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Preface

Classification problems for different types of mathematical structures have been
in the center of interests in descriptive set theory during the last 15-20 years. As-
sume-that X is a class of mathematical structures identified modulo an equivalence
relation E. This can be, for example, countable groups modulo the isomorphism
relation, unitary operators over a fixed space C" modulo conjugacy, probability
measures over a fixed Polish space modulo identification of measures having the
same null sets, or, for instance, reals modulo Turing reducibility.! Suppose that Y
is another class of mathematical structures identified modulo an equivalence rela-
tion F. The classification problem is then to find out whether there is a definable,
or effective injection © : X/E — Y/F. Such a map © is naturally considered as
a classification of objects in X in terms of objects in Y, in a way that respects
the quotient structure over E and F, respectively. The existence of such a map
can be a result of high importance, especially when objects in ¥ are of simpler
mathematical nature than those in X.

In many cases, it turns out that the classes of structures X and Y can be
considered as Borel sets in Polish (that is, separable, completely metrizable) spaces,
so that E, F become Borel (as sets of pairs) or, more generally, analytic relations,
while reduction maps are usually required to be Borel.? Then the problem can be
studied by methods of descriptive set theory, where it takes the following form: if
E, F are Borel (or more complicated) equivalence relations on Polish sets, resp., X,
Y, does there exist a Borel reduction of E to F (that is, a Borel map ¢ : X — Y')
satisfying

vEa) < J(x)FI@'): forall 2,2’ € X7
If such a map ¥ exists, then E is said to be Borel reducible to F, symbolically
E<gF.

Then an injection © : X/E — Y/F can be defined by simply putting O([z]g) =
[9(x)]r, where [z|g is the E-equivalence class of x. The Borel equivalence or bi-
reducibility ~p and strict reducibility <g are naturally introduced so that

E~gF iff both E<gF and F<gE, and
E<BF iff E_<_BF but 'ﬁFSBE.

The study of Borel and other effective equivalence relations under Borel re-
ducibility by methods of descriptive set theory revealed a remarkable structure of

! The examples are taken from HioRTH’s book [Hjo00b] and KECHRIS’ survey paper [Kec99],
where many more examples of this type are given.

2 That is, maps with Borel graphs. Baire measurable maps and reductions satisfying certain
algebraic requirements are also applied [Far00] as well as A% and more complicated reductions
[Hjo00b, Kan98], however they are not systematically considered in this book.

ix




x PREFACE

mutual <g-reducibility and <g-irreducibility of Borel equivalence relations of dif-
ferent types. This book presents a selection of basic Borel reducibility /irreducibility
results in this area.

Originally, these were informal notes for a short course on Borel reducibility and
dichotomy theorems given at Universitdt Bonn in Winter 2000/2001 for graduate
and undergraduate students specializing in set theory. The first purpose of the notes
was to give a self-contained treatment of several dichotomy theorems in the theory
of reducibility of Borel equivalence relations, mainly those obtained in 1990s, in a
form as unified as generally would be possible. This original rather short version
was deposited at arXiv under the title Varia, ideals and equivalence relations. But
pursuing the goal of self-containedness, the text has been gradually increased in size
about three times with respect to the very first version. The last addition is a brief
technical introduction into classical and effective descriptive theory.

Still the book does not contain much on such topics as Polish and Borel groups
and their actions, ergodic theory, model theory, the structure of countable and
hyperfinite equivalence relations, in relation to which one may be advised to study
BECKER and KECHRIS [BK96] or the recent monographs of HIORTH [Hjo00b] and
KECHRIS and MILLER [IKMO04].

The prospective reader should have some degree of experience with modern
descriptive set theory, including Borel sets and methods of effective descriptive set
theory. Some knowledge of forcing is expected as well, because the Cohen forcing
for Polish spaces and the Gandy—Harrington forcing is the sine qua non for several
of the most important arguments in this book. ‘

Acknowledgments. The author is thankful to IL1JAS FARAH, GREG HJORTH,
A1EKOS KECHRIS, BEN MILLER, CHRISTIAN ROSENDAL, SLAWEK SOLECKI, SI-
MON THOMAS, JINDRICH ZAPLETAL, as well as the anonymous referees, for valu-
able remarks and corrections and all other sort of help related to the content of this
book.

The author acknowledges financial support of RFF1,2 DFG,* and MEC.®

The author is grateful to several institutions for visiting opportunities, without
which this book would not have been accomplished. He would especially like to
thank the universities of Barcelona, Bonn, and Wuppertal and the Max Planck In-
stitute in Bonn, Caltech, and the University of Florida at Gainesville, and to person-
ally thank J. BAGARIA, A. S. KECHRIS, P. KOEPKE, W. PURKERT, M. REEKEN,
J. ZAPLETAL.

Vladimir Kanovei

3 Grants 03-01-00757, 06-01-00608.
4 Grants Wu 101/9-1, Wu 101/10-1, 436 RUS 17/62/03.
5 Grant SAB 2006-0049.




Introduction

For the convenience of the reader, we give an informal resumé of the content,
without going into technical details. .

Chapters 1 and 2 contain a brief introduction into descriptive set theory. Here
we do not aim to give a really systematic, broad introduction, but rather a technical
introduction with basic definitions, some comments, and proofs of several princi-
pal theorems of both classical and effective descriptive set theory—exactly those
theorems used in the remainder of the book.

We continue in Chapters 3 and 4 with introductory material on ideals and
equivalence relations. We discuss several types of ideals on N, and we sketch
SOLECKI's proof that P-ideals, Borel polishable ideals, and the tailmeasure ideals
of LSC submeasures on N are one and the same. Each Borel ideal .# on a set
A generates a Borel equivalence relation E» on £?(A4) such that x Ex y iff the
symmetric difference @ A y belongs to .#, for all z,y C A. Some other Borel
and analytic equivalence relations and important families of them are defined, for
instance:

o the equalities Ay on Borel sets X,

o the equivalence relation kg of equality of infinite binary sequences (ele-
ments of 2M) modulo a finite number of terms,

o the equivalence relation E; of equality of infinite sequences in (2M)M mod-
ulo a finite number of terms,

o the equivalence relation E3 defined on the set (2™)Y so that = Ez y iff
x(k) Eg y(k) for all k,

o the “summable” equivalence relation £, defined on the set 2V so that
a By b iff zk,@Ab % < 400, where a A b is the set of all & > 1 such that
a(k) # b(k),

e the density-0 equivalence relation Zy defined on 2% so that « Zg b iff

#([0,m)N(a b)) -0

¥

lim,, 60 -

e the equivalence relations ¢¥ induced on RY by the natural (component-
wise) action of additive groups of corresponding Banach spaces,

e the equivalence relation Ty defined on the set R™ so that @ Ty y iff
{a(k) : ke N} = {y(k) : k € N}
and hence called the equality of the countable sets of reals,

o countable Borel equivalence relations (those in which each equivalence
class is at most countable), and in particular E.,, the <g-largest one in
this family,




2 INTRODUCTION

and sonie others. Some of these equivalence relations are especially interesting
because of their connection with certain large classes of Borel equivalence relations.
For instance Eg is <g-largest in the family of hyperfinite equivalence relations, Eo,
is <g-largest in the family of Borel countable equivalence relations, Ty is connected
with various isomorphism relations of countable structures, and so on.

Chapter 5 introduces the notion of Borel reducibility and presents a diagram
of Borel reducibility of some key equivalence relations (in particular those defined
above). The diagram, Figure 1 on page 68, begins with equalities on finite, count-
able, and continuum size Borel sets. This linearly ordered part ends with Eg, above
which the linearity breaks. There exist at least two <p-incomparable distinguished
Borel equivalence relations, <g-minimal above Eg, namely E; and Es, and perhaps
also Es5. Less studied higher levels are most likely even more complicated. The main
content of this book consists of the proofs of different reducibility /irreducibility
results related to the diagram. These main results are formulated and briefly com-
mented upon in Section 5.6.

Another group of theorems consists of dichotomy theorems presented in Sec-
tion 5.7. One of them, the 1st dichotomy theorem of SILVER (Theorem 5.7.1),
asserts that any Borel equivalence relation E satisfies one of two (obviously incom-
patible) requirements E <g Ay or Ay <g E. The 2nd dichotomy (Theorem 5.7.2)
of HARRINGTON, KECHRIS, and LOUVEAU asserts that any Borel equivalence re-
lation E satisfies one of two (incompatible) requirements E <g Ay or Eq <p E.
Three more dichotomy theorems clarify the structure of <g-intervals between Eg
and one of the relations Ey, Ep, E3.

Chapter 6 contains proofs of several assorted reducibility/irreducibility the-
orems whose only common property is the rather elementary character of their
proofs in the sense that only quite standard methods of real analysis and topol-
ogy are involved. But some of the results are really tricky, in particular, the <g-
incomparability of E; and the density-0 equivalence relation Zg, or the HIORTH—
DoOUGHERTY theorem that shows that £° is Borel reducible to £7 iff p < gq.

The following Chapter 7 is devoted to the class of countable Borel equiva-
lence relations. Studies of recent years demonstrated that this is an extremely rich
family of equivalence relations. Among others, it includes hyperfinite equivalence
relations, a comparably elementary type among countable Borel ones. It turns
out that all countable (Borel) equivalence relations are induced by Borel actions
of countable groups (Theorem 7.4.1) Another theorem (Theorem 7.5.1) shows that
not all countable Borel equivalence relations are hyperfinite, in particular, Eo, is
not hyperfinite. We also prove a useful result (Theorem 7.3.1) on g-additivity of
the notions of smoothness and hyperfiniteness as functions of Borel domains.

In the next Chapter 8 we consider the class of hyperfinite equivalence relations.
It admits several different but equivalent characterizations, for instance, being in-
duced by a Borel action of the additive group of the integers Z or being induced
by a Borel action of the group (Zin(N); A) of finite subsets of N with the sym-
metric difference as the group operation. Theorem 8.1.1 in Chapter 8 proves the
equivalence of several known characterizations. Some other theorems on hyperfinite
equivalence relations (like the hyperfiniteness of the tail equivalence relations or the
classification modulo Borel isomorphism between the domains) are discussed at the
end of the chapter.
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We come back to non-hyperfinite Borel countable equivalence relations in Chap-
ter 9, where some modern results in this area are presented, mainly without proofs,
in particular those related to amenable and treeable equivalence relations, as well
as those induced by free actions of certain groups. It must be said that all known
proofs of modern results on countable equivalence relations are based on advanced
techniques of egrodic theory to the extent that makes it inappropriate to present
any such proofs in this book.

Chapter 10 contains proofs of the 1st and 2nd dichotomy theorems. The key
ingredient of the proofs is the Gandy—Harrington forcing, a technique based on the
topology generated by non-empty X sets. Here methods of effective descriptive
set theory play an essential role. We also consider a forcing associated to the
equivalence relation Eg: it consists of all Eg-large Bovel sets X C 2N, that is, such
that Eg [ X is not smooth.

Chapter 11 is devoted to the equivalence relation E; and the corresponding
ideal .#; of all sets  C 2N x 2N such that = C {0,1,...,n} x N for some n,
The most important property of E; is that it is not “polishable”; that is, it does
not belong to the family of equivalence relations induced by Borel actions of Polish
groups (Theorem 11.8.1). It has been conjectured and verified in some important
particular cases that E; is a <p-least equivalence relation among non- “polishable”
equivalence relations. For instance, the conjecture is true for equivalence relations
of the form E_». This result is based on SOLECKI’s theorem on characterization of
polishable ideals (Theorem 3.5.1).

Here we prove the 3rd dichotomy (Theorem 5.7.3, in the form of Theorem 11.3.1)
of KECHRIS and LOUVEAU: it asserts that any Borel equivalence relation E such
that Eq <p E <y E, satisfies either Ey ~5 E or E ~p Ey, and hence the strict <p-
interval between Eo and E; is empty. Borel ideals admit an even stronger result
(Theorem 11.1.1 of KECHRIS): if E» <g E; then the ideal .# is Borel isomorphic
to exactly one of the ideals .#;, Fin (finite subsets of N), or the product of Fin
and the (trivial) ideal Z(N) of all subsets of N,

Chapter 12 considers equivalence relations induced by Borel actions of the
group S of all permutations of N, This group includes, for instance, various iso-
morphism relations of countable structures. In particular we prove (Theorem 12.5.2)
that any Borel equivalence relation E, Borel reducible to a Polish action of S,
satisfies E <g T¢ for some countable ordinal ¢, where {T¢}e<,, is H. FRIEDMAN’S
<g-increasing transfinite sequence of Borel equivalence relations. The next Chap-
ter 13 on turbulence makes use of this result. <

Turbulent, or, more exactly, generically turbulent group actions are charac-
terized by the property that almost all, in the sense of the Baire category, orbits,
and even local orbits of the action are somewhere dense. This property separates
a class of equivalence relations very different from those induced by actions of S.
Extending, in a certain direction, HJORTH’s results on turbulence, we prove (The-
orem 13.5.3) that generically turbulent Borel equivalence relations are not Borel
reducible to equivalence relations in a large family %y of all equivalence relations
that can be obtained from Ay (the equality on N) by countable transfinite it-
erations of the operations of countable power, Fubini product, and some other.
Note that not all equivalence relations in Sy are “polishable”; for instance, Ey, a
non- “polishable” one, belongs to this family.
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Chapter 14 contains one principal result: the 6th dichotomy (Theorem 5.7.6,
in the form of Theorem 14.2.1) of HJIORTH and KECHRIS, saying that the strict <g-
interval between Eg and Es is empty, similar to the interval between Egq and E; by
the 3rd dichotomy theorem. The proof still involves the Gandy-Harrington forcing,
but the splitting construction is different and slightly more complicated than the
one applied in the proof of the 3rd dichotomy.

The <g-interval between Eg and the “summable” equivalence relation E; is
not known yet to be empty, athough it is expected to be such. However, the 4th
dichotomy (Theorem 5.7.4, in the form of Theorem 15.2.1) of HjorTH in Chap-
ter 15 significantly restricts the domain <g-below E; to countable Borel equiva-
lence relations. The proof makes use of another splitting construction based on the
Gandy—Harrington forcing.

The next Chapter 16 presents cg-equalities—a family of Borel equivalence re-
lations similar to the density-0 equivalence relation Zg. This family was extensively
studied by FARAH, LOUVEAU, and VELICKOVIC. In particular, it was found that
it contains a continuum size subfamily of pairwise <g-incompatible equivalence
relations (Theorem 16.6.3).

The problem considered in Chapter 17 has the opposite character with respect
to the results in Chapter 13. We introduce a family of pinned (Borel or analytic)
equivalence relations E—those satisfying the property that in any generic extension
of the universe every stable E-class contains an element of the ground universe, This
family contains, for instance, all orbit equivalence relations of Polish actions of
complete left-invariant groups, all Borel equivalence relations with 3§ equivalence
classes, some turbulent equivalence relations, and many more. The most notable
example of a non-pinned equivalence relation is T, the equality of countable sets
of reals, for which the non-pinned stable class consists of all @ € (2M)N in the
extension such that the set {a(n):n € N} is equal to the set of all @ € 2V in the
ground model. Theorem 17.1.3 proves that non-pinned Borel equivalence relations,
in particular, Ty, are not Borel reducible to pinuned ones.

The final Chapter 18 presents a recent theorem due to ROSENDAL on the cofi-
nality of Borel ideals in the <g-structure of Borel equivalence relations of general
form. In other words, for any Borel equivalence relation E there exists a Borel ideal
7 such that E <g E». A <g-cofinal wi-sequence of Borel equivalence relations of
the form E » is defined.

For the convenience of the reader, an appendix (Appendix A) is added on
some issues related to forcing. It explains the setup and basic terminology of
forcing in this book, and it discusses important details related to Cohen and Gandy—
Harrington forcing.




INTRODUCTION

<]

General set-theoretic notation used in this book.

o N={0,1,2,...} : natural numbers; N> = N x N.

o XCY it Va(peX=—=2c¢ Y) : the inclusion, and this holds also in
the case when X =Y.

o X &Y or sometimes X C Y means that X C Y but Y Z X : strict
inclusion.

e X C*Y means that the difference X ~V is finite.
o {z:®(2)} is the set (or class) of all sets o such that ®(x).
o If X C Ax B and a € A, then (X), = {b: (a,b) € X}, a cross-section.

‘o card X is the cardinality of a set X, equal to the number of elements of
X whenever X is finite.

o domP = {2:3y ({2,y) € P)} and ran P = {y: 3z ((2,y) € P)} are the
domain and range of any set P that consists of pairs.

e In particular, if P = f is a function, then dom f and ran f are the domain
and the range of f.

e Functions are routinely identified with their graphs; that is, if P = f is a
function, then f = {(z, f(2)): 2 € dom f}, so that y = f(z) is equivalent
to (z,y) € f.

e Geometrically, if P C X x Y, where X and Y are Polish spaces, then
pr P = {z: 3y ((x,y) € P)}, the projection, will sometimes be used in-
stead of dom P, but in fact dom P = pr P.

o fIX]={f(z):2 € X Ndomf}, the f-image of X.
o [THY]={acdomf: f(x) €Y}, the f-preimage of Y.
o A is the symmetric difference.

e 3%z ... means “there exist infinitely many 2 such that ...”,

vz ... means “for all but finitely many z--- holds”.
o {%a}aca is the map f defined on A by f(a) = 2., Ya.
o Z(X)={x:2C X} and Z%;n(X) = {2:2 C X is finite}.
o & is the empty set, A is the empty sequence; basically, @& = A.
o X <% is the set of all finite sequences of elements of a given set X.

o In particular 2<% g N<“ denote, respectively, the set of all finite se-
quences of numbers 0,1 and the set of all finite sequences of natural
numbers.

© lhs is the length of a finite sequence s.

e If = is any set, then s™a is the sequence obtained by adjoining a as the
right-most term to a given finite sequence s.

e § C t means that the sequence ¢ is a proper extension of s.







CHAPTER 1

Descriptive set theoretic background

Generally speaking, we assume that the reader of this book has some knowledge
of both classical and effective descriptive set theory in Polish spaces, including Borel
and projective hierarchy, Borel sets and functions, analytic (3}) and coanalytic
(11}) sets, basic notions of effective descriptive set theory, and the like. Such
a reader can skip this chapter or give it a surface scan. Here we introduce the
projective hierarchy of pointsets of the Baire space NN and product spaces of the
form N*x (NN)e, and a finer effective hierarchy based on the definability of pointsets
by analytic formulas.

1.1. Polish spaces

A Polish space is a topological space that admits a compatible complete sepa-
rable metric. In other words, it is required that there exists a complete separable
metric that induces the given topology. As a matter of fact, such a metric is usu-
ally presented explicitly for typical Polish spaces considered, so one can say that
a Polish space is simply a complete separable metric space. Nevertheless, most
important structures associated with Polish spaces are built upon their topologies
without a direct reference to any particular complete separable metric space.

ExamMpPLE 1.1.1. The set N = {0,1,2,...} of all natural numbers is a Polish
space with discrete metrics. m]

EXAMPLE 1.1.2. The Baire space N consists of all infinite sequences of natural
numbers. The distance

pla,y) = % for # #ye NV, where n=min{n:=z(n)+#y(n)},
converts NV into a Polish space. The induced topology is the same as the product
topology on NV with the discrete topology on each copy of N. The sets .of the form
O, (NY={zeNV:sca}, whee seN<,
that is, s a finite sequence of natural numbers, are basic clopen nbhds in NY. O

ExaMmPLE 1.1.3. The Cantor discontinuum 2V consists of all infinite dyadic
sequences with the same distance as N™. This is a Polish space, actually a closed
set in N¥. The sets of the form

0,2y ={zc2V:s Ca}, where se2<¢

that is, s a finite sequence of numbers 0,1, are basic clopen nbhds in 2V.
The power set P(N) = {z:2 C N} is commonly identified with 2 by means

of identification of every set © C N with its characteristic function y, € 2N. The.

same Polish topology on #?(N) can be generated by sets of the form {@ C Z(N):
2N [0,n) =u}, where n € N and u C [0, n). O

7
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BLANKET AGREEMENT 1.1.4. Elements of NV are routinely called reals in
modern descriptive set theoretic publications, and we will follow this practice ‘in
some cases. In those few cases in this book where the true reals (members of the
real line R) are considered, we will make a clear distinction. O

EXAMPLE 1.1.5. All spaces of the form NF x (NN)ﬂ are Polish. They will be
called product spaces. If € = 0, then the space N*¥ x (NV)* = (N)* is discrete;
otherwise, it is homeomorphic to N, O

Let us introduce a useful system of bijections between product spaces.

DEFINITION 1.1.6 (Bijections). (i) Put w(i,7) = 24(2j5 + 1) — 1; thus 7 is a
bijection of N® onto N. Then define 7 (i1, ..., ig, ixs1) = m(w(it, ..., i), ikt1) by
induction on k, so that in each arity k > 2, the map  is a bijection of N* onto
N. This allows us to define a system of inverse maps (m)¥, where i < k > 2, so
that w((m)&, (m)¥,...,(m)f_;) =m for all k > 2 and m. In particular (m)3 =i
and (m)f =7 it m =n(i,j) =225 +1) — 1.

In addition define (m)} =m and (m)F =0 in the “wrong” case k < i.

(ii) We define an enumeration N<* = {s,, : n € N} of the set N<“ of all finite
sequences of natural numbers as follows. If n > 0, then let

N7 " "
n'=(n)g, n'=m3 1, se= ()5, (), (1))
Separately, put sg = A, the empty sequence. The enumeration just defined satisfies
the following requirements: 1hs, <n and §,, C $,, == n < m.

(iif) For 2 ¢ N¥ and j < ¢ define ()5 e NY 5o that (z)(n) = z(nl+ ), Vn.
Clearly, o — ((2)§, (2){,...,(z)5_,) is a bijection and a homeomorphism of the
Baire space N" onto (NV)¢. In addition put (z)f =« in the “wrong” case ¢ < 1.

(iv) Moreover, even the infinite product (N™)N is homeomorphic to NV by

means of the map @ — {(2),}nen, where, for @ € NV and n € N, a point
(), € NN is defined by (), (k) = 2(2"(2k +1) — 1), Vk. O

There are many other Polish spaces, like the real line R, the space RY (of
all infinite real sequences with the product topology) and many others, some of
which will be considered below. On the other hand, the Baire space NV is an
adequate representative of this class of spaces because basic descriptive set theoretic
phenomena, look similar in all uncountable Polish spaces, simply because all of them
are Borel isomorphic by Theorem 1.2.2 below.

1.2. Pointsets. Borel sets

To distinguish sets in Polish spaces, they sometimes call them pointsets. Thus
a pointset is a subset of a Polish space. Descriptive set theory studies mainly those
pointsets which can be defined or constructed, beginning with open sets, by means
of certain operations. There are several different hierarchies of pointsets, classifying
them in accordance with the length and complexity of such a construction. The
most important of them are the Borel and projective hierarchies.

Recall that Borel sets in a given space X are those that belong to the smallest
o-algebra Bor(X) of sets ¥ C X which contains all open sets. The Borel hierarchy
of Borel sets in X consists of Borel classes 3¢, T, A, where 1 < ¢ < w;. The
classes are defined by induction on £ as follows:
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39 consists of all open sets in X

Eg (for £ > 1) contains all countable unions of sets that belong to classes Hg,
L<n <&

Hg contains all complements of sets in Eg to X; that is, a set X C X belongs
to IIY iff its complement X\ X belongs to £¢;

AP contains all sets that belong simultaneously to %9 and to ITY.

LEBESGUE proved long ago in [Leb05] that the classes with bigger indices ¢
strictly include those with smaller ones, and

Bor(X) = | J == (J m= |J Al
1< <w, 1<€<w, 1<E<w;

DEFINITION 1.2.1. A standard Borel space is a Polish space with the associated

Borel structure Bor(X). A Borel isomorphism is any bijection f: X onte Y, where

X, Y are Borel sets in Polish spaces, such that f-images f[X'] of Borel sets X' C X
and f-preimages f[Y'] of Borel sets Y/ C Y are Borel sets. a

Note that a Borel isomorphism f: X 2% Y induces a C-isomorphism X' —
FIX'] of the Borel algebra Bor(X) of all Borel sets X' C X onto Bor(Y).

The following theorem (see §37 in [Kur66], or 15.2, 15.6, 13.7 in [Kec95])
shows that different uncountable Polish spaces, and even uncountable Borel sets in
Polish spaces, have essentially the same standard Borel spaces.

THEOREM 1.2.2. Suppose that X,Y are Borel sets in Polish spaces. Then

(i) If X,Y are uncountable, then they are Borel isomorphic; that is, there is

. . onto
a Borel isomorphism f: X — Y.

(i) If f € X xY 4s a 1-to-1 function, Borel in the sense that its graph is
Borel as a subsel of X x Y, then f is a Borel isomorphism.

(iil) There exists o closed set P C NY and @ continuous 1-to-1 map [

p s X, and every such a map f is a Borel isomorphism. O

We are not going to prove this theorem in full generality (see references above),
but we give the proof for the case of product spaces in Section 2.12. Let us point
out an important corollary.

COROLLARY 1.2.3. If X is a set in a Polish space X, then there is a Polish
topology T on X thal produces exactly the same Borel subsets of X as the original
topology and contains all relatively open subsets of X in the sense of the original
Polish topology.

PROOF. By Theorem 1.2.2(iii) there is a closed set P € NV and a Borel

onto . . .
isomorphism f: P — X that is simultaneously a contunuous map. Let 7 consist

of all sets ¥ C X such that the preimage f~![Y] is open in P. Then 7 is just a
copy of the Polish topology of P and, hence, it is Polish too. Moreover, 7 contains
all sets Y C X relatively open in the original Polish topology since f is continuous.
And 7 produces the same Borel sets as the original Polish topology since f is a

Borel isomorphism. O
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1.3. Projective sets

The most common definition of projective pointsets includes interplay between
different Polish spaces. The projective hierarchy of sets in Polish spaces consists of
projective classes X, IIL, AL of pointsets. The classes are defined by induction
on n. As long as only product spaces (those of the form X = NF x (NN)(Z) are

considered, the definition is as follows:

35: consists of all open sets in Polish spaces of the form X = N* x (NN)R;

IT}: consists of all complements of sets in 3L

A): consists of all sets that belong simultaneously to 3} and to TI!;

Z41: consists of all projections of sets in II!;

where the projection of a set P C X x NV is the set
prP ={zeX:Iyc N¥((a,9) € P)} .2

And finally (J, 5, =, TT} is the class of all projective sets.

Sets in 31 are also called Souslin, or analytic, sets. Accordingly, sets in II}
are called co-Souslin or coanalytic.

One can equivalently define 33}, as the class of all continuous images of TI!
sets that situate in the same space X. Such a definition of projective classes extends
to every Polish space X, with the following modification of the initial step: X1 is
the class of all continuous images of Borel sets in this space.? And in such a modified
form, the projective hierarchy obeys the following theorem of classical descriptive
set theory, easily provable by induction on n.

THEOREM 1.3.1. Suppose that X,Y are Borel sets in Polish spaces, and f :

X 28Y 4s a Borel wsomorphism. If n > 1 and Z C X, then Z is B iff f[Z]
is 3L . The same holds for I} and Al. O

The Souslin theorem (Corollary 2.3.4 below) asserts that the Borel algebra
Bor(X) of an arbitrary Polish space coincides with the class of all A} subsets
of X. It easily follows that any Borel isomorphism between Polish spaces induces
an isomorphism between the projective hierarchies, and, hence by Theorem 1.2.2,
the projective structure is essentially one and the same in all uncountable Polish
spaces. We give KECHRIS’ book [Kec95] as a general reference in matters of Borel
and projective sets in Polish spaces.

1.4. Analytic formulas

Surprisingly, it turns out that a number of difficult descriptive set theoretic
theorems involve tools and methods originally designed in recursion theory for en-
tirely different goals. This leads us to a branch of modern descriptive set theory
called effective, and we have to give credit to ADDISON, who demonstrated in

LIf X = N* x (NV)¢, then the space X x NM| formally identified with N* x (NP stiln
belongs to the category of product spaces.

2 Here Borel sets can be replaced by G sets w.lo.g., but the class H(l, of all closed sets, as
in the definition for the spaces N™ x (N™)* | is not sufficient any more. Indeed and for instance,
for o-compact spaces like R, all projections, even all continuous images of closed sets, are sets
Fg, which form a proper subclass of E% .
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[Add59b, Add59a] the technical advantages of effective methods and even nota-
tional conventions in descriptive set theory.

This direction follows classical descriptive set theory in that it considers hier-
archies of pointsets based on essentially the same operations as classical hierarchies.
However, there is an important additional aspect that does not belong to the initial
circle of basic ideas of descriptive set theory. Namely, Borel and projective sets
are classified not only on the base of the number of iterations of basic operations
necessary to produce a given set from open sets, but also in matters of definability
of those original open sets.

BLANKET AGREEMENT 1.4.1. From now on we will develop effective descriptive
set theory only for sets in product spaces (those of the form N x (NN)e). This is
by far not the maximal known generality, but still it covers all applications in this
book and allows us to avoid technicalities of a more general treatment, O

The structure of these spaces allows us to employ a simple language to describe
pointsets. This language, the language of second-order Peano arithmetic, contains
two types of variables:

type 0: with the domain N (letters k,1,m,n, etc., are used), and
type 1: with the domain NV (letters z,y, 2, a,b, c, etc., ave used).
Terms can be obtained from variables by means of the following rules:
1) a variable of type i = 0,1 is a term of type ¢;
every natural number is a term of type 0;
if ¢, s are terms of type 0, then so are ¢t + s, ts, and t°;
if ¢, s are terms of types 0, 1, respectively, then s(t) is a term of type 0.

if ¢,u,r are terms of type 0, then so is (¢)¥, with the intended meaning

of (#)¥ in accordance with Definition 1.1.6(i);

6) if ¢,r are terms of type 0, then so are 1hs; and s;(r), with the intended
meaning of $; in accordance with Definition 1.1.6(ii), and we understand
that s,,(k) = 0 in the “wrong” case k > 1hs,;

u

7) if ¢ is a term of type 1 and r,u of type 0, then (¢), and (¢)} are terms
of type 1, with the intended meaning in accordance with Definition
1.1.6(ii, iv).
For instance, (2% + (y);(3n)) is a term of type 0.

The following classes of formulas of this language are distinguished as follows:

elementary: those formulas of the form ¢ = t/, t </, ¢ < ¢/, where t,t' are
terms (for example, variables) of type 0;

analytic: all formulas obtained from elementary formulas by means of proposi-
tional connectives and quantifiers of either type; that is, all (well-defined)
formulas of the language of the second-order Peano arithmetic;

arithmetic: those analytic formulas that do not include quantifiers of type 1 (over

NYY;
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bounded: those arithmetic formulas that include quantifiers only of the form
Jk <t and VE < t, where k is a variable of type 0 and £ is a term; in
particular, all quantifier-free formulas are bounded;

X9 and I12: arithmetic formulas of the form

(0) Fky1Vhy ks ... 3(V)kn @ and Vky 3k Vks..V(3)k, o,
respectively, where ¢ is a bounded formula,

Y} and I1}: analytic formulas of the form

(1) ImyVayIaz..IV)2,V(3)me and Vo JzpVas..V( @)z, I(V)me,
respectively, where ¢ is a bounded formula.

A gquantifier prefiz is a left-most part of an analytic formula which consists of a
string of quantifiers. The quantifier prefices of formulas in (0) are called X°-prefix
and II2-prefiz, and those of formulas in (1) are called X prefiv and I1}-prefiz.

1.5. Transformation of analytic formulas

The equivalences included in Table 1 allow us to convert complicated analytic
formulas by means of simplification of the quantifier prefix to a form that makes
it possible to immediately evaluate the type of the formula (and the set defined
by the formula). Note that the prelast equivalence (V°3') expresses the countable
axiom of choice, while (3°V!) expresses the dual statement.

ExaMPLE 1.5.1. If o(z,y, k,m) isa X! formula, and n > 1, then the formulas
Jax e,y k,m), Fke(z,y km), Yke(v,ykm)

TABLE 1. Transformation rules (see Definition 1.1.6 on (n)¥, etc.)

(V<30 — F0y<) Vi<j3koli,gk) <> 3kVi<joelj, (k)
(3<VO - 0 3<) i< jVho(i,j,k) < VkIi<joel,j,(k))
(3°3% - 3 3435 ¢ 4) <= Inp((n)§ (n)1)
(VO Vo — V) ViV i (i, 5) <= Vnp((n) (n)?)
(313 -3 3y p(,y) < Jze((2)5 ()}
(Viv! — vty Va Vy (e, y) — Vz2((2)3,(2)?)
(V030 — 3L v0) Vi 3j (i, 5) <~ JaViep(i,z())
(FOV0 — vl 3% 3iVj e, 7) < Va Jip(,a(i))
(31 3 -3 Ja 35 p(x,5) <= Iy o((¥)o, (¥)1(0))
(VIV0 V) Vo Vje(, ) <= Vye((®o, (¥)1(0)
(VO3 — 31v0) ViJa p(i,z) < JaVie®, (2))
(30! — v 3% iV p(i, ) < Vo Jie®,(2);)
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belong to the same type, in the sense that they can be converted to equivalent
XL formulas by means of the transformation rules, (3131 — I, (30 — 3N,
respectively, and the combination of (V° 3! — F10) and (v!V° — V1), O

ExaMpLE 1.5.2. Suppose that 7 > 1. An analytic formula that has a E}L prefix
followed by an arithmetic formula can be converted to the equivalent £} form, and
the same for IT}. To prove this, let ¢ be, e.g.,

JaVyIkVmp(z,y, k,m),

where 1 is bounded and n = 2. Then the quantifier prefix has the form 3 v 3°V0,
We convert it to 31V V'3 and then to 3' V'3 by means of the rules (V0 —
v139) and (V1V! — W), vespectively.

In paltlculal it follows that every arithmetic formula is conveltlble to both X}
and 1} form, equivalent to the original formula. o

ExaMPLE 1.5.3. Suppose that n > 1. The conjunction and the disjunction of
the two X} formulas can be converted to equivalent 21 forms, and the same for
IT} . To prove this, let ¢ and ¢’ be the formulas

JaVyIky(z,y, k) and FJzVyIky'(z,y,k),
where ), ¢/ are bounded and n = 2. Then ¢ A ¢’ is equivalent to
Ja 32’ VyVy Tk IK (P2, y,k) Ay (2,9, K)),

and appropriate transformation rules convert this to 21, a

1.6. Effective hierarchies of pointsets

Free variables of analytic formulas can be substituted by particular elements
of N (type 0) or N¥ (type 1). These elements are then called parameters.® This
leads us to a classification of pointsets in product spaces N x (NN)K, which takes
into account both the position of the formula ¢ in the definition of the form

X = {(i1,3) € N* x (N")": (s, 2)}

in the hierarchy of formulas defined in Section 1.4 and the list of parameters that
occur in the formula .

DEFINITION 1.6.1. Suppose that 4 C NV,

Then 5% (A) is the class of all pointsets in spaces of the form NF x (NV)¢,
definable by X¢-formulas with parameters that belong to A. The class IT:(A) is
defined similarly, while Al (A) = X (A) N ITE(A).

We write X7, resp., X' (a), instead of X% (A), in cases A = @ and 4 = {a},

respectively, and similarly for IT and A. O

The classes whose notation includes the chalacters X, I, A will be called
effective, opposite to projective classes L, ITL Al. Note that if 4 C 2V is at
most countable, then every class X% (A) is countable as well. In particular X% and
all classes X% (a), a € 2, are countable. The same for [T and A.

Alternatively, classes X¢, IIL | Al are sometimes called boldface classes, while
Yi(A), ITL(A), Al (A) are called llghtface.

3 In fact, such a substitution is inessential for type 0 since every natural number is straight-
forwardly definable by a quantifier-free formula.
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BLANKET AGREEMENT 1.6.2. The character I' routinely denotes one of X,
II, A, and accordingly T' denotes one of 33, II, A |

EXAMPLE 1.6.3. Every set defined by a bounded formula is AY. For instance
P={m:Vk<mVn<m(m#nk)},

the set of all primes, is AY. In fact, it is not so easy to find a Ay set not definable
by a bounded formula. a

Note that the projective hierarchy is a special case of the effective one:

PROPOSITION 1.6.4. For sets X in product spaces, we have T = I''(NY),
More precisely, X € T% if and only if X € I'(a) for some a € NV,

Recall that by Blanket Agreement 1.6.2, I" here is one of X, IT, A, and T is
oneof &; IT, A

PROOF (sketch). We leave it as an ewercise for the reader to show that bounded
analytic formulas define clopen subsets of the spaces considered. It immediately
follows that all sets definable by X9 formulas (with arbitrary parameters) are open;
therefore, £9(NY) C 59,

Conversely, suppose that X is an open set, say, in NN If X = &, then the
result is obvious, so we can assuimne that X # &. Then there exists a set @& # S C
N<“ satisfying X = [J,cg Os(NV). (Recall that &,(NY) = {a e NV:s C 2} for
s € NS¥. Sets of this form are basic clopen nbhds in NV see Example 1.1.2.) Put
N = {n:s, € §}. Obviously @ # N C N and S = {s,:n € N}. There exists
a € NV such that N = {a(n):n € N}. Then

reX < dn (Sa(n) C ’L) < dnVk<1h Sa(n) (I(/C) = Sq(n) (/ﬂ))

The formula in the right-hand side is 29 with a € N¥ as the only parameter.
Therefore, X belongs to 29(a).

Thus, E?(NN ) = X%, This implies the result required for all arithmetic classes
200118, A%, As for projective classes, the quantifier Ja (in our assumptions,
Ja € NN) corresponds to the projection, while the quantifier Va corresponds to

the combination “complement—projection—complement”. Il

EXERCISE 1.6.5. Prove, using the last claim of 1.5.2, that if p € NN and n € N,

then X7 (p) UIT)(p) € Al(p). o
1.7. Characterization of %) sets

This section presents two results related to XY sets.

LEMMA 1.7.1 (2= recursively enumerable). A set X C N™ is 59 iff it is
recursively enwmerable (in the sense of recursion theory). In particular, a map
f i N™ = N s recursive iff it is AY.

Proor (Sketch). Suppose that X C N is recursively enumerable; that is,

there exists a computer program C' that computes C(n) = 1 iff n € & and,
otherwise, computes some C(n) # 1 or just does not compute anything. The for-
mula ¢(n, k) := “C(n) = 1 after not more than k steps of C' with input n” can

be shown to be bounded. Now n € & <= Jk ¢(n, k), and hence X is 5.
To prove the converse it suffices to note that sets defined by any bounded
formulas are recursive (even primitive recursive). O
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LEMMA 1.7.2 (29= effective open). A set X C NN 45 £9 iff there ewists a

X9 set N CN such that X = Unen Os., (N9,

PROOF (Sketch). If such a set NV exists, then X is 29 since
vx€X <= dn(neNAs, Ca).

The converse needs a bit more work. Suppose that X = {x:3m p(m,2)}, where
¢ is bounded. Because of the boundedness, the truth definition of (m,2) for any
given z € NV and m € N can be represented as the computation by a computer
program (depending on the structure of ¢ but not on the values of x,m), where
@ is an input in the form of an infinite string of numeric values x(k), k € N, and
m as a single number, and the result is obtained after a finite number of steps. In
particular the computation appeals to only finitely many values z(k).
If s € N<“, then let s~0 € N¥ be the extension of s by zeros. We put

W = the set of all pairs (m,n) such that there exists a computation of the truth
value of ¢(m,s,"0) that yields “true” and does not refer to the values
(s70)(7), J 2 1hs,.

Then W is X7 ; therefore, the set N = {n:3m ((m,n) € W)} is L9 as well, and
easilyX:{IGNN:HHGN(SnCm)}. a
1.8, Classifying functions

Functions are in the scope of this classification as well. To avoid repetition, we
suppose below that X and Y are arbitrary product spaces.

DeriNITION 1.8.1. Given any class of sets K, a map F : X — Y belongs to
IC, oris a I-function, if its graph I'p = {(z,y) 12 € X A f(z) =y} is a set in K.
O

LEMMA 1.8.2. If n > 1, then every X} function F : X — Y is AL, If
Y = N*¥ k€N, then every 59 function F:X — Y is A

PROOF. Indeed F(z) =y <= Vy' (v #y = F(z) #y'). To transform the
right-hand side to I}, apply the rules of Table 1 on page 12. a

In some cases, the next definition is more suitable than Definition 1.8.1. We
give it in the case when the receiving space is N or NV,

DEFINITION 1.8.3. A function F: X — NV is K-measurable if the set
w={(z,n,k): 2 € X AF(2)(n) =k} € X x N?

(not to be mixed with the graph I'r) belongs to K .4 A function F': X — N is K-
measurable if its true graph I'p = {(2,n) 1@ € X An = f(z)} belongs to K.
AY-measurable functions are called recursive. O

Thus, for a function ' : X — N, K-measurability is the same as class K in
the sense of Definition 1.8.1. The following fact is less trivial.

LeMMA 1.8.4. Suppose that p € NN, A function F: X — NN is of class Al(p)
iff it is Al(p)-measurable.

4 See the end of Section 1.9 regarding the measurability in the case of boldface classes K.
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PROOF. Obviously, F'(z) =y iff VnVk ((z,n,k) € Th = y(n) = k), and
if T% is Af(p), then the latter formula can be transformed to both £ and IT}
using Table 1 on page 12. Conversely,

(z,n,k) €Tk = Vy (F(z) =y = y(n) =k) &= Fy (Flz) =y Ay(n) =k),
and this gives Al for T'% as well, O
Another important case is 29-measurability. For functions into NV, the no-
tions of a LY function and a £9-measurable function do not coincide; moreover,
X9 functions into NY simply do not exist because functions F : X — N cannot

have XY (hence, they are open by Proposition 1.6.4) graphs. Still we have the
following:

LeMMA 1.85. If p e NV and a function F:X — NV s 2(p)-measurable,
then it is AY(p)-measurable and (the graph of) F s IIV(p).

Proor. Clealy, (z,n,k) € Tp &= VK # k ({z,n,k') ¢ T'%), and this proves
the first claim. To prove the second one, note that

F(z) =y <= VnVk ((z,n,k) € T = k= y(n)). O

Note that every ¢ € NV is a map N — N; hence, it is a subset of the product
space N?, and under this angle a subject of classification. For instance, we say that
a is a A} element of N¥ if so is its graph {(n, k) ca(n) = k}. The next lemma
connects the class of a € NY with the class of its singleton,

LEMMA 1.8.6. Suppose that o ¢ NV. Then the Sfollowing conditions are equi-
valent: a is A}, a is X1, {a} is A}, {a} is DL.

PROOF. Suppose that a is 2}. Then
bef{al <= VnVEk (b(n) =k = a(n) = k) <= VYnVk(a(n) = k = d(n) = k).

Changing a(n) = k to a suitable X} formula and using the table of transformation
rules (Table 1), we obtain {a} € X from the middle formula and {a} € II} from
the right-hand formula. To prove the converse, suppose that X = {a} is X} . Then

a(n) =k <= Jb(bc X Ab(n) =k) <= Vb(bc X = b(n) = k).

Once again « € X follows from the middle formula and @ ¢ II} from the right-
hand formula. ' ]

1.9. Closure properties

Proposition 1.6.4, together with the transformation rules presented in Table 1
allows us to prove standard closure properties for projective and effective classes
known from books like [Kur66, Sho01, Mos80, MW85, Kec95].

PROPOSITION 1.9.1. Suppose that p € NY. Then

(i) Ewery class of the form Il (p) or T s closed under finite unions and in-
tersections of sets in the same space and under bounded type-0 quantifiers
Jk<n and Vk <n.

(i) Classes of the form Ai(p) are also closed under complements.
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(i) Classes X% (p) are closed under the type-0 3 quantifier (that is, under
the type-0 projection): if X is a product space and P C X x N is Xip),
then prP = {z € X:3k ((x,k) € P)} is a set in X% (p). Accordingly,

classes IT%(p) are closed under the type-0 V quantifier.

(iv) Classes X} (p), n > 1, are closed under the type-1 3 quantifier (that is,
under the type-1 projection): if X is a product space and P C X x NV
is Xp(p), then prP = {x ¢ X:3z ((x,2) € P)} is X(p). Accordingly,
classes IT)(p) are closed under the type-1 V quantifier.

(v) Boldface classes Eg are closed under the type-0 3 quantifier and under
countable unions (of sets in the same space), while classes Hg are closed
under the type-0 V quantifier and under countable intersections.

(vi) Boldface classes TL, n > 1, are closed under type-0 gquantifiers 3 and
V' and under countable unions and countable intersections. It follows that
all Borel sets are Al.5

(vil) Boldface classes L, n > 1, are closed under the type-1 3 quantifier

(that is, under the type-1 projection). Accordingly, classes I, n>1,
are closed under the type-1 V quantifier.

(viil) Classes of the form I3(p) are closed under A(p)-measurable substitu-
tions and A{(p)-measurable preimages, and classes of the form I''(p)
are also closed under Ai(p) substitutions and Al(p)-preimages.

(ix) Classes T3, are closed under continuous substitution and continuous
preimages, and classes T, are also closed under A} substitution and
Al preimages.

Claims (v), (vi), (vil), (ix) are true for all Polish (not only product) spaces.

PROOF (sketch). We prove a couple of less trivial items.

(vi) Let us show that X7 is closed under countable operations. Suppose that
X, n € N, are 31 sets in N¥. Then by definition there exist closed sets W, C
N % NV such that X, = pr W, = {2 : 3y ((x,y) € W,,)}. Clearly, the set

W= {{z,n"y):n e NA{x,y) € W,}
is closed in N x N and hence U, Xn =prW isa Zi set. Moreover, the set
W' = {{z,y) :Vn({z,(y)n) € W,)} is closed too; therefore, ), X,, = pr W' is %!,

(viii) Suppose that F : X — NY js a A9-measurable function and vV € NV is
a X7 set. Prove that the preimage X = F1[Y] = {s € X: F(z) e Y} is £9. By
Lemma 1.7.2 there exists a X9 set M C N such that V = Unenr ﬁm(NN). On the
other hand, the set I'p = {(z,n, k) : F(a)(n) = k} is AJ. Yet obviously

Flz)eY <= Im(m e MAVn <1hs,, ((z,n,5,(n)) € '),

Now suppose that F: X — NV js a A} function and Y € N¥ isa 51 set. To

prove that the preimage X = F7'[YV] = {a € X: F(z) ¢ Y} is 51, note that
Fl)eY <= dy(ye Y Alz,y) € F). O

We end with a result often used implicitly in many arguments.

5 And conversely, all A% sets are Borel; see Corollary 2.3.4.
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CoROLLARY 1.9.2. Let X be a Polish space and K = T one of the Borel
or projective classes. A set X C N x X belongs to K iff all cross-sections X; =
{zeX:{j,z) € X}, j €N, belong to K.

PRrROOF. By a simple argument with complementary sets, it suffices to prove
the result in the case when K = 3¢ | so that K is closed under countable unions by
Proposition 1.9.1(v), (vi). Suppose that a set X C N x X belongs to K. Obviously,
X; = fj"l[X], where f; : X — N x X is the continuous map f;(z) = (j,2).
Thus, X; € K by Proposition 1.9.1(ix). To prove the converse, suppose that each
set X; belongs to K. Then so does Y; = N x X, (the preimage under the map
9(j,7) = ). In addition, the set U; = {j} x X is A (= clopen), hence, it belongs
to K. Therefore, the intersection U;NY; = {j} x X, isin K by Proposition 1.9.1(i).
We conclude that X = |J;(U;NY;) € K, since K is closed under countable unions
by the assumption above. O

The next result is related to the boldface version of measurability of functions:

CoROLLARY 1.9.3. Let X be a Polish space and K = T one of the Borel
classes 22 or one of the projective classes beginning with A}, A map f: X — NN
15 K-measurable in the sense of Definition 1.8.3 iff all f-preimages of open sets
U C NY belong to K.

In particular [ is X9-measurable iff it is continuous.

PROOF. Suppose that f: X — NV is K-measurable; that is, the set
= {(@,nk) 2 e XA f@)(n) =k} C X x N?

belongs to K. Then all sets X, = {z € X: f(2)(n) = k} are in K by Corol-
lary 1.9.2. However, any open U/ € NY can be obtained from sets of the form
Uni = {a € NV :a(n) = k} by finite intersections and countantable unions, and,
accordingly, the f-preimage of U can be obtained from sets of the form X, by
these operations under which K is closed.

Conversely, suppose that all f-preimages of open sets U C NV belong to K.
In particular so do all sets X,,,. But then I‘;i € K by Corollary 1.9.2. 0]

REMARK 1,9.4. The criterion of measurability for boldface classes given in
Corollary 1.9.3 is often considered as the definition of measurability; that is, f
is called K-measurable if all f-preimages of open sets belong to K. But such a
definition does not work for effective classes like I'! because it lacks effectiveness.
D B




CHAPTER. 2

Some theorems of descriptive set theory

It turns out that the whole amount of basic descriptive set theory employed
in the study of Borel reducibility of equivalence relations can be summarized in a
rather short list of definitions and basic theorems. Our goal here is to present these
key theorems. This will not be a systematic treatment, and we give the books of
Moscrovakis [Mos80] and KECHRIS [Kec95] as much broader sources in matters
of descriptive set theory. Nevertheless, we present here such topics as reduction,
Borel separation, uniformization, universal sets, reflection, the Gandy—Harrington
topology, and sets with countable sections. This chapter ends with a summary of
a coding system for Borel sets and countable ordinals, both instrumental in proofs
and useful for understanding the meaning of theorems.

BLANKET AGREEMENT 2.0.1. Working with Borel and projective sets, we will
consider only sets in product spaces. Recall that a product space is a space of the
form N* x (NN)ﬂ. We will make frequent use of the relational style of characteri-
zation of sets in product spaces, so that if, say, U C N' x (N¥)?  then Uln,z,y)
has the same meaning as (n,z,y) € U. a

It has been known since the early years of descriptive set theory that many
fundamental results related to Borel sets and sets in 31 and II! are deeply con-
nected with well-founded trees in N<“, The first two sections introduce a related
instrumentarium.

2.1. Trees and ranks

By definition, for every ¢ > 1, the set (N £)<“’ consists of finite sequences whose
terms are (-sequences of natural numbers, Thus, every o € (Nﬂ)<“’ is a map from

m = lho into N, and we can write a(k) = (oo(k),o1(k),...,00-1(k)) for all
k < m. Therefore, o can be identified with the sequence (00,01,...,00_1), where
each o; (j < ) belongs to N™. Thus, (N“)<“ can be identified with the subset

{(00,01,...,001) € (N**)*: 1hog = 1hoy = = 1hoy ,}
of the entire cartesian product (N<“)¢,

DEFINITION 2.1.1. A set 7' C N<* is a tree, iff we have t € T whenever s € T,
t € N t C s. Then @ is a tree, and the empty sequence A belongs to each
non-empty tree. For any tree T C N<“ | we define

[T)={x e NV :Vm (x| meT)},
this is a closed set in NV, O

19
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The notion of a tree 7" C (N™)<¢ and the definition of [T] for such a tree are
introduced similarly. For instance, a tree T C (N2)<“’ consists of pairs (s, ) such
that s,t € N<“ and 1hs = 1ht, and for every such tree 7',

(1] = {(z,y) € (N2 :Vm (& | m, y | m) e}

Recall that a tree 7' C N<“ is ill founded iff it contains an infinite branch; that
is, there exists z € N¥ such that z [ m e T, Vm. Otherwise, it is well founded.

DEFINITION 2.1.2. Suppose that T'C N<“ is a tree and s € 7. If the reduced
tree Ty = {t e N<®: 57t € T} is well founded, then so is each tree of the form
Ts~p, k € N. This allows us to define an ordinal |s|r < w; for every s € T such
that Ty is well founded, so that

(i) |s|lr = 0 for all endpoints (i.e., C-maximal in T elements) s € T;
(ii) [s|r = sup,~er(|s7k|p + 1) for all s € T that are not endpoints in 7°.2

If T, is ill founded, then put |s|z = co. Thus, [s|7 and is either an ordinal < w;
or oo, with the idea that £ < oo for all £ < w;.

Finally, if T'# @, then put |T| = |A|r, where A is the empty sequence—the
rank of a tree T' # @. Obviously, T' is well founded iff |7 < wy and ill founded iff
|T| = co. Separately define |T'| = —1 whenever T' = &, d

The next theorem characterizes certain relations between trees in terms of
definability in projective hierarchy. This requires an explanation. Recall that the
enumeration N = {s,, : n € N} was introduced by Definition 1.1.6(ii).

DEFINITION 2.1.3. Say that a set T C N< belongs to a given class /( iff the
corresponding set {n:s, € T} does also. And, X being any product space, a set
X C X x N belongs to a given class K iff {(z,n): (z,s,) € X} does too.

Foraset T C N, let x(T") € 2V be the characteristic function of the set {n :
Sp € T}, Thus, x(T){n) =1 provided s,, € T, and = 0 otherwise. Clearly, y is
a bijection of 2 (N<*) onto 2N C NV,

Say that aset X C (Q(NQ"))K belongs to a given class K iff the corresponding
set {(x(T1), ..., x(Te)): (T1,...,Tv) € X} does also as a subset of (N™). Similarly,
aset X € X x P2(N<Y) belongs to a given class I iff the corresponding set
{{z,x(T)) : (z,T) € X} does also as a subset of X x NV, O

THEOREM 2.1.4. (i) The set T of all trees T C N<“ 4s Y

(i) The set WIET of all well-founded trees is I}, and accordingly the set
IFT of all ill-founded trees is X7 .

(iii) The set {(S,T):S,T e TA|S|<|T|} is Z}.

(iv) There emists a X} set L C T x T such that if S,T € T and |T| < oo,
then we have |S| < |T| iff (S,T) € L.

A comment on (iv). It is not true straightaway that the relation |S| < |T| is
X1 in fact, it is strictly I7{. However, it becomes X} under an extra condition
that T is well founded.

LIf s,t € N<, then st is the concalenation of s and ¢. If k € N, then sk is the
extension of s by k € N as the right-most term, and k™s is the extension of s by k as the
left-most term.

2 For a set X of ordinals, sup X denotes the least ordinal > than every £ € X.
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Proor. (i). To prove that T is /77, we show that the corresponding set
T ={x(T):TeTt={re2":{s,:7(n) =1} € T}
is I1{ in N". Indeed 7 € T’ iff Vn (7(n) = 0 or 1) and
VEVn(T(n) =1As; Cs, = 7(k) = 1).
Finally, replace the subformula s; C s,, by
1h sk < 1hs, AVj <1hsy (sp(d) = s.(j)).

Leaving equally routine verification of (ii) as an exercise for the reader, we
concentrate on the last two claims of the theorem.

(iii) If S € N<“, thenamap h:S — N<“ isa C-homomorphism iff it satisfies
s Ct= h{s) C h(t) for all s,¢ € 9.

LEMMA 2.1.5. Suppose that S,T C N<“ are trees. Then |S| < |T| iff there
exists a C-homomorphism h:S — T.

ProoF (Lemma). From right to left. This is easy: if h : § — T is a -
homomorphism, then by induction |u|g < |h(u)|r for all u € S.

From left to right. We assert that if u € S, v € T, and |u|g < |v|z, then there
exists a C-homomorphism /f,,, : S, — T,. Applying this claim for v =u = A, we
obtain the result required because Sy = S and T = 7"

The construction of h,, goes on by transfinite induction on |u|g. If Julg =0,
then v is an endpoint of S, hence S, = {A}, and it suffices to define how(A) =
A for every v € T. Suppose that 0 < |uls < |v|p. Then the set N = {n:
u”n € S} is non-empty and |[u"n|s < |u|s for all n € N. On the other hand,
for every n € N there exists a number m, such that t"m, € T and still
lu~nls < |v™m,|r. Applying the inductive hypothesis, we obtain a family of c-
homomorphisms Ay ~pnv~m, @ Su~n = Tyrm, . Pub hyy(A) = A and hy(n”s) =
My " Nympy~m, (8) whenever n € N and s € S, ~,, . O (Lemma)

We are ready to prove (iii). Given z € NY, we define 2 : N<“ — N<¥ py
2(sy) = s, iff z(k) = n. Then, by Lemma 2.1.5, we have for any trees S, 7"

|S| <|T| <= 3z (2] S is a C-homeomorphism to T).
This formula can easily be presented in the form
3z ( an arithmetic formula )

(see the proof that T is I1¥ above), which yields the result required by Example
1.5.2.
To finally prove (iv) we show that the set

L={{S,T) € T? : there is a C-homomorphism h : S — T such that h(A) # A}

works. That L is X} is verified as above. Let us prove that [S| < |T| <= L(S,T)
whenever S,T are trees and T' is well founded. This is similar to Lemma 2.1.5. If
h witnesses L(S,T’), then once again |u|s < |h(u)|r for all w € S. In particular,
|S| = |Als < |h{(A)|r. However, A C h(A) in T by the definition of L. As T is
well founded, this implies |T'| = |A|lp > [R(A)|r > |S], as required. If |S| < |77,
then there exists a 1-term sequence t = (m) € T such that still |S| = |Als < |t|p.
Then (see the proof of Lemma 2.1.5) there exists a C-homomorphism h : S — T
such that h(A) =t # A, as required. O (Theorem 2.1.4)
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2.2, Trees and sets of the first projective level

Obviously a set X C N is closed (that is, TI) iff X = [T] for a tree T C N<“.
For instance, take T = {x [m:x € X Am € N}. Do the same for sets in spaces
(NMy™ and trees in (N™)<“. There is a more precise form of this assertion.

LeEMMA 2.2.1. Let p e NV A set X C (N) belongs to IT2(p) iff there is
a tree T C (NOY<¥ of class AY(p) (in the sense of Definition 2.1.3) such that
X =[T].

ProoF. Consider the case when ¢ = 1 and the parameter p is absent; the
general case does not differ much. Thus, we have to prove that a set X C NN
belongs to 1T iff there exists a A tree T C N<* such that X = [T]. If such a tree
T exists, then the set N ={n:s, €T} is AY as well by definition. Furthermore,

reX <= VYmV¥n(z|m=s, = necN),

and this implies X € ITY because the right-hand side easily admits a transformation
to I with the help of Table 1 of transformation rules on page 12.

