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Lecture 1. Birkho� ergodic theorem [02.12.19] In L1(X,B, µ) we introduce an operator:

Snϕ := 1
n

∑n−1
k=0 ϕ ◦ T k, and set S−ϕ := lim infn→∞ Snϕ, S

+ϕ := lim supn→∞ Snϕ. The following result
shows that S± are well de�ned.
Theorem 0.1 (Birkho� ergodic theorem) ∀µ ∈MT , ϕ ∈ L1(X,B, µ) Snϕ

n→∞−→ ϕ̃ ∈ L1(X,B, µ), where ϕ̃
is T -invariant and µ(ϕ̃) = µ(ϕ). Moreover, if µ ∈M0

T , then Snϕ
n→∞−→ µ(ϕ).

Corollary 0.1 Choosing ϕ := 1A we get #{0 ≤ k ≤ n− 1 : T kx ∈ A}/n n→∞−→ µ(A) for µ ∈M0
T ∀A ∈ B

and µ-a.a. x ∈ X.
In other words, if µ ∈M0

T then the time average is equal to the space average µ-a.e.
Proof (formal and non-constructive) based on the notion of a conditional mathematical expectation
Eµ(f |BT ) wrt the σ-algebra of T, µ-invariant sets BT := {B ∈ B : µ(T−1B∆B) = 0}. Note that f◦T = f µ-
a.e. i� f is BT -measurable. De�nition of Eµ(f |BT ): µ(Eµ(f |BT ), B) = µ(f,B) ∀B ∈ BT , f ∈ L1(X,B, µ).

The idea is to show that S±ϕ = Eµ[ϕ|BT ]. We begin as follows: for ψ ∈ L1 we de�ne a sequence
Ψn := maxnk=1{kSkψ} ∈ L1. Obviously, this sequence is non-decreasing and thus either diverges to ∞ or
otherwise converges. Let Bψ := {x ∈ X : supn≥1 Ψn(x) < ∞} ∈ B, then on its complement Bc

ψ this
sequence diverges. From the identity Ψn+1 − Ψn ◦ T = Ψ1 − min{0,Ψn ◦ T} we deduce that Bψ ∈ BT .
We have 0 ≤ µ(1Bcψ · (Ψn+1 − Ψn)) = µ(1Bcψ · (Ψn+1 −Ψn ◦ T )︸ ︷︷ ︸

ψ−min{0,Ψn◦T}

)
n→∞−→ µ(1Bcψ · ψ) = µ(1Bcψ · Eµ[ψ|BT ]) by

dominated convergence and the de�nition of conditional expectation, respectively. Thus, if Eµ[ψ|BT ] < 0
on X we must have µ(Bc

ψ) = 0.
Now we ready to complete the proof. Take any ϕ ∈ L1, ε > 0 and set ψ := ϕ−Eµ[ϕ|BT ]− ε. Then on

Bψ the relation S+ψ ≤ 0 holds (otherwise, Ψn(x) should diverge), therefore,
0 ≥ S+ψ = lim supn→∞(Snϕ − Eµ[ϕ|BT ] − ε) = S+ϕ − Eµ[ϕ|BT ] − ε µ-a.e. A similar argument for
ψ̃ := −ϕ+Eµ[ϕ|BT ]− ε shows that S−ϕ−Eµ[ϕ|BT ] + ε ≥ 0 µ-a.e. Thus S−ϕ = S+ϕ = Eµ[ϕ|BT ] µ-a.e.
(since ε > 0 is arbitrary) and hence the limit exists. If µ ∈ M0

T then ϕ̃ = Const µ-a.e.by the invariance
of ϕ̃ from where the claim follows. �
Corollary 0.2 (von Neumann) Snϕ

n→∞−→ ϕ̃ in L1.

Proof. If |ϕ| < ∞ then the claim follows from above result. For a general ϕ choose a bounded function
ϕε : ||ϕ−ϕε||L1 ≤ ε. Then ||Snϕ−Eµ[ϕ|BT ]||L1 ≤ ||Snϕε−Eµ[ϕε|BT ]||L1 +2ε. Now since ε > 0 is arbitrary
we get the result. tu
Theorem 0.2 (Structure of the set of invariant measures) Let µ, µ′ ∈MT . Then
(a) µ ∈M0

T and µ′ � µ (absolutely continuous1) yields µ = µ′;
(b) µ, µ′ ∈M0

T yields either µ = µ′ or µ ⊥ µ′ (mutually singular2).

Proof. limn→∞ Sn1A = µ(A) µ-a.e. ∀A ∈ B. Since µ′ � µ this equality holds also µ′-a.e. Now by Lebesgue
theorem on the limit transition for uniformly bounded sequences of functions we have limn→∞ µ

′(Sn1A) =
µ′(µ(A)) = µ(A). On the other hand, µ′(1A ◦ T ) = µ′(1A) (since µ′ ∈ MT ), thus µ

′(Sn1A) = µ′(A) and,
hence, µ(A) = µ′(A). The statement (a) follows due to an arbitrary choice of A ∈ B.

To prove (b) assume that µ 6= µ′, i.e. µ(A) 6= µ′(A) for someA ∈ B. DenoteB := {x ∈ X : Sn1A(x)
n→∞−→

µ(A)} and B′ := {x ∈ X : Sn1A(x)
n→∞−→ µ′(A)}. By Theorem 0.1 we have µ(B) = µ′(B′) = 1. On the

other hand, by the construction B ∩B′ = ∅ =⇒ µ ⊥ µ′. tu
Let us extend the action of the family of operators Sn to the space of measures: S∗nµ := 1

n

∑n−1
k=0 T

∗kµ.

Then ∀ϕ ∈ L1 we have S∗nµ(ϕ) = 1
n

∑n−1
k=0 T

∗kµ(ϕ) = 1
n

∑n−1
k=0 µ(ϕ ◦ T k) = µ(Snϕ) which explains the

notation. Let µ ∈ M0
T , hence, by Birkho� Theorem S∗nδx

n→∞−→ µ µ-a.e., where δx stays for the Dirac (δ)

1i.e., dµ
′

dµ ∈ L1 ⇐⇒ µ(A) = 0 =⇒ µ′(A) = 0 ∀A ∈ B
2i.e., ∃A ∈ B : µ(A) = µ′(X \A) = 0
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measure at the point x. Indeed, (S∗nδx)(ϕ) = Snϕ(x)

n→∞−→ µ(ϕ) µ-a.e. We shall say that a point x (and the
corresponding trajectory) is T, µ-typical if S∗nδx

n→∞−→ µ. By Birkho� Theorem µ-a.a. points are T, µ-typical
if µ ∈M0

T . Question: are there typical points for a general invariant measure µ ∈MT ?
Applications:
(1) For m-a.a. x ∈ [0, 1] the average number of zeros in the decimal expansion x = 0.x1x2 . . . is equal
to 1/10. Indeed, let T10x := {10x}, hence the Lebesgue measure is invariant and ergodic (similar to T2).
Let A0 := [0, 1/10], then xi = 0 ⇐⇒ T ix ∈ A0. Thus the result follows by applying the Corollary 0.1. A
number is called normal if in its expansion in any integer base b the density of any `pattern' of digits (from
the set {0, 1, . . . , b− 1}) of length ` is equal to b−`. Prove that m-a.e. real numbers are normal. The proof
is almost the same: for the map Tbx := {bx} each pattern of digits corresponds to an interval (or a union
of several intervals if the pattern has `holes'). It remains to observe that for any b the Lebesgue measure
of the exceptional set is zero.
(2) A measure µ ∈M0

T is uniquely ergodic if this is the only invariant measure. If T ∈ C0 this is equivalent
to the statement that Snϕ

n→∞−→ Const ∀ϕ ∈ C(X) and the convergence is either pointwise or uniform.
Proof. The family of functions Snϕ is equicontinuous. Thus by the Arzela-Ascoli Theorem there exists its
uniformly converging subsequence. On the other hand, the limit point is de�ned by the ergodic theorem.
(4) Benford Law: calculate the density of n such that the decimal number 2n starts from the digit b ∈
{1, . . . , 9}. Observe that this is the case i� ∃k ∈ Z+ such that 10kb ≤ 2n < 10k(b + 1), i.e., log b +
k ≤ n log 2 < log(b + 1) + k, which happens i� the point {n log 2} belongs to the interval of length
log(b+1)−log b. Considering the rotation of the unit circle by the angle log 2 we see that the answer is equal
to log(b+1)−log b. It is not hard to extend this result for the case of a given number (say 2) of the �rst digits
in the decimal expansion of 2n, but not to the k-th digit with k > 1 in this expansion. On the other hand,
a completely di�erent (uniform) distribution holds true for the last (few) digits (2→ 4→ 8→ 6→ 2).

Theorem 0.3 (Kingman subadditive ergodic theorem) Let {ϕn} be a sequence of measurable functions such
that ϕn+k ≤ ϕn +ϕk ◦T n µ-a.e. Then there exists a T -invariant function ϕ̃ such that limn→∞

1
n
ϕn = ϕ̃ µ-

a.e. and limn→∞
1
n
µ(ϕn) = inf 1

n
µ(ϕn) = µ(ϕ̃).

An immediate collorary to this result is the famous Furstenberg-Kesten theorem about the product of
random matrices. Let Φ : X → Rd2 where we associate each element of Rd2 with a d × d matrix. Set
Φn :=

∏n−1
k=0 Φ ◦ T k.

Theorem 0.4 (Furstenberg-Kesten) If log+ ||Φ|| ∈ L1(X,B, µ), then for µ-a.a. x ∈ X there exists a
T -invariant function λ(x) := limn→∞

1
n

log ||Φn|| ∈ L1.
Moreover, the following multiplicative ergodic theorem holds.

Theorem 0.5 (Oseledets) If log+ ||Φ|| ∈ L1(X,B, µ), then
(a) the limit Λ(x) := limn→∞

2n
√

Φ∗n(x)Φn(x) is well de�ned µ-a.e.;
(b) ∃eλ1(x) < eλ2(x) < . . . < eλk(x) � the ordered collection of eigenvalues of the matrix Λ(x), which together
with their multiplicities are measurable and T -invariant functions.

Lecture 2. Mixing [09.12.19] For an ergodic DS (T,X,B, µ) and any ϕ ∈ L2(X,B, µ) by Birkho�
theorem we have Snϕ → µ(ϕ) µ-a.e. Multiplying both hands of this relation by an arbitrary function
ψ ∈ L2(X,B, µ) and integrating we get 1

n

∑n−1
k=0 µ(ψ · ϕ ◦ T k) n→∞−→ µ(ϕ)µ(ψ).

Lemma 0.3 The relation 1
n

∑n−1
k=0 µ(ψ · ϕ ◦ T k) n→∞−→ µ(ϕ)µ(ψ) ∀ϕ, ψ ∈ L2(X,B, µ) is equivalent to

ergodicity.

Proof. The direct statement is already proven, so let us assume that this relation yields that for any pair
of T, µ-invariant sets A,A′ ∈ B we have: lim

n→∞
1
n

∑n−1
k=0 µ(1A′ ·1A◦T k) = µ(1A′ ·1A) = µ(A∩A′) = µ(A)µ(A′).

Hence, for A = A′ we get µ(A) = (µ(A))2, i.e. µ(A) ∈ {0, 1}. tu
Observe that µ(1A′ · 1A ◦ T k) = µ(T−kA ∩ A′) ∀A,A′ ∈ B. Thus limn→∞

1
n

∑n−1
k=0 µ(T−kA ∩ A′) =

µ(A)µ(A′) if the DS is ergodic. This relation is often called independence on the average.
A DS (T,X,B, µ) is called weakly mixing if 1

n

∑n−1
k=0 |µ(T−kA ∩ B)− µ(A)µ(B)| n→∞−→ 0 ∀A,B ∈ B or

1
n

∑n−1
k=0

∣∣µ(ϕ ◦ T k · ψ)− µ(ϕ)µ(ψ)
∣∣ n→∞−→ 0 ∀ϕ, ψ ∈ L2(X,B, µ).

By Lemma 0.4 below this is equivalent to 1
n

∑n−1
k=0

(
µ(ϕ ◦ T k · ψ)− µ(ϕ)µ(ψ)

)2 n→∞−→ 0 ∀ϕ, ψ ∈ L2(X,B, µ).
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Lemma 0.4 For any sequence of bounded complex numbers {an}∞n=0 the conditions 1

n

∑n−1
k=0 |ak|

n→∞−→ 0

and 1
n

∑n−1
k=0 |ak|2

n→∞−→ 0 are equivalent.

Lemma 0.5 Weak mixing yields ergodicity.

Proof. Due to weak mixing
0 = lim

n→∞
1
n

∑n−1
k=0

∣∣µ(ϕ ◦ T k · ψ)− µ(ϕ)µ(ψ)
∣∣ ≥ lim

n→∞

∣∣ 1
n

∑n−1
k=0 µ(ϕ ◦ T k · ψ)− µ(ϕ)µ(ψ)

∣∣ ≥ 0,

(since |a|+ |b| ≥ |a+ b|) which is equivalent to ergodicity by Lemma 0.3. tu
A DS is called mixing if µ(ϕ ◦T n ·ψ)

n→∞−→ µ(ϕ)µ(ψ) ∀ϕ, ψ ∈ L2(X,B, µ). Setting ϕ := 1A, ψ := 1B, we
get that in the case of mixing µ(T−nA ∩B)

n→∞−→ µ(A)µ(B) ∀A,B ∈ B. In words this is equivalent to say
that under the action of the DS any set of positive measure is uniformly spreading out the phase space,
and in a such way any �nonequilibrium� distribution converges in time to the �equilibrium� one.

It is of interest that it is enough to check this property only in the case of equal test-functions ϕ = ψ:

Theorem 0.6 (Renyi) Let µ(ϕ ◦ T n · ϕ)
n→∞−→ µ2(ϕ) ∀ϕ ∈ L2(X,B, µ). Then the DS is mixing.

Proof. It is enough to consider test-functions with 0-average. Fix some ϕ and consider a linear subspace
L0 of L2 spanned by the functions 1, ϕ, ϕ ◦ T n, n ∈ Z+ and its orthogonal complement L1. Clearly both
these subspaces are T -invariant. Denoting projection operators to these subspaces by πi we represent any
function ψ ∈ L2 as ψ = π0ψ + π1ψ. Since µ(ϕ ◦ T n · ϕ ◦ T k) n→∞−→ 0 for any k ∈ Z+ by the invariance of µ,
we have µ(ϕ ◦ T n · π0ψ)

n→∞−→ 0. On the other hand, µ(ϕ ◦ T n · π1ψ) ≡ 0 by the construction. �
In the Hilbert space L2(X,B, µ) of measurable complex valued functions on X with the scalar product

(ϕ, ψ) := µ(ϕ · ψ∗), where ψ∗ stays for the complex conjugation of the function ψ, we consider the so
called Koopman operator UT de�ned by the formula UTϕ(x) := ϕ(Tx). Due to this relation the Koopman
operator is conjugated to the map T on L2. Clearly, UT1X = 1X , hence, any constant is an eigenfunction
of this operator with the eigenvalue 1.

Lemma 0.6 UT : L2(X,B, µ)→ L2(X,B, µ) and this operator is isometric.

Proof. Due to the invariance of the measure µ, we have µ(|ϕ ◦ T |2) = µ(|ϕ|2) ∀ϕ ∈ L2(X,B, µ), which
proves the �rst assertion. Further, for any ϕ, ψ ∈ L2(X,B, µ) we get (UTϕ,UTψ) = µ(ϕ ◦ T · (ψ ◦ T )∗) =
µ(ϕ ·ψ∗) = (ϕ, ψ), i.e. the operator UT preserves the scalar product in L2(X,B, µ), which proves the second
assertion. tu

Two DS (Ti, Xi,Bi, µi), i = 1, 2 are called spectrally isomorphic if there exists a linear isomorphism P of
Hilbert spaces L2(Xi,Bi, µi), i = 1, 2 preserving the inner product, i.e. µ1(ϕ ·ψ∗) = µ2(Pϕ ·(Pψ)∗) ∀ϕ, ψ ∈
L2(µ1) and having the property that PUT1 = UT2P . A property is called spectrally invariant if it is shared
by any spectrally isomorphic DSs. Examples: ergodicity, weak mixing, mixing (see Theorem 0.7).

Theorem 0.7 Let UT be Koopman operator of the DS (T,X,B, µ). The DS is (a) ergodic i� the space of
eigenfunctions corresponding to the eigenvalue 1 of the operator UT is one dimensional; (b) weakly mixing
i� each eigenfunction of UT is a constant; (c) mixing i� limn→∞(Un

Tϕ, ϕ) = (µ(ϕ))2 ∀ϕ ∈ L1.

Let us formulate also another important ergodic result, where in distinction to the Birkho� theorem
the convergence is in Hilbert norm rather than a.e. Let U be an isometric operator in a (complex) Hilbert
space H, H inv

U := {ϕ ∈ H : Uϕ = ϕ}, and denote by PU the orthogonal projection operator to H inv
U .

