
Test 2 – 20/05/2019 – Version A

Write your name and the version of your test (namely A). Feel free to answer in English or Russian.

Ex. A1. Consider the problem in the unknown u : R× [0, 1]→ R, u ≡ u(t, x)
∂ttu+ 2∂tu = ∂xxu− 2∂xu

u(0, x) = ex x

(∂tu)(0, x) = −ex x
u(t, 0) = u(t, 1) = 0

Find the solution explicitly.

Ex. A2. Solve the problem in the unknown u(t, x, y) on (t, x, y) ∈ R× R2{
∂tu = i∆u+ cos(t)

u(0, x, y) = (x+ y) e−(x
2+y2)/2

Why does it admits a unique solution? Find it.

Ex. A3. An half-infinite bar radiates heat on its end proportionally to its temperature: solve the problem
for t > 0 and x ≥ 0 

∂tu = ∂xxu

u(t = 0, x) = e−2 x

(∂xu)(t, x = 0) = −u(t, x = 0)
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Sol. A1. We look for the separation of variables. If u(t, x) = a(t)b(x), then (a′′(t)+2a′(t))b(x) = a(t)(b′′−2b′).
This entails b′′ − 2b′ = λb with b(0) = b(1) = 0, a′′ + 2a′ = λa for some constant λ. The first equation has
solution for λk = −1 − k2π2, with k a non-negative integer. In such a case bk(x) = ex sin(k π x). The bk’s are
orthogonal in L2(e−2xdx). Thus ak(t) = e−t(αk cos(kπt) + βk sin(k π t)). However, since (∂tu)(0, x) = −u(0, x)
it holds βk = 0. Therefore

u(t, x) =
∑
k
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where

αk =
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Sol. A2. It is better to consider the function v(t, x) = u(t, x) + sin(t). It satisfies{
∂tv = i∆v

v(0, x, y) = (x+ y) e−(x
2+y2)/2

This has a unique solution as a well-posed Petrovsky problem with polynomial P (d) = id21 + id22, and thus with
semigroup bound e0t = 1. The solution is then

u(t, x, y) = − sin(t) + 1
4π2
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where
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so that u(t, x, y) = − sin(t) +
(x+y) exp(
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Sol. A3. We want to write the solution as the solution to a heat equation on the whole line{
∂tv = ∂xxv

u(t = 0, x) = ϕ(x)

so that the condition (∂xv)(t, x = 0) = −v(t, x = 0) is automatically ensured. To this aim, we consider for x < 0
a function ϕ solving for x < 0

ϕ′(x) + ϕ(x) = ϕ′(−x) + ϕ(−x)

or, for x < 0,

ϕ(x) = ϕ(0) e−x − e−x
∫ −x
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)
so that

u(t, x) = (pt ∗ ϕ)(x)