To prove the converse, suppose that X C N Nisa IT ) set. Then its complement
Y =N\ X isa 29 set, and hence by Lemma 1.7.2 there exists a X9 set S C N<
such that YV = J,cg Os(NY). Then by Lemma 1.7.1, S is recursively emumerable;
therefore, there exists a A9 function f € NV such that Y = |, s f(n)(NN ). Let T
be the tree of all t € N<“ such that s fny € t for all n < 1ht. One easily proves
that 7" is AY. To show that X = [T, consider an arbitrary @ € X. Then a[m €T
for all m (therefore a2 € [T), since otherwise we have S;(,) C @ [ m for some 7,
then z € Y, a contradiction. Conversely, consider any @ € Y. Then s,y C @ for
some n. Take any m satisfying m > n and m > 1hs;(,). Then n witnesses that
xm ¢T and hence x ¢ [T, as required. O

The lemma just proved immediately implies similar representation for all higher
projective classes. We give the next corollary as an example.

COROLLARY 2.2.2. Suppose that p e NN, A set X € (NM)¢ belongs to 2} (p)
iff there is a A(p) tree T C (NP1 such that X = pr([T]; that is,

(1, 00 € X <= JyVm (@1 [m,...,xc [ myy[m)eT).
PrOOF. First of all, by definition there is a IT9(p) set P C (N")¢+1 satisfying
(1, 00 € X <= Ty P(z1,...,20,9)
And by Lemma 2.2.1 there exists a A%(p) tree T C (N“t1)<¢ such that
(@1, yxe,yy € P <= VYm({(x1[m,...,x¢ I myy [m) eT). O
This leads us to an extremely useful representation of sets in 21 and II}. In
the spirit of Definition 1.8.3, a function F : X — Z(N<) is called K-measurable

if the sets {(z,s):s € F(z)} and {(x,s):s ¢ F(zx)} (subsets of X x N<“) belong
to K (see Definition 2.1.3).

THEOREM 2.2.3. Suppose that p € NV and X is a Xi(p) set in a product
space X. Then there exists a AY(p)-measurable map p: X — P(N“) such that
X = p YIFT]. Accordingly, if Y C X is a II}(p) set, then there exists'a Af(p)-
measurable map p: X — P(N<Y) such that Y = p~ [WFT).
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PROOF. We consider the case when X = N¥ and the parameter p is absent.
By Corollary 2.2.2, there exists a A9 tree 7' C (N?)<¢ such that X = pr[T]; that
is,

veX &= Jac NVVm ((x|m,alm)eT).

If 2 € NY, then put p(z) = {s € N<“: (2 [ 1hs, s) € T}, this is a tree in N<¢,
Moreover, the map z — p(z) is 2%-measurable, hence A%-measurable, by a rather
obvious computation. Let us finally show that @ € X iff p(z) is ill founded.

Indeed if @ ¢ X, then there exists a € NV such that (z [m,a [m) € T for
all m. Then o [m € p(a) for all m, and hence p(z) is ill founded. Conversely, let
a € NY witness that p(z) is ill founded, so that {xTm,alm)eT for all m, and
hence z ¢ X. O

2.3. Reduction and separation

The following key result opens our list of basic theorems. Recall that product
spaces are those of the form N Y (NN)L. Let us fix a parameter p ¢ NV,

THEOREM 2.3.1 (Reduction). If X,Y are II{(p) sets in a product space X
then there ewist disjoint ITi(p) sets X' C X and Y' C Y such that X' UY' =
XUY.

Sets X', Y’ as in the theorem are said to reduce the pair X,Y.

ProOF. It follows from Theorem 2.2.3 that there exist A{(p)-measurable maps
f9: X = P(NY) such that X = f~}[WFT] and Y = ¢~ [WFT]. The sets

X = e Xi|f@) <lg@)} = {veXilg@)] < IF@I

Vo= {yeYilg)l <fly = {yeY:|fl <lgw)l}
obviously reduce the given pair X,Y. So it remains to show that X', Y’ are still
II (p) sets. But this follows from Theorem 2.1.4. O

The following theorem is an elementary corollary of Theorem 2.3.1,

THEOREM 2.3.2 (Al Separation). If X,V are disjoint 51 (p) sets in the same
product space, then there is a Al(p) set Z such that X CZ and Y NZ =@ .

Proor. Applying Theorem 2.3.1 to the complementary sets and then taking
complements once again, we obtain a pair of mutually complementary X7 sets X'
and Y’ that include X and Y, respectively. Then both X’ and Y’ are Al(p)
sets. : ]

A set Z as in Theorem 2.3.2 is said to separate X from Y. However, there
is a bit more in Separation. The next theorem historically precedes Theorem 2.3.1
and is based on somewhat different ideas.

THEOREM 2.3.3 (Borel Separation). If X,Y are disjoint 1 sets in a Polish
space X, then there is a Borel set Z such that X CZ and Y NZ = &.

PROOF. By Theorem 1.2.2(1) and 1.3.1, we can consider sets in N w.l.o.g.
There is a parameter p € NY such that both X and Y are Xl(p) sets. By
Theorem 2.2.3 there exist A9 (p)-measurable, hence continuous by Corollary 1.9.3,
maps f,¢: X — PZ(N<“) such that X = f~![IFT] and Y = g~ '{IFT]. Put, for
s,u € N,

Xt={eeX:ucCanse f(z)} and Y'={yeY:iuCyAsecg(y)}-
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Clearly, X¥ =J,; X", and the same for Y.

Now suppose toward the contrary that X = X, is not Borel separable from
Y = Yx (A is the empty sequence). It follows that for at least one quadruple
of ig,ng, jo, ko € N, the set X é;%)> is not Borel separable from Y(Y(f; (Tndeed if a
Borel set B;’k separates X <<Tib>> from }Q%; whenever 4,n,j, k € N, then the Borel set
B =;,N;x B, separates X from Y.) Iterating this process, we obtain infinite
sequences z,a,y,b e N such that X;r[:n” is not Borel separable from Ybyﬁ?, VYm.

Note that all sets X ;‘rfg? are non-empty. (Indeed the empty set is Borel separa-
ble from any other set.) As f is continuous, it easily follows that a[m ¢ f(z) for all
m. Similarly b[m € g(y) for all m. We conclude that both f(z) and g(y) are ill
founded, hence z € X and y € Y. Therefore, x # y, let ussay s =z | m Zylm.
But then. the Borel set B = {2/ € N¥:s C 2’} separates Xfrr;" from Ybyr’mm, a
contradiction, |

"The following corollary is a famous result in classical descriptive set theory:

COROLLARY 2.3.4 (SOUSLIN). A set in a Polish space is Borel iff it is Al. A
set in a product space is Borel iff it is A} iff it is Al(p) for some p € NV,

PRrOOF. To see that every A{ set X is Borel, apply Theorem 2.3.3 to X and
the complementary set. That all Borel sets are A}, see Proposition 1.9.1(vi) for
product spaces, and the result generalizes to all Polish spaces by Theorems 1.2.2(1)
and 1.3.1. O

We complete this section with a corollary related to classification of functions.
The result follows from Corollary 2.3.4 and Lemma 1.8.4 for product spaces, and
Theorem 1.2.2(i) extends it to all Polish spaces.

COROLLARY 2.3.5. Suppose that X, Y are product spaces. (Also true for arbi-
trary Polish spaces.) Then the following classes of functions F: X — Y coincide:

Borel maps: those with Borel graphs {(z,y):y = F(z)};
Al maps: those with Al graphs;
Borel measurable maps: such that all F-preimages of open sets are Borel. [

2.4. Uniformization and Kreisel Selection

Let X, Y be arbitrary spaces. If P C X x Y, then they often write- P(z,y)
instead of (z,y) € P. Recall that the set pr P = dom P = {z : 3y P(z,y)} C X
is the projection of P (onto X). A set P C X x Y is called uniform if and only
if for every @ € X there is at most one y € ¥ such that P(z,y). This essentially
means that P is the graph of a partial function X — Y. If P CRCXXY, Pis
uniform, and pr P = pr@, then P is said to uniformize Q.

It follows from the axiom of choice that every set P can be uniformized by
a suitable set ). The true problem is to figure out how to “effectively” obtain
a set () that uniformizes a given set P, or, saying it differently, how simple a
uniformizing set @ can be chosen in the sense of, say, being in a certain projective
class. For instance, every closed set P C N™ x NV can be uniformized by picking
the lexicographically least element in every cross-section P, = {y: P(z,y)}, and
the result will be a uniform IT} set. Thus, every closed set can be uniformized by
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a TI} set. Some much less trivial uniformization theorems are known, e.g., for X1
sets, but the following theorem is the most profound result in this direction.

THEOREM 2.4.1 (NOVIKOV-KONDO-ADDISON). Suppose that p € NV and
X, Y are product spaces. Then every ITi(p) set P C X x Y can be uniformized by
a set of the same class. (And the same for T3 .)

PrOOF. The proof is based on approximately the same ideas as the proof of
Theorem 2.3.1 above, but it is significantly trickier. We suppose, for the sake
of brevity, that X = Y = N¥ and we consider a I} set P C NN x NN It
follows from Corollary 2.2.2 that there exists a Ay tree T C (N°)<% such that
P = (NY)2 \ pr[T]; that is,

(z,y) € P <= Vz3dm ((z | m,y I m,z | m) ¢T)

Put T(z,y) = {s € N (x| lhs,y | 1hs,s) € T}. These sets are trees in N<,
and we have P(z,y) iff T(z,y) is well founded. (See the proof of Theorem 2.2.3.)
Put T(z,y)s = {t € N 57t € T(x,y)} for s € N<“, In particular, T'(z,y)s = &
and |T(z,y)s| = —1 whenever s & T(z,y), but A € T(z,y)s and [T(z,y)s| > 0
whenever s € T(z,y).

Define, by induction on n, a C-decreasing sequence of sets P, C P as follows:
Py = P, and P,y consists of all pairs (z,y) € P, such that

Vy' (Pu(z,y') = [y(n) <y'(n) V (y(n) = y'(n) A T2, y)s,| <IT(2,9)s,1)])-
Finally, put @ = (,, P.. Let us prove that @ is a I} set and @ uniformizes P.
That Q is I1} is especially surprising because the passage from P, to P41
includes the quantifier Vy' (Pn(z,y’) = ...), apparently leading to at least I7],
since P, is no better than I7{ . However, let us consider the set W of all (n, z,y) €
N x (N™M)? such that

(%) Jy (\7/]‘" <n(y(k) = y/(k) A |T($’y>sk| = |T<$?y/>sk|>

| Al () <y(n) vV (¥ (n) = y(n) A T(2,9")s, | < [ T(2,9)s,D])-
We assert that
(1) Qz,y) il Pla,y) AVn-W(n,z,y).

Indeed, let (z,y) € P~ Q. Then there exists n such that (z,y) € Py ~ Put1,
and hence there is 3 such that P.(z,vy'), v'(n) < y(n), and either y'(n) < y(n)
strictly or |T(2,9)s, | > |T(2,y)s,|. This v’ witnesses W(n,z,y) : the first line of
(%) holds because we have both Pyi1(z,y) and Pyra(z,y’) for all & < n in this
case. Now suppose that y' witnesses (n,z,y) € W for some n, and still P(z,y). In
particular {z,y) € P, . Then, since the first line of (*) holds for all & < n, we have
{(x,y') € P, as well. But then it follows from the second line that {z,y) & Pn11,
and hence (z,y) € @, as required. This proves (f).

Let us apply (f) to verify that @ is still [I{. It suffices to show that in the
assumption {x,y) € P the relation W(n,z,y) is equivalent to a X} relation. The
equality |T(z,v)s.| = |T(z,y')s,| is 21 by Theorem 2.1.4(iii). And the inequality
|T(z,y")s,| < |T(z,y)s,| is 21 by Theorem 2.1.4(iv), applicable because in the
assumption (z,y) € P the tree T(z,y) is well founded, and hence so are all trees
T(z,y)s, - Thus, @ is indeed I1{.

In order to prove that  uniformizes P, let us come back to the definition of
the sequence of sets P, . For every x € pr P,, let m! denote the least m such that
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y(n) =m for some y with (x,y) € P. And let £ be the least ordinal £ such that
y(n) = m? and |T(z,y)s,| = € for some y with (z,y) € P. And by definition,
P41 consists of all pairs (@,y) € P, such that y(n) = m? and |T(z,y)s,| = 7.
We conclude that pr P, = pr £, 1 for all n, and hence pr B, = pr P, ¥n.

In addition, if (z,y) € P, and k < n, then still {z,y) € Py1 and y(k) =
mk = y,(k); therefore, we have y [ n =y, [ n.

If @ € prP, then define y, € N¥ by y,(n) = m? for all n. By definition
we have y(n) = m? whenever (x,y) € P,y,. It follows that y¥ = y, whenever
(@,y) € Q; therefore, @) is a uniform set. It remains to prove that pr @ = pr P or,
in other words, (z,y,) € @ for all x € pr P.

In fact we do not know yet that all pairs of the form (z,y,), € pr P, even
belong to the original set P! This is based on the following lemma:

LEMMA 2.4.2. Suppose that m,n € N, 8, C 8., and S, (and then s,, too)
belongs to the tree T(x,y,) = {s € N°“: (2 [1lhs,y, [1hs,s) € T}. Then £7 < €7,

ProoF. Recall that x € pr P = pr P, V k. It follows that there is y satisfying
(x,y) € Ppy1, and then € P41 as well because n < m follows from $,, C Sy, .
Then &' = |T(x,y)s,,| and & = |T(x,y)s, | by the above. Note that s, € T'(z,y).
(Indeed, it suffices to check that (@ [ ¢, y [ ¢, s,,) € T, where ¢ = 1hs,,. But
y [ £ =y, | { by the above because (2,y) € P, and ¢ = 1hs,, < m. However,
(@0, ys I, 85) €T since S, € T(w,y,).) It follows that s,, € T(z,y) as well
because s, C s,,. But then |T'(2,y)s,.| < |T(2,y)s,] as required. O (Lemma)

COROLLARY 2.4.3. If xeprP, then (x,y,) € P.

PROOF. Otherwise the tree T'(2,y,) is ill founded; that is, there exists a € N
such that a [ j € T'(x,y,) for all j. Let n(j) € N be the number of a | j, so that
@lj = $p(;. Then 521(3 ) < 52(1) for all ¢ < j by Lemma 2.4.2, Therefore, we obtain
a descending chain of ordinals, a contradiction. O (Corollary)

To accomplish the proof of the theorem we need yet another lemma.
LEMMA 244, If @ €pr P and s, € T(x,y,), then |T(z,ys)s,| < 7.

ProoF. The tree T(z,y,) is well founded by Corollary 2.4.3; therefore, we
can argue by induction on [Sp|p(s,y,). If S, is an endpoint in T(x,y,), then
|T(2,¥a)s,| = 0, and there is nothing to prove. Let 8, be not an endpoint. If,
toward the contrary, |T(, ya)s, | > &, then there is a sequence s, € T(z,v,) such
that s, C sy, and [T(2,y5)s,,| = €2, But {7 < £ by Lemma 2.4.2. Therefore,
|T(x,y.)s,, | > €™, contrary to the inductive hypothesis. O (Lemma)

Now we are ready to show that (z,.) € P, by induction on n; hence (z,y,) €
@ and we are done. Suppose that (z,y,) € P,. To prove (z,y,) € P, it suffices
to check that y,(n) = m} and [T(@,y.)s,| = £2. The first equality is fulfilled by
definition. The second one follows from Lemma 2.4.4: indeed, |T(z,ys)s,| > &7
since (2,yy) € P, and y,(n) = m2. O (Theorem 2.4.1)

As an immediate corollary, we obtain

THEOREM 2.4.5 (Kreisel Selection). If X is a product space, P C X x N
is a II{(p) set, and X C prP is a A}(p) set, then there is a Al(p) function
F: X — N such that (x,F(z)) € P forall 2 € X.
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PROOF. Let @ C P be a II{(p) set which uniformizes P. For every z ¢ X,
let F'(z) be the only n with (z,n) € Q. Immediately, (the graph of) F' is IT}(p).
In addition, F(z) =n <= Vm # n(F(z) # m) whenever « ¢ X, thus F is Z1(p)
as well. g

2.5. Universal sets

Recall that a cross-section of a set P C A x X is a set of the form
(Pla ={z e X:P(a,2)}, where acA,

and A, X are arbitrary underlying sets, e.g., Polish spaces. But mainly just P, is
written instead of (P), whenever this does not lead to confusion with indices.

DEFINITION 2.5.1. Let X be a product space.

A set U C N xX is a universal X set if U belongs to i and for every by
set X C X there exists an index e € N such that X = (U)..

Aset UCNY XX isa Xt set universal for 3¢ if U belongs to X7, and for
every ¢ set X C X there is an element z ¢ NV with X = {),.

Similarly for II} and TT¢ . .|

Thus there are two slightly different notions of universal sets. The first of them,
sometimes called N-universal, applies to lightface classes X%, X% (a), II}, ITi(a),
the second, sometimes called NN—um'veTsal, applies to Borel and projective classes
2, %}, I, TI.. And there are no universal sets for A-classes; see below.

THEOREM 2.5.2. (i) Each class of the form X2, XL 112, TIL admits NV -uni-
versal sets of the same class. Moreover, classes B and TI¢ admit N™-universal
sets that belong to the corresponding lightface classes X% and II% .

(ii) Each class of the form X%, II' and Xi(a), ITi(a) (a € NV) admits N-
universal sets of the same class.

PROOF (Sketch). (i) Let us define a X9 set U € N¥ x N™ universal for 9,
We make use of the enumeration N<“ = {s,,:n € N} (see Definition 1.1.6(ii)).
Put

U= {{z,y) e NV x N":3n (2(n) =0As, C )}
The universality of this set for 3 is rather clear, while its class 29 follows from
the recursivity of the enumeration {s,}.

After this initial step, we proceed by induction. First of all, the complement of
a universal 3| set is a universal TI} set. Let us show how to pass from say I} to
b +1. Thus, suppose that U C NYx NV is a II} set universal for IT! . A suitable
A9 bijection of N¥ onto (N™)2 produces a T} set U € NN x (NM)2 still universal
for II}, . One can easily prove that

V= {(z,2): Ty ((x,y,2) € U')}

: 1 e .51
isa X, set universal for 3 .

(ii) The existence of universal X9 sets U € N x NV is a standard recursion-
theoretic result, see e.g. [Sho01]. To get such a set, begin with an enumeration
{or(n, @)} ren of all bounded formulas with two variables, recursive in a sense not
to be described here, and then

U={(k,a):Inop(n,z)}
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is a universal X¥ set. Then we proceed to higher classes by induction as above. [

COROLLARY 2.5.3 (The hierarchy theorem). Each class X' contains a set
x C N that does not belong to the dual class It , and that contains a set X C NV

n?

which does not belong to the dual boldface class TI! . And vice versa.

Proor. If U C NN x N is a ¢ set universal for 3¢, then U cannot belong
to ITi. Indeed otherwise, X = {y: (y,y) € U} isstill =¢ as a continuous preimage
of the 3% complement of the IT¢, set U. (We make use of Proposition 1.9.1(ix).)
By the universality of U there exists = € NV guch that y € X < (z,y) € U for

all y. With y = = we get a contradiction. 0l

REMARK 2.5.4. The same argument as in the proof of Corollary 2.5.3 implies
that Theorem 2.5.2 fails for classes A and A . Indeed, if U is, say, AL, then X,

n?
as in the proof of Corollary 2.5.3, also belongs to Al because these classes are

self-dual. m]
One more application is the following non-separation result:
THEOREM 2.5.5. There are IT} sets X, Y C NN disjoint but Borel unseparable.
PrOOF. Let U C NY x N¥ be a 5% set universal for 3. The sets

U'={()5v): (z,9) €U} and U" = {((@)},y): (w,y) € U}
are still X} by different claims of Proposition 1.9.1. Indeed
(59) €U = Fu (2 = ()2 A (a,4) € 1)

(see Definition 1.1.6 on (z)§). And U’,U” form a %i-universal pair in the sense
that if X', X” C NY are 2!, then there exists 2 € NN with X’ = (U’), and
X" = (U")y. (First pick a’,2"” such that X’ = (U)y and X" = (), and then
consider = such that (z)2 =’ and (z)? = 2”.) It follows that the complementary
IT} sets V/ = (NY)2 U and V" = (NY)2 < U” form a IT!-universal pair in the
same sense. By Theorem 2.3.1 there exist disjoint [T} sets P/ C V' and P" C V"
such that P'U P” = V' U V", We assert that P/, P’ are Borel unseparable.

Suppose toward the contrary that B C (NN )2 is a Borel set such that P’ C B
and P"NB = &. Theset X = {a € NV:(a,a) ¢ B} is Borel as well; therefore,
both X and its complement N < X are II] . It follows that there exists a € NN
such that X = (P'), = NY < (P"),. Then

a€X = (a,a) ¢ X <> (a,0) e P <= ae (P = a¢g X,
a contradiction. 1

COROLLARY 2.5.6 (Non-uniformization). There exists a IT? (in particular, a
closed) set P C (N™)? non-uniformizable by a 31 set.

PROOF. Let X,Y C NN be given by Theorem 2.5.5, and X’ = NY X,
Y’ = N¥\ Y, the complementary 5} sets. Define z,y € NY by z(k) = 0 and
y(k) =1 for all k. The set Q = (X' x {&}) U(Y' x {y}) is £} and the projection
pr@Q ={a:3b({a,b) € Q)} = X' UY’
is equal to NV since X NY = @. We assert that @ is not uniformizable by a 1!
set U C (NV)2, Indeed otherwise, the sets

A'={a:(z,a) €U} and B' ={a:(y,a) cU}
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are 331 and we have A’ C X/, B’ C Y/, and A/UB = X' UY = pr@ = NV,
In particular, A’, B’ are complementary 31 sets, and hence they are Borel by
Corollary 2.3.4. Yet, by definition, B’ separates X from Y, a contradiction.

To end the proof, we note that there is a /77 set P C (NM)3 = (NV)2 x NV
whose projection onto (NN)2 coincides with ). Then P cannot be uniformized, in
the sense of NV x (NN )2, by a 31 set W C P. Indeed if, toward the contrary, W is
such a set, then U = {(a,b) : 3¢ ((a,b,c) € W)} isstill a X! set and U uniformizes
@2, a contradiction, Il

2.6. Good universal sets
This is a useful subpopulation of universal sets.

DEFINITION 2.6.1. Let X be a product space. A universal Zfl set U CNxX
is good iff for every other I set P C N x X there is a A? function f: N — N
such that (P), = (U)g( for all n € N. Similarly for IT¢ . o

It is not difficult to get good universal sets beginning with arbitrary ones.

THEOREM 2.6.2 (Universal sets). For every product space X there ewist a
“good” universal X7 set U C N x X and a “good” universal I set VCNxX.
(In fact we can take V = (N x X)\ U .)

PROOF. We begin with an arbitrary universal £} set W C N x (N x NV), Put
= {(n(e,k),z): (e,k,z) € W}, where 7 : N? M N is an arbitrary recursive
bijection, say, m(e, k) = 2°(2k + 1) — 1. This is a universal £} set for X. Indeed,
consider an arbitrary X set X C X. Then Y = {0} x X isstilla X} setin N x X,
By the choice of W, there is an index e such that
reX = (0,z) €Y < (e,0,2) ¢ W < (n,a) €U,
where n = w(e,0), as required. To show that U is good, consider a X set
P C N x X. By the choice of W, there is an index e such that
(n,z) € P < (e,n,z) € W <= (m(e,n),z) € U,
and hence (P), = (U) () for all n, where f(n) = m(e,n). O

To show how “good” universal sets work, we prove:

ProroSITION 2.6.3. Let X be a product space and U C NxX a good universal
I} set. Then for every pair of 11} sets P,Q C NxX, there are recursive functions
fr9+ N = N such that for each m,n € N the pair of cross-sections (U) f(mn),
(U)g(m,ny reduces the pair (P)pm, (Q)n .

Thus, reduction of cross-sections can be maintained in a uniform way.
Proor. Consider the following I} sets in (N x N) x X:
A={(m,n,x): (m,z) € PAn €N}, B = {{(m,n,z): (n,a) € QA m € N},

By Theorem 2.3.1 (Reduction), there is a pair of 11} sets A’ C A and B’ C B that
reduce the given pair A, B. Accordingly, the pair of sets (4’);nn, (B')mn reduces the
cross-sections (A)mn, (B)mn for each m,n. Finally, by the good universality there
are recursive functions f, g such that (4'),., = (U) femmny 80d (B )mn = (U) g(m,n)
for all m,n. 0O
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2.7. Reflection

Universal sets allow us to naturally classify collections of pointsets.

Indeed, suppose that X is a product space and U C N x X is a universal IT}
set. A collection o of IT} sets X C X is II] in the codes if {e:U, € &/} isa II}
set in N. Similarly, if V € N x X is a universal X} set, then a collection & of X}
sets X C X is II{ in the codes if {e:V, € &/} is a II] set.

These notions appear to be dependent on the choice of the universal sets U, V.
However, it is quite clear that the dependence does not exist for the category of
good universal sets. In other words if U, U’ C N x X are good universal I1] sets,
then being I7! in the codes in the sense of U and being IT} in the codes in the
sense of U’ is one and the same. Thus “being IT} in the codes” is understood in
the sense of any/every good universal IT} set. Similarly for 2} .

The following theorem is somewhat less transparent than most of the results
in descriptive set theory presented in this chapter. But it is very useful in some
applications bhecause it allows us to considerably shorten sophisticated arguments
with multiple applications of Separation and Kreisel Selection.

THEOREM 2.7.1 (Reflection). Let X be a recursively presented Polish space.

I} form: Suppose that a collection &/ of I} sets X C X is II{ in the codes.
(In the sense of a fized good universal II} set U C N x X.) Then for
every Y € &, there is a Al set D € &/ with DCY .

2t form: Suppose that a collection o of X\ sets X C X is II] in the codes.
Then for every Y € o, there is a Al set D € &/ with Y C D.

One of the (generally, irrelevant here) consequences of this theorem is that the
set of all codes of a strictly IT{ set or properly X} set is never I1}.

PROOF. We begin with a good universal %9 set R C N x (N x N). Put R =
{{e,8k,8n): R(e,k,n)} (asubset of N x N<“ x N<“). The set

U={{e,a) e NxNV:VyImR(e,a | m,y | m)}

is then a universal IT{ set in N x NY by Corollary 2.2.2. We assert that U is a
good universal T} set. To check this, consider an arbitrary IT} set P C N x NN,
Using a suitable version of Corollary 2.2.2, we obtain a A? set S C NxN<¥xN<
such that

P={{e,z) e Nx NV:Vy3Im e,z | m,y | m)}.

Then S = {{e,k,n):S(e,s,8,)} is a A? set as well, and since R is a good
universal set, there is a A9 function a € NV such that (S)e = (R)q(ey for all
e € N. But then (P)e = (U)q( for all e, as required.

After this preamble we prove the I71 form of the theorem in the case X = NF,
In addition to U, we make use of a good universal I} set W C N x N. It follows
from Theorem 2.2.3 that we can associate, by means of certain Al maps, a tree
Tre € N<“ to every (n,e) € N* and a tree S,,,, C N<“ to every (m,y) € N x NN
so that the following equivalences are fulfilled:

U(m,y) <= |Smyl <wi and W(n,e) < [The| < wr.

By definition, the set A = {e: (U). € &/} is II{, and hence there is 7 such
that A = (W)z; that is, (U). € & iff W(n,e). And as YV is a Il subset of
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X = N¥, there exists m such that Y = (U)s; that is, y € ¥ iff U(,y). Note
that the set @ = {{e,y) € Nx Y :|Sz,| < |Tr.|} is I} by Theorem 2.1.4; the
inequality |Sq,| < [The| is equivalent to the negation of [The| < |Smyl. As U is a
good universal set, there exists a A} map a € N¥ such that (Q)e = (U)q(e) for all
e € N.

Return for a moment to the universal XY set R C N x (N x N) considered
in the beginning of the proof. As a € NV is Al, that is, recursive map, the
recursion theorem of recursion theory implies the existence of a number & such
that (R)e = (R)a(e). Then obviously (Q)e = (U)q(e) = (U)e by the above.

We assert that the set (U)e = (Q)e belongs to &. Indeed, if (U). & &, then
(n,e) ¢ W by the choice of n, and hence |Ts.| = co. It follows that (Q). =Y,
indeed, V

yeY = U(Mm,y) & |5yl <wi <= [Smyl <|The| = (e,9) € Q.

Therefore, (@) =Y € &/. However, (Q). = (U)., a contradiction. Thus, in fact
(U) € .

Note that by definition (Q). = {y €Y :|Sm,| < |The|} € Y. (Although it
may not be true that (@), = Y as it was the case above under the assumption
(U)e & #7.) And the set (Q). = (U). belongs to &/. It remains to show that (Q).
is Al. We have (R,e) € W just because (U). € 7. Therefore, |The| < wy. It
follows that (Q). = {y e N": |Smy| < [Tre|} simply because if y € Y = (U)sm,
then (m,y) ¢ U and |Sg,| = 0o £ |Th.|. However, the inequality |Sgmy,| < [Thel,
as a unary relation with m,7,¢ being fixed natural numbers and |Th.| < wy, can
be expressed by a ¥ formula and a I7{ formula by Theorem 2.1.4. |

2.8. Enumeration of Al sets

Recall that universal sets provide enumeration of all sets in a given class by their
cross-sections. For instance, a universal X} set U C N x NN provides enumeration
of all 1 sets X € NN in the form X = (U), = {z: (n,2) € U}. Universal A}
sets do not exist, see Remark 2.5.4. Yet there exists a useful enumeration of A}
sets only slightly more complicated than Af:

THEOREM 2.8.1 (Al Enumeration). If X is a product space, then there exist
I} sets Cod(Al) € N and W € Nx X and a 5} set W' C N x X such
that (W)e = (W), for all e € Cod(A}), and a set X C X is Al iff there is
e € Cod(Al) such that X = (W), = (W'),. ' O
Here, as usual, (W), = {x: W(e,a)} and similarly for (W’),.
PROOF. We begin with a universal 171 set U C N x X. It leads to a pair
A={{n,z):U((n)2 )} and B={(n,z):U((n)} )}

of IT} sets, double universal in the sense that for every pair of IT} sets X,Y C X
there exists n such that X = (A), and Y = (B),. (See Definition 1.1.6(i) on
(n)¥.) Theorem 2.3.1 implies the existence of disjoint I7{ sets A’ C A and B’ C B
with A’ U B’ = AU B. The set

D={n:A UB, =X}={n:Vz ((n,2) € A’V (n,z) € B')}

is still IT 1. On the other hand, by the double universality for every A} set X C X,
there exists n such that X = A, and X~ X = B,,—and then obviously X = (4"),




32 2. SOME THEOREMS OF DESCRIPTIVE SET THEORY

and X\ X = (B'),. It follows that the sets Cod(Al) = D, W = A’, and
W' = (N x X)\ B’ are as required. O

There is a generalization useful for relativised classes of the form Al(a). The
proof (a minor modification of the proof of Theorem 2.8.1) is left for the reader.

THEOREM 2.8.2 (Relativized A} Enumeration). If X is product space, then
there ewist II{ sets Cod(A}) € NY¥ x N and W € NY x Nx X and o X1 set
W' C NN x X such that (W)ee = (W')ae for all {a,e) € Cod(Al) and, for
every a € NV, o set X C X is Ai(a) iff there is e such that (a,e) € Cod(Al)
and X = (W)se = (W')ae. (Here (W)ae = {2:W(a,e,2)} and similarly for
(Wae) O

Let us derive a corollary related to A} elements of NV,

COROLLARY 2.8.3. There ewist II] sets ECN and W C Nx N? and a >
set W' C N x N? such that for every e € E the sets

(W)e = {(k,n) : W(e,k,n)}  and  (W'), = {{k,n): W'(e, k,n)}
coincide with some (one and the same) v, € NV, and {u.:e ¢ E} is evactly the
set of all Al points of NV,

Proor. Consider a triple of sets D = Cod(A}), W, W’ satisfying Theo-
rem 2.8.1 for X = N?. The set

E = {e€D:(W),eN}
= {e€D:Vk3InW(e k,n) AVEVn #m (W (e k,n) = - W' (e, k,m))}
is still 77}, and it proves the corollary. O
There is a more general relativized version;

COROLLARY 2.8.4. There exist II} sets E C NYx N and W C NV x N x N2
and a D} set W' C NV x N x N? such that for every (a,e) € E, the sets
Wae ={(k,n) : W(a,e,k,n)} and W, = {(k,n): W'(a,e, k,n)}
coincide with some (one and the same) uq, € NN, and for each a € NY the set
{tae : (a,e) € E} is exactly the set of all Al(a) points of NV, O
The next corollary shows that being Al is a IT 1 notion.
COROLLARY 2.8.5. The set D = {(a,z) € N¥ x N¥: 2 is Al(a)} is II}. In
particular, the set {x € NY 2 is Al} 4s IT}.
ProoOF. Let £, W, W', u,. be as in Corollary 2.8.4. Then
(a,2) €D <= 3e((a,e) € EAx = ug,)
< de((a,e) e EAVEW (a,¢e,k,z(k))). 0O
There is another important corollary of the enumeration given by Corollary

2.8.4. The quantifier 3z (2 runs over NV ) applied to a A relation leads to a 5}
relation. But the quantifier 3z ¢ Al does something different!

COROLLARY 2.8.6. If A C (NV)3 4s 0 Al set, then the following set B is
.
B ={(a,y) € (N")*: 3z (z is Al(a) A Ala, 2,9))}.
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Proor. Let E, W, W' u,, be as in Corolllary 2.8.4. Then

(a,y) € B <= 3e((a,e) € E N Aa, tge,y))
< Je({a,e) € EAVE (2 = upe = Aa,2,y))).

It remains to replace the equality @ = uq, by Yk W'(a, e, k, 2(k)) and make use of
Table 1, the transformation table, on page 12 (or of Proposition 1.9.1). O

2.9. Coding Borel sets

This is an important application of the A1 enumeration theorems. Recall that
Borel sets X C NV are the same as Al sets, that is, sets in Al(p) for some
pE NN, Theorem 2.8.2 allows us to code all Borel sets. Naturally, a code cannot
be a natural number by an obvious cardinality argument. But we can code Borel
sets by “reals”; that is, here we use elements of N© as codes.

Let us fix a product space X in this section.

Let II} sets Cod(A}) C NV x N and W € NN x N x X and a 21 set W C
NY % N x X be as in Theorem 2.8.2. Put

C = {ceNV:(c,c(0) € Cod(A7)} where c¢ (k) =c(k+1), Vk,
V = {{ez) e NYxX:(c,¢0),z) € W},
VI = {{c,2) e NV x X: (¢, e(0),a) € W'},

And we immediately obtain

PROPOSITION 2.9.1. The sets C and V are II}; the set V' is S}, If ce C,
then the sets (V). = {&# € X:(c,2) € V} and (V’)c are equal to each other. If
ce C, then (V). is a Borel subset of X, and, conversely, for every Borel X C X
there exists a code ¢ € C such that X = (V),. ]

There is anothel much more transparent system of coding of Borel sets. In
the case X = NV (and with minor modifications for other Polish spaces) it works
as follows. We define a set of codes K C NV and a set B, € NV for every c € K.
The definition consists of three items that can be formulated in a slightly different
way, for instance, in matters of the operations involved in 2) below, but leading to
essentially the same goal.

1) If ¢ € N is such that c(k) = 0 for all k except for some ko, and
c(ko) # 0, then ¢ € K and B, = {a € N : a(ko) = (ko) — 1}.
2) If ce NN and (¢)n € K for all n, then ¢ € I and B, = NV « U.B

(en -

3) There are no elements in K except those obtained by a (finite or count-
able) transfinite iteration of 1) and 2) above.

For this coding, it is immediately clear that all coded sets are Borel and every
Borel set is coded. Yet this coding has basically the same definability properties as
those in Proposition 2.9.1. See more detail on the coding of Borel sets in [Sol70],
[Jec71], or [KLO4].
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2.10. Choquet property of X} and the Gandy-Harrington topology

It is sometimes very useful to have a mechanism that forces infinite decreasing
sequences of sets of a certain type to have a non-empty intersection. For instance,
the whole class of complete spaces is characterized by the property that decreasing
sequences of sets, whose diameter shrinks to 0, have a non-empty intersection.
This property, generally speaking, fails for sequences of open sets, let alone more
complicated ones., However, the non-emptiness can sometimes be saved in the
presence of appropriate additional requirements.

For instance, if {X,}nen is a C-decreasing sequence of non-empty open sets
with diameters — 0 in a complete space, then for [ X, # @ it suffices to require
that each X, includes the closure of X, 1. It turns out that decreasing unions of
21 setsin N N can also be made non-empty under certain restrictions!

The Chogquet game Cx associated to a topological space X is played by two
players I and II so that player I begins and plays an open set @ # U; C X and
player II responds by an open set @ # V) C Uy. Then player I once again plays
an open set @ # Uy C Vi, player Il responds by an open set @ # V, C U, and
so on. The result of the run is defined as follows: player II wins if and only if the
intersection (1, U, =), V» is non-empty; otherwise, player I wins. And finally a
space X is said to be a Choguet space if and only if player I has a winning strategy
in this game.

Every complete metric space is Choquet by obvious reasons. (Indeed, player 11
can play by picking each V,, as an open non-empty set of diameter < n~!, whose
closure is included in U,,.) The converse fails; see an example below. Yet Choquet
spaces share the following property with complete ones.

ProroSITION 2.10.1. BEvery Choquet space is Baire; that is, all comeager sets
are dense.

Proor. Suppose that X is a Choquet space, and D,,, n € N, are dense open
sets. Let @ # U C X be an arbitrary open set. Consider a run in the game Cx in
which player II follows the winning strategy while player I begins with Uy = U and
plays so that U, C V,, N D, for all n. This is consistent because of the density
of D, . Winning the run, player II gets a point in U N ("), D.,. a

The following is an example of a non-Polish Choquet space.

DEFINITION 2.10.2. Let X = N¥ x (NV)? be a product space. The Gandy—
Harrington topology on X consists of all unions of X sets 5 C X. ‘ m|

This topology extends the Polish topology on X but is not Polish itself, Indeed,
by Corollary 2.5.3 there exists a II} set P C X that is not 1. Note that P
is closed in the Gandy-Harrington topology. Assume toward the contrary that
the topology is Polish. Closed sets in Polish topologies are Gg, that is, P =
(N Upn Srn , where all sets S, are X} . Then obviously P is 31, a contradiction.

The proof that the Gandy-Harrington topology is Choquet involves another
property, perhaps of a somewhat more general nature.

DEFINITION 2.10.3. A family & of sets in a topological space is Polish-like if
there exists a countable collection {Z,,:n € N} of open dense subsets 2, C &
such that we have (), F, # @ whenever Fy 2 Fy D F, D ... is a decreasing
sequence of sets F,, € & that intersects every 2,.
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Here, aset 2 C.% is open dense Y VF € 1D € 9 (D C F) and
VFEeFVDeP(FCD=—=Fc9)3 O

For instance, if X is a Polish space, then the collection of all its non-empty
closed sets is Polish-like. Indeed, we can take %,, to be all closed sets of diameter
< n~!. The next result is much less trivial:

THEOREM 2.10.4 (see e.g. [HKL90], [Kan96], [Hjo00a]). (i) Let X be a
product space. The collection P of all non-empty X1 subsets of X is Polish-like.
(i) It follows that the Gandy—Harrington topology on X is Choquet and Baire.

PRrROOF. (i) For the sake of simplicity consider the case X = NV, Recall that
pr P = {z:3y P(z,y)} (the projection) for any set P C N¥x NV. If P € NN x NM
and s;t € N, then let Py = {{z,y) € P:s C a At C y}. Let D(P,s,t) be
the collection of all Y] sets @ # X C NY such that either X N pr Py = @ or
X Cpr Py~; 1~; for some 4, j. (Note that in the “or” case, 7 is unique but j may
be not unique.) Let {Z,:n € N} be an arbitrary enumeration of all sets of the
form 2(P,s,t), where P C NY x NV ig IT?. Note that in this case, all sets of the
form pr Py are X1 subsets of N therefore, 2(P,s,t) is easily an open dense
subset of P so that all sets &,, are open dense subsets of P.

Now consider a decreasing sequence Xo 2 X; D -+ of non-empty X7 sets
X, € N¥, which intersects every %, ; prove that [, X, # @. Call aset X C NN
positive if there is n such that X,, C X. For every n, fix a [19 set P* C NN x NN
such that X, = pr P". For every s,t € N<* if pr P/} is positive, then, by the
choice of the sequence of X,,, there is a unique i and some j such that pr P7_ Py
is also positive. It follows that there is a unique z = a,, € N™ and some Y =1yYn €
NY (perhaps not unique) such that pr Pk g1k 18 positive for every k. As P" is
closed, we have P"(z,y); hence, z,, =z € X,,.

It remains to show that a,, = @, for m # n. To see this, note that if hoth
pr Py; and pr Qs are positive, then either s C s’ or s’ C s.

(i) The density of the sets 2, allows player II to play so that V,, € 9,, for all
n, where by (i) {2, :n € N} is a countable collection of open dense subsets of the
set P of all X} sets @ # X C X. Ol

The following corollary can be established by more elementary tools, but it
becomes really easy on the basis of Theorem 2.10.4.

COROLLARY 2.10.5. If a %} set X C NV contains an element © ¢ AL, then
there exists a continuous injection f: 2N — X, and hence X is a set of cardinality
continuum, formally, card X = ¢. More generally, if p € N and a X} (p) set
X C NY contains an element ¢ Al(p), then there is a continuous injection
f:28 — X, and hence card X = ¢. Thus, all finite and countable XI(p) sets
contain only Al(p) elements.

PROOF. It can be assumed by Corollary 2.8.5 that X does not contain Al
elements at all. Then each X set @ # ¥ C X contains at least two elements.
(Indeed if Y is a X} singleton, then its only element is Al by Lemma 1.8.6.)
Therefore, such Y contains two disjoint non-empty X7 subsets. This allows us to

3 Sets 9 satistying only the first condition are called dense. Note that if 2 C & is dense,
then 9' ={F € #:3D € 2 (F C D)} is open dense.
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define a splitting system {Xs}sez<w of non-empty X1 sets X, C X satisfying the
following conditions:

(1) XS"i C X, and XS”O N Xs"l = O,
(2) if 1hs =n, then the diameter of X, as a set in NV is less than n~! :

(3) Xs € Drns, where {2y, :n € N} is any countable collection of open dense
subsets of the set P of all X sets @ # Y C NV that witnesses the
Polish-likeness of P (we refer to Theorem 2.10.4).

Then for each a € 2V, the intersection X, = (. Xan is non-empty by (3) above,
Therefore, X, = {f(a)} is a singleton by (2), and, still by (2), f: 28 — X is
continuous. Finally, X, N X, = & whenever a # b by (1); thus, f is an injection.

To prove the p-version, one has to employ the couespondlng p-version of the
Gandy-Harrington topology generated by non-empty 3} (p) sets. g

2.11. Sets with countable sections

This topic belongs to a direction in descriptive set theory that studies sets
with special sections. We consider planar sets, those situated in spaces of the form
X xY. A cross-section of aset PC X x Y is a set of the form

(P)e ={y€Y:P(z,y)}, where zeX.
Some of these sets are empty, in fact (P), is non-empty iff
x€prP={xecX:3yP(z,y)}.

Sets with special cross-sections is a. generic name for various categories of planar
sets distinguished by this or another property of their cross-sections.

For instance, the requirement that every (P), contains at most one element
characterizes uniform sets considered in Section 2.4, Sets with countable, compact,
0-compact cross-sections are considered as well. Another category is formed by sets
with “large” cross-sections; for instance, it is required that all non-empty sections
(P)e are non-meager sets. See [Kec95] on related results and methods.

We are not going to present this branch of descriptive set theory in any gener-
ality. On the other hand, to make the exposition self-contained, we prove the next
four theorems. They will be used in the following chapters of the book.

Below in this section, X and Y are arbitrary product spaces, i.e., those of the
form N¥ x (NN) , and p € NN is an arbitrary parameter.

THEOREM 2.11.1 (Countable-to-1 Projection). If P C X x Y is a Al(p) set
and for each © € X the cross-section (P), is at most countable, then pr P is a
Al(p) set.

COROLLARY 2.11.2. Suppose that X,Y are sets in product spaces and [
X 2%y 4 Al i(p) map. Then X = domf is a Al(p) set, and moreover, if
Y'CY isa Al( ) set, then so is its f-preimage f~'[YV'] = {x € X : f(z) € Y'}.

In addition, if f is countable-to-1, then Y = ran f is Al set as well. And in
this case if X' C X is Ai(p), then so is ils f-image f[X'] = {f(x):z € X'}.

Thus, preimages of A{(p) sets via A}(p) maps are Al(p) sets, and images
of Ai(p) sets via countable-to-1, in particular, 1-to-1 Al 1(p) maps are Al(p) sets,
too. (But images of Al(p) sets via arbitrary Af(p) maps are, generally speaking,
arbitrary X1 (p) sets.)
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Proor (Corollary). To prove the first part, apply Theorem 2.11.1 for the set
P={(z,y):x € XA f(z) =y} (the graph of f). To prove the second part, apply
the theorem for the inverse graph P~ = {{y,z) 1z € X A f(z) = y}. O

THEOREM 2.11.3 (Countable-to-1 Enumeration). If P is as in Theorem 2.11.1,
then there is a Ai(p) map F:NxprP — Y such that (P), = {F(e,x):e € N}
forall z €prP.

THEOREM 2.11.4 (Borel Extension). If P C XxY isa Z1(p) set, and (P), =
{y: P(z,y)} is at most countable for every x € X, then there is a Al(p) superset
Q 2 P with all cross-sections (Q), at most countable. Similarly, if P C X x Y s
a uniform Z1(p) set, then there is a uniform Al(p) superset Q D P.

THEOREM 2.11.5 (Countable-to-1 Uniformization). If P is as in Theorem
2.11.1, then P can be uniformized by a Al(p) set Q C P,

Classical forms of these theorems (that is, for the boldface classes %! and
Al = Borel, see Section 2.12) were established in the late 1920s by LUZIN and
P. Novikov, and the original geometric-style proofs were quite complicated (see
e.g. LuziN [Lus72]). Methods of effective descriptive theory allow us to prove the
theorems by very short and transparent arguments,

PROOF (Theorem 2.11.1). Assume for the sake of brevity that X = Y = NN
and that the parameter p is absent. The set X = prP is 2} anyway. And if
z € X, then the cross-section (P), is a countable A}(z) set; hence, all elements of
(P). are Al(z) by Corollary 2.10.5. Therefore, X = {z € X: 3y € Al(z) P(z,y)}.
But then X is IT] by Corollary 2.8.6. d0

PROOF (Theorem 2.11.4, countable sections). Assume that X = Y = NN, If
all cross-sections (P), are at most countable, then y € A}(z) whenever (z,y) € P
(see the proof of Theorem 2.11.1). Tt follows that P is a subset of the set

W={(z,y) e XxY:y is Aj(2)}.

However, W is II{ by Corollary 2.8.5. Therefore, by Theorem 2.3.2 (Separation)
there exists a A} set @ such that P C Q C W. The set () is as required. O

PROOF (Theorem 2.11.4, uniform sets). If P C N¥ x NV is a uniform 21 set,
then
A={{w,y) V2 (P(x,2) = y = 2)}
isa IT{ set and P C A. Therefore, by Theorem 2.3.2 there exists a Al set B such
that P € B C A, Furthermore,

C={{z,y) e B:Vz(B(z,2) = y = 2)}

is a IT] set and still P C C. Once again, by Theorem 2.3.2 there exists a Al set
() such that P C Q C C. Such a set () is as required. O

PROOF (Theorem 2.11.3). Still assume that X = Y = NN, We have y € Al(x)
whenever (z,y) € P (see the proof of Theorem 2.11.4 above). Let B, W, W', tqe
be as in Corollary 2.8.4. Then in particular for each pair (z,y) € P there is a
number e with (2z,e) € F such that y = wu,.. It follows that P is equal to the
union of all sets

Qe) ={(z,y) e P:(m,e) € EAyYy = Uy}, e€N,
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and all Q(e) are uniform sets. In addition, Q(e) are II{ sets, and even the set
Q = {{z,y,e): (z,y) € Q(e)} is II] because such is the set E, while the equality
Y = Uge is equivalent to Vk W(z, e, k,y(k)) whenever (z,e) € E.

By Theorem 2.4.5 @ can be uniformized by a Al set R C @ in the sense of
(NY x NM) x N, In other words, for each z,y € NN,

Je Q(z,y,e) =—> e R(z,y,e).

Then the sets R(e) = {{z,y) : R(z,y,e)} are pairwise disjoint A}, and J, R(e) =
U, Q(e) = P. Moreover, clearly R(e) C Q(e), and hence R(e) are uniform sets.
Note that the sets D(e) = pr R(e) (subsets of N™) are A1 by Theorem 2.11.1,
and |J, D(e) = pr P. Tt suffices to define F(e,x) as follows. If @ € D(e), then
F(e,2) is the only y with (z,y) € R(e). If @ € pr P~ D(e), then take the least €’
such that © € D(e’) and let F(e,x) be the only y with (z,y) € R(¢'). O

PrOOF (Theorem 2.11.5). Let F' be as in Theorem 2.11.3. Then the set Q =
{{z,y) :y = F(0,2)} is as required. O

2.12. Applications for Borel sets

Theorems 2.11.1-2.11.5 admit rather obvious modifications for Borel (that is,
Al) and 3 sets, established as theorems of classical descriptive set theory in the
1920s. They are as follows. Let X, Y be arbitrary Polish spaces.

THEOREM 2.12.1 (Countable-to-1 Projection). If P C X x Y s Borel and
for each @ € X the cross-section (P)y is at most countable, then the projection
prP={z € X:3y((x,y) € P)} is Borel.

COROLLARY 2.12.2. In Polish spaces, preimages of Borel sets via Borel maps
are still Borel sets. And images of Borel sets via countable-to-1, in particular,
1-to-1 Borel maps, are still Borel.

THEOREM 2.12.3 (Countable-to-1 Enumeration). If P is as in Theorem 2.12.1,
then there is a Borel map F : N xpr P — Y such that (P), = {F(e,z):e € N}
forall 2 €prP.

THEOREM 2.12.4 (Borel Extension). If P C XXY isa 21 set, and the cross-
section (P)y = {y: P(z,y)} is at most countable for every x € X, then there is a
Borel superset Q 2 P with all cross-sections (Q), at most countable. Similarly, if
P CX xY isauniform X set, then there is a uniform Borel superset Q O P.

THEOREM 2.12.5 (Countable-to-1 Uniformization). If P is as in Theorem
2.12.1, then P can be uniformized by a Borel set Q C P.

PROOF (Theorems 2.12.1-2.12.5). The results for product spaces X, Y rou-
tinely follow from Theorems 2.11.1-2.11.5 because Af = Upenm Al(p) and 21 =
Uperm Z1(p). The generalization to all Polish spaces immediately follows from The-
orem 1.2.2(i) (with the help of Theorem 1.3.1 whenever we deal with X} sets). [

We derive a similar routine consequence of Corollary 2.10.5. This is the follow-
ing theorem of classical descriptive set theory, first obtained for Borel sets indepen-
dently by HAUSDORFF and ALEKSANDROV in 1916 and then for % sets (a wider
class) by SOUSLIN in 1917,
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THEOREM 2.12.6. If X is an uncountable 31 set in a product space (in fact
the result is true for all Polish spaces, see 13.6 and 14.13 in [Kec95]), then there
exists a continuous injection f: 2% — X, and hence card X =c.

PROOF. There is a parameter p such that X is X (p). Apply Corollary 2.10.5.
O

It follows that the cardinality card X of a Borel, or more generally 31, set X
in a Polish space is either a natural n or Ry or the cardinality of continuum c.

Now a few more words in extension of Corollary 2.12.2. It asserts that if f is
a Borel bijection (1-to-1 map), then both f-images and f-preimages of Borel sets
are Borel sets. Thus, Borel bijections can be called Borel tsomorphisms. Corollary
2.12.2 implies further interesting corollaries. First of all,

onto

COROLLARY 2.12.7. If X,Y are Borel sets in Polish spaces and f: X —Y
is a Borel bijection, then so is f~1. d

COROLLARY 2.12.8. If X,Y are uncountable Borel sets in product spaces (also
true for all Polish spaces by Theorem 1.2.2(1)), then there is a Borel bijection f :

X 2%y, Thus, all uncountable Borel sets are Borel isomorphic.

Proor. It follows from Theorem 2.12.6 that there exists a continuous, hence,
Borel injection f : 2Y — X. On the other hand, obviously there is a Borel injection
g : NV — 9N Viewing V as a subset of N the restriction f | Y is still a
Borel injection into 2N, Thus, the superposition ¢ = f o g is a Borel injection
Y — X. By the same reasoning, there is a Borel injection ¢ : X — Y. In this
case, following a common proof of the Schroeder-Bernstein theorem, we obtain
a bijection /i between X and Y that consists of certain fragments of ¢ and .
Moreover, closer inspection of the construction shows that those fragments, as well
as all intermediate sets involved in the construction, are Borel by Corollary 2.12.2,
as required. O

We finish with the following result in a sense dual to Corollary 2.12.2.

PROPOSITION 2.12.9. If X s a Borel set in a product space (also true for all
Polish spaces, see 13.7 in [Kec95]), then there exists a closed set P C NY and a

continuous 1-to-1 map f: P ke
Thus, Borel sets are continuous 1-to-1 images of closed sets!

ProoOF. We argue by transfinite induction on the construction of X from closed
sets by countable sums and countable intersections. If X =/, X,,, sets P, C NN

are closed and f, : P, onto X, continuous and 1-to-1, then put P = {{(n,a):
a€ Py} and f(n,a) = fu(a). If X =, X, and P,, f, are as above, then put

P={z e (N)":¥n(z(n) € Pa) AV, n (fn(2(m) = fal2(n))}
and define f(z) = fo(2(0)) for all z € P. O







CHAPTER 3

Borel ideals

This chapter does not offer any sort of broad introduction into Borel ideals.
Instead we consider some issues close to the content of the book, including the
Rudin-Blass reducibility, P-icleals, polishable ideals, LsC submeasures, summable,
density, and Fréchet ideals. Finally, a proof of SOLECKI’s theorem, that character-
izes P-ideals in terms of Ls¢ submeasures and polishability and shows that .# is
the least Borel non-polishable ideal, will be given.

3.1. Introduction to ideals

Recall that an ideal # on a set A (called the underlying set of &) is any non-
empty set & C P(A) closed under U and satisfying z € . = y € .# whenever
y C @ C A. Thus, every ideal contains the empty set @&. Usually, they consider
only non-trivial ideals; i.e., those that contain all singletons {a}, « € A, and do
not contain A, i.e., %in(4) C & ; F(A). But sometimes the ideal {&}, whose
only element is the empty set &, is considered and often denoted by 0.

If A is a countable set, then by identifying Z2(A) with 24 via characterictic
functions we equip Z(A) with the Polish product topology.! In this sense, a Borel
ideal on A is any ideal that is a Borel subset of ?(A4) in this topology. Let us give
several important examples of Borel ideals:

o Fin = {z C N: 2 is finite}, the ideal of all finite sets;

o S ={x CN*:{k:(2) # &} € Fin}, where (v), = {b: (a,b) € z};

o Sp={oCN:Y s %} < +4o0, the summable ideal;

o Sy ={v CN?:Vk((a), € Fin)};

. . card (2N[0,n)) o

e Zy={x CN:lim, T = 0}, the density ideal.
Given an ideal .# on a set A, we define I = FP(A) 7 (ﬂ—positibe sets) and
I = (X :0X € 7} (the dual filter). Clearly, @ + #° C 7+,

If BCA thenweput £ [B={zNB:xc.¥}.

3.2. Reducibility of ideals

There are different methods of reduction of an ideal .# on a set A to an ideal
F on aset B, where the reducibility means that .# is in some sense simpler (in
a non-strict way) than #.

Rudin-Keisler order: .# <py _# iff there exists a function 3 : B — A (a
Rudin-Keisler reduction) such that x € & <= g7[z] € ¢ .

1 This topology on P(A) is generated by all sets of the form By, = {x C A:uw CaAvNe #
@}, where u,v C A are finite disjoint sets.

41
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Rudin-Blass order: . <gpg _# iff there is a finite-to-1 function f: B — A (
Rudin-Blass reduction) with the same property.

A version: & <[, # allows the map [ to be defined on a proper subset
of B. In other words, there exist pairwise disjoint finite non-empty sets
“'{a}], a € A, such that 2 € I <= w, =J,c, wa € 7.

Another version: .7 <} 7, applicable in the case when A = B = N, re-
quires in addition that the sets w, satisfy maxw, < minw,4,.

The next result known from [JN76], [Mat75], [Tal80] shows that the ideal
Fin of all finite sets is a <pp-least ideal!

THEOREM 3.2.1. (i) If # is a (non-trivial) ideal on N and & has the
Baire property in the topology of Z(N), then Fin <} and <ps & .

(i) If & <l # are Borel ideals and there is an infinite set Z C dom.#
such that I | Z = %in(Z2), then I <gp 7.

PRroOOF. (i) First of all, the ideal .# must be a meager set in & (N). (Otherwise,
& would be comeager somewhere, easily leading to a contradiction with the non-
triviality.) Thus, % = & (N) \ [, D, where all D;, are dense open subsets of
P (N) with Dyy1 C Dy, Vk. Now we prove:

LEMMA 3.2.2. If n,k € N, then there exist m > n and a set u C [n,m) such
that all sets © € P(N) satlisfying =N [n,m) = u belong to Dy .

ProoFr. This is a rather typical argument. First of all, fix an arbitrary enu-
meration {s;:j < J} of all sets s C [0, n), where obviously J = 2". Consider the
set sg. As Dy is open, there exist n; > n and a set uy C [n,n,) such that all sets
z € P(N) satisfying v N[0, n1) = so Uuy belong to Dj,. Now consider the set s,.
By the same reasoning there exist ng > ny and a set ug C [0, ng) such that all
sets z € F(N) satislying 2 N [0, ng) = s1 Uuy Uuy still belong to Dy,

Following this inductive construction, we define a finite sequence of numbers
n<ny <ng <. <ny andsets u; C [nj,n;41) such that if j < J, then all sets
z € P(N) satisfying 2 N[0, nj41) = s; Uug UugU- - -Uuy belong to Dj,. We claim
that m = ny and the set w = w3 Uug U---Uuy are as required.

