
Seminar 3 – 04/02/2019
Remainder On a Riemannian manifold, the gradient operator is defined by the relation 〉∇f, V 〉 = df(V ),

for any smooth function f and tangent vector V . In other words, the metric tensor g maps the cotangent vector
df in the tangent vector ∇f . On the Euclidean space Rn, if we choose standard orthonormal coordinates x such
that g coincides with the identity, we gather that ∇f is identified by the relation

f(y) = f(x) + (∇f)(x) · (y − x) + o(|y − x|)

so that in these coordinates ∇f = (∂x1
f, . . . , ∂xn

f).
The divergence operator is defined as the adjoint of −∇ in L2(dx), where dx is the volume measure (Lebesgue

on the Euclidian space Rn). In other words, by the formula∫
dx (∇ · F )(x) f(x) = −

∫
dxF (x) · (∇f)(x) (1)

For instance in coordinates on Rn, ∇ · F =
∑n
i=1 ∂xi

F i, provided F = (F 1, . . . , Fn).
Finally, ∆f := ∇ · (∇f), so on Rn, ∆f =

∑n
i=1 ∂xixi

f .
Notice that the notation ∇f = gradf and ∇ · F = div(F ) also exist.
Ex 1. Check that on Rn it holds, for a smooth tangent vector field F and a smooth function ϕ

∇ · (ϕF ) = (∇ϕ) · F + ϕ∇ · F

These formulas admit wide generalizations, both in the context of differential geometry and geometric measure
theory1.

Ex 2. The polar coordinates on R2 are given by the change of variables
x = % cos(θ)

y = % sin(θ)

In other words, one identifies R2 ' ([0,∞)× S1)/ ∼, where (%, θ) ∼ (%′, θ′) iff % = %′ = 02.
Calculate in polar coordinates: (a) the volume form (namely write

∫
dxdyf(x, y) in polar coordinates); (b)

the gradient of a function f ; (c) the divergence of a vector field F ; (d) the Laplacian of a function f .
Ex 3. On a bi-dimensional space, two (one-dimensional) circles of radius r and R, with r < R, are positioned

in the vacuum. The smaller circle is attached to a generator at potential 1V . The larger one, is grounded (that
is, its potential is 0). Recall that the electric potential satisfies the equation ∆u = 0 when no charges are on
place. Calculate the electric potential in the space r < |x| < R.

Ex. 4 Recall how to calculate the signature of a quadratic form in Rn. Then consider the equation

4∂xxu+ 2∂yyu+ 2∂zzu+ 2∂xyu− 2∂xzu+ 2∂yzu+ (∂xu)2 = 0

Is it parabolic, elliptic or hyperbolic?

Sol 1. It is enough to check the identity locally in coordinates. Thus it is the usual rule of derivation for
products.

Sol 2. Let’s be very precise here, even if the statements are trivial. We have a space E = R2, and we can
identify it with R × R or with ([0,∞) × S1)/ ∼. This means that there are bijections ı : E → R × R and
 : ([0,∞)× S1)/ ∼. Given measures, distances, functions etc on E, we can use these bijections to associate to
them a corresponding object in R× R or in ([0,∞)× S1)/ ∼. For instance if λ is the Lebesgue measure on E,
then λ ◦ ı−1 and λ ◦ −1 are the corresponding measures. We already know that dλ ◦ ı−1(x, y) = dx dy. The
exercise requires ask to calculate λ ◦ −1 in the (%, θ) coordinates. We just need to use the change of variable
formula with the determinant of the Jacobian of the change of variables. We easily get dλ ◦ −1(%, θ) = % d%, dθ.

1Actually an integral version of (1) can be used to define some useful concepts. For instance, one can say that ϕ ∈ L1(dx) has
bounded variation if

sup
F measurable : |F |≤1

∫
Rn

dx (∇ · F )(x)ϕ(x) <∞

In such a case, ∇ϕ is identified with a (vectorial) measure. If Ω ⊂ Rn is a measurable set, one says that it has finite perimeter if
its characteristic function 1Ω has bounded variation. In such a case, denote by σn̂ the measure ∇1Ω, which is clearly concentrated
on ∂Ω. Then (1) can be turned into ∫

dσn̂ · F = −
∫

Ω
dx (∇ · F )(x)

2However, in the coordinates (%, θ) the metric tensor is not represented by the identity.
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Using the Jacobian operator for the change of variables, we similarly calculate the differential operators, in
particular ∆ = 1

%∂%(%∂%) + 1
%2 ∂θθ.

Sol 3. We want to find a solution to the problem
∆u = 0 in r < |x| < R

u = 1 in |x| = r

u = 0 in |x| = R

(2)

The whole point is that the problem has a rotational symmetry on R2. This means that if u is a solution to (2),
and Sθ is a rotation of an angle θ in R2, then v(x) = u(Sθx) is also a solution. A priori, this does not imply that
solutions are invariant under rotations (namely that v = u), but still it suggests that there can be rotationally
symmetric solutions. Indeed, thanks to the linearity, we have that x 7→

∫
dθ u(Sθx) is also a solution.

All this just suggests to make an ansatz for the solution in polar coordinates: u does not depend on the θ
variable. Writing then δu = 0 in polar coordinates, we have

0 = 1
%∂%(%∂%u) + 1

%2 ∂θθu = 1
%∂%(%∂%u) + 0

This yields u(x) = c1 log(|x|/c2), and imposing the boundary conditions, c2 = R and c1 = −1/ log(R/r).
Sol 3. Any method to determine the signature of a symmetric bilinear form (or any bilinear form) will work

here. Here the fastest is probably to check that all the N-W determinants are positive.


