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“Human mathematics is a sort of dance around an unwritten formal
text, which if written would be unreadable.” (David Ruelle, 1998)

Result = 0.4*(class work) + 0.6¥Exam

14:50-16:10 on Mondays (room 108)
http://iitp.ru/ru/userpages/74/233.htm
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21 Main topics

@ Antagonistic and cooperative games/strategies.
The concept of a random process.

Elements of random analysis.

Correlation theory of random processes.
Markov processes.

Wiener and Poisson processes.

Stochastic integral. Ito’s formula.

(sub/super) martingales.

Infinitesimal semi-group operator.

Large deviations and nonlinear Markov processes.

- D. Stirzaker. Elementary probability, Cambrige University Press, 2003

- A.[l. Bentuens. Kypc teopun cnyyaiinbix npoueccos. M.: Hayka. 1996
- N.V. Krylov. Introduction to the theory of random processes. 2002

- Bb. Okcengans. Croxactnyeckne guddeperynanshbie ypasHenus, 2003
- A.H. LLupses. BepositHocts, 2 7. MUHMO, 2007.

2/127



;3 Lecture 1. Antagonistic and cooperative games/strategies.

An antagonistic or zero-sum game: one player’s victory means the
other players’ loss (boxing, tennis). A cooperative game: players
win as a team (football), hence the choice of a cooperative strategy.

Problem

Players A and B independently (and without discussion with the
other) toss a proper coin and try to predict the result of the other
player’'s toss. Antagonistic: a correct prediction means victory
(otherwise, loss). Cooperative: players win as a team if at least one
of them makes the correct prediction (otherwise they lose).

Antagonistic: the probability to win is equal to 1/2.
Cooperative: it seems that the probability is 1 — (1/2)? = 3/4.
Strategy: the player A uses his result as a prediction for B, while
the player B reverts his result: Pred(A,B):=(1-B,A).

Claim. Under this strategy the team always win.

Proof. 00 — 10 01 — 00 10 — 11 11 — 01.
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4] Lecture 1. N boxes game for N death row prisoners

Problem

N = 2n>> 1 numbered prisoners must find their own numbers in
one of N boxes in order to survive, opening at most half of boxes.

Antagonistic strategy: the probability to survive = 27N

Cooperative strategy: each prisoner opens the box labeled with his

own number, then the one whose number is found in the box, etc.

Claim. The strategy ensures that the correct number is eventually

found along the cycle, regardless of its length.

Calculation. For k > n there are C/\‘, ways to select the numbers of

such the k-cycle, which can be arranged in (k —1)! ways. Since the

remaining numbers can be arranged in (N — k)! ways, the number

of permutations of the numbers 1 to N with a cycle of length

k > nis equal to CK(k — 1)I(N — k)1 = I

Finally, the probability, that a uniformly distributed random

permutation contains no cycle of length greater than n is given by
NI EI 1 n+l ~0.3.
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5] Lecture 1. Random variables (r.v.)

Definition
A random variable (r.v.) £ : (2, F,P) — (X, B) is an arbitrary
measurable map, provided Vx € B.

Equivalence:

=P #n):=P{we: {(w)#n(w)}) =0
o-algebra generated by & F¢ := o(¢71B).

Distribution of &: ®¢(A) := P(£ € A) € M(X), VA€ B.

Joint distribution: ®¢, ¢ (A) :==P((&1,...,&n) € A), Ae B".

Definition

R.v. &1,...,&, are independent if ¢, ¢ =T]; P,

Example: P(§ € A,n € B) =P(¢ € A)P(n € B).
n = oo: independence means that Vk < oo are independent.
o-algebras F, C F are independent if VA, € F, are independent

for different a.
5/127



le) Lecture 1. Independence (2)

o Independence in pairs but not jointly.
X —|_|, L Ai, P(Ai) =1/4Vi.
{Bj = A UA4} 1= P(B;) =1/2Vj.
P(B;N Bj) = P(A4) =1/4 = P(B;)P(B;) Vi # j (pairs).
P(N;Bj) =P(As) =1/4#1/8 = Hf:1 P(B)) (joint).
@ X :={1,2,3},B:={1,{2,3},0,X},P(1) :=P({2,3}) = %
Find all independent events. Answer: (0, X), (0, 0), (X, X).
© Existence of independent random variables? Any constants
Q Q:=[0,1],P:=Leb=m, &,n:(Q,Bor,m)— (R,Bor).
Check independence: P(£ € A;ne B)=P({ € A)P(ne B)
(a) {(w) := a+ bw, N(w) :==c+ dw
(b) &(w) = aw, n(w) := bw®
(c) {(w) := asin(27w), n(w) := bcos(27w)
(e) &(w) := 1)(w) cos(2amw), N(w) := 1,(w)cos(2bmw),
I,J € Bor

)
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(71 Lecture 1 Conditional probabilities - usage

Binomial sum:

Bin(n,p) = 27:1 fia gi € {O’ 1}5 P(gl = 1) = Pp-
Calculate 7, := P(B, := {Bin(n,p) = 2k — even}).

Tn+1 = P(Bn+1) = P(Bn+1 N Bn) + P(Bn+1 N Bﬁ)
= P(§n+1 = 0|Bn)P(Bn) + P(£n+1 = 1|BE)P(BS)
=1 —p)ma+p(l—m) =(1—-2p)mn + p.

How to solve this difference equation with mg = 17
Solution: 7, :=a(l —2p)"+b=a=b=1/2.

n—oo

Finally 7, = ((1 — 2p)" +1)/2 — 1/2.

If (X, p) is a metric space, we consider convergences:
n—oo

e in probability (P) nIi_)n;Of,, = if P(p(&r,&) >e) — 0.

n—oo

e in average LP(Q, F,P): ||&, —&||, — 0.
o weak: &, e ®¢ in the weak sense.
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8] Lecture 1. Mathematical expectation

Mathematical expectation: Ef(£) := P(f o &) : ff(§ dw).
Variance: Df (€) = E(f(€) — Ef (€))* = E(f(§))* — (Ef (€))*,
Covariance:

cov(f(£),8(n)) = E ((£(§) — EF(£))(g(n) — Eg(n))").

Chebyshev ineg-ty: P(f(§) > ¢) < Ef(§)/e f>0,e>0.
P(|¢ — E¢| > ¢) < DEfe® ¢ € R,

i-th marginal distribution of £ := (&1,...,&p) is ®;.

Characteristic function p¢(t) := Ee'(t€) for X = R.

£ € R" is Gaussian N'(a, A) if pe(t) := ei(t’a)_%(At’t); A>0

with density f(x) := \/(27) "detA—Te (A (x=a).(x=a))/2,
Claim. & € £ € N(a, A) are independent iff A is diagonal.
Question. Is it true that uncorrelated Gaussian r.v. are
independent? No

Claim. Let &,7 be independent with densities f¢, f,. Then
fean(x) = fe * () 1= [ (0 (x — £)d.
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o] Lecture 2. Integrals and weak convergence

Let {X,B, 1} be a measure space, f : X — R — measurable.

1 (R)[f dp:= lim 3% F(&)n(Ai)

L[ fdu= lim >, &u(f14))
diamA—0
= lim 3 Gfu(d)) = u(f)
diamA—0
A
I[P F(x) dx =2 (R) 2 F/(x) dx = f|5, (L) [P F'(x) dx # f|5

Definition

The Weak* topology on M(X) is defined so that,

_)
po =% p = () =5 ple) Ve € Clungea(X). The
convergence in the weak* topology is called the weak convergence.

If X is a compact set, then there is a metric generating this

convergence dist(u,v) ' = sup  (u(e) — v(p)).
lo|+]¢’|<1 9/127



o) List 1 — deadline 26.02

o

2]

o

o

o

Let £ : Q2 — R be a r.v. with the median m¢. Prove/disprove that
Myeyp =amg + b Va,beR.

Let £,7,¢ : Q — R be r.v. and let (¢,7) and (&, () be independent.
Prove/disprove that (£, 1+ () are independent.
Let {&i}F; be iid positive r.v. Prove/disprove that Vk

E(%gl?)—ﬁ, 1<k<n
i=151

Let (X :=R, B := Bor, P) be a probability space, £ : Q — X -ar.v.
with distribution P, and let f : R —> R be an absolutely continuous
function with f(:l:oo) =a, [*_f(x) dP(x) = b. Calculate

Q= [, P(¢ > x) dx in terms of a, b only.

Let {&}10 be |ndependent r.v. with the same distribution function
F(x). Find the distribution function of the vector (min; &;, max; &;).

Let {&1}; beiid r.v. with 0 < D¢; < co. Find all possible values
of the function ¢(x) :=lim,oc P(3°1; & < x), x ER.

Do not wait until the deadline, and send written solutions
(preferably in LaTex) by e-mail.
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1 Lecture 2. Law of Large Numbers

Definition

Let {&,} be a sequence of iid real valued r.v. with a finite E£, = a.
We say that this sequence satisfies the Law of Large Numbers
(LLN) if &, := IS o1&k "% a. In case of the convergence in
probability this is called the weak LLN, while in case of a.s.
convergence: P(limp_ §~n = a) =1 this is called the strong LLN.

Kolmogorov Theorem (LLN)

n—oo

If {{n} are iid real valued r.v., then &n— E& =50 as.

Counterexample

Let {nn} be iid r.v. such that 7, = +1 with probability 3. Then
(provided log log log(N) > 0) the sequence

{&n := nn/(n + N)/logloglog(n + N)} satisfies the weak LLN,
but the strong LLN fails.
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2] Lecture 2. Ant on a Rubber Rope

Initially, the ant stands on the left end of a rubber rope Lo =/ =1

meter long and crawls along the rope with a speed v, < 1 at time

n. At the n-th minute of time, the speed of the ant instantly

changes from v, to v,11, and the rope stretches uniformly from L,

to Lpt1 := Ly + &, We assume that {v,} and {£,} are nonnegative

independent random variables with 0 < Ev, = v < E£, =1 < co.
Vn+1(w)

0 Xp(w) Lop(w) :i=Ly—1(w) + &n
xo(w) =0, Ly(w)="¢
Question: Will the ant ever reach the right end of the rubber rope?

_ Lot Xp _ Xn—1 v_
Xn+]_— Zn Xn+Vn+1:>J_ L: " Vn Zk 1Te

n Ev, 1 n~>oo
E[f2]= > 1 EL, = D k= 1k£_€Zk1 o0
This argument hints that the answer should be yes, but does not
really prove anything.
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3 Lecture 2. Ant on a Rubber Rope 2

Let {v,} be positive, independent, and identically distributed
random variables (iid r.v.) with Ev, = v > 0, and let {{,} be
positive iid r.v. with E&, = /¢ < oco. Let L, :=L, 1 + &,
Lop:=1 VYn>1. Then Zkzo Z—’; = 0o almost surely.

Proof. Let Q be the sample space. By the strong law of large
numbers 3Q" with P(Q’) = 1, such that
Ly v = vand 10 6 0 Vwe Q.
Hence Vw € Q/, ¢ >0 3IN:
S ivk—v<e [|EXhi&—{<e ifn>N.
Thus Vp € N we have:
N N —1)N
b e = [ S M v — v
)N
=lp & S v —pv+ (p—1)v — (p — Dtym S8 wil
§p5+( —1)e=(2p—1)e.
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4] Lecture 2. Ant on a Rubber Rope 3

Hence
don>1 T e Zk 1L, Zk N+1 Lk +Zk (p—1)N+1 Lk
ZqN o
(q—1)N+1 Ly
qN
ZZ 12 ke (q—1)N+1 qu,\,
_ g 1Zk<q—1w+1'5

q=1q Lan
qN

1v— 66—>0+V P 1 P~ -

ED YA 72.9=1q —— 0 )

Will the ant ever reach the right end of the rubber rope if
QO Lpy1=Lp+ (21654)"‘", where {a,} are iid r.v. with
Ea,=a€(0,2).
Q Ly(w):=Ly_1(w) - Ap(w), where {\,} are iid r.v. with
Exp=X€(1,2).
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5] lest 1

Q (2,F,P), Q=10,1], F = Bor, P = Leb,
{ni=wtnez,  we Ay ={weQ:& <1/n}
Calculate: P(Un21An) =1, P(nglAn) = 1/%
Solution: A, ={0<w<1/¥/n} = A =10,1],
further use that ¢/n — 1 and max, ¢/n = V/3.
@ Find all a,£ > 0 such that P({ > a) < e ?CFet, VE.
P(¢ > a) < e 2E(e* - 1¢>,) < e ?Ee* (Chernoff inequality)
Answer: ¢ = 0,Va > 0, since for
E=e? =P((>a)=1>e"".

© Let Q:={1,2,3,4}, F := 22 P({i}) = ;. Prove/disprove 3
of iid non-constant r.v. £, 7 : (Q,]—", ) — (R, Bor).
Solution: {(w) 1= 141 93(w), N(w) = 1q233(w)

P((=1)=P(n=0)=3,
P((=0,n=1)

Solution:  (problem number) Answer. Short proof.
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s Lecture 3. Explicit construction of independent r.v.