Theorem 0.8 (von Neumann)
∣∣∣∣ 1
n

∑n−1
k=0 U

kϕ− PUϕ
∣∣∣∣
H

n→∞−→ 0.
Observe that if the DS (T, µ) is ergodic and U := UT , then

1
n

∑n−1
k=0 U

kϕ = Snϕ and PUϕ = µ(ϕ).
Lemma. The irrational rotation Tα of the unit circle is ergodic but not weakly mixing.
Indeed, let A = B := [0, 1/4]. Then lim inf

n→∞
m(T−nα A ∩ B) = 0 while lim sup

n→∞
m(T−nα A ∩ B) = 1/4 which

proves that the system is non mixing. To prove the absence of weak mixing, observe that the density of
the set Nε of positive integers for which m(T−nα A ∩B) ≥ ε is equal to ε. Therefore
1
n

∑n−1
k=0 |µ(T−kA ∩B)− µ(A)µ(B)| ≥ ε

∑
k∈Nε |µ(T−kA ∩B)− µ(A)µ(B)| ≥ ε((1/4− ε)− 1/16) > 0. �

It is rather di�cult to demonstrate a weak mixing but not mixing dynamical system. Example of weak
mixing � a �typical� interval exchange transformation for 3 intervals.
Lemma. The dyadic map T2 is mixing.
First we give a formal proof. Set z := e2πix, then the dyadic map is equivalent to the map Tz := z2

restricted to the unit circle on the complex plane {z : |z| = 1}. Consider Fourier expansions of two
functions ϕ, ψ ∈ L2

0(m), i.e. ϕ(z) :=
∑

k∈Z akz
k, ψ(z) :=

∑
k∈Z bkz

k with a0 = b0 = 0. Since ϕ ◦ T n(z) =



4∑
k∈Z ak(z

2n)k =
∑

k∈Z akz
2nk, we have m(ϕ ◦ T n · ψ) =

∑
k,k′∈Zm(akz

2nkbk′z
k′) =

∑
k 6=0 akb−2nk

n→∞−→ 0.

Here we have used that m(zk) =
∫ 1

0
e2πixkdx = 0 ∀k 6= 0, m(1) = 1, and that bn

n→±∞−→ 0 since ψ ∈ L2. �
To have a more �geometrical� explanation, observe that any interval whose endpoints are binary

fractions after a �nite number of iterations covers the entire phase space. A similar statement about the
covering for a general measurable set with positive Lebesgue measure follows since �nite binary fractions
are dense in [0, 1]. This property of the dyadic map can be generalized as follows. A DS (T,X,B, µ) is
called exact if its tail σ-algebra B∞ := ∩n≥0T

−nB is trivial, i.e. µ(A) ∈ {0, 1} ∀A ∈ B∞. The connection of
this property to the covering one is described by the following result.

Lemma 0.7 Let TA ∈ B ∀A ∈ B. Then µ(T nA)
n→∞−→ 1 ∀A ∈ B, µ(A) > 0 i� the tail σ-algebra is trivial.

Proof. We start with the direct statement. Assume the exactness. The collection of sets Bn := T−n◦T nA ∈
T−nB has the property: Bn ⊆ Bn+1, and B0 = A. Thus ∪n≥0Bn ∈ B∞. Since A ⊆ Bn ∀n we have µ(Bn) > 0,
and if the tail σ-algebra is trivial, then 1 = µ(∪n≥0Bn) = limn→∞ µ(T nA).

Conversely, let the covering property holds true. If A′ ∈ B∞ then ∀n ∃A′n ∈ B : A′ = T−nA′n. Assuming
that µ(A′) > 0 we get 1 = limn→∞ µ(T nA′) ≤ µ(A′n) ≤ 1 =⇒ µ(A′n) = 1. Thus µ(A′) = µ(A′n) = 1. tu

An exact map is necessarily ergodic since every invariant set is contained in B∞. It is not so evident,
but still correct, that any exact map is mixing. Observe that an invertible map cannot be exact: µ(T nA) =
µ(T−n ◦ T nA) = µ(A) does not depend on n.

Symbolic dynamics

A �nite set A with #A = r < ∞ we shall call the alphabet. Let ~X := AZ be the space of two-sided
sequences with elements from the alphabet A, i.e. ~X 3 ~x := {xi}∞i=−∞, xi ∈ A, and let ~X+ be the space of
one-sided sequences {xi}∞i=1.

We equip the �nite set A with the discrete topology (i.e., all its subsets are open) and consider the

product topology on ~X generated by cylinders: Ca1,...,an
i1,...,in

:= {~x ∈ ~X : xik = ak ∀ 1 ≤ k ≤ n, ik ∈ Z, ak ∈ A}.
In other words, the cylinder Ca1,...,an

i1,...,in
consists of all sequences whose {ik} �coordinates� are �xed (equal

to the given letters {ak}). Cylinders make a countable basis in the product topology and play the same
important role as intervals in R.

Exercise 10.2. Let C = Ca1,...,an
i1,...,in

and C ′ = C
a′1,...,a

′
n′

i′1,...,i
′
n′

be two cylinders. Describe ~X \ C, C ∩ C ′, C ∪
C ′, C \ C ′. (Finite unions of disjoint cylinders or empty sets.) Useful observation Ca1,...,an

i1,...,in
= ∩nk=1C

jk
ik
.

Corollary 10.3. Finite disjoint unions of cylinders make an algebra. This algebra generates the Borel
σ-algebra on ~X and ~X+.

Remarks 10.4. (a) In the product topology, the convergence ~x(k) → ~x is equivalent to the following:

for any n ≥ 1 there is a kn ≥ 1 such that x
(k)
i = xi ∀|i| ≤ n for all k ≥ kn i.e. the variable sequence ~x(k)

stabilizes as k →∞.
(b) The product topology is metrisable. The corresponding metric on ~X can be de�ned by dist(~x, ~x′) =∑∞

n=−∞
1−1xn (x′n)

r|n|
=
∑∞

n=−∞ |xn − x′n|/r|n|. (in the space ~X+, we only need to sum over n ≥ 0).

(c) In the product topology, both spaces ~X and ~X+ are compact and totally disconnected.
Definition 10.5. Let µ0 be a probability measure on the �nite set A. It is characterized by r numbers

pi = µ0({i}) such that pi ≥ 0 and
∑r

i=1 pi = 1.

Then µ0 induces the product measure µ on ~X (and on ~X+). For any cylinder Cj1,...,jn
i1,...,in

its measure is

given by µ(Cj1,...,jn
i1,...,in

) =
∏n

k=1 pjk . The measure µ is also called the Bernoulli measure on ~X (resp., on ~X+).
Remarks 10.6. The measure µ is nonatomic (has no atoms), unless pi = 1 for some i, in which case µ

is concentrated on one sequence ~x, for which xn = i ∀n. The product measure µ makes the coordinates xn,
n ∈ Z, independent random variables, in terms of probability theory. This explains the name Bernoulli.

Definition 10.7. The left shift map σ can be de�ned on the spaces ~X and ~X+. For every ~x ∈ ~X we
de�ne ~x′ = σ(~x) by x′i = xi+1 for all i ∈ Z. For every ~x ∈ ~X+ we de�ne ~x′ = σ(~x) by x′i = xi+1 for all i ≥ 0.

Exercise 10.8. Show that the left shift map σ is �onto� and continuous. On the space ~X it is a
homeomorphism, and on ~X+ it is an r-to-one map.

Exercise 10.9. Show that σ preserves the Bernoulli measure µ de�ned by 10.5. Hint: take a cylinder,
describe its image, and then use the algebra made by �nite disjoint unions of cylinders.

Definition 10.10. The symbolic space ~X (or ~X+) with a Bernoulli measure µ de�ned by 10.5 and the
left shift map σ is called a Bernoulli system (or a Bernoulli shift). We denote it by Br(p1, . . . , pr) (resp.,
B+,r(p1, . . . , pr)). Note: its only parameters are r and p1, . . . , pr.
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Proposition 10.11. The doubling map T (x) = 2x (mod 1) with the Lebesgue measure is isomorphic

to the (one-sided) Bernoulli shift B+,2(1/2, 1/2). Denote the corresponding Bernoulli measure by µ.
Proof. Let B′ ⊂ [0, 1) be the set of binary rational numbers, i.e. B′ = {k/2n : n ≥ 0, 0 ≤ k < 2n}.

Clearly, B′ is a countable set, so m(B′) = 0. Let r = 2 and ~X ′+ ⊂ ~X+ be the set of eventually constant

sequences, i.e. ~X ′+ = {~x : xi = xi+1 ∀i > i0}. Clearly, ~X ′+ is countable set, so µ( ~X ′+) = 0.
Now, for each x ∈ [0, 1)\B′ the binary representation x = 0.i0i1i2 . . .. We de�ne a sequence ~x = ϕ(x) ∈

~X+ by xn = in + 1 for all n ≥ 0. This de�nes a bijection between [0, 1) \ B′ and ~X+ \ ~X ′+. One can check
by direct inspection that ϕ preserves the measure and dynamics, i.e. it is an isomorphism. �

Proposition 10.12. The baker's map with the Lebesgue measure m is isomorphic to the (two-sided)
Bernoulli shift B2(1/2, 1/2).

Proof. Similar to the previous one. De�ne a map G : {0, 1}Z → Tor2 as follows:

G~x := (u :=
∞∑
k=0

xk/2
k+1, v :=

∞∑
k=1

x−k/2
k). Observe that this map is bijective except the Lebesgue measure

zero set of points (u, v) ∈ Tor2 such that either u or v is a �nite dyadic fraction. Our aim is to show that
G ◦ TB = Tbaker ◦ G µB-a.e. For (u, v) de�ned as above, we have (G−1(u, v))i = xi, (TB ◦ G−1(u, v))i =

xi+1 ∀i. Thus G ◦ TB ◦ G−1(u, v) = (
∞∑
k=1

xk/2
k+1,

∞∑
k=0

x−k/2
k+1) =

{
(2u, v/2) if 0 ≤ u < 1/2
({2u}, (v + 1)/2) if 1/2 ≤ u < 1

=

Tbaker(u, v), since x0 = 0⇐⇒ u ∈ [0, 1/2) and x0 = 1⇐⇒ u ∈ [1/2, 1).
It remains to check that G maps µB to the Lebesgue measure. As above we shall do this only for the

simplest generating cylinders. Observe that GCj
i = {(

∑∞
k=0 xk/2

k+1,
∑∞

k=1 x−k/2
k) : xi = j} is a set

consisting of 2|i| rectangles with sides 1× 2−|i|−1, i.e. m(GCj
i ) = 1/2 = µB(Cj

i ). �
Exercise 10.13. Let C and C ′ be two cylinders and µ a Bernoulli measure. Show that there is an

n0 ≥ 0 such that µ(C ∩ σ−n(C ′)) = µ(C)µ(C ′) for all n ≥ n0. Note: this applies to both ~X and ~X+.
Theorem 10.14. Every Bernoulli shift is mixing and hence ergodic.
Proof. Let A and B be two Borel subsets of ~X (or ~X+). By the approximation theorem 1.19, for

any ε > 0 there are sets Aε and Bε, each being a �nite disjoint union of some cylinders, such that
m(A∆Aε) < ε and m(B∆Bε) < ε. The result of Exercise 10.13 implies that there is an n0 ≥ 0 such that
µ(Aε∩σ−n(Bε)) = µ(Aε)µ(Bε) for all n ≥ n0. Since Aε approximates A and Bε approximates B, it is easy
to derive that |µ(A∩ σ−n(B))− µ(A)µ(B)| < 4ε for all n ≥ n0. Hence, µ(A∩ σ−n(B))

n→∞−→ µ(A)µ(B). �
Claim. Any two di�erent Bernoulli measures µ, ν are mutually singular.
Let us give an ergodic proof of this result. We already know that these two measures are ergodic

measures for the shift map. This implies the desired result. However, it is worth to discuss the reason for
this observation. Using the notation Zµ for the set of µ-typical points and that µ(Zµ) = 1 we are getting
that Zµ ∩ Zν = ∅ and hence µ(Zν) = 0. To simplify the discussion assume that r = 2, i.e. we deal only
with binary sequences. For each µ-typical point the density of indices corresponding to a given letter (say
1) is equal to the �probability� of this letter. Therefore the support of each of these measures is completely
de�ned by the density of ones on its support.

The de�nition of the Bernoulli measure may be rewritten as follows µ(C
j1,...,jn,jn+1

1,...,n,n+1 ) = µ(Cj1,...,jn
1,...,n )pjn+1 .

Our aim now is to extend this de�nition to the case of Markov measures. Here we consider a subset
XM of the space of sequences de�ned be the transition matrix M whose elements mij ∈ {0, 1}. Then
x ∈ XM i� xk = i, xk+1 = j only if mij = 1. We say that a stochastic matrix P is compatible with M
if pij/mij > 0 ∀i, j (as usual we assume that 0/0=1). Denote by p the left eigenvector (with the largest

eigenvalue) of the matrix P and introduce inductively the functional µ(C
j1,...,jn,jn+1

1,...,n,n+1 ) = µ(Cj1,...,jn
1,...,n )pjnjn+1 .

Finally setting µ(Cj
1) := pj we obtain a probabilistic measure, called Markov measure. It is straightforward

to check that this is indeed a measure and it is invariant with respect to the shift-map. Moreover, it is
positive on each �nite cylinder in XM .

Claim. If the matrix P is transitive, then Markov measures are mixing.
The prove of this result is not so obvious as in the case of Bernoulli measures. The point is that again

one can use the fact for a given �nite cylinder C its base and the base of the cylinder σ−nC are disjoint.
The problem is that the calculation of µ(σ−nA∩B) is not straightforward even for arbitrary large n. Here
one needs to sum up contributions from all admissible sequences connected these two bases. Denote by
α the �rst letter in the base of A, by β the last letter in the base of B, and by N > 0 the number of
letters between them. Then µ(σ−nA ∩B) = µ(B)pNβ,α

1
pα
µ(A), where pNβ,α is the β, α-element of the matrix
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PN . Now transitivity of the Markov matrix P implies that for any i, j we have pNi,j

N→∞−→ p(j). Therefore

pNβ,α
1
pα

N→∞−→ 1, which proves the claim. tu

Whenever we establish an isomorphism between a given dynamical system (X,T, µ) and a symbolic

system ( ~X, σ, ν) or ( ~X+, σ, ν) with some σ-invariant measure ν, we call this a symbolic representation of
(X,T, µ). We now outline a standard method of constructing symbolic representations.

Definition 10.15. Let X = X1 ∪ · · · ∪Xr be a �nite partition of X into disjoint parts, Xi ∩Xj = ∅
for i 6= j. Let T : X → X be a map. For every point x ∈ X its itinerary is a sequence de�ned by
{xn}∞n=0 : T n(x) ∈ Xxn ∀n ≥ 0. If the map T is a bijection, i.e. T−1 : X → X is also de�ned, then the
full itinerary3 of a point x ∈ X is a double in�nite sequence de�ned by {xn}∞n=−∞ : T n(x) ∈ Xxn ∀n ∈ Z.

Definition 10.16. A partition X = X1 ∪ · · · ∪ Xr is called a generating partition if distinct points
have distinct itineraries. Equivalently, ∀x 6= y ∃n such that T n(x) ∈ Xi and T

n(y) ∈ Xj with some i 6= j.
10.17 Construction of a symbolic representation. Let T : X → X be a map and X =

X1 ∪ · · · ∪Xr a generating partition. Let ϕ : X → ~X+ (or ϕ : X → ~X, if T is an automorphism) be the
map that takes every point x ∈ X to its itinerary. This map is injective for any generating partition.

Let ~X := ϕ(X) be the image of X. Then ~X is σ-invariant, i.e. σ( ~X) ⊂ ~X. Moreover, ϕ ◦ T = σ ◦ ϕ.
If T has an invariant measure µ on X, one can de�ne a measure ν on ~X by ν(B) = µ(ϕ−1(B)). Then the

dynamical systems (X,T, µ) and ( ~X, σ, ν) will be isomorphic.
This is a general principle for the construction of a symbolic representation.
Remark 10.18. In the above symbolic representation of T : X → X, any cylinder C = Ca1,...,an

m,...,m+n−1 ⊂
~X corresponds to the set ∩nk=mT

−kXωk that is, ϕ
−1(C) = ∩m+n−1

k=m T−kXωk with ω ∈ C.
Remarks 10.19. The symbolic representation of the doubling map corresponds to the partition X1 =

[0, 0.5) and X2 = [0.5, 1). The symbolic representation of the baker's map corresponds to the partition of
the square X by the line x = 0.5.

More generally one can de�ne `symbolic' maps using the so called transition matrix P with pi,j ∈ {0, 1}
and allow the symbol j to follow the symbol i from the alphabet A i� pij = 1. Such DS are called subshifts
of �nite type or topological Markov chains. Discuss connections to one-dimensional maps. [?]

A DS is called mixing of multiplicity r ∈ Z+ if

µ(ϕ0 · ϕ1 ◦ T k1 · . . . · ϕr ◦ T k1+k2+...+kr)
k1,...,kr→∞−→

∏r
i=0 µ(ϕi) ∀ϕi ∈ B. In terms of measurable sets this

property reads: µ(A0 ∩ T−k1A1 ∩ . . . ∩ T−k1−...−krAr)
k1,...,kr→∞−→

∏r
i=0 µ(Ai). Clearly the usual mixing is

equivalent to the mixing of multiplicity 1, while for any r the mixing of multiplicity r yields the mixing of
multiplicity r for any r′ < r.