Indeed suppose that o € & (N) satisfies @ N [n, m) = u. The set s = N[0, n)
coincides with some s;, j < J. Then obviously &N [0, n;41) = s;Uu UupU- Uy,
and hence @ € Dy, by the construction. O (Lemma)

Coming back to the proof of the theorem, note that the lemma allows us to
define a sequence of non-empty finite sets wr C N with maxwp < minwgyq such
that every union z of infinitely many of them belongs accordingly to infinitely
many sets Dy, ; therefore, it belongs to all of them because Dy 1 C Dy, and hence
belongs to &(N) ~ . It follows that the map & — w, = |J,c, Wa Wwitnesses
Fin <t .#. To derive Fin <gp .#, let us cover each wy, by a finite set wu; such
that |y e e =N and still uy, Ny = @ for k £ 1.

(ii) Assume w.lo.g. that &, # are ideals over N. Let pairwise disjoint finite
sets wy C N witness & <}, #. Put 2/ = N\ Z, X = [Jycpwy, and ¥V =
Uiezs wi. The reduction via {wy} reduces Z%iy(Z) to Z [ X and # [ Z' to
S Y. Keeping the latter, replace the former by a <gp-like reduction of %;,(7)
o 7 Y, where Y’ = N \'Y, which exists by Theorem 3.2.1(1). O
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Another type of reducibility is connected with A-homomorphisms. Suppose
that .#, ¢ are ideals on sets A, B, respectively. The power sets 2(A), P(B)
can be considered to be groups with A as the operation and @ as the neutral
element. Then a A-homomorphism is any map o : P(A) — P(B) such that
I(z) AI(y) = Iz Ay) for all z,y C A.

The quotient Z(A)/.7 consists of F-classes [z]y = {z Aa:a € F} of sets
x C A; it is endowed by the group operation [z]s A [y]sr = [2 A y]l.r. Similarly,
P(B)/ #. For a map ¥ : P(A) - F(B) to induce in an obvious way a group
homomorphism of #(A)/.7 to P(B)/_#, it is necessary and sufficient that

1) (=) AI(y)) Ad(xANy)e ¢ forall z,y CA, and
2) z€ S = I(x)e ¢ forall z C A
Let us call every such a map an (&, ¢ )-approzimate /\-homomorphism.

Borel A-reducibility: .# <2 ¢ iff there is a Borel (., ¢ )-approximate /-
homomotphism ¥ : $(A) — F(B).

Note that if a map 8 : B — A witnesses, say, ¥ <gpx _#, then the map
J(z) = ft[z] obviously witnesses & <§ £.

Isomorphism: . = ¢ ofideals ., # onsets A, B, respectively, means that
onto

there is a bijection §: A =—— B such that @ € & <= pz] € ¢ for all
xzCA.

The following notion belongs to a somewhat different category since it does not
allow us to really define .# in terms of _#.

Reducibility via inclusion (see [JKLO02]): # <; ¢ iff thereisamap 3 : B —
A such that ¢ € . = 7 !z] € #. (Note = instead of <=>!)

In particular, if .# € ¢ (and B = A), then # <; _# via f(a) = a. It follows
that this order is not fully compatible with the Borel reducibility <g.

3.3. P-ideals and submeasures

Many important Borel ideals belong to the class of P-ideals.

DEFINITION 3.3.1. Anideal .# on N is a P-ideal if for every countable sequence
of sets z, € # there is a set & € & such that =, C* x (that is, 2, ~ x € Fin) for
all n. a

EXERCISE 3.3.2. Prove that the ideals Fin, %5, 75, 2, are P-ideals while .#;
is not a P-ideal. a

This class admits several apparently different but equivalent characterizations,
one of which is connected with submeasures.

DEFINITION 3.3.3. A submeasure on a set A is any map ¢ : Z(A) — [0, 4o},
satisfying ¢(@) =0, ¢({a}) < +oo for all a, and ¢(z) < p(zUy) < p(z) + ¢(y).
A submeasure ¢ on N is lower semicontinuous, or LSC for brevity, if we have
o(x) = sup,, p(zN[0,n)) for all z ¢ L(N). o
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To be a (finitely additive) measure, a submeasure o has to satisfy, in addition,
that p(zUy) = p(a)+¢(y) whenever z, y are disjoint. Note that every o-additive
measure is LSC, but if ¢ is LSC, then ¢, is not necessarily LsC itself.

Suppose that ¢ is a submeasure on N. Define the tail submeasure poo(z) =
llz||, = inf,(p(z N [n, 00))). The following ideals are considered:

Fin, = {ze€ P(N):¢(z) < +oo};
Null, = {z€ ZP(N):¢(z)=0}
Exh, = {z€ P(N): po(z)=0} = Null,_.

Some ideals are of the form Exh,, for appropriate L.8C submeasures :
EXERCISE 3.3.4. Prove the following:
(i) Fin = Exh, = Null,, where p(z) =1, Va # @.

(ii) .5 = Exhy, where () = >, 2 % o({l: (k,I) € z}) is an LSC submea-
sure and ¢ is defined as in (i).

(iii) S = Exhy, where p(a) =37 . % is an LSC submeasure. 0

The next example is somewhat more complicated:

cardy

= Sup'yg.’v, y finite m 28 an LSC

LEMMA 3.3.5. 25 = Exh,, where p(x)
submeasure.

PRrooOF. Indeed, that ¢ is LSC is rather easy. (Note that a simpler definition,
cardx

like () = fails to satisty @ C y = ¢(z) < (y).) Suppose that z € 25
¥ ¥ ¥

l4maxa ’
card (zN[0,n))
2

and £ > 0. There exists n, such that < ¢ for all n > n.. Then
obviously ¢(x) < e for all finite sets & C 2N [n, 00). This proves that u.(z) = 0.

To prove the converse, suppose that z € Exh, and € > 0. Then there is n. such
that ¢(x) < e for every finite @ C z N [n,, 00). Consider an arbitrary n > n.e71.

Easily, Mo’i)—) < _7_7;75 + ¢(x), where @ = z N [ne, n], which is less than 2¢ by

the choice of n. and n. This proves z € %5. ]

It turns out (SOLECKI, see Theorem 3.5.1 below) that 3} P-ideals are the same
as ideals of the form Exh,, where ¢ is an LSC submeasure on N. This implies that
every 3{ (in particular every Borel) P-ideal is in fact TI9.

3.4. Polishable ideals

There is one more useful characterization of Borel P-ideals. Let T be the
ordinary Polish product topology on Z?(N) as described in Section 3.1. Then
ZP(N) is a Polish group in the sense of 7' and the symmetric difference /A as the
operation, and each ideal .# on N is a subgroup of Z2(N).

DEFINITION 3.4.1. An ideal .# on N is polishable if there is a Polish group
topology 7 on . that produces the same Borel subsets of . as T | Z. ]

The same SOLECKI's theorem (Theorem 3.5.1) proves that, for analytic ideals,
to be a P-ideal is the same as to be polishable. It follows (see Exercise 3.3.4) that,
for instance, Fin and .#; are polishable, but .# is not. The latter will be shown
directly after the next lemma.
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LEMMA 3.4.2. Suppose that an ideal 5 C ZP(N) is polishable. Then there
is a unique Polish group topology T on &. This topology refines T' | & and is
metrizable by a A-invariant metric. If 7 € &, then 7| P(7Z) coincides with
T | P(Z). In addition, S itself is T-Borel.

PROOF. Let 7 witness that .# is polishable. The identity map

fl@)y=z: (F57) > (P(N);T)
is a A-homomorphism and is Borel-measurable because all (7' | .#)-open sets are
7-Borel. Therefore, by the Pettis theorem (see e.g. KECHRIS [Kec95]), f is con-
tinuous. It follows that all (1" [ .#)-open subsets of .# are 7-open, and that .# is
T-Borel in #(N) because 1-to-1 continuous images of Borel sets are Borel.

A similar “identity map” argument shows that 7 is unique if it exists.

It is known (see e.g. KECHRIS [Kec95]) that every Polish group topology admits
a left-invariant compatible (not necessarily complete) metric, which, in this case, is
right-invariant as well since A is an abelian operation.

Let Z € #(N). Then Z(Z) is T-closed, hence, 7-closed by the above, sub-
group of &, and 7 | &(Z) is a Polish group topology on #(Z). Yet T | 2(Z)
is another Polish group topology on &(Z), with the same Borel sets. The same
“identity map” argument proves that 7' and 7 coincide on (7). W]

ExXAMPLE 3.4.3. Theideal .# is not polishable. Indeed, we have .# = U, Wa,
where W, = {z:2 C {0,1,...,n} x N}. Let, on the contrary, 7 be a Polish group
topology on .#1. Then 7 and the ordinary topology 7' coincide on each set W,, by
the lemma, in particular, each ¥, remains 7-nowhere dense in W, 1, hence, in
1, a contradiction with the Baire category theorem for . (]

3.5, Characterization of polishable ideals

The next theorem of SOLECKI [S0l96, Sol99] proves that the ideal # is the
<gp-least among all Borel non-polishable ideals.

THEOREM 3.5.1. Suppose that % C N 4s an ideal. The following conditions
are equivalent:

(i) & has the form Exh,, where @ is a LSC submeasure on N ;
(if) & is a polishable ideal ;
(ili) & 45 a 1 P-ideal;
(iv)  is a B ideal such that all countable unions of 7 -small sets are % -

small, where a set X C F(N) is £-small if there is A € # such that
X[A={2nA:ze X} C P(A) is meager in P(A);

(v) F is a X} ideal satisfying S\ Lrp & .

PROOF (sketch). We first establish rather elementary (but tricky in some
points) equivalences (i) <= (ii) and (iii) <= (v) <= (iv) and the implication
(i) = (iii), and then carry out the hard part, the implication (iv) = (i).

(i) = (ii). If p({n}) > 0 for all n, then the required metric on .# = Exh,,
can be defined by do(z,y) = p(2 Ay). Then each set U C .# open, in the sense of
the ordinary topology (the one inherited from #(N)), is d,-open, while each d,,-
open set is Borel in the ordinary sense. In the general case we assemble the required
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metric of di, on the domain {n:¢@({n}) > 0} and the ordinary Polish metric on
Z(N) on the complementary domain,

(ii) = (i). Let 7 be a Polish group topology on &, generated by a A-
invariant compatible metric d. It can be shown (see [Sol99, p. 60]) that ¢(z) =
SUp,c s, yco A(P, @) is an LSC submeasure with .# = Exh,. The key observation
is that for every z € & the sequence {2 N [0,n)}neny d-converges to a by the
last statement of Lemma 3.4.2, which implies both that ¢ is LSC (because the
supremum above can be restricted to finite sets y) and that % = Exh, (where the
inclusion D needs another “identity map” argument).

(i) = (iii). That every ideal of the form .# = Exh,, ¢ being LSC, is a P-
ideal, is an easy exercise: if z1, 29,23, - € &, then define an increasing sequence
of numbers n; € ; with p(z; N [n;, 00)) < 27" and put = = J,(z; N [n;, 00)).

(iii) = (v). This is because .#; easily does not satisfy (iii).

(v) = (iv). Suppose that sets X, C P (N) are F-small, so that X,, [ 4, is
meager in (A4, for some A, € 7, but X =], X,, is not #-small, and prove
S <gpp F. Arguing as in the proof of Theorem 3.2.1, we use the meagerness to
find, for every n, a sequence of pairwise disjoint non-empty finite sets wj C A,,
k € N, and subsets uf, C wy, such that

a) if « C N and 3%k (z Nw} = u}), then z ¢ X,,.
k k

Dropping some sets w) and re-enumerating the rest, we can strengthen the dis-
jointness to the following: wp Nw™ = & unless both n =m and k ={.

Now put wy; = wg;-(zj +1)—1° The sets W = |, <; Wiy are still pairwise disjoint
and satisfy the following two properties:

(b) U;wi; € AgU---U Ay, hence, € &, for all i;

(c) if aset Z C N x N does not belong to %, ie., 3*°:37 ({i,5) € Z), then
Vn3°k (wy Cwgz), where Wy = U(i,j)eZ Wj).

We assert that the map (i,j) — w;; witnesses # <fz #. (Then a simple argu-
ment, as in the proof of Theorem 3.2.1, gives % <gp .#.)

Indeed, if Z C N x N belongs to £, then Wz € & by (b). Suppose that
Z ¢ 1. Tt suffices to show that X,, [ Wz is meager in P (Wz) for each n. Note
that by (c) the set K = {k:w}} C Wz} is infinite and in fact Wz N A, = Uy Wi
Therefore, every x C Wz satistying @ N wy = v} for infinitely many k € K, does
not belong to X,, by (a). Now the meagerness of X,, [z is clear.

(iv) = (iii). This also is quite easy: if a sequence of sets Z,, € & witnesses
that .# is not a P-ideal, then the union of .#-small sets £?(Z,) is not .#-small.

(iv) = (i). This is the hard part of Theorem 3.5.1. A couple of definitions
precede the key lemma.

e Let C(#) be the collection of all hereditary (ie., yCz e K = y € K)
compact #-large sets K C Z#(N). (By definition a set K C #(N) is
F-large iff it is not #-small in the sense of (iv) of Theorem 3.5.1.)

)

Note that if K C Z(N) is hereditary and compact, then for K € C(#) it is
necessary and sufficient that for every 4 € .# there is n such that AN[n, ) € K.

o Givensets X,V C Z(N), let X +Y ={zUy:zc X AyeY}.
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LEMMA 3.5.2. Assume that &% is of type (iv) of Theorem 3.5.1. Then there is
a countable sequence of sets K., € C(F) such that for every set I € C(#) there
exist numbers m,n with K, + K, C K.

PROOF. As .# is a Xf subset of Z(N), there exists a continuous map f :

NY 9% 7. For any s € N<“, we define
Ny={aecNV:sCa} and B, = f[N,] (the f-image of N,).

Consider the set T = {s: B, is #-large}. As .# itself is clearly S-large, A € T.
On the other hand, the assumption (iv) easily implies that 7' has no endpoints
and no isolated branches; hence, P = {a € NY:Vn (a [ n € T)} is a perfect set.
Moreover, Fy = f[(P N N;)] is F-large for every s € T because B, ~ F is a
countable union of .#-small sets.

Now consider any set K € C(.). By definition, if z,y € £, then z = 2 U
y € F, thus, K | z is not meager in £?(z). Hence, by the compactness, K [ z
includes a basic nbhd of &(z), and hence, by the hereditarity, there is a number
n such that Z N [n,oc0) € K. We conclude that P? = U,, @n, where each @, =
{{a,b) € P?:(f(a)U f(b))N[n,c0) € K} is closed in P because sois K and f is
continuous. Thus, there are s, ¢ € T such that P2N(N, x N;) C @, ; in other words,
(Fy + F) | [n,00) € K, hence, (Fy + F) [ [n, 00) C K, where _.. denotes the
topological closure of the hereditary hull. Thus we can take, as the collection of
sets K, all sets of the form K, = ﬁ [ 7. 0

As C(#) is obviously a filter, the sequence of sets given by the lemma can be
transformed (still in the assumption that # is of type (iv)) into a C-decreasing
sequence of sets K, € C(F) such that

(1) for every K € C(#) there is n with K, C K,
and K, 11 + K41 € K, for every n. Taking any other term of the sequence, we
can strengthen the latter requirement to
(2) for every n . I(n+1 + I(n+1 -+ I(7I+1 - I(n .
This is a starting point for the construction of an LSC submeasure ¢ with & =
Exh,. Assuming that, in addition, Ko = Z(N), put, for every x € %%;,(N),
p1(a) = inf{2™":xe€K,}, and
po(w) = inf{> " pi(z):m>1Aw; € Zn(N) Az C UL, 24}
Then put ¢(z) = sup,, @2(x N[0, n)) for every & C N. A routine verification shows
that ¢ is a submeasure and that .# = Exh,,. (See SOLECKI [S0l99]. To check that

every x € Exh, belongs to .#, use the following observation: = € & iff for every
K € C(.#) there is n such that N [n,c0) € K.) O (Theovem 3.5.1)

3.6. Summable and density ideals
Any sequence {r,}nen of positive reals r, with > 7, = 400 defines the ideal

Sy = {2 EN: Zrn < +oo} = {z: pgy, 3 (2) < 400}, ?

nex

2 The particular case 7, = L will be frequently considered below. Obviously, ro is not
defined, and hence the definition is amended to F;1/5y = {& S N: 35 . 4>17n < +oo}. This
is the same as putting additionally rg = 0.
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where g, 3(X) = 30, cx Tn. These ideals are called summable ideals; all of them
are Fg in the product Polish topology on & (N). Every summable ideal is easily a
P-ideal: indeed, %%,y = Exh,, where p(X) =} _\ 7, is a c-additive measure.
Summable ideals are perhaps the easiest to study among all P-ideals.

LEMMA 3.6.1. Assume that 7, >0, v, = 0, 3" 7 = +00. Then (S 13 D)
is a Polish group, and every summable ideal .7 salisfies & < S 3.

PROOF. Show that (%%, y; &) is a Polish group with the distance dy,. }(a,b) =
Oy (@ AD), where

0iry(E) = Zr,, for © € Z(N), hence 77, ) = {2 : ¢,y (2) < +oo}.

new

To prove that the operation is continuous, let =,y € Z(N). Fix a real § > 0, and

let € = % If o', y" belong to the e-nbhds of @,y in &%, y with the distance d, ,
then (2/ Ay YA (zAy) S (zAa")U(yAy'); therefore

dip @ Ay e Ay) < dgy(@,2") +dg,y (y,y') = 6.

To prove the second claim, let % = .97, 3, where p, > 0 (no other require-

ments!). Under the assumptions of the lemma we can associate a finite set w,, C N
. p (N P —n

to every n so that maxw, < mintw,y, and |r, Zjew,, ry| < 27 ]

For more on summable ideals, see [Mat72, Maz91, Far00].
FARAH [Far00, 1.10] defines a non-summable F, P-ideal as follows. Let I}, =
[2F 2k+1Y and 4 (s) = k~?min{k,card s} for all k& and s C I, and then

o
P(X) = Z@Z)/‘.(X N1;) and 5 =Finy ;
k=0
it turns out that .# is an F; P-ideal, but not summable. To show that . is not of
the form 7%, y, FARAH notes that there is a set X (which depends on {r,}) such
that the differences |pg,, 3 (X N 1x) — (X NI)|, £ =0,1,2,..., are unbounded.
There exist other important types of Borel P-ideals. Every sequence {ry,}nen
of positive reals », with > 7, = +oo defines the ideal

BU(.y = {1 CN: lim ————Ziel‘m[“”’zf' = 0}.
n—4oo ielo,n) i
These ideals are called ERDOS-ULAM (or EU) ideals, Two examples are 2y =
EUy and 2945 = EUgy/n -

This definition can be generalized. Given a measure i on N, we put suppp =
{n:u({{n}) > 0}. Measures pu, v are orthogonal if we have supp p N suppv = @.
Now suppose that [ = {, }nen 18 a sequence of pairwise orthogonal measures on
N, with finite sets supp p;. Define @z(X) = sup,, 11, (X) : thisis an LsC submeasure
on N. Finally let 2 = Exh(pg) = {X :[|X]|,, = 0}. Ideals of this form are called
density ideals. This class includes all EU ideals (although this is not immediately
transparent) and some other ideals: for instance, %3 is a density but non-EU ideal.
Generally density ideals are more complicated than summables. We obtain an even
wider class if the requirement, that the sets suppp, are finite, is dropped: this
wider family includes all summmable ideals, too. See [JK84] or [Far00, §1.13] on
density ideals.
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3.7. Operations on ideals and Fréchet ideals

Suppose that A is any non-empty set, and _#, is an ideal on a set B, for all
a € A. The following two operations on such a family of ideals are defined.

Disjoint sum: »7 . 7. is the ideal on the set B = {(a,0):a € AND € B,}
that consists of all sets @ € B such that (v), € _#, for all a € A,
where (@), = {b:(a,b) € =} (the cross-section). If the sets B, are
pairwise disjoint, then ) ., %, can be defined equivalently as the ideal
on B = |J,c, Ba that consists of all sets of the form |J e, o, where
T, € S, for all a.

In the case of two summands, the disjoint sum #® _# of ideals ., ¢
on disjoint sets A, B is equal to {aUy:a e S Aye 7}

Fubini sum and product: Suppose in addition that .# is an ideal on A. The
Fubini sum ) ,c 4 Fo/F of the ideals #, modulo .# is the ideal on
the set B (defined as above) which consists of all sets y C B such that
the set {a: (2)q & Fa} belongs to . This ideal obviously coincides with
the plain disjoint sum >, ., #, in the case when & = {@}.

In particular, the Fubini product % ® _# of two ideals .#, # on sets
A, B, respectively, is equal to Y, 4 Fo /7, where 7, = #,Va. Thus
S & F consists of all sets y € A x B such that {a:(y). & F} € 7.

Coming back to the ideals defined in Section 3.1, % and %3 coincide with
Fin x 0 and 0 x Fin, respectively, where, we recall, 0 denotes the least ideal
0= {o}.

The operations of the Fubini sum and product lead to an important family of
Fréchet ideals. This family consists of ideals Frg, £ < wy, defined by transfinite
induction as follows:

e Fr; =Fin and Frepq =Fin @ Frg for all £,
o Fra= ccnFre/{@} for all limit ordinals A < w;.

Limit steps can be treated differently; for instance, by

Fl‘,\ = ZE</\ Frf/Fin,\, or by Fl‘,\ = E£</\ F]‘g /BOLL,\7

where Finy is the ideal of all finite subsets of A and Bou, is the ideal of all
bounded subsets of A, and also by Fry = >7 . Fre /Fin, where {£,} is a once
and for all fixed cofinal increasing sequence of ordinals below A, as in [JKL02],
with the understanding that the result is independent of the choice of £,, modulo
a certain equivalence relation.

3.8. Some other ideals

We consider two interesting families of Borel ideals (mainly, non-P-ideals),
united by their relation to countable ordinals. Note that the underlying sets of
these ideals are countable sets different from N.

Indecomposable ideals. Let otp X be the order type of X C Ord. For any
ordinals &, ¥ < wy define:

/5 = {AC¥:otpA <w*} (nontrivial only if 9 > w).
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To see that the sets fﬂ& are really ideals, note that ordinals of the form wé and only
those ordinals are indecomposable, i.e., are not sums of a pair of smaller ordinals,
hence, the set {A C¥: otp A < v} is an ideal iff v = w¢ for some €.

Weiss ideals. Let |X|cp be the Cantor—Bendixson rank of X C Ord, equal to
the least ordinal « such that X(® = @, Here X(®) is defined by induction on « €
Ord: X@ =X, XV = Naca X (@) at limit steps A, and finally X (@D = (X (),
where A’ the Cantor-Bendixson derivative, is the set of all ordinals v € & which
are limit points of X in the interval topology. For any pair of ordinals &,9 < wy,
define the Weiss ideal:

WE = {ACI:|Alep < Wb}
(nontrivial only if 9 > W ). It is less transparent that all sets of the form V/f
are ideals (see FARAH [Far00, 1.14]) while {A C9:|A|cs < 7} is not an ideal
whenever 7 is not of the form w®.

Ideals on finite sequences. The set N<“ of all finite sequences of natu -al
numbers is countable, yet its own order structure is quite different from that of
N. We can exploit this in several ways, for instance, with ideals of sets X C N<¥
which intersect every branch in N<* by a set which belongs to a given ideal on N.

f
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CHAPTER 4

Introduction to equivalence relations

Recall that an equivalence relation (ER, for brevity) on a set A is a reflexive,
transitive, and symmetric binary relation on A. Suppose that E is an equivalence
relation on a set X. Then

e = {reX:yEa} for yeX (the E-class of z), and
Ye = U:l/ey[y]E for Y € X (the E-saturation of Y).

o Aset Y C X is E-invariant if [Y]g =Y.

o Asubset Y C X is pairwise E-equivalent, vesp., pairwise E-inequivalent,
if  Ey, resp.,,  Fy, holds for all x #y in Y.

o If X,V are sets and E is a binary relation, then X EY means that we
have both Vo € X3y € Y (¢ Ey) and Vy e Y 3z € X (v Ey).

We introduce several Borel equivalence relations in Section 4.1. We then discuss
operations on equivalence relations in Section 4.2, orbit ERs of Borel actions of Borel
and Polish groups in Sections 4.3 and 4.4, and discuss connections between Borel
equivalence relations and Borel measures in Sections 4.5 and 4.6.

4.1. Some examples of Borel equivalence relations

Let Ax denote the equality on aset X, considered to be an equivalence relation
on X. This is the most elementary type of equivalence relation. A much more
diverse family consists of equivalence relations E  generated by Borel ideals.

o If # is an ideal on a set A, then E s is an equivalence relation on 2?(A),
defined so that zEgsy iff z Ay e #.

Equivalently, E» can be considered to be an equivalence relation on 24 defined
sothat fEs g iff fAg € 7, where f Ag={a€ A: f(a) # g(a)}. Note that
E.» is Borel provided .# is Borel. We obtain the following important equivalence
relations:!

Eo = Efin: isan ER on Z(N), and 2 Egy iff 2 Ay € Fin.

Ei=Es : isan ER on Z(N x N), and zE; y iff (z);, = (y)i for all but
finite k, where (@), = {n: (k,n) € 2} for t TN x N.

E2 =Eg : isan ER on #(N), and z E, y iff > kewiy, k>l $ < oo.
Es=Ey : isan ER on &(N x N), and 2 Ezy iff (z)x Eo (v)&, Yk
Zo =Eg, : isan ER on P(N), and 2Zpy if lim, e 22(E&20000) _ o

n

1 The notational system we follow is not the only one used in modern texts. For instance
Ei, E2, E3 are sometimes denoted differently; see e.g. [Gao06].
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Alternatively, Eg can be viewed as an equivalence relation on 2% defined as
a Eq b iff a(k) = b(k) for all but finite k. Similarly, E; can be viewed as an
equivalence relation on Z(N)N, or even on (2M)N, defined as « Ey y iff x(k) = y(k)
for all but finite &, for all @,y € Z(N)Y. And finally E3 can be viewed as an
equivalence relation on Z(N)Y, or on (2M)¥) defined as o Ezy iff (k) Eo y(k) for
all k.

DEFINITION 4.1.1. Generalizing the definition of Eg and E;, we define for any
set W # @ an equivalence relation Eq(W) on the set W (of all infinite sequences
of elements of W) so that x Eo(W) y iff @(k) = y(k) for all but finite k, for all «,
y € WY, Thus, Eg is Eo(2), while E, is Eo(2(N)). 0

The next type includes equivalence relations induced by actions of (the additive

groups of) some Banach spaces; see below on group actions. The following Banach
spaces are well known from textbooks:

¢ = {pcRE, )l <00} (p2 1) el = (X, l0)P)7;
@ = {z R sup, [o(n)] < ook el = sup, (),

c = {zeRY:1lim, a(n) < co exists}; |z = sup,|x(n)l;

co = {zcRY:1lim,ax(n)=0}; |zl = sup,|z(n)|.

Note that £7, ¢, ¢y are separable spaces while £ is non-separable. The domain
of each of these spaces consists of infinite sequences @ = {x(n)},en of reals, and is
a subgroup of the group RN (with the component-wise addition). The latter can
be naturally equipped with the Polish product topology, so that £°, £°°) ¢, ¢g are
Borel subgroups of RY. (However, these are not topological subgroups since the
distances are different. The metric definitions as in £° or £ do not work for RY )

Each of the four mentioned Banach spaces induces an orbit equivalence relation,
a Borel equivalence relation on R™ also denoted by £°, £%°, ¢, cq, respectively. For
instance, @ €7 y if and only if 37, |a(k) — y(k)|? < +oo (for all 2,y € RY).

There is one more important equivalence relation:

To: often called the equality of countable sets of reals, is an equivalence relation
defined on (N™M)M so that g Ty h iff rang = ranh (g, h e (NY)V),

There is no reasonable way to turn %tbl(NN), the set of all at most countable
subsets of NN, into a Polish space, in order to directly define the equality of count-
able sets of reals in terms of Ay for a suitable Polish X. However, nonempty
members of @Ctbl(NN ) can be identified with equivalence classes in (NN)N /Ta (see
Chapter 12 on the whole series of equivalence relations T, o < wy).

We finish with yet another significant equivalence relation:

Ew: the universal countable Borel equivalence relation. The countability here
means that all E-equivalence classes [x]g are at most countable sets. The
notion of universality will be explained below.

See Example 4.4.5 on an exact definition of E,.
4.2, Operations on equivalence relations

The following operations over equivalence relations are in part parallel to the
operations on ideals in Section 3.7.
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Suppose that A is a non-empty and at most countable set, and F, is an equiv-
alence relation on a set. X, for all a € A. The following operations on such a family
of equivalence relations are cefined.

(o1) Union (J,ey Fa (if it results in an equivalence relation) and intersection
(Naca Fa (it always results in an equivalence relation) — in the case when
all F, are equivalence relations on one and the same set X = X oy Va.

(02) Countable disjoint union \/, 4 F, is an equivalence relation E on the set
X =J,({a} x X,) defined as follows: (a,2)E (b,y) iff a =b and xE, y.
If the sets X, are pairwise disjoint, then we can equivalently define
an equivalence relation E = \/_ F, on the set ¥ = U, Xq so that aEy
ift 2,y belong to the same X, and x F, y.

(03) Product ],c 4 Fa is an equivalence velation E on the cartesian product
[Ioca Xa defined so that z Ey iff a(a)F, y(a) for all a ¢ A.
In particular the product F; x Fy of equivalence relations E, F on sets
X1, Xg, respectively, is an equivalence relation E on X; x Xy defined so
that (@1,22) E (y1,y2) iff zy F1 oy and g Fy ys.
If X, =X and F, =F for all a, then the power notation F# can be
used instead of J] ., Fa.

(0d) The Fubini product (ultraproduct) [],c 4 Fo /% modulo an ideal .% on A
is the equivalence relation on the product space 1., X. defined as follows:
@ Ey iff the set {a:x(a) F, y(a)} belongs to ..
It X, =X and F, =F for all «, then the ultrapower notation F*/.#
can be used instead of [[ ., Fa/ .7 .

(05) Countable power of an equivalence relation F on a set X is an equivalence

acA

relation F1 defined on the set XN as follows:
aFty i {[e(k)e:k € N} = {[y(k)]e: k ¢ N},

so that for every k there is | with x(k) F y(l) and for every [ there is k
with x(k) Fy(l).

ExaMPLE 4.2.1. In these terms, the equivalence relations E; and Es coincide
with (Agu)Y/Fin and EON, respectively, modulo obvious bijections between the
spaces considered. Generally, the operations on ideals introduced in Section 3.7
transform in some regular way into operations on the corresponding equivalence
relations. For instance, Es s s/ s equal to [[,e 4 E z, /.7, while Egg i is

equal to (E j)A /#, where A is the domain of .#.
Accordingly, Ey> 4, is equal to ], E ¢, In particular if 7, # are ideals on
disjoint, sets A, B, then Ese ¢ is equal to Ey x Es. O

ExERrcisE 4.2.2. Show that the equivalence relation Ty defined in Section 4.1
coincides with Ayu™T . ad

Tterating these operations, we obtain a number of interesting equivalence rela-
tions starting just with very primitive ones.

ExaMmPLE 4.2.3. Iterating the operation of countable power, H. FRIEDMAN
defines the sequence of equivalence relations T¢, 1 < ¢ < wy, in [Fri00] as follows.?

2 HiorrH [Hjo0OOb] uses Fy¢ instead of Te.
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Let Ty = Apn, the equality relation on NN, Put Ter1 = TE for all € < wy. If
A < wy is a limit ordinal, then put Ty = \/5 < T¢- The definition for the second
term T, coincides with the separate definition of T in Section 4.1 by Exercise

4.2.2. O

4.3. Orbit equivalence relations of group actions

An action of a group G on a space X isamap a: G x X — X, usually written
as a(g,z) = g-x, such that 1) e-z =z, and 2) g-(h-2) = (gh)-@. Then, for every
g € G, the map z — g - is a bijection of X onto X with z — g~ 'z being the
inverse map. A G-space is a pair (X;a), where a is an action of G on X. In
this case, X itself is also called a G-space, and the orbit equivalence relation, or
equivalence relation induced by the action, EX = EZ is defined on X so that EX Y
iff there is g € G with y = g-=. Ex—classes are the same as G-orbits, that is,

[le = [2lgx ={y: g€ G (g =y)}.

DEFINITION 4.3.1. A group is Polish, resp., Borel iff its underlying set is a
Polish space, resp., a Borel set in a Polish space, and the operations are continuous,
resp., Borel maps. A Borel group is Polishable if there is a Polish topology on the
underlying set which 1) produces the same Borel sets as the original topology and
2) makes the group Polish.? 0

If both X and G are Polish and the action continuous, then (X;a) (and also
X) is called a Polish G-space. If both X and G are Borel and the action is a Borel
map, then (X;a) (and also X) is called a Borel G-space.

PropOSITION 4.3.2. If G is a Borel group and (X;a) is a Borel G-space,
then the induced equivalence relation E = EX is a =7 relation.

PRrOOF. According to Theorem 1.2.2, we can assume that both G (with its
operations) and X are Borel sets in product spaces. This will allow us to apply
Proposition 1.9.1. By definition z Ey is equivalent to Ja(a € GAy=a- z). Both
relations in brackets are Borel since the group and the action are Borel; hence, Al
by Proposition 1.9.1(vi) and hence, %}. Adding the quantifier Ja preserves »!
by Proposition 1.9.1(iv). O

Are Polish actions any better? The next theorem (too special to be proved

here) shows that the type of the group is more important than the class of the
action: roughly, every Borel action of a Polish group G is a Polish action of G .

THEOREM 4.3.3 ([BK96, 5.2.1]). Suppose that G is a Polish group and (X;a)
is a Borel G-space. Then X admits a Polish topology that 1) produces the same
Borel sets as the original topology, and 2) makes the action Polish. o

There are cases when E} is even Borel, not merely 31}:

EXERCISE 4.3.4. Prove that if G is a countable group and the action is Borel
then E} is Borel. Prove the same in the case when G =  C & (N) is a Borel
ideal, considered to be a A-group acting on X = Z(N) by A, as in Example

4.4.1). Hint. Eg(N) = E_» is Borel since = Eg(N) y is equivalent to z Ay € &, O

3 It is known [HjoOOb, 8.3, 8.4] that there exist non-polishable Borel groups and even Borel
groups that cannot be realized as Borel subgroups of Polish groups.
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Several much less trivial cases when E% is Borel are described in [BK96, Chap-
ter 7); for instance, if all E-classes are Borel sets of bounded rank, then E is Borel
[BK96, 7.1.1]. Yet rather surprisingly equivalence classes generated by Borel ac-
tions are always Borel.

THEOREM 4.3.5 (see [Kec95, 15.14]). If G is a Polish group and (X;a) is a
Borel G-space, then every equivalence class of Eé is Borel.

The first notable case of this theorem was established by ScoTT [Sco64] in
the course of the proof that for every countable order type ¢ (not necessarily well
ordered) the set of all sets @ C @ of order type ¢ is Borel in &2(Q).

ProorF. It can be assumed, by Theorem 4.3.3, that the action is continuous.
Then for every = € X the stabilizer G, = {g:g-x = x} is a closed subgroup of
G.* We can consider G, to be continuously acting on G by g-h = gh for all
g,h € G. Let F denote the induced orbit equivalence relation. Then every F-class
[9le = g G, is ashift of G, hence, [g]F is closed. On the other hand, the saturation
[0 of every open set & C G is obviously open. Therefore (see Lemma 7.2.1(iv)
below), F admits a Borel transversal S C G that is, S has exactly one element
in common with each F-class. Yet g — g-x is a Borel 1-to-1 map of S, a Borel
set, onto [z]g. We conclude that [z]e is a Borel set by Theorem 2.12.1. 0O

It follows that not all 3] equivalence relations are induced by Borel actions
of Polish groups. Indeed, take a non-Borel i set X C NN define 2 E y if either
x =y or x,y € X—this is a B} equivalence relation with a non-Borel class X.
On the other hand, it is known that every i equivalence relation is induced by a
Borel action of a Borel group; see [BK96, 6.2] or [Hjo0OOb, 8.5].

4.4. Some examples of orbit equivalence relations

EXAMPLE 4.4.1 (A-action of ideals). Every ideal .# C 2(N) is a group with
the symmetric difference A as the group operation and the empty set & as the
neutral element. If .# is a polishable ideal (see Section 3.4), then (#;A) is a
Polish group in an appropriate Polish topology compatible with the Borel structure
of .#. Given such a topology, the A-action of .# on #(N) is Polish too.

For instance, show that the A-action of a summable ideal % = %7,  (see
Section 3.6) on &(N) is continuous in the sense of the dy, j-topology of %, 1 (as
in the proof of Lemma 3.6.1) and the ordinary Polish product topology on & (N).
Suppose that g € S}, € Z(N), and fix a Polish nbhd V = {y € Z(N):
yNn = (g-z)Nn} of g-x in Z(N), where n € N. Consider the corresponding nbhd
U={z'€¢ Z(N):2'Nn=ann} of z. Let ¢ =min{ry : k < n}. Then every element
g € Sy of the enbhd of g in the dy, y-topology satisfies g A ¢’ C [n, co);
therefore, ¢’ Aa’ € V for all o’ € U. O

4 KECHRIS [Kec95, 9.17] gives an independent prool. Both G and its topological closure,
say, (', are subgroups. Moreover, G’ is a closed subgroup; hence, we can assume that G/ = G.
In other words, G4 is dense in G, and the goal is to prove that Gz = G. By a simple argument,
Gy is either comeager or meager in G. But a comeager subgroup easily coincides with the whole
group; hence, assume that G, is meager (and dense) in G and draw a contradiction.

Let {Valnen be a basis of the topology of X, and A, = {g € G:g-z € Vp}. Easily Aph =
Aqp for all h € Gg. It follows, because G, is dense, that every A, is either meager or comeager.
Now, if g € G, then {g} = mnGN(g) An, where N(g) = {n:g-x € V,,}; thus, at least one of sets

Ap containing g is meager. It follows that G is meager, a contradiction.
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EXAMPLE 4.4.2 (Ep as an orbit equivalence relation). Define an action of G =
Pin(N), a countable subgroup of (Z(N); A), on 2N as follows: (w-z)(n) = z(n)
if n ¢ w, and (w-z)(n) = 1 —z(n) otherwise. The orbit equivalence relation Ef of
this action is Eg. This action is Polish (given G = %%;,(N) the discrete topology)
and free: @ = w-x implies w = @ (the neutral element) for any ¢ 2N, O

Remarkably, Eg also can be in%ggd by a Borel action of Z; see Remark 8.1,3.

LEMMA 4.4.3 (0-1 law for category). (i) If X C 2V is a Borel Eq-invariant set
(so that [X]g, = X)), then X is either meager or comeager. :

(ii) Buery Borel pairwise Eg-inequivalent set T C 2N is meager.

(iii) Eo does not have a Borel transversal (= a pairwise Eg-inequivalent set T’
satisfying [T]g, = 2V).

ProoF. (i) If X is not meager, then it is comeager on a basic clopen set
O,(2N) = {2 €2¥:s C 2}, where s € 2<%, Consider any other ¢ € 2 with
1ht = n, where n = lhs. Put w = { <n:s(i) # t(¢)}. Then w € G, and the
action of w maps X N @s(2Y) onto X N G4(2Y). Thus X is comeager on &;(2")
as well, and hence comeager in 2V in general.

(ii) Note that X = [T)g, = Uyeg w7 is a Borel set: indeed, if w € 2<%, then
w-T is Borel by Theorem 2.12.1 since the map z +— w2 is Borel and 1-to-1. And
X is Eg-invariant. Therefore, X is either meager or comeager. If X is meager,
then there is nothing to prove. If X is comeager, then 7' is not meager, hence T’
is comeager on a set F5(2N), s € 2<¥. Put w = {n}, where n =1hs. Then w € G
and the action z — w -z is a homeomorphism of J(2Y). Moreover, T and w - T
are disjoint sets by the choice of T, both comeager on &(2V), a contradiction.

(iii) If T is a Borel transversal, then X = [Tg, = 2N, but on the other hand
X must be meager in 2Y; see the proof of (ii). This is a contradiction. O

EXAMPLE 4.4.4 (The shift action). The canonical (or shift) action of a group
G on a set of the form B® (B being any set) is defined so that if ¢ € G and
z € B%, then g-2 € B® and (g-2)(f) = (g1 f) for all f € G. This is clearly
a Polish action provided G is countable, B is a Polish space (for instance, a finite
or countable discrete set), and B given the product topology. The equivalence
relation on B® induced on the space B® by this action is denoted by E(G, B).

The free domain (B)® of this action consists of all points @ € B® such that

VgeGlg#1= g z #£x).

If G is at most countable, then (B)® is a Borel set in B®, and G-invariant so
that if z € (B)® and g € G, then g -z € (B)® either. Note that the action of
G restricted to (B)C is free. Put Fr(G,B) = E(G,B) | (B)®, the free part of
E(G, B). 0

EXAMPLE 4.4.5 (The free group). The free group of two generators F, consists
of finite irreducible words composed of the symbols a,b,a™', b1, including the
empty word (the neutral element 1). The group operation is the concatenation of
words (followed by reduction, if necessary, e.g. ab-b~'a = aa).

The shift action of F; on the compact space 272 is defined in accordance

with the general scheme of Example 4.4.4 so that if 2 € 2F2 and w € Fy, then.

(w-z)(u) = a(w'u) for all u € Fy. Put, for o,y € 2F2, 2 By y iff 2 = w-y for
some w € Fy. Thus E,, is E(F2,2), in the sense of Example 4.4.4. In addition, let
Ecor =Fr(Fa, 2)= E(F2,2) [ (2)2, the free part of E,. a
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ExaMpPLE 4.4.6 (Vitali equivalence). The additive group of rationals Q acts
on R by addition: ¢z = ¢+ 2 (where ¢ € Q and = is a real). The induced
equivalence relation is the Vitali equivalence relation Vit, also denoted by E(R/Q).
Thus @ Vity iff @ —y is rational. ]

EXAMPLE 4.4.7. Come back to Banach spaces £, £ ¢, ¢y discussed in Sec-
“ion 4.1. Each of them can be considered to be a Polish group in the sense of
c.mponent-wise addition in R, Each of them canonically acts on RY also by
component-wise addition. For the sake of brevity, the orbit equivalence relations
of these actions, i.e. E%i, ER

M 3¢
B EP}O , are denoted by the same symbols, resp.
£%°, 8P ¢, cq.

]

EXAMPLE 4.4.8 (The group of permutations). The group S, of all permuta-
tions of N (that is, all bijections f: N onte N, with the superposition as the group
operation) is a Polish group in the Polish product topology of NN, Tt acts on any set
of the form XM as follows: for every g € So, and @ € XN, (g-2)(k) = (g7 (k)
for all k, or equivalently (g-2)(g(k)) = x(k) for all k. Formally, g-z = 0 g1
where o is the superposition in the right-hand side.

Take X = NY, Note that (NN )N with the product topology is a Polish space

S . . . . NMHE -, o
and the above action is Polish. Its orbit equivalence relation Eg ) s quite similar

to Ty, but in fact not equal. Indeed if =,y € (N™)V satisty (0) = (1) = y(0) = u

)

and x(k) = u(l) = v for all k > 2, 1 > 1, where v # v € N, then 2 Ty y
jaave HAR

holds while = Egjo) y fails. Still Lemma 5.1.3 will prove that T, and Egi) are

equivalent in a certain well-defined sense. ]

4.5. Probability measures

Studies of Borel equivalence relations, especially countable ones, reveal deep
connections of this field with some branches of mathematics, generally speaking,
outside of descriptive set theory, and, in particular, with ergodic theory.

Recall that a Borel measure on a Borel set X (as usual, in a Polish space) is any
o-additive function o defined on the o-algebra Bor(X) of all Borel sets X’ C X,
and with values in [0, +co]. In this case, a set A C X (not necessarily Borel) is p-
measurable if there are Borel sets U, D such that p(D) =0 and AAU C D. In
this case we can assign to A the measure value equal to (U), of course.

A Borel measure y is:

o-finite: iff X =), X,,, where all sets X,, C X are Borel and u(X,,) < +o0;
probability measure: iff p(X)=1.
Note that probability measures are by definition o-additive.

DEFINITION 4.5.1. P(X) is the set of all probability measures on X . o

EXAMPLE 4.5.2. Even finite sets carry continuum-many probability measures.
Basically, a probability measure on X = {x),...,%,} is the same as a partition
1 =mp + -+ p, into n non-negative reals. Thus, for any 0 < p < 1, there is a
-probability measure on the two-element set 2 = {0,1} that assigns p to {0} and
1 —p to {1}: it will be called the (p,1 — p)-measure. In particular, for p = 1, the
(3, 3)-measure assigns i to both {0} and {1}. O

2
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ExAMPLE 4.5.3 (Product measures). Suppose that I is a countable set and
0 <p <1 Let A, denote the product measure of I-many copies of the (p,1—p)-
measwre on 2 = {0, 1}. In other words, A, is the unique Borel probability measure
on 2! such that for any pair of disjoint finite sets u,v C I, the set

Zuy ={a € 2" :Vicu(a(i) =0)AViecwv(a(i) =1))}
satisfies A\p(Zy0) = p*(1 — p)*, where n = cardu and k = cardv. In particular,
for p = —12-7 A1/2 is the only Borel probability measure on 27 such that for any
pair of disjoint finite sets u,v C I, the set Z,, satisfies A/2(Zuy) = p™, where
m = cardu + cardv. O

EXERCISE 4.5.4. Suppose that G is a countable group, for instance, Z or Fy,
acting on 2% Dby shift (see Example 4.4.4). Let X = (2)¢ be the free domain: it
consists of all points = € 2% satisfying Vg € G ~ {1} (¢ - = # z), where 1 is the
neutral element of G. Then X is an invariant Borel set (that is, g+ X = X for all
g € G), and the shift action of G on X is free. Prove that A;5(X) = 1. O

4.6. Invariant and ergodic measures

These are two important categories of measures. Suppose that E is a Borel
equivalence relation on a Borel set X. A probability measure p € P(X) is

E-ergodic: iff, for any Borel E-invariant set A C X, u(A4) =0 or p(A4) =1;
E-non-atomic: ift p([z]g) =0 for all z € X.

Note that if E is a countable ecuivalence relation, then for p to be non-atomic it
is sufficient (and also necessary) that p({z}) =0 for all points .

DEFINITION 4.6.1, If E is an equivalence relation on a set X, then [[E]] is
the set of all E-preserving partial Borel bijections f: X — X. Thus f € [[E]] iff
there exist Borel sets A, B C X such that f is a Borel bijection of A onto B and
x E f(z) holds for all « € A. O

A probability measure p € P(X) is
E-invariant: iff (A) = p(B) whenever there exists f € [[E]], f: A > B.

DEFINITION 4.6.2. BEINVE is the set of all E-invariant E-ergodic Borel proba-
bility measures (on the Borel set X = domE). a

The notion of an E-invariant measure becomes more transparent in the case
when E is induced by a Borel action of a Polish group G. A measure p is called
G-invariant iff simply p(A) = p(g- A) for all g € G and Borel A C X,

EXERCISE 4.6.3. In this case, prove that if G is countable and p is a Borel
probability measure, then p is G-invariant iff it is E-invariant. Hint. Any map
[ € [[E]] consists of countably many Borel pieces of maps of the form x — g -z,
g € G. Use Theorem 2.12.1 to show that the domains of those partial maps are
Borel. O

EXAMPLE 4.6.4 (Ep-invariant ergodic measures). Recall that Eg is defined on
2Y so that o Eg b iff there is n € N such that « [ n = b | n. There is a unique
probability measure A = A;/2 on 2N satisfying A\(0s) = 271 for every sequence
s € 2<% where 0, = {a € 2V :5 C a}, a basic clopen set in 2.
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Recall that Eg is induced by the action u, = > u - 2 of the A-group %4, (N)
defined in Example 4.4.2. The measure )\ is obviously invariant with respect to
this action, and hence Eg-invariant by Exercise 4.6.3. Prove that \ is Eo-ergodic.

Consider an Eg-invariant Borel set X C 2N ; and show that AM(X) =0 or =1
(the 0-1 law, 17.1 in [Kec95]). Suppose toward the contrary that 0 < A\(X) < 1
strictly. By the Lebesgue density theorem (17.9 in [Kec95]) there exist points
acX and beY =2V < X such that

MO annX MOy
lim _(fﬁn_):]_lm le

n—oco 2-n n—00 2-n !
where 27" = A(Oy,) = MO, in). Therefore, there is a number n such that both
M apn N X) and MOy NY) = MO ~ X) are strictly bigger than 271,
Note that v = {i < n:a(i) # b(i)} € 2(N) and u - Oatn = Oy ; therefore, by the
invariance of X, u-(Oq,NX) = OpinNX, and A(Op1,NX) = AMOginNX) > 2771,
But A(Opjn ~ X) > 27771 as well, a contradiction. See 3.2 in [KMO04] for a more
general result, |

Recall that the Baire category of 2N is Eo-ergodic in the same sense: Eg-
invariant Borel sets are either meager or comeager by Lemma 4.4.3.

EXERCISE 4.6.5 (Uniqueness). Prove that \ = A1/2 is the only Eg-invariant
Eg-ergodic Borel probability measure on 2N, Hint Suppose that p € EINVg, is a
Borel probability measure on 2¥, Then W(0s) = u(0y) for any s,t € 2<% of the
same length 1hs = 1h¢ = n, because there is u € Z%in(N) such that u - 0, = 7.
Therefore, p(0;) =27™% = \(0,), Vs, and it easily follows that =\, 0

EXAMPLE 4.6.6 (Shift invariant measures). Recall that E(Z,2) is the shift
equivalence relation defined on 2% so that « E(Z,2) y iff there is j € Z such
that y = j .=, that is, y(k) = =(k — J)s Vk € Z. But in this case there exist
continuum-many invariant ergodic measures for E(Z,2)! Indeed, fix an arbitrary
real p, 0 < p < 1. Let A\, be the probability measure on 2% equal to the product
of Z-many copies of the (p,1 — p)-measure on {0,1}. Thus, if ky < -+ < ky, are
integers in 7 and i1,...,4, = 0,1, then the set

X = {’L S QZ ’L(kl) = il /‘\'~'/'\l‘(]€n) :Z'n}

satisfies \,(X) = p™(1—p)"~™, where m is the number of all indices 0,1 <0<n,
with ép = 1. The measure )\, is shift-invariant, and hence E(Z, 2)-invariant. It
takes some effort to prove that Ap also is E(Z, 2)-ergodic, therefore Ay € EINVgz o)
for every real 0 < p < 1; see, e.g., 3.1 in [KMO04]. O

We continue with yet another example of invariant measures.

THEOREM 4.6.7 (Haar measure). If G is a Polish locally compact group, then

there is a unique (up to a multiplicative constant) o-finite Borel measure ug on G
such that:

(1) pe(I) < 400 for every compact K C G ;
(1) pe(U) >0 for every open @ +U C G ;
(i) pe(A) = pg(gA) for every Borel AC G and every g € G.

This measure is called the (left) Haar measure. U
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Examples: the ordinary Lebesgue measure on R is the Haar measure for the
additive group of the reals. The probability measure A, as in Example 4.6.4, is the
Haar measure for 2V identified with the compact group (ZZ)N.

Note that (iii) means that pg is invariant w.r.t. the left shift action of G on
itself. The definition of a right Haar measure is similar, and the two are generally
distinct. (But they coincide if G is abelian or compact.) If G is a compact group,
then by (i) ug(G) is finite positive, and by normalizing we make it a probability
measure. See [Hal74] on Haar measures.

Yet in some cases invariant ergodic measures do not exist.

DEFINITION 4.6.8. A Borel equivalence relation E on X is compressible if there
is a Borel map f € [[E]], f: X — X, such that the complement ¥ = X \ ran f of
the full image ran f = f[X] is a complete section for E, that is, [Y]g = X . O

EXAMPLE 4.6.9. The tail equivalence relation E., defined on 2V by
aEeb iff Im3InVk (a(m+k)=0bln+k))

for a,b € 28, is a standard example of a compressible equivalence relation. To get
a “compressing” map f choose any k and define, for a € 2%, fi.(a) = k"a, that
is, fr(a)(0) =k and fr(a)(n+ 1) = a(n), Vn. See §2 in [DIJK94] for more on
compressible equivalence relations. O

THEOREM 4.6.10. Let E be a countable Borel equivalence relation. Then E
admits an invariont probability measure iff it is not compressible. (]

We are not going to prove here this theorem of NADKARNI, see 5.1 in [DJK94].
Yet the following exercise contains an element of the “iff” part.

EXERCISE 4.6.11. Prove that the tail equivalence relation E; does not admit
an invariant probability measure. Use the fact that the “compressing” maps fi,
defined as above, belong to [[E:]|] and have disjoint full images. a

EXERCISE 4.6.12. Prove that the Vitali equivalence relation Vit (see Exam-
ple 4.4.6) does not admit an invariant probability measure. Use the fact that the
only invariant Borel measure for Vit is the Lebesgue measure on R, and it is not
a probability measure. O

We proceed with a counterexample that shows that certain combinations of
properties which cannot be achieved for Borel probability measures even in a rather
elementary case. An equivalence relation E on a Borel set X is smooth if there is
a Borel map 9 : X — 2N such that x Ey < 9(x) = I(y). ‘

LEMMA 4.6.13. If E is a smooth equivalence relation on a Borel set X, then
there ts no E-non-atomic E-ergodic Borel probability measure, and for an E-invari-
ant E-ergodic Borel probability measure to exist, it is necessary and sufficient that
E has at least one finite equivalence class.

PRrROOF. Let a Borel map v : X — 2N witness the smoothness, so that
cEy < 9(z) = I(y) for ¢,y € X. Let v be a probability measure on X.
Then v(A) = p(¥~1[A4]) (A C 2V) is a probability measure on 2. If there is a
Borel set 4 C 2V with 0 < v(A4) < 1, then the preimage 9~ '[A] witnesses that
¢ is non-ergodic. If such a set A does not exist, then there is a € 2 such that
Y(z) = o for p-almost all @. In other words, if @ € X is such that J(z) = a, then
p([z]e) = 1, so p is not non-atomic. In this case in order to be E-invariant, ¢ has
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to be invariant w.r.t. any Borel bijection f : [2]g onte [z]e, which is possible only
in the case when [v]g is finite and p is uniformly distributed on [z]g. O







CHAPTER §

Borel reducibility of equivalence relations

There are several reasonable ways to compare equivalence relations in terms of
existence of a reduction, that is, a map of certain kind which allows us to derive one
of the equivalence relations from the other one. The Borel reducibility <g is the key
one. The plan of this chapter is to define <g and to present a diagram that displays
mutual <g-reducibility of the equivalence relations introduced in Section 4.1 (the
key equivalence relations). The proof of related reducibility /irreducibility claims
will be the main content of the remainder of the book.

5.1. Borel reductbility

Suppose that £ and F are equivalence relations on Borel sets X, Y in some
Polish spaces. We define the following:

E <g F (Borel reducibility of E to F) iff there is a Borel map ¥ : X — Y (called
reduction) such that ¢ Ey <= d(z) Fd(y) for all z,y € X;

E~pgF iff E<gF and F <y E (Borel bi-reducibility, or Borel equivalence);
E <gF iff E<pF but not F <y E (strict Borel reducibility).

If E<gF (resp. E <g F, E ~g F), then E is said to be Borel reducible (vesp. Borel
strictly reducible, Borel equivalent or bi-reducible) to F. Sometimes X/E <g Y/F
is used instead of E <g F.

REMARK 5.1.1. We shall occasionally consider analytic non-Borel equivalence
relations, for instance, those of the form E | X, where X is a non-Borel 3] subset
of the domain of a Borel equivalence relation E. If E, F are 31 equivalence relations
on not necessarily Borel domains resp. X, Y, then E <g F will be understood as the
existence of a Borel map ¢ satisfying X C domd and still 2 Ey <= 9(z) F J(y)
for all z,y € X. O

Borel isomorphism: E =y F iff there is a Borel bijection ¥ : X %y such that

x Ea’ iff 9(x) FI(a’) for all z,2" € X.

Borel isomorphism E = F implies Borel bi-reducibility E ~p F, of course, but
not the other way around. A large family of pairwise ~g-equivalent hyperfinite
equivalence relations, considered in Chapter 8, contains infinitely many pairwise
&g-inequivalent relations.

Borel reducibility of ideals: .# <z 7 iff Ey <p E . Thus it is required
that there is a Borel map ¢ : P(A) — F(B) such that 2 Ay € &
iff ¥(z) Ad(y) € #. (Here .#, ¢ are ideals on countable sets A, B.)

63
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In the domain of ideals, <g is weaker than all reducibilities of more special
nature discussed in Section 3.2, in the sense that, for instance, each of % <gg
K and <4 JF implies & <g _#. The only exception is the reducibility via
inclusion <;—it does not imply <g . Indeed we have 5%,/,,; € 2y, but on the
other hand the summable ideal %, /,) and the density-0 ideal 2§ are known to
be <g-incomparable; see below.

It would be interesting to figure out the exact relationship between <z and
the A-reducibility <& . If the next question answers in the negative, then the
whole theory of Borel reducibility for Borel ideals can be greatly simplified because
reduction maps that are A-homomorphisms are much easier to deal with.

QUESTION 5.1.2. Is there a pair of Borel ideals .#/, # such that % <z _# but
not & <& 77 O

The remainder of the book will concentrate on the Borel reducibility /irreduci-
bility theorems. The following rather elementary lemma gives some examples.

LEMMA 5.1.3. (i) Agn ~p AgT
Hy\H
(if) Ty ~g Egi) (see Example 4.4.8).

(iii) If W satisfies 2 < cardW < Ry, then Eg ~g Eo(W) (see Defini-
tion 4.1.1).