Q:=[0,1],F :=Bor,P =Teb, Q3w = 2 ¥y, wy € {0,1}.
k>1

{&n(w) := wp}p>1 are iid Bernoulli(1/2) r.v. with
P(gn = 0) = P(fn = 1) = %

| A

Claim 2

Let {&,}n>1 be iid Bernoulli(1/2) r.v., then
nw) = k>1 27k¢,(w) is uniformly distributed r.v. on [0, 1].

A

Let £,x(w) be the (n, k) element in the following triangle table:

w1 W3 we Wig - - -
Wy Ws Wo ...

Wqg Wg ...

wr ...
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n7 Lecture 3. Explicit construction of independent r.v. 2

16 =0 s 2_k§nk}n>1 are uniformly distributed iid on [0, 1].

Claim 4

Let £ be a uniformly distributed r.v. on [0, 1] and let F be an
arbitrary distribution function. Then 7 := F~1(£) is a r.v. with the
distribution F¢ = F.

|
|
| \

Here F~1(t) :=inf{s: F(s) > t} is the generalized inverse
function (for non srictly monotone setting).

Let {Fk}«>1 be an arbitrary sequence of distribution functions.
Then 3 a sequence of independent r.v. {n}r>1 with F,, = Fy.

Nk = IN-_k_l(ﬁk) with iid uniformly distributed {&}.
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s Lecture 3. Conditional mathematical expectation £ € R

Wrt an event B € F, P(B) >0: E(¢|B):=E({-1g)/P(B) .

Observation: E(¢ = 14|B) = E(1an8)/P(B )_ngzgf)zp(ms).

E(¢B) = P58 = [ (@) s = J5 $dP(w|B) = [ €dP(w|B).
E¢= Zip( ,') (§|B,) if ;B =Q, A:= {B,‘} e F.
P(A|A)(w) := >, P(A|Bi) - 1;(w) — random variable:
(a) ANB =0 — P(AU B|A) = P(A|A) + P(B|A),
(b) P(A[2) = P(A), (c)E(P(A|A)) = P(A).
If #(n(2)) < oo then A, := {B;} — a partition generated by 7
and P(A|n) == P(A|A,).

E(¢|A)(w) :=>"; E(&|Bi) - 1g,(w) — random variable:
(a) E(ag + bn|A) = aE(f\A) +bE(n[A)  (b) E(£[Q) = E(¢)
EC; E(1a|2) = P(AIA) ~ (d) E(E(¢]A)) = E(S)
(f)

=Y zilg, = E({n|A)(w) = n(w)E(£]A)(w)
w € B = E(&n|A)(w) = E(&n|Bi) = zE(§]B;)
= n(w)E(£|B;) = n(w)E(§|A)(w).
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o] Lecture 3. Conditional mathematical expectation 2

E(¢]A), A C F is a random variable in R U £00 such that:
— E(¢|A) is A-measurable; — P(¢£-14) = [, E(¢]A)dP, Ac A

Properties: linearity, monotonicity +
- E(¢nlA) = & E(n|A) if £ is A-measurable.
- E(E(§JA)|A) = E(EJA) if AC AC F. Equalities are P-a.e.

E(&ln) := E(&1By), where By :=a(n).  P(Aln) = P(14|By).

T1. Let A, := {B;}] be a partition of (2, F), B := o(A) and
|EE] < oo = E(&]B) = E(&|A) with probability 1.

Proof. By B-measurability P(E(¢|g,|B) = zj = const) = 1. Hence
E(¢|B) = 2.;zile = 2 E(E]Bi) - 15, = E(£]A). O

JE¢ < oo implies 3! E(¢]A)(w).
E(&|n) == E(&|o(n)). Here E(&|n = x)(x) — conditional ME.

Conditional density pe(x|n = y) = pen(x,y)/pn(y):
E(f(&m)n=y) = [ f(x,y)pe(xIn = y)dx for f € L',
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o] Lecture 3. Conditional measures

In general E(£|B) cannot be calculated explicitly, however in some
simple cases this is still possible.

Let dP(x,y) = p(x, y)dxdy be a probability measure on R? with
p(x,y) >0 (P(A) := m(1a - p) for the Lebesgue m).

Consider o-algebras By generated by the coordinate function x and
let Py be the projection (marginal distribution) of P to the
x-coordinate with py(x) = my(p(x,-)).

The conditional measure P* on ¢, := {(x,y) : y € R} has the
density p*(y) = p(x,¥)/px(y) = p(x,¥)/ | p(x,y)dy - prob.
measure.

E(€]B.) = my(&(x, olx, ) = Lebelebonds,
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1] Lecture 3. Fair coin tossing

Problem

2 gamers play a symmetric coin P({0/1}) = 1/2. Each has a
winning pattern A and B respectively (a finite number of
consecutive binary digits). The game stops when one of the
patterns appears.

Questions:

(a) Does the game stop after a finite time?

(b) Let the pattern length (i) |A| = |B|, (i) |A] < |B].
Who will win?

@ P s <(1-27F)" T30 k=A]

n
each k-pattern # A.
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122] Lecture 3. Fair coin tossing 2

(b. i) Counterexample. A := 000, B := 100 = |A| =3 = |B]|.
&1,60, ... ,6n, ..., 5;6{0,1}.

Claim. If & =1 then B will show up before A:  101100....
Corollary. A wins iff £1€,&3 = 000.

Hence P(A—wins) = 273 = 1/8 < 7/8 = P(B—wins).

(b. ii) Counterexample. Let
A =000, B = 1000 = |A| = 3 < |B|. To compensate the length
difference the winning counts from the beginning of the pattern.

(c) 3 of the “best” pattern of a given length? Mirror symmetry.
100 ~ 011 > 000 ~ 111, 001 ~ 110, 101 ~ 010, 100—7 — 101
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23] Lecture 3. Exponential moments — Chernoff bounds

Idea of large deviations, from r.v. and up to random DS.
Chebyshev inequality with 0 < ¢ * — nondecreasing:

P(>t) <P(p(§) = p(t)) < Iif(i(f)). Set ¢(x) := e

P(¢2e) < EE, Pe<—e)=Plet > et < £

ete

Chernoff's idea is to find the value of t minimizing r.h.s.

Moment generating function:

2 n
Me(t) := Ee®® =1+ tEE+ SEC + -+ LEC+ ..
Generating (proizvodyaschaya) function: Ez%, |z| <1,
Characteristic function: Ee'*.

Properties of M(t): (a) EE" = dt':, Mg (0) (if 3 near 0)
(b) Mc(t) = My (t) |t| <0 = & =n (on distribution)
(c) &,n independent — M, = MM,

Proof. Mgy, (t) = Eetl€) = Eetelm = M:M,). O
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124] Lecture 3. Exponential moments — Chernoff bounds 2

& iid P(& = £1) = 3 = P(| Ty &l > ¢) < 2e7/Cn),

Proof. We check that P(S, := S 7_, & > &) < e ="/(2n),
Eetk = (e' 4+ e1)/2 = cosh(t) < e’/2. To prove the last
inequality we compare the corresponding Taylor series:

t2k

cosh(t) = (e +€7")/2 =3 4>o (zpy1 (0dd terms cancel) and

2 2k
et/ = Zkzo %
(2K)! = (2k)(2k — 1) ... (k + 1) k! > 2kk!

>0k
Now since EetSr = [7_, Eetk = cosh"(t) < e™*/2 we get
nt2 nt2

P(S,>¢e)<ez Jetfc=ez '
Choosing t = ¢/n (minimizing rhs) we get
P(Sy>¢) < e =/Cn), O
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1251 Lecture 3. Exponential moments — Chernoff bounds 3

Let Bin(n,p) =3 11 &, P(&=1)=p. Then
P(|Bin(n, p) — np| > t) < 2e~t*/GP) if 0 < t < np.
P(|Bin(n, p) — np| > t) < 2e"P/3 if t > np.

Let [¢] < 1,E€ = 0 = Mg(t) < D¢ Vit e [-1,1].

Proof. |t&| < 1,E¢ =0 = €' <1+ t& + (t8)? =
— Ee'® <1+ t2E£2 =1+ t2DE < et°D8, O
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126] Lecture 3. Exponential moments — Chernoff bounds 4

Let & be independent with & — E&;| < 1Vi.
Set Sp:=>.1 &, 0:=+/DS,

Proof. It is enough to consider E; = 0. Due to symmetry we get
P(S, > o) < e t9/2 for t = min(¢/(20),1).

32" D¢ = 0, hence by the Lemma:

P(S, > e0) < et ], Eetéi < e te0 1, et?Dé _ g—teot+t?a?
Thus choosing t < 5= we get the result. O]

Application: coin tossing:
§i € {Oal}ap = %7E5n = gaDSn =
Chebyshev: P(|S, — ES,| > 6ES,) < % = 5

Chernoff: P(|S, — ES,| > 0ES,) < 2 9°ESn/3 — g=9°n/6
much better!

&3
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27 Lecture 4. Markov chains (unorthodox approach)

(X, B) — a measurable space, M = M(X, B) — probabilistic
measures on X. Markov chain T*: M — M, t € Zor Ris a
family of operators such that Vu,v € M:
~Tt(ap+ (1— a)v) = aTH) + (1 - A)TH(¥), 0<a<1
- Tt (u) = T°® o T*(u) — semigroup or Markov property.
If Tt =48, Vx € X and some y = y(x) € X = deterministic
and random otherwise.
Deterministic: F : (X,B) — (X,B) = T"u(A) := p(F~"A) VA.
Random Examples:
(a) Random map: F1,Fy : (X,B) = (X,B), 0<p<1,

T u(A) == pu(Fy HA) + (1 = p)u(Fy A).

(b) Finite state Markov chain: X :={0,1}, P := Poo. Po1
P10 P11

L, — *P: N(O) — POOM(0)+p10N(1) > n,o— *Pn.
Tw=n ( (1) = po1p(0) + prip(1) )’ =
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s] Lecture 4. Markov chains (unorthodox approach) 2

Tu=

w*P
pooc-bpn

(c) iid & € {0,1} Markov chain with p; =1/2.

(d) General continuous time Markov chains: transition probabilities
Pi(x,A) := P(&s1t € Alés = x).

How this corresponds to the traditional approach?
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o] Lecture 4. Stochastic/random processes

Stochastic function is a a family of r.v. {&}eeT, OF

&(w) - (2, F,P) x T — (X, B) — Vt measurable on w.

When T = Z9 or RY we identify t with time and speak about

stochastic processes. £;(e) — r.v. for a fixed t.

&o(w) — realization or trajectory — nonrandom for a given w.

& ~ne if P(§& #m) =0 YVt €T — equivalence.

Sy (A) i =P((&y, - .-, &,) € A) — a finite dimensional

distribution.

& ~ ny = ®¢ = O (but not vice versa).

Question: what about realizations? - No.

Example: Let T :=[0,1] and a r.v. 7 € (0,1) have a continuous
L _ Jo ift#T

distribution. Set & =0, n; := {1 otherwise

P(& # ne) = P(m = t) = 0, however each trajectory of &; is

identically 0, while each trajectory of n; has a “jump” at time 7.

ft ~ N since
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o] Lecture 4. Existence of a random process

Let F(x) be a probability distribution. Is there a probability space
(Q,F,P) and a r.v. {(w) such that P(w: &(w) < x) = F(x)?
Set 2 := R, F := Bor(R). Then 3P : P((a,b]) = F(b) — F(a)
and thus for the r.v. {(w) := w we have F¢(x) = F(x).

Now we consider the same problem for a random process

&, t € T C R with finite dimensional distributions

Feooota(xt, o oixn) =Pw: &y <x1,...,&, < xp).

Theorem (Kolmogorov)

Let Ft, .t.(X1,...,Xn) be a given family of finite dimensional
distributions, satisfying the following consistency conditions:
Fr ot 1 tiothsgseontn (X5 - -+ Xk=15 00, Xk 15 - - 5 Xn)
= Ft1,...,tk,1, tk+1,...,tn(X17-"7Xk—17 Xk+17"'7xn)-

Then 3(Q2, F,P) and a random process &, t € T such that
Plw: & <x1,....&, <xn) = Fey,.. t.(x1,...,Xn).
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31 Lecture 4. General Markov chains

A random process &; : (2, F, P) — (X, B, m) acting on a Borel
(X, B) space with a finite reference measure m (# m(&;)) is a
Markov chain defined by transition probabilities

Q:(XvA) = 'D(§S+t € A|€S = X)7 A € 87

with standard properties:

@ Qi(x,-) is a probability measure on the o-algebra B.
e For fixed s, t, A the function Qf(-, A) is B-measurable.
@ For t =0 QL(x,A) = x(A).

@ Foreach s,0 <t <t and A € B we have

Q! (x, A) = /X Qi (x. dy) Q" (y. A).

31/127



321 Lecture 4. General Markov chains 2

The process &; induces an action on measures:

(A = [ Qix.A) du(x)
and an action on functions:

o(x) = / o) QL(x, dy).

Definition

A Borel measure y is said to be invariant or stationary for the
Markov chain &; if it is a solution to the equation

Qep =1 Vs, t.

A system is deterministic iff QLdy is a §-measure Vx, s, t.
This agrees with the discussion of the unorthodox approach.
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;33] Lecture 4. Discrete time random processes

(1) iid rv. & : (Q,F,P) = (X,2X), t € Z4, X :={0,1},

P =1)=p,P(E=0)=1-p.
Let b:= {by} be a binary sequence and let SV (b) be its left shift
by N positions, i.e. (SV(b)); := bixn. W(b,n) := (b1, b2, ..., by).