Proposition 11.17. If T is mixing of multiplicity r ≥ 2, then it is mixing of multiplicity (r − 1).
Proof. Just set Ar = X in the above de�nition. �
Remark 11.18. The mixing (of multiplicity r) properties are invariant under isomorphisms.
Proposition 11.19. Every Bernoulli shift is mixing of multiplicity r for all r ≥ 2.
Proof. As in 10.14, we can approximate arbitrary sets A1, . . . , Ar with �nite unions of cylinders. Thus,

it is enough to prove the mixing of multiplicity r for cylinders only. We omit details. �
A DS is called K-mixing if supB∈B∞n (A1,...,Ar) |µ(A0 ∩ B) − µ(A0)µ(B)| n→∞−→ 0 ∀Ai ∈ B, r ≥ 0, where

B∞n (A1, . . . , Ar) is the smallest σ-algebra generated by the sets T−kAi for k ≥ n, i = 1, 2, . . . , r. The letter
�K� here stands for Kolmogorov. K-mixing means that the set A0 does not depend on any event de�ned
by a su�ciently faraway part of a `trajectory' of pre-images of the sets Ai for i > 0.
Theorem 0.9 For an automorphism the K-mixing yields mixing of multiplicity r ∀r ∈ Z+, but there exists
a not K-mixing automorphism with the mixing of multiplicity r ∀r ∈ Z+. (The case r = 1 will be proven
in Lemma 0.14)

Let us mention two important properties related to mixing. The �rst of them measures the `rate' of
mixing and is called the correlation coe�cient: CornT (ϕ, ψ) := |µ(ϕ ◦ T n · ψ) − µ(ϕ)µ(ψ)|, which depends
on the choice of observables ϕ, ψ ∈ L2. In a number of interesting examples (which we shall discuss later)
the dependence on n here is exponential.

Another property describes the distribution of the Cesaro means around the limit value. We say that
the DS (T,X,B, µ) satis�es the Central Limit Theorem (CLT) if ∀ϕ ∈ L2(X,B, µ) ∃σ = σ(ϕ) > 0

3itinerary = ìàðøðóò
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such that µ{x ∈ X :

√
n(Snϕ(x) − µ(ϕ)) ≤ t} n→∞−→ 1

σ
√

2π

∫ t
−∞ e

−x2/(2σ2)dx ∀t ∈ R1, i.e. to the normal

distribution.4

Let us de�ne also a few purely topological notions related to the mixing. A map T is called Lyapunov
stable if ∀ε > 0 ∃δ > 0 such that if %(x, y) < δ then %(T nx, T ny) < ε ∀n ∈ Z+. Here % is a metric in X.

A map T is called sensitive to initial conditions if ∃δ > 0 such that ∀x ∈ X in any its open neighborhood
U 3 x there exists y ∈ U and n ∈ Z+ for which %(T nx, T ny) > δ.

A map T is called topologically transitive if ∃x ∈ X such that Clos(∪n≥0T
nx) = X, topologically ergodic

if lim supn→∞
1
n

∑n−1
k=0 1B(T kA) > 0 for any two open sets A,B, and topologically mixing if for any two

open sets A,B there exists N ∈ Z+ such that T−nA∩B 6= ∅ ∀n > N . One often says that a DS is chaotic
if it is sensitive to initial conditions and topologically transitive.

Examples: Tα with irrational α is topologically transitive (but neither sensitive, nor mixing); the dyadic
map T2 is topologically mixing.

Lecture 3. Ergodic constructions [16.12.19] Direct and skew products, induced and integral maps,
and the natural extension.

For a pair of DS {(Ti, Xi,Bi, µi)}i=1,2 by their direct product we mean a new DS (T,X1 × X2,B1 ×
B1, µ1 × µ2) de�ned by the relation T (x1, x2) := (T1x1, T2x2). Example: a 2-dimensional torus rotation.

Theorem 0.10 The direct product map is ergodic i� one is the only joint eigenvalue of the Koopman
operators corresponding to the original maps. (Counterexample: Tα × Tα, λ = eiα, ϕ(x) = eix.)
Proof. Let UTiϕi = λϕi, i = 1, 2 with λ 6= 1. Observe that UT2ϕ

∗
2(x2) = ϕ∗2(T2x2) = λ∗ϕ∗2(x2) = λ−1ϕ∗2(x2).

Consider ϕ(x1, x2) := ϕ1(x1)ϕ∗2(x2). Then this function is orthogonal to the subspace of constants, and
Uϕ = UT1ϕ1 ·UT2ϕ∗2 = λλ−1ϕ1 ·ϕ∗2 = ϕ1 ·ϕ∗2 = ϕ, which contradicts to the ergodicity of the direct product.

Conversely, let (λi, ϕi), i = 1, 2 be two pairs of eigenvalue/eigenfunction of the Koopman operators
corresponding to the original maps. Then U(ϕ1ϕ2) = λ1λ2ϕ1ϕ2. On the other hand, due to general
properties of isometric operators (see details, e.g. in [KSF], p.187-188) all eigenpairs of the �product�
Koopman operator can be constructed in this way. Thus U has the unit eigenvalue i� ∃λ1, λ2 : λ1λ2 = 1,
i.e., λ∗2 = λ−1

2 = λ1 (λ
∗
2 is an eigenvalue of UT2 since it is isometric), which contradicts the assumption that

the only joint eigenvalue is 1. tu
Corollary. The direct product of a weakly mixing DS and an ergodic one is ergodic, and the direct product
of two (weakly) mixing DS is (weakly) mixing. Using spectral properties of isometric operators one can
derive these assertions from the above proof (see details, e.g. in [KSF], p.188-189).

Note that the direct product system might have invariant measures not represented by direct product
of invariant measures. Example: direct square map and the restriction to the diagonal.

A DS (T ′, X ′,B′, µ′) is called a factor-system of a DS (T,X,B, µ) if there exists a measurable map
ϕ : X → X ′ having the property that ϕ ◦ T = T ′ ◦ϕ. Observe that ϕ∗µ ∈MT ′ whence µ ∈MT . Each DS
has at least two trivial factor-systems: the system itself (ϕ is the identity) and a `trivial' DS: X ′ is a point
and ϕ maps X into this point. Each component of a direct product is its factor-system (ϕ : X1×X2 → Xi).
Theorem 0.11 The transition to a factor-system preserves ergodicity, weak mixing and mixing.
Proof. If A ∈ B′ is T ′, µ′-invariant then ϕ−1A is T, µ-invariant. Now, from the ergodicity we have
µ′(A) = µ(ϕ−1A) ∈ {0, 1}, which proves the preservation of ergodicity. Two other assertions can be proven
similarly. tu

Let (X×Y,BX×BY , µX×µY ) be a direct product of two measurable spaces. For a given DS (T,X,B, µ)
we consider a family of maps Tx, x ∈ X measurably depending on x, i.e. for any measurable function ϕ(x, y)
on X×Y the function ϕ(T nx, T nx y) is measurable on X×Y ×Z+. The map T̃ (x, y) := (Tx, Txy) is called a
skew product with the baseX. Let µY ∈MTx ∀x ∈ X, then µ̃ := µX×µY ∈MT̃ . Indeed, UT̃1AX×AY (x, y) =
1T−1AX (x) · 1T−1

x AY
(y) and µ̃(UT̃1AX×AY ) = µX(1T−1AX ) · µY (1T−1

x AY
) = µX(AX)µY (AY ) = µ̃(AX × AY ).

Let (T,X,B, µ) be a DS with the invariant measure µ. Consider a set E ∈ B with µ(E) > 0. Setting
BE := {A ⊆ E : A ∈ B} and µE := µ(A)/µ(E), we get a measurable space (E,BE, µE). Introduce the
return time function tE : E → Z+ by the relation tE(x) := min{n ≥ 1 : x ∈ E, T nx ∈ E}, and the �rst
return or Poincare or induced map wrt the set E as TEx := T tE(x)x for x ∈ E. By Poincare recurrence
result the function tE is �nite µE-a.e. In what follows we always assume that tE is �nite everywhere.

4It is of interest that the constant σ called the asymptotic variance may vanish, and it can be shown (M. Ratner, �The
CPT for geodesic �ows on n-dimensional manifolds of negative curvature�, Isr. J. Math., 16(1973), 181-197) that σ(ϕ) = 0
i� the homological equation ϕ− µ(ϕ) = Φ ◦ σ(ϕ)− Φ has a solution Φ ∈ L2(µ).
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Lemma 0.8 µ(1E · tE) = µ(∪n≥0T

nE) for each automorphism.

Proof. Let En := {x ∈ E : tE(x) = n}. Observe that En ∈ B, indeed, En ≡ (T−nE ∩ E) \ (∪k<nEk).
The sets T kEn are mutually disjoint for all 0 ≤ k < n < ∞ and ∪n≥0T

nE = ∪n≥1 ∪n−1
k=1 T

kEn. Hence,
µ(∪n≥0T

nE) = µ(∪n≥1 ∪n−1
k=1 T

kEn) =
∑∞

n=1

∑n−1
k=0 µ(T kEn) =

∑∞
n=1 nµ(En) = µ(1E · tE). tu

Corollary. tE ∈ L1(X,BE, µE) for each automorphism.
Observe that the proof above does not work for endomorphisms, namely, in general, µ(T kEn) 6= µ(En).

Lemma 0.9 µE ∈MTE for each automorphism.

Proof. By the characterization of invariant measures (Lemma ??) it is enough to check that µE(ϕ◦TE) =
µE(ϕ) ∀ϕ ∈ L1(E,BE, µE). For ϕ := 1En we have µE(1En ◦TE) = 1

µ(E)
µ(1En ◦T n) = 1

µ(E)
µ(1En) = µE(1En)

since the measure µ ∈ MT . On the other hand, each ϕ ∈ L1(E,BE, µE) can be approximated by a linear
combination of indicator functions, which yields the result. �

Now let T be a general endomorphism.

Lemma 0.10 Let (T,X,B, µ) be a measurable DS and let µ(E) > 0. Then
(a) µ(T−1

E B) = µ(B) ∀B ∈ B ∩ E;
(b) if µ ∈M0

T then µE ∈M0
TE
.

Proof. Consider collections of sets:
En := {x ∈ E : tE(x) = n} and Gn := {x ∈ Ec : Tx, . . . , T n−1x /∈ E, T nx ∈ E}.
This collection may be viewed as a tower construction:
E1 E2 E3 E4 . . . (E, 1) := E
. G1 G2 G3 . . . (E, 2) := TE \ E
. . G1 G2 . . . (E, 3) := T 2E \ (E ∪ TE)
. . . . . . . . . .
Notice that E = ∪n≥1En and T−1E = E1 ∪G1, T

−1Gn = En+1 ∪Gn+1, En = ∩n−1
k=1T

−nEc ∩ E ∩ T−nE.
We have T−1

E B = ∪n≥1(En ∩ T−1
E B) = ∪n≥1(En ∩ T−nB). Hence µ(T−1

E B) =
∑

n≥1 µ(En ∩ T−nB).
On the other hand, applying repeatedly the main property of the sets Ek, Gk one gets ∀n ≥ 1 that

µ(T−1B) = µ(E1 ∩ T−1B) + µ(G1 ∩ T−1B) = µ(E1 ∩ T−1B) + µ(T−1(G1 ∩ T−1B))
= µ(E1 ∩ T−1B) + µ(E2 ∩ T−2B) + µ(G2 ∩ T−2B) = . . . =

∑n
k=1 µ(Ek ∩ T−kB) + µ(Gn ∩ T−nB).

From 1 ≥ µ(∪k≥1(Gk ∩ T−kB)) =
∑

k≥1 µ(Gk ∩ T−kB) it follows that µ(Gk ∩ T−kB)
k→∞−→ 0.

Thus µ(B) = µ(T−1B) =
∑

k≥1 µ(Ek ∩ T−kB) = µ(T−1
E B), which proves (a).

To prove (b) consider a (µ, TE)-invariant set A ⊆ E (i.e. µ(A∆T−1
E A) = 0). ∀n ≥ 1 the set A∩En can

be pushed forward along its `trajectory' to obtain the set A∞ := ∪n≥1 ∪n−1
k=0 T

k(A ∩ En). One shows that
µ(A∞∆T−1A∞) = 0. Thus by the ergodicity of (T, µ) we get µ(A∞) ∈ {0, 1}. The equality µ(A∞) = 0
implies µ(A) = 0, so it remains to consider the case µ(A∞) = 1. In this case µ(E \ A∞) = 0 and thus
µ(A) = µ(E) since µ((A∞∩E)∆A) = 0. This �nishes the proof, since it implies that each (µ, TE)-invariant
set has measure 0 or 1. �

Denote by t
(n)
E (x) :=

∑n−1
k=0(tE ◦ T kE)(x) for n ≥ 0 the n-th return time of the point x ∈ E to E.

Lemma 0.11 (Kac's recurrence Lemma) Let (T,X,B, µ) be ergodic and let µ(E) > 0. Then

(a) µE(tE) = 1/µ(E); (b) n−1t
(n)
E (x)

n→∞−→ 1/µ(E) µE-a.e.; (c) µ(T−1
E B) = µ(B) ∀B ∈ B ∩ E.

Proof. ∀ϕ ∈ L1(E, µ) due to the ergodicity by Birkho�'s Ergodic Theorem Snϕ
n→∞−→ µ(ϕ) µE-a.e. For

x ∈ E, k ≥ 1 we have T kx ∈ E i� k = t
(n)
E (x) for some n ≥ 0, i.e. T kx = T nEx. Therefore

(1E · ϕ)(T kx) =

{
ϕ(T nE(x)) if k = t

(n)
E (x)

0 otherwise
. Setting ϕ := 1E · tE we get Sn(1E · tE)

n→∞−→ µ(1E · tE) µ-a.e.

The l.h.s. of this relation can be rewritten passing from tE to t
(k)
E as follows:

lim
n→∞

Sn(1E · tE)(x) = lim
k→∞

1

t
(k)
E (x)

∑k−1
j=0 tE(T jEx) = 1 since t

(k)
E =

∑k−1
j=0 tE ◦ T

j
E. Thus µ(tE) = 1, which using

that µE(·) = µ(·)/µ(E) proves the �rst assertion.
The second assertion can be derived similarly using ϕ := 1E:

µ(E) = lim
n→∞

Sn1E(x) = lim
k→∞

1

t
(k)
E (x)

∑k−1
j=0 1E(T jEx) = lim

k→∞
k

t
(k)
E (x)

.

To prove (c) consider ϕ := 1B ◦ TE, B ⊆ E. Again by Birkho�'s Ergodic Theorem for µ-a.a. x ∈ E
µ(T−1

E B ∩ E) = lim
n→∞

Sn(1B ◦ TE)(x) = lim
n→∞

1
n

∑n−1
k=0((1B ◦ TE) · 1E)(T kx) = lim

k→∞
1

t
(k)
E (x)

∑k−1
j=0 1B(T j+1

E x)

= lim
k→∞

t
(k+1)
E (x)

t
(k)
E (x)

· 1

t
(k+1)
E (x)

∑k−1
j=0 1B(T j+1

E x) = lim
k→∞

1

t
(k+1)
E (x)

∑k−1
j=0 1B(T j+1

E x) = lim
k→∞

k

t
(k+1)
E (x)

· µ(B) = µ(B).
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Here we used that
t
(k+1)
E (x)

t
(k)
E (x)

k→∞−→ 1 by (b), and the last 2 steps follow from the argument similar to the case

(b) but applied to ϕ = 1B. Note that TE′ = (TE)E′ for E
′ ⊂ BE. �

One of the main applications of those constructions is the reduction of the analysis of ergodic properties
of a given map T to those of a suitably chosen Poincare or integral map. This approach is especially fruitful
in the former case. It turns out that by any invariant measure of a Poincare map we can explicitly construct
the invariant measure of the genuine map. Moreover, we can do it even in a much more general situation.
Setting tE(x) = 0 for all x /∈ E we extend the map TEx := T tE(x)x to the map from the entire X into
itself, for which any measure invariant with respect to the original Poincare map remains invariant. This
simple extension shows that it is reasonable to make yet another step and to introduce a generalized
Poincare map Ttx := T t(x)x by means of an arbitrary measurable function t : X → Z+ ∪ {0}. Denote
Ek := {x ∈ X : t(x) = k}, E>k := ∪i>kEi = {x ∈ X : t(x) > k}, k ∈ Z+ ∪ {0}. The following result gives
an explicit formula for a T -invariant measure in terms of a given Tt-invariant measure µt.
Theorem 0.12 Let µt ∈MTt. The measure µT de�ned by the relation:

µT (A) :=
∞∑
k=0

µt(T
−kA ∩ E>k) ∀A ∈ B (0.1)

is T -invariant. Moreover, µT (X) <∞ if
∑∞

k=1 kµt(Ek) <∞, and, hence, µT
µT (X)

∈MT .

Proof. Observe that T−1
t A = ∪∞k=1(T−kA∩Ek) ∀A ∈ B which proves that T ∗t µ(A) =

∑∞
k=1 µ(T−kA∩Ek)

for any µ ∈ M. Now let µt ∈ MTt , i.e. T
∗
t µt = µt. Our next step is to prove that the measure de�ned by

the relation (0.1) is T -invariant. For any given set A ∈ B by the formula (0.1) we get:

µT (T−1A) =
∞∑
k=0

µt(T
−k−1A ∩ E>k) =

∞∑
k=0

µt(T
−k−1A ∩ (E>k+1 ∪ Ek+1))

=
∞∑
k=1

µt(T
−kA ∩ E>k) +

∞∑
k=1

µt(T
−kA ∩ Ek) =

∞∑
k=1

µt(T
−kA ∩ E>k) + T ∗t µt(A)

=
∞∑
k=0

µt(T
−kA ∩ E>k) = µT (A). Here we used that µt ∈MTt , i.e. T

∗
t µt = µt.

