − ξt)∗.

F (t) generates a (σ)�nite measure µ((s, t]) := F (t)− F (s).

Our aim now is to de�ne the stochastic integral J(f ) :=
∫ b
a
f (t)dξt

for non-random functions f ∈ L2(dF ).
We start with piecewise constant (PC) functions on intervals
f |[ti ,ti+1) ≡ fti . Then J(f ) :=

∑n
i=0(ξti+1

− ξti )fti .

Claim

J(af + bg) = aJ(f ) + bJ(g). Moreover, EJ(f ) = 0,

E |J(f )|2 =
∑n

i=0 |fti |2(F (ti+1)− F (ti ) =
∫ b
a
|f (t)|2dF (t).

see next slide
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[90] Lecture 10. Stoch. integration of non-random functions 3

Claim

EJ(f )(J(g))∗ =
∫ b
a
f (t)(g(t))∗dF (t).

Proof. EJ(f )(J(g))∗ = E
∑

i (ξti+1
− ξti )fti × (

∑
j(ξtj+1

− ξtj )gtj )∗
=
∑

i ,j E (ξti+1
− ξti )(ξtj+1

− ξtj )∗fti (gtj )∗

=
∑

i (F (ti+1)− F (ti ))fti (gti )
∗ =

∫ b
a
f (t)(g(t))∗dF (t).

Hence we have an isometry between PC-functions in L2(dF ) and a
subset of L2(P), which can be extended by continuity to their
closures. Thus J(f ) = (L2) lim J(fn) (by the Cauchy principle).
Moreover this limit does not depend of the approximation {fn}.

Claim 1

The extension coincides with the entire L2(dF ).

Properites: (a) J(af + bg) = aJ(f ) + bJ(g), (b) EJ(f ) ≡ 0,

(c) E |J(f )|2 =
∫ b
a
|f |2dF , (d) EJ(f )(J(g))∗ =

∫ b
a
f (g)∗dF .
see next slide
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[91] Lecture 10. Stoch. integration of non-random functions 4

Claim 2

Let f ∈ C 0([a, b]) and let F be right-continuous. Then
J(f ) = (L2) lim

∑
i (ξti+1

− ξti )f (si ), where ti ≤ si ≤ ti+1.

Proof. Set f̃ (t) := f (ti ), t ∈ [ti , ti+1). Then

E |J(f )− J(f̃ )|2 = E |J(f − f̃ )|2 =
∫ b
a
|f − f̃ |2dF

≤ (F (b)− F (a)) ·maxi Osc(f , [ti , ti+1))2
diam→0−→ 0.

Integration by parts

Let f be continuously di�erentiable. Then
J(f ) :=

∫ b
a
f (t)dξt = f (b)ξb − f (a)ξa − (L2)

∫ b
a
ξt f
′(t)dt.

Proof. J(f ) = (L2) lim
∑

i (ξti+1
− ξti )f (ti )

= (L2) lim[f (b)ξb− f (a)ξa−
∑n

i=0 ξti+1
(f (ti+1)− f (ti ))].

(Homework) Prove. Let f ∈ L2([a, b]), ηt :=
∫ t
t0
f (s)dξs . Then ηt is

also a process with independent increments, Eηt ≡ 0, and
G (s) := D(ητ+s − ητ ) =

∫ t
t0
|f (u)|2dF (u). Moreover,∫ b

a
g dηt =

∫ b
a
gf dξt if g ∈ L2([a, b]).
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[92] Lecture 10. Bus waiting time

Problem: Bus waiting time paradox

You are waiting for a regular bus: it seems that buses in the
opposite direction go more often, since during your wait, usually
several buses pass in the opposite direction.

How to construct a proper mathematical model and to prove this
observation?

Heuristics: in reality, buses run in clusters (several in a row - then a
long break). Therefore, if the time spread between the buses is
large, then most people will wait for a long time.

see next slide
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[93] Lecture 10. Bus waiting time 2

We measure the time t from the moment of departure of the
previous bus. Denote by ξ a r.v. which is equal to the waiting time
until the next bus, and its density by f (t). Let us �nd the
probability density of the waiting time ρ(t). The probability that a
passenger arrives during the time t is proportional to its length.
The quantities in question are independent, so ρ(t) = Ctf (t).
Normalization: 1 =

∫
Ctf (t)dt = CEξ =⇒ C = 1/Eξ.

Therefore the waiting time averaged upon random arrival of
passengers is equal to half of the waiting time from the point of
view of an individual passenger

ET =
1

2Eξ

∫ ∞
0

t2f (t)dt =
(Eξ)2 + Dξ

2Eξ
>

1

2
Eξ

under the assumption that Dξ > 0.
Hence, on average, we wait more than half the average time
between buses.
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[94] Lecture 11. Markov moments

De�nition

Filtration is a non-decreasing family of σ-algebras Ft ⊆ F , t ∈ T .

De�nition

A natural �ltration of the random process (ξt , t ∈ T ) is
F≤t := σ{ξs , s ≤ t}.

De�nition

τ(ω) ∈ T is a Markov moment wrt {Ft} if {τ ≤ t} ∈ Ft ∀t ∈ T .

In short, a Markov moment is a random event that you can learn
about when you don't know what will happen after that moment.
Another name for such objects is a r.v. independent of the future.
Claim

For (ξn, n ∈ N) on (X ,B) =⇒ τB := min(n : ξn ∈ B) is a Markov
moment wrt the natural �ltration ∀B ∈ B.

Proof. {τB ≤ n} = ∪nk=1{ξk ∈ B} ∈ F≤n.
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[95] Lecture 11. Markov moments 2

Counterexample

τB := min(n : ξn+k ∈ B) with k ≥ 1 is not a Markov moment.

