Write your name and the version of your test (namely B). Feel free to answer in English or in Russian.

Ex. B1. Solve the problem in the unknown u(t, x, y) on $(t, x, y) \in \mathbb{R} \times \mathbb{R}^2$

$$\begin{cases} \partial_t u = i\Delta u - \sin(t) \\ u(0, x, y) = (x + y) e^{-(x^2 + y^2)/2} \end{cases}$$

Why does it admits a unique solution? Find it.

Ex. B2. An half-infinite bar radiates heat on its end proportionally to its temperature: solve the problem for t > 0 and x < 0

$$\begin{cases} \partial_t u = \partial_{xx} u \\ u(t=0,x) = e^{2x} \\ (\partial_x u)(t,x=0) = -u(t,x=0) \end{cases}$$

Ex. B3. Consider the problem in the unknown $u: \mathbb{R} \times [0,1] \to \mathbb{R}$, $u \equiv u(t,x)$

$$\begin{cases} \partial_{tt}u - 2\partial_{t}u = \partial_{xx}u + 2\partial_{x}u \\ u(0,x) = x e^{-x} \\ (\partial_{t}u)(0,x) = x e^{-x} \\ u(0,0) = u(0,1) = 0 \end{cases}$$

Find the solution explicitly.

Some useful integrals

$$\int_{0}^{1} x \sin(k\pi x) dx = \frac{(-1)^{1+k}}{k\pi}, \quad \int_{0}^{1} x \cos(k\pi x) dx = \frac{(-1)^{k} - 1}{\pi^{2}k^{2}}, \qquad k \in \mathbb{Z}$$

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{x^{2}}{2}\right) \exp(i s x) dx = \sqrt{2\pi} \exp(-\frac{s^{2}}{2})$$

$$\int_{-\infty}^{+\infty} x \exp\left(-\frac{x^{2}}{2}\right) \exp(i s x) dx = i\sqrt{2\pi} \exp(-\frac{s^{2}}{2})s$$

Sol. B1. It is better to consider the function $v(t,x) = u(t,x) + \cos(t)$. It satisfies

$$\begin{cases} \partial_t v = i\Delta v \\ v(0, x, y) = (x + y) e^{-(x^2 + y^2)/2} \end{cases}$$

This has a unique solution as a well-posed Petrovsky problem with polynomial $P(d) = id_1^2 + id_2^2$, and thus with semigroup bound $e^{0t} = 1$. The solution is then

$$u(t,x,y) = -\sin(t) + \frac{1}{4\pi^2} \int_{\mathbb{R}^2} e^{-i(s_1 x + s_2 y)} e^{-i(s_1^2 + is_2^2)t} \hat{v}_0(s_1,s_2) ds_1 ds_2$$

where

$$\hat{v}_0(s_1, s_2) = \int_{\mathbb{R}^2} (x+y) e^{-(x^2+y^2)/2} e^{i(s_1x+s_2y)} = 2i\pi e^{-\frac{s_1^2+s_2^2}{2}} (s_1+s_2)$$

so that $u(t, x, y) = -\cos(t) + \frac{(x+y)\exp(\frac{i(x^2+y^2)}{4t-2i})}{(1+2it)^2}$

Sol. B2. We want to write the solution as the solution to a heat equation on the whole line

$$\begin{cases} \partial_t v = \partial_{xx} v \\ u(t=0,x) = \varphi(x) \end{cases}$$

so that the condition $(\partial_x v)(t, x = 0) = -v(t, x = 0)$ is automatically ensured. To this aim, we consider for x < 0 a function φ solving for x < 0

$$\varphi'(x) + \varphi(x) = \varphi'(-x) + \varphi(-x)$$

or

$$\varphi(x) = \varphi(0) e^{-x} - e^{-x} \int_0^{-x} e^{-y} (\varphi'(y) + \varphi(y)) dy = -e^{-x} (3e^{-x} - 4)$$

so that

$$u(t,x) = (p_t * \varphi)(x)$$

Sol. B3. We look for the separation of variables. If u(t,x)=a(t)b(x), then (a''(t)+2a'(t))b(x)=a(t)(b''-2b'). This entails $b''-2b'=\lambda b$ with boundary conditions, $a''(+2a'=\lambda a$ for some constant λ . The first equation has solution for $\lambda_k=-1-k^2\pi^2$, with k a non-negative integer. In such a case $b_k(x)=e^x\sin(k\pi x)$. The b_k 's are orthogonal in $L_2(e^{-2x}dx)$. Thus $a_k(t)=e^{-t}(\alpha_k\cos(k\pi t)+\beta_k\sin(k\pi t))$. However, since $(\partial_t u)(0,x)=-u(0,x)$ it holds $\beta_k=0$. Therefore

$$u(t,x) = \sum_{k>0} \alpha_k e^{x-t} \cos(k \pi t) \sin(k \pi x)$$

where

$$\alpha_k = \frac{\int_0^1 u(0, x) b_k(x) e^{-2x} dx}{\int_0^1 b_k(x)^2 e^{-2x} dx} = 2 \int_0^1 x \sin(k\pi x) dx = \frac{-2(-1)^k}{k\pi}$$