Statistical mechanics of close-packings in 2D lattices

A. Mazel, I. Stuhl, Y. Suhov

June 9, 2020
The hard-core model on a lattice

- A discrete set $\mathbb{L} \subset \mathbb{R}^2$
- A finite volume: $\mathbb{V} \subset \mathbb{L}$
- A configuration of particles: $\psi^\mathbb{V} \in \{0, 1\}^\mathbb{V}$
- An admissible configuration:
 $$\rho(x, y) \geq D \geq 1$$
 for any $\psi^\mathbb{V}_x = \psi^\mathbb{V}_y = 1$
- Activity/Fugacity: $u > 0$

- A boundary condition: an admissible configuration $\phi = \phi^{\mathbb{Z}^2}$
- An additional restriction: $\psi^\mathbb{V} \lor \phi^{\mathbb{Z}^2 \setminus \mathbb{V}}$ is admissible, $\psi^\mathbb{V} \in \mathcal{A}(\mathbb{V} || \phi)$
- The statistical weight:
 $$w(\psi^\mathbb{V} || \phi) = u^#(\psi^\mathbb{V})$$
- The partition function:
 $$Z(\mathbb{V} || \phi) = \sum_{\psi^\mathbb{V} \in \mathcal{A}(\mathbb{V} || \phi)} w(\psi^\mathbb{V} || \phi)$$
Gibbs measures on \mathbb{L}

○ The Gibbs measure: $\mu_V(\psi^V\|\phi) = w(\psi^V\|\phi)/Z(\psi^V\|\phi)$
○ A probability measure μ on $X = \{0, 1\}^\mathbb{L}$ is called a D-HC Gibbs/DLR measure if (i) $\mu(A) = 1$, (ii) \forall finite $V \subset \mathbb{L}$ and a function $f : \phi \in X \mapsto f(\phi) \in \mathbb{C}$ depending only on the restriction $\phi \mid_V$, the integral $\mu(f) = \int_X f(\phi) d\mu(\phi)$ has the form

$$\mu(f) = \int_X \int_{\{0, 1\}^V} f(\psi^V \vee \phi \mid_{\mathbb{L} \setminus V}) d\mu_V(\psi^V\|\phi) d\mu(\phi).$$

One can say that under such measure μ, the probability of a configuration ψ^V in a finite volume $V \subset \mathbb{L}$, conditional on a configuration $\phi \mid_{\mathbb{L} \setminus V}$, coincides with $\mu_V(\psi^V\|\phi)$, for μ-a.a. $\phi \in \{0, 1\}^\mathbb{L}$.
○ An extreme Gibbs measure (EGM) = a pure phase: cannot be written as a non-trivial convex combination of other Gibbs measures
Pirogov-Sinai theory: ground states

- Ground states: no local excitation decreases the energy
- Periodic ground states (PGS): energy minimizers on a torus
- A common template
- A correct common template
Pirogov-Sinai theory: contours

- Contours, ensembles of compatible contours

\[Z(\mathcal{V}||\phi) = \sum_{\{\Gamma_i\}} \prod_{i} w(\Gamma_i) \]

- A Peierls condition: an excess in energy due to local a defect is proportional to the size of the defect:
 \[w(\Gamma) \leq u^{-p(D)||\text{Supp}(\Gamma)||} \]

- A Peierls constant: \(p(D) > 0 \)

- A PGS as a boundary condition: generates a pure phase
Pirogov-Sinai theory: results

Theorem. Finiteness of the PGS family and a strong enough Peierls condition imply that at least one PGS generates pure phase and any periodic pure phase is generated by some PGS. (Pirogov-Sinai [1976], Zahradnik [1984])

○ Non-periodic ground states

Theorem. In dimension 2 the finite number of periodic ground states and strong enough Peierls condition imply that all pure phases are periodic. (Dobrushin-Shlosman[1985])

○ Stable and non-stable PGSs (dominance): ensemble of contours with truncated weight, polymer expansion, free energy.