PrOOF. (i) By definition, AN+ is an equivalence relation on N, and mAN+y
holds iff ran 2 = rany. Thus, the map 9(z) = Xyan. (the characterictic function)
witnesses that AN+ <g Apn. To prove the converse put, for = € NV,

r(z) ={=(0), «(0)+ (1) +1, 2(0) +2(1) + 2(2) + 2, ...};

then 9(z) = X, () witnesses Ay <g Ayt
(ii) Suppose that z,y € (NY)N, Then 2 T, y means that

VE3 (x(k) =y(l)) and VI3k(x(k)=y(l)),

onto

e y means that there is a bijection f: N — N such that z(k) =
y(f (k) f01 all k. The latter condition is, generally speaking, stronger than the
former one, but the two are equivalent provided that for every k there exist infinitely
many indices ! such that x(k) = 2(l) and the same for y. It follows that the map
9+ NY — NV defined so that ¥(z) = o' iff &/ (2"(2k 4 1) — 1) = (k) for all n, k,
(NH)H ,

while 2 E

is a Borel reduction of T, to Eg

A Borel reduction 9 of Eg: ” to T2 can be defined as follows: 9(z) = a/, where
o' (k) = ny(k)~a(k) for all k, n,(k) is the number of all | satisfying x() = (k)
(including { = k) or 0 if there exist infinitely many of such , and n"a for a € NV is
defined as the only element of N™ such that (n~a)(0) = n and (n"a)(j+1) = a(j)
for all j.

(iii) In the non-trivial direction, to prove, say, Eo(N)<gy Eg, define & € 2% for
every @ € NV so that #(27(2k+1)—1) = 1 whenever z(n) =k — for all n, k € N.
The map z — & is a Borel reduction of Eo(N) to Egp. 0]

5.2. Injective Borel reducibility—embedding

A special type of Borel reductions consists of those via injective maps.




5.3. BOREL, CONTINUOUS, AND BAIRE MEASURABLE REDUCTIONS 65

E Cg F iff there is a Borel embedding, that is, a 1-to-1 reduction of E to F;
E~pgF iff ECg F and F Cg E (a rare form, [HKL98, §0]);

E CL F iff there is a Bovel invariant embedding, i.e., an embedding ¥ such that
ran?d = {V(x) : @ € X} is an F-invariant set (meaning that the F-satura-
tion [rand]r = {y: 3z (y FI(z))} equals ran?).

Thus, if E, F are equivalence relations on sets resp. X, Y, then a Borel em-
bedding of E in F is a Borel injection (a 1-to-1 map) 9 : X — Y satisfying
xEy <= J(x) FI(y) for all 2,y € X. Note that the set Y’ = rand is a Borel
subset of Y, and ¥ is a Borel isomorphism between the relations E and F|Y’. It
is not likely that <p implies Cp in all cases, yet sometimes such a strengthening
is possible.

Prorosition 5.2.1. Suppose that E is one of the equivalence relations E1, E,
Es, while F is a Borel equivalence relation, and F <z E. Then F Cg E.

Proor. Consider E; to be an equivalence relation on (2M)¥ defined as = E; y
iff (k) = y(k) for all but finite k. Let X be the domain of F. Suppose that
¥ : X — (2")N is a Borel reduction of F to Ej. Define 9" : X — (2Y)N so that
¥ (x)(k+1) = 9(x)(k) for all @ and k, and ¥'(x)(0) = f(x), where f: X — (2NN
is an arbitrary Borel injection. Note that adding f does not change the property
of being a reduction, but makes ¢ an injection.

In the E3 case, f has to be adjoined in different way: 9'(z)(k)(n + 1) =
I(x)(k)(n), but ¥ (x)(k)(0) = f(k) for all =, k,n.

It remains to consider Ep. Let X be the domain of F. Suppose that ¥: X —
Z(N) is a Borel reduction of F to Ej, so that zFy iff D oked (@) Ad(y), k31 T < Foo.
We define ' () = {2n:n € ¥(a)}; thisis still a Borel reduction. Put U = {2" + 1
n € N}, obviously >, % < +o0. Fix a Borel injection f: X — Z2(U). The map
V" (x) = 9'(z) U f(x) is the Borel embedding required. O

COROLLARY 5.2.2. Suppose that E is one of the equivalence relations Eq, Ep,
Es, while F is a Borel equivalence relation, and F <g E. Then there exists a Borel
set X C domE such that F is Borel isomorphic to E| X . O

5.3. Borel, continuous, and Baire measurable reductions

The Borel reducibility and related notions in Section 5.1 admit weaker Baire
measurable (BM, for brevity) versions, which claims that the reduction postulated
to exist is only a BM, not necessarily Borel, map. (Recall that a map is Baire
measurable if the preimages of open sets are sets with the Baire property.) Those
versions will be denoted with a subscript BM instead of B. Also there are stronger
continuous versions that will be denoted with a subscript C. Thus

E<guF, E~pmF, E<guF, ECgy F: mean the reducibility, resp., bi-reducibi-
lity, strict reducibility, embedding by Baire measurable maps.
E<cF, E~cF, E<¢F, ECo F: mean the reducibility, resp., bi-reducibility,
strict reducibility, embedding by continuous maps.
It is known that a Baire measurable map defined on a Polish space is continuous

on a comeager set. Thus BM reducibility is the same as a Borel or even continuous
reducibility on a comeager set. On the other hand, according to the following
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result of JusT [Jus90a] and LOUVEAU [Lou94|, continuous reducibility on the full
domain can sometimes bhe derived from Borel reducibility. '

Lemma 5.3.1. If # is a Borel ideal on a countable set A, E an equivalence
relation on a Polish space X, and E» <py E (via a Baire measurable reduction),
then E gy <¢ E x E (via a continuous reduction). I'n addition, there is a set X C A,
X ¢ F such that Eyix <c E, where S [ X =7 NPX).

Here E X E is an equivalence relation on X x X defined so that {(z,y) and
(@',y') are equivalent iff both x E2’ and y E y'. Note that E x E <¢ E holds for
various equivalence relations E, and in such a case the condition E» <¢ E X E in
the lemma can be replaced by E » < E.

Proor. We have to define continuous maps g, ¥ : £(A) — X such that,
for every x,y € Z(N), « Ay € & iff both Jy(z) EJy(y) and 91(z) E d1(y).
Suppose w.lo.g. that A = N, Let ¢ : 2(N) — X witness that Ey <gy E.
Then ¥ is continuous on a dense Gs set D = (|, D; € Z(N), all D; being
dense open, and Diy; € D;. A sequence 0 = ng < n; < ng < -+ and, for
every 1, a set w; C [ng,nip1) can be easily defined, by induction on 4, so that

N ng,nigp1) =u = o € Di.t Let
Ny = U; [n2, n2iv1), No = U; [2ir1, noiye), U = U uei, Uz = U, taig1 -
Now set J1(x) = 9((a N N1)UUy) and Ja(z) = I((x N N2) UU,) for z CN.
To prove the second claim, let X be that one of the sets Ny, Ny which does

not belong to #. (Or any one of them if neither belongs to #.) Suppose that
X =N, ¢ #. Then the map ¢; proves Eg;x <¢ E. O

The following question should perhaps be answered in the negative in general
and be open for some particular cases.

QUESTION 5.3.2. Suppose that E <z F are Borel equivalence relations. Does
there always exist a continuous reduction 7 |

5.4. Additive reductions

There is a special useful type of continuous reducibility, actually a “clone” of
the Rudin-Blass order of ideals considered in Section 3.2,

Suppose that X = [ oy Xx and Y = J],cn Ye, the sets X;,Y; ave finite,
O0=mng<ny <ng<- -, and H; : X; — H'n,-<k<‘n;+1 Yy for every i. Define

U(z) = Ho(x(0)) U Hi(x(1)) U Ha(z(2))U - €Y

for each @ ¢ X. Maps ¥ of this kind are called additive (FARAH [Far01b]). More
generally, if, in addition, 0 = mg <mq <mg < -+, and H; : []
Hmé k<nis Y. for every ¢, then define

U(z) = Ho(z [ [mo, m1)) U Hi(z | [m1,me)) U Ha(x | [mg,mg)) U - €Y

for each & € X. FARAH [Far01b] calls maps ¥ of this kind asymptotically additive.
All of them are continuous functions X — Y in the sense of the product Polish
topology. (Recall that X;, Y; are finite.)

Suppose now that E and F are equivalence relations on X = [, X} and
Y =], Y&, respectively.

7TL,*S]‘<TV‘I;+1 X7 -

1 Sets such as u; are called stabilizers. They are of much help in study of Borel ideals.
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Additive reducibility: E <, F if there is an additive reduction of E to F. As
usual, E ~4 F means that simultaneously E <, F and F <, E, while
E <4 F means that E <4 F but not F <, E.
A version: E <,, F if there exists an asymptotically additive reduc-
tion of E to F.

The additive reducibility coincides with <} on the domain of Borel ideals:

LEMMA 5.4.1 (FARAH [Far01b]). Assume that % and # are Borel ideals on
N. Then J <tF 7 iff Ex <A E 4.

By definition, E» and E y are equivalence relations on #(N). However, we
can consider them to be equivalence relations on 2% = [T, eni0,1}, as usual, which
yields the intended meaning for the relation E» <4 E 7

Proor. If ¥ S;'{J & via a sequence of finite sets w; with maxw; < min Wit
then we put ng = 0 and n; = ninw,; for k > 1, so that w; C [n;, n;11), and, for
every i, put H;(0) = [n;,n;41) x {0} and let H;(1) be the characteristic function
of w; within [n;, n;41). Conversely, if E» <, E ¢ via a sequence 0 = ng < ny <
ny < -+ and a family of maps H; : {0,1} — 277+ then & <} 7 via the
sequence of sets w; = {k € [ng, ni41) : H;(0)(k) # H;(1)(k)}. 0

5.5. Diagram of Borel reducibility of key equivalence relations

The diagram in Figure 1 (page 68) begins, at the low end, with cardinals
1 <n €N, Ny, ¢, naturally identified with the equivalence relation of equality
on resp. finite (of a certain number n of elements), countable, uncountable Polish
spaces. As all uncountable Polish spaces are Borel isomorphic, the equivalence
relations Ax, X a Polish space, are characterized, modulo <g, or even modulo
Borel isomorphism between the domains, by the cardinality of the domain, which
can be any finite 1 <7 < w, or Ny, or ¢ = 280,

The linearity breaks above Eg: each one of the four equivalence relations Eq,
Eo, E3, Eo of the next level is strictly <g-bigger than Eg, and they are pairwise
<p-incomparable with each other.

The framebox | ? | points on an interesting open problem (Question 5.7.5 below).
The framebox denotes cg-equalities, a family of Borel equivalence relations
introduced by FARAH [Far01b]: all of them are <g-between Ez and cg ~p Zg, and
there is continuum-many <g-incomparable among them.

The “non-P domain” denotes the family of all Borel equivalence relations that
cannot be induced by a Polish action. E; belongs to this family, and it is conjectured
that E; is a <g-least ER in this family. SoLEOKI [Sol96, Sol99] proved this
conjecture for equivalence relations generated by Borel ideals: for a Borel ideal .# to
be not a P-ideal, it is necessary and sufficient that E; <g E_#; see Corollary 11.8.3.

Finally, the framebox denotes the family of all Borel countable equiva-
lence relations (meaning that equivalence classes are at most countable); all of them
are Borel reducible to Eo, and are induced by Borel actions of countable groups by
the F'ELDMAN-MOORE theorem [FM77, Thm. 1] (Theorem 7.4.1 below). The fol-
lowing theorem of ADAMS-KECHRIS [AKO0O] shows that this is quite a rich family
with its own complicated <g-structure. See a brief survey of results from recent
years on Borel countable equivalence relations in Chapter 9.
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FIGURE 1. Reducibility between the key equivalence relations. Con-
necting lines here indicate Borel reducibility of lower equivalence rela-
tions to upper ones.

THEOREM 5.5.1 (not to be proved here). There is a map A+ E4 assigning
a countable Borel equivalence relation E 4 to each Borel subset A C 2N such that
ACB <« Ey  <gEg. It follows that there exist continuum many pairwise <g-
incomparable countable Borel equivalence relations. 0

A somewhat weaker result that implies the existence of continuum-many pair-
wise <p-incomparable (not necessarily countable) Borel equivalence relations will
be established by Theorem 16.6.3.

5.6. Reducibility and irreducibility on the diagram

Here we discuss, without going into technicalities, the structure of the diagram
in Figure 1 and related theorems.

Recall that straight line connections on the diagram indicate Borel reducibility
of the equivalence relation at its lower end to the equivalence relation at its upper
end. Some of these reducibility claims are witnessed by simple and obvious reduc-
tions. Slightly less obvious are reductions of E., and E3 to Ty and E3 to ¢g; see
Lemmas 6.1.2 and 6.1.3. Finally, to prove that E;, E.,, and all of £’ (including
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&~ Ez), are Borel reducible to £, we apply ROSENDAL’s theorem [Ros05]
saying that £°° is a <g-largest F.

Lemmas 6.2.3 and 6.2.4 below prove Ey ~p £! and o ~p Zp.

See Theorem 6.5.1 on the equivalence £ <y £7 <= p < q.

It is a most interesting question whether the diagram in Figure 1 is complete
in the sense that there is no Borel reducibility interrelations between the ERs
mentioned in the diagram except for those explicitly indicated by straight lines.
Some of these irreducibility claims are trivial by a simple cardinality argument:
clearly, an equivalence relation E having strictly more equivalence classes than F
is not Borel reducible to F.

However, this argument is not applicable in more complicated cases, begiuning
with the irreducibility claim Eq £ Agu: each of the two relations has exactly
continuum-many classes. Here we have to employ the Borel-ness. Suppose toward
the contrary that ¥ : 2§ — 2N {5 a Borel reduction of Eo to Asu. Then the
preimage 97y = {z:9(z) = y} of any y € 2¥ is countable (or empty); in other
words, P = {(y,z):9(xz) = y} is a Borel set with countable cross-sections. It
can be uniformized by a Borel uniform set @ C P by Theorem 2.12.5. The set
T = {zc2:(W(z),z) € Q} is Borel by Corollary 2.12.2 as a Borel preimage of
«. However, T' is a transversal, that is, T' has exactly one common element with
each Eg-class. But this contradicts the Borel-ness of T'; see a short argument after
Example 4.4.2.2

As for the rest of the diagram, to establish its completeness, one has to prove
the following irreducibility claims:

(1) Ei ¥%s: Ea To cq

(2) €° 4s: E, B, T2, co;

(3) BEa Zs: Ei, T oo

(4) Ew £s: Ei, Es, ¢ (this group contains open problems);
(5) B3 Zp: £

(6) To £s: £°, ¢y

(7) ¢ Lg: £2°, T,

Beginning with (1), we note that E; is not Borel reducible to equivalence
relations induced by Polish actions by Theorem 11.8.1 (KECHRIS-LOUVEAU). On
the other hand, E, Ty, ¢y obviously belong to this category of ERs.

(2) follows from (1) and (3) since E; <g €% and E, <g £,

The result E; £ ¢ in (3) is HJIORTH’s Theorem 6.3.1(ii). The result Ey %5 E;
(Corollary 11.1.4) will be established by reference to KEcHRIS’s Theorem 11.1.1 on
the structure of ideals Borel reducible to E;.

The results E» £ T2 and ¢o £ Ty in (3) and (7) are proved in Chapter 13
(Corollary 13.9.2); this will involve turbulence theory by HJORTH and KECHRIS.

The result of (5) is Lemma 6.1.1. It also implies ¢o %p £ in (7).

(6) was obtained by HIORTH; see Chapter 17.

2 Alternatively, one can derive Eg £ A,n from an old result of SIERPINSKI [Siel8]: any
linear ordering of all Eg-classes yields a Lebesgue non-measurable set of the same descriptive
complexity as the given ordering.
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This leaves us with (4). We do not know how to prove Eo, £p E; easily and
directly. There are two indirect ways. The first one is to apply some results in
the theory of countable and hyperfinite equivalence relations; see Corollary 11.2.2.
The second one is based on Theorems 5.7.3 (3rd dichotomy) and 11.8.1; see Corol-
lary 11.8.5.

QUESTION 5.6.1. Is E, Borel reducible to ¢o7? to 2?7 to any other £°7 O

A related question, whether E,, is Borel reducible to Ez, answers in the neg-
ative on the base of the 6th dichotomy theorem by Corollary 14.0.1.

The irreducibility results in (1)—(7) can be partitioned into two rather distinct
categories. The first group consists of those having proofs that involve only common
methods of descriptive set theory, such as the proof of Eg £g Agn outlined above.
This includes such results as Ey £g o, £° %p co, E3z €5 £7°, co £p £°°, and also
E, £5 Ei as a transitional claim between the first and second group: it refers to
Theorem 11.1.1, a special result on the <g-structure of ideals below %, rather
complicated but still based on classics of descriptive set theory.

Note that some results in this group belong to the earliest of this type. For
instance, JUST proved that Ep is mutually <g-irreducible with Zo [J us90b] and
with EfingFin [Jus90a]. According to [KL97, 1.4], the irreducibility claim Eq #g
Eo goes back to an even earlier paper [FR85].

The other group consists of irreducibility results that involve (as far as we
know) methods that definitely go beyond common tools of descriptive set theory.
This includes such resuts as Ey £5 E», Ex €5 Ta, E1 &g co, based on the fact that
E; is not reducible to a Polish action (Theorem 11.8.1), E; £5 To and co €5 T2
based on the turbulence theory, Eo, £ E1 and E, £g Es based on the 3th and
6th dichotomy theorems, respectively (see the next section), and finally Ty Zg £°°
and Ty £ co based on the theory of pinned equivalence relations (see Chapter 17).

5.7. Dichotomy theorems

Another general problem related to Figure 1 is the <g-structure of certain
domains, for instance, <g-intervals between adjacent equivalence relations. Some
results in this direction are known as dichotomy theorems because of their distin-
guished dichotomical form. The following two theorems will be proved in Chap-
ter 10.

THEOREM 5.7.1 (Ist dichotomy, SILVER [Sil80] and HARRINGTON). Buvery
Borel, even every I} equivalence relation E either has at most countably many
equivalence classes; formally, E <g Ay, or satisfies Aqn <p E.

THEOREM 5.7.2 (2nd dichotomy, HARRINGTON, KECHRIS, and LOUVEAU
[HKL90]). Every Borel equivalence relation E satisfies either E <p ¢ or Eg <p E.

Thus not only the strict <g-interval between the equivalence relations Ng = Ay
and ¢ = A,n is empty, but the union of the lower <g-cone of the former and the
upper <g-cone of the latter cover the whole family of Borel equivalence relations!
The same is true for the <pg-interval between the equivalence relations ¢ and Eg.

What is going on in the <g-intervals between Eg and the equivalence relations
E1, Es, E3? The following dichotomy theorems provide some answers,

THEOREM 5.7.3 (3rd dichotomy, KECHRIS and Louveau [KL97]). Bvery
equivalence relation E <g E; satisfies either E <g Eg or E ~5 E;.
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THEOREM 5.7.4 (4th dichotomy, HJORTH [Hjo00al). Every equivalence rela-
tion E <g E, either is essentially countable or satisfies E ~p Ep.

An equivalence relation E is essentially countable iff it is Borel reducible to a
Borel countable equivalence relation. (Recall that countable means that all equiv-
alence classes are at most countable.) The “either” case in 4th dichotomy remains

not entirely clear. This is marked by the framebox on the diagram.

QUESTION 5.7.5. In Theorem 5.7.4, can the “either” case be strengthened to
the condition E <g Eg? O

The fifth dichotomy theorem is a bit more special, and it will not be considered
in this book. See the end of Section 13.1 for more detail.

THEOREM 5.7.6 (6th dichotomy, HjorTH and KECHRIS [HK97, HKO01]). Any
equivalence relation E <p E3 satisfies either E <g Eg or E ~p E3.

Theorems 5.7.3, 5.7.4, and 5.7.6 will be proved in Chapters 11, 15, and 14,
respectively.

On the other hand, the interval between Ey and E, contains all countable
Borel equivalence relations and among them plenty of pairvise ~p-inequivalent
equivalence relations by Theorem 5.5.1. See Chapters 7, 8, and 9 on countable
Borel equivalence relations.

It was once considered [HK97] to be a plausible hypothesis that any Borel
equivalence relation which is not <y E.,, i.e.,, not essentially countable, satis-
fies E; <g E for at least one 7 = 1,2,3. This turns out to be not the case:
FARAH [FarOla, Far99] and VELICKOVIC [Vel99] found an independent family
of Borel equivalence relations, not countable and also <g-incomparable with the
equivalence relations Ep, Ep, E3.

QUESTION 5.7.7. It there any reasonable “basis” in the family of Borel non-
countable equivalence relations above Eg? D

5.8. Borel ideals in the structure of Borel reducibility

Some of the equivalence relations in Figure 1 are obviously generated by Borel
ideals; for some other ones this is not clear. This leads to the question, what is
the place of Borel ideals in the whole structure of Borel equivalence relations? The
answer obtained in the studies in recent years can be formulated as follows: Borel
ideals are <g-cofinal, but rather rare, in the <g-structure of Borel equivalence
relations. We prove the following theorem, the cofinality claim of which is due to
ROSENTAL [Ros05] (Theorem 18.4.1 in Chapter 18). The other claim is contained
in Corollary 13.9.4.

THEOREM 5.8.1. For any Borel equivalence relation E there exists a Borel ideal
F C P(N) such that E <g E». On the other hand there is no Borel ideal & such
that T2 ~g Ej







CHAPTER 6

“Elementary” results

This chapter is devoted to the reducibility /irreducibility results in Figure 1 on
page 68, elementary in the sense that they do not involve any special concepts or
technical methods beyond usual methods of modern descriptive set theory (includ-
ing a rather elementary application of forcing). Some of them are really simple, as
e.g. some lemmas on E3 and T, in Section 6.1 or the equivalence relations ¢y ~g Zg
and Ej ~g £ in Section 6.2, while some others are quite tricky. The latter category
includes HJORTH’s theorem on the irreducibility of non-trivial summable ideals to
cg in Section 6.3, interrelations in the family of equivalence relations #° in Sec-
tion 6.5, and the <g-universality of £ in the class of all F4 equivalence relations
in Section 6.6,

6.1. Equivalence relations E; and T,

Equivalence relations E3z and T, together with ¢g ~g Zo, are the only non- 39
equivalence relations explicitly mentioned in Figure 1 on page 68.

LEMMA 6.1.1. Ez s Borel irreducible to £,

PrOOF. Let us consider E; to be an equivalence relation on (2M)N defined so
that @ Ezy iff @(n)Eqgy(n) for all n. Recall that, for a,b € 28, o Egb means that
the set a Ab={m:a(m) s b(m)} is finite.

Suppose toward the contrary that ¢ : (2NN — RY is a Borel reduction of E;
to £°°. Since obviously £°° ~p £ x £%°, Lemma 5.3.1 reduces the general case
to the case of continuous . Define 0,1 € 2% by 0(n) = 0, 1(n) = 1, ¥n. Define
0 € (2M)N so that O(k) = 0, Vk. Finally, for every k define a; € 2V by ag(n) =1
for n < k and ap(n) =0 for n > k.

We claim that there are increasing sequences of natural numbers {k,} and
{im} such that [9(2)(jm) — I(0)(jm)] > m for all m and all @ € (2V)N satisfying

) a, whenever ¢ <m and k= k;,
TlA) —
0 for all k < k,, not of the form &;.

To see that this implies a contradiction define z € (2Y)N so that 2(k;) = ay,, Vi
and @z(k) = 0 for all & not of the form k;. Then obviously = Ez 0, but
[9(2) (Jm) — Q) (jm)| > m for all m; hence, J(z) £*° 9(0) fails, as required.

We put kg = 0. To define jo and &, consider xg € (2M)N defined by 20(0) = 1
but zg(k) = 0 for all ¥ > 1. Then zq E3 0 fails, and hence 9(zq) £ 9(0) fails
as well. Take an arbitrary jo with |9(z0)(jo) — ¥(0)(jo)| > 0. As ¥ is continuous,
there is a number k, > 0 such that [9(z)(jo) — 9(0)(jo)| > 0 holds for every
z € 2NN with 2(0) = ay, and 2(k) =0 forall 0 < k < k1.
~ To define j; and ks, consider 21 € (2V)N defined so that 21(0) = ay,, z1(k) =
0 whenever 0 < k < k), and x;(k;) = 1. Once again there is a number j; with
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19(21)(j1)—9(0)(51)| > 1, and a number ky > kq such that [¢(z)(j1)—9(0)(j1)] > 1
for every @ € (2M)N with 2(0) = ak,, (k1) = ag,, and z(k) = 0 forall 0 < k < kr
and k1 < k < ko.

Et cetera. O

LEMMA 6.1.2. E3 is Borel reducible to both Ty and cq.

PROOF. If o € 2Y and s € 2<¥, then define s-a € 2~ by (s-a)(k) = a(k)+2s(k)
for k < 1hs and (s-a)(k) = a(k) for k > 1lhs. If m € N, then m~a € 2V denotes
the concatenation. In these terms, if 2,y € (2Y)N, then obviously

e B3y <= {m ™ (s-x(m)):s €2, me N} ={m" (s -y(m)):s €2, meN}

Now any bijection 2<% x N oo N yields a Borel reduction of E; to T,.

To reduce Es to ¢ we make use of a Borel map ¥ : (2M)¥ — RY such that
I(z)(2"(2k 4+ 1) — 1) = nLa(n)(k). O

LEMMA 6.1.3. If E 4s a countable Borel equivalence relation, then it is Borel
reducible to Ty.

PrROOF. Let E be a Borel countable equivalence relation on 2V, It follows
from the Countable-to-1 Enumeration (Theorem 2.12.3) that there is a Borel map
f 2N % N — 2V guch that [a]g = {f(a,n):n € N} for all a € 2¥. The map ¥
sending every a € 2N to 2 = 9(a) € (2M)N such that x(n) = f(a,n), Vn, is a
required reduction. g

See further study on Ty in Chapter 17, where it will be shown that Ty is not
Borel reducible to a big family of equivalence relations that includes ¢q, €7, £,
Ei, Es, E3, E. On the other hand, the equivalence relations in this list, with the
exception of Ea, E., are not Borel reducible to Tz ; this follows from the turbulence
theory presented in Chapter 13.

6.2. Discretization and generation by ideals

Some equivalence relations in Figure 1 on page 68 are explicitly generated by
ideals, like E;, 4 = 0,1,2,3. Some other equivalence relations are defined differ-
ently. It will be shown in Chapter 18 that every Borel equivalence relation E is
Borel reducible to an equivalence relation of the form E g, # being a Borel ideal.
On the other hand, the equivalence relations co, £, 0% turn out to be Borel equiv-
alent to some meamngful Borel ideals. Moreover, these equivalence relations adnnt
“discretization” by means of restriction to certain subsets of RN,

DEFINITION 6.2.1. We define X = [,y Xn = {z € RV Vn (z(n) € Xu)},

2y, O

where X, = {55, 57, ) 5n

LEMMA 6.2.2. ¢y <g cg [ X and € <g P | X for every 1 < p < co. On the
other hand, £° <g €2 | ZV.

ProoF. We first show that co <p co [ [0, 1]N. Let m be any bijection of N x Z
onto N. For = € RY, define 9(x) € [0,1]V as follows. Suppose that k = m(n,n)
(neZ). Iftn< z(n) <n+1, then let ¥(z)(k) = z(n). If x(n) > n+ 1, then put
I(z)(k) = 1. If z(n) <7, then put I(z)(k) = 0. Then 9 is a Borel 1educt10n of
co to co [ [0, 1], Now we prove that ¢ [ [0,1]N <g ¢y [ X. For z € [0, 1]N define

¥(x) € X so that ¥(z)(n) is the largest number of the form =, 0 < 4 < 2" smaller
g PR
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than z(n). Then obviously @ co ¥(2) holds for every o € [0, 1], and hence o is a
Borel reduction of ¢o | [0, 1] to ¢ | X.

Thus ¢o <g ¢g [ X, and hence in fact ¢g ~p ¢g [ X.

The argument for ¢! is pretty similar. The result for £ is obvious: given
x € RY, replace every z(n) by the largest integer value < a(n).

The version for £, 1 < p < oo, needs some comment in the first part (reduction
o [0,1]%). Note that if n € Z and n—1 < a(n) <n < { <y(n) < (41, then the
yalte (y(n) — a(m))? in the distance ly — ], = (5, [u(n) — (n)[?)? is replaced
by (¢ =mn) 4 (n—2(n))? + (y(n) — ()? in |[d(y) — I(2)|,. Thus if this happens
infinitely many times, then both distances are infinite, while otherwise this case
can be neglected. Further, if n—1 < z(n) < n < y(n) < n+1, then (y(n)—a(n))?
in [ly — |, is replaced by ( —z(n))? + (y(n) — )" in [[I(y) — ()]l However
(n—a(n))P + (y(n) —n)? < (y(n) —a(n))? < 227H((n — x(n))? + (y(n) —n)*), and
hence these parts of the sums in ||y — 2|, and [|9(y) — I(2)|, differ from each
other by a factor between 1 and 2P~1, Finally, if n < z(n), y(n) < n+1 for one
and the same 7 € Z, then the term (y(n) —x(n))? in ||y — || , appears unchanged
in ||[9(y) — 9(x)||,- Thus totally |ly — 2|, is finite iff [|[J(y) —I(2)]], is also. [

LEMMA 6.2.3 (OLIVER [01i03]). ¢ ~p Zo.
Recall that Zg = Eg,, where % is the null-density ideal (Section 3.1).

ProoF. Prove that ¢y <g Zg. It suffices, by Lemma 6.2.2, to define a Borel
reduction ¢ [ X — Zo, i.e, a Borel map ¥ : X — Z(N) such that z cpy <=
I(z) AI(y) € % for all z,y € X. Let « € X. Then, for every n, we have x(n) =
k—(:—) for some natural k(n) < 2". The value of k(n) determines the intersection
(

card (9(z) N [27, 27F1))
( 2",

3

)N [27, 27 for each § < 27, we define 2" +j € d(x) iff j < k(n). Then
)=

for every n, and moreover

- p n on+l
ly(n) — a(n)] = Card([ﬁ(m)Aﬁ;g)]ﬂ[Q , 2nt1))
for all =,y € X and n. This easily implies that ¢ is as required.

To prove Zg <g €g, we have to define a Borel map ¥ : £(N) — RY such that
xNx €% = 9(z) coI(x). Most elementary ideas like J(z)(n) = Efd—(—“g-[g‘—n)l
do not work. The right way is based on the following observation: for any sets
s,t C [0,n) to satisty card(sAt) < k it is necessary and sufficient that
|card (s A z) — card (t A2)| < k for all 2z C [0,n). To make use of this fact,
let us fix an enumeration (with repetitions) {z;};en of all finite subsets of N such
that

{z;:2" <j <2t} = all subsets of [0,n)
for every n. Put, for every z € Z(N) and 2" < j < 2" 9(2)(j) = Sid(—:w
Then ¢ : Z(N) — [0,1]" is a required reduction. |

Recall for every sequence of reals r, > 0, that Ef, y is an equivalence relation
on P(N) generated by the ideal &, 1 = {# CN: ., < +oo}. It follows
from the next lemma, attributed to KECHRIS in [Hjo0Oa, 2.4], that in the non-
trivial case all of Ey, y are ~p-equivalent to each other.

LEMMA 6.2.4. If 7, > 0, 1, — 0, Y 1, = +oo, then Epy ~p £ In
particular, the equivalence relation Ep = Eyy/,) salisfies Ex ~g I
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Proor. To prove Ef. 3 <p 2, define 9(z) € RN for any & € Z(N) as
follows: 9(z)(n) = 7y, for every n € z, and J(z)(n) = 0 for any other n. Then
x Ay € Sy = Iz) 2" 9(y), as required.

To prove the other direction, it suffices to define a Borel reduction of £' [X to
Efr.3. We can associate a (generally, infinite) set s,x C N with any pair of n and
k < 2™, so that the sets s are pairwise disjoint and jes,, Ti = 27" The map
Y(2) = U, Urcanzny Snk, @ € X, Is the reduction required. O

A few words on other cases. If )7 7, < +oo, then obviously %%, } = Z(N),
and hence Ey, ; makes all sets 2 C N equivalent. The case r, # 0 will be
considered in detail in Section 15.1.

6.3. Summables irreducible to density-0

The <g-independence of ' and cg, the two best known “Banach” equiva-
lence relations, is quite important. In one direction it is provided by (ii) of the
next theorem. As for the other direction, Lemma 6.1.1 contains an even stronger
irreducibility claim. (Indeed Ez <p co by Lemma 6.1.2, and €' <g £ by Theo-
rem 6.6.1.)

Is there any example of Borel ideals .# <p # that do not satisfy % §§ F7
Typically, the reductions found to witness .# <z _# are A-homomorphisms and
even better maps. The next theorem proves that Borel reducibility yields <j-
reduction in quite a representative case.

Suppose that .#, ¢ are ideals over N. Let us say that % <t F holds
exponentially if there exist a sequence of natural numbers k; with and k;41 > 2k;
and a sequence of sets w; C [ki, kit1) that withesses & S;{; 7+ in other words,
the equivalence A € ¥ <= wy = U,‘_E AWk € _F holds for all A CN.

THEOREM 6.3.1. Suppose that r,, >0, r,, — 0, > 7, =+oc0. Then

(i) (FArAH [Far99, 2.1]) If 7 is a Borel P-ideal and 7.y <g 7, then
we have S, 3 <td 7 exponentially;

(ii) (HyorrH [Hjo0Oa]) 7,y is not Borel-reducible to 25 .

Proor. (i) Let a Borel map ¢ : #(N) — Z(N) witness &,y <p Z. Let,
according to Theorem 3.5.1, v be an LSC submeasure on N with _# = Exh,. Thus
z € # iff lim, o v(zN[n,00)) = 0. The map v : Z(N) — R is Borel as well.
It follows by Corollary 2.3.4 that there exists a parameter p € N¥ such that both
9 and v, as well as the set _#, are Al(p).!

The proof can be carried by a pedestrian topological argument based on the
fact that Borel maps are continuous on comeager sets, but we prefer to utilize a
forcing-style proof. The topological argument will be outlined in Section 6.4 for the
convenience of the reader.

1 1t is worth noting that none of the objects ¥, v, & belongs directly to the domain of
the effective hierarchy as defined in Section 1.6. However, ¥ is naturally identified with a map
28 — 2N hence, it is a subset of the product space N¥ x N, And if the latter belongs to A}(p)
or any other effective class, then we say that the former does also. As for v, every true real z € R

can be identified with its Dedekind cut Qg = {g € Q@:q < a} in the rationals, and hence also

with a subset of N via a fixed recursive bijection N onto Q. Thus v is identified with a map

Z(N) — 2(N), and hence also with a subset of N x N", as above. And ¥ as asubset of &(N)
can be identified with a subset of N¥ .
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DEFINITION 6.3.2. Let us fix a countable transitive model 91 of ZFC~ con-
taining both p and the sequence {r,}.cn and being an elementary submodel of
the universe w.r.t. all analytic formulas with parameters in 1. Such a model exists
by Corollary A.1.5. O

See Appendix A.1 on ZFC™, its models, and Section A.4 on Cohen forcing.

In the course of the proof of Theorem 6.3.1(i), the model 9t will be the ground
model for Cohen forcing. In the remainder of the proof, “generic” means Cohen-
generic over M, and C = {(m,w):m € NAw C [0, m)} is the Cohen forcing
notion for #(N) as defined in Remark A.4.6.

Let us fix an enumeration {D,},en of all open dense sets D C C, D € 9.
We let D; = (1), <; Dn; these sets are still in the same list and D}, ; C D! for all .

We are going to define an increasing sequence of natural numbers 0 = kg =
ap <70 < k1 <oy <y <kp <. and, for every ¢, aset s; C [y, @;11) and also
sets wi' C [0, kiy1) for all u C [0,;), such that, for all generic @ C [a;41, 00) and
all u,v C[0,), we have

(1) v((W(wUs; Uz) Ad(vUs; U)) N [kity,00)) < 27

(2) Y(wUs;Uz) N[0, kip1) = wd;
and in addition, for all ¢,

(3) if w € [0,7;), then the condition (a;y1,uU s;) belongs to D!;

(4) ki-{—l > 213,:;

(5) there is a set g; C o, ;) such that |r; — 33, o ra] <277

DEFINITION 6.3.3 (The construction). The construction of ki, o, viy 84y WY

goes on by induction on 3. As kyp = ag = 0 are defined, we assume (the inductive
hypothesis) that ¢ € N and o; € N have been defined. The goal is to define -;,
kiy1, and other relevant sets, up to the number ;4.

Step 1. We begin with ;. Recall that r, > 0, r,, — 0, > r, = +00 in
Theorem 6.3.1. It follows that there is a finite set g; C N such that |r;—", - 5Tl <
27" and ming; > ;. Let ; be the least number > o satisfying ¢; C [, 7). We
have fixed (5), by the way.

Step 2. Here we define numbers k;11 < 41 (and ki1 > ;). This is based

on the next lemma: '

LEMMA 6.34. If n € N and ¢ € N, then there are numbers n’ > k > n and
a set s C [n,n') such that

v(W(uUsUb) AY(vUsUb))N[k,00)) < 27¢

holds for all u,v C [0,n) and all generic b C [n', 00).

PROOF. Let a C [n, 00) be a generic set (that is, Cohen-generic over D). If u,
v C[0,n), then (uUa)A(vUa) = uAv e H, 3; hence d(ula) Ad(vUa) € 7.
Therefore, the union Un(a) = U, ,c(o,n) ¥(u U a) ADI(vUa) belongs to #. It
follows, by the choice of v, that there is a number k > n such that
(%) v((Un(a) N[k, 00)) < 27%,
Let us denote the displayed formula by ®irn(a,p). (The parameter p € MM N NV
participates implicitly via occurrences of ¥ and v.) Yet @, is essentially a
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X} formula with p as the only parameter. (It is an easy exercise to get a xl
representation of ¢ from Ell and Hll definitions of ¥ and v.) Therefore @4y, is
absolute for every transitive model of ZFC™ containing a and p by Theorem A.1.6,
in particular, for M[a]. It follows that ®;.(a,p) is true in the model Mla] =
M[G(a)], where G(a) = {p = (m,w) € C:aN[0,m) =w} is the Cohen-generic set
associated with a; see Remark A .4.6.

Therefore, by Theorem A.3.3, there is a condition p = (n/,s) € G(a) which
Cohen-forces @, (ag, D) in the sense that @4, (b,p) is true in M[b] whenewer
b € Z(N) is a set Cohen-generic over 9 and b N [0,n') = s. Now note that
an0,n') = s because p € G(a). On the other hand a C [n,co). Therefore
s C [n,0). And now we can assume w.l.o.g. that n’ > k and s C [n,n’). (Indeed
otherwise we can replace n’ by &+ 1 anyway.)

We assert that the numbers k& < n' are as required. Indeed, consider an
arbitrary generic b C [n/, 00) and a pair of sets u,v C [0,n). The set V' =bUs
is Cohen-generic as well, and by definition ' N [0,n') = s, so that p € G(V'), and
hence @1, (b, p) is true in the model M[b] = M| and then in the universe of all
sets as well by the absoluteness (see above). Thus

v((Un (') N[k, 00)) <27
therefore, v((9(uUb) AI(wUVY))N [k, 00)) < 27¢, as required. O (Lemma)

Apply Lemma 6.3.4 with n = v; to get numbers k; 1 < a1 (and ki1 > ;)
and a set s; C [y, avip1) such that (1) holds for all u,v C [0,;), and all generic

@ C [a;41, 00). Note that these initial values of kiy1, a1, s; will be increased at
the following Steps 3, 4, and 5.

Step 3. Increase k;y1 and a;q; if necessary to fulfill (4).

Step 4. To fulfill (2) we need another auxiliary lemma.

LEMMA 6.3.5. If n < k < n' and s C [n,n'), then there exist a number
n” >n/, aset & Cln',n"), and for every w C [0,n) a set w, C [0, k) such that
HuUsUs'Ub)N[0,k) =w, forall wC [0,n) and all generic b C [n”, 00).

PRroOF (Sketch). Consider an arbitrary generic set a C [n/, 00). Let
wy = uUsUa)N |0, k).

The formula A\ ,c(o,n) (wy =9 (wUsUa)N[0,k)) (a finite conjunction) is forced
by a Cohen condition p = (n”,s') € G{a). Thus s’ = an[0,n"), and hence we can
assume that n” > n' and s’ C [n,n’). In addition if ¥ C [n’, c0) is a Cohen-generic
set and s =" N[0, n"), then A,c( (w, =9(wUsUY)N[0,k)). O (Lemma)

To accomplish Step 4, apply the lemma with n = v;, n’ = @41, s = s;, and
let the “new” a;y1 and s; to be n” and ¢, respectively.

Step 5. To fulfill (3), fix an enumeration Z2([0,v;)) = {u;:j < k} where
k = 27, As the set D} is dense, there is a condition (n,,w;) € Dj stronger
than (@ip1,u9 Us;). Clearly, n1 > ng = a1 and ug U s; = wq N[0, ajp1). Let
t1 = w1 N [ajyr,00). Thus, t; C [@ip1,n1) and the condition {ny,ug U s; U 1)

belongs to Dj. Similarly, there is a number ny > n; and a set t2 C [n1,n2) such

that the condition (ng,u; Us; Uty Ute) belongs to D). And so on. We obtain a
sequence of numbers ;1 = 19 < ny < ng < -+ < ny and sebs by C [nre—1, Ne)
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such that all conditions of the form (ng,u, Us; Uty U---Uty) belong to Df. Let
ny be the “‘new” a;4q and s; Uty U+ Ut be the “new” s;.

This ends the inductive step of the construction. O (Definition 6.3.3)
The following is an immediate corollary of (3):
(3) If 2 €N and 2N [y, 1) = s; for infinitely many 4, then @ is generic.

Indeed suppose that @ € &(N) and N [y, a;41) = s; for infinitely many 4.
To see that @ is generic, let D C C, D € 9M be an arbitrary open dense set. Then
D = D,, for some n, and there is a number ¢ > n such that x N [y;, @ip1) = 8.
Then the set w = & N[0, a;41) satisfies w = uUs;, where u = 2 N0, 7;); therefore,
by definition the condition p = {a;41,w) belongs to D}, and hence to D = D, .
And 2N [0, a;41) = w, as required.

Let us complete the proof of Theorem 6.3.1(i). It follows from (5) that the
map ¢ — ga = Use, 9 (@ € N) is a reduction of 7, 3 to &,y [ N, where
N =, las, 7). Let S =, s;; note that SNN = @&.

Put £(2) = 9(zUS) A9(S) for every z C N, Then, for all sets x,y C N,

v Ay €S,y = I aUS)AI(yuS) e F = o) Aély) € 7,
thus, £ reduces S, y N to #. Now put w; = £(g:)N[ks, kipa) and we = ¢, wi
for a € Z(N). We assert that the map 4 — w; proves 77, 3 <tF . In view of
the above, it remains to show that £(g.) A w, € # for every a € Z(N).

As _# = Exh,, it suffices to demonstrate that v(w; A (£(ga)N[ki, kit1))) < 277
for all i € a, but v(&(ga) N [ki, kit1)) < 27¢ for 4 ¢ a. After dropping the common
term 9(5), it suffices to check that

(a) v((9(g; US) AI(gaUS))N [k, kig1)) < 27% for all 4 €a, but

(b) ((9(S) A (ga US)) N [ki kisr)) < 27 for i ¢ a.
Note that every set of the form = U S, where @ C N, is generic by (3'). It follows
by (2) that we can assume, in (a) and (b), that @ C [0,1], i.e., resp. maxa = i
and maxa < i. We can finally apply (1), with u = aUU,;;s5, * = U,5; 85, and
v=u; U, ;8 ifi€a whilev=_J,_,s; f i €a.

(i) Otherwise, 7.,y < 2% exponentially by (i). Let this be witnessed by
i — w; and a sequence of numbers k;, so that ki1 > 2k; and w; C [k, kiga).
If d; = ff%i—"—’l — 0, then easily |J,w; € 2 by the choice of {k;}. Otherwise,
there is a set a € 7,y such that d; > ¢ for all i € a and one and the same
e > 0, so that wa = {J;c, wi ¢ 25. In both cases we have a contradiction with the
assumption that the map 7 +— w; witnesses &%, ) <. O (Theorem 6.3.1)

j<i j<i

QUESTION 6.3.6. FARAH [Far99] points out that Theorem 6.3.1(i) also holds
for the ideal #5 (instead of 541 f’:f{;}) and asks for which other ideals it is true, O

6.4. How to eliminate forcing

The goal of this section is to explain how forcing can be avoided in proofs such
as the proof of Theorem 6.3.1. The forcing proofs of this kind become fully available
after such a correction for those who are new to forcing, but accordingly somewhat
‘more awkward for the practitioners of forcing.

The use of forcing in the proof of Theorem 6.3.1 amounts roughly to the fol-
lowing two principles:
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1) There exists a dense G set G C FP(N) (or G C 2V if we identify FP(N )
with 2) whose elements are called generic;

2) If @ € P(N) is generic, ¢(z) a formula of some sort, and the sentence
(@) is true, then it is “forced” in the sense that there exists a number n
such that ¢(a’) is true for all generic ' such that z'N[0,n) = 2N[0,n).

In topological terms, 2) means that a certain function (2-valued in the example
considered) defined on #(N) is continuous on G, a suitably dense G set. This
gives us a clue as how to eliminate forcing. Namely we have to define a dense Gy
set G € Z(N) on which all maps ielevant to the ar guments are continuous. Since
the number of maps considered is at most countable in such cases, the existence of
a set required is a consequence of the following classical result:

PROPOSITION 6.4.1. If X,Y are Polish spaces and F : X — Y a Borel map,
then there is a dense Gg set G C X such that F [ D is continuous. O

In the proof of Theorem 6.3.1(i), the family of Borel maps to be made contin-
uous contains the following maps:

(1) all maps f,r : Z(N) = R of the form fui(a) = v(U,(a) N[k, o)) (see
the proof of Lemma 6.3.4);

(2) all maps fi : (N) — R of the form fur(a) = F(uUa) N[0, k) (where
ke N and v C N is finite, see the proof of Lemma 6.3.5).

After the choice of a dense Gg set G C X on which all those maps are continuous,
the proof of Theorem 6.3.1(i) goes on with the understanding of “generic” as an
“element of D”. There are some easy and rather clear changes, of course. For
instance, to define the sequence of sets D,, € Z(N) for (3'), we let G =(),, Gn,
where all G,, are (topologically) open dense in Z(N), and then we put

D, ={p=(nu) e C:Vae Z(N)(aNn=u=acG,)}.

The awkwardness of such a modification can be seen in the fact that the family of
functions to be made continuous is determined a posteriori, that is, after the proof
is essentially outlined. The forcing setup defines this family a priori, as all maps
are coded in a chosen model of ZFC™ .

6.5. The family £

The next theorem of DOUGHERTY and HJORTH [DH99] shows that Borel re-
ducibility between equivalence relations £° is fully determined by the value of p.

THEOREM 6.5.1. If 1< p < q< oo, then £F <y £9.

PrOOF. Part 1: show that £7 €5 £°.

By Lemma 6.2.2, it suffices to prove that £79 |X £y £” [X. Suppose, on the
contrary, that ¥ : X — X is a Borel reduction of £7 [X to £? |X. Arguing as in
the proof of Theorem 6.3.1, we can reduce the general case to the case when there
exist increasing sequences of numbers 0 = j(0) < j(1) < j(2) < -+ and 0 = ag <
o <az <--- andamap 7:Y — X, where Y = ][ Xj(ny, which reduces £¢ Y
to £° [X and has the form 7(2) = [
r € X, (see Definition 6.2.1).

neN £ where L, € H,\"“‘ Xy for every
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FIGURE 2. r = %: Left, step 1; Right, step 2.

Case 1. There are ¢ > 0 and a number N such that |7l — 7-0|| > ¢ for all
n > N. Since p < g, there is a non-decreasing sequence of natural numbels in < Jn,
n=0,1,2,..., such that 37 2P(n=in) diverges but > 29n—4n) converges, Hint:
Z.n, ~ jn'_ 1 10g2 .

Now consider an arbitrary n > N. As |7, — 77|, > ¢ and because ||... I, is a
norm, there eXlsts a pair of rationals u(n) < v(n) in X 4, with v(n) —u(n) = 2in=»

and |7 (m)_ ”)||p > ¢ 2 Jn_ In addition, put u(n) = v(n) = 0 for n < N. Then
the £7- dlsta,nce between the infinite sequences u = {u(n)}n,en and v = {v(n)}ren
is equal to 3000\ 290n=in) < foo, while the £P-distance between 7(u) and 7(v)
is non-smaller than )" . c? 2P(tn=in) = oo, But this contradicts the assumption
that 7 is a reduction.

Case 2. Otherwise. Then there is a strictly increasing sequence ng < nq <
ny < .- with || — Toell, < 27F for all k. Now let « € Y be the constant 0
while y € Y is defined by y(ny) = 1, Vk and y(n) = 0 for all other n. Then = £9 y
tails (|y(n) — a(n)| 4 0) but 7(z )E” 7(y) holds; a contradiction.

Part 2. Show that £ <g ¢4,

It suffices to prove that £ [0, 1)V <g €? (Lemma 6.2.2). We assume w.lo.g.
that ¢ < 2p: any bigger ¢ can be approached in several steps. For & = (z,y) € R?,
let [|Z], = (2" +y")/".

1

LEMMA 6.5.2. For every 5 < a < 1 there is a continuous map K = K,
(0,1] — [0,1]* and positive real numbers m < M such that for all x <y in [0,1]
we have m(y — x)* < || Ka(y) — Ko(z)|l, < M(y — @)

PROOF (Lemma). The construction of such a map /& can be easier described
in terms of fractal geometry rather than by an analytic expression. Let r = 472,
so that } <7 < % and « = —log,r. Starting with the segment [(0,0), (1, 0)] of
the horizontal axis of the cartesian plane, we replace it by four smaller segments
each of length » (thin lines on Figure 2, left). Fach of these we replace by four
segments of length 72 (thin lines on Figure 2, right). And so on, infinitely many
steps. The resulting cuuve K is parametrized by giving the vertices of the polygons
values equal to multiples of 47", n being the number of the polygon For instance,
the vertices of the left polygon on Figure 2 are given values 0, 3 I é, i, 1.

Note that the curve K : [0,1] — [0,1]?, approximated by the polygons, is
bounded by certain triangles built on the sides of the polygons. For instance, the
whole curve lies inside the triangle bounded by dotted lines in Figure 2, left. (The
dotted line that follows the basic side [(0,0), (1,0)] of the triangle is d1 awn slightly
below its true position.) Further, the parts 0 < ¢ < 1 3 and 1 <t < of the curve
lie inside the triangles bounded by (slightly different) dotted hnes in Flgme 2, right.
And so on. Let us call those triangles bounding triangles.
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To prove the inequality of the lemma, consider any pair of reals « < y € [0, 1].
Let n be the least number such that x,y belong to non-adjacent intervals, resp.,
[z_f_l, 4—771-] and []4_—"1, f;], with § >4+ 1. Then 47 < |y — ] <8.477",

The points K{(z) and K(y) then belong to one and the same side or adjacent
sides of the n — 1-th polygon. Let C' be a common vertice of these sides. It is quite
clear geometrically that the euclidean distances from K(z) and K(y) to C' do not
exceed 11 (the length of the side), thus ||K(z) — K(y)|l, < 2r"~L.

Estimation from below needs more work. The points K(z), K(y) belong
to the bounding triangles built on the segments, resp., [K (%—1) , K ()] and
[I¢ (34—” ), K (‘f—n)], and obviously i +1 < j < i + 8, so that there exist at most
six bounding triangles between these two. Note that adjacent bounding triangles
meet each other at only two possible angles (that depend on 7 but not on n). Tak-
ing it as geometrically evident that non-adjacent bounding triangles are disjoint,
we conclude that there is a constant ¢ > 0 (that depends on r but not on n) such
that the distance between two non-adjacent bounding triangles of rank n, having
at most six bounding triangles of rank n between them, does not exceed c-r™. In
particular, ||K(z) — K(y)|l, > c-r™. Combining this with the inequalities above,
we conclude that m(y — z)* < || K(y) — K(z)|l, < M(y — )®, where m = & and
M =2 (and o= —log,r). O (Lemma)

Coming back to the theorem, let « = p/q, and let I, be as in the lemma.
Let @ = (z0,21,%a,...) € [0,1]N. Then K, (z;) = (z},2}) € [0,1]%. We put 9(z) =
(wp, @, @ @b, @4, ... ). Prove that ¥ reduces €7 [[0,1]N to £7.

Let @ = {;}ien and y = {y; }ien belong to [0,1]N. We have to prove that
x &P y iff 9(z) €7 9(y). To simplify the picture, note the following:

2 flully < max{w',w"} < fwl, < [lw]; < 2fw],
for every w = (w',w") € R?. The task takes the following form:
> (@i = w)? < oo = Y |[Kalwi) — Kalys)ll,* < o0
i i
Furthermore, by the choice of K, this converts to
Z(fﬂi —y)f < oo = Z(l’i — )™ < o0,
i i

which holds because ag = p. O (Theorem 6.5.1)

6.6. £°°: maximal Kg

Recall that K, denotes the class of all o-compact sets in Polish spaces. Easy
computations show that this class contains, among others, the equivalence relations
Ei, Ewo, €7, 1 < p < 00, considered to be sets of pairs in the corresponding Polish
spaces. Note that if E is a K, equivalence relation on a Polish space X, then X is
K, as well, since projections of compact sets are compact. Thus %9 equivalence
relations on K sets in Polish spaces are K, equivalence relations.
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THEOREM 6.6.1. Every K equivalence relation on a Polish space, in partic-
ular, E1, Eoo, £°, is Borel reducible to £>.2

PROOF (from ROSENDAL [Ros05]). Let A be the set of all C-increasing se-
quences a = {a,}ncn of subsets a, C N—a closed subset of the Polish space
P2 (N)N, Define an equivalence relation H on A by

{an} H{bn} it INVmM (am COnim Abm C anpm).

The theorem is a consequence of the following two claims:
CLAIM 6.6.2. H <z £°°.

PROOF. This is easy. Given a sequence a = {a, }nen € Z(N)N, define 9(a) ¢
NN by 9(a)(n, k) to be the least j < k such that n € aj, or ¥(a)(n, k) =
k whenever n ¢ aj. Then {a,} H {b,} iff there is N such that [9(a)(n,k) —
J(b)(n, k)| < N for all n, k. O

CLAIM 6.6.3. Fuvery K, equivalence relation E on a Polish space X is Borel
reducible to H.

ProoF. We have E = |J, E,, where each E, is a compact subset of X x X
(not necessarily an equivalence relation) and E, C E,1,. We can assume w.l.o.g.
that each [, is reflexive and symmetric on its domain D,, = dom E,, = ran F,, (a
compact set), in particular, z € D, = (z,2) € F,,. Define Py = E; and

Poi1=P,UE, 1 UPY, where PP = {(z,y): 32 ((z,2) € Py A (2,y) € Py},

by induction. Thus all P, are still compact subsets of X x X, moreover, of E since
E is an equivalence relation, and E,, C P,, C P,41; therefore E= ], Py.

Let {Ur:k € N} be a basis for the topology of X. Put, for any z € X,
Op(z) = {k:Ux N R, (x) # @}, where R, (z) = {y: (z,y) € R,}. Then obviously
() € Upyi1(2), and hence 9(z) = {9, (2) }nen € A. Then 9 reduces E to H.

Indeed if zEy, then {y,z) € P, for some n, and for all m and z € X we have
(z,2) € Ry => (Y, 2) € Rijnax{mn}- In other words, Ry, () € Riynax{mn}¥)
and hence U, (2) € V1 nax{m,n}(y) hold for all m. Similarly, for some n’ we have
Vi (Y) € V1gmax{m,n’} (¥), Vm. Thus 9(z) HI(y).

Conversely, suppose that 9(z) H9(y). Thus, for some N, we have R, (z) C
Bnim(y) and R (y) € Ryjm(z) for all m and y. Taking m big enough for P,
to contain (@,2), we obtain @ € Ry4.m(y), so that immediately z Ey. g

O (Theorem 6.6.1)

2 The result for €7 is due to SU GAO [Gao98]. He defines

dy(z, s) = ( S |x<k>—s<k>|ﬂ>
k=0

for all & € RY and s € Q< (a finite sequence of rationals). One easily proves that the £°-
q

, 1 .
distance (3°72; |@(k) — y(k)|P)? between any pair of &,y € RY is finite iff there is a constant C
such that |dp(x,s) — dp(y, s)| < C for all s € Q<“. This yields the reduction required.







CHAPTER 7

Introduction to countable equivalence relations

This class of Borel equivalence relations was discovered in the 1970s in the
framework of ergodic theory. In spite of significant progress, especially in problems
related to interconnections between countable equivalence relations, group actions,
and probability measures, the Borel reducibility structure within this class remained
obscure until the very end of the 1990s. Since then, many remarkable results related
to Borel countable equivalence relations have been obtained, and we give a brief
review of them in Chapter 9.

This chapter is devoted to several basic results. After notational remarks in
Section 7.1, we present a few rather simple results on smooth and hyperfinite equiv-
alence relations in Section 7.2. We then prove (Theorem 7.3.1) that, given a count-
able equivalence relation F satisfying NF <g F, the property of “being Borel re-
ducible to F” is o-additive as a property of Borel domains; this will simplify several
reducibility /irreducibility proofs below. In Section 7.4 we prove that every count-
able Borel equivalence relation is induced by a Borel action of a countable group
and is Borel reducible to E. ; hence the whole domain <y E. is equal to the class
of essentially countable Borel equivalence relations. The equivalence relation E.,
turns out to be (countable but) non-hyperfinite by Theorem 7.5.1. (Hyperfinite
equivalence relations are those E satisfying E <p Ey; we consider this subclass in
Chapter 8.) It follows that Eg <5 Eo strictly. We finish with a sufficient condition
of essential countability in Lemma 7.6.1.

7.1. Several types of equivalence relations

The following types of equivalence relations are relevant to the domain of count-
able equivalence relations. A Borel equivalence relation E on a (Borel) set X is:

countable: if every E-class [z]g = {y € X :2 Ey}, # € X, is at most countable;

essentially countable: if E < F, where F is a countable Borel equivalence rela-
tion;

finite: if every E-class [2]g = {y € X : 2 Ey}, x € X, is finite;
of type n: if every E-class [¢]g, = € X, contains at most n elements;

hyperfinite: it E={]J, F, for an increasing sequence of Borel finite equivalence
relations F,, ;

smooth: if E <g Aqu;

hypersmooth: if E = |J,, Fp for an increasing sequence of smooth equivalence
relations F,,.