Definition

A sequence b is strongly recurrent if Vg, n € Z there exists

N = N(b, no, n) such that W(S™b, n) = W(S™+Nb, n); and
uniformly strongly recurrent if 3 an infinite sequence of shifts { N},
such that sup; |Ny1 — Ni| < oo.

Calculate: P(¢&; is s.recurrent), P(&; is uniformly s.recurrent).

(2) Simple random walk: 7, : (2, F,P) — (X,2%), t € Z,
X =7, Nev1 =0t + &, where & € {—1,1} are iid with
P=1)=p,P(E=-1)=1-p.
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4] Lecture 5. Discrete time random processes 2

(3) Collective random walks — the exclusion process EP.
A configuration ¢; = (..., ¢ 1, ¢0,¢L,...), ¢ € Z describes
positions of “particles” on the lattice Z at time t. Each particle
performs the random walk if it does not interfere with other
particles.

S 1 S S 1 } t TASEP

1 S 1 $ — t+1
ENN
1 ® 1 ® 1 &— t+42

The main problem in the analysis of such systems is an infinite
number of simultaneous interactions between neighboring particles.
An example will be discussed on the next slide.
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5] Lecture 5. Subway escalator

6—+——o——+—+ t TASEP. p=1

. o

———————— t+1
AL N
—— ¢~ t+2

Let V be the escalator’s velocity, p — the density of passengers.
Then the passengers flow F(p, V) := (1 — |1 —2p|)/2 + Vp.

F Case V <1 F Case V > 1 Vp
1 1
2 Vp 2
p p
0 z 10 3 1

FG3.V)> F(LV)iff Y. >V —= VvV < 1.

35/127



6] Lecture 5. Recurrence of random walks

Let 7¢[p] be a random walk on Z with P(ni41 — 1y =1) = p. A
sequence {by}, by € Z is recurrent if Vi 3n = n(i) > 0: b; = bj1p.

Find all values of the parameter p € [0,1] such that
(a) ne[p] is recurrent,

(b) n¢[p] is strongly recurrent,

(c) melp] is uniformly strongly recurrent.

Let QX := {w: a return to k occurs after 2n time steps} =
P(Un>0Q25) = 1iff 35 oo P(QF) = oo.

Discussion. Set g := 1 — p. We have
P(QF) = G, (pg)" = @olpa)” ., (4p9) (by the Stirling formula).

n'n! /TN

Thus recurrence occurs iff p =g =1/2.
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371 Lecture 5. Recurrence of random walks 2

General framework. Let &, be a Markov chain on ZT with

transition probabilities pf'}).

vV = max, (nfk\fofk)—llffznxpkkfoo Vk e Zs.

Proof. Let v, := P(the 1st return to k occurs after n steps), and
let v :=>_ 51 va. By the formula of total probability we have

() 0 =30 o pvay.

Set additionally u, = p,(,-) and introduce the generating functions

U(z) =" s umz™, V(2) :== ) 50 Vmz™, which are analytic for
|z] <1. Then (*) is equivalent to

U(z) — up = U(2)V(2), g = 1 = U(2) = 13-
lim,—1 U(z) = lim,_,1 %‘/(Z) = 1iv =00 |f v = 1. On the other

hand, lim,_; U(z) = lim,_1 ZmZO Umz™m = ZmZO Up=o00. [
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i8] Lecture 5. Basic examples of random processes

(0) Random sin oscillations: & := Acos(nt+¢), rv. A;n>0,¢.
¢ is uniformly distributed on [0,27) and does not depend on A, 7.

(I) Poisson process & with the parameter a > 0on T :=R.:

(0) & = 0.

(VO<ty<ty <---<tprv. A s , =&, — &, independent.

(i) rv. A& s =& — &, 0 <s <t are Poisson distributed:
P(Aés = k) = (a(t —s))ke 2t=9) /Kl k € Z,.

(iii) Trajectories of & are right continuous.

(1) Cauchy process: (0) + (i) +
(ii") rv. Aéps =& —&s, 0 <s <t are Cauchy distributed with
the density  p(x) = 77 1(t — 5)/((t — 5)? + x3).

(1) Wiener process wg: (0) + (i) +
(i") rv. Awes = wy — ws, 0 < s < t are Gaussian N(0,t — s).
(iii") Trajectories of w; are continuous.
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[39] lest 2

© Prove that stochastically equivalent processes (i.e.

P(&(t) # n(t)) = 0 Vt) have the same finite dimensional
distributions. P(&(t;)) € B; i€ {l,...,n})= (Vt;,B; € B)
= P(Ni{é(t) € Biy N nifé(s) = n(n)})
= P(Ni{n(t) € Bi} N Ni{&(t) = n(t)})

=P(n(t) e B ic{l,...,n}).

@ Construct stochastically non-equivalent processes, having the
same finite dimensional distributions. &, : Q — {—1,1},
P({ = +1)=P(n=£1) = 3, {(w) = —n(w) Yw € Q.

© Let £ have the standard normal distribution A/(0,1). Check if

P >a)< e/2 Ya>0.
(§>a \ﬁj *X/zdx<rjooxfx/2dx

= 27T e=/2 < e=/2if 33/21r > 1.  Otherwise, if av/271 < 1:

P> a) < P > 0) = 1 < e }0/30) 7 < o2
since In2 ~ 0.69 > 1/(4~).

Solution:  (problem number) Answer. Short proof.
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o] Lecture 6. Properties of basic random processes

(0) Random sin oscillations: & := Acos(nt+¢), rv. An>0,¢.
¢ is uniformly distributed on [0,27) and does not depend on A, 7.

Finite dimensional distributions of &,t € T := R are translationally
invariant: pz,p, = puz YVt = (t1,...,ta),h € R.

Proof. We need to prove the following equality:
(*) Z :=P({Acos(n(ts + h) + ¢),...,Acos(n(t, + h) + ¢)} € C)

=P({Acos(nty + ¢),...,Acos(nt, + ¢)} € C).
B:={(x,y,z) :x,y >0,z €0, 27),

{xcos(yty + z),...,xcos(yt, +z)} € C} is a Borel set.
Denoting by {z},, the fractional part of z mod 2, from (*) we get
Z =P((A,n,{¢ +nh}2x) € B) = P((A,1,¢) € B).

(A,n) and ¢ are independent = 1144, = LAy X ftp. Thus
Z= fooo fooo /U'Am(dXdy) NW(Cl = {Z : (vaa {Z +yh}Qﬂ') € B})

= 7 J5" pan(dxdy) po(C :={z: (x,y,z) € B}), since Cy is
obtained from G, by the translation by yh and taking mod 2. Finally,
tty is uniform on [0,27) and does not change under translations. [
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(#1] Lecture 6. Poisson process

(I) Poisson process & with the parameter a >0 on T :=R:

(0) & = 0.

(YYO<ty<tg <---<tyrv. Ads r , =&, — &, independent.

(i) rv. A& s ==& — &, 0 < s <t are Poisson distributed:
P(A&s = k) = (a(t — s))ke=2(t=%) k1 k € Z,.

(iii) Trajectories of &; are right continuous.

a.a. trajectories are non-decreasing integer valued functions with
jumps of size 1.

Proof. Main idea. Show that probabilities of the events
A={&eZVt=k27"}, B:={& <& Vs <t=k2™"},

Cny :={VkeZN]0,&y] It = k27" € [0, N] : & = k} are equal 1.
To this end one approximates them by events depending only on a
finite number of values &;.
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2] Lecture 6. Poisson process 2

Proof. The event A =,_; ,-n(Ar :=={& € Z4})
P& €Z4y)=P(& — &y €24) = ‘20 P& =i)=1=P(A).

B is the intersection of the events:
By i={& < &o-n < pan S b = k2 < §krnyant
Since P({k2-n < §(k41)2-n) = 1, we have 1 = P(B,) = P(B).
Cn 2 Mado €1y 2-n — Eko-n € {0,1}} = by (i)+(ii)
P(Ch) =TTy ' P({Eks1y2n — Ekan € {0.1}})

> (6*327" + azfnefazf”)f'N > (1 o 0(327"))2”\/ "2;3 1,
sincee ¥+ xe ¥ =1—-o0(x)asx - 0= P(Cy) =1.
Finally, the event that the jumps are equal to 1 coincides (by the
right continuity) with the event Z := AB Ny Cy with P(Z) = 1.

[

R —
_—
—_—

N A trajectory of &
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1#3] Lecture 6. Wiener process

(II1) Wiener process w; starting from 0 on T :=R,:

(0) wo = 0.

(YVO<tg<ti <---<tprv. Awy | = Wy — Wy, , are
independent.

(i) rv. Awes = wy — ws, 0 <s <t are Gaussian N'(0,t — s).
(iii) Trajectories of w; are continuous.

W<a<tpp<thi<---<th=0b
n—1

(L)  lim Y (wy,, —wy)?=b—a.

diam{t;}—0 ;—p

n—1
Proof. Let Z := Y (wy,., — wy; ). Then by independence
i=0
n—1
EZ = Z E(Wti+1 Wt,)2 Z D(Wt:+1 Wti)
i=0
n—1
= Z(ti-i-l — t,') =b—a.
i=0
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4] Lecture 6. Wiener process 2

Similarly
n—1 X2
DZ = Y D(wy,, — wy,)? (evaluaing [ x*e” 202 dx by parts u = x3
i=0
n—1 I _ 2
= > [E(wg,, — wy;)* — (E(we,, — Wti)2)2] dv = xe 207 dx)
i=0
;,1 ) ) n—1 )
= > B(tiy1 — )" — (i1 — 6)°] = 2 20 (tig1 — 1)
i=0 i=0
n—1
< 2max(ti;1 — ) X (tit1 — t) = 2(b — a)diam{t;} — 0.
i=0
n—1 I n—1
Thus E(Z (Wt;+1 - Wt;)2 - (b - a))2 =D Z (Wt;+1 - Wti)2 - 0'
i=0 i=0
which implies the convergence in Lj. O

Important observation. An increment of a smooth function is of the
same order as the increment of its argument, while the sum of
squares of increments goes to 0. In the case of w; the situation is
rather different.
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s] Lecture 6. Wiener process 3

Statistics:
Holder exponent for the Wiener process w;. Estimate T';fs""g.
For t > s we have .

We—Ws __ We—Ws _  t—S§ 1-28 t—s= :
Ef =0, Dyl = i = (t—s)' 27 =570 iff

0 < 8 < 1/2. Further one applies the Chebyshev inequality.

Variation var(wt). For A := {[t;, tiy1)}! C [a, b] denote
V(we, A) := 37 |wy; — wy,,, |- Find (E/D)V (we, A) =7

Elwepn — we| = —2= [°2 [x[e™ /2% dx (02 = h)
2 2 o0 __y2 2 2 2 - 2h
= UJE 0o € /2 dogz =/ 5

Thusfor]t,-—t,-+1|:%7 a=1ty<---<t,=bwe have
EV(w, A) = /2(b—a) - /n =3 oo, DV(w, A) T h—a.

Now again the Chebyshev inequality gives the result.

45/127



6] Lecture 6. Wiener process 4

Let f,(t) be piecewise linear with with vertices at points

{k27", Z;(:_O]-(W(I.-i-l)27k - Wi27k)2}. Then
P(|f(t) — t| =37 0) = 1 uniformly on [0, T].

Proof. The functions f,(t) are nondecreasing = it is enough to
prove the convergence on a dense set, say for all t = k27™. Why?
For n > m we have

E(fa(t) —t)?> =2t27", E Y (fa(t) — t)? = Y E(f4(t) — t)? < oo.

n>0 n>0
Hence by the Chebyshev inequality the series converges with
probability 1. Thus f,(t) — t — 0. O

Theorem (Continuity of trajectories:)

Let &,t € T = [a, b] be a random process such that
Ja,e,C > 0: E|é, —&|* < Clt —s|**e Vi, s € T. Then I a
modification of & with continuous trajectories.
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a7] Lecture 6. Wiener process 5

(I1) Multidimensional Wiener process. w; := (w},...,wg) € RY,
t € Ry, wyg = xp. The definition is exactly the same as in the 1D
case, except that the increments w; — ws have the covariation
matrix diag(t-s) instead of a single number.

The events from fw;' are independent, which implies that the
d-dimensional Wiener process is simply a collection of d
independent 1D processes.

Proof V0 <t <--- < t, consider random vectors

Wi=(wj,.. ") Their joint distribution is Gaussian. Hence
for mdependence it is enough to observe that the coordinates of
Wi and W9 for i # j are uncorrelated. O]

The density of the joint distribution of (w},...,wf)is

Put,..wn(X15. .o Xn) = Hmexi’( Z(X'tfl,fz))

toe
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as] Lecture 6. Wiener process 6

Statistics:

leta=ty<---<t,=h. Then
n—1
> (wi,, —wh) (w2 —wi) =3 0in L.