○ HC model admits a straightforward application of PS theory but the difficulty is in identifying PGSs and verifying Peierls condition
Local minimizing pattern

- An *m*-potential (Holztynski-Slawny [1978]):
 - the energy of a configuration is a sum over all translations of a finite set B
 - a minimum of the energy among all configurations in B is achieved at one or more minimizing configurations
 - there exist at least one configuration in entire \mathbb{L} which coincides with one of minimizing configurations on each translation of B in \mathbb{L}.

- A weaker version:
 - a configuration is identified with a partition of \mathbb{R}^2 into bounded sets B_j
 - the energy of a configuration $\{B_j\}$ is the sum of energies attributed to each B_j
 - the variety of B’s contains element(s) with minimal energy
 - there exists a configuration in entire \mathbb{L} formed solely by minimal elements

- A perfect configuration (PC): contains local minimizers only

- All PGSs are PCs

- The minimizing pattern is absent at boundaries between PGSs
Voronoi cells and disk close-packing in \mathbb{R}^2

- A Voronoi cell (VC), a convex polygon in \mathbb{R}^2: defined for each x with $\psi_x = 1$
- Vertices of a VC: centers of circumcircles
- A constituting polygon, C-triangle
- A Delaunay triangulation

- The area of a VC as a local quantity to minimize:
 - find minimal VCs
 - find all configurations containing minimal VCs only

- The minimal Voronoi cell in \mathbb{R}^2 is a perfect hexagon
Voronoi cells and disk close-packing in \mathbb{A}_2

- The minimal Voronoi cell in \mathbb{A}_2 is the same as in \mathbb{R}^2
- For an admissible configuration containing a particle at the origin there are only finitely many possibilities to implement the minimal Voronoi cell centered at this particle.
 - Each possibility corresponds to the configuration of particles forming a triangular D-sublattice of \mathbb{A}_2
 - Each D-sublattice generates a class of PCs which contains its \mathbb{A}_2-symmetries.

- Depending on arithmetical structure of D^2, there may be one or more classes
- All PGSs are from classes generated by D-sublattices
Templates and contours on A_2
Peierls estimate on A_2 via Voronoi cells

○ **Theorem.** Define the statistical weight $w(\Gamma)$ of a contour Γ by

$$w(\Gamma) = u^{\#(\psi_{\Gamma})-\#(\varphi_{\Gamma})} = \prod_{x \in \psi_{\Gamma}} u^{-S^{-1}(|C_{\psi_{\Gamma}}(x)|-S)}.$$

Here and below, ψ_{Γ} stands for the restriction $\psi \upharpoonright_{\text{Supp} \Gamma}$. Then

$$w(\Gamma) \leq u^{-p(D)||\text{Supp} \Gamma||}.$$

Next, $S = S(D) = D^2\sqrt{3}/2$ is the area of the minimal Voronoi cell (a perfect hexagon of side length $D\sqrt{3}/2$), $|C_{\psi_{\Gamma}}(x)|$ is the area of the Voronoi cell $C_{\psi_{\Gamma}}(x)$ for $x \in \psi_{\Gamma}$, $p(D) > 0$ is a Peierls constant, and $||\text{Supp} \Gamma||$ is the number of templates in $\text{Supp} \Gamma$.

○ Here $p(D)$ is calculated via the difference $-s(D) < 0$ of areas between minimal and next-to-minimal Voronoi cells.
Proof of Peierls estimate on \mathbb{A}_2

Consider x where $|C_{\psi}(x)| > S$; otherwise x does not contribute into $w(\Gamma)$. Observe that

$$\text{if } |C_{\psi}(x)| - S \geq S \text{ then } |C_{\psi}(x)| - S \geq \frac{1}{2} |C_{\psi}(x)| .$$

On the other hand,

$$\text{if } |C_{\psi}(x)| - S < S \text{ then } |C_{\psi}(x)| - S \geq s(D) \geq \frac{s(D)}{2S} |C_{\psi}(x)| .$$