85
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FIGURE 3. finite & smooth countable & hyperfinite S countable

By quite obvious reasons we have
type n C finite C hyperfinite C countable C essentially countable.

On the other hand, smooth C hypersmooth, and we will see that finite C smooth,
and hence hyperfinite C hypersmooth. Every smooth equivalence relation E is
“essentially hyperfinite”, in the sense that E <g F for some hyperfinite equivalence
relation F (we can take F = Agn here), and if E is in addition countable, then it
is really hyperfinite.

Figure 3 displays these relationships. E., is the <g-largest among all Borel
countable equivalence relations by Theorem 7.4.1, while Eq is the <g-largest among
all hyperfinite equivalence relations by Theorem 8.1.1. The strictness of the inclu-
sions displayed follows from Theorem 7.5.1 (Es is countable non-hyperfinite) and
Proposition 7.2.1 (Eq is hyperfinite but non-smooth), and to get a Borel countable
smooth equivalence relation with infinite classes, define E on NM so that a Eb iff
a(k) = b(k) for all k> 1 (but a(0) may not be equal to b(0)).

Equivalence relations that are simultaneously countable and hypersmooth also
belong to the hyperfinite class by Theorem 8.1.1 below. See Chapter 8 for more on
hyperfinite equivalence relations.

7.2. Smooth and below

By definition (see Section 7.1) an equivalence relation E is smooth iff there is a
Borel map 9 : X — 2N such that the equivalence x Ey <= J(2) = 9(y) holds for
all ,y € X = domE. In other words, it is required that the equivalence classes can
be counted by reals (here, elements of 2% ) in a Borel way. An important subspecies




7.2. SMOOTH AND BELOW 87

of smooth equivalence relations consists of those having a Borel transversal: a set
with exactly one element in every equivalence class.

ProrosiTion 7.2.1. Assume that E is a Borel equivalence relation on a Borel
set X in a Polish space. Then:

(1) if E has a Borel transversal, then it is smooth;

(i) if E s finite (i.e., with finite classes), then it admits a Borel transversal,
(iil) ¢f E ¢s countable and smooth, then it admits a Borel transversal;
)

(iv) if every E-class is a closed set and the saturation [O)g of every open set
0 C X is Borel, then E admits a Borel transversal, hence, it is smooth.!

In addition,
(v) the equivalence relation Eq is not smooth;

(vi) we have Dgn <g Eg strictly, thus by Theorem 3.2.1(1) Aqu is not ~g-
equivalent to an equivalence relation of the form E g, where & is a Borel
ideal on N

(vii) there exists a smooth equivalence relation E without a Borel transversal.

Proor. (i) Let T be a Borel transversal for E. The map ¥(x) = “the only
element of T' E-equivalent to z” reduces E to Ar. To see that ¢ is Borel, note
that d(z) =y <= zec X AyeTAzky.

(ii) Consider the set

T={zeX:VyeX(zEy=—2z<y)}

of the <-least elements of E-classes, where < is a fixed Borel linear order on the
domain of E. That T is Borel follows from Corollary 2.12.2. Indeed let P = {{(x,y) :
xEyAy < x}. Thisis a Borel set: y < = is equivalent to y < 2 A-a < y. And all
its cross-sections are finite since so are the E-classes. Therefore, its projection

Y={zeX:3y(zEyry<a)}
is Borel by Corollary 2.12.2. And finally T = X \ Y.
(iii) Use Theorem 2.12.5 (Countable-to-1 Uniformization).

(iv) Since every Borel set is a continuous image of N, we can assume that E
is an equivalence relation on NN, Then, for every z € NN, the equivalence class
[]e is a closed subset of NN, naturally identified with a. tree, say, T, € N<¥. Let
Y(x) denote the left-most branch of T,,. Then z Ed(z) and « Ey = ¥(x) = 9¥(y),
so that it remains to show that Z = {J(2):z € NN} is Borel. Note that

2€7 = YmVs, t cN" (s <iex t A2 € Op = [2]e N Oy = @),
where <1, is the lexicographical order on N and & = {z € NV x}. How-
ever, [z]e N Oy = @ iff @ & [O]e and [O]e is Borel for every t.

(v) Otherwise, Eq has a Borel transversal T by (iii), which is a contradiction
by Lemma 4.4.3.

L SRIVASTAVA [Sri81] proved the result for equivalence relations with G classes. This is the
best possible as Ep is a Borel equivalence relation, whose classes are Fs and saturations of open
sets are even open, but have no Borel transversal. See also [Kec95, 18.20 iv].
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(vi) The fact that Agn < Eg is witnessed by any perfect set X C 2N which is
a partial transversal for Eq (i.e., every  # y in X are Eg-inequivalent). On the
other hand, A is smooth but Ey is non-smooth by (v).

(vii) By Corollary 2.5.6 there is closed set P € NN x NV with dom P = NV,
not uniformizable by a Borel set. Define (x,y) E (2, y') iff both (z,v) and (z',y’)
belong to P and z = 2. O

7.3. Assembling countable equivalence relations

Here we establish a result that will be used in the proof of Theorem 8.1.1 and
some other theorems below. It shows that in certain cases the notion of being Borel
reducible to a given countable Borel equivalence relation is g-additive.

THEOREM 7.3.1. Let F be a countable Borel equivalence relation satisfying
NF <y F, and let E be a Borel equivalence relation on a Borel set X =, X with
all Xy, also Borel. Suppose that E [ Xy, <g F for each k. Then E <gF.

The product NF means the union of countably many Borel isomorphic copies
of F defined on pairwise disjoint and F-disconnected Borel sets (in one and the
same Polish space). For instance if domF = X, then NF can be defined on the
cartesian product N x X so that (k,a) NF {n,y) iff k=n and zFy.

PRrooF. It obviously suffices to prove that if E is a Borel equivalence relation
defined on the union X UY of disjoint Borel sets X and Y, F is a countable Borel
equivalence relation defined on the union P U @ of disjoint Borel sets P and @,
F-disconnected in the sense that p F ¢ for all p € P, ¢ € @, and f,g are Borel
reductions of resp. E | X, E[Y toresp. F [ P, F [ @, then there is a Borel reduction
h of E to F such that h [ X = f.

As X, Y are not assumed to be necessarily E-disconnected, the key problem is
to define i(y) in the case when y € Y satisfies g(y) € ran U, where

U={{p,g) e PxQ:3ze XJyeY (xEyA f(z)=pA f(y) =q)}

is a 31 set. As f,g are reductions to F, U is a subset of the IT} set
W={{p,g) e PxQ:V{p,d) €U (pFp < qFq)}.

Therefore by Separation (Theorem 2.3.3) there exists an intermediate Borel set V'
such that U CV C W.

The set U is 1-to-1 modulo F in the sense that the equivalence pF p’ <= qF ¢’
holds for any two pairs (p,q) and (p',q’) in U. The set V does not necessarily have
this property. To obtain a Borel subset of V' and a still superset of U, 1-to-1 modulo
F, note that U is a subset of the IT} set

R={{p\d)eV:V{pq)eV(pFp < qFq)}.

It follows that there exists a Borel set S with U € § C R. Clearly, S is 1-
to-1 modulo F together with R. Since F is a countable equivalence relation, it
follows by Theorems 2.12.1 and 2.12.3 (Countable-to-1 Projection and Countable-
to-1 Enumeration) that the set Z = ran$ is Borel and there is a Borel map
9:Z — P such that (9(q),q) € S for every q € Z.

In particular, we have ranU C Z and pFd(q) for all pairs (p,q) € U. In addi-
tion, it can be assumed w.l.o.g. that Z is F-invariant, i.e. g€ ZAq¢' Fq=> ¢ € Z.
(Indeed, consider the set 2’ = [Z]r = {¢' : Iq € Z(qFq')}. Note that F is the orbit




7.4. COUNTABLE EQUIVALENCE RELATIONS AND GROUP ACTIONS 89

equivalence relation of a Polish action of a countable group by Theorem 7.4.1 below.,
It follows that there exists a countable system {8, },en of Borel isomorphisms of
the set P U Q = domF such that Z' = J, {8.(q):q € Z}. Thus, Z’' is Borel by
the Countable-to-1 Projection. Then by the Countable-to-1 Enumeration there is
a Borel map ¢ : Z' — Z such that ((q') F ¢’ for all ¢/ € Z’. It remains to replace
Z,9 by Z' and the map ¥'(¢') = 9(¢(q")).)

Now we define a Borel reduction of E to F as follows. Naturally, put h(z) =
f(z) for e € X. If y €Y and g(y) € Z, then put h(y) = g(y), while in the case
g(y) € Z, we define h(y) = d(g(y)). O

The condition NF <z F in the theorem holds for many naturally arising equiv-
alence relations F.? In particular it holds for the equivalence relation F = Ey and
for the equalities F = A x. This allows us to obtain the following corollary.

COROLLARY 7.3.2. Suppose that E is a Borel equivalence relation on a Borel
set X =, X, with all Xy, also Borel. If the restriction E | Xy is smooth (resp.
E| Xk <g Eo) for all k, then E itself is smooth (resp. E <z Ep). |

7.4. Countable equivalence relations and group actions

This class of equivalence relations is a subject of ongoing intense study. We
present here the following important theorem, leaving [JKL02, Gab00, KMO04]
as sources of further information regarding countable equivalence relations. Part
(i) of the theorem is due to FELDMAN-MOORE [FM77, Thm 1]. Part (ii) see e.g.
in [DJK94, 1.8].

THEOREM 7.4.1. Fvery Borel countable equivalence relation E on a Borel set
X in a Polish space:

(i) 4s induced by a Polish action of a countable group G on X ;

(ii) satisfies E <g Eoo = E(F2,2), where Fy is the free group with two gener-
ators and E(Fa,2) is the equivalence relation induced by the shift action
of Fy on 272 see Example 4.4.5.

PRroOOF. (i) We assume w.l.o.g. that X = 2N, According to Theorem 2.12.3
(Countable-to-1 Enumeration) there is a sequence of Borel maps f, : 28V — 2N
such that [ale = {fn(a):n € N} for each a € 2N, Put I, = {(a, fu(a)):a € N}
(the graph of f,) and T, = I, \ U, en Ty The sets Py = [y N Fk‘_l form a
partition of (the graph of) E onto countably many Borel injective sets. Further,
define A = {(a,a) :a € 2N} and let {Dy, }men be an enumeration of all non-empty
sets of the form P, ~ A. Intersecting the sets D,, with the rectangles of the form

Ry ={(a,b) e 2" x 2N : 570 Cans™1 b} and R,"',
we reduce the general case to the case when dom D, Nran D,, = @&, Vm.

Now, for every m define hp,(a) = b whenever either (a,b) € D,, or {(a,b) €
Dmfl, or a="b¢ domD,, Uran D,,. Clearly, h,, is a Borel bijection 2V onte 9N,
Thus {hm }men is a family of Borel automorphisms of 2 such that [a]g = {hn(a):
m € N}. It does not take much effort to expand this system to a Borel action of

2 In fact it is rather difficult to cook up a Borel equivalence relation, with infinitely
many equivalence classes, not satisfying this reduction. See several complicated examples in
THOMAS [Tho02] and in the recent monograph of Hiortd and KECcHRIS [HKO05].
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F., the free group with countably many generators ai,as,as,..., on 2N whose
induced equivalence relation is E.

(ii) First of all, by (i), E < R, where R is induced by a Borel action - of F., on
9N, The map 9(a) = {g~ ' a}er., a € 2V is a Borel reduction of R to E(F,,2Y).
If now F,, is a subgroup of a countable group H, then E(F,,2V) <y E(H,2N) by
means of the map sending every {ag}ger, to {bp}trem, where by =a, for g € F,
and by, equal to any fixed b € 2N for h € H~ F,,. Note that F,, admits an injective
homomorphism into Fp. (Indeed, let F' be the subgroup of Fy generated by all
elements of the form a, = a™b" and «; L — p=ng~", The map sending every a,
to a, and accordingly a;! to a;,' is an isomorphism of F, onto F'.) It follows
that E <g E(Fy,2M).

Tt remains to define a Borel reduction of E(Fy,2N) to E(Fz,2) . The inequal-
ity E(Fy,2Y) <p E(Fp,22>101) is clear. Further E(F,22~10}) <y E(Fp x Z,3)
by means of the map sending every {a,}yer, (a, € 22> to {by;}gcrs, jez,
where by; = a4(j) for j # 0 and byo = 2. In addition, for every group G it
holds that E(G,3) <z E(G X Zg,2) by means of the map sending every element
{agtgec (ag =0,1,2) to {byi}gcq, icz,, where

{ 0, if ag=0 or a;=1 and i=0,
l)gz' = )

1, if ag=2 or ayz=1and i=1

Thus, E(Fa, QN) <p E(Fy X Z X Z3,2). However, Fy x Z x Zy admits a homomor-
phism into the group F,, and then into F; by the above, so that E(FQ,QN) <z
E(Fy,2), as required. d

7.5. Non-hyperfinite countable equivalence relations

It will be proved below (Theorem 8.1.1(i},(ii)) that hyperfinite equivalence re-
lations form an initial segment, in the sense of <p, within the collection of all Borel
countable equivalence relations. Let us show that this is a proper initial segment;
that is, not all Borel countable equivalence relations are hyperfinite.

THEOREM 7.5.1 (SLAMAN-STEEL [SS88]). The equivalence relation Eo, (Borel
and countable) is not hyperfinite.,

PROOF. We present the original proof of this result given in [SS88]. There is
another, more complicated proof, based on the fact that a certain property called
amenability holds for all hyperfinite equivalence relations and associated groups like
(Z; +), but fails for Es, and the group Fy; see Corollary 9.3.3(i).

Given a pair of bijections f,g : 2N orte 2N we define an action ay, of the
free group Fs with two generators a,b on 2N ag follows: if w = ajag: - a, € Fy
then asy(w,a) = w-a = hay (hay (- (ha, () ), Where hg = f, hgr = f77,
hy =g, hy-1 = g1, Separately A-z = z, where A, the empty word, is the neutral
element of Fy. The maps f, g are independent, iff the action is free; that is, for all
z, w-x =2z implies w=A.

To prove the theorem, we define a free action of Fy on 2V by Lipschitz home-

. . . onto AR . .
omorphisms, i.e. those homeomorphisms f : 28 225 2N gatisfying

xln=yln< fz)n=f(y)In
for all n and y € 2N, Such an action can be extended to any set of the form
2" ={s € 2<“: 1hs =mn} so that w-(x [n) = (w-a) [ n for all €2V,
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LEMMA 7.5.2. There ezists an independent pair of Lipschitz homeomorphisms
f 0 2N onto 2N
y g - - .

Proor. Define f 2" and g [ 2" by induction on n. We will take care that

(%) 1h f(s) =1lhg(s) = lhs, f(s) C f(s7i), and g(s) C g(s79)
for all s € 2<% and 4 = 0,1. Fix a linear ordering of length w, of the set of all
pairs {w, s) € Fa x 2<% such that w # A.

Put f(A)=g(A)=A (n=0)and f{{3))=g({&)={1—14),:=0,1

To carry out the step n — n + 1, suppose that the values f(s),g(s), and
subsequently w-s for all w € Fy, have been defined for all w € F; and s € 2<%
with 1hs < n. Let {wy, s,) be the least pair (in the sense of the ordering mentioned
above) such that for k = lhs, < n, thereis t € 2" with s, C ¢ and w,,-t = t, and
U8y, £ v-8, for all initial subwords® u # v of w,, except for the case when u = A
and v = w, or vice versa. (Pairs {w,s) of this kind do exist: as 2" is finite, for
every s € 2" there is w € Fp ~ {A} such that w-s =s.)

We put Ty, = {t € 2" : s, Ct Awy-t =t}. The sets

C¢ = {u-t:u is an initial subword of w,}, t€ T,

are pairwise disjoint. Indeed if u-t; = vty = ¢/, where u,v are initial subwords of
Wy, then u # v as otherwise t; = w1t/ = v~/ =t,. But then u-s,, = v-s, (as
t1,to extend s, ), which contradicts the choice of s,.

Consider any ¢ € T,. The word w, has the form agaj - - a,,—1 for some
m > 1, where all a¢ belong to {a,b,a 1,671}, Then C; = {to,t1,...,¢m}, where
to =t and tppq = ag-te, VI Basily ¢, = w,-t =1t = g, but ty # t» whenever
¢ <€ <m. We define ag-(to"1) = t1 (1 — 1) for 1 =0,1, but ag-(t,71) = te41 71
whenever 1 < ¢ < m. Then easily w,-(t7i) =t (1 — i) #1t.

Note that this definition of some of the values of a-r, b-r,a™ 7, b7 .y p € 271,
is self-consistent.* Thus it remains consistent on the union of all “cycles” C,
t € T,. It follows that the action of f and g can be defined on 2"+ so that (x)
holds, while the values of a;-(t,"4) coincide with the above-defined ones within
each cycle Ci, t € T},. Then w,-(¢7i) # ¢t for all £ € T, ¢ = 0,1. It follows
that there can be no pair (wp/, spr), n' > n, equal to {(wy, 8y .

This definition results in a pair of Lipschitz homeomorphisms f, g of 28, To
check the independence, suppose toward the contrary that @ € 2N, w € Fy, w # A,
and w-x = z, and there is no shorter word w of this sort. Then there exists k € N
such that s = x | k satisfies u-s # v-s for all initial subwords « # v of w except
for the case u = A and v = w (or vice versa). The pair (w,s) is equal to (wp, sp)
for some n > k. Then the set T}, contains the element ¢ = x [ n. Put i = a(n).
Then by definition w-(t7¢) = (w-t)"(1 — i) = t™(1 — ) # t7i, contary to the
assumption w-x = x. O (Lemma)

Fix a pair of independent Lipschitz homeomorphisms f, g : 2N oM 9N Define
the action a(w,x) = w-x as above. This Polish (even “Lipschitz”) action of Fy on
2N induces a Borel countable equivalence relation z Ey iff Jw € Fy (y = w-z). Let
us show that E is not hyperfinite.

3 A and w themselves are considered to be initial subwords of every word w € Fa.
4 The inconsistency would have appeared in the case aT_nl_l = agp. Then ag-(to7%) =
t17(1 — ¢) while a;ll-(tm’*i) = tm-1"1, and tg = t;m. However, a;l_l # ap, since other-

wise aalsn = (ag ... am_z)«sn, contrary to the choice of sn .
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Suppose toward the contrary that E =, F, where {F,},en is a C-increasing
sequence of finite Borel equivalence relations. For every x let n, be the least n such
that {f(2), g(x), f~*(2),g ()} is a subset of [z]f, . Then there exist a number
n and a closed X C 2N such that n, <n for all 2 € X, and pu(X) > 3/4, where
4 is the uniform probability measure on 2N,

Define the subtree T' = {z [m:z € X Am € N} of the tree 2<%. We claim
that the set U of all pairs {(w,s) € Fy x 2<%, such that 1Thw = 1hs and u-s € T
for all initial subwords « of w (including A and w), is infinite.

To prove this fact, fix ¢ € N and find {w,s) € U such that 1hs = 1Thw > (.
By the independence of f,g, we have w-z # x for all w € W = {a,b,a7*,b7"}
and 2 € 2%, in addition w-a # w' @ for all w # w’ in W. Then by Kénig’s lemma,
there is a number m > ¢ such that w-s # s and w-s #£ w’ s for all w#£w' in W
and all s € 2™. Note that the graph

F={{st}:s,t€2"A3weW (ws=1t)}

on 2™ has exactly 22" edges: indeed, by the choice of m for every s € 2™ there
exist exactly four different nodes ¢ € 2™ such that {s,t} € I.

Consider the subgraph G = {{s,t} € I':s,t € T'}. The intersection T N 2™
contains at least % 2™ elements (as X is a set of measure > 3/4). Accordingly,
the difference 2™ ~ 1" contains at most i - 2™ elements. Thus, comparably to I,
the subgraph G loses at most 4 - i <2 = 2™ edges. In other words, ¢, a graph
with < 2™ nodes, has at least 2 - 2™ — 27 = 2™ edges.

Now we apply the following combinatorial fact.

LEMMA 7.5.3. Fuvery graph G on a finite set Y, containing not more nodes
than edges, has a cycle with at least three nodes.

ProoF (Sketch). Otherwise, ¥ contains an endpoint; that is, an element y € Y’
such that {y,y'} € G holds for at most one 3’ € Y ~ {y}. This allows us to use
induction on the number of nodes. 1

Thus G contains a cycle sg,51,...,8k,,8 = So. Here & > 3, all s belong
to T'N2™, s;, i < k, are pairwise different, and for every ¢ < k there exists
a; € W = {a,b,a™*,b7'} such that a;-s; = s;41. The word u = agay -+ ap_1 is
irreducible as otherwise s;_1 = s;41 for some 0 < ¢ < k. Moreover, the word uu
(the concatenation of two copies of u) is irreducible also, as otherwise sy = sj_1.
Therefore, 4™ (the concatenation of m copies of u) is irreducible as well, and so
is its initial subword w = ™ | m. It follows that (w, sq) € U, as required.

As U is infinite, by Konig it contains an infinite branch, i.e. there is an (ir-
reducible) word w € {a,b,a_l,b‘l}N and z € 2N such that (w [ m,z [ m) € U
for all m. Then clearly (w [ m)-« € X for all m, and hence z F,, ((w|m)-2) by
induction on m. Finally, (w [m) -z # (w | m'}-z holds whenever m # m’ by the
independence of f,g. Thus, the equivalence class [z]f, is infinite; a contradiction.

Thus, E is a countable non-hyperfinite equivalence relation. Recall that E <g
Ew by Theorem 7.4.1. Thus, E., itself is non-hyperfinite as well by the equivalence
(i) <= (ii) of Theorem 8.1.1. O (Theorem)

It is worth noting that despite Theorem 7.5.1, any countable Borel equivalence
relation s hyperfinite modulo restriction to a large set by the next theorem (6.2 in
[HK96] or 1.13 in [JKLO02] or 12.1 in [KMO04]):
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THEOREM 7.5.4. If E is a Borel countable equivalence relation on a Polish
space X then E is generically hyperfinite, that is, there is an E-invarient co-
meager set X C X such that E [ X is hyperfinite. O

In particular the equivalence relation E., = E(F3,2) is hyperfinite on an E.-
invariant co-meager set X C PAES Remarkably, this result fails in the measure-
theoretic context, see 9.3.3(iv) below.

7.6. A sufficient condition of essential countability

We finish with a technical lemma, attributed to KECHRIS in [Hjo00a], that will
be used in Chapter 15. Recall that equivalence relations which are Borel reducible
to Borel countable ones are called essentially countable. The following lemma shows
that maps much weaker than reductions lead to the same class.

LEMMA 7.6.1. Suppose that A, X are Borel sets, E is a Borel equivalence
relation on A, and p : A — X is a Borel map salisfying the following: First,
the p-image of every E-class is at most countable. Second, p-images of different
E-classes are pairwise disjoint. Then E is an essentially countable equivalence
relation.

Proor. The relation ® Ry iff @,y € Y belong to the p-image of one and the
same E-class in A is a £i-equivalence relation on the set ¥ = ran. Moreover,

RCP={(x,y): ~3a,be A(a FbAw=pla) Ny =p(b))},

where P is II}. Thus, there is a Borel set U with R € U C P. In particular,
UnN(Y xY) = R. As all R-equivalence classes are at most countable, we can
assume that all cross-sections of U are at most countable too.

To prove the lemma it suffices to find a Borel equivalence relation F with
RCF CU. Saythat aset Z C X is stable if UN(Z x Z) is an equivalence relation.
For example, Y is stable. We observe that the set Do = {y : Y U {y} is stable}
is H} and satisfles Y C Dy; hence, there is a Borel set Z; with Y C Z; C Dy.
Similarly,

D1 ={y €7 :YU{y,y'} is stable for all y € Z;}
is H% and satisfies Y C D; by the definition of Z;, so there is a Borel set Z5 with
Y C 7y € D;y. Generally, we define

Dn={y €Z,:YU{y1,...,yn, ¥’} is stable for all y1,...,yn € Zn}

and find that Y C D,,, and choose a Borel set 7,, with Y C Z,, C Dn.‘ Then, by
the construction, ¥ C Z =(,, Z,, and, for every finite Z' C Z, theset Y U Z’ is
stable, so that Z itself is stable, and we can take F=UN(Z x Z). O







CHAPTER 8

Hyperfinite equivalence relations

This is the most elementary class of equivalence relations above the equalities
on Polish spaces, symbolized (but not entirely exhausted in. all aspects) by the
equivalence relation Eg, and a very interesting subclass of countable Borel equiv-
alence relations. Theorem 8.1.1 is the main result of this chapter. It establishes
the equivalence of several different characterizations of hyperfinite equivalence rela-
tions, Some additional results on hyperfinite equivalence relations are added at the
end of the chapter. In particular, we prove the hyperfiniteless of the tail equivalence
relation E; and discuss the classification of hyperfinite equivalence relations up to
Borel isomorphism.

8.1. Hyperfinite equivalence relations: The characterization theorem

The class of Borel hyperfinite equivalence relations has been a topic of intense
study since the 1970s. Papers [DJK94, JKLO02] and the book [KMO04] give a
comprehensive account of the results obtained regarding hyperfinite relations, with
further references. Different parts of the following characterization theorem were
established by different authors in the beginning of the 1990s or even earlier; see
Theorems 5.1 and, partially, 7.1 in [DJK94] and 12.1(ii) in [JKLO02], where links
to original proofs are given.

THEOREM 8.1.1. The following are equivalent for a Borel equivalence relation
E on a Polish space X :

(i) E <p Eq and E is countable;
(i

(i

)
) E is hyperfinite;

) E is hypersmooth and countable; '

(iv) there ewists a Borel set X C (2N)N such that the restricted equivalence
relation Ey [ X is countable and E is isomorphic, via a Borel bijection of
X onto X, to E; [ X ;!

(v) E is induced by o Borel action of Z, the additive group of the integers;

(vi) there exists a pair of Borel equivalence relations F, G of type 2 such that
E=FVG;?

(vii) there is a Borel partial order < on the domain of E such that every E-

class is <-ordered similarly to a subset of 7.

1 This transitional condition refers to E;, here considered to be an equivalence relation on
2NV defined so that x Ey y iff @(n) = y(n) for all but finite n.
2 FV G, the join of F,G, denotes the C-least equivalence relation which includes FU G.

95
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Note that all Borel finite equivalence relations are smooth by Proposition 7.2.1.
Accordingly, all hyperfinite equivalence relations are hypersmooth. On the other
hand, all finite and hyperfinite equivalence relations are countable, of course. It
follows from the theorem that, conversely, every hypersmooth countable equivalence
relation is hyperfinite.

The theorem also shows that Eg is a universal hyperfinite equivalence relation.
(To see that Eq is hyperfinite, define @ F,, y iff ¥ Ay C [0,n) for =, y C N.)

Regarding (vi), the result seems to be close to the best possible of its kind.
Indeed by 1.21 in [JKLO2] for every countable Borel equivalence relation E there
exist Borel equivalence relations F, G of types 2,3, respectively, such that E ~p
FV G.® For instance, this is true for E = Eo,, a countable non-hyperfinite Borel
equivalence relation. But then the corresponding join FV G cannot be hyperfinite
since the class of all hyperfinite equivalence relations is ~g-invariant by (i), (ii) of
the theorem.

Regarding (vii), it must be said that this characterization belongs to a wide class
of definitions of different subclasses, especially among Borel countable equivalence
relations, by induction of invariant structures on equivalence classes. The invariance
means that the order <, = < [[z]g depends on the class [z]g but not on the specific
choice of @ inside [¢]e. In other words, if @ Ey, then <, and <, coincide.

Before the proof starts, let us mention a corollary first established (in different
terms and by different methods) by MYCIELSKI.

EXERCISE 81.2. Using (iii) = (ii) of the theorem, prove that the Vitali
equivalence relation Vit (see Example 4.4.6) is hyperfinite. To show the hyper-
smoothness, note that Vit = J, F, where & F, y iff |z —y| = k-2 for some
keN, O

REMARK 8.1.3. It is not clear at all how to induce Vit by a Borel action of Z, or,

which is the same, how to define a mathematically meaningful Borel automorphism
onto

f R == R whose orbits [z]; = {f7(x):j € Z} are precisely the Vitali classes

[@]vie = 2+ Q. As for Eq (considered on 2N), such an automorphism f : 28 223 2N
can be defined as follows. Suppose that a € 2. If a(k) = 1, V&, then let f(a) = b,
where b(k) = 0, Vk. Otherwise let n = min{k:a(k) = 0}, and f(a) = b, where
b(k) = 0 for k <n, b(n) =1, and b(k) = a(k) for k > n. Easily f-orbits = Eo-
classes, except for the fact that the Eg-classes of the constant-0 and constant-1 are
joined into a single f-orbit. |

8.2. Proof of the characterization theorem

It does not seem possible to prove Theorem 8.1.1 by a simple cyclic argument.
The structure of the proof is presented in Figure 4 on page 97.

The implications (ii) = (iii) and (i) = (iii) are quite elementary.

(i) = (iv). Let E = J,, F» be a countable and hypersmooth equivalence
relation on a space X, let all F,, be smooth (and countable), and F,, C F,,1, Vn.
We may assume that X = 2N and Fy = Aqn. Let T, C X be a Borel transversal
for F,, (recall Proposition 7.2.1(iii)). Now let 9,(z) be the only element of T},

3 But strengthening this to E = FV G fails. Indeed there exists a countable Borel equivalence
relation E that cannot be presented in the form E = Fy V...V F,, where F; are Borel finite
equivalence relations; see a remark in [JKLO02] after the proof of 1.21 with a reference to [Gab00].
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i) &= &= &= <= < (i)

I i)
(i) = (i) = (iv) = i) = ) = (i)

F1GURE 4. The structure of the proof of Theorem 8.1.1

with & Fp, 9, (2). Then 2 — {9, (2)}nen is a 1-to-1 Borel map X — (2NN and
v Ey <= () E; 9(y). Take X to be the image of X under this map.

( V) = (vu) Let X be as indicated. For every N-sequence z and n € N,
let @[5, =z [ (n,00). It follows from Theorems 2.12.1 and 2.12.3 (Countable-to-1
Projection and Countable—to—l Enumeration) that for every n the set X |5, =
{z]s>n 12 € X} is Borel and there is a countable family of Borel functions g9
X [>n — X, 1 €N, such that the set X; = {2 € X : 2|5, =&} isequal to {gl*(€) :
i € N} for all £ € X [5,,. In other words,

{gi'(©)(n) :i € N} = {z(n) : @ € X¢}.

For every @ € (2M)N, let ¢(2) = {¢,(2)}nen, where @, () is the least number
such that @(n) = fI*(z)(n); thus, p(z) € NV, Let u(z) be the sequence

(10( ) (1)7901(‘7')+15(10l1(:v)+1>~"59071( )—|—7‘L (Pn( )—|—7‘L R

where @], (z) = maxp<, @r(z). Easily if 2 # y € X satisfy 2By, ie., & [sn =¥ [>n
for some n, then ()5, = @(y) [sn, but o(x) # ©(y), plx ) # u(y), and
@) [sm = 1Y) [>m for some m > n.

Let <aiex be the anti-lexicographical partial order on NN, ie, a <a1ex b U
there is n such that a [, = b[s, and a(n) < b(n). For z, y € X define z <y y
iff p(x) <arex p(y). It follows from the above that <q linearly orders every Eq-class
[z]e, N X of & € X. Moreover, it follows from the definition of u(x) that every
<alex-interval between some (@) <aiex pt(y) contains only finitely many elements
of the form pu(z). (For ¢ this would not be true.) We conclude that every class
[x]e, N X, = € X, is linearly ordered by <, similarly to a subset of Z, the integers.

(vil) = (v). Suppose that < is an order as in (vii). That < can be converted
to a required Borel action of Z on X is rather elementary. Indeed, if a E-class [z]g
is <-ordered similarly to Z itself (the main case),

Zle={" <2y <z <wo <1 <29 <l
then we let 1-2; = z;,1 for all j € Z. If |z]g is <-ordered similarly to N, that is,
{x]E:{$0<ﬂJ1 <@g <wzg<ag< ot
then re-order it similarly to Z as

[$]E:{"'<.’L‘3<.’B1 <IL‘0<$2<(L‘4<"'},
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and come to the main case. If the order is similar to —N, then reverse it and come
to the N-case. If finally the set ’

[zle={zo < a1 <wa <@z <z < <y}

is finite, then apply the cyclic action 1-z; = x;41 for j < n, but 1.z, = 2o.
To prove that the action of Z defined this way is Borel, apply the theorems in
Section 2.12.

(v) = (ii). Assume w.Lo.g. that X = 2%, An increasing sequence of equiva-
lence relations F,, whose union is E is defined separately on each E-class C'. They
“integrate” into Borel equivalence relations F,, defined on the whole of 2N because
the action allows us to replace quantifiers over an E-class C' by quantifiers over Z.

Tet C be the E-class of an element x € X. Note that if 2¢ € (' can be chosen
in some Borel-definable way, then we can define z F,, y iff there exist integers
4,k € Z with |j] < n, |k|] < n, and @ = j-@z¢, y = k-zc. This applies, for
instance, when (' is finite, thus, we can assume that C' is infinite. Let <i.4 be
the lexicographical ordering of 2V, and <,e; be the partial order induced by the
action, i.e., & <ao y Il y = j -z, 7 > 0. By the same reason, we can assume that
neither ¢ = inf., C nor b = sup_ _ C belongs to C. Let (), be the set of all
® € C with 2 n# a|n and x[n # b|n Define z F,y iff 2, y belong to
one and the same <jge-interval in C' lying entirely within €, or just @ = y. In
our assumptions, every equivalence relation F,, has finite classes, and for any two
z,y € C thereis n with x F,, y.

(v) = (i). This implication is somewhat more complicated. A preliminary
step is to show that E <y E(Z,2M), where E(Z,2") is the orbit equivalence relation
induced by the shift action of Z on (2V)%; that is, (k-x)(j) = 2(j — k) for k,j € Z
and 2 € (2Y)%. Assuming w.lLo.g. that E is an equivalence relation on 2N we
obtain a Borel reduction of E to E(Z,2%) by J(a) = {j-a} ez, where - is a Borel
action of Z on 2N which induces E. That is, if a € 2V, then ¥(a) = » € (2V)% and
a(j) = j-a for all j € Z. Thus we can assume that simply E is E(Z,2"), and the
goal is to prove that E =E(Z,2") <g Eg.

Beginning with some necessary definitions and terminology, we put W,
thus W,, consists of all functions with dom f = [0, n)x[0,n) and ran f C 2 = {0,1}.
Fix an order <, on each set W,, so that w <, v implies v [n <, v [n for all
u,v € Wy y1, where uln € W, is defined for u € W, 41 so that (u[n)(k,i) = u(k, 1)
for all i,k < n. Put W = J,, Wh. :

If 2 € (2Y)% and w € W, then let A%(w) be the set of all integers a € Z
satisfying x(a + k)(i) = w(k,) for all k,i <n.* If 2 € (2M)Z and n € N, then let
w?® be the <,-least element w € W, such that A®(w) # @. Then clearly wj, C
w®,,, and hence there is an element ” € (2")¥ such that 7 (k)(7) = w},(k,19)
for all k,% < n. Finally we let A* denote the set of all integers a € Z satisfying
z(a+ k) = y*(k) for all k€ N.

Our plan is to define a partition (2¥)% = X; UX,UX3UY into Borel pairwise
disjoint sets X; and Y such that E[X; is smooth for ¢ = 1,2,3, while E Y <g Ey.
Then we conclude that E < Eg by Corollary 7.3.2.

— OnXn
= 2 ,

4 The condition a € A®(w) is the same as “w occurs in x at a” in [DJK94].




8.2. PROOF OF THE CHARACTERIZATION THEOREM 99

Thus let
X{ = {zc(2M)?: 3w e W (A%(w) is # @ and bounded in Z from below)};
X! = {z e (@¥)?:3w e W (A%(w) is # @ and bounded in Z from above)};
X = (@ (Xjuxy),
Xy = {z € X: A% is # @ and bounded in Z from below};
X3 = {z € X: A% is # @ and unbounded in Z from below};
YV = {ecX: A" =0} =X (X, UX3).

We leave it to the reader to check that all these sets, as well as different intermediate
objects, are Borel, using the theorems in Section 2.12. ,

Step 1. We claim that the restricted equivalence relation E [ X is smooth.
Indeed if @ € X{, then let w® be the least, in the sense of a fixed w-ordering of
W, element of W such that the set A”(w) is non-empty and bounded from below.
Note that the definition of w® is invariant in the sense that o Ey =— w® = w¥.%
Obviously the equivalence class [¢]g contains a unique element y such that 0 is
the least number in the set AY(w®) = A¥(w¥). We conclude that E | X{ admits a
Borel transversal

{y € X7:0 is the least number in AY(wY)},

and hence is smooth by the same reasons E | X{ is smooth. Therefore, E | X; is
smooth by Corollary 7.3.2, where X; = X] U X},

Step 2. We claim that E[ X3 is smooth. Indeed if x € Xy, then A* contains a
least element, say d (d € Z), and hence [z]g contains a unique point y such that
0 is the least element in AY (y is the (—d)-shift of ). Once again this leads to a
Borel transversal. (To prove the uniqueness of y, suppose toward the contrary that
¥,z € [z]e and 0 is the least element in both AY and A*. Then easily y(n) = z(n)
for all n > 0. This still does not imply y = z because there could be a number
d > 1 such that say z is the —d-shift of y and at the same time d-periodic above,
but not below —d. Yet in this case obviously —d € A®, a contradiction.)

Step 3. We claim that E [ X3 is smooth too. Indeed, if © € X3, then A% is
unbounded from below, and by obvious reasons z is periodic: there is a natural
number d > 1 such that z(a + d)(z) = x(a)(i) for all @ € Z and i € N. Tt follows
that [2]g is a finite set. Then apply Proposition 7.2.1(ii),(i).

Step 4. We finally claim that E[Y <y Ey.

Suppose that « € Y. Then @ € X; therefore, for every n the set A*(w?)
is unbounded in Z in both directions. In addition A*(w,;) € A®(w}), and
N, A%(wy) = @, since otherwise a number a € Z that belongs to all A*(w?)
would also belong to A*. (But A* = & because x € Y.) Define integers a” € Z so
that af =0 and

W { agn,y1 = the least element of A®(w§,, ) bigger than 0, and

ag,4o = the largest element of A®(w§, ,,) smaller than 0.

Then a3, o < a3, because A®(w3,, ,,) € A%(w3,), and similarly af, , < af, 3.

5 The definition of A* (w) is not invariant in the same sense; however, if @ E y, then there
exists b € Z such that the sets A®(w) and b+ AY(w) coincide.
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It follows that
(2) o<af <ay <af=0<al <aj <af <

Moreover, there exist infinitely many strict relations < in (2) both to the left and
to the right of 0, since otherwise (1, A*(w%) # @.

EXERCISE 8.2.1. Prove that if 0 is changed to a, in the first line of (1) and
to a3, ,, in the second line, then the results will be the same. a

If £ €Y and n € N, then put d% = [a%,; — a%| and r% = (r%, 7%, ..., o )y
where m = dj; and 1%, = Tninfaz, 0z }+i | M Put I(z)(n) = ry, this dz) € WH,
The following lemma ends the proof of the implication (v) = (i).

LEMMA 8.2.2. Suppose that =,y € Y. Then z Ey iff d(z)(n) = ¥(y)(n) for
all but finite n € N. In other words, ¥ reduces E[Y to the equivalence relation
Eo(W), and hence E|Y <g Eo by Lemma 5.1.3.

ProoF. Let z Ey. As E = E(Z,2V), there is an integer p € Z such that
z(a+ p) = y(a) for all a € Z. Then wi, = w¥ and
(3) a+pe A%(wE) & ac A¥(wY): forall a€Z and n.

n

Assume w.Lo.g. that p > 0. Then a3, ,; > p for some ng. It follows from (3) that
ag. 41 = 09, 41+ p for all n > ng. We conclude that d = d¥ and r¥ =¥ for all
n > ng, as required.

To prove the converse, assume that J(z)(n) = J(y)(n) for all n. Then d}, = d¥,
and 7% = r¥ for each n > np. It follows from the first equality that a3, , =
a¥, 41 +p forall n > ng, where p € Z does not depend on n. (The result of
Exercise 8.2.1 is applied.) The second equality implies z(a + p) = y(a) for all
a € Z, and hence = E y. O (Lemma 8.2.2)

(vi) = (v). Suppose that E = F VR, where F,R are type-2 equivalence
relations on 2N. Let an F-pair be any pair {a,b} in 2N such that aFb. Let an F-
singleton be any z € 2V F-equivalent only to itself. Then every z € 2N i either
an F-singleton or a member of a unique F-pair.

Pix an arbitrary = € 2N, We now define an oriented chain — on the equivalence
class [z]g. For every F-pair (a,b) in X, define a — b whenever a <jex b, where
<1ex is the lexicographical order on 2V, If {a <1ex b} and {a' <jex V'} are different
F-pairs, then define b — a’ whenever either bRa’ or bR . (These two conditions
are obviously incompatible.) If ¢ is an F-singleton, then define b — ¢ whenever
bRe, and ¢ — a whenever cRa. If finally ¢ # d are F-singletons, then define ¢ — d
whenever ¢ Rd and ¢ <1y d.

If [z]g has no endpoints in the sense of —, then either

[zle={" —a2 = a1 >0 —a —ay— -}

is a bi-infinite chain or [z]g = {&1 — as — a3 — -+ — an, — a1} is a finite
cyclic chain. In the first subcase, we straightforwardly define an action of Z on
[z]e by 1-a, = any1, Vn € Z. In the second subcase, put 1:a, = apy1 for k <n,
and 1-a, = a1. If [z]g = {a1 — a2 — a3 — -+~ — a,} is a chain with two
endpoints, then the action is defined the same way. If finally [z]g is a chain with
just one endpoint, say [z]g = {ag — a1 — ag — -}, then put 1-ag, = agny2,
1-a2p43 = aont1, and 1-a; = ap.




8.3. HYPERFINITENESS OF TAIL EQUIVALENCE RELATIONS 101

(v) == (vi). A short proof based on several difficult theorems on hyperfinite
equivalence relations is given in [JKLO2]. Here we present an elementary proof.

Let E be induced by a Borel action of Z. We are going to define F and R
on every E-class C' = [z]e. If an element 2c € C' can be chosen in some uniform
Borel-definable way, then a rather easy construction is possible, which we leave to
the reader. This applies, for instance, when C is finite, hence, let us assume that C
is infinite. Then the linear order <t on C induced by the action of Z is obviously
similar to Z. Let <jex be the lexicographical ordering of 2N = domE.

Our goal is to define F on C so that every F-class contains exactly two (distinct)
elements. The ensuing definition of R is then rather simple. (First, order pairs
{z,y} of elements of C in accordance with the <act-lexicographical ordering of
pairs (maxc . {z,y},minc,  {z,y}), this is still similar to Z. Now, if {z,y} and
{z',y'} are two F-classes, the latter being the next to the former in the sense just
defined, and = <aet ¥, @' <act 3/, then define yRz'.)

Suppose that W C C. An element z € W is Imin (locally minimal) in W if it
is <jer-smaller than both of its <,c;-neighbours in W. Put

Wimin = {z € W : 2z is lmin in W}.

If Cimin is not unbounded in C in both directions, then an appropriate choice
of zo € C is possible. (Take the <, -least or <act-largest point in Cly,, or if
Clmin = @, so that, for instance, <, and <., coincide on C, we can choose
something like a <j¢x-middest element of C.) Thus, we can assume that i, is
unbounded in C in both directions.

Let a imin-interval be any <,c;-semi-interval [z,z') between two consecutive
elements @ <ot &' of Cimin. Let [z,2') = {29, 21, . .. , Tm—1} be the enumeration in
the <,ci-increasing order (29 = a). Define wopFagr ) whenever 2k41 < m. If m is
odd, then z,,_; remains unmatched. Let C' be the set of all unmatched elements.
Now, the nontrivial case is when C! is unbounded in C' in both directions. We
define C;, as above, and repeat the same construction, extending F to a part of
C' with, perhaps, a remainder C2 C C! where F remains indefined. Et cetera.

Thus, we define a decreasing sequence C = C° O C' D 2 D ... of subsets
of C, and the equivalence relation F on each difference C™ ~. C"+! whose classes
contain exactly two points each, and the nontrivial case is when every C" is <,..-
unbounded in C in both directions. (Otherwise there is an appropriate choice of
xg € C.) If C® = (), C" = @, then F is defined on C and we are done. If
C* = {z} is a singleton, then z¢ = x chooses an element in C. Finally, ¢
cannot contain two different elements as otherwise one of C™ would contain two
<act-neighbours @ <,¢; y which survive in C™*1, which is clearly impossible.

O (Theorem 8.1.1)

8.3. Hyperfiniteness of tail equivalence relations

This is an interesting series of hyperfinite equivalence relations not directly
covered by Theorem 8.1.1. Given a Borel set X, we define the tail equivalence
relation E¢(X) on the set XN as follows:

() for m,ye XV eE(X)y if ImInVk(z(m+k) =yln+k).

The most elementary representative of this family is the tail equivalence relation
E¢ = E¢(2) defined in Example 4.6.9.
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Yet there is a more general approach. Suppose that X is a Polish space and
U:X — X a Borel map. If z,y € X, then define

2 E(U)y it ImInVk (U™ (z) =U"*(y)),

so that E¢(U) is a Borel equivalence relation on X. Then E: coincides with E (1),
where U : (2N — (2N)N is the shift map; that is, U(z) = y iff we have y(n) =
z(n+1) for all n.

THEOREM 8.3.1 (8.1 and 8.2 in [DJK94]). (i) If X is a Polish space and
U:X — X a Borel map, then Ei(U) is a hypersmooth equivalence relation.

(ii) If, in addition, U is a countable-to-1 map, then E((U) is hyperfinite. In
particular, if X is countable, then E(X) is hyperfinite.

Proor, (i) First of all we note that E((U) <g Ec(2M): indeed, assuming that
X = 2%, the map 9(z) = (z,U(x),U%(z),U3(x),...) is a reduction required. Thus,
we have to show that the tail equivalence relation E;(2N) on (2M)M is hypersmooth.
The proof of this fact involves the same ideas and notation as the proof of the
implication (v) = (i) of Theorem 8.1.1, from where we borrow notation like W,
W, <n, A%(w). In particular, if @ € (MY and w € W, then the set A®(w)
consists of all numbers a € N satisfying x(a + k)(¢) = w(k, ) for all k,i <n. Put

w® = the <p-least w € W, such that A®(w) is infinite

for & € (2Y)N and n € N, and then b3 = min A”(w}). Note a difference with the
definition of w?® in the proof of (v) = (i) of Theorem 8.1.1. This slight change
makes the definition of w® to be E,(2V)-invariant, not only shift-invariant, so that

(%) v E(2M) y = v =wY forall n.
As for b®, one easily proves that b% < b% . This leads to the partition of the
domain (2M)N of the equivalence relation E((2V) into the sets

X = {zc (@M the sequence {b%},cn is eventually constant},

Y = {xe(@)H¥: lim, e b% = oo}

We claim that the restricted equivalence relation E((2)[ X is smooth, and this
is witnessed by the Borel map f(2) = {w®}nen. That f is E¢(2N)-invariant follows
from (x). To prove the converse, suppose that z,y € X satisfy f(z) = f(y); that
is, w® = w? for all n, and prove that = E¢(2") y. We have b = b and b}, =4’ for
all n > ng. (The values b,b',ng € N depend on x,y of course.) In other words,
be A®(w®) and b € AV(wY) for n > ng. As wj, = wj, Vn, it easily follows that
z(b+k) =yt +k) for all k € N; therefore, » E¢(2"V) y, as required.

We claim that E.(2Y) | Y <g E;. Suppose that @ € Y, so that 1im, . by, =
+o00. Let 9,,(2) = (wpz, Tpz 41, . ). This is an infinite sequence of elements of 2N,
essentially an element of (2Y)N. We prove now that =z E,(2V) y iff ¥,(z) = 9. (y)
for almost all n. As ¥ can be easily verified to be Borel, this result implies (modulo
a Borel bijection between (2M)N and 2V) that E,(2V) Y <g E;. That this implies
hypersmoothness, see Lemma 11.2.1 below.

If 2,y € Y and 9,,(2) = 9, (y) for almost all (or, that is equivalent, for at least
one) n, then & E((2N) y is obvious. Suppose that @ E¢(2%) y. Then by the way
w® = wY for all n by (). Let p,q € N be such that a(p + k) = y(q + k), Vk. As
z,y € Y, there exists » such that b* > p and b¥ > ¢. Then easily b} —p =1} —¢q
for all n > r. Therefore, 9,,(2) = U, (y) for n > r, as required.
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(ii) Note that if U is countable-to-1 (that is, the U-preimage {z:U(z) = y}
of every point y € X is at most countable), then E(U) is a countable Borel
equivalence relation; therefore, (ii) follows from (i) by Theorem 8.1.1. D

8.4. Classification modulo Borel isomorphism

To give a motivation for this study, let us draw the following corollary of The-
orem 8.1.1 and one more theoren.

COROLLARY 8.4.1. If E is a non-smooth hyperfinite (Borel) equivalence rela-
tion, then E ~p Eq, that is, both E <5 Ey and Eg <g E.

Proor. E <3 Eg follows from Theorem 8.1.1. On the other hand, it follows
from the 1st dichotomy theorem (Theorem 5.7.1, to be proved in Chapter 10) that
either E is smooth or Ey <g E. O

Thus all non-smooth hyperfinite (Borel) equivalence relations are ~g-equivalent
to each other. But this does not say much in terms of comparison of the structure
of different non-smooth hyperfinite equivalence relations. For instance, it does
not follow from Corollary 8.4.1 that these equivalence relations are pairwise Borel
isomorphic (via a Borel bijection between the domains; see Section 5.1). And in fact
such a conjecture fails: the classification of non-smooth hyperfinite relations turns
out to be nontriviall The following theorem treats the case of aperiodic hyperfinite
equivalence relations, where E is aperiodic® iff every E-equivalence class is infinite.

THEOREM 8.4.2 (Classification theorem, 9.1 in [DIK94]). If E is an aperiodic
non-smooth hyperfinite equivalence relation, then E is Borel isomorphic to exactly
one of the following equivalence relations:

Ec =E«(2): the tail equivalence relation on 2N ;
Eo X Ayt where A, is the equality on an n-element set s, = {1,2,...,n};

Eo X Ay: where Ay is the equality on N ;

Fr(Z,2): the free part of the shift equivalence relation E(Z,2). O
Here Eg x A, is the equivalence relation on 2% x {1,2,...,n} such that
(%) (a,1) (Eo x A,) (byj) if aEobAi=13.

Eo x Ay is defined on 2% x N the same way. Finally, E(Z,2) is induced on 2% by
the shift action of Z (see Example 4.4.4) and Fr(Z,2) = E(Z,2) [(2)%, where (2)Z
is the free domain of the action, in this case equal to the sef, ‘

A* = {2 ¢ 2% : the equivalence class [%]g(z,2) is infinite}
of all aperiodic elements z € 2% ( A* is Borel; see below).

EXERCISE 8.4.3. Show that all equivalence relations mentioned in Theorem
8.4.2 are hyperfinite and aperiodic. O

EXERCISE 8.4.4. Using Exercise 8.1.2, Theorem 8.3.1(ii), and Exercises 4.6.11
and 4.6.12, prove that the equivalence relations E; and Vit are Borel isomorphic.
O

6 To understand the origins of this notion, consider any equivalence relation E induced by
a Polish action of the group of integers Z on a Borel set X. An element © € X is periodic iff
2 = 7 - holds for some j € Z, j # 0, and aperiodic otherwise. Obviously, = is aperiodic iff the
equivalence class [z]g = {j - @:7 € Z} is infinite.
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Non-aperiodic case.

Tt takes a bit of extra work to derive a suitable classification of all (not neces-
sarily aperiodic) hyperfinite Borel equivalence relations up to Borel isomorphism.

COROLLARY 8.4.5. Suppose that E,F are non-smooth hyperfinite equivalence
relations on Borel sets X, resp., Y. Then all sets

Xp={zecX:card[zlge=n} and Y,={ycV:cardlyle=n}, neN,

and X* =X~ U, X,, Y=Y U, Y, are Borel.
In addition, E is Borel isomorphic to F if and only if

1) for every n € N, card X, = card¥, ; and

2) the aperiodic parts E | X* and F | Y* are Borel isomorphic to one and
the same equivalence relation in the list of Theorem 8.4.2.

Note that the cardinality card X of a Borel set X in a Polish space is either
a natural number n, or Xg, or the cardinality of continuum ¢, by Theorem 2.12.6.

PROOF. Let us show that, say, Xy is Borel. Indeed by Theorem 7.4.1 E is the
orbit equivalence relation of a Polish action of a countable group G on X. Then

Xo={zeX:3a,beCG(a-z2#b-aAVceG(c-a=aaVc a=0b a))},

clearly a Borel set. By the same argument, all sets X,, and Y, are Borel, and
hence so are the aperiodic subdomains X* and Y*. (In particular the set A* C 2%
above is Borel and Fr(Z,2) is a Borel equivalence relation.)

The “only if” part in the last claim of the corollary is obvious. As for the “if”
part, clearly it remains to prove that E [ X,, is Borel isomorphic to F[Y,, provided
card X, = cardY,. Let < be any Borel linear order on X. Since every E-class
[¢]e in X, contains exactly n elements, we define

X! = {x:2 is the i-th element of [z]g N X,, in the sense of <},

© Y are Borel (see the proof
of Proposition 7.2.1(ii)), and obviously still card X! = cardV] for all i,n. By

and Y;! the same way, for 4 = 1,...,n. The sets X’

Corollary 2.12.8 there exist Borel bijections fi : X7 ontg Y}, On the other hand,
the sets Xfi are pairwise disjoint transversals in X,,, as are Yn’ in Y,,. It follows
that f =|J;«;<, f. is a Borel isomorphism of E [ X,, onto F [V}, as required. O

EXERCISE 8.4.6. Show that under the assumptions of Corollary 8.4.5 the equiv-
alence relations E[.X,, and F[Y,, are smooth while the equivalence relations E | X*
and F [ Y* are non-smooth hyperfinite. Use Corollary 7.3.2. |

8.5. Remarks on the classification theorem

We we are not going to present a proof of Theorem 8.4.2 here. (See a fairly com-
plicated proof in [DJK94, theorem 9.1].) But some concepts and results involved
in the proof are worth mentioning.

Remarkably, the number card (EINVEg) (a natural number or an infinite cax-
dinal) of all E-invariant E-ergodic probability measures (see Definition Section 4.5)
is the true parameter behind the classification in Theorem 8.4.2. Given a Polish
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space X, the set P(X) of all probability measures on X (see Definition 4.5.1) is a
Polish space itself in the topology generated by all sets of the form

Uie fyoey, = {v € P(X): )/ Sidv — / fadp

where € P(X), ¢ > 0, and f, - f, are bounded continuous real functions
on X; see 17.E in [Kec95] or §4 in [DJK94].” Moreover, if in addition E is a
Borel equivalence relation on X, then the set EINVEg of all E-invariant E-ergodic
probability measures (Definition 4.6.2) turns out to be a G set in P(X); see 17.33
in [Kec95]. It follows that in this case the cardinality card (EINVE) is either a
natural number, or Ry, or the continuum ¢ (we refer to Theorem 2.12.6).

It twrns out that the equivalence relations mentioned in Theorem 8.4.2 have
different values of card (EINVE):

1) card (EINVE,) = 0 for the tail equivalence relation by Exercise 4.6.11.

2) card (EINVg,xa,) =n for any n > 1. Indeed we have card (EINVg ) = 1.
In fact there is a unique Eg-invariant probability measure A on 2N, and it is Eq-
ergodic; see Exercise 4.6.5. Now fix n > 1 and let s,, = {1,...,n}, as above, so that
Eo x A, is an equivalence relation on 2N x s, defined by (x). Put X; = {a € 2V:
{a,ky € X} for X C 2V x5, and 1 < k < n. The measures ji(X) = MXy)
obviously belong to EINVEg «a,. On the other hand the sets Uy = 2N % {k} are
(Eo x A, )-invariant; therefore, if ;¢ € EINVEg ya, , then for exactly one k we have
w{Ug) = 1, so that p = .

<e foral i=1,...,n},

3) card (EINVg «a, ) = Ng by exactly the same reasons.

4) card (EINVE(Z@) = ¢ by Example 4.6.6, and we leave it as an ewxercise for
the reader to show that card (EINVgz 0y) = ¢ as well.

Since obviously card (EINVE) = card (EINVE) whenever Borel equivalence re-
lations E, F are Borel isomorphic, it follows that all particular equivalence relations
mentioned in Theorem 8.4.2 are pairwise Borel non-isomorphic. This is the first,
comparably easy part of Theorem 8.4.2. The second, complicated part is to prove
that if E is a hyperfinite aperiodic ecquivalence relation, then it is Borel isomorphic
to an equivalence relation F in the list of Theorem 8.4.2, namely, to that one which
has the same number card (EINVE) of invariant ergodic measures as E. The proof
in [DJK94] is based on several difficult theorems of ergodic theory, and among
them the following result originally established in [Dye63]. For a modern proof,
see Theorem 7.13 in [KMO04].

THEOREM 8.5.1 (DYE’s theorem). Suppose that E, F are hyperfinite equivalence
relations on Borvel sets XY, and p,v are invariant ergodic measures on X,Y.
Then there exist an E-invariant Borel set X' C X and an F-invariant Borel set
Y CY with W{(X') = v(Y') = 1, and a Borel isomorphism ¥ : X' 228 Y that
sends E| X' onto FIY' and p to v. O

Thus, hyperfinite equivalence relations, generally speaking Borel non-isomor-
phic by Theorem 8.4.2, hecome isomorphic on suitable invariant Borel sets of full
measure in the sense of given invariant ergodic measures. By the way, Theorem 8.5.1

7 That X is assumed to be a Polish space here does not restrict generality w.r.t. the case of
measures on an arbitrary Borel set X in a Polish space. Indeed it follows from Corollary 1.2.3
that we can strengthen the relative topology on such a set X to a Polish topology on X which
produces exactly the same Borel sets.
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is not applicable for the tail equivalence relation Ey since there is no invariant er-
godic measures for E; by Exercise 4.6.11, and generally speaking it is not applicable
for non-hyperfinite countable ecuivalence relations by Corollary 9.3.3(iv) below.