The last assertion follows from µT (X) =
∑∞

k=0 µt(T
−kX∩E>k) ≤

∑∞
k=0 µt(E>k) =

∑∞
k=0 kµt(Ek) <∞. tu

Note that the construction of Tt can be considered as a measurable time change for the dynamical
system (T,X,B, µ). An important example of the application of above construction is the analysis of a
logistic (quadratic) map Tx := ax(1 − x). It is worth note that the measure µT constructed by a �nite
Tt-invariant measure is not necessarily �nite, e.g. in the case of a Poincare map of a piecewise expanding
maps with a neutral singularity.

Consider now a dual construction. For a positive integer valued function I ∈ L1(X,B, µ) construct a
new measurable spaceX(I) := {(x, k) : x ∈ X, k ∈ 1, 2, . . . , I(x)}. Using a standard Borel σ-algebra on this
set we de�ne a measure µ(I) by the relation µ(I)((A, k)) := µ(A)/µ(I) ∀k,A ∈ B. On this space we consider

the so called integral map T (I)(x, k) :=

{
(x, k + 1) if k + 1 ≤ I(x)
(Tx, 1) otherwise

. Then µ(I) ∈MT (I) (exercise).

It is natural to think about the space X(I) as a tower whose base is the space X with I(x) �oors above
each point x ∈ X. Under the action of T (I) a point (x, k) goes up vertically by 1 �oor if it is possible, or
goes down till the �rst �oor to the point (Tx, 1) otherwise. In this construction we identify the original
space X with the set of pairs (x, 1) � the �rst �oor.

Lemma 0.12 T = (T (I))(X,{1}) (derivative map), and if ∪n≥0T
nE = X then T = T

(tE)
E (integral map).

Proof. The �rst statement follows immediately from the de�nition. To prove the second one, observe
that TE ∈ L1(E,BE, µE) and each point x ∈ T kEn for 0 ≤ k < n can be represented as (T−kx, k) with
T−kx ∈ En. Therefore, X can be identi�ed with X(tE), while T acts in this space as the integral map. tu
Theorem 0.13 Let (T,X,B, µ) be ergodic (weak mixing, mixing) and let TB ⊆ B, then both Poincare and
integral maps are ergodic (weak mixing, mixing).
Proof. We prove only ergodicity and start with the Poincare map (which was already proven). Let µ(A) >
0 and µE(T−1

E A∆A) = 0, i.e. it is �measurably� invariant. Since µ ∈ M0
T we have µ(∪n≥0T

nA∆X) = 0
hence 0 = µE(A∆(E ∩ (∪n≥0T

nA))) = µE(A∆(E ∩X)) and thus µE(A∆E) = 0.
In the case of the integral map consider a T (I), µ(I)-invariant set A with µ(A) > 0. Then A ∩ X is

T, µ-invariant. Since µ ∈MT we have µ((A ∩X)∆X) = 0. But then µ(I)(A∆X(I)) = 0. �
Another important construction is related to the problem of the noninvertability of T , i.e. that #{T−1x} 6=

1 for some x ∈ X. By an invertible extension of a DS (T,X) one means a bijective (one-to-one) map (~T , ~X)
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de�ned on the phase space ~X := X ×Y and having the property ~T n(x, y) = (T nx, y(n)) for all n and some

y(n) = y(n)(x, y), i.e. the projection to X of the point ~T n(x, y) is equal to T nx ∀x ∈ X, y ∈ Y, n ∈ Z+.

It turns out that in some cases there exist �nite dimensional extensions, e.g. the baker map ~T2(x, y) :={
(2x, y/2) if x ∈ [0, 1/2]
(2x− 1, (y + 1)/2) otherwise

� is an extension for the dyadic map. The latter construction can be

further extended for any map T satisfying the property that there exists a partition {Xi} of the phase
space Xi on the components on each of which the map T is a homeomorphism onto X. In this case one
can de�ne the extension as follows: ~T (x, y) := (Tx, T−1

|Xi(x)
y), where i(x) stands for the index of the element

of the partition containing the point x. How this this works for a non-complete tent map?
Now using a more sophisticated construction we shall construct an invertible extension for a general

endomorphism (T,X,B, µ). Let ~X := {~x := {xi}∞i=0 : Txi = xi−1 ∈ X ∀i > 0}. Note that ~x is not a
trajectory of the point x0 but rather a trajectory of the point x∞, and that not all possible sequences
with elements from X are contained in ~X. On this space we introduce the map ~T : ~X → ~X de�ned
by the relation (~T~x)i := Txi ∀i ≥ 0, which is called the natural extension of the map T . Observe that

this map is invertible, indeed, (~T−1~x)i = xi+1 ∀~x ∈ ~X, i ≥ 0. Equipping the space ~X with the σ-

algebra ~B generated by sets of type Bi,A := {~x ∈ ~X : xi ∈ A}, A ∈ B, i ≥ 0, we de�ne on this
space a measure ~µ by the relation ~µ(Bi,A) := µ(A). To show that this measure is well de�ned, consider

~µ(~x ∈ ~X : xi ∈ Ai, i = 0, 1, . . . , n) = µ(T−nA0 ∩ T−n+1A1 ∩ . . . ∩ An). Thus, we obtained a collection of
compatible �nite dimensional probability distributions, which by Kolmogorov's theorem can be uniquely
extended to a probabilistic measure on the σ-algebra ~B.
Theorem 0.14 ~µ ∈M~T , and (~T , ~µ) is ergodic/mixing i� (T, µ) is ergodic/mixing respectively.

This result shows that (~T , ~X, ~B, ~µ) is an automorphism, i.e. a measure preserving one-to-one system.

Proof. It is enough to check the question about the invariance on sets of type Bi,A, where it follows from

the de�nition of ~T . Indeed, ~µ(~T−1Bi,A) = ~µ(Bi+1,A) = ~µ(Bi,A). To prove the ergodicity let B := {~x ∈
~X : x0 ∈ A ∈ B}. If A is T, µ-invariant, then B is clearly ~T , ~µ-invariant, and ~µ(B) = µ(A). Hence, if

(T, µ) is nonergodic, then the same holds for (~T , ~µ). Assume now that (T, µ) is ergodic. Then Snϕ(x0)
n→∞−→

µ(ϕ) µ-a.e. for each ϕ ∈ L1(X,B, µ). Thus, for any function Φ ∈ L1( ~X, ~B, ~µ) of type Φ(~x) = ϕ(xi) we

have 1
n

∑n−1
k=0 Φ(~T k~x)

n→∞−→ ~µ(Φ). On the other hand, due to the condition Txi = xi−1, for any function
Ψ(x0, . . . , xi) there exists a function ψ ∈ L1(X,B, µ) for which Ψ(x0, . . . , xi) = ψ(xi). Therefore, such

functions are dense in L1( ~X, ~B, ~µ), which yields the ergodic theorem (and, hence, ergodicity) for (~T , ~µ).
To prove mixing, consider ϕ ∈ L2(X,B, µ) such that µ(ϕ) = 0 and let Φ(~x) := ϕ(xi). Then (Un

~T
Φ,Φ) =

(Un
Tϕ, ϕ) and both the right hand side and the left hand side vanish simultaneously when n → ∞. The

general case follows from this argument again due to the density of the functions Φ in L2( ~X, ~B, ~µ). tu
Now we are in a position to prove using the natural extension construction that an exact endomorphism

is mixing. This will be done in two steps. First we shall show that the natural extension of an exact
endomorphism is aK-automorphism, i.e. an invertible DS (T,X,B, µ) such that ∀r ∈ Z+ and ∀A0, A1, . . . , Ar ∈
B we have lim

n→∞
supB∈B∞n (A1,...,Ar) |µ(A0 ∩ B)− µ(A0)µ(B)| = 0, where the supremum is taken over sets B

from the minimal σ-algebra B∞n (A1, . . . , Ar) generated by the sets of type T kAi, k ≥ n, 1 ≤ i ≤ r. On
the second step we shall show that any K-automorphism is mixing, which proves the mixing of the initial
exact endomorphism by Theorem 0.14.
Lemma 0.13 If an endomorphism is exact then its natural extension is a K-automorphism. ([KSF], p.240)

Proof. Let (T,X,B, µ) be an exact DS. Recall that its natural extension � the automorphism (~T , ~X, ~B, ~µ)
is a ~µ-measure preserving invertible map. One can show that the following is equivalent to the de�nition
of the K-automorphism: there exists a σ-subalgebra ~B0 ⊂ ~B such that (a) ~T ~B0 ⊃ ~B0, (b)

∨
n∈Z

~T n ~B0 = ~B,
(c) ∩n∈Z ~T nA belongs to the trivial σ-algebra ∀A ∈ ~B0. Here B

∨
B′ means the minimal σ-algebra generated

by sets of type A ∩ A′ with A ∈ B, A′ ∈ B′.
We de�ne ~B0 as a σ-subalgebra consisting of sets ~A := {~x = {xi}∞i=0 ∈ ~X : x0 ∈ A0 ∈ B} for all

A0 ∈ B. To check the condition (a) observe that for ~A ∈ ~B0 we have ~T ~A = {~x ∈ ~X : ~T−1~x ∈ ~A} = {~x ∈
~X : x1 ∈ A0 ∈ B}. If ∃A1 ∈ B such that A0 = T−1A1 then ~T ~A = {~x ∈ ~X : x0 ∈ A1} ∈ ~B0, i.e. (a) holds.

(b) The σ-algebra ~T n ~B0 consists of sets of type {~x ∈ ~X : x0 ∈ An ∈ B}. On the other hand, by

de�nition such sets generate the entire σ-algebra ~B, which yields (b).

(c) For n ≥ 0 the sets from the σ-algebra ~T−n ~B0 are in an isometrical one-to-one correspondence with

the subsets of ~T−n ~B, which �nishes the proof. �
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Lemma 0.14 Any K-automorphism (T,X,B, µ) is mixing. ([KSF], p.234)
Proof. Observe that it is enough to check the mixing for all functions ϕ, ψ ∈ L2

0(X,T rB0, µ) for some
r ∈ Z since such functions by the condition (b) (see the proof of the previous result) generate the entire
space L2

0(X,B, µ). Observe now that ϕ ◦ T k, ψ ◦ T k ∈ L2
0(X,T r+kB0, µ). Therefore, denoting by Pk the

orthogonal projecting operator to L2
0(X,T rB0, µ) from L2

0(X,T r+kB0, µ), we get:
µ(ϕ ◦ T n · ψ) = µ(ϕ · ψ ◦ T−n) = (ϕ, (ψ ◦ T−n)∗)L2 = (Pr−nϕ, (ψ ◦ T−n)∗)L2 ≤ ||Pr−nϕ|| · ||ψ||

n→∞−→ 0, since

||Pr−nϕ||
n→∞−→ 0 due to the condition (c). �

Entropy. Classical approach.
Let T be a continuous map T : X → X. Denote by ξ := {ξi}r1 with ξi ∈ B a �nite measurable partition

of (X,B, µ), i.e. µ(∪iξi) = 1, µ(ξi) > 0 ∀i, µ(ξi ∩ ξj) = ∅ ∀i, j. For a pair of partitions ξ, η we de�ne
their common re�nement: ξ

∨
η := {ξi ∩ ηj : µ(ξi ∩ ηj) > 0}. Observe that making the re�nement of the

collection of sets {T−1ξi} we again get a �nite measurable partition which we denote T−1ξ. Consider the
n-th re�nement ξn of the partition ξ, which can be de�ned inductively ξn := ξn−1

∨
T−1ξn−1, ξ0 := ξ.

Then the measure µ induces a distribution {µ(ξni )}. Setting H(ξ) := −
∑

i µ(ξi) lnµ(ξi) we de�ne the
conditional entropy of a partition: hµ(T, ξ) := infn→∞

1
n
H(ξn) = limn→∞

1
n
H(ξn), and �nally the metric

entropy: hµ(T ) := supξ hµ(T, ξ).
Topological entropy. Now let ξ := {ξi}r1 be a covering of X by open sets. De�ne a transition matrix

M := {mij}, where mij = 1 if µ(ξi ∩ T−1ξj) > 0 and = 0 otherwise. Then on the Cantor set XM �
the space of sequences with the alphabet A := {1, 2, . . . , r} with the transition matrix M the left shift
map σ de�nes a symbolic dynamical system. Denoting by Anξ the set of all admissible words of length
n, i.e. di�erent pieces of length n of all trajectories of (σ,XM) and by #Anξ � their number, we de�ne

h(T, ξ) := inf
n→∞

1

n
log(#Anξ ) = lim

n→∞

1

n
log(#Anξ ). Then the topological entropy is h(T ) := supξ h(T, ξ).

Variational principle. For �good enough� maps we have h(T ) = supµ∈M0
T
hµ(T ).

Entropy. Approach based on Bowen's metric.
Let (X, ρ) be a compact metric space and let T be a continuous map T : X → X. For any n ∈ Z+,

the n-th Bowen metric ρn on X is de�ned by ρn(x, y) := max
{
ρ
(
T k(x), T k(y)

)
: k = 0, . . . , n− 1

}
. For

every ε > 0 we denote by Bn
ε (x) the open ball of radius ε in the metric ρn around x.

The local measure-theoretical entropy of µ ∈MT (X) at a point x ∈ X is de�ned by

hµ(T, x) := − lim
ε→0

lim
n→∞

1

n
log µ(Bn

ε (x)).

M. Brin and A. Katok (On local entropy. Geometric dynamics (Rio de Janeiro, 1981), 30�38, Lecture Notes
in Math., 1007, Springer, Berlin, 1983) proved that for an ergodic µ ∈ MT (X), hµ(T, x) is well de�ned
and does not depend on x for µ-a.e x ∈ X. Roughly speaking it measures the exponential rate of decay of
the measure of points that stay ε-close to the point x under forward iterates of the map.

For a general (non-ergodic) µ ∈MT (X) one de�nesmeasure-theoretical entropy by hµ(T ) := µ(hµ(T, ·)).
Finally, the topological entropy is de�ned by htop(T ) := sup{hµ(T ) : µ ∈M(X)}.
Calculate the local entropy for contracting, rotation and doubling maps.

Lecture 4. Linear Toral Automorphisms [16.12.19]
Rich classes of dynamical systems can be constructed by using linear transformations on a torus.
Definition 12.1. A d-dimensional torus Tord (for short, a d-torus) is a unit cube in Rd whose opposite

faces are identi�ed, i.e. we assume xi + 1 = xi for all i = 1, . . . , d. Alternatively, Tord can be de�ned as the
factor space Tord = Rd/Zd.

The 1-torus Tor1 is just the unit circle. The 2-torus Tor2 is a square with identi�ed opposite sides. One
is used to visualize Tor2 as the surface of a doughnut.

Definition 12.2. Let ~a = (a1, . . . , ad) ∈ Rd. A translation of the d-torus Tord is T~a(~x) = ~x+~a (mod 1)
i.e. T~a(x1, . . . , xd) = (x1 + a1, . . . , xd + ad), and each xi + ai is taken modulo 1.

Note: if d = 1, the translation T~a is just the rotation of the unit circle Tor1 through the angle a1.
Remark 12.3. Every translation T~a is a di�eomorphism of the torus Tord . Moreover, T~a is a linear

map and an isometry (i.e., it preserves distances between points and angles between vectors). Also, for
each n ∈ Z the nth iteration of T~a is T

n
~a = Tn~a.

Proposition 12.4. T~a preserves the Lebesgue measure m on the torus Tord.
Proof. The derivativeDT~a is the identity matrix, hence detDT~a = 1. Now the invariance of the Lebesgue

measure follows as in Exercise 5.6(a). �
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Theorem 12.5. The following are equivalent:

(a) T~a is ergodic with respect to the Lebesgue measure;
(b) ∀~x ∈ Tord the trajectory {T n~a (x)}∞n=0 is dense in Tord;

(c) ~a is non-resonant, namely the numbers a1, . . . , ad are rationally independent of 1, i.e. k0 +
∑d

i=1 kiai 6= 0
for any integers ki ∈ Z unless k0 = k1 = · · · = kd = 0.

Proof. We start with the implication (a)⇒(b). By 7.25, if T~a is ergodic, then the trajectory of almost
every point ~x ∈ Tord is dense. On the other hand, if the trajectory of at least one point ~x0 ∈ Tord is
dense, then the trajectory of every point ~x ∈ Tord is dense. Indeed, T n~a (~x) = ~x+n~a = ~x0 +n~a+ (~x−~x0) =
T n~a (~x0) + (~x− ~x0) (all calculations here are done modulo 1). So, to �nd a subsequence T nk~a (~x) converging
to a given point ~c ∈ Tord, it is enough to �nd a subsequence T nk~a (~x0) converging to the point ~c − ~x + ~x0

(mod 1).
Next we prove the implication (b)⇒(c). Suppose (c) fails. Consider the trajectory of the point ~x0 = ~0,

which consists of the points ~xn = T n~a (~0) = n~a (mod 1). Their coordinates must satisfy the relation∑d
i=1 kix

n
i = n

∑d
i=1 kiai = −nk0 = 0 (mod 1). We now show that the sequence {~xn} cannot be dense in

Tord. Let M = max{|ki|} and consider a small cube K ′ ⊂ Tord de�ned by K ′ = {~x : 0 ≤ xi ≤ 1/(2dM)
for i = 1, . . . , d}. For every point ~x ∈ K ′ the relation

∑
i kixi = 0 (mod 1) is equivalent to

∑
i kixi = 0

(without being taken modulo 1). This is just a hyperplane in Rd, which cannot be dense in any open set,
in particular in K ′.