=

Proof. W, := (w} + w?)/\/2 is again the Wiener process. Thus
n—1
lim E (W}’,+1 — W,_Ll’,)(wt_?’url — Wg)

1=

 Llim'SY 2y — i)~ 3 lim S (wd | — wi )]
=0 =1 =0
_1p(b—a)— (b—2)— (b—a)] —0. 0
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[49) Lecture 6. Wiener process (Existence 1)

Existence. Let &, be the simple symmetric random walk on Z with

& =0and P(¢py1 =i £ 1|&, = i) = 1/2. We interpolate it and

rescale to [0,1], namely Vn € Z., (io, i1, .., /n) € Z"! define
27 = 21~ e+ [ne]) g + (08 — [08])épy 1

wh|ch linearly interpolates the points of the rescaled random walk.

Let @, be the finite dimensional distribution of the process Zt(").

&, =% 11" weakly, which is a probability measure on C([0, 1]),
called the Wiener measure.

MW({fi f(t,')E B, i=1,2,... k})

X2

k o))
= (i1 =5) dlx.
HI =1 /27T(t,+1 t fB
Here B; are measurable sets from [0, 1]. The measure p" corresponds to
a random process called Brownian motion, which satisfies all properties of

the Wiener process.
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so] Lecture 6. Wiener process (Existence 2)

Let &, be the simple symmetric random walk on Z with & = 0.

A piecewise constant r.p. Zt(") = n_1/2§[,,t], t € [0, 00) converges
in distribution as n — oo to the r.process satisfying the conditions
(0-ii) of the Wiener process ws.

Proof. By the CLT the normalized symmetric random walk n—1/2¢,
converges in distribution to N'(0,1) as n — oo.

Let us check that at a fixed time t > 0, the r.p. Zt(") converges as
n — oo to a r.v. with the distribution to N(0, t):

(m ~1/2 §ing /[nt]
Zy 7 =n f[nt] = )
Vnt] V/n
which converges in distribution to a r.v. distributed as N(0, t).
Independence of increments over non-intersecting time intervals
follows from the construction. O
Only continuity of trajectories is under question.
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51 Lecture 7. Wiener process (properties)

Let &, be iid r.v. with the standard normal distribution A/(0,1).
Then Z; .= \/222021 Sinf(kt) &k is the Wiener process on [0, 7.

A\

Theorem (Feynman-Kac)

The solution of the diffusion equation % %g— u(x,0) := f(x)
can be represented as u(x, t) = Ef (x + w;), provided f € C2.

Proof. Due to the independence of wy,s — w; and w;, we have
u(x,t+s) = Ef(x + weps) = Ef (x + (Wers — we) + we)
= Eu(x + (weys — wy), t) = Eu(x + we, t).  Therefore,
%(x, t) = lims_o %(u(x, t+s)—u(x,t))
= lims_0 %E(u(x + ws, t) — u(x, t))
= lims_0 % (%EWS + %%EWE + o(s)) = %%.
The result follows by noting that Ews = 0, Ew?2 = s. O
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2] Lecture 7. Wiener process 8

Moments(d = 1): Ewy = E(wy — wp) =0, Dwy = D(wy — wp) = ¢.
For 0 < s <t we have
cov(we, ws) = E(wy — ws)ws + Ew2 = D(ws — wp) =s =t As.

Continuity: E(weyp — wy) = 0, D(wpyp, — we) = h. Therefore
w: — Wy, as t — tg Vit in probability.

A Brownian bridge is a process B; whose law is the conditional
probability distribution of a Wiener process on [0, T] subject to the
condition wr =0, i.e. By := (wg|wr =0), t € [0, T]. Then

EB; =0, but DB; = L{t) = the most uncertainty is in the
middle. cov(B:, Bs) = 1) if s < t.

Remark. The increments of a Brownian bridge are not
independent.

Representation of the Brownian bridge:

t Tt
Bl’ = Wt — TWT = ﬁWTt—t.
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s3] Lecture 7. Wiener process 9

Definition

A d-dimensional random process &; is Gaussian if all its finite
dimensional distributions are Gaussian, i.e. they are defined by 2
functions m; := E&; and R := E(& — ms)(& — my).

Let &, t € Ry be Gaussian and (0) & =0, (a) E& =0,
(b) E&tés = min(t,s) =t As, (c) & is continuous on t a.e.

& 1s a Wiener process.

Proof. VO < t; <--- <ty rv. (&, — &) have a joint Gaussian
distribution. (b) implies that the increments are uncorrelated, and
the Gaussian distribution implies their independence. Finally,
E(— &) =EG+EE —E&&s=t+s—2(tAs)=t—s. [

Remark. E|§ — &| = \/M.

™
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s4] Lecture 7. Wiener process 10

P& > alm, <t) = % where &, =a >0, & < aVt <7,

Proof. The event &; 2 ais a subset of 7, < t and

P(¢& > alma <t) = E€’>ag By the symmetry, the probability, that
after starting at the point a, to be to the right of a at time t is the
same as to be to the left of it. The result follows. O

Corollary. For t >0
P(r, < t) = gret2d) - — oP(¢, > a) = \ﬁ [ e dx. (%)

P(&:>a|ma<t) pre

a/\Vt

Hence P(7; < c0) = 1. Moreover:
P( max fs >x)=P(r < t) = \/% [ e—y2/2dy
0<s<
x/Vt
=./2 f e v/ dy = 2P(&; > x) — the doubled normal law.
Similarly for the minimum value. Observe also that

P 0) = P( mi 0)=1.
(gnax, & > 0) = P(jmin & <0)
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s5] Lecture 7. Wiener process 11

Claim The arcsin law for the maximum of &:

for0<s<t.

F)(7?nax < ‘[ W\/@R;AA;S "arcs|n \/f7

Proof. After the moment 7, the process obeys the same laws as

when starting from 0. Therefore {max 1= 0ryax = rgax & if
s

T, = 5 < t, and &max has the same probability distribution as

a+ 0<max &u. According to (*) this r.v. has the following
u<t—s

conditional probability density:

__ )2
Pemax (X|Ta = 5) = \/ﬁ exp(—(;Et_az) ), a<x<oo. Hence
22 7(x—a)2
pTav&max(s7X) = pTa(S)pgmax(Xh—a = S) = #(t—s)ge_ge 2(t—s) .

Denote by 7 and £ the (time) position and the value of the global
maximum of &, on the interval [0, t].
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s6] Lecture 7. Wiener process 12

The density of the r.v. (7,€) at a point (7 = s,£ = a) coincides
with the density of (7,,&) at the same point, since

pre(s,a) = pr(sl€ = a)pe(a) = pr, (sI€ = a)p(a) = pr, (s, 2).

— Pre(s,a) = - stt_s)ge_% for0<s<t, 0<a<oo;and
2
— 1 o0 x —X . 1
prls) = Jo" prsls, ) = m/s(t—s) Jo~ s mdx= m/s(t—s)’
Therefore P(7 < s) fo (t = %arcsin 1. O
s u —IJ

1

0 t/2 t

Thus the maximum is near one of the end-points.
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571 List 2 — deadline 22.04

© Construct uncorrelated but dependent normally distributed r.v.

@ Prove/disprove existence of a Gaussian process &;, 0 < t < 1 with
E& =0 and a correlation function K(t,s) :=t A's — ts, such that
almost all its realizations are continuous.

© Let w; be a standard Wiener process, and let t; := %, 0<i<n.
Calculate Iim P(ZL_O1 |wg;,, — wy;| > n®) as a function of a € R.

Q Let {&}, beiid rv. with E§ =0, D& = 1. Let n, := \fZ" 1555.

Prove that 7 is asymptotically normal as n — co.

© Let {&}7, beiid r.v. and let 1 Z, 15, 3 1 almost surely. Prove
that E|§1\ < oo and calculate E§1

Q Let {5, . beiid rv. with E& = 0,D¢ = 02 > 0 and let
Ny = Uﬁ 2,21 &;. Prove/disprove existence of (P)lim,_, s 7.

@ Find ALL stationary processes &;, t > 0 such that 3(P) lim_, o &.

Do not wait until the deadline, and send written solutions
(preferably in LaTex) by e-mail.
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;s8] Lecture 7. Choice of the largest unknown number

The numbers A # B are in closed envelopes. | take one at random
(say A) and read it. Is it possible to construct an algorithm
(deterministic or random) answering the question if the second
(unknown) number is larger?

Algorithm. Let £ be a Gaussian r.v. If £ > A | decide that B > A
and vice versa. How this helps?
A

T

The probability to win
=3 (1-P(A-&)(B-€) <0)+1 P((A-€)(B—¢)<0)

1+P((A—-&)(B— 0
_ LP(A-(B-9<0) _ 1
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is9] Lecture 7. Coupling

Definition

A coupling of measures P on (Q, F'), i =1,2is a new measure
Pon (Q:=Q' x Q2 F:= F! x F?) such that
P(A! x Q) = P1(A1) P(Q! x A?) = P2(A?) VA e F.

Definition

A coupling of rv. €, i=1,2is a new rv. & := (£1,€2) on (Q,]t')
such that its distribution is the coupling of the distributions of £'.

v

Remark. Couplings are not uniquely defined.

Definition

Let (Q', F') = (R, F), then the total variation distance
[P — P2[[ey := supac - [PY(A) — P2(A)].
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eo] Lecture 7. Coupling 2

Theorem 1 Coupling inequality

Given r.v.~§"7 i =1,2 with probability distributions P’ for any
coupling P we have ||P? — P?||;, < P(& # £2).

Proof. P1(¢' € A) —P2(2 € A) =P(£' € A) — P(£2 € A)
=Pl eAd=2)+PeAcd £
—-P(& € A,ﬁl £2)—P(&% e A,£1 #&£2) < P(& £ &2). O

Definition

A coupling of r. processes §;, i=1,20n the same space ~(Q,]—", P)
is a new r. process & = (£},£2) on (Q! x Q2, F! x F2,P).
=inf{t € T: & = €2} - the coupling time.

60/127



61 Lecture 7. Coupling 3

Definition

A coupling P is called successful if P(£} # €2) =0 Vt > 7.

&

IPLel e )= P22 e )|l <P(r>t) VteT.

Proof. {¢} # €2} C {r < t} by Theorem 1. O
Application: convergence of Markov chains.

Problem. Let ¢} := a'w] + b', i = 1,2 and let w] be independent
Wiener processes on R!. Check existence of the successful
coupling.
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l62] Lecture 7. Coupling for TASEP

\ \ t TASEP,0<p<1

$
$
$

! Vai

b I Realizations pairing
|

Unpaired particles (empty circles) from different realizations
become paired (filled circles) when they share the same position.

¢
.
* @
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l63] Lecture 8. Main classes of random processes

Definition

& € R? is called a Gaussian random function if all its finite
dimensional distributions are Gaussian.

Problem. When the random sin oscillation & := Acos(nt + ¢) is a
Gaussian random function?

Definition

& € RY is called a process with independent increments if all its
increments over non-intersecting time intervals are independent.

Definition

| A

A similar notion in the broad sense — a process with uncorrelated
increments: cov(&, — &ryy &1, — &) =0for i) <t < t3 < ta.
Recall that cov(&,n) := E(§ — E€)(n — En).
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l64] Lecture 8. Main classes of random processes 2

Definition

& € RY is called stationary if all its finite dimensional distributions
are translationally invariant: pz p = pz.

Definition

& € Rl is called stationary in a broad sense if the first two
moments exist and

E&in=E&, K(t+h,s+h)=K(t,s) :=cov(&,&s).
This is equivalent to E§; = m, K(t+ h,s+ h) = K(t —s).

Definition

| \

& € R is called a process with stationary increments if joint
distributions of its increments are shift invariant.

Obviously all stationary processes have stationary increments, but

not all of them have independent increments. Counterexample:

& = Acos(nt + ¢) + at + 3, where ¢ does not depend on

(A,n, o, B) and is uniformly distributed on [0.27): 64/127



le5] Lecture 8. Convergence and finite dim. distributions

2 2 . . .
Let E[&|* < oo Vt. Then 3(L )t||_>rr;0 & iff 3 t,Lli)nto E&&s.

Proof. The necessity follows from the continuity of the scalar
product, while the sufficient part follows from the Cauchy condition
lim E|ge— &2 = lim [E|&[? — E€is — E€ste + El&2] = 0. O

t,s—to

Let {¢,} be uncorrelated. Then 3(L2)[im " -, &, iff the series
> n>1 E€nand 3° - DE, converge. -

Proof. Let np, := Y11 & = Kyy(n,m)= > D¢
i<min(n,m)
Use Theorem 1 above to get the claim. O
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e6] Lecture 8. Convergence and finite dim. distributions 2

(P)lim¢_s¢, & exists iff exists the weak lim¢ sz e, e, =: p.

Proof. (a) Necessity. (P)lim¢s—st,(&t,&s) = (n,m). Hence the
2-dim. distributions p¢, ¢, converge weakly.

(b) Adequacy. lim; syt fig, ¢, is supported by the diagonal (since
(&, &) is there).

Let £ € CO £(0) =0 and £(x) = 1 for |x| > ¢.