8.6. Which groups induce hyperfinite equivalence relations?

This question belongs to a series of very interesting and mostly very difficult
and largely open problems in this area. Let us mention several known results of this
kind without going into detail. First of all, for an equivalence relation E induced
by a Borel action of a countable group G to be hyperfinite, each of the following
conditions is sufficient:

(1) G = Z, the additive group of integers, by Theorem 8.1.1.

(2) G=7Z" (n>2), by an unpublished theorem of WEISS.

(3) G is abelian, by a recent result of SU Gao and Jackson [GJO7].
(4)

4) G is a finitely generated group of polynomial growth,® see Theorem 11.1
in [KMO4].

The last-mentioned result is a corollary of a somewhat more general theorem
in [JKLO2], saying that locally compact Polish groups of polynomial growth over a
compact kernel induce essentially hyperfinite equivalence relations. A related result
of [Kec92]: if G is a locally compact Polish group of any kind, then G induces
only essentially countable equivalence relations. (Note that countable groups are
locally compact in discrete topology.)

QuEsTION 8.6.1. Let G consist of all eventually constant sequences in AN
This is a countable abelian group (with the operation of component-wise addition),
a subgroup of RY. The equivalence relation E induced by the component-wise
addition action of G on ZY is obviously countable, moreover, hyperfinite by (3)
above. Is the hyperfiniteness of E provable by more elementary methods (like those
used in the proof of Theorem 8.1.1)7? |

In the opposite direction, it turns out that if all orbit equivalence relations of
Borel actions of a Polish group G are smooth, then G is a compact group; see
[Sol00]. And if all orbit equivalence relations of Borel actions of a countable group
are hyperfinite, then the group belongs to the class of amenable (countable) groups
considered in the next chapter.

We finish with a problem considered as one of the central problems in the field
of hyperfinite equivalence relations. It has been cited in the literature since the
early 1990s at least.

QUESTION 8.6.2. Suppose that Fp C Fy C -+ C F, C .- is an C-increas-
ing sequence of hyperfinite equivalence relations F,. Is their union F = J,, Fx
hyperfinite? m]

8 A finitely generated group G is a group of polynomial growth iff it admits a finite symmetric
set of generators {gi,...,gr} such that the number of elements of length n is bounded above
by a polynomial function p(n). Elements of length n are those of the form g;, g;, ... g:,, , Where
1<i, <nforall v=1,...,k.




CHAPTER 9

More on countable equivalence relations

Recall that E., = E(Fy,2), the orbit equivalence relation of the shift action of
Fy on 2F2, is a <g-largest countable Borel equivalence relation in the sense that
any other countable Borel equivalence relation E satisfies E <g E,,. On the other
hand, Eq is a <g-least non-smooth Borel equivalence relation by the 1st dichotomy
theorem (Theorem 5.7.1 or 10.1.1). Tt follows that any countable non-smooth Borel
equivalence relation E belongs to the <g-interval between Eg and E.,. That
Eg <p Es strictly follows from Theorem 7.5.1. This leads to the question, what is
the <g-structure of this interval?

It was once considered plausible that the interval is in fact empty. (See e.g.
a question on the middle of p. 896 in [Kec93].) However a couple of interme-
diate (that is, strictly <g-between Eq and E.,) countable equivalence relations
were discovered in the mid-1990s. Further studies (for instance [AK00, HKO05])
demonstrated that in fact the <g-structure between Eq and E, is extremely rich.
In particular, it contains continuum-many different and <g-incomparable count-
able Borel equivalence relations. In fact one of the main aspects of the study of
countable Borel equivalence relations from the descriptive set theoretic standpoint
is the discovery of different types of intermediate equivalence relations and <p-
connections hetween them.

We are not going to present these remarkable results in detail or with at least
key proofs since the technique they depend upon includes much deeper methods
and results in egrodic theory and algebra than is suitable in this book. Nevertheless
we decided to add this chapter as a sort of introduction to these studies that does
not go into technical details.

There are two most powerful methods of definition of countable Borel equiv-
alence relations, that is, 1) consider actions of various countable groups, and 2)
consider countable Borel equivalence relations which admit an invariant Borel as-
signment of a structure of a certain type to every equivalence class. Both approaches
can be traced down to the study of hyperfinite equivalence relations: indeed, by
Theorem 8.1.1, this class can be characterized both as orbit equivalence relations
of Borel actions of Z and as those which admit an invariant Borel assignment of a
linear order of C, similar to a subset of Z, to every equivalence class C.

We begin our short survey with the second approach.

Obviously there exist a lot of different structures that can be reasonably con-
sidered instead of linear orders embeddable in Z. Two of them play a distinguished
role in the development of the theory of countable Borel equivalence relations. They
are finitely additive measures leading to amenable groups and equivalence relations,
and trees leading to treeable equivalence relations. The first type (amenable equiva-
lence relations) has not yet produced any intermediate countable Borel equivalence
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relations, nor is there any conclusive evidence that all equivalence relations of this
class are hyperfinite, yet it certainly deserves at least a brief intoduction here.

9.1. Amenable groups
This is a widely studied type of groups (especially among countable ones).

DErINITION 9.1.1. A group G is amenable iff there is a finitely additive prob-
ability measwe (fa.p.m.) ¢ : Z(G) — [0,1], left-invariant in the sense that
@(X) = p(aX) forany X C G and a € G, where aX = {azv:v € X}. O

If 1ot s a left-invariant measure, then ¢oig(4) = Vreee (A1) is a right-
invariant one, and @(A) = [ @rere (A7) dprigns () is a two-sided invariant one.

LEMMA 9.1.2. The additive group of integers 7. is amenable.

Proor. Fix anon-trivial (i.e., not containing singletons) ultrafilter U C 2?(N).

Take any set A C Z. To define p(A4), put ¢,(4) = EEE%M for all n. If p is

a real in [0,1], then one of the two complementary sets
NI(A)y={n:p>p.(A)}, Ny(A)={n:p <. ()},
belongs to U. The sets
PHA)y={p: NI (A)ye U}, P (A)={p: N, (A)e U}

2

form a Dedekind cut in [0,1]. Let ¢(A) be either the least real in PT(A4) or the
largest one in P~ (A).! The left-invariance of ¢ follows from the fact that for any
ACZ, z€Z, € >0 we have |p,(4) — p,(z + A)] < ¢ for all sufficiently large
natural n. O

In fact we have the following much more general result:

THEOREM 9.1.3 (see e.g. 5.7 in [KMO4]). All countable abelian, and even
solvable, groups are amenable. O

The proof of 9.1.2 shows that the verification of amenability is not entirely
elementary even in the most elementary cases, and the fa.p.m.’s involved usually
require the Axiom of Choice.

On the other hand, non-amenability is sometimes rather obvious.

LEMMA 9.1.4. Fa, the free group with two generators, is not amenable.

PROOF. Let a,b be the generators. Suppose that ¢ : Z2(Fy) — [0,1] is a left-
invariant f.a.p.m. Let, for x € {a, b, a"t, b“l}, W, denote the set of all words in Fo
beginning with x. As obviously Fy = W,UaW,-1, we have o(W,)+o(W,-1) = 1.
Similarly, ¢(W,)+@(W,-1) = 1. On the other hand, Fy = {1} UW,UW,-1 UW, U
Wy-1, thus @(W,) + @(Wa-1) + (Wp) + o(W,—1) < 1; a contradiction. 0

This lemma also admits a much more general form. Suppose that G is a group.
If X, Y C @G, then X ~Y means that there are partitions X,,..., X, of X and
Yi,..., Y, of Y and elements ¢1,...,9, € G such that ¢;X; = Y; for all 7. And
G 1s called paradozical if there exist disjoint sets A4, B C G such that A~ B ~ @G.
Obviously, G is not amenable in this case. Remarkably the converse is true as well:

1 In other words, w(A) is the limit over U of the sequence of numbers @, = p, (A).
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THEOREM 9.1.5 (TARSKI, see, e.g., [Wag93]). 4 group G is amenable iff it is
not paradozical. O

It follows that being amenable is o projective notion for countable groups; that
is, it is expressible in terms of the existence or non-existence of certain subsets of
G, or, in other words, by an analytic formula in the sense of Section 1.4, in the
natural assumption that the underlying set of G is N. This property is not clear
from the definition of an amenable group.

There is a slightly different (but equivalent) approach to amenability. Instead
of fa.p.m.’s, it is based on means.

DEFINITION 9.1.6. A mean on a countable set C' is a positive linear functional
m: £7(C) — R defined on the set £°°(C) of all bounded maps f: C — R and
such that m(1) = 1, where 1 € £°°(C) is the constant 1. (The positivity means
that if f(c) > 0 for all ¢ € C, then m(f) > 0.)

Suppose that C' = G is a countable group. A mean m : £7°(G) — R is left-
invariant if m(f) =m(a- f) for all a € G and f, where o - f €£°° (G) is defined
so that (a- f)(b) = f(a™1b) for all b € G. ]

The means and fa.p.m.’s are naturally connected. Indeed, if m is a left-
invariant mean on a countable group G, then ¢(X) = m(lx) is a left-invariant
fa.p.m., where ly is the characteristic function of X. And conversely, if ¢ is a
left-invariant f.a.p.m. on G, then m(f) = [ fdy is a left-invariant mean.

COROLLARY 9.1.7. A countable group G is amenable iff it edmits a left-
invariant mean iff it admits a right-invariant mean. U

Similar to f.a.p.m.’s, a left-invariant mean can be converted to a right-invariant
mean (and conversely), and both can be combined to get a two-sided invariant
mean.

9.2. Amenable equivalence relations

One may want to define an equivalence relation to be amenable iff it is induced
by a Borel action of a countable amenable group. The actual definition, invented
in ergodic theory, is more complicated in particular because it involves probability
measures on the underlying spaces.

DEFINITION 9.2.1. Let X,Y be Polish spaces, and 1 a Borel measure on X,
Amap f: X — Y is p-measurable iff all f-preimages of open (equivalently, of
Borel) sets in Y are p-measurable. (Compare with Remark 1.9.4.) A map [ is
universally measurable if it is p-measwrable for every Borel measure o on X, 0O

DEFINITION 9.2.2 (see e.g. [CFW81, Kec93, JKL02, HKO05]). Suppose that
pt is a probability measure on a Polish space X. A countable Borel equivalence
relation E on X is p-amenable, resp., amenable,? if there is an assignment of a mean
me to every E-equivalence class ¢' C X such that for any Borel f: E — [~1,1]
the map F'(x) = My, (fe) is p-measurable, resp., universally measurable. a

2 There are other and not necessarily equivalent definitions of amenable equivalence relations;
see [KMO4] or measure amenability in [JKLO2]). An essentially different concept of Frechet
amenability was developed in [JKL02].
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Here f.(y) = f(z,y) for all x € X and y € [z]g, so that fo : [2]g — [~1,1]
and hence f, € £°([z]e); therefore, F(x) = my,) (f,) is defined for all x € X.
Finally, by the assumption of positivity £ maps X to [~1,1].

However, the next theorem shows that there is an intrinsic connection between
amenable groups and amenable equivalence relations.

THEOREM 9.2.3. Suppose that E is induced by a Borel action of a countable
group G on a Polish space X, and p is a probability measure on X. Then

(i) if G is amenable, then E is p-amenable;
(i) n particulor if E is hyperfinite, then it is amenable;

(iil) if p 4s E-invariant, X C X is a Borel set, u(X) =1, the action is free
on X, that1s, g#£1 = g-x# a forall x € X, and E is p-amenable,
then the group G itself is amenable.

PROOF (sketch given in [JKLO02, Kec91]). (i) First of all, note that the claim
can be expressed by an analytic formula. Indeed regarding the notion of group
amenability see the remark after 9.1.5. Regarding the p-amenability of E, analytic
expressibility is based on the existence of different but equivalent definitions of the
notion of ji-amenable equivalence relation, as e.g. 2.3 in [JKLO2] or the definition
just before 9.1 in [KIMO04], the analytic (in the sense considered) character of which
becomes clear after a lengthy inspection. See for instance pp. 901 — 902 in {Kec93].

Second, to prove an analytically expressed claim P it suffices to prove P under
CH, the continuum hypothesis. This reduction can be established by the following
metamathematical argument. To prove P means to demonstrate that P holds in
every set theoretic universe V. (We refer to the completeness theorem in mocdel
theory.) However COHEN’s forcing method allows to extend V' to a bigger universe
V' still satisfying the axioms of set theory, containing the same reals (here: subsets
of N and elements of NV ) and satisfying CH. Then P is true in V'’ because of
CH. Therefore P is true in V' since the reals are the same.

Conclusion: it suffices to prove (i) under CH. And this reduced claim is based
on the following mean-existence result due to Christensen and Mokobodzki.

PRrROPOSITION 9.2.4 (see 2.1 and 2.2 in [KMO4] and references there). As-
suming CH, there is a universally measurable mean on N.% Moreover, if G is

a countable group, then there is a universally measurable left-invariant mean on
G. : |

To apply this result in the proof of (i}, we transform a universally measurable
left-invariant mean on G to a universally measurable right-invariant mean on G,
let it be m, and then define mc for each E-equivalence class C' = [z]g € X as
follows. If f € £2°(C), then mc{(f) = m(f’"), where f' € £°(G) is defined by
f'(a) = f(a ), Ya € G. By the right invariance of m, this does not depend on
the choice of z € C.

3 The measurability of means deserves some comments. By definition a mean m on N is a
linear map £°(N) — R, The restriction m ] [—1,1]" of m to the set [—1,1]" C £2°(N) of all
sequences of reals in [—1, 1] easily defines m as a whole. On the other hand [-1, 1]N is an infinite
product of Polish spaces and therefore, a Polish space itself. Define m to be p~-measurable, resp.,

|

universally measurable, if the vestriction m | [—1,1}" is universally measurable in the sense of

Definition 9.2.1.
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(ii) Hyperfinite equivalence relations are induced by Borel actions of Z by
Theorem 8.1.1, and Z is amenable by Lemma 9.1.2.

(iii) If ¢ = mc witnesses the amenability of E, then p(A) = [ (A -
x) dp(x) is the right-invariant fa.p.m. on G, where p¢ is the f.a.p.m. associated
to the mean mg. The integral is restricted to an invariant set of g-measure 1 on
which the action of G is free. O

9.3. Hyperfiniteness and amenability
Theorem 9.2.3 leads us to the following classes of Borel equivalence relations:
HF: hyperfinite equivalence relations;
AGA : those induced by Borel actions of countable amenable groups;
VupA: p-amenable for each relevant Borel probability measure p;
A : amenable.
We have HF C AGA C VA by Theorem 9.2.3 and A C VA by obvious reasons,
Not much is known beyond this. For instance whether AGA = HF, A C HF,
A =VpA hold are long-standing problems (see, e.g., [Kec93] or a commented list
of problems in the end of [JKLO02]). According to a recent theorem in [GJO07],
all equivalence relations induced by Borel actions of countable abelian groups are
hyperfinite, but amenable groups are not necessarily abelian. The continuum liy-

pothesis CH simplifies the picture to some extent: then VuA = A by the next
theorem (3.2 in [Kec93)).

THEOREM 9.3.1 (under CH). If E is a Borel countable equivalence relation
on a Polish space X, then the following are equivalent:
(1) E is amenable;
(2) E belongs to YuA;
(3) for every Borel probability measure u on X, there is a Borel E-invariant
set Y C X with p(X) =1 such that E|Y 1s hyperfinite;
(4) E is “universally measurably hyperfinite”, that is, induced by a universally

measurable action of Z. ]

The equivalence (2) <= (3) in this theorem is a corollary of the following
earlier result in [CFW81]:

THEOREM 9.3.2. If E is induced by a Borel action of a countable group G
on a Polish space X, p is a probability measure on X, and E is p-amenable,
then there is a Borel E-invariant set X C X such that p(X) =1 and E[ X is
hyperfinite, ]

We finish with another corollary of Theorem 9.2.3.

COROLLARY 9.3.3. Suppose that G is a countable group acting on 2% by shift,
and X = Xy is the product (%, 1)-measure on 2% (see Examples 4.4.4 and 4.5.4).
Then:

(i) if the shift equivalence relation E(G,2) is A-amenable, then G s
amenable;

(ii) in particular if E(G,2) is hyperfinite, then G is amenable.
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In the case when G = Fy, the free group with two generators:
(iil) The shift equivalence relation Eoo = E(Fa,2) is not hyperfinite;

(iv) [JKLO2, 1.7, 1.8] if X C 27 4s an Eo-invariant Borel set, A\(X) = 1,
and the shift action of Fo on X is free, then Eo [ X is not hyperfinite;

(v) in particular, for X = (2)"2, the free part Eoor = Fr(Fa,2) = Eo | (2)2
of Eoo = E(F2,2) is not hyperfinite since N(X) =1 by Fzercise 4.5.4.

PROOF (sketch). (i) The set X = (2)¢ defined as in Exercise 4.5.4 is an E-
invariant Borel set satisfying A(X) = 1, and the shift action is free on X. Therefore,
the group G is amenable by Theorem 9.2.3(iii}.

(ii) Hyperfinite equivalence relations are A-amenable by Theorem 9.2.3(ii).

(i) The group Fy is not amenable by Lemma 9.1.4.

(iv) Note that hyperfiniteness implies A-amenability in this case by Theo-
rem 9.2.3(ii), and hence the result follows from Theorem 9.2.3(iii). ]

Recall that any countable Borel equivalence relation is hyperfinite on a suitable
comeager invariant set by Theorem 7.5.4, but this is not necessarily true in the
measure theoretic context because the countable Borel equivalence relation E,
is not hyperfinite on invariant sets of full measure by Corollary 9.3.3(iv). The
property of being hyperfinite on a suitable invariant set of full measure characterizes
equivalence relations in the class VA by Theorem 9.3.2. However, as mentioned
above, it is not yet known whether at least one of the classes ViuA, A, AGA really
extends the class HF of hyperfinite equivalence relations!

9.4. Treeable equivalence relations

The idea behind this type of Borel countable ecuivalence relation is to replace
linear orders embeddable in Z in the characterization in Theorem 8.1.1(vii) of
hyperfinite equivalence relations by connected trees. That is, a Borel countable
equivalence relation is treeable if a connected tree T on C' can be associated in a
Borel way to every E-class . Now let us give a more detailed definition.

DEFINITION 9.4.1. A forest on a set X is any graph I C X x X satisfiyng
2ly<=ylaand o Jz forall @ € X, and acyclic in the sense that there are no
chains of the form a1 Fao I - T 2, [ @y, where n > 2 and z; € X.

A forest T is locally countable, resp., locally finite, if for any & € X the set
{y :x Ty} of all M-neighbowrs of « is at most countable, resp., finite.

Elements @,y € X are I-connected it @ =y or thereis a chain @ = & FTaol - T
Tp =y, where n > 2 and =; € X. Being [-connected is an equivalence relation,
and its equivalence classes are called connected components of I'. For instance,
if ¥ € X satisfies « Jy for all y € X, then the singleton {x} is a connected
component. If I' is locally countable, then all connected components are at most
countable sets.

A forest T is a tree iff it is connected. For instance connected components of a
forest are trees. O

DEFINITION 9.4.2. A Borel countable equivalence relation E on a (Borel) set
X is treeable iff there is a Borel forest ' on X whose connected components are
precisely E-classes. By the countability of E such an I" must be locally countable,
and in fact we will consider only locally countable forests and trees below. o
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Thus the treeability means that a tree structure can be assigned in a Borel way
to every E-equivalence class [2]g.

EXERCISE 9.4.3. Using (vii) of Theorem 8.1.1, prove that all hyperfinite equiv-
alence relations are treeable. O

We obtain intermediate (between Eq and E.,) Borel countable equivalence
relations among treeable ones by the following theorem (see e.g. [JKLO02], § 3).

THEOREM 9.4.4. The free part Eoor = Fr(Fa,2) = Eo [(2)7 of the equivalence
relation Eoo = E(F2,2) is o Borel treeable equivalence relation satisfying Eq <y
Ecor <p Eo. In addition Eoor is a <g-largest Borel treeable equivalence relation.

PROOF (sketch of general scheme). The treeability is quite obvious: for any
z,y € X = (2)F put a Ty iff one of the following equalities holds:

t=a-y, z=by, xz=aty, z=bly,

where a,b are the generators of F,. This is a tree (since it is restricted to the free
domain X of Ey ), in fact a locally finite one, and its connected components are
precisely Eop-classes.

That Eeor is non-hyperfinite (equivalently Eg <p Eqor) follows from Corollary
9.3.3(iv).

Regarding the <g-maximality of E..r in the treeable category, see Theorem
3.17 in [JTKLO2].

The proof that Eor <y Eo strictly in [JKLO2] consists of two separate claims.
First [JKLO02, 3.3(ii)] if E <3 F are Borel countable equivalence relations and F is
treeable, then E is treeable as well. Thus if, to the contrary, E.or <p Eo fails, then
Eco <g Ewor, and hence all countable Borel equivalence relations are treeable since
Eeo is <p-largest in this class. However (this is the second key result, [JKTL0O2,
3.28]), there exist non-treeable countable Borel equivalence relations, for instance
Eo x Ecor and EgOT = Eoor X Ecor. In particular Eqor <g EgoT strictly. ]

Theorem 9.4.4 distinguishes two <g-intervals, [Eg, Ecor| and [Ecor, Eco], within
the domain Ey < E <p E. of all non-smooth countable Borel equivalence rela-
tions, together with the subdomain of countable Borel equivalence relations <g-
incomparable with E.,r.* While considerable progress has been achieved regard-
ing the upper interval [Eoor,Ec] (see below), the lower one (the one that consists
of treeable Borel equivalence relations) continues to be very tough to study. So far
the only known countable Borel equivalence relation E satisfying Eg <5 E <p Ecor
has been recently discovered in [Hjo05].

QUESTION 9.4.5. What is the <g-structure of Borel treeable countable equiv-
alence relations 7 0

9.5. Above treeable. Free Borel countable equivalence relations

The existence of at least one countable Borel equivalence relation satisfying
Ewor <g E <p Ewo strictly was established in the mid-1990s. The key contribu-
tion was achieved in [HK96]: EgOT <p Eo strictly. With the above-mentioned
inequality Ecor <p Efx)T, this implies Eqor <gp EgOT <p Ewo .

4 S. THOMAS noted to the author that the latter is non-empty. In particular, all equivalence
relations introduced by Theorem 5.1 in [Tho03b] are <p-incomparable with Eco7 .
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Further advances in this direction were connected with applications of ZIM-
MER’s superrigidity results [Zim84] in ergodic theory, which demonstrate, loosely
speaking, that ergodic properties of the equivalence relation induced by an action of
a countable group, can encode quite a lot of information concerning the group and
the action. Moreover, it turns out that a lot of information concerning the group
can be encoded in the ~pg-class of the induced equivalence relation in a purely de-
scriptive set theoretic context. In other words, for various series of mathematically
meaningful countable groups and their actions, it has been proved that equivalence
relations induced by different groups are ~p-inequivalent.

The first result of this sort is obtained by Apams and KECHRIS [AKO0O]: there
is a map A +— E,4 assigning a countable Borel equivalence relation E4 to each
Borel subset A C 2N such that A C B <= E4 <z Ep. Each E4 here is a direct
sum of more elementary equivalence relations £, , z € A, where each E, is equal
to Fr(I'y,2), the free part of the shift action of a certain countable group I'; that
consists of 7 x 7 invertible matrices. And this is based on the following key fact
established in [AK00]. Let T', = SO7(Z[1/p|)." Then for any pair of primes p # ¢
the free parts Fr(T',,2) and Fr(I';,2) of the shift actions of these groups on resp.
2 and 20« are <g-incomparable. In other words Fr(I',,2) encodes p. According
to [HKO05], the same effect holds for the family of groups T, = (Zp * Zy) X Z, p
prime, where Z, is the cyclic group of p elements and * is the free product, so
that still Fr(T'p,2) and Fr(I'g,2) are <g-incomparable whenever p # ¢ are primes.
But on the other hand Fr(Z, % Z,,2) ~p Ecor for all p.

Such a phenomenon, called set theoretic rigidity in [HKO05], should be com-
pared with the opposite phenomenon of elastisity for some other classes of groups.
For instance it is lnown from [GJO07] that abelian countable groups induce hyper-
finite equivalence relations, and hence all non-smooth orbit equivalence relations of
Borel actions of abelian countable groups are ~y to each other by Corollary 8.4.1.
It follows that there is no way to tell apart non-smooth actions of, say, Z and Q
in terms of <g: the actions “do not remember” the acting groups.

Let us mention one more result in [AKO00]. For n > 1 consider Q™ as a group
under component-wise addition. Let S(Q") be the space of all subgroups of Q".
This is a closed set in 22", hence a Polish space. Recall that GL, (Q) is the group
of all invertible n x n rational matrices (with the matrix multiplication as the
operation). Every matrix M € GL,(Q) acts on S(Q") so that, for every group
GCQ" M- -G={M7:.7e€ G}, where ¥ = (r1,...,r,) is an arbitrary n-tuple
of rationals. The induced countable Borel equivalence relation is denoted by £, .
Clearly, G =, G' if and only if G, G’ are isomorphic, so 2%, is the isomorphism
relation of subgroups of Q™ (algebraically — of torsion-free abelian groups of rank
n). The action does not have a free part since r — —r is an automorphism of
every group G € S(Q™), but it has a rigid part. Call G € S(Q") rigid if it has no
automorphism except for r +— —r and the identity, and let =¥ be the restriction
of 2, to the set of all rigid G € S(Q™).

The <g-properties of =%, and 22 have heen the subject of study for quite
some time, In particular, by an old result of BAER [Bae37], =1 and =} are ~p-
equivalent to Eg. And it is proved in [AKO00] that (=) <g (=) strictly for

all n > 1. THOMAS [ThoO3a] proved the same for the non-rigid version: (,) <p

5

7 X 7 matrices A with determinant +1 and satisfying AAT = I, and with entries from
the ring Z[1/p] of all rationals whose denominators are degrees of p.
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(22,41) strictly for all n > 1, and in fact the strict subintervals (=2,) <g E <y
(Z2,41) are non-empty, too! It is known (see [AKO0, §6]) that all equivalence
relations =, , =, n > 2, with a possible exception of 2% are non-treeable;
hence, they belong to the strict <g-interval (Ecor, Eco).

And one more non-trivial series of countable equivalence relations was discov-
ered in [AKOO, §7], perhaps, the most elementary one. Consider the canonical
action of GL,(Z) (invertible n x n matrices of integers) on T", where T = R/Z.
Let R, be the induced countable Borel equivalence relation. It turns out that
R., <g R, whenever 1 < m < n!

A related result belongs to THOMAS [Tho02]: there exists a countable Borel
equivalence relation E on a Polish space X such that nE <g (n+ 1) E for all n,
where n E is the disjeint union of n copies of E, i.e., an equivalence relation on
{1,2,...,n} xX defined so that (i,2) (nE) (5,y) iff i = 7 and xEy. Typical Borel
equivalence relations usually satisfy E ~g nE ~5 NE for all n > 1. According
to [HKO5], such an equivalence relation E can be obtained in the form of a Borel
action of Fy x Fy somewhat more complicated than its shift action on oF2xFz

Further results in this direction are obtained in [HKO05] with the help of a
technique that depends to the lesser extent on advanced results in ergodic theory
than the proofs in the above-mentioned papers |[AK00] etc. For instance, coming
back to the equivalence relation E.or =Fr(F,,2) (the free part of the shift action
of Fy on 22 and the <p-largest treeable Borel equivalence relation), HJIORTH and
KEcHRIS proved in [HKO05] that strictly

(Eoor)" <p Fr(F",2) <p Fr(F"12) and  (Eoor)” <g (Eeor)™ !

for all n, but Fr(F",2) is <g-incomparable with (Eeor)™ whenever m > n > 2.
This is graphically presented on Figure 5 borrowed in [Kec07].

Thus, the family of non-treeable Borel countable equivalence relations has a
rather complicated <g-structure with plenty of ~g-inequivalent and <g-different
equivalence relations, including infinite series of mathematically meaningful equiva-
lence relations. Most of the examples cited above in this respect have something in
common: they are induced by free Borel actions of countable groups on appropriate
Borel sets, usually defined as just free domains of generally non-free actions. (A
notable exception is Eo., a <g-largest Borel countable equivalence relation.)

DeriNiTION 9.5.1. A Borel countable equivalence relation E on a Borel set
X is free if it is induced by a free Borel action of a countable group on X. A
(Borel) equivalence relation E is essentially free if there is a (Borel countable) free
equivalence relation F such that E <g F. 0O

In particular all equivalence relations on Figure 5 (except for E, ) are free by
definition. (And treeable ones are at least essentially free because Eo7, a <g-
largest of them, is free by definition.) Tn a very recent study, THOMAS [Tho07]
demonstrates that there are continuum-many ~g-inequivalent non-treeable essen-
tially free countable Borel equivalence relations, and on the other hand E., is
not essentially free. Moreover, there exist continuum-many ~g-inequivalent non-
essentially free countable Borel equivalence relations. In addition, the class of
essentially free Borel equivalence relations does not contain a <g-largest element.
These results are displayed in Figure 6.
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Eco
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Fr(F*,2)
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(EooT)4

Fr(F2*,2)

(Eeor)’

FV(FQ X Fz, 2)

(EooT)2 - EooT X EooT

EooT :FV(FQ, 2)

FIGURE 5. Equivalence relations Fr(F",2) and (Ewr)” = (Fr(F2,2))"
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CHAPTER 10

The 1st and 2nd dichotomy theorems

This chapter presents proofs of Theorems 5.7.1 and 5.7.2, known as the 1st
and 2nd dichotomy theorems. The proofs involve methods of effective descriptive
set theory, in particular, on the Gandy—Harrington topology briefly considered in
Section 2.10 and the associated forcing discussed in Appendix A.5. An interesting
forcing notion that consists of all Borel sets X C 2N such that Eq [ X is non-trivial,
is considered in the end of this chapter,

10.1. The 1st dichotomy theorem

We prove the following slightly more detailed form of Theorem 5.7.1.

THEOREM 10.1.1 (SILVER [Sil80]). Every II} (therefore every Borel) equiva-
lence relation E on NV either has at most countably many equivalence classes or
admits a perfect set of pairwise E-inequivalent reals.

In other words, either E <g Ay or Ay Cg E.

Recall that Cg in the “or” part means the reducibility via a continuous injective
map. Obviously C¢ implies <g.

PROOF. ! Fix a II} equivalence relation E on N, Then E belongs to 113 (p)
for some parameter p € NN, As usual, we can suppose that E isin fact a lightface
II] relation. The case of an arbitrary parameter p € NN does not differ in any
essential detail since p uniformly passes all arguments,

Case 1. Every 2 € N" belongs to a pairwise E-equivalent A} set X. (A set X
is pairwise E-equivalent iff all elements of X are E-equivalent to each other.) In
other words, it is assumed that the union S of all pairwise E-equivalent A} sets
X C NY is equal to NV,

Then E has at most COLllltELbly many ed uivalence classes, the “either” case of
’
Theorem 10.1.1. It remains to consider:

Case 2. Otherwise, that is, the set H = NV < S of all points 2 € NN which
do not belong to a pairwise E-equivalent Al set, is non-empty.

We are going to prove that then the or case of Theorem 10.1.1 holds.

Cram 10.1.2. H is X1, If X C H is a non-empty 51 set, then it is not
patrwise E-equivalent.

1 We present a forcing-style proof originally due to HARRINGTON, in the version of
MiLLER [Mil95], with some simplifications. See [MW85] for another proof, based rather on
topological technique. In fact both proofs involve very similar combinatorial arguments.

119
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PrOOF. We make use of an enumeration of A} sets provided by Theorem 2.8.1.
Let sets E = Cod(Al) € N and W, W' C N x N™ be as in Theorem 2.8.1. Suppose
that @ ¢ NY. Then obviously = € H iff for every e € F :

if 2 € (W)., then (W’), is not E-equivalent.

The “if” part of this characterization is IT] while the “then” part is X} because
we can express it as 3a,y (W'(e,2) AW'(e,y) Az Ey).

If X # @ is a pairwise E-equivalent 2] set, then B =\, y[e]e is a I} E-
equivalence class and X C B. By Separation (Theorem 2.3.2), there is a Al set C
with X € ¢ € B, Then, if X CH, then C CH is a A% pairwise E-equivalent

set, a contradiction to the definition of H. O (Claim)

The continuation of the proof involves the Gandy—Harrington forcing P. Recall
that P consists of all non-empty X7 sets X C NH,

DErFInITION 10.1.3. Let us fix a countable transitive model 91 of ZFC™ which
is an elementary submodel of the universe w.r.t. all analytic formulas with param-
eters in M. Such a model exists by Corollary A.1.5. The model 9 will be the
ground model for the forcing notion P. |

See Appendix A.5 for detail and explanation.

Recall that if G C P is P-generic over 91, then by Theorem A.5.4 the intersec-
tion (G is a singleton whose only element is denoted by 2. Let & be the name
for zg in the machinery of the Gandy—Harrington forcing P. Then every condition
A € P forces that & € A.

The forcing product P? can be defined as just the cartesian product P x [P,
but it is somewhat more convenient here to define it as the set of all rectangies
X xY with X, Y € P. (And X x Y is identified with (X,Y) € P x P.) It follows
from Theorem A.5.4 by the product forcing lemma (Theorem A.3.2) that every set
G C IP?, P2-generic over M, produces a pair of reals (a P?-generic pair), say, ..
and wf’ight, so that <mﬁft,n:gght) € W for all W € G. Let Z1e¢r and &pigng be
their names. The following is the key fact:

LEMMA 10.1.4. The set H x H P?-forces &0zt F &rigne -

PrOOF. Otherwise there is a condition X xV € P? with XUY C H that P2
forces #1eft E &rigns, and hence all P2-generic pairs (z,y) € X XV satisfy z Ey.
Fix X,Y and prove two auxiliary claims.

Cram 10.1.5. If @, 2’ € X are P-generic over M, then there is y €Y such
that both (z,y) and (2',y) are P®-generic pairs over M.

Proor (Claim). The proof is a rather lengthy routine. Let us enumerate
{D,, :n € N} all open dense sets D C P? coded in 9 in the sense of Appendix A.5.
By induction we define sets X,,, X! ,Y,, € P such that

n?
(1) X4t CXn CXo=X, X\ | C X CX)=X, Y1 CYy C Yo=Y,
(2) if n > 1, then the sets X, x ¥, and X, X ¥,, belong to D, _1;
(3) x €, X, and 2’ €, X],.

As soon as this is done, by Theorem A.5.4 (and A.3.2) the intersections (), X,
N, X0 N, Yo, ave singletons, say {£}, {€'}, {y}, where £,& € X and y € Y, and
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the pairs (£,y) and (¢/,y) are P -generic over 9. Note that & = z, £ = 2/ by

(3). It follows that the pairs (x,y) and (a/,y) are P*-generic over 9, as required.
Thus it remains to accomplish the construction.

Suppose that X, X!V, are defined. Recall that D,, C P? is a dense open

set in P? coded in M. We claim that the set

D;={AcP:IB(BCY,AAxBeD,)}

is dense in . Indeed suppose that Ay € IP. Then Ag X Y, € P?, and by the density
there exists a set A x B € D,, such that A C Ay and B C Y,,. Then 4 € D, as
required. Moreover D7 is coded in 9 since so is D,,.

It follows, by the genericity of z, that there is a set A € D} such that x € A.
By definition, there is a set B C Y, such that A x B € D,,. And we can w.l.o.g.
assume that A C X, because otherwise the set A’ = AN X, (still a non-empty
set since & € A") can replace A.

By quite the same argument there exists a condition A’ x B’ € D,, such that
B'C B, A/ C X}, and 2/ € A'. To end the proof, put X,y = 4, X/, = A/,

no

Yn+1 =B O (Claim)
CrLaM 10.1.6. If x,2" € X are P-generic over M, then zEx’.

ProOF (Claim). Let y be given by Claim 10.1.5. Then s Ey and z' Ey by
the above. 0O (Claim)

In the continuation of the proof of Lemma 10.1.4, note that the set Py of all
non-empty Xi subsets of NN x NV s just a copy of P (not of P2 1) as a forcing.

Cramv 10.1.7. (i) If a set G C Py is Py-generic over M, then there is a unique
pair of reals (Pa-generic pair) (mgft,mﬁght> which belongs to every W € G.
(ii) Moreover in this case, both x$ .. and mgght are P-generic over M.

ProoF (Claim). (i) is similar to Theorem A.5.4, To prove (ii), it suffices to
note that for any set D C P dense in P, the set D' = {W € Py: domW € D} is
dense in P, and if D is coded in 9, then so is D’. (We leave the details to the
reader.) But then given a set G C Py that is Py-generic over 9, the set G’ of all
projections dom W of sets W € (& is clearly P-generic. 0O (Claim)

Note that P = X? \ E is a non-empty (by Claim 10.1.2) X set, hence a
condition in Py. It follows that there is a set G' C Py, Pp-generic over 9. Then
(2G50, 28 ge) € P by 10.1.7(i), thus we have x{;, mgght. However both z{.,
and 2%, are P-generic elements of X by 10.1.7(ii) (because P C X x X ). We
conclude that 2%, EiUrGight by 10.1.6, a contradiction. O (Lemma 10.1.4)

10.2. Splitting system

Now to complete the proof of Theorem 10.1.1 we fix enumerations {Zp }nen
and { D }nen of all open dense subsets, of forcings resp. P and P?, which are
coded in M (a model chosen by Definition 10.1.3). We assert that there is a
system {X, buca<e of sets X, € P satisfying the following;:

1°. X, CH.
2° Foralt n and ue?2™: X, € 2, .2

2 Here 2™ is the set of all sequences u € 2<% of length 1hu = n.
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3% X,~; C X, and X,~gN Xy~ = forall ue2< and ¢ =0,1.
4°, If u# v € 2™, then X, x X, € 93

Tt follows from 2° and 3° that the set {Xgyjn, :m € N} is P-generic over 90t for
every a € 2V; therefore, (N Xalm is a singleton by Theorem A.5.4. Let z, be its
only element. The map a — w, is 1-to-1 still by 3°.

Note that the map a — =z, is continuous. Indeed let d be the Polish distance on
NY defined so that d(a,b) = n#“ for all @ #b in NN where n is the least number
such that a(n) # b(n). If k € N, then the set Dy = {X € P: diam X < k™'} is
obviously a dense subset of P coded in 9; therefore, Dy, coincides with one of
the sets 2,,. Now it follows by 2° that diam X, < &~} for all w € 2". Using this
observation, the continuity of the map is an easy exercise.

In addition, by 4° and Lemma 10.1.4, every pair of the form (z,,s), a # b,
is P?-generic over 9M; thevefore, , F @y and z, # o hold whenever a # b, and
hence YV = {2, :a € 2} is a perfect E-inequivalent set.

The construction of such a system of sets X, does not cause much trouble. Let
X, be any set in 9y such that Xy € H. Suppose that n € N and sets X, € P
are defined for all © € 2" so that conditions 1°-4° hold in the domain < n.

Step 1. For each u € 2™, do the following. Take a pair of disjoint non-empty
X1 sets X', X" € X,. They obviously belong to P. Shrink them appropriately to
satisfy 2°, and let X/ ., and X! | be the sets obtained; they still belong to P.

Step 2. Consider any pair of sequences u™i # v™4 in 2", There is a set of
the foorm Y x Z € @Z”H such that ¥ € X/, and Z € X/ .|. Let Y,Z be the
“new” sets X! ., X! .. Consider all pairs u™i # v7j in 2"+1 consecutively in
this manner. After this is finished, the sets X, ~; obtained satisfy 1°-4° in the

domain <n+1.

This accomplishes the inductive step in the construction of a system of sets X,
as required. O (Theorems 10.1.1 and 5.7.1)

10.3. Structural and chaotic domains

Theorem 10.1.1 opens a list of similar applications of the Gandy—Harrington
forcing (or topology). A common feature of them is a partition of the domain of
the equivalence relation considered into two domains: a chaotic domain, like the
set H in the proof of the theorem, usually Xi; and a structural domain, like the
set S, usually I7{. The partition depends on a given equivalence relation E. If the
chaotic domain H is non-empty, a suitable splitting construction within H leads
to a set, say Y, such that the restricted equivalence relation E [ Y is non-trivial
in one way or another, for instance, ~p-equivalent to a certain given ecuivalence
relation, such as Agw in Theorem 10.1.1. If the chaotic domain H is empty, then
the structural domain 8 is equal to the whole domain considered. Then it turns
out that on the contrary E is rather trivial, for instance, <g-reducible to a more
elementary equivalence relation, such as Ay in Theorem 10.1.1. The proof of the
2nd dichotomy theorem is a more complicated example of this scheme.

10.4. 2nd dichotomy theorem

Theorem 5.7.2, or the 2nd dichotomy theorem of HARRINGTON, IKECHRIS, and
LouveEau [HKL90], will be established in the following form:
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THEOREM 10.4.1. Suppose that E is a Borel equivalence relation. Then either
E <g Agu or Eg T E.

Recall that the condition E <p Ayn characterizes smooth equivalence relations
see Section 7.1). herefore the “either” condition can be formulated as E is

Section 7.1). Therefore the “either” diti be f lated E i
smooth.

PROOF. 3 Suppose, as usual, that E is a lightface Al equivalence relation on
NY, Similar to Theorem 10.1.1, the proof employs the Gandy-Harrington forcing,
but is considerably more complicated. Consider an auxiliary equivalence relation

o E y iff x,y € N" belong to the same E-invariant A} sets.*

Easily, tEy = = E Y, or in brief E C E. In fact it follows from the next lemma
that E is equal to the closure of E in the Gandy—Harrington topology.

LeMMA 10.4.2. If F is a X] equivalence relation on NY and X, v C NV
are disjoint F-invariant 5 sets, then there exists an F-invariant Al set X' that
separates X from Y.

PROOF. By Separation (Theorem 2.3.2), for every 2} set A with ANY = &,
there is a Al set A’ with A C A’ and A'NY = &. Note that in this case even
[A[FNY = & because Y is F-invariant. It follows that that there is a sequence

X=ACACACAC -,

where all sets A} are Al sets; accordingly, all sets A; 11 = [Al]r are Xf sets, and
AinY =@, Then X' =J, A, =, A, is an F-invariant Borel set that separates
X from Y. To ensure that X’ is A] we have to maintain the choice of sets A, in
an effective manner.

Let U C NxN" bea “good” universal 3} set. (We make use of Theorem 2.6.2.)
Then there is a recursive function h : N — N such that [U,]r = Up(n) for each
n. Moreover, applying Proposition 2.6.3 (to the complement of U as a “good”
universal IT{ set, and with a code for Y fixed), we obtain a pair of recursive
functions f,g: N — N such that for every n, it U, NY = @, then Uy(ny, Uyny are
complementary %} sets (hence, either of them is Al) containing, resp., U, and Y.
A suitable iteration of h and f,g allows us to define a sequence X = Ag C A C
Ay € A} C -+ as above effectively enough for the union of those sets to be A}.
d (Lemma)

LEMMA 10.4.3. E is a X} relation.

ProoF. Consider sets Cod(A) € N and W, W’ € NxN" as in Theorem 2.8.1.
The formula inv(e) saying that ¢ € Cod(A7) and the set (W), = (W’), is E-in-
variant, that is,

e € Cod(A]) A Va,b(W(e,a) ANa Eb= W(e,b)),
is obviously a II{ formula. On the other hand, E y iff

Ve (inv(e) = [W(e,x) = W'(e,y)] A [W(e,y) => W'(e,z)]). O (Lemma)

3 The proof will be completed in Section 10.7.
4 Recall that a set X is E-invariant iff X = [X]g.
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Let us return to the proof of Theorem 10.4.1. We have two cases.

Case 1. E = E; that is, the equivalence relation E as a set is closed in the
sense of the Gandy—Harrington topology. In other words, it is assumed that the
structural domain 8 = {z € NV : [z]z = [¥]e} is equal to NV,

The next lemma shows that in this assumption we obtain the “either” case in
Theorem 10.4.1.

LEMwma 1044, If E= E, then there is a Al reduction of E to Agn.

PRrROOF. Let Cod(A}) € N and W, W’ € N x N¥ be as in Theorem 2.8.1.
By Kreisel Selection (Theorem 2.4.5) there is a Al function ¢ : X? — Cod(A})
such that (W),(w,y) = (W')p,y) is an E-invariant A} set containing a but not
y whenever xz,y € X are E-inequivalent. Then R = rany is a X1 subset of
Cod(Al), hence, by Separation, there is a Al set N with R € N C Cod(A}). The
map J(z) = {n € N:x € D,} isa A} reduction of E to Agu. O (Lemma)

O (Case 1)

Case 2. EG E, that is, the chaotic domain H = {a : [2]e G [#]g} (the union

of all E-classes containing more than one E-class), is non-empty.

Note that H is a X1 set: indeed H = {z: 3y (z Ey Az Ey)}.
The following theorem shows that Case 2 leads to the “or” case in Theo-
rem 10.4.1.

THEOREM 10.4.5. If H # @, then Eg C¢ E.

The proof of this result will be accomplished in Section 10.7. We begin with a
couple of technical lemmas. The first of them says that the property E g E holds
hereditarily within the chaotic domain H.

LeEMMA 10.4.6. If X CH isa 5} set, then EGE on X,

PRrooF. Suppose that E| X = E | X. Then E = EonY = [X]e as well. (If y,
y €Y, then there are x, @' € X such that 2 Ey and 2/ Ey’, so that if yEv/, then
2 E 2’ by transitivity, hence, « Ea’, and y E ¢/ again by transitivity.) It follows
that E = E on an even bigger set, Z = [X]z. (Otherwise, the X7 set

Y'=Z\Y ={z:3z e X (xEynx Fy)}

is non-empty and E-invariant, together with Y. Therefore, by Lemma 10.4.2 there
is an E-invariant A} set B with Y € B and Y’ N B = @. This implies that no
point in YV is E-equivalent to a point in Y, a contradiction.) Then by definition
ZNH=0. O (Lemma)

LEMMA 10.4.7. If A,B C H are non-empty X} sets with AE B, then there
exist non-empty disjoint X1 sets A’ C A and B’ C B still satisfying A’ E B’ .

Recall that A E B means that [A]e = [Be.

PROOF. We assert that there are points a« € A and b € B with a # b and

a Eb. (Indeed otherwise E is the equality on X = AU B. Prove that then E =E
on X, contrary to Lemma 10.4.6. Take any « # y in X. Let U be a clopen set
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containing x but not y. Then A = [U N X]g and C = [X \ Ulg are two disjoint

E-invariant 2§ sets containing resp. @, y. Then Ey fails by Lemma 10.4.2.)
Thus, let a,b be as indicated. Let U be a clopen set containing a but not b.

Put A =ANUnN [UE]E and B'=BnNUtN Ve O (Lemma)

10.5. Restricted product forcing

In continuation of the proof of Theorem 10.4.5 (Case 2 in the proof of The-
orem 10.4.1), we come back to the Gandy-Harrington forcing notion P and its
two-dimensional copy Py introduced in Section 10.1. Let us fix a countable model
M of ZFC™ chosen as in Definition 10.1.3.

Let P?| E be the collection of all sets of the form X x Y, where XY C NN
are non-empty Xj sets and X EY (which still means that [X]g = [Y]g). It is clear
that Py C P*| E C P?. The forcing P | E is not really a product of two copies of
IP. However, if X x Z € P?|E and @ #X'C X is X}, then Z' = ZN[X']e is X}
and X’ x Z' € P*| E. Tt follows that every set G C P?| E, P?[ E-generic over 9,
still produces a pair of P-generic sets

Grest ={domP: P € G} and Gyign = {ranP: P ¢ G}.

G

right» whose names will

Therefore, G produces a pair of P-generic reals 27;, and

be &10e¢ and Tyighy as above.

LEMMA 10.5.1. In the sense of the forcing P*| E, any condition P = X x Z
in P21 E forces (€102, Trignt) € P and forces &1est E Trigne, but H x H forces

. o
Tieft E Tright -

PRrROOF. To show that (Ziet,Zrigne) € P is forced, argue as in the proof of
Theorem A.5.4. (We leave this to the reader.) To prove that &jest /E\:%right is forced,
suppose otherwise. Then, by the definition of E, there is a condition P =X x Z €
P%| E and an E-invariant A set B such that P forces #1e¢¢ € B but &rigns ¢ B.
Then easily X € B but ZN B = @, a contradiction with [X|g = [Z]e.

To show that H x H forces @1es; F &rignt suppose toward the contrary that a
condition P = X x Z € P? [ E with X UZ C H forces 2165t E i‘right, thus

(1) 2 E z holds for every P?| E-generic pair (z,z) € P.
Cram 1052, If x,y € X are P-generic over M, and :L’Ey, then * Ey.
ProoF. We assert that

(2) @ € A <=y € A holds for each E-invariant X set A.

Indeed, if, say, © € A but y ¢ A, then by the genericity of y there is a X7 set
C with ye C and ANC = @. As A is E-invariant, Lemma 10.4.2 yields an E-
invariant A} set B such that C C B but ANB =@. Then x ¢ B but y € B, a
contradiction to @ E Y.

Let {@n}nen be an enumeration of all dense subsets of P? [ E which are coded
in M. We define two sequences Py O Py O« and (g 2 @1 2 -+ of conditions
P, =X, %2, and Q, =Y, x Z, in P?JE, so that P, = Qo = P, = € X, and
y € Y, for all n, and finally P,,Q,, € Z,,_1 for n > 1. If this is done, then we have
a real z (the only element of (1, Z, ) such that both (z,z) and (y,z) ave P?] E-
generic; hence, @ E z and y E z by (1), hence, zEy.




126 10. THE 1ST AND 2ND DICHOTOMY THEOREMS

Suppose that P, and Q, have been defined. As @ is generic, there is (we leave
details for the reader) a condition P = AxC € 9, and C P, such that o € A. We
put B =Y, n[Ale. Then y € B by (2), and clearly [Blg = [C]e = [A]g (because
[Xnle = [Znle = [Ya]e). Tt follows that B x C' € P*[E, so there is a condition
Q =VxWe¢€ P, such that Q' € Bx C C Q, and y € V. Put YV,,.y =V,
Zpy1 =W, and Xpq1 = AN [W]e. O (Claim)

It follows that E = E on X. (Otherwise, S = {{z,y) € X? cwxEyAxFy)isa
non-empty X} set, and any IPo-generic pair (z,y) € S implies a contradiction to
Claim 10.5.2. Recall that P is equal to all non-empty %} subsets of (NV)?.) But
this implies X ¢ H by Lemma 10.4.6, a contradiction. O (Lemma 10.5.1)

10.6. Splitting system

The conclusion of Theorem 10.4.5, that is Ey C¢ E, means that Eg has a
continuous “copy” of the form E X, X being a closed set in N N To obtain such a
set, we define a splitting system of sets in P satisfying certain requirements similar
to those in Section 10.2 but more complicated.

Let us fix the enumerations {2, }nen, {25 tnen, {Znnen of all open dense
subsets of P, P, P? | E, respectively, which are coded in the model 9 fixed above.
We assume that 2,41 C Dy, @;H C 2y, and 9., C D,

If u,v € 2™ (binary sequences of length m) have the form u = 00" w and
v = 0F"1~w for some k < m and w € 2™ %=1 then we call {u,v) a crucial
pasr. It can be proved by induction on m that 2™ is a connected tree (ie., a
connected graph without cycles) of crucial pairs, with sequences beginning with 1
as the endpoints of the graph.

We define a system of sets X, € P {(u € 2<¥) and R, € Py, (u,v) being a
crucial pair, so that the following requirements are satisfied:

1°. X, CH.

2°. X, € 9, forall n and u € 2™,

3% X, oNXy~ =@ and X, ~; C X, for all ue 2<% and i =0,1.
4°, Ryy € 25 for all crucial pairs (u,v) in 2",

5° Ruy C E and X, Ry, X, for all crucial pairs {u,v) in 2".

6° Ry~iv~i © Ruy.

7°. If u,v €2" and u(n — 1) # v{n — 1), then X, x X, € Z;.

Note that 5° implies that X, E X, for every crucial pair (u,v), hence, also for
every pair in 2" because every u,v € 2" are connected by a unigue chain of crucial
pairs. It follows that X, x X, € P?| E for all pairs of u,v € 27, for all n.

Assume that such a system has been defined. Then for every a € 2V, the
sequence {Xq)n tnen is P-generic over M by 2°; therefore, (N, Xajn = {%a}, where
2, is P-generic, and the map a — @, is continuous and 1-to-1 by the same reasons
as those for the simpler splitting system in Section 10.2.

Suppose that a,b € 2N, If a Bo b, then, by 7°, (x4, x3) is a P? | E-generic pair,
hence, x, Ex, by Lemma 10.5.1. Now suppose that aEgb, prove that then x, Ew,.
We can suppose that @ = w™0"¢ and b = w"1"¢, where w € 2<% and ¢ € 2V
(indeed if @ Eqb, then a, b can be connected by a finite chain of such special pairs).
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Then the pair {(z,, ;) is Py-generic, actually, the only member of the intersection
My Ruw~0~(ern) qw~1~(c|n) Dy 4° and 5°, in particular, @, E 2 because we have
R, CE forall u,v.

Thus we have a continuous 1-to-1 reduction of Eg to E.

O (Theorem 10.4.5 modulo the construction of a splitting system )

10.7. Construction of a splitting system

Thus it remains to define a splitting system of sets satisfying 1°-7°.

Let X4 be any set in 9 such that X, C H.

Now suppose that X and R,; have been defined for all s € 2" and all crucial
pairs in 2", and extend the construction on 2"*+!, Temporarily, define X,~; = X,
and Rg~; 4~; = Rgt. This leaves Rou~g gn~p still undefined, so we separately put
Ron~g,0n~1 = EN(Xgn X Xon). Note that the system of sets X, and relations Ry,
defined this way at level n + 1 satisfies all requirements of 1°—7° except for the
requirements of membership in the dense sets in 2°, 4°, and 7°. Say in this case
that the system is “coherent”. It remains to produce a still “coherent” system of
smaller sets and relations that also satisfies the membership in the dense sets. This
will be achieved in several steps.

Step 1. Achieve that X, € 2,41 for every w € 2", Take any particular
ug € 27F!, There is, by the density, a set X! € 2,4, such that X'lllo C Xy

Uy

Suppose that (uo,v) is a crucial pair. Put R, = {{(z,4) € Ry, 12 € X, } and
X, = ranR|_ . This shows how the change spreads along the whole set 2"+!

viewed as the tree of crucial pairs. Finally, we obtain a coherent system with the
additional requirement that X € Z,41. Do this consecutively for all ug € 271,
The total result (we re-denote it as still X, and R,,) is a “coherent” system with
Xy € D4 for all u. Note that still Xgn~g = Xgn~; and

(*) RO”’\O,O“”\I =E n (XorzAO X XO""I)'

Step 2. Achieve that X, ~ox X~y € Zpy,; forall s,t € 2™+l Consider a pair of
ug = 8070 and vp = "1 in 2", By the density there is a set X}, x X} € D5,
and C Xy, X Xy,. By definition we have X EX] , but, due to Lemma 10.4.7 we can
maintain that X, N X/

o v = 9. The two “shockwaves”, from the changes at nodes

ug and vg, as in Step 1, meet only at the pair 07 70,0™ "1, where the new sets
satisty X/ E X{..~, just because E-equivalence is everywhere preserved though

0”1 AO
the changes. Now, in view of *, we can define R! =EN(X/ X Xln~1),

07 ~0,0n ~1 on~Q
preserving condition % as well. After all pairs are considered, we will be left with
a coherent system of sets and relations, redenoted as X, and R,,, which satisfies

the Zny1-requirement in 2° and the 2, ;-requirement in 7°.

Step 3. Achieve that R, € @g“ for all crucial pairs at level n + 1, and also

that X (’),, ~oN X(’),, =D Consider any crucial pair (ug,vg). If this is not the pair

(0"~0,0™"1), then let R}, C Ryyy, be any set in @5+, If this is up = 0""0
and vg = 0""1, then first we choose (Lemma 10.4.7) disjoint non-empty 7 sets

U C Xon~g and V € Xgn ~y still with UEV, and only then aset R}, , € EN(UxV)
that belongs to 23", In both cases, put X, = domR), , and X, =ranR; .
It remains to spread the changes, along the chain of crucial pairs, to the left of ug

and to the right of vy, exactly as in Step 1.
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Executing such a reduction for all crucial pairs (ug,vo) at level n+1 in a one
by one manner, we end up with a system of sets fully satisfying 1°-7°. '

O (Theorems 10.4.5, 10.4.1, 5.7.2)

We add a couple of useful corollaries to the results above. The first of them can
be called effectiveness of the notion of smoothness. Indeed, it says that whenever
we know that a Al equivalence relation E is smooth, a Borel reduction ¢ that
witnesses the smoothness is effectively defined by ¥(z) = {n:2 € X,}, where
{Xn}nen is a fixed enumeration of all E-invariant Al sets. The generalization for
Al(p) equivalence relations for any parameter p is obvious.

COROLLARY 10.7.1. Suppose that E is a smooth Al equivalence relation on
N, Then for every x,y € NY 2By holds if and only if the equivalence @ € X <=
y € X is true for all E-invariant Al sets X C NV,

PROOF. The “only if” direction is obvious. Prove the “if” direction. Suppose
toward the contrary that x € X <= y € X holds for all E-invariant A} sets X C
N™ in other words, E y, but @ Ey. Then E ; E, and hence H # @. It follows
that Eg <g E by Theorem 10.4.5; therefore, Eg is smooth together with E, a
contradiction since Eg is not smooth by Proposition 7.2.1(v). O

The next result shows that a “weak” smoothness via maps more complicated
than Borel, implies Borel smoothness.

