
Seminar 2 – 28/01/2019
Ex 0. Briefly recall the algorithm to put a semilinear second-order PDE in canonical form, in the 2-

dimensional case.
Ex 1. Consider the PDE in the unknown u ≡ u(x, y)

∂xxu− 2 sin(x)∂xyu− cos(x)2∂yyu = cos(x)∂yu (1)

Classify the PDE, calculate the characteristics and write it in canonical form. Then find explicitely all smooth
solutions to (1).

Ex 2. Consider the PDE in the unknown u ≡ u(x, y)

x ∂xxu− 2x2∂xyu+ 2x3 ∂yyu = ∂xu

Classify the PDE, calculate the characteristics and write it in canonical form. Then find explicitely those
solutions such that supx,y

|u(x,y)|
(|x|+|y|+1) <∞. What about solutions that are bounded at infinity but may diverge

at (x, y) = (0, 0)?
Ex 3. Find the canonical form of the PDE

∂xxu− 2x ∂xyu+ x2∂yyu = 2∂yu

Sol 0. Suppose we are given the equation in the unknown u ≡ u(x, y)

a(x, y)∂xxu+ 2 b(x, y)∂xyu+ c(x, y)∂yyu = F (x, y, u, ∂xu, ∂yu) (2)

We want to write the equation in a canonical form, with b = 0 and a, c = ±1, via change of variables (even if
sometimes also the case a = c = 0 and b = 1 is considered canonical and can simplify calculations). This is just
a general method, so we will assume that all the coefficients are smooth, denominators non-vanishing etc. In
concrete cases, one has to check singular points or maybe adjust the strategy (for instance, if a(x, y) vanishes
at some point, and c(x, y) never vanishes, just replace the role of x and y in the strategy below etc).

Classification and characteristics. First, we look at the determinant D(x, y) := b2(x, y)−a(x, y)c(xy). A
point (x, y) is called hyperbolic if D(x, y) > 0, elliptic if D(x, y) < 0 and parabolic if D(x, y) = 0. In any case,
we look at the ODE in the unknown y = y(x) (beware the signs)

a(x, y)

(
dy

dx

)2

− 2 b(x, y)

(
dy

dx

)
+ c(x, y) = 0

Or equivalently the two first order ODEs

dy

dx
=
b(x, y)±

√
b2(x, y)− a(x, y)c(x, y)

a(x, y)
(3)

Notice that this is a non-linear and non-autonomous ODE, so that there is no reason for it to have an explicit
solution. Nevertheless, generically each of the equations in (3) will feature a solution depending on an arbitrary
constant. Thus, we here assume that we can write the solutions in (4), at least in a parametric form, namely
that there exist function φ and ψ such that the solutions with sign ± satisfy respectively

φ(x, y) = c, ψ(x, y) = c (4)

For instance, if b(x,y)+
√
b2(x,y)−a(x,y)c(x,y)
a(x,y) = f(x) is independent of y, then y(x) = c +

∫ x
0
f(z)dz. In this case

we can just take φ(x, y) = y −
∫ x
0
f(z)dz.

If the coefficients are smooth, in general the space will be partitioned in (open) regions of hyperbolic and
elliptic points, and a closed region of parabolic points. We should study these cases separately.

Hyperbolic case D > 0. In this case, the solutions are real. We consider the change of variables

ξ(x, y) = 1
2 (φ(x, y) + ψ(x, y)) η(x, y) = 1

2 (φ(x, y)− ψ(x, y)) (5)

provided the determinant ∂xφ∂yψ − ∂yφ∂xψ does not vanish (equivalently ∂xξ∂yη − ∂yξ∂xη 6= 0). In this case,
we can define a function v by

u(x, y) = v(ξ(x, y), η(x, y))
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since, by the inverse function theorem, (5) is locally invertible. At this point, we can replace all the derivatives
of u with derivatives of v. E.g. ∂xu = (∂ξv)∂xξ+ (∂ηv)∂xη. When in doubt, always write down things explicitly.
E.g. the latter relations truly means

(∂xu(x, y) = (∂ξv)(ξ(x, y), η(x, y))(∂xξ)(x, y) + (∂ηv)(x, y)(∂xη)(x, y)

Replacing all the derivatives in (2), and -if needed- replacing x = X(ξ, η), y = Y (ξ, η, where (X,Y ) is the
inverse of the function (ξ(x, y), η(x, y)), one gets an equation of the form

∂ξξv − ∂ηηv = G(ξ, η, v, ∂ξv, ∂ηv)

Only in the hyperbolic case, one may also choose the coordinate φ and ψ, define w via u(x, y) = w(φ(x, y), ψ(x, y))
and similarly obtain the equation

−∂φψw = H(φ, ψ,w, ∂φw, ∂ψw)

for a suitable H.
Elliptic case D < 0. The procedure is the same in this case, but the solutions to the ODEs are complex

conjugates. Then φ = ψ̄. One should set

ξ(x, y) = 1
2 (φ(x, y) + ψ(x, y)) η(x, y) = 1

2i (φ(x, y)− ψ(x, y))

Then continue as above. One gets an equation of the form

∂ξξv + ∂ηηv = G(ξ, η, v, ∂ξv, ∂ηv)

Parabolic case D = 0. In this case, φ = ψ. So we set ξ(x, y) = φ(x, y), while η(x, y) can be chosen
arbitrarily, provided ∂xξ∂yη− ∂yξ∂xη 6= 0. The simplest choices are usually η = x or η = y. The canonical form
of the equation will be

∂ηηv = G(ξ, η, v, ∂ξv, ∂ηv)

Sol 2. In this case we get ξ = y + 1
2x

2, η = 1
2x

2 and

∂ξξv + ∂ηηv = 0

In other words, the general solution is given by u(x, y) = v(y+ 1
2x

2, 12x
2), for an arbitrary harmonic function v.

Recall that an harmonic function has at most linear growth iff it is affine (since an harmonic function on the
plane is -say- the real part of an analytic function). Since the dependence of ξ and η is quadratic in x, we have
the only possibility v(ξ, η) = a(ξ − η) + b, and u(x, y) = ay + b.