Lastly, we prove the implication (c)⇒(a). The proof uses Fourier analysis. Let T~a be not ergodic and
B ⊂ Tord be an invariant set with measure 0 < m(B) < 1. The function f = 1B −m(B) is T~a-invariant

and bounded, so it belongs in L2
m(Tord). Consider functions ϕ~m(~x) = e2πi〈~k,~x〉 = cos 2π〈~k, ~x〉+ i sin 2π〈~k, ~x〉

where ~k ∈ Zd and 〈~k, ~x〉 =
∑

i kixi is the scalar product in Rd. These functions are periodic with period 1 in
each coordinate, so that they are well de�ned on Tord. They make an orthonormal basis (the Fourier basis)
in the space L2

m(Tord) of complex-valued functions on Tord. This means that if functions f and ϕ~k are

orthogonal ∀~k ∈ Zd (i.e. m(f ·ϕ∗~k) = 0) then f(~x) = 0 a.e. By using change of variable, for any T~a-invariant

function f(~x) we get m(f ·ϕ∗~k) = m(f(·+~a) ·ϕ∗~k) = m(f ·ϕ∗~k(·−~a)) = e2πi〈~k,~a〉m(f ·ϕ∗~k). By the assumption

(c), we have e2πi〈~k,~a〉 6= 1 for all ~k ∈ Zd except ~k = ~0. Therefore, we get the orthogonality for all ~k 6= ~0. For
~k = ~0 we have ϕ~k(~x) ≡ 1, hence the orthogonality holds as well for our function f(~x) = 1B −m(B). Thus,
f(~x) = 0 almost everywhere, a contradiction. �

Note: the translation T~a is not mixing, not even weakly mixing (just like circle rotations).
An alternative proof is related to the observation that the map T~a is a direct product of one-

dimensional rotations. Therefore it is ergodic i� the corresponding one-dimensional Koopman operators
have no common eigenvalues. Remark, that the eigenvalue ei2πα implies also the eigenvalues e−i2πα and
ei2π(1−α), which explains the nontrivial form of the resonance condition.

Next, we restrict ourselves to the 2-torus Tor2 = {(x, y) : 0 ≤ x, y < 1} (just for the sake of simplicity).

Let A =

(
a b
c d

)
be a matrix with integral entries a, b, c, d ∈ Z+. Assume that detA = ad− bc = ±1.

Definition 12.6. Any matrix A with the above properties de�nes a linear toral automorphism TA :
Tor2 → Tor2 by TA(~x) = A~x (mod 1) i.e. TA(x, y) = (ax+ by (mod 1), cx+ dy (mod 1)).

Note: TA is well de�ned on Tor2 whenever the entries of A are integers.
Exercise 12.7. Show that TA is one-to-one. Hint: if TA(~x) = TA(~y), then TA(~z) = ~0 (mod 1) for

~z = ~x− ~y (mod 1). Next consider the system az1 + bz2 = m1 and cz1 + dz2 = m2 for some m1,m2 ∈ Z and
show that its only solution (z1, z2) is a pair of integers z1, z2.

Remark 12.8. The map TA is a linear di�eomorphism of the torus Tor2. Moreover, ∀n ∈ Z its nth
iterate T nA is T nA = TAn . In particular, T−1

A = TA−1 . The point ~0 = (0, 0) is always a �xed point: TA(~0) = ~0.
Exercise 12.9. Show that every point (x, y) ∈ Tor2 with rational coordinates x, y ∈ Q is periodic.
Let us prove even more general statement for an arbitrary dimension d. First, we prove that if a point x is

periodic, then it has rational coordinates. Indeed, if it is periodic, then ∃m ∈ Z Amx−x = (Am−I)x ∈ Zd.
Since det(Am − I) 6= 0 we have (Am − I)−1 has rational entries. Hence x = (Am − I)−1(Amx − x) ∈
(Am − I)−1Zd ⊂ Qd � has rational entries. It remains to prove that a rational vector x is a periodic point.
Let r be the smallest common denominator of the entries of x. Denote by πr the projector from the matrix
A to Ar := A (mod r). Then the matrix Ar acts on the �nite ring Zr. Therefore ∃m ∈ Z+ such that
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πmr A = πr(A

m) = I. Hence πr(A
m − I) = 0 or Am = I (mod r). Hence all entries of the matrix (Am − I)

are multiple by r and thus Amx− x ∈ Z+, i.e. x and Amx correspond to the same torus point.

Proposition 12.10. TA preserves the Lebesgue measure m on the torus Tor2.
Proof. The derivative DTA is the matrix A itself, hence detDTA = ±1. Now the invariance of the

Lebesgue measure follows as in Exercise 5.6(a).

Example 12.11. Let A =

(
0 1
1 0

)
. The line x = y consists entirely of �xed points, while all the

other points are periodic with period 2, because T 2
A = id. The map TA ��ips� the torus across its main

diagonal x = y. There are no dense orbits, hence the map is not ergodic. Note that the eigenvalues of A
are λ = ±1.

Example 12.12. Let A =

(
1 m
0 1

)
with any m ∈ Z. The line y = 0 consists entirely of �xed points.

Every line y = const is invariant under TA. No dense orbits exist, so the map TA is not ergodic. Note that
A has one eigenvalue λ = 1 of multiplicity 2.

Note: if we picture Tor2 as a cylinder with the base circle {(x, y) : 0 ≤ x < 1, y = 0} and the
vertical coordinate y, then TA rotates every horizontal section y = const by the angle my, since it acts by
x 7→ x + my (mod 1). The higher the section, the larger the angle of rotation, so that the whole cylinder
is twisted upward (unscrewed). Such maps are called twist maps.

Remark 12.13. Examples 12.11 and 12.12 illustrate what ergodic components of a map may look
like. In 12.11, each ergodic component of TA is either a periodic orbit of period 2 or a �xed point (the
latter can be ignored since they make a null set). In 12.12, most of the ergodic components are sections
y = c (precisely, such are all sections with irrational c). The sections y = c for rational c can be further
decomposed into periodic orbits or ignored altogether, since their total measure is zero.

Example 12.14. Let A =

(
1 1
1 0

)
. In this case, the only �xed point is ~0, and the description of the

map TA is not so simple. Note that the eigenvalues of A are λ1,2 = 1±
√

5
2

and the corresponding eigenvectors
~v1 and ~v2 are orthogonal. Let L1 and L2 be the perpendicular lines on Tor2 spanned by the vectors v1 and
v2, respectively. Both lines are invariant under TA. Since λ1 > 1, the line L1 is expanded (�stretched out�)
by a factor of λ1 under TA. On the other hand, |λ2| < 1, so the other line L2 is compressed (contracted)
by a factor of |λ2| under TA (and it is �ipped over, because λ2 < 0). Locally, near the �xed point ~0, the
action of TA is shown on Fig. 12, it looks like a �saddle�. The orbit of any point near ~0 lies on a hyperbola
(or a pair of hyperbolas). In di�erential equations such �xed points are referred to as hyperbolic.

Definition 12.15. A linear total automorphism TA is hyperbolic if the eigenvalues of A are real
numbers di�erent from ±1.

Exercise 12.16. For any hyperbolic toral automorphism eigenvalues are irrational. Hint: (a+d)2±4 6=
n2 ∀a, d, n ∈ Z+.

Let λ = min{|λ1|, |λ2|}. Note that λ−1 = max{|λ1|, |λ2|}. Note also that the inverse matrix A−1 has
eigenvalues λ−1

1 and λ−1
2 and the same eigenvectors as A does. So, A−1 contracts L1 by a factor of λ and

expands L2 by a factor of λ−1.
Definition 12.17. The line L1 spanned by the eigenvector v1 corresponding to the larger (in absolute

value) eigenvalue of A is called the unstable manifold. It is expanded (�stretched out�) under TA. The line
L2 spanned by the eigenvector v2 corresponding to the other, smaller eigenvalue of A is called the stable
manifold. Note that both lines extend in�nitely long, they wrap around the torus in�nitely many times.

Exercise 12.18. Show that for any hyperbolic toral automorphism the lines L1 and L2 are dense on
the torus Tor2. Hint: verify that the equation of the line Li for i = 1, 2 is y = γix where γi = (λi − a)/b
is an irrational number by 12.16 (assume that b 6= 0 for simplicity). For any real number α the points
(nα, nαγi) (mod 1) for n = 0, 1, 2, . . . belong in Li. Now use Theorem 12.5 to show that for some α 6= 0
these points make a dense set. (Note: your α should be chosen carefully, so that (c) will be satis�ed!)

Note: with a little extra e�ort one can show that for any ε > 0 there is a d > 0 such that every segment
of length d on the line L1 intersects every disk of radius ε > 0 on the torus Tor2.

Rectangular partitions 12.19. Further analysis of the map TA involves symbolic dynamics.
According to 10.17, one needs to start with a generating partition. Here we partition the torus Tor2 into
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Ðèñ. 1: Markov partition into 3 elements R1, R2, R3(left), its image (right).

rectangles with sides parallel to the stable and unstable lines. Figure 1 (left) [13(a)] shows the partition
of the torus into three rectangles for Example 12.14. The sides of the rectangles are made by pieces of the
lines L1 and L2. Fig. 13(b) shows the images of those three rectangles under TA, respectively. Note that
each rectangle is stretched by TA in the direction of L1 (the unstable direction) and compressed in the
direction of L2 (the stable direction), but it retains its rectangular shape.

Proper intersection 12.20. Denote the rectangles byR1, R2, R3 and let us examine the intersections
TA(Ri)∩Rj for each pair i, j. If it is not empty, then it is a subrectangle in Rj, which stretches completely
across Rj in the unstable direction. Also, it is a subrectangle in TA(Ri), which stretches completely across
TA(Ri) in the stable direction. In other words, TA(Ri) intersects Rj properly (transversely).

Definition 12.21. A partition into rectangles {Ri}ri=1 with sides parallel to L1 and L2 is called a
Markov partition if all intersections TA(Ri) ∩ Rj, 1 ≤ i, j ≤ r, with nonempty interior are connected and
proper.

Lemma 12.22. Any Markov partition is generating.
Proof. If not, then some distinct points x 6= y have the same itinerary, i.e. x, y ∈ ∩∞k=−∞T

−k
A Rik for

some sequence {ik}∞k=−∞. However, the diameter of the set ∩nk=−nT
−k
A Rik is O(λn), which converges to zero

as n→∞, a contradiction. �
Note: it is essential for this proof that the intersections T (Ri) ∩ Rj are connected, without this

assumption Lemma 12.22 may fail.
Recall that a generating partition Tor2 = R1 ∪ · · · ∪Rr into r disjoint subsets gives rise to a symbolic

representation of an automorphism TA : Tor2 → Tor2 by a shift σ : ~X → ~X on a symbolic space with
r symbols as de�ned by 10.15�10.17. By 10.18, every cylinder Cim,...,in

m,...,n corresponds to the intersection

Rim,...,in
m,...,n = ∩nk=mT

−k
A (Rik) that is, ϕ

−1Cim,...,in
m,...,n = Rim,...,in

m,...,n .

We now study the Lebesgue measure m and the induced measure µ on ~X.
For each rectangle Ri, denote by si and ui its sides parallel to the stable direction (L2) and the unstable

direction (L1), respectively. Then m(Ri) = siui. Due to the properness of intersections, if TARi ∩ Rj has
nonempty interior, then m(TARi ∩Rj) = λsiuj, where λ = min{|λ1|, |λ2|}.

Lemma 12.23. (a) For any integers m < n and any im, im+1, . . . , in the set Rim,...,in
m,...,n either has empty

interior (and then zero measure) or has measure m(Rim,...,in
m,...,n ) = λn−msimuin

(b) The set Rm,n(im, . . . , in) has nonempty interior if and only if TA(Rik)∩Rik+1
has nonempty interior

for every k = m, . . . , n− 1. Proof is a simple geometric inspection. �
Definition 12.24. The matrix of transition probabilities is an r × r matrix Π = (πij) with entries

πij =
m(TARi∩Rj)

m(Ri)
=

{
λuj/ui if int(TARi ∩Rj) 6= ∅

0 otherwise
. The stationary probability vector is the row vector

~p = (p1, . . . , pr) with components pi = m(Ri) = siui.
Notes: (a) ~pΠ = ~p, i.e. ~p is a left eigenvector for the matrix Π with eigenvalue 1. In other words, it

remains invariant (stationary) under the right multiplication by Π.
(b) For each i we have

∑
j πij = 1. Matrices with nonnegative entries whose rows sum up to one are called

stochastic matrices.
(c) πij is the fraction of Ri that is mapped into Rj by TA. We interpret πij as the probability for a point
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starting in Ri to move into Rj.

Lemma 12.25. For any integers m < n and any im, . . . , in the intersection Rim,...,in
m,...,n has measure

m(im,...,inm,...,n ) = pimπimim+1 · · · πin−1in .

Definition 12.26. A measure µ on ~X is called a Markov measure with a transition probability matrix
Π = (πij) of size r × r and a stationary probability vector ~p = (p1, . . . , pr) if for every cylinder Cim,...,in

m,...,n

its measure is µ(Cim,...,in
m,...,n ) = pimπimim+1 · · · πin−1in . This model is known in probability theory as a Markov

chain. This analogy explains the term Markov partition.
Corollary 12.27. The Lebesgue measure m on Tor2 corresponds to the Markov measure µ on Ωr.

The dynamical systems (Tor2, TA,m) and ( ~X, σ, µ) are isomorphic.

Now the study of the hyperbolic toral automorphism TA reduces to the study of the shift σ on ~X with
the Markov measure µ. Surprisingly, this reduction makes things a lot simpler.

Notation 12.28. For k ≥ 1, denote by π
(k)
ij the elements of the matrix Πk. Note that ~pΠk = ~p ∀k ≥ 1.

Exercise 12.29. Show that π
(k)
ij =

m(TkARi∩Rj)
m(Ri)

.

Exercise 12.30. Let C = Cim,...,in
m,...,n and C ′ = C

im′ ,...,in′
m′,...,n′ ) be two cylinders such that n < m′. Let

t = m′ − n. Show that µ(C ∩ C ′) = µ(C)µ(C ′) π
(t)
inim′

/pim′ . Hint: do that �rst for t = 1 and then use

induction on t. A helpful formula is C = ∪ri=1C
im,...,in,i
m,...,n+1 .

Lemma 12.31. There is an s ≥ 1 such that the matrix Πs has all positive entries.
Proof. For large s > 1, the set T sA(Ri) is a very long narrow rectangle, one long side of which lies on

the line L1. Then by Exercise 12.18 (and the remark after it), T sA(Ri) intersects every rectangle Rj of the
Markov partition. Now 12.29 completes the proof. �

Theorem 12.32 (Limit Theorem for Markov Chains). If Πs has all positive entries for some

s > 0, then for all 1 ≤ i, j ≤ r we have π
(t)
ij → pj as t→∞.

Proof. Fix 1 ≤ i, j ≤ r and let n, t ≥ 1. Since Πn+t = ΠnΠt, we have π
(n+t)
ij =

∑r
k=1 π

(n)
ik π

(t)
kj . Let

δn = mink π
(n)
ik ≥ 0. Note that maxk π

(n)
ik ≤ 1 − δn. Now let mt = mink π

(t)
kj and Mt = maxk π

(t)
kj . The

following estimate is rather elementary: (1−δn)mt+δnMt ≤ π
(n+t)
ij ≤ δnmt+(1−δn)Mt. Hence,Mt+n ≤Mt

and mt+n ≥ mt. Next we show that Mt − mt → 0 as t → ∞. Let t = ms + n with 0 ≤ n < s. Then

Mt − mt ≤ Mms − mms. Now, put n = s and t = (m − 1)s in the estimate for π
(n+t)
ij above and get

Mms−mms ≤ (1−2δs) (M(m−1)s−m(m−1)s). Since δs > 0, we haveMms−mms < Cλm−1 where C = Ms−ms

and λ = 1− 2δs < 1.
Therefore, π

(t)
ij → qj as t→∞ with some qj ≥ 0 (independent of i). This implies ~eiΠ

t → ~q as t→∞ for
each i = 1, . . . , r, where ~ei is the ith canonical basis row-vector and ~q = (q1, . . . , qr). By linearity, ~pΠt → ~q
as t→∞, hence ~q = ~p. �

Two important facts follow from the above proof. First, the stationary vector ~p is unique. Second, the
convergence π

(t)
ij → pj is exponentially fast (in t).

Corollary 12.33. For any two cylinders C,C ′ ⊂ Ωr we have limn→∞ µ(C ∩ σ−n(C ′)) = µ(C)µ(C ′).
Proof. This follows from 12.30, 12.31 and 12.32.
Proposition 12.34. The shift σ : ~X → ~X with the Markov measure µ is mixing, and so is the original

hyperbolic toral automorphism TA.
Proof. This follows from 12.33 and standard approximation arguments used in the proof of 10.14.
Remark 12.35. The hyperbolic toral automorphism TA is actually Bernoulli, but the proof of this fact

is rather sophisticated, we omit it.

