Seminar -22+29/04/2019Ex. 1 Write the solution for the problem on $[0,\infty) \times \mathbb{R}^d$

$$\partial_t u - \Delta u + cu = f$$
 $t > u = g$ $t = 0$

0

Ex. 2 Find all the harmonic functions u(x, y) in \mathbb{R}^2 such that $(\partial_x u) = (\partial_y u)$.

Ex. 3 Let Ω be a bounded open set in \mathbb{R}^d , and let u_n be a sequence of harmonic functions in Ω . Suppose that u_n converges uniformly to some u. What can we say about u?

Ex. 4 Let u be a nonnegative harmonic function in the bi-dimensional unit disk. We want to prove that

$$\sup_{x \colon |x| \le 1/2} u(x) \le 9 \inf_{x \colon |x| \le 1/2} u(x)$$

(a) Recall that the Poisson kernel for a ball of radius r in \mathbb{R}^d is given by $K(x,\xi) = \frac{r^2 - |x|^2}{\omega_d r \, |\xi - x|^d}$. Prove that in our case

$$\frac{1-|x|}{2\pi (1+|x|)} \le K(x,\xi) \le \frac{1+|x|}{2\pi (1-|x|)}$$

(b) Deduce

$$\frac{1-|x|}{1+|x|}u(0) \le u(x) \le \frac{1+|x|}{1-|x|}u(0)$$

(c) From (b), obtain the thesis.

Ex. 5 A smooth nonnegative function u satisfies over a smooth bounded domain Ω

$$\Delta u \ge u \qquad x \in \Omega$$
$$\partial_{\hat{n}} u = 0 \qquad x \in \partial \Omega$$

Find u.

Ex. 6 Suppose that $u_0: \mathbb{R} \to [0, \infty), u_0 \in L_2(\mathbb{R}) \cap L_1(\mathbb{R})$, is such that $u_0(0) = u_0(1) = 0$. Consider the following problems

$$\begin{cases} \partial_t u = \Delta u & t \ge 0, x \in \mathbb{R} \\ u(t = 0, x) = u_0(x) \end{cases}$$
$$\begin{cases} \partial_t v = \Delta v & t \ge 0, x \in [0, 1] \\ v(t = 0, x) = u_0(x) \\ v(t, x = 0) = v(t, x = 1) = 0 \end{cases}$$
$$\begin{cases} \partial_t w = \Delta w & t \ge 0, x \in S^1 \\ w(t = 0, x) = u_0(x) \end{cases}$$

What inequalities hold between u, v and w? Find the limit of the solutions when $t \to \infty$. [Beware: Why v is not a solution to the third problem?]

Ex. 7 Find the solution to the following problems, where the functions $u_0(x)$ and f(x,t) are smooth and compactly supported, $t \ge 0$ and $x \ge 0$

$$\begin{cases} \partial_t u = a^2 \Delta u + f(t, x) \\ u(t = 0, x) = u_0(x) \\ u(t, x = 0) = 0 \\ \\ \begin{cases} \partial_t u = \Delta u + f(t, x) \\ u(t = 0, x) = u_0(x) \\ (\partial_x u)(t = 0, x) = 0 \end{cases} \\ \\ \begin{cases} \partial_t u = \Delta u + f(t, x) \\ u(t = 0, x) = u_0(x) \\ (\partial_x u)(t = 0, x) = \alpha u(t = 0, x) \end{cases} \end{cases}$$

What happens in the last problem when $\alpha \to 0$ and $\alpha \to +\infty$?

Ex. 8 Consider the heat equation on the real line

$$\partial_t u = \Delta u + f(t, x)$$
$$u(t = 0, x) = u_0(x)$$

We look for a solution u(t, x) such that $u(t, x) = u_0(x) e^t$.

- (a) Try to find a solution by taking the Fourier transform of the requirement $u(t,x) = u_0 e^t$.
- (b) Can u_0 be bounded?
- (c) Find the solution in the case $u_0(x) = e^x$.
- Ex. 9 Consider the Schroedinger problem

$$\left\{i\hbar\partial_t u = -\hbar^2\Delta u + V(x)u\right\}$$

where $x \in [-a, a]$, u satisfies the condition $(\partial_x u)(x) = 0$ for $x = \pm a$, and the potential V is given by (here $0 < \ell < a$)

$$V(x) = \begin{cases} 0 & \text{if } \ell < |x| \le a \\ c/\ell & \text{if } \ell \ge |x| \end{cases}$$

- (a) Solve the associated Sturm-Liouville problem.
- (b) Give an example of a solution for which $\psi(0, x) = 0$ for $x \ge -\ell$, but ψ is not identically 0 on [-a, a]; and such that $|\psi(t, x)|^2 > 0$ for t > 0.
- (c) What happens when $\ell \to \infty$?