Seminar 2 — 28/01/2019

Ex 0. Briefly recall the algorithm to put a semilinear second-order PDE in canonical form, in the 2-
dimensional case.
Ex 1. Consider the PDE in the unknown u = u(z, y)

Opxtt — 2 8in(2) Dyt — cos(x)2 0y, u = cos(z)dyu (1)

Classify the PDE, calculate the characteristics and write it in canonical form. Then find explicitely all smooth
solutions to (1).
Ex 2. Consider the PDE in the unknown u = u(x,y)

T Opptt — 2 x28$yu + 223 Oyyu = Ozu

Classify the PDE, calculate the characteristics and write it in canonical form. Then find explicitely those
solutions such that sup, , % < 0o. What about solutions that are bounded at infinity but may diverge
at (z,y) = (0,0)?

Ex 3. Find the canonical form of the PDE

Ozt — 22 Opyut + :1:26yyu = 20yu

Sol 0. Suppose we are given the equation in the unknown u = u(x, y)
a(m, y)azmu + 2 b(xa y)azyu + C(xa y)ayyu = F(iL’, Y, u, azua ayu) (2)

We want to write the equation in a canonical form, with b = 0 and a, ¢ = +1, via change of variables (even if
sometimes also the case a = ¢ =0 and b = 1 is considered canonical and can simplify calculations). This is just
a general method, so we will assume that all the coefficients are smooth, denominators non-vanishing etc. In
concrete cases, one has to check singular points or maybe adjust the strategy (for instance, if a(x,y) vanishes
at some point, and c¢(z,y) never vanishes, just replace the role of z and y in the strategy below etc).

Classification and characteristics. First, we look at the determinant D(z,y) := b*(z,y) —a(z,y)c(zy). A
point (z,y) is called hyperbolic if D(x,y) > 0, elliptic if D(z,y) < 0 and parabolic if D(z,y) = 0. In any case,
we look at the ODE in the unknown y = y(z) (beware the signs)

a(z,y) (?;)2 —20(z,y) (Zi) +e(a,y) =0

Or equivalently the two first order ODEs

@ _ b(l’,y) + \/b2(x7y) B CL(ZZ’,y)C(SE,y) (3)
dx a(z,y)

Notice that this is a non-linear and non-autonomous ODE, so that there is no reason for it to have an explicit
solution. Nevertheless, generically each of the equations in (3) will feature a solution depending on an arbitrary
constant. Thus, we here assume that we can write the solutions in (4), at least in a parametric form, namely
that there exist function ¢ and 1 such that the solutions with sign + satisfy respectively

o(z,y) =c,  Pla,y)=c (4)

b(a,y)+/b2 (z,y)—alz,y)e(z,y)
a(z,y) -
we can just take ¢(x,y) =y — foz f(z)dz.
If the coefficients are smooth, in general the space will be partitioned in (open) regions of hyperbolic and
elliptic points, and a closed region of parabolic points. We should study these cases separately.
Hyperbolic case D > 0. In this case, the solutions are real. We consider the change of variables

E(a,y) = 3(0(z,y) +0(x, ) nlz,y) = 5(o(z,y) — P(z,y)) (5)

provided the determinant 0,¢0y,y — 0,¢0;1¢ does not vanish (equivalently 0,£0,n — 0,£0;1 # 0). In this case,
we can define a function v by

For instance, if

f(z) is independent of y, then y(z) = ¢+ [ f(z)dz. In this case

u(x,y) = v(f(x,y), Tl(ﬂ%y))



since, by the inverse function theorem, (5) is locally invertible. At this point, we can replace all the derivatives
of u with derivatives of v. E.g. 0,u = (0¢v)0,¢ + (9,v)0,n. When in doubt, always write down things explicitly.
E.g. the latter relations truly means

(Oru(z, y) = (Oev)(&(2,y),n(2, y))(0:8) (x,y) + (Oyv) (2, y)(Oen) (2, y)

Replacing all the derivatives in (2), and -if needed- replacing x = X (&,7), y = Y(£,n, where (X,Y) is the
inverse of the function (£{(z,y),n(x,y)), one gets an equation of the form

Ogev — Opyv = G(&,m,v, 0¢v, Opv)
Only in the hyperbolic case, one may also choose the coordinate ¢ and v, define w via u(x, y) = w(o(z,y), ¥(x,y))
and similarly obtain the equation

—Opypw = H (¢, 9, w,dpw, dyw)
for a suitable H.

Elliptic case D < 0. The procedure is the same in this case, but the solutions to the ODEs are complex
conjugates. Then ¢ = 1. One should set

E(w,y) = 50z, y) +9(2,y)  nlx,y) = 5 (6@, y) —¥(2,y))

Then continue as above. One gets an equation of the form
Ogev + Oy = G(&, 1,0, O¢v, Opv)

Parabolic case D = 0. In this case, ¢ = 1. So we set &(x,y) = ¢(x,y), while n(z,y) can be chosen
arbitrarily, provided 0,£0,n — 0,£0,n # 0. The simplest choices are usually 7 = = or n = y. The canonical form
of the equation will be

Opnv = G(&,1,v,0¢v, Oyv)
Sol 2. In this case we get £ =y + %x2, n= %xQ and
Occv + Opyv = 0
In other words, the general solution is given by u(x,y) = v(y + %;102, %x2), for an arbitrary harmonic function v.
Recall that an harmonic function has at most linear growth iff it is affine (since an harmonic function on the

plane is -say- the real part of an analytic function). Since the dependence of £ and 7 is quadratic in x, we have
the only possibility v(£,n) = a(§ —n) + b, and u(z,y) = ay + b.