Lecture 5. Lyapunov Exponents [10.12.09]
In order to get a quantitative description of chaoticity people introduced some numerical characteristics.

One of them is the spectrum of Lyapunov exponents. We start with an abstract setting.
Let (T,X,B, µ) be a measurable DS. For (µ-a.e.) x ∈ X we associate a d× d matrix A(x) and consider

their products along the trajectories of the map T , i.e. A(n)(x) := A(T nx)×A(T n−1x)× . . .×A(x), x ∈ X.
Those products generate a skew product dynamical system with our �xed DS in the base and are called
linear co-cycles. The phase space in the layers is Rd with the Lebesgue measure md. For a given x ∈ X
for each n ∈ Z+ one calculates the spectrum of the matrix A(n)(x) and ordering logarithms of modules of

the eigenvalues of A(n)(x) normalized by 1/n obtain a collection of d ordered numbers: ~λ(n)(x) := {λ(n)
1 ≥

λ
(n)
2 ≥ . . . ≥ λ

(n)
d }. In particular λ

(n)
1 = λ

(n)
1 (x) is equal to the largest among the logarithms of the modules
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of eigenvalues multiplied by 1/n. Now we can study asymptotic properties of the vectors ~λ(n)(x) as n→∞.

Assuming that X ⊂ Rd and that A(x) = DxT := (∂(Tx)i/∂xj) is the matrix of partial derivatives of

the map T we are coming to the de�nition of the Lyapunov exponents as the limits of ~λ(n)(x) as n→∞.
Note: DxT

n = DTn−1xT · · ·DTxT ·DxT by the chain rule and hence A(n)(x) := DxT
n(x).

Exercise. Consider examples Tx := Ax with di�erent A and discuss properties of solutions.
Let us study in detail Lyapunov exponents in the 1D case, i.e. d = 1. In this case we can write explicitly

λ(x) := limn→∞
1
n

∑n−1
k=0 ln(|T ′(T kx)|) = limn→∞

1
n

∑n
k=1 ln(|(T kx)′|).

Example. Let T : X → X be a di�eomorphism of the unit circleX = S1 given by T (x) = x+ 1
3π

sin 2πx,
where 0 ≤ x < 1 is the cyclic coordinate on X. We have two �xed points here, x0 = 0 and x1 = 1/2.
Lyapunov exponents exist at both �xed points: λ(x0) = ln |T ′(x0)| = ln 5

3
> 0 and λ(x1) = ln |T ′(x1)| =

ln 1
3
< 0. Since λ(x0) > 0, the point x0 is unstable (a repeller). Likewise, x1 is a stable point (an attractor).

For any point x 6= x0 we have T n(x)→ x1 while T−n(x)→ x0 for x 6= x1 as n→∞. Hence, by the chain
rule, λ(x) := limn→−∞

1
n

ln |(T nx)′| = ln 5
3
m-a.e. , while limn→∞

1
n

ln |(T n(x0))′| = − ln 3. This shows that
Lyapunov exponents may depend on x even if they are well de�ned.
Theorem 0.15 Let (T,X,B, µ) be an ergodic DS and let X ⊂ Rd, d = 1 and T be piecewise smooth.
Then the Lyapunov exponent is well de�ned and does not depend on x ∈ X on the set of µ-full measure.
If we assume only that µ ∈MT (but not ergodic) then we can only claim the existence of λ(x).

Proof. De�ne ϕ(x) := ln |DxT (x)|. Then λ(x) := limn→∞
1
n

∑n−1
k=0 ϕ ◦ T (x), which converges by Birkho�

ergodic theorem as n→∞ to µ(ϕ) = µ(ln |DxT |) for µ-a.a. x ∈ X. If the measure µ is invariant but not
ergodic then Birkho� ergodic theorem implies only the convergence to a certain function of x. �
Theorem 0.16 (Oseledets) Assume that X is a compact manifold and T : X → X is a C1 di�eomorphism
preserving a Borel probability measure µ. Then there exists a T -invariant set X ′ ⊂ X, µ(X ′) = 1, such
that for every point x ∈ X all Lyapunov exponents exist.
Theorem 0.17 (Upper Lyapunov Exponent). Under the above assumptions, there is a λ+ ∈ R such that
limn→+∞

1
n

ln ‖DxT
n‖ = λ+ for µ-a.e. x ∈ X. Here ‖A‖ = sup‖~u‖=1 ‖A~u‖ is the norm of the matrix A.

Proof. By the chain rule, ‖DxT
n+m‖ ≤ ‖DxT

n‖ ‖DTnxT
m‖. De�ning ϕn(x) = ln ‖DxT

n‖, for µ-a.e. x ∈ X
we get ϕn+m(x) ≤ ϕn(x) + ϕm(T nx). This condition is referred to as the subadditivity of the sequence of
functions {ϕn}. Now the required result follows from the next general statement:
Theorem 0.18 (Subadditive Ergodic Theorem) Let T : X → X be a transformation preserving an ergodic
measure µ, and {ϕn} ⊂ L1

µ(X), n ≥ 1 be a subadditive sequence of integrable functions on X for µ-a.e.
x ∈ X. Then there is a λ ∈ R ∪ {−∞} such that limn→∞

1
n
ϕn(x) = λ for µ-a.e. x ∈ X.

Remarks. In Theorem 0.17, ϕ1(x) = ln ‖DxT‖ is a continuous function on X, because T is C1. Hence
there is an upper bound ϕmax := supx∈X ϕ1(x) < ∞. By iterating the subadditivity condition we obtain
for all x ∈ X that 1

n
ϕn(x) ≤ 1

n

∑n−1
i=0 ϕ1(T ix) ≤ ϕmax. Also, by the chain rule (DTnxT

−n)(DxT
n) = I (the

identity matrix), hence 1 = ‖I‖ ≤ ‖DxT
n‖ ‖DTnxT

−n‖ therefore
1
n
ϕn(x) = 1

n
ln ‖DxT

n‖ ≥ − 1
n

ln ‖DTnxT
−n‖ ≥ − ln maxx∈X ‖DxT

−1‖ =: ϕmin > −∞. As a result, λ+ in
Theorem 0.17 is �nite and λ+ ∈ [Fmin, Fmax].
Theorem 0.19 (Lyapunov Exponents versus Volume) Let Jn(x) = | detDxT

n| be the Jacobian of the map
T n at x (this is the factor by which T n changes volume in an in�nitesimal neighborhood of x ∈ X). Then
limn→∞

1
n

ln Jn(x) =
∑d

j=1 λj for almost every x i.e. the asymptotic rate of change of volume equals the
sum of all Lyapunov exponents (counting multiplicity).

Corollary 13.36. Assume that ln J1(x) ∈ L1
µ(X). Then µ(ln J1) =

∑d
j=1 λj i.e. the average one-step

rate of change of volume equals the sum of all Lyapunov exponents (counting multiplicity).
Proof. By the chain rule, Jn(x) = J1(x) · · · J1(T ix). Taking the logarithm, dividing by n and letting

n→∞ proves the theorem in view of the results above.
Corollary 13.37. Let the invariant measure µ be absolutely continuous with density f(x) with

respect to the Lebesgue measure (volume). Assume that ln f(x) ∈ L1
µ(X). Then

∑d
j=1 λj = 0 i.e. the sum

of all Lyapunov exponents vanishes.
Proof. J1(x) = f(x)/f(Tx), hence µ(ln J1) = µ(ln f)− µ(ln f(Tx)) = 0 by the invariance of µ. �
Let us discuss the multidimensional case in some more detail.
Facts 13.1 (from Linear Algebra). Let A be a d× d matrix (with real entries), and assume that

detA 6= 0. For a nonzero vector ~u ∈ Rd, consider the sequence {An~u}, n ∈ Z. We would like to see if An

expands or contracts the vector ~u as n→∞ and n→ −∞.
Let {νj}, 1 ≤ j ≤ q (q ≤ n), be all distinct roots (real and complex) of the characteristic polynomial

PA(ν) = det(νI−A). We arrange them so that ν1, . . . , νr are all the distinct real roots and νr+1, ν̄r+1, . . . , νs, ν̄s
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are all the distinct conjugate pairs of complex roots. Denote by mj, 1 ≤ j ≤ s, the respective multiplicities
of the roots. Jordan theorem (the real canonical form) says that the roots νj (the eigenvalues of A)
are associated to A-invariant generalized eigenspaces Ej, 1 ≤ j ≤ s, whose respective dimensions equal
dimEj = mj for 1 ≤ j ≤ r and dimEj = 2mj for r < j ≤ s (note: in the latter case the space Ej
is associated to the pair νj, ν̄j, rather than to a single root νj). Moreover, Rd = ⊕sj=1Ej. We recall that
detA 6= 0, hence νj 6= 0 for all j.

Now, if ~u ∈ Ej is an eigenvector (such a vector only exists for j ≤ r), then An~u = νnj ~u, hence
ln ‖An~u‖ = n ln |νj| + ln ‖~u‖ for all n ∈ Z. While this is not true for any vector ~u ∈ Ej, it is still true
that lim

n→∞
1
n

ln ‖An~u‖ = ln |νj| ∀~u ∈ Ej, ~u 6= ~0 This shows that when |νj| > 1, the vector An~u grows

exponentially fast as n→∞ and shrinks exponentially fast as n→ −∞. If |νj| < 1, then it is vice versa.
If |νj| = 1, then there is no exponential growth or contraction, but there might be a slow (subexponential)
growth or contraction of the vector An~u.

Exercise 13.2. A complete proof of the equation for ln |νj| above is quite lengthy and tedious. But
we can easily verify it in the simple case dimEj = 2. There are two principal subcases here. If νj is a real

root of multiplicity 2, then A restricted to Ej is given by a Jordan matrix J =

(
νj 1
0 νj

)
in some basis.

Verify that Jn =

(
νnj nνn−1

j

0 νnj

)
for all n ∈ Z and then derive the result for ln |νj|. If νj = a + bi is a

complex root and b 6= 0, then the corresponding Jordan canonical block is J =

(
a b
−b a

)
. Verify that

Jn = |νj|n
(

cosnϕ sinnϕ
− sinnϕ cosnϕ

)
for some ϕ ∈ [0, 2π) and all n ∈ Z, and then derive the result for ln |νj|.

Definition 13.3. The numbers λj = ln |νj| are called the characteristic exponents or the Lyapunov
exponents of the matrix A, while νj are called Lyapunov multiplicators.

Note: some distinct eigenvalues νi 6= νj may correspond to the same Lyapunov exponent, this happens
whenever |νi| = |νj|. In this case each 0 6= ~u ∈ Ei ⊕ Ej satis�es lim

n→∞
1
n

ln ‖An~u‖ = ln |νj|.
Proposition 13.4 (Lyapunov decomposition). Every nonsingular real matrix A has distinct

Lyapunov exponents λ1 > λ2 > . . . > λm (with m ≤ s) and there is a decomposition Rd = E1 ⊕ · · · ⊕ Em
such that A(Ej) = Ej and lim

n→∞
1
n

ln ‖An~u‖ = λj ∀~u ∈ Ej, ~u 6= ~0. The number dim Ej is called the

multiplicity of the Lyapunov exponent λj. We also call Ej the characteristic spaces for A.
13.5 Remark. We have

∑
j λj · dim Ej = ln | detA| because det(A) equals the product of all the

eigenvalues of A (counting multiplicity).

Examples 13.6. For the matricesA1 =

(
0 1
1 0

)
, A2 =

(
1 1
0 1

)
andA3 =

(
0 1
−1 0

)
all Lyapunov

exponents are zero. In the latter case eigenvalues are ±i. Note that An2 does expand and contract vectors,
but very slowly (at most linearly in n). On the other hand, for any matrix A de�ning a hyperbolic toral
automorphism TA (see 12.15) one Lyapunov exponent is positive, λ1 = ln ν−1 > 0, and the other is negative,
λ2 = ln ν < 0. Note that λ1 + λ2 = 0, because detA = ±1.

Definition 13.7. A matrix A and the corresponding linear map A : Rd → Rd are called hyperbolic if
none of the eigenvalues of A (real or complex) lie on the unit circle |z| = 1.

Equivalently A is hyperbolic i� all the Lyapunov exponents of A are di�erent from zero.
Definition 13.8. The A-invariant subspaces Es = ⊕λj<0Ej, Eu = ⊕λj>0Ej and Ec = Ej|λj=0 are called

stable, unstable, and neutral (or central) subspaces, respectively. Note that Rd = Es⊕Eu⊕Ec. If the matrix
A is hyperbolic, then Ec = {~0}, hence Ec can be omitted from the above decomposition.

By de�nition we get lim sup
n→∞

1
n

ln ‖An~u‖ < 0 ∀~0 6= ~u ∈ Es and lim inf
n→∞

1
n

ln ‖An~u‖ > 0 ∀~0 6= ~u ∈ Eu.

Let the matrix A have at least one nonzero Lyapunov exponent λi 6= 0. Denote λ = min{|λi| : λi 6= 0}
and ν = e−λ, Note that λ > 0 and ν < 1.

Proposition 13.9. For any ε > 0 there is a K > 0 such that for all n ≥ 0
‖An~u‖ ≤ K(ν + ε)n‖~u‖ and ‖A−n~u‖ ≥ K−1(ν + ε)−n‖~u‖ ∀~u ∈ Es and
‖An~u‖ ≥ K−1(ν + ε)−n‖~u‖ and ‖A−n~u‖ ≤ K(ν + ε)n‖~u‖ ∀~u ∈ Eu.
Proof. It is enough to prove the above bounds for unit vectors only. For every unit vector ~u ∃K = K(ε, ~u)
such that all these bounds hold, but K may depend on ~u. Then we pick an orthonormal basis e1, . . . , ek in
Es (resp., Eu), ensure the above bounds with the same constant K(ε) for all the vectors e1, . . . , ek. Then
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we use the triangle inequality to derive the proposition for all unit vectors ~u in Es and Eu. �

Thus, vectors ~u ∈ Eu grow exponentially fast under An as n → ∞ and shrink exponentially fast as
n→ −∞. For vectors ~u ∈ Es, it is exactly the opposite. Now what happens to other vectors in ~u ∈ Rd?

Corollary 13.10. For any vector ~u /∈ Eu ∪ Es and any ε > 0 there is a K > 0 such that ‖An~u‖ ≥
K(ν + ε)−|n|‖~u‖ for all n ∈ Z. That is, the vector ~u grows under An exponentially fast in both time
directions: as n→ +∞ and as n→ −∞.

Next, we extend the above results to nonlinear maps.
Definition 13.11. Let U ⊂ Rd be an open set and T : U → Rd a smooth one-to-one map with a �xed

point x, i.e. T (x) = x. Then the matrix A = DxT acts on tangent vectors ~u ∈ TxRd, and the tangent space
TxRd can be naturally identi�ed with Rd. Note that DxT

n = (DxT )n = An by the chain rule.
Assume that detA 6= 0. The Lyapunov exponents of the matrix A are called the Lyapunov exponents

of the map T at the point x. The corresponding subspaces Es, Eu, Ec ⊂ TxRd are called the stable, unstable,
and neutral (or central) subspaces, respectively, for the map T at the point x.

Note: the subspaces Es, Eu, Ec are invariant under DxT but not necessarily under the map T itself. On
the other hand, DxT is a linear approximation to the map T at the point x. This allows us to obtain the
following theorem, whose proof we omit.

Theorem 13.12 (Hadamard-Perron). ∃ two submanifolds W s ⊂ U and W u ⊂ U such that
(a) W s ∩W u = {x};
(b) the spaces Es and Eu are tangent to W s and W u, respectively, at the point x;
(c) T (W s) ⊂ W s and T−1(W u) ⊂ W u;
(d) T n(y)→ x for every y ∈ W s and T−n(y)→ x for every y ∈ W u, as n→∞.

We omit the proof, but remark that the manifold W u is constructed as a limit of (T nEu) ∩ V (x), as
n→∞, where V (x) is a su�ciently small neighborhood of x. The existence of this limit is proved by the
contraction mapping principle. Similarly, W s is constructed as a limit of (T−nEs) ∩ V (x), as n→∞.

Since A = DxT is a linear part of the map T at x, it is easy to obtain the following corollary.
Corollary 13.13. For any ε > 0 there is a neighborhood V (x) of the point x and a K > 0 such that

dist(T ny, x) ≤ K(ν+ ε)n ·dist(y, x) for all n ≥ 0, y ∈ W s∩V (x) and dist(T−ny, x) ≤ K(ν+ ε)n ·dist(y, x)
for all y ∈ W u ∩ V (x).

Definition 13.14. W s and W u are called the stable and unstable manifolds, respectively, for the map
T at the point x. The map T is called hyperbolic at a �xed point x (and then x is called a hyperbolic �xed
point for T ) if dim Ec = 0. In this case dimW s+ dimW u = d.

Definition 13.15. A hyperbolic point x is called a source (a repeller) if dim Es = 0 (hence Eu coincides
with TxRd). It is called a sink (an attractor) if dim Eu = 0 (hence Es coincides with TxRd). It is called a
saddle (a truly hyperbolic point) if both Es and Eu are not trivial.

Remark 13.16. Let x be a saddle point and y 6= x another point very close to x. If y ∈ W u, then
the trajectory T ny moves away from x exponentially fast for n > 0, at least until T ny leaves a certain
neighborhood of x. If y ∈ W s, then the trajectory T ny moves away from x exponentially fast for n < 0.
Now, if y /∈ W u ∪W s, then the trajectory T ny moves away from x exponentially fast for both n > 0 and
n < 0. This fact is known as the separation principle: nearby trajectories tend to separate exponentially
fast, either in the future or in the past or (in most cases) both.