Proof. {ξn+k ∈ B} needs not belong to F≤n.

De�nition

Fτ := {A ∈ F : {τ ≤ t} ∩ A ∈ Ft ∀t ∈ T} is called a σ-algebra
wrt the Markov moment τ .

Properties:

Fτ is a σ-algebra, and Fτ ∈ F .
the r.v. τ is Fτ -measurable.

If τ = t = const, then Fτ = Ft .

De�nition

A random process (ξt , t ∈ R+) is called a Levi process if it has
independent stationary increments and ξ0 = 0.
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[96] Lecture 11. Markov moments 3

Theorem (strong Markov property)

Let (ξt , t ∈ R+) be a Levi process with realizations continuous
from the right, and let τ be a Markov moment wrt its natural
�ltration. Then ηt := ξt+τ − ξτ has the same �nite dimensional
distributions and is independent wrt Fτ .

If {τi} - Markov moments =⇒ min τi , max τi , lim τi are Markov.

Example

ξn - symmetric r.w. on Z, ξ0 = 0. Fn := σ{ξk , k ≤ n}, i.e.
F0 := {Ω, ∅}, F1 := σ{ξ1 = −1 ∪ ξ1 = 1}, . . . Then
τ := min{i : |ξi | = 2} � the 1st moment when ξn = 2 is Markov.
τm := max{i ≤ 4 |ξi | = 2} - the last moment is non Markov.

Indeed, τm ≤ 2 is equivalent to the event {|ξ4| 6= 2} /∈ F2.

Question. Let τ(ω) ≤ τ̃(ω) be Markov moments =⇒ Fτ ⊆ Fτ̃?
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[97] Lecture 11. Martingales

Recall that a non-decreasing family of σ-algebras Ft ⊆ F is a
�ltration. The natural �ltration wrt ξt we denote by Fξt .

De�nition

(ξt , t ∈ T ) is a martingale wrt Ft , if
(a) ξt is Ft-measurable ∀t ∈ T ;
(b) E |ξt | <∞ ∀t ∈ T ;
(c) ξs = E (ξt |Fs) a.e. ∀s ≤ t ∈ T

∼
∫
A
ξsdP =

∫
A
ξtdP ∀A ∈ Fs ;

and sub/sup martingales if ξs≤≥E (ξt |Fs).

Theorem

Let (ξt , t ∈ T ) has independent increments. Then ξt is a
martingale wrt its natural �ltration i� Eξt = const.
Eξt is non-decreasing/increasing, then it is a sub/super-martingale.
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[98] Lecture 11. Martingales 2

Corollaries

Sn :=
∑n

k=1 ξk with independent ξk such that E |ξk | <∞ is a
martingale i� Eξk = 0 ∀k .
Zn :=

∏n
k=1 ξk with independent ξk such that E |ξk | <∞ is a

martingale i� Eξk = 1 ∀k .
Wiener process is a martingale.

Poisson process ξt with the intensity a > 0 and ξ0 = 0 is NOT
a martingale, but ξt − at is a martingale.

Comments:
(1) Let Sn be a biased random walk: p = P(+1) 6= 1

2 . Then
ηn := (q/p)Sn is a martingale wrt Sn. Indeed:
E (ηn+1|S1, . . . , Sn) = p(q/p)Sn+1 + q(q/p)Sn−1

= q(q/p)Sn + p(q/p)Sn = (q/p)Sn = ηn.
(2) Direct proof for the Wiener process:
E (wt |F≤s) = ws + E (wt − ws |F≤s) = ws + E (wt − ws) = ws ,
since wt − ws does not depend on events from F≤s .
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[99] Lecture 11. Martingales 3

Claim (Levi martingales)

Let ξ be a r.v. with E |ξ| <∞, and let Ft be a �ltration. Then
ηt := E (ξ|Ft) is a martingale.

Proof. For t > s we have
E (ηt |Fs) = E (E (ξ|Ft)|Fs) = E (ξ|Fs) = ηs a.e.

Claim

Let (ξt ,Ft) be a martingale, and let g be a convex function, such
that E |g(ξt)| <∞. Then (g(ξt),Ft) be a sub-martingale.

The convexity implies that g is measurable. Now we use Jensen
inequality for the conditional mathematical expectation:
E (g(ξt)|Fs) ≥ g(E (ξt |Fs)) = g(ξs) a.e.

If time is discrete, it is enough to check the martingale property
only for neighboring time moments, i.e. E (ξn|Fn−1) = ξn−1 a.e.
Indeed, E (ξn|Fk) = E (E (ξn|Fn−1)|Fk) = E (ξn−1|Fk) = · · · = ξk .

99/127



[100] Lecture 11. Martingales 4

De�nition

(ξn, n ∈ N) is called predictable wrt the �ltration Fn, if ξn ∀n is
measurable wrt Fn−1.

Theorem (Doob-Meyer decomposition)

Let (ξn, n ∈ N) with E |ξn| <∞ agrees with the �ltration Fn. Then
there exists a unique representation ξn = Mn + Qn, where (Mn,Fn)
is a martingale, while (Qn,Fn) is a predictable process.

Claim

Let ξt be a martingale wrt Ft and E |ξt |2 <∞. Then ξt is a
process with uncorrelated increments.

Proof. Let s < t < u, then
E (ξt − ξs)(ξu − ξt)∗ = E (E ((ξt − ξs)(ξu − ξt)∗|Ft))

= E ((ξt − ξs) · [E (ξu − ξt |Ft)]∗) = 0.
Since E (ξu − ξt |Ft) = 0 by the de�nition of a martingale.
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[101] Lecture 11. Martingales 5

Let T := {1, 2, . . . ,N}, let ξn with n ∈ T be a sub-martingale wrt
σ-algebras F1 ⊆ · · · ⊆ FN and let τ ∈ T be a Markov moment.