Then by the Chebyshev inequality

P& — &s| > ) < Ef(&e — &) = [ [ fo(x — y)ig, . (dxdy)
tsatoff (x—y dxdy)—O
since f. € CO and ,u is supported by the diagonal {x = y}.
Hence the sequence is fundamental in probability. O

Problem. Prove/disprove that if & is stationary and
P(&: = const) = 0, then (P)lim¢_, & does not exist.
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7] Lecture 8. Kolmogorov consistency conditions

Theorem (Kolmogorov)

Let Fs. t,(x1,...,xn) be a given family of finite dimensional

distributions, satisfying the following consistency conditions:

() Fopponta (A1 X Ag - X Ag) = Fo (A X -+ X Ay ),

(b) F}L”.Jk_ljkﬁk+lyuﬁn(xla---7Xk717007xk+17'"aXn)
=Fe,ti s, tkﬂ,...,t,,(xl, sy Xk—1, X415 - - 7Xn)-

Then 3(Q2, F,P) and a random process &, t € T such that

Plw: & <x1,....&, <xn) = Fe,. t.(x1,...,Xn).

Proof. Necessity follows from the definition of the finite
dimensional distribution.

Adequacy. 3F on (R7,BT), corresponding to the given family of
finite dimensional distributions (nontrivial and we skip its proof).
Now we choose a new probability space (R, BT, F), where each
elementary event w is a function z, : T — R. Then the random
variable &;(w) defined as & (w = z.) = z satisfies all required
conditions. O
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e8] Lecture 8. Applications of consistency conditions

() Existence of a sequence of independent r.v. with given
distributions {F,}. It is enough to set Fy, . = Fj, x -+ x Fj .
(1) Existence of a Gaussian random process.

For any function m: T — R and any non-negative definite function
K(t,s) :=>_;;ciciK(ti, tj) there exists a Gaussian process &; with
E& = m(t) and cov(&:,&s) = K(t, ).

Proof. Choose Fy, . :, as the n-dimensional Gaussian distribution
with the vector of mathematical expectations (m(t1),..., m(t,))
and the covariance matrix (K(t;, t;)).
To check the consistency conditions, observe that
(i) the Gaussian distribution is completely determined by m, K,
(ii) each sub-vector of a Gaussian vector is again Gaussian. O
Corollary. Existence of the Wiener process follows from this result
with m=0, K(t,s) :=tAs.
Homework: K is non-negative definite?
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[69) Lecture 8. Stochastic continuity in probability

Definition

&: is stochastically continuous at tg € T if (P)lime_¢, & = &,

This property is defined by 2-dim. distributions. All above examples
of random processes are stochastically continuous. Despite that the
realizations of the Poisson process are discontinuous. Explain?
Answer: P(a discontinuity happens at a given point)=0.

Prove/disprove that if & are independent Vt and has the same
density p(x), then & is stochastically discontinuous Vt.

PrOOf' P(‘gt - §t0| > E ffx y|>5 (.y)dXdy

0
= ffx;éy y)dxdy = ffp (y)dxdy = 1.
Hence 3¢ > 0 such that P(\ft | > €) > 1/2 = there is no
convergence in probability. Ol
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(o] Lecture 8. Stochastic continuity in LP

Definition

&t is stochastically continuous in LP if (LP)lim¢_ys, & = &4, -

Problem

Prove/disprove that &; is (a) stochastically continuous on T iff
e, ¢, is weakly continuous on (t,s) € T x T; and is
(b) stochastically continuous in L2 iff E&:£ is continuous.

(a) Follows from Theorem 1; (b) from Theorem 2 (about
continuity).

Prove/disprove that if &; is stochastically continuous in LP, p >1
on a compact set A, then (a) it is uniformly continuous;
(b) sup;ca E|&:]P < 0.

Follows from standard mathematical analysis arguments.
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711 Lecture 8. Stochastic differentiation

Definition

A derivative of §; at t € T is (&) = lims_¢ 5% Se— gs in various senses.

Let E|§t‘2 < oo Vt. Then El(L2) |imt_>t0 §t iff 3 |imt75_>t0 Egt&s-

(P)lim¢_s¢, & exists iff exists the weak lim sz pe, e, = p.

Conditions of the differentiation in probability and in L? are given
by T1 and T2. Hence the differentiability is defined by finite
dimensional distributions of the process of order < 3.

Wiener process has no derivative even in probability.

&e—&s r._ d
Proof. 5= is Gaussian N(0, ;= s|) = (m) = Swe
diverges. O] 71/127




721 Lecture 8. Asymmetry of subway rides.

Every morning you drive from home to work along the metro ring
line from Kurskaya to Kievskaya. Since the distance in both
directions is almost the same, you choose the first train in any
direction. After a while, you find that you choose the right
direction 5 times more often. How can this be explained?

right
Kievskaya Kurskaya

left

left line
right line

Metro schedule: T T T T T
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73] Lecture 8. Stochastic differentiation 2

Poisson process has a derivative in probability, but not in [P, p > 1.

Proof. (P)lims_(& — &)/(t —s) = 0. Hence if the LP limit
exists, it should be equal to 0 almost surely. However,

E‘?Z:ET},P > Pl(fifﬁf) ~ a|t — s|'7P, which does not vanish as
t—s—0. |
A random function is not uniquely defined by its derivative in

probability, while in L? the situation is much better.

If 3¢, € LP and (L =0 Vs € [a,b] = & =&, YVt € [a, b].

Proof. Ve > 0,s € [a,b] 30s : |& — &s| < et — s| Vt € Os.
Assume that s ;= liminf{t € [a,b] : & # &} > a.

— Je>0: [ —&| >¢|t—a|l Vt>s and (by continuity of &)
|€s — &a] = €ls — a| = for Os > t > s we have

€ — &al <& — &l + |6 — &l <elt —s[+els —a[ =<t —a],
which contradicts to the definition of s.
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4] Lecture 8. Stochastic differentiation 3

(&) € Clin L%-sense on (a, b) iff E£:&s has a continuous

- o O%E&ss 2
derivative =53 on (a, b)”.

Proof. Follows from standard analysis.

Corollary.

2 H - . . . .
aé;(tgs,s) is the correlation function of (&;)’, while the joint
correlation function of & and (&)’ is:

oK,
Kee  Kee _ [ Kee 5
(K R )= s ot ) ()

otds
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5] Lecture 9. Deterministic integration

If & € CO then [P &, dt can be defined as lim >0 (ti11 — t;)&s;,
where a =ty < -+ < t, = b and non-random points s; € [t;, tj11].
Again everything is ok in LP p > 1-sense but not in probability.

If & € C%in LP([a, b]), then Elfab &rdt in terms of LP-convergence.

Proof. Standard analysis + uniform continuity.

Let 7 be a r.v. uniformly distributed on T := [0,1]. Check if the
process & = (1 — 7)"11¢~, is stochastically continuous on T, and

if fol &pdt exists in L2-sense.

One can differentiate the integral over lower and upper limits which
yields the Newton-Leibniz formula.

Application: if & is a Poisson process —> % <(Lp) fat fsds> = &.
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6] Lecture 9. Deterministic integration 2

Realizations of LP-integrable &; need not be integrable and one
needs to distinguish the integral as a r.v. and as a function
f &r(w)dt for w € Q, which might not be even measurable.

Under which conditions ((Lp IR ftdt) f Er(w)dt?

Answers:

(a) If all realizations are Riemann-integrable.

Indeed, the LP-integral is the limit of sums on average, and hence
on probability. On the other hand, J(w f &t(w)dt has the
same limit Yw. Now a.e. convergence |mp||es the convergence in
probability. Moreover, from the Riemann-integrable assumption
J(w) is measurable. O
(b) If the realizations are only Lebesgue-integrable the situation is
more complex.
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(771 Lecture 9. Deterministic integration 3

Let & is measurable in [a b] and continuous in LP, p > 1-sense.

Then ((LP) [} &cdt) (@) ~ [7 &lw)de (¥).

Proof. It is enough to consider the case p =1 (other convergences
will follow). By Fubini's theorem the rhs of (*) exists, since

f Jo 1€e(w)|dtP(dw) < (b — a) max;ea ) E|&:| < 00

Consider the lhs of (*) as the limit of integral sums while the rhs as
the limit of sums 3=, [7 &edt. Then

El(tis — ti)ss — [, &edt| = E| [7 (& — &)dt|
f’ El& — &g |dt < (8 — t:—l) MaXee[t;_q,t] El& — &l

= Jt_
The continuity1 on average implies the uniform continuity on
average. Hence 30 >0 V|t —s| < d = E|& — & < e.
Thus diam{¢t;} < 6 = the math. expectation of the difference of
integral sums corresponding to lhs and rhs of (*¥) < e(b—a). Since

€ > 0 is arbitrary, the integrals in both senses coincide a.e. O]
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78] Lecture 9. Deterministic integration 4

Computation of moments of integrals is rather simple.

Let & be continuous in L?-sense and E|¢;|2 < co. Then
E[Peidt = [P Ecidt, cov([P€ude, &) = [P Kee(t, 5)at,
cov( [P &dt, [9 €cds) = [P [ Kee(t, 5)dtds.

Proof. Follows from the continuity of the scalar product (-,-) on its
arguments. Indeed,
Efab €edt = E (L?)1im 3 (tir1 — )&,
::<(L2)“n1§:i(n+4 _'n)gﬁv 1)
= lim(>_;(tiv1 — ti)és;, 1)
= lim>_;(tiy1 — t)E&s,
= [P E¢,dt.
This proves the 1-st equality. Two others for homework. O
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o] Lecture 9. Correlation functions

Kee(t,s) = K(t,s) = E(& — E&) (& — E&s)* < /K(t, t) - K(s, 5).
K(t,s) = (K(s,t))*, K(t, t)>0, > ; i K(t,,sJ) i(z)* > 0.
Let us check the last claim for the case E&; =
> K(tiys)zi(z)" = E[X;;€6(85)"2i(2)7]
=E[} ¢z - Z (55,) (ZJ) | = E| Zi&,z;\z >0

In fact this is a characteristic property of the class of correlation

functions.

Let E€2 < oo. Then & is L-continuous at tp iff K(s,t) is
continuous at (ty, to).

Proof. For simplicity we assume that E£; = 0.

Adequacy:  E|{; — §t0|2 = E(§ — &) (6t — &10)"
= E&(&e)" — E&e(&no)" — E&to (&)™ + E&to(&10)"
= K(t, t) — K(t, to) — K(to, t) + K(to, to) —2 0.
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o] Lecture 9. Correlation functions 2

Necessity:  |K(t,s) — K(to, s0)|

= |E&e(&e — &s)* + E(& — &) (Eto)™ + E&to (&6 — E1o)”|

< E|§t _gto‘ i |£S _gto’ + E|€t _é‘to| : ‘gto‘ + E|§to| i ‘55 _§t0|

< VE[Er — €2V EIEs — Exol? + VEIEr — €112/ E o2
+VE[Eo P VEIE — &P 50 0. =

Corollary

If K(t,s) is continuous on the diagonal t = s, then it is continuous
Vt,s.

Claim 2

| A

) t—>to s—to

Let Efg") =0 and Kg(n)g(n)(t,s
probability to 0 at tp.

0. Then § converges in

4

Proof. Follows from Eygﬁ”)\Z = Kemeim (t, 1) O
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[81] lest 3

O Let &,, & = x and &,,& = X be nearest neighbor random
walks on Z with transition probabilities g (left), p (right),
r=1—p—q (on place) and (p, g, 7). Find ALL combinations
of (x,%,p,q,p,q) admitting the successful coupling of n En.
p=bqg=G (a) (x—%X=2kpqg>0),

(b) (x =% =2k+1,r(1—r)>0).
(a) 37 : P(& = &) > 0. If pg = 0 this is not the case.
(b) If r(1 —r) =0 then &, — &, is always odd = no
intersection. Otherwise as in the case (a).

@ Let &, t € [0,1] be a stochastically continuous random process
and let ¢ : R — R be a continuous function. Check the
stochastic continuity of @ o &. Answer: Yes.

© Let 7 be a random variable uniformly distributed on [0, 1] and

let 6[— = (

existence of fo &edt (i.e. in the probability sense). Answer:
Yes (similar to the Poisson process), No (even math. exp. A).

Y Check stochastic continuity of & and

Solution: (problem number) Answer. Short oroof: 81/127



[82] lest 3 comments

@ Answer: r(1 —r) > 0. All of you have a serious problem with
the notion “successful coupling”. Roughly speaking this means
that after a (random) finite time the coupled processes will be
“glued together” (become equal). In the situation under study
this happens iff r(p + q) > 0.