All the above de�nitions and results extend to any di�eomorphism T : U → T (U) ⊂ M on an open
subset U ⊂ M of a Riemannian manifold M , rather than U ⊂ Rd. A Riemannian structure in M is
necessary for the norm ‖ · ‖ to be well de�ned on M . Henceforth we assume that T is de�ned on an open
subset of a Riemannian manifold M . All the above de�nitions and results easily apply to a periodic point
x ∈ U rather than a �xed point. If T p(x) = x, we can just consider T p instead of T .

Next, we turn to nonperiodic points. This is the most interesting and important part of the story.
Definition 13.18. Let the map T n be di�erentiable at a point x ∈ M for all n ∈ Z. Assume that

there are numbers λ1 > . . . > λm and the tangent space TxM is a direct sum of subspaces E1 ⊕ · · · ⊕ Em
such that if ~0 6= ~u ∈ Ei, then lim

n→∞
1
n

ln ‖(DxT
n) ~u‖ = λi The values λi are called the Lyapunov exponents

of the map T at the point x. The number dim Ei is called the multiplicity of the Lyapunov exponent λi.
The spaces Ej are called characteristic subspaces at x.

The subspaces Es = ⊕λi<0Ei, Eu = ⊕λi>0Ei, and Ec = Ej|λj=0 are called stable, unstable, and neutral
(or central) subspaces of TxM , respectively.
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The existence of the Lyapunov exponents λi and the subspaces Ei is not guaranteed for any point

x ∈ U , as an example will show soon. We say that a point x has all Lyapunov exponents if λi and Ei exist.
Remark 13.19. If a point x ∈ U has all Lyapunov exponents, then so do points T n(x) for all n ∈ Z.

Moreover, the points T n(x) have the same Lyapunov exponents (with the same multiplicity) as x does,
and the characteristic subspaces are invariant along the trajectory of x: (DxT

n)(Ei(x)) = Ei(T nx) for all
n ∈ Z and each i. Observe that the Lyapunov exponents and their multiplicities are T -invariant functions.

Example 13.20. Let TA : Tor2 → Tor2 be a hyperbolic toral automorphism. Then all Lyapunov
exponents exist everywhere on Tor2, and they are λ1 = ln ν−1 > 0 and λ2 = ln ν < 0. The corresponding
subspaces E1 and E2 are parallel to the lines L1 and L2, respectively.

Example 13.21. Let T : X → X be the baker's transformation of the unit square X. Let X ′ ⊂ X be
the set of points where T n is di�erentiable for all n ∈ Z. Then for every x ∈ X ′ all Lyapunov exponents
exist, and they are λ1 = ln 2 > 0 and λ2 = − ln 2 < 0. The corresponding subspaces E1 and E2 are parallel
to the x axis and y axis, respectively. Note that T±n fails to be di�erentiable on the lines x = k/2n and
y = m/2n, with k,m = 0, 1, . . . , 2n. Hencem(X ′) = 1, i.e. all Lyapunov exponents exist almost everywhere.

Theorem 0.20 (Shannon, McMillan, Breiman) Let (T,X,B, µ) be ergodic and let ξ be an arbitrary �nite
measurable partition. Then hµ(T, ξ) = − lim

n→∞
1
n

lnµ(ξ(n)(x)).

Thus hµ(T, ξ) describes the rate of decay of measures of elements of the preimages of ξ. It is very
natural to make the next step in the construction of the entropy of a dynamical system, i.e. to maximize
it over all invariant measures. The result h(T ) := supµ∈MT

hµ(T ) is called the topological entropy. The
measure on which the supremum above is achieved (if it exists) is called the measure of maximal entropy.

In the case of a Markov shift with the transition matrix π (consisting of zeros and ones) the topological
entropy is equal to the logarithm of the largest eigenvalue of the matrix π. The proof is based on the
simple observation that k(ξn) = (~1, πn~1) for the partition ξ consisting of the simplest cylinders.

Lecture 6. Phase space discretization in dynamical systems [16.12.19]

De�nition 0.1 By an ε-discretization, ε > 0, of a compact set X ⊂ Rd we mean a choice of an ordered
�nite lattice (a collection of points) Xε in the set X such that the distances between its neighboring
elements do not exceed ε. By an operator of ε-discretization we mean a map Dε : X → Xε that associates
to each point x ∈ X its nearest point on the lattice xε = Dε(x) ∈ Xε (if there are several such points we
choose the point with the minimal index � the lattice Xε is ordered). The value of the parameter ε > 0 is
called the diameter of the ε-discretization or the magnitude of the corresponding perturbation.

De�nition 0.2 By an ε-discretized (perturbed) system for the map T with the compact phase space X
we mean a pair (Tε, Xε), where Tε = Dε ◦ T .

Note that contrary to usual perturbation schemes, the discretized (perturbed) system here is given not
on the original phase space X but on the lattice Xε. In the case of round-o� errors in computer modeling
we deal with a uniform ε-discretization. When the phase space X of the system is the unit d-dimensional
cube (or torus) and ε = 1/N , N ∈ Z+, the lattice Xε consists of all points x ∈ X with rational coordinates
with the denominator N . Actually only binary dicsretizations with ε = 2−n (i.e., N = 2n) may occur in the
computer arithmetic. Another interesting example is a random discretization, when all the points of the
lattice are chosen randomly according to some distribution law (for example, to the Poisson distribution).

We start with properties of periodic trajectories under discretization and consider the simplest case in
numerical simulations, which is to �nd the globally stable periodic orbit of the system. It seems that for
su�ciently high precision the only visible e�ect of perturbations is deformation and shift of the periodic
orbit. However, it turns out that here �period multiplication� may take place. This phenomenon consists
in the emergence in a neighborhood of the original cycle of a new cycle, the period of which is a multiple
of that of the parent cycle.

Theorem 0.21 Suppose that the map T has a cycle of period n such that T is a local homeomorphism
in some neighborhood of the cycle formed of disjoint neighborhoods of points of the cycle, and such that
there is a cycle of period k of the ε-discretized system. Then the fraction k/n may take values 1 or 2 in
the one-dimensional case and may be an arbitrary integer in the general multidimensional case.
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Ðèñ. 2: Period doubling. By black dots we denote the points of the parent cycle (�xed point), and by
vectors the cycle of the discretized system.

The general scheme of the period doubling of a stable �xed point is shown in Figure 2.

Proof. Let x̄ = (x1, . . . , xn) be a cycle of the map T and let U = ∪Ui be its neighborhood, consisting of
disjoint neighborhoods of the points xi. We assume also that in U there is a cycle ȳ = (y1, . . . , yk) of the
ε-discretized map (i.e., T kε yj = yj, i = 1, 2, . . . , k).

We start with the one dimensional case (d = 1). The map T is a local homeomorphism of the collection
of intervals U into itself. Thus, the function T (x) is monotone in the set U , and, hence, the function Tε(x),
restricted to the set U ∩ Xε, is also monotone as a superposition of two monotone functions T and Tε.
Denote by T̃ε the �rst return map, constructed for the dynamical system (Tε, Xε) wrt to the set U1 ∩Xε.

Let z1 < z2 < . . . < zm1 be the points of the cycle ȳ lying in the interval U1. Since the map f is a local
homeomorphism, for any i the number mi of points of the cycle ȳ belonging to Ui does not depend on i
and is equal to an integer m (the period multiplier). There are three possibilities:

(a) T̃εz1 = z1. This means that m = 1 and k = n, i.e., there is no period multiplication.
(b) T̃εz1 6= z1 and (T̃ε)

2z1 = z1. Then m = 2 and k = 2n, i.e., the discretized system has a cycle
of double period. Notice that the necessary condition for the period doubling is monotone decreasing of
T n(x) in the neighborhood of the cycle.

(c) T̃εz1 6= z1 and (T̃ε)
2z1 6= z1.

Let us show that the last situation cannot take place. At �rst suppose that the value m is even, i.e.,
m = 2l. Since T̃ε is monotone, then (T̃ε)

2 is monotonically nondecreasing. Hence we have:

z1 < (T̃ε)
2z1 ≤ (T̃ε)

4z1 ≤ . . . ≤ (T̃ε)
2l = z1.

This is a contradiction, because the �rst inequality is strict. It remains to prove that the multiplier m
cannot be odd, i.e., it cannot be represented in the form m = 2l + 1, l ∈ Z+. Here there are also two
possibilities: the function T̃ε(x) is monotonically nondecreasing or monotonically nonincreasing. In the
former case the orientations of the pairs (zi, zi+1) are the same for all i = 1, 2, . . . ,m − 1. Therefore such
a sequence of points cannot form a cycle. In the latter case the orientations of the subsequent pairs are
reversed, because T̃εzi = zi+1 by the construction of the �rst return map. Hence the pairs (T̃εz2l+1, T̃εz2l+2)
and (z1, z2) must have a reverse orientation. We come to a contradiction again, because T̃εz2l+1 = z1 and
z1 < zi for any 1 < i ≤ m.

Consider the multidimensional case. In this case the discretized system may have a cycle of arbitrary
period integral multiple to the period of the parent cycle. Geometrically this result means that the orbit
of the ε-discretized system curls around the original orbit. In the one-dimensional case only one sort of
the rotation around the original orbit may take place � the rotation by the angle π, which we discussed
above. We now show that in the two-dimensional case this phenomenon may occur with an arbitrary
large multiplier. Consider a map of the two-dimensional plane R2, written in the polar coordinates (ϕ, r)
as (ϕ, r) → (ϕ + α, λr). Here λ ∈ (0, 1), and the irrational number α ∈ [0, 2π) are parameters. Each
trajectory of this map has a spiral shape and tends to the zero point as time tends to in�nity. Observe
that if (1 − λ) � 1, then for a su�ciently �ne uniform ε-discretization any trajectory of the discretized
map, beginning at the point (ϕ, r), with r � 1 will end up into a nontrivial periodic trajectory around the
origin rather than to hit the origin itself. The shape of this periodic trajectory is close to a circle, whose a
radius is de�ned by the following inequality: ε[λr/ε] ≥ r, where by [x] we denote the nearest integer point
to x. Therefore, such a periodic trajectory corresponds to the rotation by an angle close to α around the
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origin and we may obtain arbitrary large periods by a suitable choice of the parameters A and α. tu

Practically, there are only a few results showing that orbits of the discretized chaotic systems may be
related to the original orbits. Among these results the main one is the so called shadowing property, which
shows the connection of the orbit of a weakly perturbed system (with arbitrary type of perturbation)
with the original orbit. Introduction of this property (in its original form) is due to Anosov , who showed
that for a smooth hyperbolic system for each orbit of weakly perturbed system there exists a uniformly
closed orbit of the original one. However, this shadowing orbit may be non-typical in the sense that the
distribution of its points (which is the most important feature of a chaotic system) di�ers from the typical
one, de�ned by the corresponding SBR measure. The following statement shows that these situations may
often happen in the case of phase space discretizations.

Theorem 0.22 Assume that the set of all preimages of a certain cycle is dense in the phase space. Then
there is a sequence of discretizations with vanishing diameters such that each discretized system has only
one cycle that coincides with the original one.

Proof. Consider a sequence of discrete lattices {X(n)} such that the points of the n-th lattice coincide with
the n-th preimage of the points of the cycle under consideration. Now the fact that the set of preimages is
dense in the entire phase space yields the vanishing of the diameters of the lattices {X(n)}. On the other
hand, after n iterations of the discretized map each point of the lattice {X(n)} ends up in one of the points
of our cycle. tu

We can consider also a more general approach to this situation. For a given map T let us �x a family of
lattices {Xε}. Then for each cycle x̄ε of the discretized map Tε we associate the number p(x̄ε), de�ned as the
number of points in all preimages of this cycle (including the cycle itself) normalized by the total number
of points in the lattice {Xε}. This number shows how often one can observe the given cycle when initial
points are chosen at random. To each discretization {Xε} we assign the cycle x̄ε with the largest value of
p(x̄ε) and the probability measure µε uniformly distributed along this cycle. We ask the question about the
limit points (in the weak topology of measures) of these measures for the typical family of discretizations.
It may be shown that for a su�ciently �good� map these limit points are invariant measures of the map.
However, the family of invariant measures may be very rich (for example uniform measures on cycles and
their closure). We believe that the most likely answer is the following: the limit point coincides with one
of the measures: Sinai - Bowen - Ruelle measure or the measure of maximal entropy. Neither of these
possibilities can be ruled out at the moment.

It may seem that the situation described in Theorem 0.22 is unrealistic. Actually, the condition about
the density of preimages is typical for chaotic systems, and so the question is only about how often
such particular discretizations occur. It is worth noting that for any binary discretization (i.e., computer
discretization) of the dyadic map x → 2x (mod 1) the discretized system has only one cycle with period
equal to 1. The same is true also for the map x→ kx (mod 1) with integer k and the corresponding uniform
k−n discretizations. In the general case however, discretizations satisfying the assumptions of Theorem 0.22
are not uniform and this gives the hope to think that a resonance between the map and the discretization
in numerical simulations may appear only by chance.

From another point of view Theorem 0.22 shows that some sort of a �localization� phenomenon takes
place: trajectories that should normally be dense remain con�ned to a small number of points. Note that
one of the most frequently used numerical methods to calculate the density of an invariant measure of a
chaotic dynamical system is to compute the histogram of a su�ciently long numerical orbit of the system.
Theorem 0.22 tells us that the error here can be very large even in the L1-norm. Indeed, in the numerical
simulation (with the precision 2−N) of the simplest chaotic map x→ 2x (mod 1) (dyadic map) every point
of the binary lattice will end up into the zero unstable �xed point of the original map. As a result this
unstable �xed point becomes a globally stable �xed point of the discretized map. For example, on a VAX
computer it could be veri�ed that the orbit starting at the point 1/3 (which is a periodic point of period
2 in the true dyadic map) falls to 0 in 57 iterations, even with the double precision. One could think
that, for computational purposes, there is no need to study asymptotic properties but it is enough to stop
the count when the histogram is already stabilized and the accumulated error is not yet large. However,
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the analysis shows also that this method may not lead to the required result. In the case of the uniform
ε-discretization the number of steps at which the count should be stopped is of order − ln(ε), while the
guaranteed precision is of order (− ln(ε))−1/2.

Statistical probability for discretized systems. Now let us try to answer the question about
how �typical� is the behavior of the discretized systems. First let us consider the existence of a cycle of
an ε-discretized system for su�ciently small ε > 0 in a small neighborhood of an unstable cycle of the
unperturbed system. For various values of ε a cycle of an ε-discretized system can appear and disappear
with arbitrary small changes in ε and a given choice of Xε. Therefore, to answer the above question it is
necessary to make some additional assumptions about the structure of discretizations. We restrict ourselves
to the most interesting case for applications, the case of uniform discretizations of the d-dimensional unit
cube X. In this case, ε takes values of the form ε = 1/n, n ∈ Z+. Even in this case, the presence
or absence of a cycle for a uniform 1/n-discretized system depends on n in a very irregular way. The
statistical approach seems to be the most natural one for the description of such a situation.

De�nition 0.3 By the statistical probability of some event (with respect to a given family of space
discretizations) we mean the fraction of the discretizations for which this event takes place.

Thus, the statistical probability p(x1, x2, · · · , xn) of the stabilization of an unstable cycle (x1, x2, · · · , xn)
of a map f is the density of the set of those natural numbers N for which (D1/Nx1, D1/Nx2, · · · , D1/Nxn)
is a cycle of a uniformly 1/N -discretized system.

The meaning of this de�nition is that the existence, in the case of uniform discretizations, of a cycle of
a discretized system in a small neighborhood of the original cycle results in the possibility to observe an
unstable trajectory in the computer simulation. It is therefore natural to call this situation the �stabilization
of an unstable cycle�. Numerical experiments show that in the modelling of chaotic dynamical systems,
with all cycles unstable, some of the cycles are observed much more frequently than others. The following
statement provides an explanation for this phenomenon.

Theorem 0.23 Let x̄ = (x1, x2, . . . , xn) be an unstable cycle of the map T , that is continuously di�erentiable
in a neighborhood of the cycle, and let the coordinates of its points x1, x2, . . . , xn be rationally independent.
Then the statistical probability of the stabilization p(x̄) is well de�ned and depends only on the derivatives of
the map f at the points of the cycle: it is equal to the volume of the dn-dimensional polyhedron Ω = Ω(f, x̄)
de�ned by the following system of semi-linear inequalities:

|T ′(x1)z1 − z2| ≤ 1/2

|T ′(x2)z2 − z3| ≤ 1/2

· · ·
|T ′(xn)zn − z1| ≤ 1/2

|zi| ≤ 1/2, i = 1, 2, . . . , n,

where T ′(x) is the matrix of partial derivatives of the map f at the point x, and |z| = maxi{|z(i)|} for a
vector z ∈ Rd.