Claim 1

ξτ ≤ E (ξN |Fτ ) a.e.

Proof. ξτ is measurable wrt Fτ . Thus it is enough to prove∫
A
ξτdP ≤

∫
A
ξNdP ∀A ∈ Fτ .

An := A ∩ {τ = n} ∈ Fn =⇒
∫
An
ξτdP =

∫
An
ξndP ≤

∫
An
ξNdP.

Summing up over n ∈ T we get the result.

Claim 2

Eξ1 ≤ Eξτ .

Proof. Eξτ =
∑

n∈T
∫
{τ=n} ξndP

=
∫

Ω ξ1dP−
∑

n

∫
{τ>n}(ξn − ξn+1)dP +

∫
{τ>N−1} ξNdP.

{τ > n − 1} = Ω \ {τ ≤ n − 1} ∈ Fn−1 =⇒∫
{τ>n−1} ξndP =

∫
{τ>n−1} E (ξn|Fn−1)dP ≥

∫
{τ>n−1} ξn−1dP.

Returning to the 1-st formula we get the result.
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[102] Lecture 11. Martingales 6

Claim 3 (Homework)

ξτ ≤ E (ξσ|Fτ ) a.e. ∀ Markov moments τ ≤ σ =⇒ Eξτ ≤ Eξσ.

Is it possible to pass these results to continuous time? The idea is
to approximate continuous time Markov moments by �nite valued
Markov moments τk → τ, σk → σ. Then, using continuity of the
realizations ξt , prove that ξτk → ξτ , ξσk → ξσ, etc.
To some surprise, this is not enough! Let wt be the Wiener process,
and let τ := min{t : wt = −1}. Then P(τ <∞) = 1 (Prove).
Nevertheless, 0 = w0 6= E (wτ |F≤0) = Ewτ = −1.

Claim 3

Let T be a �nite segment, and let ξt be a martingale with
realizations continuous from the right, and let τ ≤ σ be Markov
moments. Then ξτ ≤ E (ξσ|Fτ ) a.e.
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[103] Lecture 11. Martingales 7

Claim

Let ξt have independent increments, ξ0 = 0, Eξt = 0 ∀t and let
∃F (t) : E (ξt − ξs)2 = F (t)− F (s) ∀s ≤ t. Then (ξ2t − F (t),F≤t)
is a martingale.

Proof. E (ξ2t − F (t)|F≤s) = E ((ξs + ξt − ξs)2 − F (t)|F≤s)
= E (ξ2s + 2ξs(ξt − ξs) + (ξt − ξs)2 − F (t)|F≤s)
= ξ2s +E (ξt−ξs)2−F (t) = ξ2s +F (t)−F (s)−F (t) = ξ2s −F (s).

Claim

Let ξn with Eξ1 = 0, Eξ2n <∞ ∀n be a martingale. Then
P(maxk≤n |ξk | ≥ a) ≤ 1

a2
Eξ2n ∀a > 0.

Proof. Let τn := min(k ≤ n : |ξk | ≥ a) and τn := n if this level was
not achieved. This is a Markov moment wrt the natural �ltration.
Then P(maxk≤n |ξk | ≥ a) = P(|ξτn | ≥ a) ≤ 1

a2
Eξ2τn (Chebyshev).

ξn is a martingale =⇒ Eξ2τn = Eξ2n. (For a sub-martingale ≤.)
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[104] Test 4

1 Find ALL r.v. ξ : (Ω,B,P)→ (R,Bor), such that the pair of
r.v. ξ, ξ are independent. Answer: ξ = const. If ξ(Ω) = AtB ,
then P(ξ ∈ A, ξ ∈ B) = 0 6= P(ξ ∈ A)P(ξ ∈ B).

2 Let ξt be a L2-continuous stationary process with Eξt 6= 0 ∀t.
Prove/disprove existence of a nontrivial r.v. η, such that∫ tη
0 ξsds is a stationary process.
No. The derivative of a (broad sense) stationary process ≡ 0.

3 Calculate the correlation function for the Poisson process with
the parameter a > 0.
Answer: K (t, s) = amin(t, s). Indeed, for s ≤ t we have:
K (t, s) = cov(ξt , ξs) = cov(ξt − ξs + ξs , ξs)

= cov(ξt − ξs , ξs − ξ0) + cov(ξs , ξs)
= 0 + cov(ξs , ξs) = as.

Solution: (problem number) Answer. Short proof.
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[105] Lecture 12. Markov processes

Let ξt be a random process on (X ,B). Introduce σ-algebras
F≤t := σ{ξs , s ≤ t ∈ T}, F≥t := σ{ξs , s ≥ t ∈ T},
F[s,t] := σ{ξu, s ≤ u ≤ t ∈ T}, F=t := σ{ξt , t ∈ T}.
ξt is a Markov process if P(AB|F=t) = P(A|F=t)P(B|F=t) a.e.(*)
∀t ∈ T , A ∈ F≤t ,B ∈ F≥t . By de�nition P(A|F=t) ≡ P(A|ξt).
Given present, past and future are independent.

Claim

t → −t preserves (*) and it is equivalent to each of
(a) P(B|F≤t) = P(B|F=t) ∀B ∈ F≥t
(b) P(A|F≥t) = P(A|F=t) ∀A ∈ F≤t

Proof. To derive (a) from (*) we need to show that
P(AB) =

∫
A
P(B|F=t)dP ∀A ∈ F≤t ,B ∈ F≥t (**).