O Answer: Yes. We need to show: Ve > 0 Jo > 0 such that
t—s| <o — P(lpo& — okl > ) <e.
For € > 0 choose & > 0 such that
Ix —y| <d = |p(x) —¢(y)| <e. Now we choose o > 0
such that [t — s| < 0 = P(| — &s| > 0) < e (by stochastic
continuity). Thus |t —s| < 0 =
= P(lpo& —po&|2e) <P(l& — &[> 9) < O
© Answer: Yes (similar to the Poisson process), No (even math.
exp. A). Indeed, the probability of the discontinuity at a given
time is zero.
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s3] Lecture 10. Correlation theory of r. processes

& (Q,F,P) = (X,B) := (R, Bor) or = (C?, Bor).
In the space L?(Q, F, P) we define the scalar product
(&, &s) 1= E&EL. This function defines & uniquely up to an
isometric linear transformation. A centered version of this scalar
product is called a correlation function
Ke(t,s) i= cov(r, &) = E€EL — EC(Es)"

= <£t7€5> - (ftv 1> . <1a£S>
For a pair &, ns one defines a cross correlation function
Ken(t,s) := cov(&:,ms) and a matrix-valued mutual correlation
function < ﬁég Ken )(t,s).

e K _ _
In these terms one studies the correlation theory of random

processes, being curves in a Hilbert space. A serious restriction is
that only linear transformations of random processes can be studied
this way. To emphasize that only two first moments are taken into
consideration, we speak about a theory in the “broad sense”.
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84] Lecture 10. Correlation theory of r. processes 2

(1) & := Acos(tn + ¢), where ¢ is uniformly distributed on [0, 27)
and does not depend on A, 7. We have E§; = EA- Ecosp = 0.
Ke(t) = E€s1t&s = EA% cos((s + t)n + ¢) cos(sn + ¢)
= %[EA2 cos(tn) + EA% cos((2s + t)n + 2¢)] (blue term=0)
=30 Jo x*cos(ty)®a,(dxdy) = [ cos(ty)du(y),
where pu(B) := 3 [° [ x*®ay(dxdy) = 1EA?1g(n) VB € B.
Let v be a smietrization (.)fn ]R>o; the measure p, i.e.

(|0, a it a >
¥([0.2]) := {EZE{O, —]?9]) otherwise.
Then Ke(t) = [ e™du(y) is the Fourier transform of the

measure v. For example, if dv(y) := q:ydzy — K(t) = eIt

84/127



is5] Lecture 10. Correlation theory of r. processes 3

. . . k . .
A linear differential operator P(%) := "7 ¢ ak% being applied to
a stationary &; transforms it to a stationary process 7; := P(%){t.
Ene = P(L)E = agE&;.
Kim(t—5) = PP (&) Kee(t —s) = Kiy(t) = P(G)P*(— ) Kee 1)

t

Koelt — 5) = P(4)Kee(t — 5) = Kye(£) = P()Kee(t).

Examples:
O P(x) :=x = Keg(t) = —Ki(t) and
Kee —K!
Keer = ( e )
K —Ké
@ P(x):=1+x+x2= P*(—x) = P(—x) =1—x+x,

PP (—x) =14+ x2+x" = ni = P& =&+ & + & =
Kin(t) = Kee(t) + KL (£) + K ().
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ss] Lecture 10. Stieltjes integral

Definition

(S) J2f(x) dg(x) ==
lim i f(zi)(g(xi) — g(xi—1)), xi—1 < zi < x;.

max |x;—x;_1|—0

@ Estimate from above Q := (S) fab f(x) dg(x).
Q<suplf|- lim — 5%lg(x)— g(xi-1)|

max |x; —xj_1|—0
= sup |f]- VYg.

@ Integration by parts: fab f dg = fg|b — fabg df?
a=xo<x1<-<xp=bhalpg<zn<---<z;,<bh
> f(2i)(g(xi) — g(xi-1)) = f(b)g(b) — f(a)g(a)
=2 8(xi—1)(f(z1) — f(zi-1))

© o(x) := p((—00,x]) € C°. Calculate @ := (L) [P x du
Q = (S) [, x dip(x) = byp(b) — a(a) — [, (x) dx

Q g €BV. fab f dgr + fab f dg = fab fd(g+g)?
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7] Lecture 10. Stieltjes integral 2

Q Let K(x) be the Cantor staircase on [0, 1], i.e. on intervals of
the n-th rank it is equal to 277,3.27",5.277 20n~1.o=n
Calculate Q, := fl x" dK(x).

Self—similarity K(%)=3K(x), K(Z+3)=LiK(x)+
fox dK (x +fzx dK (x)

—3.1 (foy dK(y) + Jy 2+ y)" dK(y))

=37"Qn+ 337" 25 G2 Qo Q=1,Q1=3 Q=3
Q@ g €BV[a,b], N:={x: g(x) # 0} He bonee, 1yem cueTHo.

f € C%a, b]. Beiuncante Q := fabf dg? =0

N[
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s8] Lecture 10. Stoch. integration of non-random functions

If 3(&) = f f(t)dse = f f(t)(&e) dt.

In general one cannot use this argument. In what follows we
assume that &; has uncorrelated increments (hence is not
differentiable) and E&; = 0. The idea is to represent &; as a sum of
infinite number of infinitesimal addends.

3F(t) / (nondecreasing): D(& — &) = F(t) — F(s).
Proof. For an arbitrary to € T we set F(tp) =0 and

 JEl&G &2 ittty L
F(t) = {—E|§t_£to|2 if t <t _F(5)+E|§t §s| ==
To demonstrate this we consider only the case ty < s < t, then
F(t) = E|& — fto|2 = E|§ — fto|2 + E(&s — &) (& — &)

FE(Es — &) (& — &) + El&e — &7 = F(s) + Elée — &~
(uncorrelated increments!)
&; with uncorrelated increments is L2-continuous iff F € C°, and
Flime_s 100 & iff |F(£00)| < o0. O
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i8] Lecture 10. Stoch. integration of non-random functions 2

&; with uncorrelated increments admits L2-limits at Vt.

Proof. It is enough to show that IiLnt E(§s—&)(&w— &) O
S,u—t_

F(t) generates a (o)finite measure u((s, t]) := F(t) — F(s).

Our aim now is to define the stochastic integral J(f) := fab f(t)d&:
for non-random functions f € L?(dF).

We start with piecewise constant (PC) functions on intervals

ﬂ[t,’,tiﬂ) = f,. Then J(f) := Z?:o(ft,-ﬂ — &)ty

J(af + bg) = aJ(f) + bJ(g). Moreover, EJ(f) =0,
EIJ(F)2 = Soig 1 P(F(tiv1) — F(81) = J; IF(6)PdF ().
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loo] Lecture 10. Stoch. integration of non-random functions 3

EJ(F)(J f f(t)(g(t))"dF(t).

Proof. EJ(f)(J(8))" = E X i(&un — Su)fe X (208450 — &)84)"
= Zi,j E(ftm - ft,)(ft,H §t,) f; (gt,)
= i(F(tiqa) — F(t)f:(8s) f f(t ))*dF(t). O

Hence we have an isometry between PC-functions in L?(dF) and a
subset of L2(P), which can be extended by continuity to their
closures. Thus J(f) = (L) lim J(f,) (by the Cauchy principle).
Moreover this limit does not depend of the approximation {f,}.

The extension coincides with the entire L2(dF).

Properltes (a) (af + bg) = alJ(f) + bJ( ) (b) EJ(f) =0
(9) EN(FIP = [7IFPdF. (d) EXF)(U(e))" = [, Fle)"dF.
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lo1] Lecture 10. Stoch. integration of non-random functions 4

Let f € C%([a, b]) and let F be right-continuous. Then
J(f) = (L?) lim Yoiltiy —&5)f (i), where t; < s5; <ty

Proof. Set f(t):=f(t), t € [t,,t,+1) Then
E[J(F) — J(F)2 = E|U(f - F)2 = [P |f — FPdF
< (F(b) — F(a)) - max; Osc(f, [t;, tir1))? 2250 0.

O

Integration by parts

Let f be contlnuously differentiable. Then i
J(F) = [ F(£)de = F(b)es — F(a)ga — (L2) [ &cF'(t)dt.

Proof. J(f) = (L?)lim Yoil — &) ()

= (L) lim[f (b)& — f(a)s — 27 “o Sty (F(tia) —F(8))]. 1
(Homework) Prove. Let f € L%([a, b]),n: : f f(s)dés. Then n; is
also a process with mdependent increments, Ent = 0 and
G(s) == D(nris — nr) ft |f(u)|?dF (u). Moreover,

fabg dn; = fabgf d¢; if g € L2([a, b)]).
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[92] Lecture 10. Bus waiting time

Problem: Bus waiting time paradox

You are waiting for a regular bus: it seems that buses in the
opposite direction go more often, since during your wait, usually
several buses pass in the opposite direction.

How to construct a proper mathematical model and to prove this
observation?

Heuristics: in reality, buses run in clusters (several in a row - then a

long break). Therefore, if the time spread between the buses is
large, then most people will wait for a long time.
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(e3] Lecture 10. Bus waiting time 2

We measure the time t from the moment of departure of the
previous bus. Denote by £ a r.v. which is equal to the waiting time
until the next bus, and its density by 7(t). Let us find the
probability density of the waiting time p(t). The probability that a
passenger arrives during the time ¢ is proportional to its length.
The quantities in question are independent, so p(t) = Ctf(t).
Normalization: 1 = [ Ctf(t)dt = CE¢ — C = 1/E¢.

Therefore the waiting time averaged upon random arrival of
passengers is equal to half of the waiting time from the point of
view of an individual passenger

1>, (B’ +De 1
ET_2E§/0 tf(t)dt_T>§E§

under the assumption that D¢ > 0.
Hence, on average, we wait more than half the average time
between buses.
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(04 Lecture 11. Markov moments

Definition

Filtration is a non-decreasing family of o-algebras 7y C F, t € T.

Definition

A natural filtration of the random process (&;,t € T) is
F<r = 0{&s, s < t}.

Definition
T(w) € T is a Markov moment wrt {F;} if {r <t} e F VteT.

In short, a Markov moment is a random event that you can learn
about when you don’t know what will happen after that moment.
Another name for such objects is a r.v. independent of the future.

For (§n,n € N) on (X,B) = 78 :=min(n: &, € B) is a Markov
moment wrt the natural filtration VB € B.

Proof. {rg < n} =U]_,{& € B} € F<,. O
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(os] Lecture 11. Markov moments 2

Counterexample

Tg :=min(n: &, x € B) with kK > 1 is not a Markov moment.

Proof. {{,.« € B} needs not belong to F<p. O

Definition
Fr={AeF: {r<t}nNAec F,Vte T}is called a o-algebra
wrt the Markov moment 7.

| \

Properties:
@ F. is a o-algebra, and F, € F.
@ the r.v. 7 is F,-measurable.
o If 7 =t = const, then F, = F;.

Definition
A random process (&;,t € R;) is called a Levi process if it has
independent stationary increments and £y = 0.

v
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196] Lecture 11. Markov moments 3

Theorem (strong Markov property)

Let (&,t € Ry) be a Levi process with realizations continuous
from the right, and let 7 be a Markov moment wrt its natural
filtration. Then 7y := &1 — &; has the same finite dimensional
distributions and is independent wrt .

If {77} - Markov moments = min 7;, maxT;, lim7; are Markov.

&n - symmetric r.w. on Z, & = 0. Fp, := o{&, k < n}, i.e.
Fo = {Q,@}, Fi1 = U{fl =-1U& = 1}, ... Then
7 :=min{i : |§| =2} — the 1st moment when £, = 2 is Markov.
Tm = max{i < 4 || = 2} - the last moment is non Markov.

Indeed, 7, < 2 is equivalent to the event {|{4| # 2} ¢ Fo.
Question. Let 7(w) < 7(w) be Markov moments = F, C F;7
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lo7] Lecture 11. Martingales

Recall that a non-decreasing family of o-algebras F; C Fis a
filtration. The natural filtration wrt &; we denote by ]-"f.

Definition
(&, t € T) is a martingale wrt Fy, if
(a) & is Fy-measurable Vt € T;
(b) E|&t| < o0 Vt € T;
(c) & = E(&|Fs) ae. Vs<teT

~ JaksdP = [, &dP VA€ Ty
and sub/sup martingales if £&,<>E(&;

Fs).

Theorem

Let (&,t € T) has independent increments. Then &; is a
martingale wrt its natural filtration iff E€; = const.
E&; is non-decreasing/increasing, then it is a sub/super-martingale.
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o8] Lecture 11. Martingales 2

Corollaries

® Sp:= r_q & with independent &, such that E|¢,| < oo is a
martingale iff E§, = 0 Vk.

o Z, = [[j_; & with independent & such that E[&] < oo is a
martingale iff E§, =1 Vk.
@ Wiener process is a martingale.

@ Poisson process &; with the intensity a > 0 and §, = 0 is NOT
a martingale, but & — at is a martingale.

Comments:
(1) Let S, be a biased random walk: p = P(+1) # 1. Then
nn = (q/p)°" is a martingale wrt S,. Indeed:
E(nns1lS1,- -, S0) = p(a/p)>" 1 + q(q/p)>

=q(q/p)* + p(a/p)* = (a/p)>" = .
(2) Direct proof for the Wiener process:
E(we|F<s) = ws + E(we — ws| F<s) = ws + E(we — ws) = ws,

since w; — ws does not depend on events from Fcs. o6/127



los] Lecture 11. Martingales 3

Claim (Levi martingales)

Let £ be a r.v. with E[§| < oo, and let F; be a filtration. Then
ne := E(§|Ft) is a martingale.

Proof. For t > s we have
E(nt|]:s) = E(E(£|]:t)|]:s) = E(§|]:s) =1s a.e.

O

Let (&, F¢) be a martingale, and let g be a convex function, such
that E|g(&:)| < oo. Then (g(&¢), Ft) be a sub-martingale.