Proof. Clearly the density of the set of natural numbers depends only on the distribution of large elements
of the set, corresponding in our case to su�ciently �ne discretizations. Therefore, working only in small
neighborhoods of the points of the cycle, we may assume that the map T is linear there. Let us �x a natural
number k � 1. The collection of points x̄1/k = (D1/kx1, D1/kx2, . . . , D1/kxn) is a cycle of the discretized
map T1/k if and only if the following system of inequalities holds:

|x2 + T ′(x1)(D1/kx1 − x1)−D1/kx2| <
1

2k

|x3 + T ′(x2)(D1/kx2 − x2)−D1/kx3| <
1

2k
· · ·

|x1 + T ′(xn)(D1/kxn − xn)−D1/kx1| <
1

2k
.
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Indeed, if these inequalities hold, then T1/k(D1/kxi) = D1/kxi+1 for all i. In addition, if one of the inequalities
fails, say the i-th inequality, then T1/k(D1/kxi) 6= D1/kxi. Recall now that D1/kxi is the best rational
approximation of the vector xi with rational coordinates with the common denominator k. Therefore,
multiplying both sides of these inequalities by k and denoting by {v} the di�erence between a vector
v ∈ Rd and the nearest vector with integer coordinates, we have:

|T ′(x1){kx1} − {kx2}| < 1/2

|T ′(x2){kx2} − {kx3}| < 1/2

· · ·
|T ′(xn){kxn} − {kx1}| < 1/2.

Now, let us consider the rotation Tα on the dn-dimensional unit torus Tor = [−0.5, 0.5]nd by a (nd)-
dimensional angle α = (x1, x2, . . . , xn) ∈ Rnd. Then the trajectory of this map starting at the point α ∈ Tor
ends up into the domain Ω, de�ned in the theorem if and only if there is a stabilization e�ect. Thus, p(x̄)
coincides with the fraction of the time this trajectory spends in Ω and consequently coincides with the
Fα-invariant measure of this domain. However, Lebesgue measure on the torus Tor is the only one invariant
measure of the irrational rotation, which yields the desired statement. tu

To clarify this construction, consider a related but signi�cantly simpler problem. Let x be an arbitrary
irrational number in the unit interval and let us compute how often the precision of a rational approximation
of this number with a denominator n is not worse than some �xed constant ε � 1 divided by n. This
amounts to calculating the density p(x) of those natural numbers n for which the inequality

∣∣x− q
n

∣∣ ≤ ε
n

holds for some natural q = q(n). Multiplying both sides of this inequality by n, we see that it is equivalent
to |nx (mod 1) | ≤ ε. Now, considering the two intervals on the unit circle de�ned by this inequality and
using the one-dimensional rotation by the angle x to calculate p(x), we come to the same situation as in
the proof of Theorem 0.23. In this case we can calculate this density in the explicit form: p(x) = 2ε. Note
that the considered situation coincides with the stabilization of a �xed point x of a one-dimensional map,
while the derivative at this point is equal to 1/(2ε).

Let us discuss brie�y a question about the practical applicability of this statement: which magnitude
of k is needed to reach the value of p(α) (de�ned by Theorem 0.23 with a su�ciently good precision?
From the proof above it follows that the answer to the question depends on the rate of convergence of
the fraction of the points of a typical trajectory of the torus rotation which happen to be in the speci�ed
region. In the �good� case, this convergence is of order ln(k)/k, which demonstrates that it is quite fast.

Note that the statistical probability of the stabilization obtained in Theorem 0.23 does not depend on
the coordinates of the points of the cycle. It should be pointed out that such a uniform estimate holds
only for �typical� cycles. If the condition of rational independence of the coordinates (or irrationality of
the number x above) does not hold, there are �exceptional� cycles (and even maps for which all the cycles
are �exceptional�) whose stabilization probability depends on the coordinates of its points. Among the
�exceptional� cycles there are cycles with abnormally high probability of stabilization (for example, equal
to 1) and also cycles for which this probability is abnormally small (in comparison with the �typical�
situation described in the theorem).

The method used in the proof of Theorem 0.23 enables us to study even �ner properties of the discretized
systems. For example, one can calculate by this method the statistical probabilities of events that can
appear in the �period multiplication� phenomenon.

A closely related construction can be carried out also if we want to consider not all uniform discretizations
but only binary ones corresponding to the case ε = 2−n. In this case using the idea similar to the one
in the proof of Theorem 0.23 we obtain the multidimensional dyadic map T (the direct product of (dn)
dyadic maps) rather than the rotation of the dn-dimensional unit torus by the angle x. In distinction to
the irrational rotation the map T has a rich family of invariant measures and therefore the answer depends
on the invariant measure represented by the trajectory of this system, starting at the point (x1, x2, . . . , xn).
However, for almost all initial conditions this measure is still equal to the Lebesgue measure on the dn-
dimensional unit torus.

Theorem 0.24 Suppose that the map T is continuously di�erentiable in a neighborhood of its cycle x̄ =
(x1, x2, . . . , xn). Then there is a map T̂ arbitrary C1-close to f with a cycle x̂ = (x̂1, x̂2, . . . , x̂n) close
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to initial one such that the statistical probability of the stabilization of the cycle x̂ in the case of binary
discretizations of the map T̂ is equal to 1.

Proof. Notice that the preimages of the zero �xed point of the dyadic map (which is the replacement
of the rotation map for binary discretizations) are dense on the interval [0, 1]. Therefore, we can choose a
map f̂ such that the cycle x̂ on one hand, lies in this set of preimages, and on the other hand, is arbitrary
close to the initial one. However the trajectory of the dyadic map, starting at the point x̂ is far from
being typical, because it runs into the unstable zero �xed point and stays there. Therefore the statistical
probability of the stabilization of the cycle x̂ is equal to 1. tu

For systems on the unit torus one can consider also another approach to study how typical the properties
of discretized systems are. For a torus (in contrast with a cube) it is natural to �x a discretization up to a
shift of the origin and a rotation around it. Therefore, in this case the parameter is not discrete and by the
statistical probability of the stabilization of the cycle (x1, x2, · · · , xn) we mean the value p(x1, x2, · · · , xn; ε),
which is equal to the Lebesgue measure of the set of shifts (≤ 1) of the origin and rotations (by angles
from 0 to 2π) around it, divided by 2π for normalization, for which the stabilization e�ect takes place.
Here ε is the diameter of the discretization. This de�nition gives a possibility obtain the dependence
of the probability of the stabilization on the �xed discretization diameter ε. Let us consider the map
ϕ : R1

+ → R1
+, de�ned by the following relation: ϕ(x) = x/(1 + x). The following statement demonstrates

a variant of the universality of the dependence of this probability on the parameter ε.

Theorem 0.25 Suppose that the map T is continuously di�erentiable in a neighborhood of its cycle
(x1, x2, · · · , xn). Then for any su�ciently small ε > 0 the sequence of quantities {p(x1, x2, · · · , xn;ϕk(ε))}∞k=1

is almost periodic. Here ϕk(x) is the value of the function ϕ applied k times recursively at the point x.

Case of neutral periodic trajectories. Now let us study the in�uence of the uniform discretizations
on systems whose trajectories are neither stable nor unstable, or such that they have a local invariant
component of this type. The main example here is the rotation T (α) of the d-dimensional unit torus
X :=Tor by an angle α ∈ Rd. In this case the analysis of individual trajectories does not make sense, and
we study the in�uence of discretizations to certain global properties of the system, such as the ergodicity
property. In the case of a discretized system (i.e., a system with a �nite phase space), ergodicity means that
the invariant set consists of only one cycle. Therefore any trajectory of this map ends up into this cycle
after a �nite number of iterations. Since the discretized rotation preserves distances between the points
of the uniform lattice, in the ergodic case there is only one periodic trajectory �lling in the entire phase
space (i.e., its period is equal to the number of points in Xε). The ergodicity property of the discretized
rotation does not depend on a shift of the origin, or a rotation of our lattice around it. Thus we come to
the following de�nition.

De�nition 0.4 By the statistical probability of ergodicity p(α) we mean the density of the set of those

natural numbers N for which uniformly 1/N -discretized systems (T
(α)
1/N , X1/N) are ergodic.

Theorem 0.26 Let the coordinates of the vector α ∈ Rd be rationally independent. Then p(α) is well
de�ned and does not depend on α. In the one-dimensional case it satis�es the inequalities 0.3889 < p(α) <
0.5678, while in the multidimensional case p(α) exponentially goes to zero with the dimension.

The proof of this result is rather nontrivial and is based on the analysis of the distribution of prime
numbers. Let us discuss brie�y the multidimensional case. The dynamical system (T

(α)
1/N , X1/N) is ergodic

if and only if ∀i 6= j the pairs of numbers N and D1(Nαi) and D1(Nαi) and D1(Nαj) are coprime.
By the �rst part of the proof, the density of all integers N satisfying the �rst condition is well de�ned and
is independent of αi. It remains to prove that the density of all integers N satisfying the second condition
is well de�ned. This can be done in the same manner as in the �rst part of the proof. Therefore in the
d-dimensional case p(α) < 0.5678d. tu

This result shows the qualitative distinction between the in�uence of perturbations arising from space
discretizations and those due to smooth perturbations, since in the latter case the well known KAM theory
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says that it is ergodicity which is �typical�. However, it would be of interest to further specify the link
between the chaotic appearance and disappearance of periodic trajectories in the 1/N -discretized systems,
for N →∞, and the so called �subfurcation� phenomenon arising in the case of smooth perturbations.

The one-dimensional estimates for the upper and lower bounds for p(α) in Theorem 0.26 are very
raw and we actually use them only to prove the multidimensional case. D. Nucinkis proposed a heuristic
argument to calculate p(α), based on the well known fact that the density of the set of integer lattice
points with coprime coordinates is equal to 6/π2. The point, we are looking for the set of integers {n}
such that n and D1(nα) are coprime. Thus if n and D1(nα) would be random this would give the desired
answer. However, 6/π2 ≈ 0.6085 > 0.5678, which shows that a more delicate approach is needed.

We note that if the coordinates of the angle α are rationally dependent (i.e., the original system is
nonergodic), then the statistical probability of ergodicity is also well de�ned but can take more or less
arbitrary values (for instance, p(0) = 0, p(1/3) = 2/3).

It is surprising that in the case of the binary discretizations the result di�ers signi�cantly.

Theorem 0.27 For almost all vectors α ∈ Rd the statistical probability of ergodicity with respect to the
binary discretizations p2(α) is well de�ned and identically equal to (1/2)d.

Proof. Let us start from the one-dimensional version of this statement. Fix a natural number n. Then
the 2−n-discretized system (T

(α)

2−n , X2−n) is ergodic if and only if |2nα− (2k+ 1)| < 1/2, which is equivalent
to 1/4 < 2n−1α (mod 1) < 3/4. Just as we did in the proof of Theorem 0.23, we consider now the dyadic
map x → 2x (mod 1) and then, for a typical initial point x0 = α we obtain that p2(α) is equal to the
fraction of time that the trajectory beginning at the point x0 spends in the segment (1/4, 3/4). The latter
is equal to 1/2, because the Lebesgue measure is invariant for the map considered and the initial point is
assumed to be typical.

To prove the multidimensional case (d > 1) it is enough to notice that the only di�erence here is that
one needs to use systems of inequalities and to consider the direct product of dyadic maps. tu

It is of interest that for non-typical angles α, the statistical probability of ergodicity can be far from
the value in Theorem 0.27 (for instance, p(1/2k) = 0 for any k ∈ Z+).

Another problem arises in the analysis of a rotation T (α) of the two-dimensional plane R2 by a �xed angle
α around the origin. It seems that the situation here is more or less the same as in the previous example,
but there is a signi�cant di�erence between them. Indeed, although the map T (α) preserves distances, the
discretized map does not preserve them (in contrast with the circle rotation). Moreover, if we consider
a piecewise linear curve, consisting of consecutive points of a numerical trajectory connected by straight
lines, then two such di�erent curves may intersect each other. Without discretization, the trajectories of
the map T (α) lie on concentric circles. With round-o�, it is not known when the trajectories go to the
origin and when they go to in�nity (neither can be ruled out at the moment). Numerical simulations show
the evidence of a picture similar to the situation in the KAM theory, that is, we can see some quasi-circles
(invariant tori) with gaps between them. Notice that the distribution of points on these tori may not be
ergodic. In spite of this numerical evidence there is no analytical proof even of the eventual periodicity of
numerical trajectories in this case.

To show that similar neutral systems may behave under the discretization as dissipative ones, let us
consider a generalization of the previous model.

De�nition 0.5 A map T : R2 → R2 is called the generalized rotation around the �xed point x0 ∈ R2 if
T (x0) = x0, and for almost all x 6= x0 the trajectory {T n(x)}n≥0 starting at this point �lls in densely a
closed curve, homeomorphic to a circle.

An example of such a map is a usual rotation around the origin by an irrational angle. Another example
gives any twist map, i.e., a map represented in the polar coordinates (ϕ, r) as (ϕ, r)→ (ϕ+ Φ(r), r) with
|dΦ(r)/dr| > 0. The latter map is Hamiltonian and, as it follows from Kolmogorov - Arnold - Moser
(KAM) theory , for su�ciently �good� rotation angles and �good� su�ciently small smooth perturbations,
the perturbed map has invariant curves (homeomorphic to a circle) around the origin and each trajectory
of the perturbed system is bounded by these invariant curves. We have noted before, that in the case of
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perturbations, arising in the computer simulations the behavior of the perturbed systems looks similar.
However in the case of the generalized rotation this is no longer true.

Let us �x in the two-dimensional plane R2 a system of orthogonal coordinates (x, y) and a family of
�triangular� curves Γt, t > 0, the i-th side of which satis�es the equality aix+ bit = y, i = 1, 2, 3. We now
de�ne a map Tα : R2 → R2 as a generalized rotation around the origin along the curves Γt with the unit rate,

i.e., as a shift of the current point by means of one of the vectors: α(i) =

(
1√

1+a2i
, ai√

1+a2i

)
, i = 1, 2, 3,

where i corresponds to the side of the �triangular� curve Γt on which the current point lies. If during the
shift we are going through the corner of the �triangle�, then we continue the shift along the next side. The
collection of the vectors α(i) we denote by α.

We want to study the event that any point of the 1/n-discretized plane, outside the ball of radius 10/n
centered in the origin, goes to in�nity under the action of the 1/n-discretized generalized rotation Tα. To
do it consider a coarser situation, when after each iteration of the discretized map, we go to the �triangle�
with the larger value of the parameter t. We call the latter event the coarse destabilization.

Theorem 0.28 Let the vectors α(i) and the unit vector be jointly rationally independent. Then the statistical
probability of the coarse destabilization is equal to 1/8.

Proof. For a �xed vector β = (β1, β2) ∈ R2 with rationally independent coordinates, let us de�ne a map
hβ(x) = x + β, x ∈ R2 and a function Hβ(x), which is equal to the distance from the point x to the line
y = β2

β1
x. Assume �rst that β1β2 > 0. Let us consider the unit square with sides parallel to the coordinate

axes and the left lower corner at the origin. We divide this square into four equal squares and consider a
set A+, consisting of three parts: the left upper square, the part of the left lower square lying below the
line y = β2

β1
x, and the part of the right upper square lying below the line y = 1 + β2

β1
(x − 1). Then the

density p(β) of natural numbers n such that the 1/n-discretized map hβ,1/n monotonically increases the
distance function Hβ (i.e., Hβ(x) ≤ Hβ(hβ,1/n(x)) for any x), is equal to the Lebesgue measure of the set
A+. The explanation is that the 1/n-discretized map hβ increases the distance function if and only if the
n-th iterate of the map x → x + β (mod 1) , applied to the point β ∈ R2, lies in the set A+. Therefore,
p(β) is equal to the occurrence time of this set for the above rotation map, which is equal to the Lebesgue
measure of this set, i.e., to 1/2.

The situation when β1β2 < 0 is considered in the same way. Now, applying this result coupled with the
rational independency of α(i), we obtain the statement of the theorem, because the statistical probability
of the considered event is equal to the product of probabilities of events, relating to each α(i). tu

Although this example shows that in the general case, trajectories of generalized rotations in the
computer modeling are not bounded, all numerical simulations with Hamiltonian generalized rotations
(for example, with usual rotations by irrational angles) give another result. Therefore we can formulate a
conjecture.

Proposition 0.15 Let T : R2 → R2 be a Hamiltonian generalized rotation (and thus preserving the
Lebesgue measure). Then for any n each trajectory of the 1/n-discretized map is bounded.

If this statement holds, then since each computer trajectory is bounded and lies on the discrete lattice,
it ends up eventually into a �nite cycle. As we mentioned above, the invariant cycles look like invariant
tori in the KAM theory (apart from the distribution of points on such a torus).

A KAM type theorem for systems with round-o� errors. Now we construct a generalization
of the KAM theory for twist maps with round-o� errors and discuss obstacles to apply this idea for the
rotational map.

De�nition 0.6 A map T of the annulus A(r−, r+) := {(ϕ, r) ∈ R2 : 0 ≤ r− ≤ r ≤ r+ < ∞} into
R2 is said to be twist if in polar coordinates (0 ≤ ϕ < 1, 0 ≤ r < ∞) it can be written as (ϕ, r) →
(ϕ+ Φ(r) (mod 1) , r), where the function Φ(r) is in�nitely di�erentiable and |dΦ(r)/dr| > 0.

Theorem 0.29 For each ε > 0 any trajectory of the ε-discretized twist map is eventually periodic.
Moreover, for any constants 0 < r̂− < r− < r+ < r̂+ < ∞ there exists ε0 > 0 such that for each
0 < ε < ε0 if r− < r < r+ then r̂− < (Dε ◦ T )n(ϕ, r) < r̂+ for any n ∈ Z+ and any angles ϕ ∈ [0, 1).