COROLLARY 10.7.2. Suppose that E is a Borel equivalence relation on N, and
9 : NN — NN s o Baire measurable reduction of E to Ays. Then E is smooth.

ProoOF. Otherwise Eg <z E by Theorem 5.7.2, and hence there is a Baire
measurable reduction ¢ : 2% — 2N of Ey to Agn. Following an old argument of
SIERPINSKI, define X— = {({a,b) € (2M)?: ¢(a) = ¢(b)} and

Xe={{a,0) € (") 0(a) <p(b)},  X» ={{a,b) € (2")7:p(a) > (D)},
where < is the lexicographic linear order on 2V, These three sets are Eg-invariant
w.r.t. either argument, and have the Baire property, hence each of them is either
meager or comeager in (2M)? (see Lemma 4.4.3). Moreover, (2M)2 = X_ [ J X UX>
is a digjoint partition. Therefore, exactly one of the three sets is comeager. But
the symmetry (a,b) — (b,a) moves X onto Xs. It follows that only X_ can be
comeager. Yet this is impossible by the ULAM-IKURATOWSKI theorem since X- is
a set with countable (hence meager) sections. t

QUESTION 10.7.3. Is there anything analogous to Corollary 10.7.1 for various
other classes of equivalence relations? For instance, suppose that E is A} and
E <g Eg. Can one effectively manufacture a Borel reduction of E to Eq7

And does Corollary 10.7.2 admit any generalization? For instance, suppose
that E is a Borel equivalence relation and 9 is a Baire measurable reduction of E
to Eg. Is it necessarily true that then E <g Ep, i.e., there is a Borel reduction? O

10.8. The ideal of Eg-small sets

In [Zap04] ZAPLETAL considers the ideal Zg, (this time an ideal on 2M) of all
Borel sets X C 2% such that Eq | X <g Eop. Sets in %, are called Eg-small.

LEMMA 10.8.1. Let X C 2% be a Borel set. Then X belongs to Jg, iff Eo[ X
is smooth ff Eo [ X admits o Borel transversal.
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Proor. If the restricted equivalence relation Eqy [ X admits a Borel transversal,
then it is smooth by Proposition 7.2.1(i) and hence X belongs to %, by the above.
To prove the converse make use of Proposition 7.2.1(iii). O

Applying Corollary 7.3.2, we obtain:

COROLLARY 10.8.2. #, is a o-ideal, that is, it is closed under countable
Unions. O

The next theorem gives a necessary and sufficient condition for a Borel set
X C 2% in the class A} to belong to .#g,. Recall that a set X is pairwise E-
inequivalent iff z £y holds for all 2 £y in X.

THEOREM 10.8.3. Suppose that X C 2N 45 a Al set. Then X € I, iff X
is covered by the union S of all pairwise Eq-inequivalent A} sets. Generally, if
p € 2N, then every Al(p) set X C 2N belongs to Jg, iff X is covered by the
union of all pairwise Eg-inequivalent Al(p) sets.

Proor. We consider only the parameter-free case; the relativization to an
arbitrary parameter p € 2N is obvious.

The “if” claim. This is easy. It is quite clear that Eq [ Y is smooth whenever
Y is a Borel pairwise Eg-inequivalent Al set. However, countable unions preserve
smoothness by Corollary 7.3.2.

The “only if” claim. Suppose that X is not covered by the union S of all
pairwise Eg-inequivalent A} sets. As in the proofs of the 1st and 2nd dichotomy
theorems above, S is a II] set, and hence H = 28 'S is a 5] set. Note that
S and H are resp. the structural and the chaotic domain in terms of the scheme
outlined in Section 10.3. Moreover, as X € S, the 2} set A=XNH =X 8 is
non-empty. Obviously A consists of all points @ € 2N that belong to no pairwise
Eo-inequivalent Al set.

The key property of A is that it does not intersect pairwise Eg-inequivalent
21 sets. (To prove this, one has to establish that every pairwise Eg-inequivalent
21 set can be covered by a pairwise Eg-inequivalent A} set.) It follows that

10.8.4. Every non-empty 21 set Y C A is not pasrwise Eg-inequivalent; that
is it contains a pair of points x #y with x Eg y.

The following notation will be used in the proof. Suppose that @ € 2% and
n € N, Let @ [sp, resp., @[>, denote the restriction of © (as a map' N — 2) to
the domain (n,c0), resp., [n,00). Thus @[+, € 204°) and |5, € 2%, If
X C 28 then put X [y ={2[sn 12 € X} and X [5n ={x[5n 12 € X}.

‘We make use of a splitting scheme similar to those used in connection with the
SILVER and SACKS forcing notions. Let us define sequences ul # u} € 2<% (n €
N) such that 1hu) = lhwul for all n, and also a system of non-empty X1 sets
Xs € A (s € 25%) satisfying the following conditions:

(a) Xp CA.

(b} A condition in terms of the Gandy-Harrington forcing, similar to 2° in
Section 10.2 or 2° in Section 10.6, such that, as a consequence, [, Xqn #
@ for every a € 2N,

(¢) X;~; € Xsand XN X~ =@ forall s €2<* and 1=0,1.
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0 (1)~ s(n—1
d) If s € 2" then X, C &, , where wy = W@yt W sl and
s 8 0 1 n—1 :
Op={ae2Y wcCa} for we2<v,

(e) If s,t € 2™, then X, [>p, = X¢[>¢,, where € = 1h ud + o+ 1hul ;.

When this construction is accomplished, define 9(a) = ug(o)“u?(l)” ... for

every a € 2; thus ¢ : 2Y — 2V is a continuous 1-to-1 map. Moreover, as uf # ul,
Y n, the map 1 satisfies @ Eg b <> 9(a) Eg ¥(b), hence 9 is a reduction of Eq to E.
Finally, the set ¥ = rand =), USGZ” X, satisfies Y € X, C A C X; therefore,
19 witnesses Eo <pg Eo | Y < Ep [ X, thus X & #,.

Let us carry out the construction of sequences u!, and sets Xj.

To begin with, choose a non-empty X7 set X C A such that (b) is satisfied,
that is, X belongs to 2y, where {@,}nen is a fixed enumeration of certain dense
sets, as in Section 7.2. By definition wy = A, therefore (d) is satisfied.

Now suppose that n € N and non-empty X} sets X; € P are defined for all
s € 2%, k < n, and sequences uj; are defined, too, for k < n, so that conditions
(a)~(e) hold in the domain < n. Define ¢, = lhu)+ -+ + lhw,_; as in (e) and
w, € 2% for all s € 2™ as in (d).

To extend the construction to the next level, choose an arbitrary o € 2", for
instance, o can be the sequence of n zeros. It follows from 10.8.4 that there exist
points xg # x1 in X, such that @ Eg #1. Then there is a number {, > ¢, 1 such
that @g [>e, = @1 [»¢,. On the other hand zg[<¢,_, = %1 [<0,_, = Wo by (d).
Therefore there exist sequences ul, # ul in 2 ~f-1 guch that w, ~ul C @ and
wy "ul C @1. Then the set Z of all points z € 2l6n:20) such that

Fyo, 11 € Xo (Yo I50, = V1 [0, = 2 Aws"ud C yo Aws"uly C y1)

is X} and non-empty: it contains the element g [>¢, = @1 [>¢,. In addition
Z C Xs >, forall s €2 by (e). It follows that the family of sets

X . ,={eeX;:axls, €ZA we"ul C @} for s€ 2" and i = 0,1

satisfies (c), (d), and (e). To fulfill (b), choose an arbitrary sequence 7 = o7 €
27+l By the density of %,41, there is a non-empty Xf set Y C X/ [>¢, 41 such
that for every t € 271 there exists a set X; € D11, Xy C X satisfying ¥V =
X¢[>0,4, - The system of those sets X, ¢ € 2nt+1 | still satisfies conditions (c), (d),
and (e), and it satisfies (b) as well.

This accomplishes the inductive step in the construction of a system of sets
and sequences satisfying requirements (a)—(e). O (Theorem 10.8.3)

10.9. A forcing notion associated with Eg

Now it is quite natural to consider the collection Pg, of all Eg-large (that is,
non-Eg-small) Borel sets X C 2N as a forcing notion. Thus Pg, consists of all Borel
sets X C 2N such that Eg ~g Eg | X. Forcings like Pg, (that is, those defined in
the form of the collection of all Borel sets X such that a given Borel equivalence
relation E satisfies E ~g E [ X) are still works in progress, their applications not
yet established.

LeMmMA 10.9.1. A Borel set X C 2N belongs to Pg, iff EoCoEo | X.

Proor. If X € Pg,, then Eg Tg Ep [ X by Theorem 10.4.1. On the other
hand if Eg C¢ Ep [ X, then Ep [ X is not smooth since Eg itself is not smooth by
Proposition 7.2.1(v). O
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Note that every set X € PPg, contains a closed subset ¥ C X also in Pg, by
Theorem 10.4.1. (Apply the theorem for E = Eq | X. As Eq | X is not smooth, we
have Ep C¢ Eg [ X, by a continuous reduction . Take as Y the full image of 9.
Y is compact, hence closed.} Such sets ¥ can be chosen in a special family.

DEFINITION 10.9.2. Suppose that two binary sequences u2 # ul € 2< of equal
length 1hu® = 1hul > 1 are chosen for each n. Define ¥(a) = US(O)”U?(I)“ e
for all @ € 2N, Then ¥ is a continuous injection 2¥ — 2¥, Y = ran4 is a closed set
in 28, and ¢ is a reduction of Ey to Ey | Y; therefore, Eg Co Eo [V and Y € Pg,.

Let IF’/EO denote the collection of all sets Y definable in such a form. a

THEOREM 10.9.3 (ZAPLETAL [ZapO04]). Pg is a dense subsel of Pg, : for
every X € Py, there exists Y € P, such that Y C X. In addition, Pg, forces
that the “old” continuum ¢ remains uncountable.

PROOF. Suppose that X is Al. (As usual the case when X is Al(p) for
some p € 2N does not differ in any detail.) Obviously, X ¢ S, Then X Z S
by Theorem 10.8.3, and hence the set A = X ~'S is non-empty. Therefore, the
splitting construction as in the proof of Theorem 10.8.3 can be carried out in the
domain A. It yields a closed set Y C X which belongs to ]P’/ED.

As for the additional claim, it suffices to prove the same result for the subforcing
IP"EU. Given a sequence of dense sets 2,, C ]P’/EO, we carry out a splitting construction
as in the proof of Theorem 10.8.3, with the following amendments. First, each set
X, belongs to %1y, hence to ]P”EO, and therefore is a closed set in 2¥. Second,
condition (b) is abolished, of course. That every set X € Py satisfies the key

condition 10.8.4 (that is, it contains a pair of points = # y with x Ey ) is obvious.
O

The following results on IPg, resemble some known properties of the SILVER
and SACKS forcings.

EXERCISE 10.9.4 (ZAPLETAL). For those interested in forcing, prove that Pg,,
similar to the SACKS forcing, produces reals of minimal degree.

The proof resembles known arguments, but in addition the following is applied:
if X € Pg, and f: X — 2N is a Borel Eg-invariant map (that is, = Egy =
f(@) = f(y)), then [ is constant on a set Y € Pg,, ¥ C X. Indeed, suppose, for
the sake of brevity, that X = 2. For every n, the set Y0 = {a: f(a)(n) = 0} is
Borel and Eg-invariant. It follows that Y, is either meager or comeager. Define
b€ 2V so that b(n) = 0 iff Y0 is comeager. Then the set D = {a: f(a) = b} is
comeager, A splitting construction as in the proof of Theorem 10.8.3 yields a set
Y ePg, YCD. O

There is another similarity between Pg, and the SACKS forcing:

EXERCISE 10.9.5. Let S denote the set. of all closed uncountable sets X € 2N —
the SAcKs forcing. Prove that a closed Al set X C 2N belongs to S iff X ¢ Al;
that is, iff X contains at least one point not in A}, In this case, the chaotic domain,
as outlined in Section 10.3, consists of all non- Al points « € 2V. O







CHAPTER 11

Ideal ., and the equivalence relation E;

By definition the ideal Fin x 0 = .# counsists of all sets 2 C Z(N x N) such
that all, except for finitely many, cross-sections (x), = {k: (n, k) € 2} are empty.
The ideal % naturally defines the equivalence relation E; = E7, on &(N x N) so
that 2By y iff x Ay € #. We can as well consider E; to be an equivalence relation
on (2M)N, or even on XN for an arbitrary uncountable Polish space X, defined so
that « Ey y iff a(k) = y(k) for all but fnite k.

This chapter contains proofs of some key results related to . and E;. First
of all we prove a theorem, due to KECHRIS, that there exist only three up to
isomorphisni types of ideals on N Borel reducible to .#, two of them being Fin
and % itself. We also present several theorems related to Ej, the most important
of them being Theorem 5.7.3 of KECHRIS and LOUVEAU, or the 3rd dichotoniy
theorem. In addition, Section 11.2 contains several results that characterize E; in
terms of hypersmoothness and essential countability. Another important property
of E; is presented in Section 11.8: E; is not Borel reducible to a Borel action
of a Polish group. Finally, a forcing notion associated with E; is considered in
Section 11.7.

11.1. TYdeals below .7

Recall that # = 7 means the isomorphism of ideals .#, # via a bijection
between the underlying sets. If the underlying sets are countable, then that is a
type of Borel isomorphism. The ideal Fin & Z?(N) (the disjoint sum in the sense
of Section 3.7) in the next theorem is isomorphic to the ideal Fingypy = {@ C N:
zN2N € Fin}, where 2N = all even numbers.!

THEOREM 11.1.1 (KECHRIS [Kec98]). If ¥ is a Borel (non-trivial) ideal on
N and £y < Ey, then F is isomorphic (via a bijection between the underlying
sets) to one of the following three ideals: .#,, Fin, Fin @ Z(N).

Thus there exist only three different ideals on N Borel reducible to .#;: they
are Fin, the disjoint sum Fin & Z(N), and .7 itself.

PRrRooOF. We begin with another version of the method used in the proof of
Theorem 3.2.1. Suppose that {% }ren is a fixed system of Borel subsets of Z(N).
(It will be specified later.) Then there exists an increasing sequence of integers
0=mng <np <ng < - and sets s, C [ng, ngy1) such that

(A) every set @ C N with V*°k (2 N [ng, npy1) = sk) is “generic”;?

! Ideals isomorphic to any of %, & @ 2(N) were called trivial variations of .# in [Kec98].
2 We mean Cohen-generic over a certain countable family of dense open subsets of Z(N)
that depends on the choice of the family of sets %, .
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(B) if k¥ > k and u C [0,np), then uwU sy decides %), in the sense that
either all “generic” = € Z(N) with N[0, ng41) = wU s belong to %
or all “generic” x with N[0, g 41) = v U sp do not belong to %y,

Now put %y = {zUS1:2C Zp} and 2, = {a U Sy:x C Z,}, where

So = Uy, s2t € Zo = Uy, [n2k, nokt1),  O1 = Uy sak1 € Z1 = Uy [N2rr1, Nok+2)-
Clearly, every @ € 9y U 2, is “generic” by (A), hence it follows from (B) that

(C) each Z, is clopen on both %y and 2.

As ¥ <y &, it follows from Lemma 5.3.1 (and the trivial fact that %, @ % =
1) that there exists a continuous reduction ¥ : Z(N) — Z(N x N) of & to .
Thus E_¢ is the union of an increasing sequence of (topologically) closed equivalence
relations R,, C E» just because .#; admits such a form. We now require that
(B} includes all sets Bi* = {x € P(N):Vs C[0,1) xRy, (x A's)}. Then by (C)
and the compactness of %; for every [ there is m(l) > | satisfying

(D) Yo € DoU D Vs C[0,1) (w Ry (z A s)).

To prove the theorem, it suffices to obtain a sequence xg € 27 € @2 C -+
of sets @ € 4 with J = |J,, P(x,) : that in this case ¥ is as required is an
easy exercise. As every topologically closed ideal is easily Z(x) for some x C N,
it suffices to show that .# is a union of a countable sequence of closed subideals.
It suffices to demonstrate this fact separately for & | Zy and ¥ | Z;. Prove that
S | Zy is a countable union of closed subideals, ending the proof of the theorem.

If me N and s C u C Zp are finite, then let

I ={ACZy:Va € Do (anNu=s= (zU(A~u))Rya)}.

Us

LEMMA 11.1.2. Sets I™ are closed topologically and under U, and I, € &

us

ProoF. I are topologically closed because R,, are also.
ws y

Suppose that A, B € I™. To prove that AUB € I, let « € %y satisfy
zNu=s Then o' = aU (AN u) € 9 satisfies 2’ Nu = s, too, hence, as B € I},
we have (@' U (B ~u)) Ry, 2/, thus, (zU ((AUB) \ u)) Ry, 2. However o’ R, ©
just because A € I7%. It remains to recall that R, is an equivalence relation.

To prove that every set 4 € I7% belongs to .# take z = sU.S;. Then we have
U (AN u) R, , thus, A€ # as s is finite and R,,, CE». O (Lemma)

LeMMA 11.1.3. & | Zo =J m

m,,s T us "

PROOF. Let A € 7, A C Zy. The sets Qn = {v € %p: (xz U A) Ry, a} are
closed and satisfy %y = |J,, @m- It follows that one of them has a non-empty
interior in %y; thus, there exist finite sets s C u C Z; and some my with

Ve e Pp(zNu=s= (xUA) Ry, ).

This is not exactly what we need. However, by (D), there exists a munber m =
max{mg, m(supu)} big enough for

Ve e Dy: (zUA)R, (U (AN ).

It follows that A € I as required. O (Lemma)

su?
Let J™

sSu

be the hereditary hull of I7" (all subsets of sets in I7%). It follows
from Lemma 11.1.2 that every J is a topologically closed subideal of & [ Zp;

however, & [ Zy is the union of those ideals by Lemma 11.1.3, as required. (]
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COROLLARY 11.1.4. The equivalence relations Ey and Es are Borel irreducible
to Ey. It follows that they are Borel irreducible to Eg, and hence Ey <5 Eo and
EO <B E3 .

ProoF. It is quite clear that neither .3 nor %3 belong to the types of ideals
mentioned in Theorem 11.1.1. |

That Eg <p E; strictly, and even that E; is not essentially countable (formally
E1 €5 Ewo ), will be established by Lemma 11.2.3 below.

11.2. E;: hypersmoothness and non-countability

Recall that a hypersmooth equivalence relation is a countable increasing union
of Borel smooth equivalence relations. This section contains several results on the
relationships between hypersmooth and countable equivalence relations. First of
all prove that E; is universal in the class of hypersmooth equivalence relations.

LEMMA 11.2.1. For a Borel equivalence relation E to be hypersmooth, it is
necessary and sufficient that E <g E;.

Proor. Let X be the domain of E. Assume that E is hypersmooth, i.e,
E =, F., where ¢ F,y iff ¥,(z) = 9,(y), each 9, : X — 2N is Borel, and
Fr € Fut1, Y. Then 9(z) = {¥,(2)}nen witnesses E <p E;. Conversely, if
Y : X — (29N is a Borel reduction of E to Ej, then the sequence of equivalence
relations a Fy, y iff 9(2) [>n = Y(y) [>, witnesses that E is hypersmooth.

Here 9(2) [>, is the restriction of the N-sequence ¥(z) € (2")N to the set
[n,00) ={k € N: k > n}. O

COROLLARY 11.2.2. £, £g E;.

PRrROOF. Otherwise E., is a hypersmooth equivalence relation by Lemma 11.2.1.
But E,, is countable as well. It follows that E,, <g Eg by Theorem 8.1.1. This
contradicts Theorem 7.5.1. 1

The following result is given in [KL97]| with a reference to earlier papers.

LEvMMA 11.2.3. (i) Ey is not essentially countable, that is, it is not Borel re-
ducible to a countable (with at most countable classes) Borel equivalence relation.

(ii) Eo <p E1, in other words, Fin <y 4.

ProOF. (i) (A version of the argument in [KL97], 1.4 and 1.5.) Suppose
that F is a Borel countable equivalence relation on, say, N, and ¢ : (2M)N —
X is a Borel map satisfying = E; y =— 9J(z) F9(y). Then ¢ is continuous on a
dense Gg set D C (2M)N. Our goal is to show that ¥ is not a reduction. We
begin with a few definitions. Let us fix a countable transitive model 9 of ZFC™
chosen as in Definition 10.1.3 and containing codes for D, ¥ [ D, X (in the sense
of Appendix A.2).

We are going to define, for every k, a pair of points aj # b, € 21, a number
{(k) and a tuple 14 € (QN)’Z(’”') such that

(a) both & = (ag) "1o"{a1) "1~ ... and y = (bg) "0 " (b1) "1 " ... are ele-
ments of (2N)N Cohen-generic over 90;
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(b) for every k, the finite sequence
Ce = (a0, bo) "0 " (a1, b1) "7 o ak, i) T
is Cohen-generic over M1, hence so are the subsequences
€= {ag) 10" “{aw) " and  m = (bo) 10" - "(br) Tk ;

(c) for every k and every z € (2M)N such that ("2 is generic over 9 we
have 9(£x"2) = J(nx " 2).

If this is done, then by (b) choose for every k a point z; € (2N)N Cohen-generic
over M[¢x]. Then (j, "z is Cohen-generic over M by the product forcing theorem.
It follows by (c) that 9(wzy) = 9(yx), where x = "2, and yr = m " 2. Note
that 2 — x and 3 — y in (2M)Y with & — oo, and on the other hand, all of
Tk, 2, Y,y belong to D because of the genericity. It follows that J(z) = 9(y) by
the choice of D. However, obviously, — = E; y, so that ¥ is not a reduction, as
required.

To define ag, by, 7o note that there exists a perfect set X C 2V and a point

€ (2M)N such that {a,b) "z is Cohen-generic over MM for every two a # b € X.
(Indeed let (w,z) € 2277 x (2Y)¥ be Cohen-generic over 9. Put X = {w,:
a € 2N}, where w, € 2V is defined by w,(k) = w(alk), Vk.) In particular, {(a)"z
is Cohen-generic over 9 for every a € X. However, all points of the form {(a) "z
are pairwise Eq-equivalent. Thus ¢ sends all of them into one and the same F-class,
which is a countable set by the choice of F. It follows that there is a pair of a # b
in X such that 9({a)"z) # 9({(b) "z). This equality is a property of the generic
point {a,b) " z; hence, it is forced in the sense that there is a number ¢ such that
I({a)~2) = 9({b) " 2) whenever z € (2¥)N, (a,b)"% is Cohen-generic over 9, and
Zll=2z]0 Put ag=a, bg =b, p=2[".

The induction step is carried out by a similar argument. For instance to define
a1,by, 71 we find points @’ # b € 2V and 2 € (2Y)N such that (a/,0')"2' is
Cohen-generic over Mlag, by, z] and I({ag) "70 " {a')"2') = I({ag) "o ") " 2).
Yet we have 9({(ag) "7 7(b')"2") = 9({(bo) "m0~ (b')"2') by the choice of ¢ (take
2 =7"(t')"2"). Thus 9({ag) "1~ {(a')"2') = ﬁ((b()) o (V)" 2'). Tt follows that
there is a number ¢ satisfying 19(( 0) "0 (a') " 2) = 19(<b0>"7'0"<b’>"2) for every
2 € (2NN such that (ag,bo) "7 (a b) % is Cohen-generic over 9 and 2 [ ¢/ =
210 Pt ay=da, by =V, T1 =2 0.

(ii) That Eg <g E; is witnessed by the map f(z) = {(0,n):n € z}. a

‘While E; is not countable, the conjunction of hypersmoothness and counfability
characterizes the class of hyperfinite equivalence relations, considered essentially
much more elementary from the point of view of Borel reducibility.

11.3. 3rd dichotomy

In accordance with Corollary 5.2.2, Theorem 5.7.3 is a consequence of the next
slightly more concrete theorem:

THEOREM 11.3.1. Suppose that D C (2M)Y is a 31 set. Then either E; | D <j
Eo or E1 Co By ' D, and hence Ey | D ~g E;.

Recall that E ¢ F means the existence of a continuous (hence, Borel) embed-
ding, that is, a 1-to-1 reduction, of E into F.
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PROOF. As usual, we may assume that D is a lightface X! subset of (2N,
The idea behind the proof is to show that the set D is either small enough for
E1 [ D to be Borel reducible to Eg, or otherwise it is big enough to contain a closed
subset X such that E; { X is Borel isomorphic to E;.

DEFINITION 11.3.2. Relations < and =< will denote the inverse order relations
on N, ie, m<xn it n <m, and m <n iff n <m. If z € 2")N, then z T<n
denotes the restriction of @ (a function defined on N) to the domain < n, ie.,
[n,00). If X C (2%)N then let X |4, = { l<n @ € X}, Define {5, and X [,
similarly. In particular, (2M)N |4, = (2M)=" = (2N)ln.00),

For any sequence x € (2Y)S" let depa (the depth of &) be the number (finite
or 0o) of elements of the set V(z) = {j < n:a(j) & Al(z [<4)}. O

In continuation of the proof of the theorem, we prove
LEMMA 11.3.3. S={z € (2Y)V: depa < 400} is a IT} set.

PROOF. The relation depx < d (of two variables, d running over N) is IT}
since the background formula x € Al(y) is IT} by Corollary 2.8.5. |

‘We have two cases:

Case 1. All x € D satisty depa < +oc. In other words, it is assumed that D,
the X1 set considered, is a subset of the the structural domain (see Section 10.3)
S ={xze (2N depa < 4c0}.

Case 2. There exist points & € D with depx = co. Thus the chaotic domain
H = (2%)N (S here consists of all points & € (2M)Y such that z(j) ¢ Al(x [<5)
for infinitely many j € N, and the Case 2 assumption is that D has a non-empty
intersection with H.

It will be proved below in this chapter that E; | D ~p Ey and therefore
Ei D <gEj in Case 1, but E; Cg Ey | D in Case 2.

REMARIC 11.3.4. Our goal here, that is, the separation of X} sets D C (2M)N
such that E; [ D <p E; from those satisfying E; | D ~g Ey, is quite similar to the
content of Section 10.8, where Al sets X C 2N such that Eq | X <p Eg (i.e., sets in
g, ) were separated from those satistying Eq [ X ~p Eg by Theorem 10.8.3. Our
results (Theorem 10.8.3 and Theorem 11.5.1 below) can be summarized as follows:
it X C2% and D C (2")N are Al sets, then

Eo [ X ~g Eg iff da € X (a belongs to no pairwise Eg-inequivalent A} set);
Ei [ D~p B iff Jae D (x(j) ¢ Al(x[<;) for infinitely many j € N).

The right-hand sides of the two displayed equivalences do not seem similar at first
glance. Yet a closer inspection shows some similarities.

Indeed assume that @ € 2N does not belong to a pairwise Eqg-inequivalent Al
set. Then every Al set A C 2N containing a also contains, for each n, another
point a’ € C' such that a4, = a’ |, (that is, a(k) = a'(k) for all & > n) but
a(n) # ¢/(n). Thus ¢ admits infinitely many branching points, in the sense of the
order <, in every A} set containing a.

Now assume that o € (2Y)N satisfies x(j) ¢ Al(zx[<;) for infinitely many
indices j. Consider any Al set P C (2M)N containing . If j € N and z(j) ¢
Af(x < ), then

Pi(z)={a'(j):a’ e PN |5 =2 |4}
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is a Al(x]<;) set containing an element x(j) not in Aj(z[<;). It follows that
P;(z) is uncountable (and contains a perfect subset). In other words, = admits
infinitely many uncountably branching points, in the sense of <, in every Al set
containing . m]

11.4. Case 1

We come back to the proof of Theorem 11.3.1. Case 1 is the easier of the two
cases. The following lemma proves that the Case 1 assumption implies the “either”
case of Theorem 11.3.1.

LEMMA 11.4.1. Suppose that D C (2NN is a T} sel and every o € D satisfies
depx < oo. Then Ey [ D <g Ep.

PRoOF. By Theorem 2.3.2 (Separation) there is a Al set D’ such that D C D
and still D' € 8. Thus it can be assumed that D is A%. By definition for every
@ € D, there is a number n such that Vm < n (2(m) € Al (z [<m)). As the relation
between z and n here is clearly II{, Theorem 2.4.5 (Kreisel Selection) yields a
Al map v : D — N such that x(m) € Al(z <) holds whenever z € D and
m < v(x). Define, for each z € D, f(z) € (2Y)N as follows: f(%) [<u(m) = 2 [<u (@)
but f(z)(j) = @ for all j < v(z). Note that a E; f(z) for every x € D.

The other important thing is that ran f C Z = {o € (2")Y: depz = 0}, where
Z is a II} set, hence, there is a Al set YV with ran f C Y C Z. In particular f
reduces E; [ D to E; [Y. We observe that E; ['Y is a countable equivalence relation:
all Ej-classes in Y, and even in Z, a bigger set, are at most countable. Thus, E{ [Y
is hyperfinite by Theorem 8.1.1. ]

11.5. Case 2

In continuation of the proof of Theorem 11.3.1, we prove the following theorem.
It shows that the Case 2 assumption implies the “or” case of Theorem 11.3.1.

THEOREM 11.5.1. Suppose that D C (2M)N 4s o X1 set containing a point
x € D with depx = oo, that is, a point in H. Then E1 Co Eq [ D.

Proor. We apply a splitting construction, developed in [Kan99] for the study
of “il1”-founded SACKS iterations, to get a closed set X C D and a Borel reduction
of Ey to Ey [ X. The construction involves a map ¢ : N — N assuming infinitely
many values and each of its values infinitely many times (but ran ¢ may be a proper
subset of N), and, for each u € 2<%, a non-empty X1 subset X, C D, which
satisfies a quite long list of properties. First of all, if ¢ is already defined at least
on [0,n) and u # v € 2™, then let v,[u,v] = ming{p(k) : k < n Au(k) # v(k)}.
(Note that the minimum is taken in the sense of <, hence, it is max in the sense
of <, the usual order). Separately, put v,[u,u] = —1 for any wu.

Now we present the list of requirements.

1°. If @(n) & {p(k) : k <n}, then p(n) < (k) for every k < n.
2°. Every X, is a non-empty X} subset of D N H.

3°. Ifuc2® ze€X,, and k < n, then (k) € V(z).

4° If u,v € 2", then Xy [<u,fu,w] = Xo [<upfun] -

5° If u,v € 27, then Xy [<u,fu,0) N No T5up[up) = 9.




11.5. CASE 2 139

6° X,~; CX, forall ue 2<% and i =10,1.

7° For every n and u € 2" : X, € 9,,, where {2, }nen is a fixed enumer-
ation of all open dense sets D C P[(2V)N] coded in a fixed model 9 of
ZFC™ chosen as in Definition 10.1.3. Here P[(2M)N] consists of all non-
empty X subsets of (2N)N, the Gandy-Harrington forcing for (2M)V,
This is similar to 2° in Section 10.2 or 2° in Section 10.6, and therefore
as a consequence, if a € 2%, then [N, Xon is a singleton in (2M)N,

Let us demonstrate how such a system of sets and a function ¢ accomplish
Case 2. Put X =, Uyeqn Xu. According to 7°, for every a € 2N the intersection
(), Xan contains a single point, let it be f(a). Then obviously X = {f(a):a € 2Ny

and f is a continuous bijection 2N 2% X (see Section 10.2).

Put J =rang = {j,, :m € N}, in the <-increasing order; J C N is infinite.
Let n € N. Then ¢(n) = j,, for some (unique) m : we put (n) = m. Thus
¢ N2 N and the preimage p~(m) = ¢ 1(j,,) is an infinite subset of N for
every m. This allows us to define a parallel system of sets ¥, C (2M)N, u € 2<v,
as follows. Put Y = (2M)N. Suppose that Y, has been defined, u € 2". Put
J = @(n) = jym). Let K be the number of all indices k& < n still satisfying
(k) = j, perhaps I{ =0. Put Y, ~; = {z €Y, z(j)}(K)=1i} for i=0,1.

Each of Y, is clearly a basic clopen set in (2N)N, and one easily verifies that
conditions 1°—6°, except for 3°, are satisfied for the sets Y, (instead of X, ) and
the map ¢ (instead of ¢). In particular, for every a € 28, N, Yain = {g{a)} is
a singleton, and the map ¢ is continuous and 1-to-1. (We can, of course, define
g explicitly: g(a)(m)(l) = a(n), where n € N is chosen so that (n) = m and
there are exactly ! numbers k < n with (k) = m.) Note finally that {g(a):
a € 28} = (2M)N since by definition Y, ~; UY,~g = Y, for all u.

We conclude that the map 9J(z) = f(g~!(x)) is a continuous bijection (hence,

. , . b
in this case, a homeomorphism by compactness) (2V)N 25 X

LEMMA 11.5.2. The map ¥ is a continuous isomorphism of E; onto E; | X,
and hence ¥ witnesses Ey Cg By [ X

Proor. It suflices to check that the map 1 satisfies the following requirement:
for each y,y' € (2M)N and m,

(%) Ylgm =Y Ixm M IW) 15, =) 1<) -

Indeed, suppose that y = g(a) and z = f(a) = ¥(y), and similarly y’' = g(a’) and
a' = f(a') = 9(y'), where a,a’ € 2N, Suppose that ¥ [xm = ¥ [<m . According
to 5° for ¢ and the sets Y,, we then have m < wvyla [ n,a’ | n] for every n.
It follows, by the definition of ¢, that j, < v,la [n,d' [ n] for every n, hence,
Xain [<jm = Xa'n {54, for every n by 4°. Assuming now that Polish metrics on
all spaces (2M)™7 are chosen so that diam Z > diam (Z ;) for all Z C 2V and j,
we easily obtain that z [g;,, = &' |<;,., i.e., the right-hand side of (). The inverse
implication in (%) is proved similarly. O (Lemma)

O (Theorems 11.5.1, 11.3.1, 5.7.3 modulo the construction 1°-7°)
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11.6. The construction

We continue the proof of Theorem 11.5.1. Recall that D C (2M)N is a 2 set
such that DNH # @, i.e., depz = oo for some = € D. As “depa = +oo” is a U}
relation, D' = {x € D: depz = +oo} is still a 2] set. Put Xy = D',

Now suppose that the sets X,, € D with u € 2™ have been defined and
satisfy the applicable part of conditions 1°-7° of Section 11.5. Let us extend the
construction to the next level.

Step 1. Our first task is to choose ¢(n). Let {j1 < -+ < jn} = {p(k): k < n}.
For every 1 < p <m, let N, be the number of all & < n with (k) = j,.

Case la. If some numbers N, are < m, then choose ¢(n) among j, with the
least IV, and among them the least one.

our assumptions, in particular 4°, that X, [<; = X, [«;, for all u,v € 2", Let
Y = X, |«;,, for any such u. Take an arbitrary y € Y. Then V(y) is infinite,
hence, there is some j € V(y) with § < j,,,. Put o(n) =7.

We have something else to do in this case. Let X/ = {z € X,,:j € V(2)}
for any u € 2". Then we easily have X, = {z € X, 1z l<;,, € Y'}, where Y/ =
{yeY:j e V(y)} is a non-empty X} set, so that the sets X! C X, are non-
empty X}. Moreover, as j,, is the <-least in {p(k):k < n}, we can easily show
that the system of sets X7, still satisfies 4°. This allows us to assume, without any
loss of generality, that, in Case 1b, X! = X, for all u, or, in other words, that
every € [ J,cqon Xu satisfies j = ¢(n) € V(). (This is true in Case la, of course,
because then @(n) = ¢(k) for some k < n.)

Case 1b: N, > m (then actually N, = m) for all p < m. It follows from

Note that this manner of choosing ¢(n) implies 1° and also implies that ¢
takes infinitely many values and takes each of its values infinitely many times.
The continuation of the construction requires the following

LEMMA 11.6.1. If up € 2" and X' C X, is a non-empty X1 sel, then there
is a system of X sets @ # X[, C X, with X[ = X' that still satisfies 4°.

PROOF. For any u € 2", let X} = {x € Xy 2 [<nw) € X' [<n@}, where
n(u) = vy[u, ug). In particular, this gives X = X', because v,[ug,ug] = —1. The
sets X! are as required, via a routine verification. O (Lemma)

Step 2. First of all put j = ¢(n) and Y, = X, [;. (All Y, are equal to YV
in Case 1b, but the argument pretends to make no difference between 1a and 1b).
Take any u; € 2". By the construction all elements = € X, satisfy j € V(z),
so that a(j) ¢ A}(z I<;). Since X,, is a X} set, it follows that the set {a'(j):
' € Xy, Aa' 14 = x [4;} is not a singleton, in fact it is uncountable. Therefore,
there is a number [,, having the property that the 3} set

Y, ={yeV, Ja,a’ c Xy, (2" [<j=al<j =y Al €2(5) Ay, €2'(5))}
is non-empty. We now put X’ = {z € X,, :al<; € Y, } and define X} sets

@ # X;, C X, as in the lemma, in particular, X/, = X', X| {; =Y/ still 4°
is satisfied, and in addition

(1) Vye Xllu [<j Ja, o’ € X;u (.’L‘/ i =l =yAl, €x(j) AL, & rL/(j))
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Now take a different sequence uy € 2", Let v = v,[u1, up). If j < v, then
KXu, [<j = Xu, [<j, so that we already have, for 1,, = 1,,, that

(2) YyeX,, l< 3w’ cX) (2/1<j=al<;=yAly, €2(f) ALy, €2'()),

and we can pass to some ug € 2". Suppose that v < 4. Now things are somewhat
nastier. As above, there is a number /,, such that

YL:Q = {y € )/llvz :3$7$/ € Xuz (‘,U/ r-<j =z r{’j - y/\luz € T(]) /\luz g TI(]))}

is a non-empty | set, thus, we can define X” = {z € X,,, 12|, € Y, } and
maintain the construction of Lemma 11.6.1, getting non-empty X1 sets X!/ C X/,
still satisfying 4° and X7/ = X". Therefore, we still have (2) for the set X/ .

Yet it is most important in this case that condition (1) is preserved, that is, it
still holds for the set X} instead of X/, | Why is this? Indeed, according to the
construction in the proof of Lemma 11.6.1, we have

X,Zl = {{1} S "Y’thl . r<y S JYN r<y}.
Thus, although, in principle, the set X/ is smaller than X/, , the equality

{-'L’EXngliﬂJf%j:y} = {$6X11,1:$r<j:y}7

"
1wy

still holds for every y € X,
implies that (1) still holds.

Iterating this construction so that each u € 2" is eventually encountered, we
obtain, in the end, a system of non-empty 27 sets, let us call them “new” X,,.
But they are subsets of the “original” X, still satisfying 4°, still satisfying that
p(n) € V(z) for each = € (,cyn Xy, and, in addition, for every u € 2™ there is a
number [, such that j < v,[u,v] = [, =1, and

(3) VyeXylgdaa' eX, (@< =als;=yAl () Aly €2(5)).

Step 3. We define the (n 4 1)-th level of sets by X, ~g = {z € Xy : 1, € 2(5)}
and X,~1 = {z € Xy :l, & x(j)} for all u € 27, where still j = ¢(n). It follows
from (3) that all these 31 sets are non-empty.

[<; simply because now we assume that v = j. This

LEMMA 11.6.2. The system of sets X, s € 2"t just defined satisfies 4°, 5°.

PrOOF. Let s = u™¢ and ¢t = v"4' belong to 2"t so that u,v € 27 and
i, € {0,1}. Let v = v, [u,v] and v’ = v,[s,1]. ‘

Case 30 v < j = p(n). Then easily v = v/, so that 5° immediately follows
from 5° at level n for X, and X,. Asfor 4°, we have X; [+, = X, [ <, (because by
definition X [4; = X, [«;), and similarly X; [, = X, [ <, . Therefore, X; [ ¢,» =
X [<pr since X, [« = X, [« by 4° at level n.

Case 3b: j < v and i = ¢'. Then still v = ', thus we have 5°. Further,
Xul<w = Xy <, by 4° at level n, hence, X, [g; = X, Ig;, hence, I, =1, (see

=

above). Now, assuming that, say, i =i =1 and I, = [, = [, we conclude that

Xz ={y € Xulxw il € vy ={ve Xol<w 1€y} = Xe T .

Case 3c: j <v and i £4/, say, 1 = 0 and i’ = 1. Now ¢/ = j. Yet by definition
Xsl<j = Xu <y and Xy [<5 = X, [ <5, so it remains to apply 4° for level n. As for
5°, note that by definition { € z(5) holds for every = € X, = X, ~¢ while { € z(j)
holds for every @ € Xy = X, ~1, where | =1, =1,. O (Lemma)
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Step 4. In addition to 4° and 5°, we already have 1°, 2°, 3°, 6° at level
n+ 1. To achieve the remaining property 7°, it suffices to consider, one by one, all
elements s € 2**1, finding, at each such a substep, a non-empty X} subset of X
which is consistent with the requirements of 7°, and then reducing all other sets
X; by Lemma 11.6.1 at level n + 1. O (Construction)

O (Theorems 11.5.1, 11.3.1, 5.7.3)

11.7. A forcing notion associated with E;

ZAPLETAL [Zap04] defined a forcing notion Pgg, that consists of all 3} sets
X C (QN)N such that Ey [ X ~p E;. It follows from Theorem 11.3.1 that the
associated ideal #g g, consists of all 31 sets X C (QN)N satisfying Eq [ X <g Eo.
Thus, for a Borel set X C (2M)N to be in S, , it is necessary and sufficient that
E; [ X is hyperfinite. It follows that #gg, is a o-ideal by Corollary 7.3.2.

EXERCISE 11.7.1. Prove that a X} set X C (2M)N belongs to Pg,g, iff there
is a point 2 € X such that depz = oo, and accordingly, a Al set X C (2M)N
belongs to Fgg, iff depx is finite for all z € X, a

EXERCISE 11.7.2. Prove, using the splitting construction applied in Case 2 of
the proof of Theorem 11.3.1, that if X € Pgpg,, then there exists a closed set
Y C X, Y € Pgg,. Hint: It X is X1, then employ the splitting construction
beginning with X = X. a

The forcing Pg,g, can be compared with the inverse- N-iterated SACKS forcing
studied from different standpoints in [Kan99, Zap04|. The latter, denoted by 3,
consists of all Borel (equivalently, all closed, which gives a dense subforcing of the
“all Borel” version) sets X C (2N)N such that the set

Xolz) ={y(n):y € X Nyl<n =<0}

is uncountable for every x € X and n. Clearly, P C P, .

EXBRCISE 11.7.3. Prove that for a Al set X C (2M)N to belong to P, it is
necessary and sufficient that for every & € X and n the set X,(z) contains an
element not in Al(x[<,). O

Despite some similarities between Pgg, and the above mentioned SACKS iter-
ation, there is a crucial difference.

THEOREM 11.7.4 (ZAPLETAL [Zap04]). Pg, forces the existence of a count-
able set X C 2N of “ld” elements which cannot be covered by any “old” set Y
countable in the ground universe.

Recall that “old” means a set in the ground universe V.

PROOF (sketch). Let us fix a reasonable coding system for continuous functions
of type f: (2V)") — 2N where n € N, and let f2 be a continuous function
£ (@Nmeo) 5 9N coded by p € 2V, Tt is assumed that for every n the ternary
velation f'(z) = a (where a,p € 2¥ and z € (2M)l:20) ) is Borel.

It is clear that Pgg, forces a generic point x € (2Y)N. We are going to prove
that for every m there exists an “old” code p, € V N 2N such that x(n) =
fo (xT<n) in the extension. The second part is to show that there is no countable
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in Vset Y eV, Y C2N such that {p,:n € N} = X C Y. The proof consists of
several steps related rather to the structure of sets in Pgg, .

Step 1. If X € Pgg, is closed and a Ggs set G € X is dense in X, then
there is a set ¥ € Pgg,, ¥ C G. To get Y, assume that X is A and employ
the splitting construction of Section 11.5 beginning with Xa = X and satisfying
the extra requirement that X, € U, whenever v € 2"t1, where U, are dense
relatively open subsets of X such that G =, U,.

Step 2. If X € Pgp, is closed and P C X x 2N is a Borel set such that
D = dom P is comeager in X, then there is a set ¥ € Pg,, ¥ € D and a
continuous map f:Y — 2N such that (x, f(2)) € P for every x € Y. Indeed it is
known that there is a still comeager set G C D and a continuous map f': D’ — 2N
such that (z, f'(z)) € P for every = € G. Tt remains to apply the result of Step 1.

Step 3. If X € PPgg, is closed and n € N, then there exist a set Y € Pgp,,
Y C X, and a continuous map f:Y [, — 28 such that Y, [y] = {f(y [<n)} for
every y € Y. To prove this, apply the result of Step 2 for the set X [, in the role
of X and the set {(x[<n,z(n)):x € X} in the role of P.

We conclude that Pg g, forces the following: “for every n thereis pe V N 9N

such that x(n) = f{(x [ )"

Step 4. Finally fix a countable set {qy:k € N} C 2N (in the ground uni-
verse V) and show that Pg,g, forces the following: “there is n such that x(n) ¢
{fi (x[<n):k € N}, Suppose toward the contrary that some X € Pgy, forces
the opposite, that is, it forces Vn 3k (x(n) = fJ' (x[<n)). Consider the Borel

set Z = {we (@MN:Vn Ik (2(n) = o (% [<n))}. For every @ € Z, the Ej-class
[¢]g, N Z is at most countable, thus E; [ Z is a Borel countable equivalence relation,
hence it is hyperfinite. Thus the relation E; [ Y, where Y = X ~\ Z, is not hyper-
finite since otherwise E; [ X would be hyperfinite by Corollary 7.3.2, contrary to
the choice of X. It follows that E; [ Y ~g E; by Theorem 5.7.3.

Thus Y € P, .

By definition Y = (J,, Y5, where Y,, = {y € Y :Vk(2(n) # fi* (2 [<n))}. Thus,
still by Corollary 7.3.2, at least one of the sets Y,, belongs to Pgg,. Fix such an
index n. Then z(n) # fi' (z [<,) for all k and all 2 € Y},. It easily follows that
Y, forces x(n) # fi (x[<n) for all k. However Y,, CY C X, a contradiction with

the choice of X. O

11.8. Above E;

Our main goal here is to prove the following important theorem of KECHRIS
and LouveAu [KL97]. It shows that E; is not Borel reducible to orbit equivalence
relations of Polish group actions.

THEOREM 11.8.1. Suppose that G is a Polish group and X is a Borel G-space.
Then E, is not Borel reducible to Eé.

Our proof is based on HIORTH's proof in [Hjo0OOb, Chapter 8], but the following
lemma [KL97] provides us with an essential simplification. Recall that Cg means
the existence of a continuous embedding, that is, a continuous 1-to-1 reduction.

LEMMA 11.8.2. Suppose that Ey <y F, where F is a X1 equivalence relation
on a Polish space Y. Then E; T F.
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PrOOF (Lemma). Let, as above, = be the inverted order on N, ie, m < n
i n < m. Let P be the collection of all sets P C (ZN)N such that there is a

onto
N

continuous 1-to-1 map n: (2V) P gsatisfying

T [%n =Y r<1z, — 77(-73) r<n = 77(y) [%‘n
for all n and =,y € 2M)N, where @ |5, = {2(i) }ixn for every a € (2NN Clearly,
any such a map is a continuous embedding of k) into itself.

This set 3 can be used as a forcing notion to extend the universe by a sequence
of reals z; so that each w, is SACKS-generic over {w;};<,. This is an example of
iterated SACKS extensions with an ill-founded “skeleton”, defined in [Kan99)]. (See
[Zap04, KS05] on more recent developments on ill-iterated forcing.) Here, the
“skeleton” is N with the inverted order < . It was shown in [Kan99] that Borel
maps admit the following canonization scheme on sets in 3 : if Y is Polish, P’ € 33,
and ¥ : P’ = Y is a Borel map then there is a set P ¢ 3, P C P’ on which 9 is
continuous, and either a constant or, for some », 1 —1 on P |, that is,

(%) forall 2,y c P: 2lg =ylgn < 9() =9(y).

We apply this to a Borel map ¥ : (2")" — Y which reduces E; to F. Starting with
P = (2N find a set P € P as indicated. Since ¥ cannot be a constant on P
(indeed, every P € 3 contains many pairwise Ei-inequivalent elements), we have
# for some n. In other words, there is a 1-to-1 continuous map f: Plg, — Y
(where P, = {® |, :@ € P}) such that 9(2) = f(z [g,) forall z € P.

Now, suppose that & € (2M)M. Define ((2) = z € (2M)N so that z(i) = N x {0}
for i <mn and z(n + i) = x(i) for all 4. Finally, put ¥'(z) = f(n(¢(z)) [<n) for all
x € (2NN where n : (2M)N 2% P witnesses P € B. This map ¥ is a continuous
embedding of E; in F. O (Lemma)

PRrOOF (Theorem 11.8.1). Toward the contrary, let ¥ : (2¥)¥ — X be a Borel
reduction of E; to E. We can assume, by Lemma 11.8.2, that ¥ is continuous and
1-to-1. We are going to define a sequence of points z,, € (2¥)V, elements g,, € G,
and natural numbers ¢, satisfying

2y [gn = Tng1 [gn, that is, @, (1) = 2,41(¢) whenever i > n;

if i <mn,then ©,(0) [l = @n1(2) | G
it © < n, then 2, (4)(€,) # zpe1()(n);
19(3371) = Gn 19(10) )

(vil) dg(gny gnp1) < 277, where dg is the Polish distance on G .

)
)
(iil) lo <l <y <+
)
)
)

If this is done, then obviously @ = lim, .o @, € (2M)N exists, and a E; 2 is
not true, basically x(i) # x((i) for all ¢ by (iv), (v). Moreover g = 1im,_,o g € G
exists by (vii). In addition 9(22) = g - 9(x0) by (vi) and because both ¥ and the
group action are continuous. Therefore, 9(x) F 9(wg), a contradiction,

Thus it remains to carry out the construction. Suppose that a,, Gns ln1 are
defined. (For n = 0, x is defined by (i), and we can take gy = 1g.) First of all
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pick an open nbhd W of 1g such that dg(gn,gg,.) < 27" for all g € W. By the
continuity, there is a number ¢ > £, _; (or just ¢ > 0 in the case n = 0) such that

(:L',, [<n =Ulgn AVi<n () [ E=y() ] €)) = Y(y) € W-I(z,)

for all y € (2Y)N. Put ¢, = €. Obviously, there exists @, € (2NN satisfying (i),
(iv), (v). Then ¥(x,41) € W-9(z,,) by the choice of ¢. In other words, there exists
g € W such that 9(z,41) = g-9(x,) = ggn - V(o). Thus g, 41 = gg, satisfies (vi)
(for n+1). Finally, (vii} holds by the choice of W. |

Let us mention several notable corollaries of Theorem 11.8.1.
COROLLARY 11.8.3. If ., isa 31 ideal on N, then % <pp & iff E; <g Es.

Proor. The non-trivial direction is <= . Suppose that S <gp F fails. Then
# is polishable by Theorem 3.5.1; therefore, E s is induced by a Polish action of
the A-group of # on F(N). It remains to apply Theorem 11.8.1. O

Thus condition E; <g E# can be added to the equivalence of the five conditions
of Theorem 3.5.1.

COROLLARY 11.8.4. Suppose that ¢ is a 51 P-ideal. Then every ideal 5
satisfying J <g # is a 5} P-ideal, too. O

We are now able to give another proof of a result already obtained by different
method (see Corollary 11.2.2).

COROLLARY 11.8.5. E, €5 E1.

Proor. If E. <p Ei, then by Theorem 11.3.1 “either” E., <g Eg “or”
Eo ~p Ei1. The “either” case contradicts Theorem 7.5.1. The “or” case contra-
dicts Theorem 11.8.1 since E., is induced by a Polish action of Fp, a countable
hence Polish group. O







CHAPTER. 12

Actions of the infinite symmetric group

This chapter is connected with the next one (on turbulence). We concentrate
on a principal result in this area, due to HJORTH, that turbulent equivalence rela-
tions are not reducible to those induced by actions of S, the infinite symmetric
group. The focal point here will be equivalence relations induced by So., especially
isomorphism relations of countable structures of various types. In particular, we
shall prove the following:

I. The LoPEz-ESCOBAR theorem: every invariant Borel set of countable
models is the truth domain of a certain formula of the infinitary language

Ly

II. Every orbit equivalence relation of a Polish action of a closed subgroup of
Seo is classifiable by countable structures; that is, it is Borel reducible to
the isomorphism of a certain kind of countable structure.

III. Every equivalence relation, classifiable by countable structures, is Borel
reducible to the isomorphism of countable ordered graphs.

IV. Bvery Borel equivalence relation, classifiable by countable structures, is
Borel reducible to one of equivalence relations T¢ (see Section 4.2).

ScoTT’s analysis, involved in proof of IV, will appear only in a rather restricted
and self-contained version.

12.1. Infinite symmetric group S, and isomorphisms

Let S, be the group of all permutations (i.e., 1-to-1 maps N onte N ) of N,
with the superposition as the group operation. Clearly, Ss is a Gg subset of N,
hence, a Polish group.

EXERCISE 12.1.1. Prove that a compatible complete metric on S, can be
defined by D(z,y) = d(z,y)+d(z~1,y™1), where d is the ordinary complete metric
of N, ie., d(z,y) = 27™"!, where m is the least such that z(m) # y(m). O

Yet S, admits no compatible left-invariant complete metric [BK 96, 1.5].

For instance, isomorphism relations of various kinds of countable structures are
orbit equivalence relations induced by Se. Indeed, suppose that & = {R;}ics is
a countable relational language, i.e., 0 < cardl < Ny and each R; is an m;-ary
relational symbol. We put!

Modg = [ [ 2(N™),
i€l
1 X e is often used to denote Mod g .

147
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the space of (coded) Z-structures on N. The logic action js of S on Modg is
defined as follows: if & = {®;};er € Modg and g € S, then

y=Jw(g,2) =g 2= {yitier € Modg,
where
(kiy .oy k) € xp <= (glk), ..., 9(km,)) € Ui
for all i € I and (ky,... ky,) € N™,

EXERCISE 12.1.2. Prove that (Mod ;je) is a Polish Se.-space and jg-orbits
in Mod ¢ are exactly the isomorphism classes of .Z-structures on N. O

[

This is a reason to denote the associated equivalence relation Er,?‘;ii' as He .
If G is a subgroup of So,, then jg rvestricted to G is still an action of G
on Mode whose orbit equivalence relation will be denoted by %%, that is, for z,

yEMody : x2S yiff 3ge G (g-x=1y).

12.2. Borel invariant sets

A set M C Mody is invariant if [M]e, = M. There is a convenient char-
acterization of Borel invariant sets, in terms of .Z,,,, an infinitary extension of
% = {R;}icr by countable conjunctions and disjunctions. To be more exact, the
language %, is defined as follows:

a) every R;(vg,...,Um,~1) is an atomic formula of £, (all v; being vari-
ables over N and m; is the arity of R;), and propositional connectives
and quantifiers 3,V can be applied as usual;

b) if ¢y, ¢ € N, are formulas of £, ., whose free variables are among a finite
list vg,...,vp, then \/, ¢; and A, ¢; are formulas of 2. .

If © € Modg, @(vr,...,v,) is & formula of 2, ., and 4,...,4, € N, then the
relation of satisfiability

T ': 90(7;15 e ,in)
means that p(iy,...,i,) is satisfied on @, in the usual sense that involves transfinite
induction on the “depth” of ¢; see [Kec95, 16.C).

THEOREM 12.2.1 (LOPEZ-ESCOBAR, see, e.g., 16.8 in [Kec95]). A set M C
Modg is invariant and Borel iff M = {x € Modg :x |= ¢} for a closed formula ¢
Of gw]m .

ProOOF. To prove the non-trivial direction, let M C Modg be invariant and
Borel. Put B, = {g € Seo : 8 C g} whenever s € N<“ is injective (i.e., s; # s; for
i # 7). This is a clopen subset of S, (in the Polish topology of So, inherited from

MY, If AC S, then let s — A(§) mean that the set By N A is comeager in B,
i.e., g€ A holds for a.a. g € S, with s C g. The proof consists of two parts:

(1) M ={xeMody : A |- §g-x € M}, where g-v = jo(g,2) (see above);

(2) For every Borel set M C Modg and every n € N there is a formula
ohr(vo, ..y up—1) of Ly such that for every @ € Modg and every
injective s € N" we have © |= 5, (s0,. .., 8n1) iff s|— ¢ 1we M.




12.3. EQUIVALENCE RELATIONS CLASSIFIABLE BY COUNTABLE STRUCTURES 149

Claim (1) is clear: since M is invariant, we have g-x € M forall x € M and
g € Seo. On the other hand, if g-x € M for at least one g € So, then & € M.

To prove (2) we argue by induction on the Borel complexity of M. Suppose,
for the sake of simplicity, that % contains a single binary predicate, say, R(:,).

Then Modg = P(N°). If M = {a C N?: (k,l) ¢ a} for some k,I € N, then take
VUO e vu?” (/\'i.<j§7n (’U»,‘ 7& u?) A /\'i<n (u’i = ’U,,‘,) = 7 R(’LLA-,U[)),

where m = max{l, k,n}, as ©%(vg,...,v,_1). Further, take the formula

/\kzn,VuO R AT \/mZk, Jwy ... Jwn,_1 (/\i<_7‘<k(“i #ui) A Ny = v;)
= /\L’<j<’m(w'i ?é wj) A /\vz‘,<k~(w’i - 'U'i) A ‘Pj\,}[(wOa e awm——l)>
as "y (vo, ..., vp—1). Finally, it M = (1; M, then we take A; @5, (Vo -, V1)
as @l (Vo, -+, Un1). O (Theorem 12.2.1)

12.3. Equivalence relations classifiable by countable structures

The classifiability by countable structures means that we can associate, in a
Borel way, a countable .-structure, say, 9(z) with any point @ € X = domE so
that @ Ey iff ¥(x) and 9¥(y) are isomorphic. More exactly,

DEFINITION 12.3.1 (HjorTH [HjoOOb, 2.38]). An equivalence relation E is
classifiable by countable structures if there is a countable relational language &
such that E <g 2. O

REMARK 12.3.2. For instance, the equivalence relations T¢, in particular, Ts,
belong to this class by Proposition 12.5.1 helow. It follows that E5 and all countable
Borel equivalence relations (see Figure 1 on page 68) are classifiable by countable
structures by the results in Section G.1.