By (*) we have P(AB) = EP(AB|F=t) = E [P(A|F=t)P(B|F=t)].∫
A
P(B|F=t)dP = E (P(B|F=t) · 1A) = EE (P(B|F=t) · 1A|F=t))

= E (P(B|F=t)E (1A|F=t)) = P(AB).
We use that a value measurable wrt F=t can be taken out of E (). =⇒
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[106] Lecture 12. Markov processes 2

To derive (*) from (a) we need to show that
P(ABC ) =

∫
C
P(A|F=t)P(B|F=t)dP ∀A ∈ F≤t ,B ∈ F≥t ,C ∈ F=t

The rhs = E [P(A|F=t)P(B|F=t) · 1C ].
The lhs = EE (1A1B1C |F≤t) = E1A1CP(B|F≤t) = E1A1CP(B|F=t)

since A ∈ F≤t , C ∈ F=t ⊆ F≤t and due to (a).
Rewriting again as E (·|F=t) we get
P(ABC ) = EE (1A1CP(B|F=t)|F=t) = E (1CP(B|F=t)E (1A|F=t)),

which coincides with the rhs (see above).
The proof of the property (b) is similar (homework).

Problems. Prove/disprove that

1 P(ξt ∈ A|F≤s) = Pt−s
s (ξs ,A).

2 P(ξt+1 ∈ A|ξt ∈ B, ξt−1 ∈ C ) = P(ξt+1 ∈ A|ξt ∈ B)
for a Markov chain ξt and ∀A,B,C ∈ B, t ≥ 1.

3 wt , w−t are Markov and calculate transition probabilities.
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[107] Lecture 12. Markov families
So far we were considering Markov processes with �xed initial
states. Let ξt(ω) : T ×Ω→ (X ,B) be an arbitrary map (this is not
a Markov chain yet !). De�ne 4 σ-algebras:
FT := σ{ξt , t ∈ T}, F≤t := σ{ξs , s ≤ t ∈ T}, F≥t , F[s,t];
and consider ∀s ∈ T , x ∈ X a measure Ps,x on F≥s .

De�nition

A pair (ξt ,Ps,x) is called a Markov family with the transition
probabilities Pu

t (ξt ,A) := Ps,x(ξt+u ∈ A|F[s,t]) ∀s ≤ t

if Pu
t (·, ·) is a transition probability and Ps,x(ξs = x) = 1.

i.e., Ps,x(AB|ξt)
a.e.
= Ps,x(A|ξt)Ps,x(B|ξt), A ∈ F[s,s+t],B ∈ F≥s+t .

Claim

If (ξt ,Ps,x) is a Markov family, then Ps,x(B|F[s,t])
a.e.
= Pt,ξt (B)

∀s ≤ t,B ∈ F≥t wrt Ps,x .

Thus if we �x a random process up to time t, then its behavior
after t is the same as if it starts at time t from the point ξt(ω).
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[108] Lecture 12. Finite dimensional distributions

Let Ps,x be a probability measure on F≥s and let Pu
s (x ,A) be a

transition probability. Then a pair (ξt ,Ps,x) is a Markov family with
this transition function i� �nite dimensional distributions of ξt wrt
Ps,x with s ≤ ti satisfy Ps,x(ξti ∈ Ai , 1 ≤ i ≤ n) =

=
∫
A1

Pt1−s
s (x , dy1)

∫
A2
. . .
∫
An

P
tn−tn−1
tn−1 (yn−1, dyn).

Coordination of �nite-dimensional distributions:

Claim (Chapman-Kolmogorov equation)

For s ≤ t ≤ u

Pu−s
s (x ,A) =

∫
X
Pt−s
s (x , dy)Pu−t

t (y ,A).

Proof. By de�nition Ps,x(ξu ∈ A) = Pu−s
s (x ,A) for s ≤ t ≤ u. On

the other hand, Ps,x(ξt ∈ X , ξu ∈ A) =
∫
X
Pt−s
s (x , dy)Pu−t

t (y ,A).
This implies the result.

Rewriting in terms of densities we get:
pu−ss (x , z) =

∫
X
pt−ss (x , y)pu−tt (y , z)dy .
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[109] Lecture 12. Homogeneous Markov processes
Pt(·, ·) ≡ Pt

s (·, ·) ∀s, t ∈ T :
(i) Pt(x , ·) ∈M(X ,B), (ii) Pt(·,A) - a measurable function,
(iii) P0(x ,A) = δx(A), (iv) Pt+s(x ,A) =

∫
X
Pt(x , dy)Ps(y ,A).

Correspondingly the operators depend only on one parameter
Pt f (x) =

∫
X
Pt(x , dy)f (y), νPt(A) =

∫
X
ν(dx)Pt(x ,A).

(i) Pt - linear contractions in the cone of nonnegative functions,
(ii) Pt1 = 1, νPt(X ) = ν(X ), (iii) P0 = I , (iv) Pt+s = PtPs .

Invariant measure is any solution to the equation µ = µPt ∀t.
A pair (Pt , µ ≡ µPt) is called a stationary Markov chain.
Q: ∃ a �nite (σ-�nite) invariant measure for the Wiener process?

For a compact A ∈ Rd we have Pt(x ,A)
t→∞−→ 0 =⇒ µPt t→∞−→ 0 if

µ(X ) <∞ =⇒ µinv ≡ 0. If m = Leb =⇒ mPt(A) =
∫
dxPt(x ,A)

=
∫
dx(
∫
A
pt(x , y)dy) =

∫
A

(
∫
pt(x , y)dx)dy =

∫
A
dy = m(A).