According to the definition of a φ-correct common parallelogram, we have an inequality

$$\sum_{x \in \psi} |C_{\psi}(x)| \mathbf{1}(|C_{\psi}(x)| > S) \geq \frac{1}{9D^2} |\text{Supp } \Gamma| .$$

Also, $||\text{Supp } \Gamma|| = \frac{2}{D^4 \sqrt{3}} |\text{Supp } \Gamma|$. Thus, we can take

$$p(D) = \frac{1}{9} \min \left(\frac{1}{2}, \frac{s(D)}{\sqrt{3}} D^{-2} \right) .$$
Peierls estimates on \mathbb{H}_2 and \mathbb{Z}^2

- \mathbb{H}_2 can be considered as \mathbb{A}_2 with removed $1/3$ of sites (a $\sqrt{3}$-sublatice)
- For $D^2 \mod 3 = 0$ the above \mathbb{A}_2 theory is applied to \mathbb{H}_2 verbatim. The PGSs are still triangular D-sublattices and their \mathbb{H}_2 symmetries
- Let $D^*_2 = D_*(D) \geq D$ be the nearest value such that $D^*_2 \mod 3 = 0$ and $D^*_2 = m^2 + n^2 + mn$.
- For $D^2 \mod 3 \neq 0$, $D^2 \neq 1, 4, 7, 13, 16, 28, 49, 64, 67, 97, 133, 157, 256$ the PGSs are D_*-sublattices from \mathbb{A}_2.
- However for $D^2 \mod 3 \neq 0$ the Voronoi cells do not work.
- The Voronoi cells do not work for \mathbb{Z}^2 either, and we need a different approach
Saturated configurations and minimal triangles

- Saturation of an admissible configuration
- In \mathbb{R}^2 saturation implies (Chang-Wang [2010]):
 - all circumradii are $\leq D$ as otherwise a particle can be placed into the circumcenter of the corresponding constituting polygon
 - all Delaunay triangles have angles $\leq 2\pi/3$
 - amount of triangles is twice the amount of particles

- A minimal triangle (M-triangle): an admissible acute L-triangle (sides not shorter than D) with a minimal possible area
- M-triangles: better local minimizers than VCs
Area-minimization of Delaunay triangles in \mathbb{Z}^2

- All circumradii are $\leq D + \sqrt{2}$
- Obtuse triangles with less than minimal area
- Triangle groups and redistributed area
- Area redistribution is also useful in dealing with other issues, especially on \mathbb{H}_2
M-triangles and sliding in \mathbb{Z}^2

- Sliding in terms of M-triangles

\[
\begin{array}{ccc}
O & A & B \\
W & C & O \\
D^2 = 20 & D^2 = 29 & D^2 = 45 \\
\end{array}
\]

- In absence of sliding:
 - an M-triangle generates a unique perfect configuration (PC)
 - all PGSs are sublattices or their \mathbb{Z}^2-symmetries (shifts, rotations, reflections)
 - \mathbb{Z}^2-symmetries define equivalence classes of PCs/PGSs
 - the PGS sublattices are non-square for $D^2 > 20$
M-triangles and PGSs on \mathbb{Z}^2

Theorem. (i) For any attainable D, every PGS is obtained as a tessellation by M-triangles and their \mathbb{Z}^2-shifts.

(ii) Furthermore, if D is non-sliding then every PGS is obtained from a max-dense sub-lattice by means of \mathbb{Z}^2-congruences. Consequently, for any non-sliding D the PGS set $\mathcal{P}(D)$ is finite.

○ A similar theorem is true for A_2 and H_2 except for the exceptional values of D
Classes of M-triangles on \mathbb{Z}^2

- **Class S** (sliding): finite

- **Class A** (a unique M-triangle, a unique implementation), $d = 5$, $[5|5|10]$

- **Class B0** (a unique M-triangle, a non-unique implementation), $d = 425$, $[425|425|450]$

- **Class B1** (a non-unique M-triangle, a unique implementation for each), $d = 65$, $[65|65|80]$, $[68|68|72]$

- **Class B2** (a non-unique M-triangle, a non-unique implementation), $d = 180610$, $[d|d + 60|d + 145]$, $[d|d + 60|d + 145]$, $[d|d + 115|d + 135]$ and $[d|d + 115|d + 135]$

- Classes A, Bx are infinite

- A general strategy: M-triangles \rightarrow PCs \rightarrow PGSs \rightarrow EGMs
C-triangles, M-triangles and defects in \mathbb{Z}^2

○ Let ψ^* be a saturation of a given D-AC ψ.