The convexity implies that g is measurable. Now we use Jensen
inequality for the conditional mathematical expectation:
E(g(&:)|Fs) = g(E(&:]Fs)) = 8(8s) a-e. O
If time is discrete, it is enough to check the martingale property
only for neighboring time moments, i.e. E(&p|Fn-1) = &n—1 a.e.
Indeed, E(&n|Fk) = E(E(&n|Fn—1)Fk) = E(€n-1]Fk) = -+ = &

99/127



(oo} Lecture 11. Martingales 4

Definition
(&, n € N) is called predictable wrt the filtration F),, if £, Vn is
measurable wrt F,_1.

Theorem (Doob-Meyer decomposition)

Let (§n, n € N) with E|&,| < 0o agrees with the filtration F;,. Then
there exists a unique representation &, = M, + Q,, where (M,, F,)
is a martingale, while (Qn, F,) is a predictable process.

Claim

Let & be a martingale wrt F; and E|&;]? < co. Then & is a
process with uncorrelated increments.

| \

Proof. Let s < t < u, then
E(§e — &)(u — &) = E(E((&r — &5)(§u — &b)*|F2))
= E((& — &) - [E(Sw — & Fe)]") = 0.
Since E(&, — &:|F:) = 0 by the definition of a martingale. O
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[o1] Lecture 11. Martingales 5

Let T:={1,2,..., N}, let £, with n € T be a sub-martingale wrt
o-algebras 71 C --- C Fy and let 7 € T be a Markov moment.

& < E(En|Fr) ace.

Proof. &, is measurable wrt .. Thus it is enough to prove
Ja&rdP < [,EndP VA€ Fr.

Ani=AN{T=n} € Fo=> [, &dP = [, &dP < [, ¢ndP.
Summing up over n € T we get the result. O

Efl < ng

Proof. E&, =3 .1 f{T:n} &ndP
- fQ EldP - Zn f{T>n}(§" - £n+1)dp + f{7->N_]_} €NdP
{r>n—1}=Q\{r<n-1} € Fp1—

f{’r>n—1} §ndP = f{T>n—1} E(fnl’rn_l)dp = f{’r>n—1} §n1dP.
Returning to the 1-st formula we get the result.
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[o2] Lecture 11. Martingales 6

Claim 3 (Homework)
& < E(&|F;) a.e. YV Markov moments 7 < 0 = E&; < E&,.

Is it possible to pass these results to continuous time? The idea is
to approximate continuous time Markov moments by finite valued
Markov moments 7, — 7, ox — o. Then, using continuity of the
realizations &;, prove that &, — &, &, — &6, etc.

To some surprise, this is not enough! Let w; be the Wiener process,
and let 7 := min{t: wy = —1}. Then P(7 < c0) =1 (Prove).
Nevertheless, 0 = wy # E(w,|F<o) = Ew, = —1.

Let T be a finite segment, and let & be a martingale with
realizations continuous from the right, and let 7 < o be Markov
moments. Then &, < E(&,|F7) a.e.
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(03] Lecture 11. Martingales 7

Let & have independent increments, £ = 0, E& = 0 Vt and let
JF(t): E(& —&5)2 = F(t) — F(s) Vs < t. Then (€2 — F(t), F<t)
is a martingale.

Proof. E(&F — F(t)|F<s) = E((& + & — &) — F(t)|F<s)
= E(€§ + 2§s(§t - {s) + (gt - Es)2 - F(t)|]:§s)
= EHE(E—&)?—F(t) = &+F(t)—F(s)-F(t) =& —F(s). U

Let &, with E&; =0, E€2 < oo Vn be a martingale. Then
P(maxk<, || > a) < a%Eﬁ% Va > 0.

Proof. Let 7, := min(k < n: |[£k]| > a) and 7, := n if this level was
not achieved. This is a Markov moment wrt the natural filtration.
Then P(maxy<p [&k| > a) = P(|¢7,] > a) < ;—ZE@" (Chebyshev).
&n is a martingale = E¢€2 = E¢2. (For a sub-martingale <.) [
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[104] lest 4

© Find ALL r.v. £:(Q,B,P) — (R, Bor), such that the pair of
rv. &, & are independent. Answer: £ = const. If £(Q) = AUB,
then P( € A, € B)=0# P(¢ € A)P(£ € B).
Q Let & be a [2-continuous stationary process with E&; # 0 Vt.
Prove/disprove existence of a nontrivial r.v. 7, such that
Ot" &sds is a stationary process.
No. The derivative of a (broad sense) stationary process = 0.

© Calculate the correlation function for the Poisson process with

the parameter a > 0.
Answer: K(t,s) = amin(t,s). Indeed, for s < t we have:
K(t,s) = cov(&, &s) = cov(&e — & + &5, &)

= cov(&r — &s,&s — o) + cov(és, &s)

=0+ cov(&s,&s) = as.

Solution:  (problem number) Answer. Short proof.

104/127



[os) Lecture 12. Markov processes

Let & be a random process on (X, B). Introduce o-algebras
Far=0{l, s<teT}, Fspi=0{&, s>teTh

Fisg] =08y, sS<u<teT), Fopi=of&, teTh

&t is a Markov process if P(AB|F=;) = P(A|F=;)P(B|F=;) a.e.(*)
Vt€ T, A€ Fer, B € For. By definition P(A|F-;) = P(Al&).

t — —t preserves (*) and it is equivalent to each of
(a) P(B|F<¢) = P(B|F=t) VB € F>;
(b) P(A|F>¢) = P(A|F=;) VA € F<;

Proof. To derive (a) from (*) we need to show that
P(AB) = [,P(B|F=t)dP VA e F<,B € F>t (*%).
By (*) we have P(AB) = EP(AB|F=;) = E[P(A|F=:)P(B|F=¢)].
JaP(B|F=t)dP = E(P(B|F=t) - 14) = EE(P(B|F=¢) - 1a|F=t))
= E(P(B|F=¢)E(1a|F=¢)) = P(AB).
We use that a value measurable wrt F_; can be taken out of E().
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os] Lecture 12. Markov processes 2

To derive (*) from (a) we need to show that

P(ABC) = [ P(A|F=;)P(B|F=;)dP VA€ F<;,B € F>,C € F—;
The rhs = E[P(A|F=¢)P(B|F=t) - 1¢].
The lhs = EE(]-A]-B]-C‘-th) = E]-A]-CP(BU:St) = ElAlcp(BU::t)
since A € F<;, C € F—t C F<¢ and due to (a).
Rewriting again as E(:|F=¢) we get
P(ABC) = EE(1a1cP(BIF-)|F~() = E(1cP(BIF-0)E(LalF-0))
which coincides with the rhs (see above).
The proof of the property (b) is similar (homework). O

Problems. Prove/disprove that

o P(gt € A‘fgs) = Pg_s(fsﬂé\)-

9 P(£t+1 S A’gt S B,gtfl S C) - P(£t+1 S A|£t S B)
for a Markov chain & and VA, B, C € B, t > 1.

© w;, w_; are Markov and calculate transition probabilities.
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io7] Lecture 12. Markov families

So far we were considering Markov processes with fixed initial
states. Let &(w): T x Q — (X, B) be an arbitrary map (this is not
a Markov chain yet !). Define 4 o-algebras:

Fri=o{, te T}, Fari=0{ls, s<teT}, For, Fsys
and consider Vs € T,x € X a measure P, on F>s.

Definition

A pair (&, Ps ) is called a Markov family with the transition
probabilities P(&r, A) i= Psx(&r4u € AlFjsy) Vs <t
if PZ(-,-) is a transition probability and P (& = x) = 1.

i-e-: Ps,x(ABlgt) a~:€~ Ps,x(A|£t)Ps,x(B|£t)7 A € ]:[s,s+t]7 B € ]:Zs+t-

If (&, Psx) is a Markov family, then Py (B|Fis ) = Py, (B)
Vs < t,B € F>t wrt Pgx.

Thus if we fix a random process up to time t, then its behavior

after t is the same as if it starts at time t from the point & (w).
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o8] Lecture 12. Finite dimensional distributions

Let Ps « be a probability measure on F>; and let PY(x,A) be a
transition probability. Then a pair (&, Ps x) is a Markov family with
this transition function iff finite dimensional distributions of & wrt
P x with s < t; satisfy Psx(&; € Ai, 1 <i<n)=
— th—th—
= fAl Pst1 S(X7 dy1) fAz e fA,, Pt,,,l l(yn—h dy,,).

Coordination of finite-dimensional distributions:

Claim (Chapman-Kolmogorov equation)

Fors<t<u
Pi=%(x,A) = fX Pi=S(x,dy)Pf = (y, A).

S

Proof. By definition P ,(§, € A) = P¥7°(x,A) for s <t < u. On
the other hand, Ps (& € X, &, € A) = [ PE5(x,dy)P{ ™ (y, A).
This implies the result. O
Rewriting in terms of densities we get:

pi3(x,2) = [y P (x, y)pe (v, 2)dy.
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[oo] Lecture 12. Homogeneous Markov processes

P'(-,-) = Pi(-,)) Vs, te T:

(i) Pt(x,-) € M(X,B), (ii) P(-,A) - a measurable function,
(iii) PO(x,A) = 6x(A),  (iv) P™(x,A) = [ P'(x,dy)PS(y, A).
Correspondingly the operators depend only on one parameter
Ptf(x) = [x P'(x,dy)f(y), vP'(A)= [y v(dx)P'(x,A).

(i) Pt - linear contractions in the cone of nonnegative functions,
(i) PfL =1, vPY(X)=v(X), (i) P’ =1, (iv) Pt*s = PtPs.
Invariant measure is any solution to the equation u = uP! Vt.

A pair (P, = pPt) is called a stationary Markov chain.

Q: 3 a finite (o-finite) invariant measure for the Wiener process?

For a compact A € R? we have Pt(x, A) 20 :> pPt % £2%0 0 if
/,L(X)<OO:>/,[,mv_0 |fm—Leb:>mPt dePtXA)

= [dx([, P (x,y)dy) = [,( P! Xydxdy—fAdy—m(A)

Each one-dimensional distribution ®; of a stationary process &; is
an invariant measure.

Proof. ®,(A) = P(& € A) = fuiny(A) m
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1] Lecture 12. Infinitesimal operator of a Markov process

The idea is that, knowing that Pf(x, A) = --- 4 o(t), we can
restore the whole function under certain regularity conditions.

Definition

An infinitesimal operator for the semi- group of operators
P, PO =1, t>0is Af := lim =1 — & ptf),

t—04 i

@ Shift to the right defines a semi-group Pf(x) := f(x + t).
Af(x) = lim flctt)=f) _ 47709

0., t dx
(2] % = b(xt), xo = x € RY. Pt is a shift anng solutions.
f(xe) = f(x + b(x)t+o(t)) = F(x) + >, 2 i - b(x) -t +o(t)
for t — 0 uniformly on x. Hence Af(x) := 3. b'(x )ax,( X).
Q@ Pli=e" =3, Lt"A", where A s a bounded linear
operator on f € E. Then A is the infinitesimal operator.

[L(eAF — £) = Af|| = || Sy Be" A7)
_ 0
< o t" A < AP (S so t7l1AI7) 0.
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i1 Lecture 12. Diffusion processes

Diffusion processes are Markov families (&;, Px) on (RY, Bor) with
continuous realizations such that their infinitesimal operator on Cg
(bounded uniformly C2-continuous functions) is

Af(x) = Lf(x) = %Z,-J-a,-j( )dx’dx + > bi(x ) where
ajj(x), bi(x) € C® and (aj;) - symmetric and nonnegative definite.
The differential operator L is called a generating operator of &;.
Remark. If we compactify RY, then Lf(x) allows to prove
existence of continuous realizations, but this does not allow to do
the same on RY, i.e. trajectories may go to and return from infinity.
Theorem (A=L)

Let (&;, Px) be a Markov family on (R9, Bor), such that Ve > 0
uniformly on x we have:

(') Pi(x, Rd \ B:(x)) = o(t)

(ii fB xi)Pt(x, dy) = bi(x)t + o(t)

'” fBE x) )/l XI)()/J - XJ)'Dt(X7 dy) = aij(X)t + O(t)

Then the infinitesimal operator Af(x) = Lf(x) (as above) on C2.
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2] Lecture 12. Diffusion processes 2

The meaning of these conditions:

(i) gives sufficient conditions for the existence of a Markov family
with a given transition function and continuous trajectories.

(ii) and (iii) describe “truncated” 1st and 2nd moments. Therefore
b; and aj; are called local means and covariations (a transfer vector
and a diffusion matrix).

Example 1. Consider a homogeneous Gauss Markov process with

the transition density pt(x y) = 2;0 e~ (r=m)?/(207) defined by
t

Miys = MeMg, O'?+S = mta + 0’

Then a general C° solution is m; = e?*/2, o2 = 2(eb* — 1) for

b # 0, and 0?2 = at otherwise.