Claim

Each one-dimensional distribution Φt of a stationary process ξt is
an invariant measure.

Proof. Φt(A) = P(ξt ∈ A) = µinv (A)
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[110] Lecture 12. In�nitesimal operator of a Markov process

The idea is that, knowing that Pt(x ,A) = · · ·+ o(t), we can
restore the whole function under certain regularity conditions.

De�nition

An in�nitesimal operator for the semi-group of operators
Pt , P0 = I , t ≥ 0 is Af := lim

t→0+

Pt f−f
t

= d+

dt
Pt f |t=0.

1 Shift to the right de�nes a semi-group Pt f (x) := f (x + t).

Af (x) = lim
t→0+

f (x+t)−f (x)
t

= d+f (x)
dx

.

2 dxt
dt

= b(xt), x0 = x ∈ Rd . Pt is a shift along solutions.

f (xt) = f (x + b(x)t + o(t)) = f (x) +
∑

i
∂f
∂x i
· bi (x) · t + o(t)

for t → 0 uniformly on x . Hence Af (x) :=
∑

i b
i (x) ∂f

∂x i
(x).

3 Pt := etA :=
∑

n≥0
1
n! t

nAn, where A is a bounded linear
operator on f ∈ E . Then A is the in�nitesimal operator.
||1
t
(etAf − f )− Af || = ||

∑
n≥2

1
n! t

n−1Anf ||
≤
∑

n≥2 t
n−1||Anf || ≤ t||A||2||f ||

(∑
n≥0 t

n||A||n
)

n→0−→ 0.
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[111] Lecture 12. Di�usion processes

Di�usion processes are Markov families (ξt ,Px) on (Rd ,Bor) with
continuous realizations such that their in�nitesimal operator on C 2

b

(bounded uniformly C 2-continuous functions) is

Af (x) = Lf (x) = 1
2

∑
i ,j aij(x) ∂2f

∂xi∂xj
+
∑

i bi (x) ∂f∂xi , where

aij(x), bi (x) ∈ C 0 and (aij) - symmetric and nonnegative de�nite.
The di�erential operator L is called a generating operator of ξt .
Remark. If we compactify Rd , then Lf (x) allows to prove
existence of continuous realizations, but this does not allow to do
the same on Rd , i.e. trajectories may go to and return from in�nity.
Theorem (A=L)

Let (ξt ,Px) be a Markov family on (Rd ,Bor), such that ∀ε > 0
uniformly on x we have:
(i) Pt(x ,Rd \ Bε(x)) = o(t)
(ii)
∫
Bε(x)(yi − xi )P

t(x , dy) = bi (x)t + o(t)

(iii)
∫
Bε(x)(yi − xi )(yj − xj)P

t(x , dy) = aij(x)t + o(t)

Then the in�nitesimal operator Af (x) = Lf (x) (as above) on C 2
b .
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[112] Lecture 12. Di�usion processes 2
The meaning of these conditions:
(i) gives su�cient conditions for the existence of a Markov family
with a given transition function and continuous trajectories.
(ii) and (iii) describe �truncated� 1st and 2nd moments. Therefore
bi and aij are called local means and covariations (a transfer vector
and a di�usion matrix).
Example 1. Consider a homogeneous Gauss Markov process with
the transition density pt(x , y) = 1√

2πσt
e−(y−mtx)2/(2σ2t ), de�ned by

mt+s = mtms , σ
2
t+s = m2

t σ
2
s + σ2s .

Then a general C 0 solution is mt = ebt/2, σ2t = a
b

(ebt − 1) for
b 6= 0, and σ2t = at otherwise.
Local mean: limt→0

1
t
Ex(ξt − x) = limt→0

1
t
(mt ∗ x − x) = b

2x .

Local variance: limt→0
1
t
σ2t = a. =⇒ Lf (x) = a

2 f
′′(x) + b

2xf
′(x).

Example 2. (wt , ξ0 +
∫ t
0 wsds) with w0 = x , ξ0 = y . Then at

time t this is a Gaussian process with the mean (x , y + tx) and the

covariation matrix
(

t t
2/2

t
2/2 t

3/3

)
. This gives Lf = 1

2
∂2f
∂x2

+ x ∂f∂y

- a degenerated elliptic operator, since aij = 0 ∀i , j 6= 1.
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[113] Lecture 12. Di�usion processes 3

Idea of the proof of Theorem (A=L).
According to Taylor's formula
f (y) = f (x) +

∑
i
∂f
∂xi

(yi − xi )

+1
2

∑
i ,j

∂2f
∂xi∂xj

(yi − xi )(yj − xj) + o(|x − y |2).

Pt f (x) =
∫
Bε(x) P

t(x , dy)f (y) +
∫
Rd\Bε(x) P

t(x , dy)f (y).

By means of (II,III) the 1st integral is equal to∑
i bi (x) ∂f∂xi t + 1

2

∑
i ,j aij(x) ∂2f

∂xi∂xj
t + o(t),

while the 2nd integral is of order ||f || o(t), which yields the result.
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[114] Lecture 13. Stochastic integrals of random functions

J(f ) :=
∫ T
0 f (t, ω)dwt � a principal limitation is a non-anticipation,

namely f (t, ω) and (wt+s − wt) should be independent ∀t, s > 0.
First we de�ne J(f ) for step functions, i.e. for some non-random
0 < t1 < · · · < tn ≤ T we have f (t, ω) = f (ti , ω) for ti ≤ t < ti+1,
thus f (t, ω) =

∑n−1
i=0 ηi1[ti ,ti+1)(t) with independent ηi . Assume

E
∫ T
0 |f (t, ω)|2dt <∞ and set J(f ) :=

∑
i f (ti , ω)(wti+1

− wti ).
It is easy to check that J(f ) is correctly de�ned, i.e. it does not
change if we add new points and it is linear on step functions.