○ If an added occupied site $x \in \psi^* \setminus \psi$ lies in a template then, clearly, this template is incorrect (more precisely, non-φ-correct in φ for each $\varphi \in \mathcal{P}$). We say that such a template is an s-defect (in ψ).

○ Another possibility for a defect is where, in the saturation ψ^*, a template has a non-empty intersection with one of C-triangles that is not an M-triangle. We call it a t-defect (again in ψ). C-triangles with obtuse angles $> 2\pi/3$ lead to t-defects by definition.

○ Finally, an incorrect (but actually perfect) template can be simply a neighbor of an s- or a t-defect. We call it an n-defect (still in ψ).
A Peierls estimate via M-triangles in \mathbb{Z}^2

○ **Theorem.** Consider a contour Γ in $\psi \in \mathcal{A}(D)$ containing $||\text{Supp}\Gamma|| = m$ (incorrect) templates. Set $m = i + j + k$ where i, j, k give the amount of s-, t- and n-defects in ψ_Γ. Then the amounts $\#(\psi_\Gamma), \#(\varphi_\Gamma)$ of occupied sites in ψ_Γ and φ_Γ satisfy

$$\#(\psi_\Gamma) \leq mS(D) - i - \max \left(1, \frac{j}{8S(D)} \right), \#(\varphi_\Gamma) = mS(D)$$

○ Let Δ be a connected component of φ'-correct templates enclosed by a connected component of φ''-correct templates, $\varphi', \varphi'' \in \mathcal{P}(D)$. Then, in absence of sliding, any extension of this restricted configuration to a $\psi \in \mathcal{A}(D)$ contains a closed chain of adjacent non-minimal C-triangles enclosing Δ. This chain constitutes t-defects in the corresponding contour Γ.

○ **Theorem.** Assume the value D is non-sliding. For a contour Γ containing $||\text{Supp}\Gamma||$ (incorrect) templates

$$w(\Gamma) = u^{\#(\psi_\Gamma) - \#(\varphi_\Gamma)} \leq u^{-p(D)||\text{Supp}\Gamma||}, \text{ where } p(D) = 1/(72S(D))$$

and $\frac{\sqrt{3}D^2}{2} < S(D) < \frac{\sqrt{3}D^2}{2} + \sqrt{2}D$
A Peierls estimate via M-triangles in \mathbb{A}_2 and \mathbb{H}_2

○ **Theorem.** For a contour Γ containing $||\text{Supp}\Gamma||$ (incorrect) templates

$$w(\Gamma) \leq u^{-p(D)||\text{Supp}\Gamma||}, \quad p(D) = 1/(72S(D)),$$

where $S(D) = \frac{\sqrt{3}D^2}{2}$ for \mathbb{A}_2, and $\frac{\sqrt{3}D^2}{2} \leq S(D) \leq \frac{\sqrt{3}D^2_*(D)}{2}$ for \mathbb{H}_2.

○ M-triangle approach is more technically involved but leads to better estimates

○ For the case $D^2 = 64$ in \mathbb{H}_2 the corresponding unique M-triangle generates PGSs satisfying above Peierls estimate while the minimal Voronoi cell does not generate an admissible configuration in \mathbb{H}_2. Consequently, the PGSs consist of next-to-minimal rather than minimal Voronoi cells.
Results for Class A (a unique M-triangle)

○ A complete phase diagram for large u

○ **Theorem.** Assume an attainable value D is of Class A. Then:

(i) The cardinality $\#\mathcal{P}(D) = mS(D)$ where $m = 1, 2$ or 4 for \mathbb{Z}^2, $m = 1, 2$ for \mathbb{A}_2, $m = 2/3, 4/3$ for \mathbb{H}_2. The PGSs are obtained from each other by \mathbb{L}-congruences.

