[17] List 2 - deadline 11.12

- Let $x := 0.x_1x_2...$ be the uniquely defined decimal expansion, i.e. $\sum_{k=1}^n x_k 10^{-k} \le x \ \forall n, \ x \in X := [0,1)$ and let $Tx := \frac{1}{20} \limsup_n x_n$. Check measurebility of $T: X \to X$ and find its Riemann/Lebesgue integrals and all invariant measures.
- Let $X := [0,1] = \bigsqcup X_i$ and let $T : X \to X$ be a piecewise isometry, i.e. $\rho(Tx, Ty) = \rho(x, y) \ \forall x, y \in X_i$. Prove/disprove that $\mathcal{M}_T \neq \emptyset$.
- 3 Let f(x) := x(1-x). Compute $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\{x+ky\})$ as a function of 2 variables $x,y\in[0,1],\ k\in\mathbb{N}$.
- Let X be a finite set with a σ -algebra $\mathcal{B}=2^X$ and let $T:X\to X$ be uniquely ergodic. The latter means that there exists the only one probabilistic invariant measure. Find ALL pairs of positive integers p,q, such that $T^{pn}x=T^{qn}y \ \forall x,y\in X$ and some $n\in\mathbb{N}$.
- 1 Let T be a continuous map from a compact metric space X into itself with an invariant measure μ . Consider ergodic averages $S^n \varphi(x) := \frac{1}{n} \sum_{k=0}^{n-1} \varphi(T^k x)$ with $\varphi \in C^0(X)$. Prove/disprove that: (a) $\exists f = f(\varphi) \in C^0(X)$: $S^n \varphi(x) \stackrel{n \to \infty}{\longrightarrow} f(x) \ \forall x \in \text{supp} \mu$ (b) If f(x) = Const, then (T, X, μ) is ergodic.

Please do not wait for the deadline and try to prepare solutions in LaTex.

17/8