Claim

J(f ) is isometric, i.e. E |J(f )|2 = E
∫ T
0 |f (t, ω)|2dt.

Proof. E |J(f )|2 = E
∑

i |f (ti , ω)|2(wti+1
− wti )

2

+2Re E
∑

j<i f (ti , ω)(wtj+1
− wtj )(f (tj , ω))∗(wti+1

− wti ).

E
∑

i |f (ti , ω)|2(wti+1
− wti )

2

=
∑

i E |f (ti , ω)|2(ti+1 − ti ) = E
∫ T
0 |f (t, ω)|2dt,

while the 2nd addend is equal to 0.
see next slide
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[115] Lecture 13. Stochastic integrals of random functions 2

The isometric linear transformation J(f ) can be extended by
continuity from the set of step functions to its closure in
L2([0,T ]×Ω) preserving the linear isometry. Indeed, if a sequence
{fn} → f is fundamental, then the sequence {J(fn)} is fundamental
in L2 (since distances between the elements are the same).
Now, L2 is complete, hence ∃J(f ) := (L2) lim J(fn).
To �nalize the construction one needs to show that the closure of
the set of random step functions coincides with L2. (Homework)

Example. f (t, ω) = wt . We have
∫ T
0 Ew2

t dt =
∫ T
0 tdt = T 2

2 <∞.
For 0 = t0 < t1 < · · · < tn = T set fn(t, ω) = wti for ti ≤ t < ti+1.∫ T
0 E [fn(t, ω)− wt ]

2dt =
∑

i

∫ ti+1

ti
E [wti − wt ]

2dt

=
∑

i (ti+1 − ti )
2 diam{ti}→0−→ 0.

Hence
∫ T
0 wtdwt = (L2) lim

∑n−1
i=0 wti (wti+1

− wti ). We have

w2
T ≡

∑
i (wti+1

−wti )
2 +2

∑
i (wti+1

−wti )wti

(L2)−→ T +2
∫ T
0 wtdwt .

=⇒
∫ T
0 wtdwt = 1

2(w2
T − T ).
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[116] Lecture 13. Stochastic di�erential. Ito formula

De�nition

dξt = f (t, ω)dwt + g(t, ω)dt is called a stochastic di�erential of a
random process ξt , t ≥ 0 with values in (R1,B) if
� a.a. trajectories ξt are continuous,
� f , g satis�es the non-anticipation condition, i.e.
f (t, ω), g(t, ω) and (wt+s − wt) are independent ∀t ≥ 0, s > 0,

� f ∈ L2((0,T ]× Ω) ∀T <∞, g ∈ L1loc for a.a. ω,

� ξt
a.e.
= ξ0 +

∫ t
0 f (s, ω)dws +

∫ t
0 g(s, ω)ds, t ≥ 0.

How to understand this? dξt := Lin[ξt+dt − ξt ] = gdt + fdwt .

Theorem (Ito formula)

Let F (t, x) be continuously di�erentiable on t ≥ 0, and twice
di�erentiable on x with bounded partial derivatives. Then
dF (t, ξt) = F ′tdt + F ′xdξt + 1

2F
′′
xx(dξt)

2

= ∂F
∂x (t, ξt)f (t, ω)dwt

+
[
∂F
dt

(t, ξt) + ∂F
∂x (t, ξt)g(t, ω) + 1

2
∂2F
∂x2

(t, ξt)f
2(t, ω)

]
dt.
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[117] Lecture 13. Stochastic di�erential. Ito formula 2

Remark. fdwt is of order
√
dt, since (wt+dt − wt) is Gaussian

N (0, dt), while gdt is of order dt.
A sketch of the proof:
F (t + dt, ξt + dξt)− F (t, ξt) = ∂F

dt
dt + ∂F

dx
dξt + 1

2
∂2F
∂x2

(dξt)
2.

(dξt)
2 = (fdwt + gdt)2 = f 2 · (dwt)

2 + . . . , where the remaining
terms are of higher order (since (dwt)

2 ∼ dt) and can be neglected.

A real proof is based on the approximation of the functions f , g by
step functions f (n), g (n) and the analysis of

ξ
(n)
t := ξ0 +

∫ t
0 f

(n)(s, ω)dws +
∫ t
0 g

(n)(s, ω)ds. (See later)

The multidimensional Ito formula:
dF (t, ξt) =∑

j

(∑
i
∂F
dxi

fij

)
dw j

t +
[
∂F
dt

+
∑

i
∂F
dxi

gi +
∑

i ,j
∂2F
∂xi∂xj

∑
k fik fjk

]
dt,

where dξit =
∑

j fij(t, ω)dw i
t + gi (t, ω)dt.

This formula should remind you the generating operator of a
di�usion process and explain connections with di�usion processes.
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[118] Lecture 13. Stochastic di�erential equations (SDE)

dξt = f (t, ξt)dwt + g(t, ξt)dt, ξ0 = C0.

Theorem

If f , g are Lipschitz continuous (may be weaken) then the local in
time solution of this equation exists and is unique.