(ii) There exists a value $u_* = u_*(D, \mathbb{L}) \in (0, \infty)$ such that for $u \geq u_*$ the following assertions hold true. Every EGM $\mu \in \mathcal{E}(D)$ is generated by a PGS $\varphi \in \mathcal{P}(D)$: $\mu = \lim_{V \rightarrow \mathbb{Z}^2} \mu_V (\cdot || \varphi) (= \mu_\varphi)$. The measures μ_φ are mutually disjoint ($\mu_\varphi' \perp \mu_\varphi''$ for $\varphi' \neq \varphi''$) and inherit the symmetry properties of their respective PGSs. Moreover, $\#\mathcal{E}(D) = \#\mathcal{P}(D)$.
Results for Class B (a non-unique M-triangle)

○ A phase diagram modulo dominance for large u

○ **Theorem.** Assume an attainable value D is of Class B with $J = J(D) > 1$ equivalence classes of PGS. Then:

(i) The cardinality $\#\mathcal{P}_j(D) = m_jS(D)$ where $m_j = 1, 2$ or 4 for \mathbb{Z}^2, $m_j = 1, 2$ for \mathbb{A}_2, $m_j = 2/3, 4/3$ for \mathbb{H}_2, $j = 1, 2, \ldots, J$. The equivalent PGSs are obtained from each other by \mathbb{L}-congruences.

(ii) There exists a value $u_* = u_*(D, \mathbb{L}) \in (0, \infty)$ such that for $u \geq u_*$ the following assertions hold true. Every EGM $\mu \in \mathcal{E}(D)$ is generated by a PGS φ from a dominant class $\mathcal{P}_j(D)$: $\mu = \lim_{V \uparrow \mathbb{Z}^2} \mu_V(\cdot || \varphi)(= \mu_\varphi)$. The measures μ_φ are mutually disjoint ($\mu_{\varphi'} \perp \mu_{\varphi''}$ for $\varphi' \neq \varphi''$) and inherit the symmetry properties of their respective PGSs. Furthermore, $1 \leq \#\mathcal{E}(D) = \sum_{j: \mathcal{P}_j(D) \text{ is dominant}} \#\mathcal{P}_j(D)$.
Polymer series and Dominant PGSs

- The twofold entropy of contours:
 - the number of ways to draw $\text{Supp}\Gamma$ with $||\text{Supp}\Gamma|| = m$ is $\leq 4 \cdot 3^{m-1}$
 - the number of ways to select ψ_Γ is $\leq 2^{D^2S(D)} \leq 2^{D^4}$

- The statistical weight $w(\pi)$ of a polymer $\pi = \{\Gamma_i\}$ satisfies
 $$|w(\pi)| \leq u^{(\log u c(D) - p(D)) \sum_i ||\text{Supp}\Gamma_i||}$$

- The polymer series for the free energy has the following form
 $$\sum_{k=1}^{\infty} a_k u^{-k}, \text{ where } |a_k| \leq c(D)^k$$

- Dominance of a PGS: the truncated free energy is minimal (and consequently equal to free energy)

- We expect that for our models the dominance can always be seen at the second order u^{-2} in the polymer series
Dominant PGSs: orders of perturbations

- The constant $p(D)$ is too small to be practical. Need an alternative approach to contour enumeration.

- By construction $w(\Gamma) = u^{-k}$, $k \in \mathbb{N}$.

- It is possible to show that the only way to create Γ with $w(\Gamma) = u^{-1}$ is to remove a particle. It does not discriminate between the PGSs.

- There are multiple ways to create Γ with $w(\Gamma) = u^{-2}$ by removing $n \geq 3$ particles and inserting $n - 2$ particles, without violating admissibility.