Local mean: lim;_q %EX(& —x) =lim0 1(mt kX — X) = lz’x

Local variance: lim¢_ %af =a = Lf(x) = 3f"(x) + 2xf’( x).
Example 2. (w, &+ fot wsds) with wp = x,& = y. Then at
time t this is a Gaussian process with the mean (x,y + tx) and the
covariation matrix ( N tz/Q ) This gives Lf = LOF 4 of
t?/2 t*/3 2 0x2 oy
- a degenerated elliptic operator, since a;; =0 Vi,j # 1.
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i3] Lecture 12. Diffusion processes 3

Idea of the proof of Theorem (A=L).
According to Taylor s formula

fly) =f(x )+Z, ax( X;)

+322) ax,ax (i = xi)(yj — %) + o(lx — y[?).
P (x) = [0 PTOG dY) () + Jpay gy PEOX dY)E(y)-
By means of (I1,111) the 1st integral is equal to
Sibi(x) et + 33, a,-j(x)%(.;;jt +o(t),

while the 2nd integral is of order ||f|| o(t), which yields the result.
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14 Lecture 13. Stochastic integrals of random functions

J(f) = fOT f(t,w)dw; — a principal limitation is a non-anticipation,
namely f(t,w) and (w¢ys — wy) should be independent Vt, s > 0.
First we define J(f) for step functions, i.e. for some non-random
0<ti <---<typ <T wehave f(t,w) = f(tj,w) for t; < t < tj11,
thus f(t,w) = Y70 Nilg ¢;,1)(t) with independent 7;.  Assume
EfOT |f(t,w)[?dt < oo and set J(f) :=>; f(ti,w)(wg,, — we,).

It is easy to check that J(f) is correctly defined, i.e. it does not
change if we add new points and it is linear on step functions.

J(f) is isometric, i.e. E|J(f)> = EfOT |f(t,w)|?dt.

Proof. E|J(F) = E X, |F(t:.w)P(wy., — )2
+2Re EZJ-<,- f(t,-,w)(wtj+1 - Wtj)(f(tj,w))*(wt,.+1 — wy,).
E XS (8, w) P (weyyy — wy,)?
= 3 Elf(t,@)(tign — ) = E J)T [F(t,0)[2dt,
while the 2nd addend is equal to 0. O
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s] Lecture 13. Stochastic integrals of random functions 2

The isometric linear transformation J(f) can be extended by
continuity from the set of step functions to its closure in
L2([0, T] x Q) preserving the linear isometry. Indeed, if a sequence
{fa} — f is fundamental, then the sequence {J(f,)} is fundamental
in L2 (since distances between the elements are the same).
Now, L2 is complete, hence 3J(f) := (L?) lim J(#,).
To finalize the construction one needs to show that the closure of
the set of random step functions coincides with L2.
Example. f(t,w) = w;. We have fOT Ew?dt = fOT tdt = TTZ < o0.
ForO=ty <t <---<t,=T set f(t,w) =wy for t; < t < tj1;.
T i

Jo Elfa(t,w) — wel?dt =37, fri“ Efws; — we]*dt

diam{t; }—0

= Yilta — 62 0,
Hence fOT wedw, = (L?)lim Z,r":_ol we, (W, , — wy;). We have
(L2 T

W?F = TZI(WE'H - Wti)2 +2 (W g — wy )y 4 T+2f0 widw;.
— fo Wtth = %(Wg’— — T)
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6] Lecture 13. Stochastic differential. Ito formula

Definition

d&; = f(t,w)dw; + g(t,w)dt is called a stochastic differential of a
random process &;, t > 0 with values in (R!, B) if
— a.a. trajectories &; are continuous,
— f, g satisfies the non-anticipation condition, i.e.

f(t,w), g(t,w) and (wers — wy) are independent Vt > 0, s > 0,
-fel?((0,T]xQ) VT < oo, g € L} _fora.a. w,

_ft _§0+f0 SWdW5+f0 S,w)ds, tZO

How to understand this? d&; := Lin[{; g
Theorem (/to formula)

— & = gdt + fdw.

Let F(t, x) be continuously differentiable on t > 0, and twice
differentiable on x with bounded partial derivatives. Then
dF(t, &) = Fidt + Fyd& + 2F>’(;(d£t)2

= 6X(t gt) (t (JJ)th

+ [t &) + (. €0)8(tw) + S EE (1, £)F2(1,0)] .
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171 Lecture 13. Stochastic differential. Ito formula 2

Remark. fdw; is of order V/dt, since (wyiq; — w;) is Gaussian

N (0, dt), while gdt is of order dt.

A sketch of the proof:

F(t+dt, & + d&;) — F(t,&) = % de + O de, + L2 (de, )2,
(d&;)? = (fdw; + gdt)? = 2 - (dwy)? + ..., where the remaining
terms are of higher order (since (dw;)? ~ dt) and can be neglected.
A real proof is based on the approximation of the functions 7, g by
step functions £("), g(" and the analysis of

§£") = &0+ Jy F(s,w)dws + [; g (s,w)ds.

The multidimensional Ito formula:

dF (t, &) =

S (S0 55 f5) dwd + |5 + X1 G+ X ey Sk Fcfe
where d¢i = > it w)dw! + gi(t,w)dt.

This formula should remind you the generating operator of a

diffusion process and explain connections with diffusion processes.
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[1e] Lecture 13. Stochastic differential equations (SDE)

d&e = f(t, &) dwe + g(t, &) dt, §o = Go

If f,g are Lipschitz continuous (may be weaken) then the local in
time solution of this equation exists and is unique.

The proof is based on a successive approximation method:
e = e g [ (s, 67 dws + [ g (s gg"))ds
Ornstein- Uhlenbeck process —an idea: ma = mdt + mw.
dé = —&edt + dwy, o =

Solution:

( té't) = etgtdt + etdft = etftdt + e ( gtdt + th) = etth.
— el = G+ fo eSdws = & = et —|— e*tfot esdws.
This is a Gaussian process with E€; = Cpe™! and the covariation

E(¢ — E&)(& — E&) = e 2E (g evdw, - [ evdw,)

— e t— sfot/\s e2idy — et~ s(et/\s _ 1)_
We use here the isometric property of the stochastic integral:
E( [y Fdws)? = E [y F2dt.
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9] Lecture 13. SDE 2

The drift term —&;dt in the Ornstein-Uhlenbeck process is negative
which implies the stability of the zero solution for the unperturbed
system.
Let us study the unstable case: d&; = & dt + b&idw,
To this end we try to find a solution of the type &; := et~ 2t:
dé; = —ae“t—3tdt + ce™t 3t dw; + %czec""t_atdt

= (—a+ S)&dt + crdw,

:>—a+c2—2:1:>c: V2(1 + a).

d&; = &edt + 1/2(1 + a)&dwy. Its solution

e = CoeV2(Hamwe—at 2% ¢ if 5 >

Thus for b > 1/2(1 + a) > /2 the system becomes stochastically
stable.

Definition

A solution §§X)(w) with f(()x) = x is said to be stochastically stable if

for each € > 0 we have limy,_, P(sup;~q |§§y) — gx)‘ >¢e)=0.
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120] Lecture 13. SDE existence

d&e = f(t,&)dw + g(t,&)dt, &o.

A continuous process &; is a strong solution to the above SDE if
go"‘fot (s,s dS—i—fO s,&)dws for ae. t€ T.

|
A
I
A

Theorem

Let f, g be Lipschitz continuous:

£(t,x) = £(t, y)| +1g(t, x) — g(t,¥)| < Clx =y,
(] 1 1802 )] < CL 4 [x]) and DEy < oo

Then the strong solution of the SDE exists and is unique.

Proof. We use a successive approximation method:

e =" 4 [ (s, ") dws + [ g(s, 6" ds, &7 ==&, One
needs to check that the rhs is well defined for all n > 1. We do this
for n =1 (the general case follows by induction argument). The
functions f, g are measurable on (¢, x) and & is measurable on w.
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21 Lecture 13. SDE existence 2

Hence the functions f(t,&y(w)) and g(t,&(w)) are measurable on
(t,w). By Fubini theorem g(t,&o(w)) is measurable on t for Vw.

Additionally, [g(t, §o(w))] < C(1 + [€o(w)])-
Hence 3C(w) such that [ [g(s, &o(w))|ds < tC < oo.

)
Similarly, [ Ef2((s, &o(w))|ds < 2C%¢(1 + EE) < oo.
Let us estimate the second moment of ft :

(€912 < 3E3 + (Jy I (s, €o(w))lds)? + (fy £(s, Eolw))dws)?].
We make the estimation by parts
E(Jo lg(s, o(w))|ds)* < tE [y g°(s,o(w))ds
< tE [ (1+ &o(w))?ds < 2tE [y (1+ &3(w))ds < 2t2(1 + EE2).
Usmg the isometric property of the stochastic integral, we get
E( [y f(s,€o(w))dws)? = tEF2(s, &o(w)) < 2¢(1 + EE3).
This gives
E[SP < 3[EE] +26(1 + E€) +2t(1 + EGJ)],
which is bounded on any finite time interval.
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221 Lecture 13. SDE existence 3

To prove the convergence of the sequence §§" we estimate
E(" — 6" V) < 2E(J5(g(s. &) — g(s. 68 2’)) )’

+2E fo (5,67 = £(5.68 ) dws ).
The 1st addend can be estimated from above by
C2tf0 §5" 1))2ds
For the 2nd addend using again the isometric property, we get the
same estimate but without the ¢ factor. Thus
E(e” — " )2 <20+ 1) fy B — & V)ds.
Let us check that the function ¢,(t) := E(§t") - §£"+1))2 goes
down on n fast enough.
Denoting a:= 1+ Eﬁg, we obtain:
wo(t) < 2C%at(t +1) < 2C2%a(t+1)?%,..
on(t) <2C(t+1) [T pp1(s)ds < %
where b = b(C, a) is a new constant.

Thus the series > +/¢n(t) converges uniformly on t.
It remains to show that the limit of our construction is the strong

solution of the SDE.
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23] Lecture 13. SDE existence 4

We already know that §t") 2% ¢, in L2 sense. Now we need to

check the convergence of the rhs's.

LE(J5(8(s.&8") — g(5,€))ds + [y (F(5.&87) — £(s,&5))dws)?

< E(Jy (g(5,&8") — g(5,€5))ds)? + E(Jo (F(5,8") — £ (s, &5))dws)?
< C2t [TE(E") — &5)2ds + C2 [ E(el" — &5)2ds.

All estimates are similar to the ones in the first part of the proof.

Therefore the rhs also converges to the integral representation of
the strong solution. O
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124 Lecture 13. SDE uniqueness

d&e = f(t,&)dw + g(t,&)dt, &o.

Theorem (uniqueness)

Under the Lipschitz assumption the strong solution is unique.

Proof Let us check that any strong solutions &;, 7, coincide a.s.

fo (s,&s) — f(s,ms))dws + fot(g(57§5) — g(s,75))ds.
Denotmg by Zt( Varwv. being equal to 1 if ||, |n:] < K and to 0
otherwise, we get:

2
EZ{lee — il < 26200 (J5 Z(F(5,£5) — F(s,ms))dws

+2EZ! (fo 789 (s,ﬁs)—g(s,ns))dWs)2

< Cfo EZ |§5 ns|?ds.
Now we use the classical Gronwall inequality:
t) < C [y x(s)ds + h(t) = x(t) < h(t) + C [, e“(t=5)h(s)ds.
Hence for h(t) = 0 we get EZt )|§t —n¢|? = 0, which implies the
result due to the continuity of the processes &;, n;. O
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[2s] Lecture 13. Stability

Definition

A solution §§X)(w) with 5(())() = x is said to be stochastically stable if
for each € > 0 we have lim,_,, P(sup;~q |£§Y) - £tx)| >e) =0.

Consider the Ito SDE in RY with the generating operator
9 d 0 d 9?
LV(t,X) = ai\t/ + Zi:l bi(tvx)ai)\é + %Zi,j aif(tvx)ax,-ﬁ\ﬁg'

Theorem

Let bi(0,x) = bx;, a;;(0,x) = C?x;x; and let the Lipshitz
assumptions hold true. Then & = 0 is a trivial solution of the SDE.
Assume also that the exists a (Lyapunov) function

V(t,x) > V(x) > 0 for x # 0 and V/(t,0) = 0, satisfying the
inequality LV/(t,x) < 0. Then the trivial solution of the SDE is
stochastically stable.

EXample: dgt = bé-tdt + Cé-tth'
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26] Lecture 13. Different types of stochastic integrals

Different types of stochastic integrals: fOT f(s,w)dws
J(F) = lim >, (i, w)(we;,, — w)

J(F) = lim 325 (tign, w)(we,, — wy)

Will they coincide?

If f(t,w) := wi(w), then

EQI(F) ~ () = im 5, E(way,, —we)® = T #0

Js(f) :==1lim}_; f(t’dr#,w)(wti+1 — wy,) - Stratonovich integral.
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271 Lecture 13. SDE examples

d&; = Alidt + BErdw,

F(t,x):=logx = F/ =0, F.=1/x, F!=-1/x2

Then by Ito formula we get:

dlog & = &AL dt + éBftdwt
= (A — B2/2)dt + Bdw;.

= & = goe(A_Bz/2)t+BWt.

se B2ELdt

d&; = dt + 2v/Erdw

Then by Ito formula we get:

dF = (F{ + F, + 26:F))dt + 2\/& Fldw;

Set F(t,x) := p(t)v/x + q(t).

Hence the 1st term (without dt) becomes

Vepr + i + 552 — 26582 = Ve + a;

Choose p=1, g =0. Then F = /§& = dF = dw,.
Finally, /& = & + we = & = (v + V&0)?
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