The proof is based on a successive approximation method:

ξ
(n+1)
t := ξ

(n)
t +

∫ t
0 f (s, ξ

(n)
s )dws +

∫ t
0 g(s, ξ

(n)
s )ds. (See later)

Ornstein-Uhlenbeck process � an idea: ma = m dv
dt

+ mẇ .

dξt = −ξtdt + dwt , ξ0 = C0.
Solution:
d(etξt) = etξtdt + etdξt = etξtdt + et(−ξtdt + dwt) = etdwt .
=⇒ etξt = C0 +

∫ t
0 e

sdws =⇒ ξt = C0e
−t + e−t

∫ t
0 e

sdws .
This is a Gaussian process with Eξt = C0e

−t and the covariation

E (ξt − Eξt)(ξs − Eξs) = e−t−sE
(∫ t

0 e
udwu ·

∫ s
0 eudwu

)
= e−t−s

∫ t∧s
0 e2udu = e−t−s(et∧s − 1).

We use here the isometric property of the stochastic integral:
E (
∫ t
0 Fdws)

2 = E
∫ t
0 F

2dt.
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[119] Lecture 13. SDE 2

The drift term −ξtdt in the Ornstein-Uhlenbeck process is negative
which implies the stability of the zero solution for the unperturbed
system.
Let us study the unstable case: dξt = ξtdt + bξtdwt

To this end we try to �nd a solution of the type ξt := ecwt−at :
dξt = −aecwt−atdt + cecwt−atdwt + 1

2c
2ecwt−atdt

= (−a + c2

2 )ξtdt + cξtdwt

=⇒ −a + c2

2 = 1 =⇒ c =
√
2(1 + a).

dξt = ξtdt +
√
2(1 + a)ξtdwt . Its solution

ξt := C0e
√

2(1+a)wt−at →∞−→ 0 if a > 0.
Thus for b ≥

√
2(1 + a) >

√
2 the system becomes stochastically

stable.

De�nition

A solution ξ
(x)
t (ω) with ξ

(x)
0 = x is said to be stochastically stable if

for each ε > 0 we have limy→x P(supt>0 |ξ
(y)
t − ξ(x)

t | > ε) = 0.
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[120] Lecture 13. SDE existence

dξt = f (t, ξt)dwt + g(t, ξt)dt, ξ0.

De�nition

A continuous process ξt is a strong solution to the above SDE if
ξt = ξ0 +

∫ t
0 g(s, ξs)ds +

∫ t
0 f (s, ξs)dws for a.e. t ∈ T .

Theorem

Let f , g be Lipschitz continuous:
|f (t, x)− f (t, y)|+ |g(t, x)− g(t, y)| ≤ C |x − y |,
|f (t, x)|+ |g(t, x)| ≤ C (1 + |x |) and Dξ0 <∞.
Then the strong solution of the SDE exists and is unique.

Proof. We use a successive approximation method:

ξ
(n+1)
t := ξ

(n)
t +

∫ t
0 f (s, ξ

(n)
s )dws +

∫ t
0 g(s, ξ

(n)
s )ds, ξ

(0)
t := ξ0. One

needs to check that the rhs is well de�ned for all n ≥ 1. We do this
for n = 1 (the general case follows by induction argument). The
functions f , g are measurable on (t, x) and ξ0 is measurable on ω.

=⇒ see next slide
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[121] Lecture 13. SDE existence 2

Hence the functions f (t, ξ0(ω)) and g(t, ξ0(ω)) are measurable on
(t, ω). By Fubini theorem g(t, ξ0(ω)) is measurable on t for ∀ω.
Additionally, |g(t, ξ0(ω))| ≤ C (1 + |ξ0(ω)|).
Hence ∃C̃ (ω) such that

∫ t
0 |g(s, ξ0(ω))|ds ≤ tC̃ <∞.

Similarly,
∫ t
0 Ef

2((s, ξ0(ω))|ds ≤ 2C 2t(1 + Eξ20) <∞.

Let us estimate the second moment of ξ
(1)
t :

[ξ
(1)
t ]2 ≤ 3[ξ20 + (

∫ t
0 |g(s, ξ0(ω))|ds)2 + (

∫ t
0 f (s, ξ0(ω))dws)

2].
We make the estimation by parts
E (
∫ t
0 |g(s, ξ0(ω))|ds)2 ≤ tE

∫ t
0 g

2(s, ξ0(ω))ds

≤ tE
∫ t
0 (1 + ξ0(ω))2ds ≤ 2tE

∫ t
0 (1 + ξ20(ω))ds ≤ 2t2(1 + Eξ20).

Using the isometric property of the stochastic integral, we get
E (
∫ t
0 f (s, ξ0(ω))dws)

2 = tEf 2(s, ξ0(ω)) ≤ 2t(1 + Eξ20).
This gives

E [ξ
(1)
t ]2 ≤ 3[Eξ20 + 2t2(1 + Eξ20) + 2t(1 + Eξ20)],

which is bounded on any �nite time interval.
=⇒ see next slide
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[122] Lecture 13. SDE existence 3

To prove the convergence of the sequence ξ
(n)
t we estimate

E (ξ
(n)
t − ξ

(n−1)
t )2 ≤ 2E (

∫ t
0 (g(s, ξ

(n−1)
s )− g(s, ξ

(n−2)
s ))ds)2

+2E (
∫ t
0 (f (s, ξ

(n−1)
s )− f (s, ξ

(n−2)
s ))dws)

2.
The 1st addend can be estimated from above by

C 2t
∫ t
0 E (ξ

(n)
s − ξ(n−1)

s )2ds.
For the 2nd addend using again the isometric property, we get the
same estimate but without the t factor. Thus
E (ξ

(n)
t − ξ

(n−1)
t )2 ≤ 2C (1 + t)

∫ t
0 E (ξ

(n)
s − ξ(n−1)

s )2ds.