- In analyzed examples for $D^2 = 49, 147, 169$ on \mathbb{A}_2 we verified that $n \leq 6$.
Perturbation examples: $D^2 = 49$

- Gray single-particle insertions ($n = 3$) do not discriminate between PGSs
- Orange pair insertions ($n = 4$) discriminate: the PGS class on the RHS dominates (non-inclined)
Perturbation examples: $D^2 = 147$

○ Blue triples represent 3-particle insertions ($n = 5$). A green quadruple represents a 4-particle insertion ($n = 6$)
○ In total, for $D^2 = 147$ the PGS class on the RHS dominates
The bound $n \leq 6$ for $D^2 \leq 169$: the proof

- For $\varphi \in \mathcal{P}(D)$, we assign, to a pair (an insertion at site y, a particle removed by this insertion at site $x \in \varphi$), a repelling force $f_r \geq 0$, $r = \rho(x, y)^2$, so that $\forall y \in \mathbb{A}_2$,
 \[
 F(y) := \sum_{x \in \varphi} f_r 1(\rho(x, y)^2 = r, \text{x removed by y}) = 1.
 \]
- Can define f_r so that
 \[
 G(x) := \sum_{y} f_r 1(\rho(x, y)^2 = r, \text{x removed by y}) \leq 1
 \]
○ The proof is computer-assisted. The bound \(n \leq 6 \) not expected to hold for larger \(D \).

○ \(\forall \) admissible \(n \)-particle insertion \(\Delta \) and \(x \in \varphi \), the deficit \(\delta(x) := 1 - G(x) \geq 0 \)

\[\sum_{x \in \varphi} \delta(x) = \text{(the difference of the amounts of removed and inserted particles)} \]

○ The selection of \(f_r \) is not unique but it is possible to choose \(f_r \) such that \(\delta(x) \geq 1/3 \) for \(x \in \varphi \cap \partial \Delta \).

○ An implication is that on \(\mathbb{A}_2 \), an admissible insertion of order \(u^{-2} \) with \(n \geq 7 \) for \(D^2 \leq 169 \) is impossible.

○ We expect that on \(\mathbb{Z}^2 \) and \(\mathbb{H}_2 \) the future theory will go along similar lines.
PGSs and EGMs for exceptional values of D^2 on \mathbb{H}_2

○ Recall: the exceptional values on \mathbb{H}_2 are $D^2 = 1, 4, 7, 13, 16, 28, 49, 64, 67, 97, 133, 157, 256$.

○ For $D^2 = 4, 7, 133$: have sliding, offer no results, expect uniqueness of an EGM.

○ The case $D^2 = 1$ is trivial: here the only PGS is the whole of \mathbb{H}_2. The EGM is unique for all $u > 0$: a Bernoulli measure with probability of occupied/vacant site $u/(1 + u)$ and $1/(1 + u)$.

○ The remaining values are divided into 3 classes E1: $D^2 = 13, 16, 28, 49, 64, 97, 157$; E2: $D^2 = 16, 256$; E3: $D^2 = 67$.

○ For values D^2 from E1: the PGSs are constructed from quadrilaterals formed by two adjacent D-admissible \mathbb{H}_2-triangles with the minimal squared side-length D^2, one of which is an M-triangle. (For $D^2 = 64$ the two triangles are congruent.)
PGSs and EGMs for Classes E1, E2

- For values $D^2 = 16, 256$ from E2: the PGSs are constructed from equilateral triangles of squared side-lengths $(2D + 1)^2$ (outer) and $D^2 + D + 1$ (inner)

- **Theorem.** Let D be from Class E1 or E1. Then each EGM is generated by a PGS and each PGS generates an EGM. All assertions stated for Class A hold true.
PGSs and EGMs for Class E3

○ For the remaining value $D^2 = 67$ the situation is as in Class B: we have a competition between two groups of PGSs. They are build (a) from equilateral D_\ast-triangles where $D_\ast^2 = 75$, (b) from quadrilaterals, similarly to Class E1. It turns out that type (a) is dominant and type (b) not.

![Diagram](a) ![Diagram](b)