Let us check that the function ϕn(t) := E (ξ
(n)
t − ξ

(n+1)
t )2 goes

down on n fast enough.
Denoting a := 1 + Eξ20 , we obtain:
ϕ0(t) ≤ 2C 2at(t + 1) ≤ 2C 2a(t + 1)2, . . .

ϕn(t) ≤ 2C 2(t + 1)
∫ t
0 ϕn−1(s)ds ≤ bn(t+1)2n+2

(2n+1)!! ,

where b = b(C , a) is a new constant.
Thus the series

∑
n

√
ϕn(t) converges uniformly on t.

It remains to show that the limit of our construction is the strong
solution of the SDE. =⇒ see next slide 122/127



[123] Lecture 13. SDE existence 4

We already know that ξ
(n)
t

n→∞−→ ξt in L2 sense. Now we need to
check the convergence of the rhs's.
1
2E (

∫ t
0 (g(s, ξ

(n)
s )− g(s, ξs))ds +

∫ t
0 (f (s, ξ

(n)
s )− f (s, ξs))dws)

2

≤ E (
∫ t
0 (g(s, ξ

(n)
s )−g(s, ξs))ds)2 +E (

∫ t
0 (f (s, ξ

(n)
s )− f (s, ξs))dws)

2

≤ C 2t
∫ t
0 E (ξ

(n)
s − ξs)2ds + C 2

∫ t
0 E (ξ

(n)
s − ξs)2ds.

All estimates are similar to the ones in the �rst part of the proof.
Therefore the rhs also converges to the integral representation of
the strong solution.
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[124] Lecture 13. SDE uniqueness

dξt = f (t, ξt)dwt + g(t, ξt)dt, ξ0.

Theorem (uniqueness)

Under the Lipschitz assumption the strong solution is unique.

Proof. Let us check that any strong solutions ξt , ηt coincide a.s.
ξt − ηt =

∫ t
0 (f (s, ξs)− f (s, ηs))dws +

∫ t
0 (g(s, ξs)− g(s, ηs))ds.

Denoting by Z
(K)
t a r.v. being equal to 1 if |ξt |, |ηt | ≤ K and to 0

otherwise, we get:

EZ
(K)
t |ξt − ηt |2 ≤ 2EZ

(K)
t

(∫ t
0 Z

(K)
s (f (s, ξs)− f (s, ηs))dws

)2
+2EZ

(K)
t

(∫ t
0 Z

(K)
s (g(s, ξs)− g(s, ηs))dws

)2
≤ C̃

∫ t
0 EZ

(K)
t |ξs − ηs |2ds.

Now we use the classical Gronwall inequality:
x(t) ≤ C

∫ t
0 x(s)ds + h(t) =⇒ x(t) ≤ h(t) + C

∫ t
0 e

C(t−s)h(s)ds.

Hence for h(t) ≡ 0 we get EZ
(K)
t |ξt − ηt |2 = 0, which implies the

result due to the continuity of the processes ξt , ηt .
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[125] Lecture 13. Stability

De�nition

A solution ξ
(x)
t (ω) with ξ

(x)
0 = x is said to be stochastically stable if

for each ε > 0 we have limy→x P(supt>0 |ξ
(y)
t − ξ(x)

t | > ε) = 0.

Consider the Ito SDE in Rd with the generating operator
LV (t, x) := ∂V

∂t +
∑d

i=1 bi (t, x)∂V∂xi + 1
2

∑d
i ,j aij(t, x) ∂2V

∂xi∂xj
.

Theorem

Let bi (0, x) = bxi , aij(0, x) = C 2xixj and let the Lipshitz
assumptions hold true. Then ξt ≡ 0 is a trivial solution of the SDE.
Assume also that the exists a (Lyapunov) function
V (t, x) ≥ Ṽ (x) > 0 for x 6= 0 and V (t, 0) = 0, satisfying the
inequality LV (t, x) ≤ 0. Then the trivial solution of the SDE is
stochastically stable.

Example: dξt = bξtdt + Cξtdwt .
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[126] Lecture 13. Di�erent types of stochastic integrals

Di�erent types of stochastic integrals:
∫ T
0 f (s, ω)dws

J(f ) := lim
∑

i f (ti , ω)(wti+1
− wti )

J̃(f ) := lim
∑

i f (ti+1, ω)(wti+1
− wti )

Will they coincide?
If f (t, ω) := wt(ω), then
E (J̃(f )− J(f )) = lim

∑
i E (wti+1

− wti )
2 = T 6= 0

JS(f ) := lim
∑

i f ( ti+ti+1

2 , ω)(wti+1
− wti ) - Stratonovich integral.

126/127



[127] Lecture 13. SDE examples

dξt = Aξtdt + Bξtdwt

F (t, x) := log x =⇒ F ′t = 0, F ′x = 1/x , F ′′x = −1/x2.
Then by Ito formula we get:
d log ξt = 1

ξt
Aξtdt + 1

ξt
Bξtdwt − 1

2ξ2t
B2ξ2t dt

= (A− B2/2)dt + Bdwt .
=⇒ ξt = ξ0e

(A−B2/2)t+Bwt .

dξt = dt + 2
√
ξtdwt

Then by Ito formula we get:
dF = (F ′t + F ′x + 2ξtF

′′
x )dt + 2

√
ξtF
′
xdwt

Set F (t, x) := p(t)
√
x + q(t).

Hence the 1st term (without dt) becomes√
ξtp
′
t + q′t + p

2
√
ξt
− 2ξt

p

2ξt
√
ξt

=
√
ξtp
′
t + q′t

Choose p = 1, q = 0. Then F =
√
ξt =⇒ dF = dwt .

Finally,
√
ξt = ξ0 + wt =⇒ ξt = (wt +

√
ξ0)2.
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