However, it will be proved in the next chapter that E, and the density-0 equiv-
alence relation Zg are not classifiable by countable structures. [

Every equivalence relation E classifiable by countable structures is 31, of
cowrse, and many of them are Borel. On the other hand, we have the following
theorem of BECKER and KECHRIS [BK96]:

THEOREM 12.3.3. Bvery orbit equivalence relation of a Polish action of a closed
subgroup of Su is classifiable by countable structures.

Thus all orbit equivalence relations of Polish actions of S., and. its closed
subgroups are Borel reducible to a very special kind of action of S..

PROOF (sketch). First show that every orbit equivalence relation of a Polish
action of Se itself is classifiable by countable structures. HJORTH’s simplified
argument [FHjoOOb, 6.19] is as follows. Let X be a Polish S..-space with basis
{Ui}ien, and let £ be the language with relations Ry, where each Ry has arity
k. If @ € X, then define ¥(z) € Mod by stipulation that 9(x) = Ri(so,. .., Sk—1)
iff 1) s; # s; whenever i < j < k, and 2) Vg € B, (9" @ € U;), where By =
{9 € Seo 8 Cyg} and 5= (sg,...,56_1) € N*. Then 9 reduces Efém to o,

To accomplish the proof of the theorem, it remains to apply the following result
(an immediate corollary of Theorem 2.3.5b in [BK96]):

ProposITION 12.3.4. If G is a closed subgroup of a Polish group H and X
is a Polish G-space, then there is o Polish H-space Y such that E% <g E%.
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Proor. HiorrH [HjoOOb, 7.18] outlines a proof as follows. Let ¥ =X x H;
define (z,h) = {«/,K') if 2’ = g-x and b/ = gh for some g € G, and consider the
quotient space Y = Y/~ with the topology induced by the Polish topology of Y via
the surjection {(z,h) > [{z, h)]~, on which H acts by h'-[(z, h)]~ = [(z, hh' )] w.
Obviously, EX <g Ej} via the map = — [(z,1)}~, hence, it remains to prove that ¥
is a Polish H-space, which is not really elementary; we refer the reader to [Hjo00Db,
7.18] or [BK96, 2.3.5b]. O (Proposition)

To bypass Proposition 12.3.4 in the proof of Theorem 12.3.3, we can use a
characterization of all closed subgroups of S,. Let £ be a language as above, and
@ € Modg . Define Aut, = {g € S : 9-@ = 2} : the group of all automorphisms of
x.

PROPOSITION 12.3.5 (see [BK96, 1.5]). G C Sy is a closed subgroup of Seo
iff there is an L-structure © € Modg of a countable language £, such thal
G = Aut, .

PRroOF. For the non-trivial direction, let G be a closed subgroup of S.,. For
any n > 1, let I, be the set of all G-orbits in N", i.e., equivalence classes of the
equivalence relation s ~ ¢ iff 3g € G (t = gos), thus, I, is an at most countable
subset of Z2(N™). Let I =J,, I, and, for any i € I,, let R; be an n-ary relational
symbol, and .% = {R;}ic1. Let x € Modw be defined as follows: if i € I, then
@ = Ri(ko, ... kno1) iff (ko,...,kn—1) € %. Then G = Aut,, actually, if @G is not
a necessarily closed subgroup, then Aut, = G. O (Proposition)

Now come back to Theorem 12.3.3. The same argument as in the beginning

of the proof shows that every orbit equivalence relation of a Polish action of G,
a closed subgroup of S, is <g %?g for an appropriate countable language 2.
Yet, by Proposition 12.3.5, G = Auty, where yy € Modgs and & " is a countable
language disjoint from .#. The map @ — (x,yo) Witnesses that =G <p g
O (Theorem 12.3.3)

12.4. Reduction to countable graphs

It could be expected that the more complicated a language . is, accordingly,
the more complicated isomorphism equivalence relation =g it produces. However
this is not the case. Let ¢4 be the language of (oriented binary) graphs, i.e., ¢
contains a single binary predicate, say R(:,).

THEOREM 12.4.1. If £ is a countable relational language, then =g <p =g.
Therefore, an equivalence relation E is classifiable by countable structures iff E <
oy In other words, a single binary relation can code structures of any countable
language.

BECKER and KEcHRIS [BK96, 6.1.4] outline a proof based on coding in terms
of lattices, unlike the following argument, yet it may in fact involve the same idea.

ProoF. Let HF(N) be the set of all hereditarily finite sets over the set N
considered as the set of atoms, and ¢ be the associated “membership”. (Thus none
of n € N has e-elements, {0, 1} is different from 2, etc.) Let ~pp(y) be the HF(N)
version of g, ie., if P,Q C HF(N)?, then P ~ygpv) (@ means that there is a
bijection b of HF(N) such that Q = b-P = {{b(s),b(t)) : (s,t) € P}. Obviously,
(Z2g) ~p (~ur@)), thus, we have to prove that =« < ~gp(n) for every Z.
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An action of So, on HF(N) is defined as follows. If g € Sy, then gon = g(n)
for every n € N, and, by e-induction, go{ay,...,a,} = {goa1,...,90a,} for all
ay, ..., a, € HE(N). Clearly, the map a + goa (a € HF(N)) is an e-isomorphism
of HF(N) for any fixed g € Ss.

LEMMA 12.4.2. Suppose that X, Y C HF(N) are e-transitive subsets of HF(N),
the sets N~ X and NX\Y are infinite, and €| X ~ygpy €Y. Then there is
f €8x suchthat Y = foX ={fos:s€ X}.

PRrOOF. It follows from the assumption & [ X Zgpyy € [ Y that there is an e-

isomorphism 7 : X ey, Easily, 7 [ (X N N) is a bijection of Xg = X NN onto
o = Y N N; hence, there is f € S, such that f | Xg = 7 [ Xy, and then we have
fos=m(s) for every s € X. : O (Lemma)

Coming back to the proof of Theorem 12.4.1, we first show that g, <p
~ypr(y for every m > 3, where & (m) is the language with a single m-ary predicate.
Note that (i1,...,%n) € HF(N) whenever iy,...,%,, € N.

Put ©(z) = {J(s) :s € x} for every element x € Modg(,,) = FP(N™), where
P(s) = TC.({(241,...,2i,)}) for each s = {(i1,..., 1) € N, and finally, for
X € HF(N), TC.(X) is the least e-transitive set 7 C HF(N) with X C 7. It
easily follows from Lemma 12.4.2 that & =g, y iff €[O(z) ~upmw) €[ O(y).
This ends the proof of 2,y <g ~prm)-

It remains to show that = <p ~yp@), where £ " is the language with
infinitely many binary predicates. In this case Mod g = @(NQ)N, so that we can
assume that every @ € Mod g has the form z = {2, },>1, with z, C (N~ {0})?
for all n. Let ©(x) = {sn(k, 1) :n > 1A (k1) € z,} for every such =, where

sp(k, D) = TC({{... {{k,1)}...},0}), with n+ 2 pairs of brackets {,}.
Then © is a continuous reduction of = ¢/ to ~pp(y). O (Theorem)

12.5. Reduction of Borel classifiability to T,

Equivalence relations Tg introduced in Section 4.2 offer a perfect calibration
tool for those Borel equivalence relations which admit classification by countable
structures. First of all

ProrosITION 12.5.1. Buery equivalence relation T¢ is classifiable by countable
structures.

The relations T, are known in different versions, which reflect the same idea
of coding sets of a-th cumulative level over N, as, e.g., in [HKL98, §1], where
results similar to Proposition 12.5.1 are obtained in much more precise form.

PROOF. Ty, the equality on N, is the orbit equivalence relation of the action
of Seo by g @ = @ for all g, z. The operation (02) of Section 4.2 (countable disjoint
union) easily preserves the property of being Borel reducible to an orbit equivalence
relation of a continuous action of S,.

Now consider operation (05) of countable power. Suppose that an equivalence
relation E on a Polish space X is Borel reducible to F, the orbit relation of a
continuous action of Sy, on some Polish Y. Let D be the set of all points =
{zx}ren € XN such that either x), Fz; whenever k # I, or there is m such that
@y Exp iff m divides |k — [}. Then ET <, (E+ I D) (via a Borel map 9 : x¥ D
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such that  E¥ 9(2) for all ). On the other hand, obviously (E* | D) <g F/,
where, for y,y/ € YV, y F'y/ means that there is f € S, such that y; F y}'(k)
for all k. Finally, F’ is the orbit equivalence relation of a continuous action of
Soo X SsoY, which can be realized as a closed subgroup of Ss, so it remains to
apply Theorem 12.3.3. g

The next theorem shows that the relations T, are cofinal in the <g-structure
of Borel equivalence relations induced by Polish actions of S.,. The theorem does
not extend to arbitrary (that is, 31) orbit equivalence relations of Polish actions of
Seo since every equivalence relation on a Borel domain Borel reducible to a Borel
equivalence relation is Borel itself. However Lemma 13.3.3 below will show that
a wider class of reduction maps leads to a certain reducibility of arbitrary Polish
actions of S to T¢.

THEOREM 12.5.2. If E is a Borel equivalence relation classifiable by countable
structures, then E <g T¢ for some £ <wy.

Proo¥r. The proof (a version of the proof can be found in [Fri00]) is based
on Scott’s analysis. Define, by induction on a < wy, a family of Borel equivalence
relations = on N<“ x Z(N?) .

o A =% B means (s,A) = (t, B);

thus, all relations of the form =2, (s,¢t € N<*) are binary relations on Z(N?),
and among them all relations of the form =¢, are equivalence relations. We define
them by transfinite induction on a.

o A=Y B iff A(si,s;) <= B(t;,t;) for all 4,j < lhs = 1ht;

o A= B iff VEII(A =0 g~ B)and VIdk (A= B);

o if A\ < wy is limit, then A=, B iff A =% B forall o < \.

Easily, =f C = whenever a < 3.

Recall that, for A, B C N* A =y, B means that there is f € S with
A(k,l) <= B(f(k), f(1)) for all k,I. Then we have =y C [, =aa by induction
on « (in fact = rather than C; see below), where A is the empty sequence. Call
aset P C P(N?) x P(N?) unbounded if PN=¢, # @ for all a < w;.

LEMMA 12.5.3. Bvery unbounded X} set P contains a pair (A, B) € P such
that A =24 B.

It follows that A 22¢ B iff A =3, B forall « <w;. (For take P = {(4,B)}.)

PROOF. Since P is 31, there is a continuous map F : NN 2% P, For u € N<¢,
let P, = {F(a):u C a € NV}, There is a number 79 such that Py s still
unbounded. Let ko = 0. By asimple cofinality argument, there is ly such that P,
is still unbounded over (ko), (lo) in the sense that there is no ordinal a < wy such
that Py N E?}m) oy = 9 Following this idea, we can define infinite sequences of
numbers ny,, km, {y, such that both {ky, }men and {Ly }men are permutations of N
and, for each m, theset P,,...,n,,) is still unbounded over (ko, ..., kn), (lo, ..., lm)
in the same sense. Note that a = {n;,}men € N and F(a) = (4, B) € P. (Both
A, B are subsets of N°.)
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Prove that the map f(k,,) = l,, witnesses A =g B, ie., A(k;, k;) iff B(l;,1;)
for all 7, 4. Take m > max{j, i} big enough for the following. If (A", B') € Py, . 4.y,
then A(kj, k;) iff A'(kj, k), and similarly B(l;,{;) it B'(l;,1;). By the construc-
tion, there is a pair (A’, B') € Py, ;v with A’ E?}"())u-J"m)(l()su-ylm> B’, in partic-
ular, A'(k;, k;) iff B'(1;,1;), as required. O (Lemma)

COROLLARY 12.5.4 (see, e.g., FRIEDMAN [Fri00]). If E is a Borel equivalence
relation and E <p Sy, then E <z =%, for some o <w;.

ProOOF. Let 9 be a Borel reduction of E to Zg. Then {(¥(x),d(y)): 2z Fy} is
a %1 subset of Z(N*) x 2(N?) which does not intersect ¢, hence, it is bounded
by Lemma 12.5.3. Take an ordinal « < w; which witnesses the boundedness. O

Now, if E is a Borel equivalence relation classifiable by countable structures,
then E <g =g by Theorem 12.4.1. Hence, it remains to establish the following:

PROPOSITION 12.5.5. Euvery equivalence relation = is Borel reducible to an
equivalence relation of the form Tg.

PRrROOF. We have =Y <y Ty since =" has countably many equivalence classes,

all of which are clopen sets. To carry out the step o+ a + 1, note that the map
(s, A) — {(s"k, A) }ren is a Borel reduction of =*! to (=*)®°. To carry out the
limit step, let A = {a,, :n € N} be a limit ordinal, and R =/, .y =", ie., Ris
an equivalence relation on N x N<“ x 92(N?) defined so that (m,s, 4) R (n,t, B)
if m =n and A =" B. However, the map (s, A) — {{(m, s, A)}nen is a Borel
reduction of =* to R, O (Proposition )

O (Theorem 12.5.2)







CHAPTER 13

Turbulent group actions

This family of Polish actions is characterized by a condition of “somewhere-
density” of orbits, and even of local orbits. It contains such principal equivalence
relations as E; and cg. The main results of this chapter show that equivalence
relations in this family are not classifiable by countable structures, and in fact do
not belong to a family of Borel equivalence relations much bigger than the countably
classifiable family. The following will be established. (We continue the list from
the beginning of Chapter 12.)

V. Every generically (gen.) turbulent equivalence relation, Baire measurable
reducible to a Polish action of S, is Borel reducible to one of the equiva-
lence relations of the form T¢ on a comeager set. (Lemma 13.3.3; compare
with Theorem 12.5.2 above.)

VL. Every gen. turbulent equivalence relation E is gen. T¢-ergodic for each
ordinal { < w,. (Lemma 13.3.4.) Therefore, E is not Borel reducible to
Te.

VII. Gen. turbulent equivalence relations are not classifiable by countable struc-

tures. (Theorem 13.1.2, a corollary of VI and V.)

VII. A generalization of VII: gen. turbulent equivalence relations are not Borel
reducible to equivalence relations that can be obtained from the equal-
ity Ay with the help of the operations defined in Section 4.2. (Theo-
rem 13.5.3.)

13.1. Local orbits and turbulence
Suppose that a group G acts on a space X. If G C G and X C X, then let
RE ={{z,y) € X*:3geG(x=g-y)}
and let ~% denote the equivalence-hull of R)G" , that is, the C-least equivalence

relation on X such that 2 R} y = & ~& y. In particular ~& = EX, but generally
we have ~& ; EZ | X. Finally, define, for z € X, the local orbit

O(x,X,G)=[o].x ={ye X: z~y Yy}
of x. In particular, [z]g = [z]gz = O(2,X, G) is the full G-orbit of a point = € X.

DEFINITION 13.1.1 (This particular version is taken from KECHRIS [Kec02)).
Suppose that X is a Polish space and G is a Polish group acting on X continuously.

(t1) A point z € X is turbulent if for every non-empty open set X C X
containing « and every nbhd G C G (not necessarily a subgroup) of 1g,
the local orbit &(wx, X,G) is somewhere dense (that is, not a nowhere
dense set) in X,
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(t2) An orbit [z]g is turbulent if @ is such. (Then all y € [2]g are turbulent
since this notion is invariant w.r.t. homeomorphisms.)

(t3) The action (of G on X) is generically,! or gen., turbulent and X is a
gen. turbulent Polish G-space if the union of all dense (topologically),
turbulent, and meager orbits [z]g is comeager. O

Thus, turbulence means that orbits, and even local orbits, of the action con-
sidered behave rather chaotically in some exact sense. According to the following
theorem of HJORTH [HjoOOb], this property is incompatible with the classifiability
by countable structures.

THEOREM 13.1.2. Suppose that G is a Polish group and X is a gen. turbulent
Polish G-space. Then EL is not Baire measurable reducible? to a Polish action of
Soos hence, it is not classifiable by countable structures.

The proof given below is based on general ideas in [Hjo0Ob, Kec02, Fri00].
Yet it is designed so that only quite common tools of descriptive set theory are
involved. It will also be shown (Theorem 13.5.3) that “turbulent” equivalence
relations are not reducible actually to a much bigger family of relations than orbit
equivalence relations of Polish actions of S, .

It is worth noting that turbulent equivalence relations and those classifiable
by countable structures are not only disjoint, but also in some sense complemen-
tary families. This is asserted by the fifth dichotomy theorem of HJORTH. This
complicated result (see, e.g., [HK97]) will not be considered in this book.

13.2. Shift actions of summable ideals are turbulent

Quite a lot of examples of turbulent actions are known (see, e.g., [HjoOOb]).
The following example will be used in the proof of some irreducibility resnlts at the
end of this chapter. Recall that every summable ideal

Sy = {2 CN: ZT“’ < Foo}

nea

(where 7, > 0 for all n) generates the ecuivalence relation E¢ry = B, On
Z(N), defined so that « Eg, yy iff 2 Ay e S, 5.

ProrosiTioN 13.2.1. If 7, >0, {rp} — 0, and )" r, = +co, then the A-
action of Sy on P(N) is Polish and gen. turbulent.

The condition {r,} — 0 here implies that ¥, } contains some infinite sets.
The condition )7 r, = +0co means that 7%, j does not contain co-infinite sets.

PrOOF. That (., };4) is a Polish group with the distance dy,,y(a,b) =
@iy (a A b), where pr,. 3 (2) = 3, . 70, and its A-action on Z(N) is Polish as
well; see Lemma 3.6.1 and Example 4.4.1. To prove the turbulence, consider any x €
Z(N). That [2] Sy = ey O @ s dense and meager is an easy exercise. Thus,

In this research direction, “generically”, or, in our abbreviation “gen.”, (property) intends
to mean that (property) holds on a comeager domain.
Reducible via a Baire measurable function. This is weaker than the Borel reducibility.
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it suflices to check that x is turbulent. Consider an open nbhd X = {y P (N):
y N [0,k) = u} of 2, where k € N and v = 2N [0,k), and a d(r,y-nbhd G =
{9 € Sy i, (9) <€} of @ (the neutral element), where & > 0. Prove that the
local orbit &(x, X, G) is somewhere dense in X .

Let I > £ be large enough for 7, < ¢ to hold for all n > [. Prove that the orbit
Oz, X,G) isdensein YV = {y € Z(N):yn[0,1) = v}, where v = 2N[0,1). Consider
anopenset Z = {z¢€ Y :zN[l,j)=w}, where j > 1, w C[l,5). Let z be the only
point of Z satisfying 2N [j, +00) = aN[j, +00). Thus, # Az = {l1,...,lm} C [1,7).
Note that every element of the form ¢; = {I;} belongs to G’ by the choice of ! since
li > l. Moreover, v; =g; Ngi 1 A+ Ngy Nx={ly,...,1;} Az belongs to X for
each ¢ = 1,...,m. On the other hand w,, = z. It follows that z € &(x, X, G), as
required. O

A suitable modification of this argument can be used to prove the turbulence
of the A-action of some other ideals, including the density ideal 2, but as far as

some irreducibility results are concerned, the turbulence of summable ideals will
suflice!

13.3. Ergodicity

The non-reducibility in Theorem 13.1.2 will be established in a special stronger
form. Let E, F be equivalence relations on Polish spaces X, Y, respectively. A map
P:X >V is

o (E— F)-invariant if xEy == 9(z) FdI(y) for all 2,y € X;

e gen. (E — F)-invariant if the implication  Ey == 9¥(x) F 9(y) holds for
all ¢,y in a comeager subset of X;3

o gen. reduction of E to F if the equivalence z Ey <= 9(x) F J(y) holds
for all «,y in a comeager subset of X;

o gen. F-constant if ¥(x)F J(y) for all 2,y in a comeager subset of X.

Finally, following HJORTH and ICECHRIS, say that € is gen. F-ergodic if every Borel
gen. (E — F)-invariant map is gen. F-constant.
The ergodicity preserves <g in the sense of the next lemma.

LEmMA 13.3.1. If E,F,F' are Borel equivalence relations, E is gen. F-ergodic,
and F' <g F, then E is gen. F'-ergodic as well.

PROOF. Let ¥ be a Borel reduction of F’ to F. Given a Borel gen. (E — F/)-
invariant map f, the map f'(z) = 9(f(x)) is obviously gen. (E — F)-invariant,
hence it is a gen. F-constant — then it is easily a gen. F/-constant, too. (I

The following lemma shows that ergodicity implies irreducibility.

LEMMA 13.3.2. If an equivalence relation E is gen. F-ergodic and does not have
comeager equivalence classes, then E does not admit a Borel gen. reduction to F.
In addition, E does not admit a Baire measurable reduction to F.

PROOF. Suppose toward the contrary that a Borel map ¥ : X — Y (where X,
Y are the domains of E, F, respectively) is a gen. reduction of E to F, that is,
is a true reduction on a comeager set C' C X. Then ¥ is a gen. F-constant by the

3 Recall that “gen.” means “generic” or “generically”.
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ergodicity, that is, there exists a comeager set C' C X such that 9(z) F 9(2’) for
all , 2’ € C'. Theset D = CNC' is comeager as well, hence there exist z, 2’ € D
such that = Fa’. Then ¥(z) F 9(a’) holds since ¥ is a reduction on C. On the
other hand, we know that 9(z) F 9(z'), a contradiction.

The additional result follows because it is known that every Baire measurable
map is continuous on a comeager set. a

The proof of Theorem 13.1.2 consists of the next two lemmas.*

LEMMA 13.3.3. If G is a Polish group, X is a gen. turbulent Polish G-space,
and EY is Baire measurable reducible to a Polish action of Se, then EF admits
a Borel gen. reduction to an equivalence relation of the form Tg.

Saying it differently, every equivalence relation, Baire measurable reducible to
a Polish action of S, is Borel reducible to one of T, on a comeager set. Note
that every equivalence relation, Borel reducible (in proper sense) to one of Tg, is
Borel itself. Yet this cannot be applied to E?é in the lemma, since only a generic
(on a comeager set) reduction is claimed.

LEMMA 13.3.4. Buvery equivalence relation induced by a gen. turbulent Polish
action of a Polish group is gen. T¢-ergodic for all €.

PROOF OF THEOREM 13.1.2 FROM LEMMAS 13.3.3 AND 13.3.4. If EZ is Baire
measurable reducible to a Polish action of Se., then EX also is Borel gen. reducible
to one of T; by Lemma 13.3.3. On the other hand, EX is gen. T¢-ergodic by
Lemma 13.3.4. Thus, Eé has a comeager equivalence class by Lemma 13.3.2. But
this contradicts the assumption of gen. turbulence.

O (Theorem 13.1.2 from Lemmas 13.3.3 and 13.3.4)

The proof of the lemmas follows below in this chapter.

13.4. “Generic” reduction to T;

In this Section we prove Lemma 13.3.3.

Suppose that G is a Polish group and X is a gen. turbulent Polish G-space.
In particular, the set Wy of all points 2 € X that belong to dense turbulent orbits
[2]g is comeager in X. Tt follows that there exists a dense G set W C Wy.

Assume further that the orbit equivalence relation E = Eé is Baire measurable
reducible to a Polish action of S.,. As the latter is Borel reducible to the isomor-
phism 2y of binary relations on N according to Theorems 12.3.3 and 12.4.1, E
itself admits a Baire measurable reduction p: X — 2(N?) to =g . The remainder
of the argument borrows elements of notation from the proof of Theorem 12.5.2.

There is a dense G set Dg C X such that the restricted map 9 = p [ Dy is
continuous on Dg. By definition, we have

zEBy=d(z) 2 I(y) and z Fy=— 9(z) Py I(y)

for all z,y € Dy. We are mostly interested in the second implication, and the aim
is to find a dense G set D C Dg such that, for some a < wy:

4 There are slightly different ways to the same goal. HiorTH {HjoOOb, 3.18] proves outright
and with different technicque, that gen. turbulent equivalence relations are gen. ergodic w.r.t. any
Polish action of So. IKECHRIS [KecOZ] proves that 1) gen. Ta-ergodic equivalence relations are
gen. ergodic w.r.t. any Polish action of So, and 2) turbulent ones are gen. Tz-ergodic.
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13.4.1. The implication x Fy = 9(z) £5, Hy) holds for all z,y € D

Recall that A=y B iff Vo <w; A =, B. (See the remark after Lemima 12.5.3.)
It follows that « Ey — ¥(x) =, 9(y) holds for all 2,y € Dy. Thus 13.4.1 im-
plies that E [ D is Borel reducible to =%, . Now, to accomplish the proof of
Lemma 13.3.3, apply Proposition 12.5.5.

To find an ordinal o and a dense G5 set D satisfying 13.4.1, we make use of
Colen forcing. See Appendix A.1, A.2, A.4 on relevant definitions and results.

DEeFINITION 13.4.2. Under the w.Lo.g. assumption that the Polish spase X
and the Polish group G belong to the set H.+ (see Definition A.1.2), there exists
a countable transitive model MM of ZFC™ containing codes (in the sense of Appen-
dix A.2) of X, G, the action (as a continuous map G x X — X), of the G5 sets
Dy and W and of the continuous restricted map ¥ = p | Dg.

Such a model M is fixed below in this section. O

The notion of a point of X or an element of G Cohen-generic over 9 makes
sense (see Appendix A.4). In addition, by Corollary A.4.4, the set D of all Cohen-
generic, over M, points of X is a dense Gy subset of X satisfying D C Dy. We
are going to prove that D satisfies 13.4.1-for an appropriate ordinal o < wy .

Suppose that ¢,y € D, and (z,y) is a Cohen-generic pair over M. If = Eé y is
false, then 9(z) 2« Y¥(y). Moreover, this fact holds in the extended model M|z, y]
by the Mostowski absoluteness. This allows us to find, arguing in M|z, y] (which is
still amodel of ZFC™ ), an ordinal @ € 0rd™ = 0rd™®¥l such that 9(x) 5, I(y).
Moreover, since the Cohen forcing satisfies cce, there is an ordinal « € 9 such
that J(z) £%, ¥(y) holds for every Cohen-generic, over M, pair (z,y) € D? such
that o EZ y is false. It remains to show that this also holds provided =,y € D (are
generic separately, but) do not necessarily form a pair Cohen-generic over 91,

Now we prove

LEMMA 13.4.3. If D is a countable transitive model of ZFC™ with M C N, a
point @ € XN is Cohen-generic over M, and an element g € G 1s Cohen-generic
over N, then @' = g-x is Cohen-generic over N.

Proor. It follows from the genericity that « belongs to the set W introduced
in the beginning of Section 13.4. Thus the G-orbit {g’-x:g’ € G} is turbulent, in
particular it is dense in X,

Now consider any dense open set X C X coded in 91. The set H = {¢' € G:
¢z € X} is also open and coded in 91. Moreover, H is dense in G. (Indeed
otherwise there is an open non-empty set G C G such that the partial orbit G-z =
{g-@:g € G} is nowhere dense. This leads to a contradiction with the turbulence
of z.) We conclude that g € H, and further g-x € X, as required. |

To make use of the lemma, let 91 be a countable transitive model of ZFC™
containing a given pair of points 2,y € D and all sets in 9. Note that 91 may
contain more ordinals than 91 does since the pair (z,y) is not assumed to be
generic over 9.

Fix an element g € G Cohen-generic over 1. Then z’ = g2 is Cohen-generic
over N by the lemma, hence over M(y]. Yet y is generic over IM, thus the pair
(z',y) is Cohen-generic over 9 by the product forcing theorem (Theorem A.3.2).
This implies ¥(2') £%, 9(y) by the choice of . On the other hand, we have 2 EX
and hence ¥(z) =%, 9(2’). Thus we finally obtain J(z") Z54 U(y), as required.

O (Lemma 13.3.3)
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13.5. Ergodicity of turbulent actions w.r.t. T

The proof of Lemma 13.3.4 involves a somewhat stronger property than gen.
ergodicity in Section 13.3.

DEFINITION 13.5.1. Suppose that F is an equivalence relation on a Polish
space X. An action of G on X and the induced equivalence relation E& are locally
generically (loc. gen., for brevity) F-ergodic if the equivalence relation NE;Y is gen.
F-ergodic whenever X C X is a non-empty open set, G C G is a non-empty open
set containing 1g, and the local orbit @(x, X, @) is dense in X for comeager (in

X)many z € X. O

This obviously implies gen. F-ergodicity of E?é provided the action is gen.
turbulent. Therefore, Lemma 13.3.4 is a corollary of the following Theorem 13.5.3.

DEFINITION 13.5.2. We let %y denote the least family of equivalence relations
that contain Ay (the equality on N) and are closed under operations (01)—(05) of
Section 4.2. O

THEOREM 13.5.3. Let X be a gen. turbulent Polish G-space. If an equivalence
relation F belongs to Py, then Eé is loc. gen. F-ergodic, and hence E?é s not
Borel reducible to F.

Due to the operation of the Fubini product, the family .%, contains a lot of
equivalence relations very different from Tg, among them some Borel equivalence
relations not classifiable by countable structures, e.g., all equivalence relations of
the form E_», where .# is one of FRECHET ideals, indecomposable ideals, or WEISS
ideals of Section 3.8. (In fact it is not so easy to show that ideals of the two last
families produce relations in .%y.) In particular, it follows that no gen. turbulent
equivalence relation is Borel reducible to a FRECHET, or indecomposable, or WEISS
ideal.

PROOF (Theorem 13.5.3). We begin with two rather elementary technical re-
sults of a topological nature.

LEMMA 13.5.4. Suppose that G is a Polish group and X is a gen. turbulent
Polish G-space. Let @ £ X C X be an open set, G C G be a nbhd of 1g, and
O(x, X,Q) be dense in X for X-comeager many v € X. Let U U C X be non-
emply open and D C X be comeager in X. Then there ewist points © € DNU
and 2’ € DNU’ with x ~& a'.

Proor. Under owr assumptions there exist points zg € U and x} € U’ with
xg ~3 af, that is, there exist elements gi,...,9, € G UG ! such that zf =
Jngn—1 ** g1 T and in addition g - g1 -z € X for all k < n. Since the action
is continuous, there is a nbhd Uy € U of zy such that gy -+ g;-x € X for all
k and gngn_1---g1-x € U for all 2 € Up. Since D is comeager, easily there is
z € UgN D such that &' = g, g1 - g1z €U ND. O (Lemma)

LEMMA 13.5.5. Suppose that G is a Polish group, and X is a gen. turbulent
Polish G-space. Then for every open non-empty U C X and G C G with 1g € G,
there is an open non-empty U’ C U such that the local orbit O(x,U’,G) is dense
in U’ for U'-comeager many x € U'.

PROOF. Let INT X be the interior of the closure of X. If € U and (2, U, G)
is somewhere dense (in U ), then the set U, = UNINT &(2,U,G) C U is open and
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~g-invariant (an observation made, e.g., in [Kec02, proof of 8.4]). Moreover,
O(x,U,G) € Uy, hence, O(x,U,G) = O(x,U,, Q). Tt follows from the invariance
that the sets U, are pairwise disjoint, and it follows from the turbulence that the
union of them is dense in U. Take any non-empty U, as U’. O (Lemma)

The proof of Theorem 13.5.3 goes on by induction on the number of applications
of the basic operations, in several following sections until the end of Section 13.8.

Right now, we begin with the initial step: prove that, under the assumptions
of the theorem, EF is loc.gen. Ay-ergodic. Suppose that X € X and G C G
are non-empty open sets, 1g € G, and & (z, X,G) is dense in X for X-comeager
many 2 € X, and prove that ~¢ is generically Ay-ergodic.

Consider a Borel gen. (Né — Ap)-invariant map 9 : X — N, Suppose toward
the contrary that v is not gen. Apy-constant. Then there exist two open non-
empty sets Uy, Us; € X, two numbers {; # {3, and a comeager set D C X such
that J(z) = { for all @ € DNUL, I(x) =l forall x € DN Uy, and 9 | D is
“strictly” (~@& — Ay)-invariant. Lemma 13.5.4 yields a pair of points z, € U; N D
and vy € Uy N D with a4 Néf @9, a contradiction.

13.6. Inductive step of countable power

To caxry out this step in the proof of Theorem 13.5.3, suppose that

13.6.1. X is a gen. turbulent Polish G-space, F is a Borel equivalence relation
on a Polish space Y, and the action of G on X is loc. gen. F-ergodic.

Prove that the action is loc. gen, F_F—ergodic. Fix a non-empty open set Xy C X
and a nbhd Gy of 1g in G, such that &(x, Xy, Gy) is dense in X for all @ in a
comeager Gs-set Dy € Xy. Consider a Borel function 9 : X, — YN, continuous

X
f\/1 o

and ( o = F+)~i11va‘1‘ia‘nt on Dy, so that
T NE\"E o' = V3L (U(a) F(')) for all a,2’ € Dy,

where Uy (2) = 9(z)(k), Uy : Xg — Y. Prove that ¥ is gen. F_constant.

Let us fix a countable transitive model 9 of ZFC™ as in Definition 13.4.2;
that is, 91 contains all relevant objects, or their codes (in the sense of Appendix
A.2), in particular, codes of the spaces X,G,Y, of the set Dy, and of the Borel
map . Then every point @ € Xy Cohen-generic over 91 belongs to Dy. It follows
that 9 is (Né(‘)’ — F+)—inva.1'iant on Cohen-generic points of Xg, and local orbits
O(x, Xy, Gy) of Cohen-generic points 2z € X, are dense in Xj.

Coming back to the step of countable power, fix & € N. Consider any open
non-empty set Uy € Xj.

LEMMA 13.6.2. There exist a number 1 and open non-empty sets U C Uy and
H C Gy such that both g-x € Xo and Ip(x) F9;(g-x) hold for all pairs {g,x) in
H x U Cohen-generic over 9.

Proor. Consider any point xq € Uy Cohen-generic over 9. Note that 1g-zg=
o € Xg, hence there exist a nbhd Uy C Uy of zy and a nbhd Gy C Gy of 1g such
that G1-Uy C Uy, ie, g-w € Xy forall ge Gy and z € Uy,

Suppose that a pair (g, ) € Gy x Uy is Cohen-generic over 91, Then g-2 € U,.
In addition, @ is Cohen-generic over M while ¢ is Cohen-generic over 9M[z] by
the forcing product theorem (Theorem A.3.2}. It follows that g-a is Cohen-generic
over M|z}, and hence over M, by Lemma 13.4.3.
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Furthermore, we have z Nég g-z. By the invariance of ¥ on generic points, this

implies 9(z) FT9(g-z). Tt follows that there is an index I such that 9y (z) F(g-).
Thus there exist Cohen conditions, i.e., non-empty open sets U C U; and H C G;
such that @ € U, g € H, and every pair {¢’,2') € H x U Cohen-generic over I
satisfies g’ 2’ € Xo and Y5 (z') F (g - ). O (Lemma)

Fix I,U, H as provided by the lemma. Since H is open, thereis hg € HNIM
and a symmetric nbhd G C G; of 1g such that go G C H.

LEMMA 13.6.3 (The key point of the turbulence). If x,2' € U are Cohen-
generic over M and x ~Y o', then we have 9y () F Iy (a’).

PROOF. We argue by induction on n(z,2’) = the least number n such that
there exist g1,...,g, € G (recall: G = G™') satisfying

(1) 2 = GnGn-1--gi-e, and gg---gi-x €U forall k<n.

Suppose that n(z,2') = 1, thus, z = g-a' for some g € G. Let M be any countable
transitive model of ZFC™ containing z, 2, g, and all sets in 9. Consider any
element h € H Cohen-generic over 9 and close enough to hg for A’ = hg™! to
belong to H. (Note that hog~' € H by the choice of G.) Then h is generic
over 9M|z], too, and hence (h,z) € Hx U is Cohen-generic over 9 by the product
forcing theorem. It follows, by the choice of H, that h-a € X and Ui (x)Fd;(h-2).

Moreover, h' = hg~' also is Cg-generic over N (because g € M), so that
9 (2") FO,(h - 2') by the same argument. Finally, ¢' -2’ = gh™ - (h-2) = g2,
and hence U (2’) F 95 (2), as required.

As for the inductive step, prove that (1) holds for some n > 2 assuming that it
holds for n— 1. Consider an element g} € G close enough to g1 for g5 = g2 g1 gi‘l
to belong to G and for z* = g} -z to belong to U, and Cohen-generic over a fixed
transitive countable model 9 of ZFC™ containing x,z’, g1, g2. Then, as above,
g5 is Cohen-generic over 91 while z* is Cohen-generic over 9, and obviously
n(z*,2') < n—1 because g5 -z* = ga-g1 . It remains to use the induction hy-
pothesis. O (Lemma)

To summarize, we have shown that for every k and every open @ # Uy C Xy
there exist an open non-empty set U C Uy and an open G C Gy with 1g € G,
such that the map ¥ is (~% — F)-invariant on U. We can also assume that the
orbit &(z,U,G) is dense in U for U-comeager many x € U by Lemma 13.5.5.
Then, by the loc. gen. F-ergodicity of the action considered, ¥ is gen. F-constant
on U. That is, there exist a comeager G set D C U and a point y € Y such that
Ju(z) Fy for all o € D.

We conclude that there exist an Xy-comeager set D C X and a countable set
Y = {y;:j € N} CY such that, for every k and for every x € D there is j with
Ip(z) Fyj. Put n(z) = Upen{d : 9x(2) Fy;}. Then, for every pair ,2' € D, we
have 9(x) FT 9(2') iff n(z) = n(z'), so that, by the invariance of 9,

(2) w g ol = plz) =) for all a,2' € D.

It remains to show that 7 is a constant on a comeager subset of D.

Suppose, on the contrary, that there exist two non-empty open sets Uy, Uz C
Up, a number j € N, and a comeager set D' C D such that j € n(z,) and
J & n(zy) for all 2y € D'NU; and @z € D' NUz;. Now Lemma 13.5.4 yields a
contradiction to (2) above as in the end of Section 13.6.

O (Inductive step of countable power in Theorem 13.5.3)
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13.7. Inductive step of the Fubini product
To carry out this step in the proof of Theorem 13.5.3, suppose that

13.7.1. X is a gen. turbulent Polish G-space, and for every k, Fj is a Borel
equivalence relation on a Polish space Y}, the action of G on X is loc,
gen. Fr-ergodic, and F = [], Fy /Fin is, accordingly, a Borel equiva-
lence relation on Y =[], Y.

Prove that the action is loc. gen. F-ergodic.
Fix a non-empty open set Xg C X, a nbhd Gy of 1z in G, and a comeager
G;s set Dy C Xg such that all local orbits Oz, Xy, Gy) with o € Dy are dense in

Xo. Consider a Borel function 9 : Xy — Y, (Né'g — F)-invariant on Dy, i.e.,
’Lwég y = JkoVk>ko (Up(a) Fp 9i(y)) for all =,y € Dy,

where ¥y (2) = 9(z)(k), and prove that ¥ is gen. F-constant.

Choose a countable transitive model 9t of ZFC™ as in Section 13.6.

Consider an open non-empty set Uy € Xj. Similar to Lemma 13.6.2, there
exist non-empty open sets U C Uy and H C G, and a number kg, such that
both g = € Xy and i (z) Fi 9x(g - @) hold for all indices k > ko and for all pairs
{(g,2z) € H x U Cohen-generic over 1.

As H is open, there exist an element hy € H N M and a symmetric
nbhd G C Gy of 1g such that hg G C H.

LEMMA 13.7.2. If k > ko, points z,y € U are Cohen-generic over MM, and
a~Zy, then 9 () Fr 9x(y). (Similar to Lemma 13.6.3.) O

Thus, for every open non-empty set Uy C X there exist a number kg, an open
non-empty U € Up, and a nbhd G C Gy of 1g, such that 95 (2) is gen. (~F — Fy)-
invariant on U for every k > kg. We can assume that U-comeager many orbits
O(x,U, ) are dense in U, by Lemma 13.5.5. Now, by Fy-ergodicity, every 95, with
k > ko is gen. Fp-constant on such a set U. Hence, ¥ itself is gen. F-constant on U
because F =[], Fr /Fin. It remains to show that these constants are F-equivalent
to each other.

Suppose, on the contrary, that there exist two non-empty open sets Uy, Uy, C U,
and a pair of y; Fyo in Y such that 9(z1) Fy; and 9(xq) Fys for comeager many
21 € Uy and a9 € Us. A contradiction follows as in the end of Section 13.6.

D (Inductive step of Fubini product in Theorem 13.5.3)

13.8. Other inductive steps

Here we accomplish the proof of Theorem 13.5.3, by carrying out induction
steps, related to operations (0l1), (02), (03) of Section 4.2.

Countable union. Suppose that Fy, Fo, F3, ... are Borel equivalence relations
on a Polish space Y, F = J, Fj is still an equivalence relation, and the Polish and
gen. turbulent action of G on X is loc. gen. Fp-ergodic for every k. Prove that the
action remains loc. gen. F-ergodic.

Fix a non-empty open set Xy C X, a comeager G set Dy C Xy, and a nbhd
Gp of 1g in G such that all local orbits @(x, Xg, Gg) with @ € Dy are dense in
Xg. Consider a Borel function 9 : Xy — Y, (NE\;’;’ — F)-invariant on Dy. It follows
from the invariance that for every open non-empty U C Uy there exist a number
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k and open non-empty sets U C Uy and H C Gy such that both g2 € Xj
and 9(z) Fr 9(g - @) hold for every pair (z,g) € U x H Cohen-generic over a
fixed countable transitive model 9 of ZFC™ chosen as above. Further, there exist
ho € HNOM and a symmetric nbhd G C G of 1 such that hg G C H.

Similar to Lemmas 13.6.3 and 13.7.2, ¥(x) F;, 9¥(a’) holds for every pair of
elements z, 2’ € U Cohen-generic over 9 and satisfying @ NCU; 2. It follows, by
ergodicity, that 9 is Fp-constant, hence, F-constant, on a comeager subset of U.
It remains to show that these F-constants are F-equivalent to each other, which is
demonstrated exactly as in the end of Section 13.6.

Disjoint union. Let F, be Borel equivalence relations on Polish spaces Yy,
k=0,1,2,... . By definition, \/, Fy = U, F},, where each F)_is a Borel equivalence
relation defined on the space Y = | J,, {k} x Y}, as follows: (I,y) F}, (I',y') iff either
I=01andy=1vy or l=1=Fk and yFry .

Countable product. Let Fjp be equivalence relations on Polish spaces Y.
Then F =[], Fi is an equivalence relation on the space Y =[], Y. For any map
9 :X — Y, to be gen. (E — F)-invariant (where E is an equivalence relation on
X), it is necessary and sufficient that every coordinate map 9 (x) = 9(x)(k) is
gen. (E — Fp)-invariant. This allows us to easily accomplish this induction step.

O (Theorem 13.5.3, Lemma 13.3.4, Theorem 13.1.2)

13.9. Applications to the shift action of ideals

We are going to apply the results above in this chapter in order to prove that
equivalence relations generated by many Borel ideals (in particular almost all pol-
ishable ideals) are not Borel reducible to Borel actions of the permutation group
Seo, and hence not classifiable by countable structures. The difficult problem of
verification of the turbulence can fortunately be circumvented by reference to The-
orem 13.5.3 and Proposition 13.2.1 (the turbulence of summable ideals).

Say that a Borel ideal & C Z2(N) is special if there is a sequence of reals
rp > 0 with {r,} — 0, such that %, ) € 2. Non-trivial in the next theorem
means containing no cofinite sets. In the context of summable ideals, non-triviality
means simply that )" i, = +oo.

THEOREM 13.9.1. Suppose that % is a non-trivial Borel special ideal and F
belongs to the family %o of Definition 13.5.2. Then Ez is generically F-ergodic,
hence, is not Borel reducible to F.

ProoF. The “hence” statement follows because, by non-triviality, all Eg-
equivalence classes are meager subsets of Z(N).

As Z is special, let {ry} — 0 be a sequence of positive reals such that
Yontn = +oo and S,y € 2. Note that = Ef,. yy implies @ Ex y, and hence
every gen. (Ey — F)-invariant map is gen. (Ey,,y — F)-invariant as well (on the
same comeager set). Thus it suffices to prove that E¢, y =E Ty 18 BED. F-ergodic.

Recall that the shift action of the A-group of the ideal 4, 3 on Z2(N) is
Polish and gen. turbulent by Proposition 13.2.1. Thus Ex, | is gen. F-ergodic by
Theorem 13.5.3, as required. O

The next corollary returns us to the discussion at the end of Section 5.5.
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COROLLARY 13.9.2. The equivalence relations co and Ey are not Borel re-
ducible to any equivalence relation F in the family Fq, in particular, they are not
Borel reducible to Ty and therefore to Eo, and any other countable Borel equiva-
lence relation by Lemma 6.1.3.

PROOF. According to Lemmas 6.2.3 and 6.2.4, it suffices to prove that the
ideals %5 (density 0) and St1/ny ave special. (Their non-triviality is obvious.)
The ideal 1/, is special by definition. As for 25, it suffices to prove that
Sy © Zo. Consider a set ¥ C N, « ¢ 2. There is a real € > 0 such that

card (zN[0,n . . . . .
-#(—,-[’—)) > 2¢ for infinitely many numbers n. One easily defines an increasing

n
d (xN|n;,n;
sequence ng < ny < ny < -+ such that n;y, > 2n; and W > ¢ for
3 ?
y 1 Nip1—N "
all 4. Then }, . S ZEY T T +00, hence @ & S(1/,y . |

The next theorem shows that, with three exceptions, there exist no polishable
ideals Borel reducible to equivalence relations in .%y. (Note that %, contains var-
lous equivalence relations of the form E, generated by non-polishable ideals &,
for instance, by the FRECHET ideals.) KECHRIS [Kec98] proved a similar theo-
ren, in which the assumption of reducibility to a relation in .%; is replaced by the
assumption of reducibility to a Borel action of S.,. Recall that .# = F means
isomorphism via bijection between the underlying sets of the ideals.

THEOREM 13.9.3. If . s a non-trivial Borel polishable ideal on N, F an
equivalence relation in Fy, and Eyx <y F, then .# is isomorphic to one of the
following three ideals: .73, Fin, Fin & 2(N).

Note that in each of the three cases Ey» <j E3 Lolds.

Proor. It follows from Theorem 3.5.1 and Corollary 11.8.3 that % = Exh,,
for an LSC submeasure ¢ on N, We can assume that ¢(2) <1 for all © € 22(N).
(Otherwise, put ¢'(z) = min{1,¢(x)}.) Consider the sets U, = {k:p({k}) < %}
and U = {k:¢({k}) = 0}. Cleatly, U,41 € U, and ¢(Us) = 0; therefore,
() = p(a \ Us) for all @ € 2(N),

We claim that 1im,_ . ©(U,) = 0.

Suppose toward the contrary that there exists € > 0 such that (U,) > ¢ for all
n. By definition, for every m there is n > m satistying U, C [m, 00) U Uy ; hence,
©(Un~m) > & as well. Moreover, there exists n’ > n satistying (U, Nm,n')) > e.
This leads to a sequence ny < ny < ng < -+ of numbers and a sequence of finite
sets w; C U,LJ. ~ Up,,, such that go(wj) > ¢. The sets w; are pairwise disjoint,
hence every “tail” W N [n, o0) of their union W = UU; w; includes at least one of
w; as a subset. It follows that W ¢ .# = Exh,. The ideal ¢ = . N 2(W) on
W is then non-trivial. We also have {@({k})}rew — 0 and >, p({k}) = +oo
since for every n all but finite sets w; satisty w; € W. Finally, the equivalence
xAyc S = axAyc g holds for all x,y C W. It follows that E» <g Ex by
means of the identity map.

Since ¢ is an LSC submeasure, we have p(y) < > key e({k}) forall y CN. Tt
follows that every set » C W satisfying 3, .. o({k}) < -+oo belongs to ., hence
to # as well. Thus _# is isomorphic to a special ideal via a bijection of W onto
N. We conclude that E », and hence E, are Borel irreducible to relations in the
family % by Theorem 13.9.1, a contradiction.
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Thus ©(U,) — 0. It follows that for every set z ¢ Z(N) to belong to &,
it is necessary and sufficient that x N (Up, ~ Up41) is finite for every n. This
observation allows us to accomplish the proof: if the difference U, \ U+ is infinite
for infinitely many indices n, then % = .#3; if there exist only finitely many infinite
differences U, ~\ Uy,41 and their union is co-finite in N, then .# = Fin; and finally
Z = Fin @ P(N) iff there exist only finitely many (but > 0) infinite differences
U,, ~ Up41 but their union is co-infinite in N. (W

COROLLARY 13.9.4. There is no Borel ideal & such that E gz ~p Tq.

PROOF. Suppose toward the contrary that & is such an ideal. Then & is
polishable. (Indeed otherwise E; <g .# by Corollary 11.8.3, and hence Ey <p Ta.
But this contradicts Theorem 11.8.1 since T is easily Borel reducible to a Polish
action.) Thus Ey <g Es by Theorem 13.9.3. On the other hand, recall that
the ideal %5 = 0 x Fin is a P-ideal (Exercise 3.3.4), hence it is polishable by
Theorem 3.5.1. Thus Ty #£p E3 by Theorem 17.1.3, which is applicable in this
case because the A-group of #3 (basically, of any ideal) is abelian. Therefore
Ty &g E.#, as required. d

The next application of Theorem 13.9.1 is related to the structure of ideals
Borel reducible to Ez. The result is similar to Theorem 11.1.1. We begin with the
following irreducibility lemma.

LEMMA 13.9.5. Eg <p Es. Equivalence relations Ez and Ey, are <g-incompa-
rable. Equivalence relations Ex and Ey are <g-incomparable as well.

Proor. It is quite obvious that Ey <p E3 and Ep <g E;. Thus Ey <5 Es3
strictly since we have E3 £ E; by Corollary 11.1.4. To prove E; £ Es, recall that
the ideal .#; is polishable (see above). Now E; £ E3 follows from Corollary 11.8.3.

The proof of the second claim is similar. g

The following result of KEcHRrIS [Kec98] should be compared with Theo-
rem 11.1.1.

COROLLARY 13.9.6. If % is a non-trivial Borel ideal on N and Es <p Es,
then & is isomorphic to one of the following three ideals: %3, Fin, Fin & Z(N).

PROOF. We have E; €5 E» by Lemma 13.9.5. Therefore .# is a polishable
ideal by Corollary 11.8.3. It remains to apply Theorem 13.9.3. g




CHAPTER 14

The ideal #5 and the equivalence relation E;

This chapter is devoted to the ideal #3 and the corresponding equivalence rela-
tion Ez. Recall that .3 (also denoted by 0xFin ) consists of all sets @ C (N x N)
such that all cross-sections (), = {k:(n,k) € x} are finite. Accordingly, the re-
lation E3 = E, is defined on FZ(NxN) by aBgy iff 2 Ay € HA. But we'll
rather cousider Ez to be an equivalence relation on (2N)N defined so that x Ez y
iff #(n) Eg y(n) for all n: here z,y belong to (2M)N. Formally,

B3y <= Vn3IkyVk > ko (z(n, k) = yln, k).

The main goal of this chapter will be the proof of Theorem 5.7.6 of HIORTH and
KECHRIS, the 6th dichotomy theorem. Recall that it asserts that every Borel equiv-
alence relation E such that E <z Ej3 satisfies “either” E <z Ep “or” E ~g Ej.
Thus, similar to E;, Es is an immediate successor of Eg in the structure of Borel
reducibility. Let us mention an immediate corollary.

CoROLLARY 14.0.1 (of HJORTH and KECHRIS, Theorem 5.7.6). E., %p E3.

ProOOF. Suppose toward the contrary that E., <g Ez. Then by Theorem 5.7.6
“either” E., <g Eg “or” Eg ~g Es. The “either” case contradicts Theorem 7.5.1.
To derive a contradiction from the “or” case assumption, note that E., <g £ by
Theorem 6.6.1, but on the other hand Es £5 £°° by Lemma 6.1.1. O

The proof of Theorem 5.7.6 employs the Gandy—Harrington forcing in a manner
rather similar to the proof of Theorem 5.7.3 (3rd dichotomy theorem). The proof
given here is designed on the basis of the proofs of Theorems 7.2 and 7.3 in [HKO01].
The first of them contains a dichotomy that somewhat generalizes the result of
Theorem 5.7.6. Recall that E., is a <g-largest countable Borel equivalence relation,
realized in the form of a certain equivalence relation on the Polish space 22, where
Fy is the free group with two generators. Let (EOO)NU denote the equivalence
relation on (2F2)N, defined so that z (Eo,)M y iff @(n) Es y(n) for all n. Thus
(Eo)™o is related to Eo just as Ez is to Eg. Theorem 7.2 in [HKO1] asserts that
every Borel equivalence relation E such that E <g (Eoo)NO satisfies either E <y E,
or E3 <z E. Theorem 7.3 in [HKO1] contains a result that allows us to derive
Theorem 5.7.6 from Theorem 7.2 (also in [HKO01}). In our proof, the effect of
Theorem 7.3 in [HKO1] is reduced to Theorem 14.1.1.

14.1. Continual assembling of equivalence relations

The next theorem will be used in the proof of Theorem 5.7.6. The result is
somewhat similar to Theorem 7.3.1 in that it evaluates the type of equivalence
relation E on the basis of the types of certain fragments of E. But in this case the
number of fragments can be uncountable!

167
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THEOREM 14.1.1. Suppose that X, Y are Polish spaces, P C X x Y is a Borel
set, E is a Borel equivalence relation on P, G is a countable group acting on X
in a Borel way, and (z,y) E(2',y') implies v EX a'. Finally, suppose that E | (P),
is smooth for each x € X, where (P), = {{2',y) € P:a' = a}. Then E 14s Borel-
reducible to a Borel action of G.

Proor. We can assume that X = Y = 2% and both P and E are Al
We can also assume that the underlying set of G (a countable group) is N, and
both the group operation and the action of G are Al. Then clearly « Ef o' —»
Al(w) = Al(a).

Define P*(z) = |J,cq(P)a-» for z € X.

LEMMA 14.1.2. Suppose that pairs (z,y) and (2',y’) belong to P and zEEa’
Then (z,y)E{a',y') iff the equivalence (z,y) € U <= (a/,y') € U holds for every
E | P*(z)-invariant set U C P*(x) of class Al(z).

Proor. Note that the restricted equivalence relation E [ P*(2) is still smooth
by Corollary 7.3.2 since G is countable. In addition E [ P*(z) is Al(x). This
observation yields the result. Indeed otherwise the equivalence relation, defined
on P*(z) by intersections with E | P*(x)-invariant sets of class A}(z), is strictly
coarser than E | P*(z). It follows by the Al(z)-version of Theorem 10.4.5 that
Eo <g E | P*(2), a contradiction with the smoothness. O (Lemma)

In the continuation of the proof of Theorem 14.1.1 we make use of a standard
enumeration of A} sets. By Theorem 2.8.2 there exist I} sets Cod(Al) C X x N
and W C X xNxXxY and a 2'11 set W/ C X x N x X x Y such that the sets

(W)ae = {(@",9) 1 (z,e,2",y') € W} and (W), = {{2/, /) : (x,e,2',y) € W'}
coincide whenever (,e) € Cod(A}), and for every € X aset R C X x Y is
Af(x) iff there is e such that (z,e) € Cod(A}) and X = (W)ye = (W)pe.

Let J be the set of all pairs (z,e) € Cod(Al) such that (W), € P*(z) and
the set (W)ge is E [ P*(z)-invariant. Basily J is 1.

COROLLARY 14.1.3. Suppose that pairs (x,y), (z',y') are as in Lemma 14.1.2.
Then (x,y) E (2/,y') iff the equivalence (x,y) € (W)ze <= (2',y') € (W )y holds
for every e with (x,e) € J. O

Let us change “iff” here to <= . Such a reduced claim can be formally repre-
sented in the form (P x P)NEE C UUE, where U = J, .y Ue and

Ue = {{(w,9), (&, /) : {w, ) € TA = ({@,y) € (W)ae = (2, ¢/) € (W)ae) }-

As J C Cod(Al), we can rewrite the negation of <= in the last formula in the
following 1} form:

((@,y) € Wae A, o) & (W ae) A (o) & (W )ae A, y') € (W)ae).

Thus the inclusion (P x P)NEL C U UE as a property of a II} set J is II} in
the codes. It follows by Theorem 2.7.1 (Reflection) that there is a Al set J' C J
such that still (P x P)NEE C U'NE holds, where U’ = |J, U! is defined in terms
of J' similar to the definition of U in terms of J.

Let us fix such a Al set J'.

COROLLARY 14.1.4. Suppose that pairs (x,y), (z',y') are as in Lemma 14.1.2.
Then (x,y) E(2',y) iff the equivalence (z,y) € (W)ge < (2, y') € (W),e holds
for every e with (x,e) € J'. O
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To continue the proof of Theorem 14.1.1, define, for any {(z,y) € P,
Doy ={{a,e):aeG A (ax,e) €T A {2,y) € (W)ane}-

Clearly (x,y) — Dq, is a A} map P — 2(G x N).
If DCGxN and be G, then put bo D = {{ab~!,¢€): (a,e) € D}.

LeMMA 14.1.5. Suppose that (x,y) and {a',y') belong to P, b € G, and
o' =b-w. Then (x,y) E (@', y") iff bo Dyy = Dyry .

PROOF. Assume that bo D,, = D,s,. According to Corollary 14.1.4, to es-
tablish (x,y) E (2/,y'), it suffices to prove that (z,y) € (W)e <= (2/,9') € (W)pe
holds whenever (z,e) € J'. We have

<’L,y> € (I/V)a:e > <Aa 6> € Drvy — <b_l’€> < Dm,yl
— <w/7yl> € (I/V)b*l-m’,e = (‘/V)C'Je’

as required. To prove the converse, suppose that (x,y) E (a/,y'). If (a,e) € Dy,
then (a-z,e) belongs to J' and (z,y) € (W), . Hence, {z/,y') € (W)g.s e
also, because the set (W),.q, ¢ is invariant and (z,y) E{2’',y'). Yet a-a = ab™1 2,
therefore, by definition, (ab™!,e) € Dy The same argument can be carried out
in the opposite direction, so that (a,e) € D,, iff (ab™',e) € Dysy, that means
bo Dyy = Dty D (Lemma)

To end the proof of the theorem, consider S = X x £(G x N), a Polish
space. Define a Borel action b-(x, D) = (b-z,bo D) of G on S. We assert that
Ia,y) = (¢, Dyy) is a Borel reduction of E | P to the action EX. Indeed, let
(z,y) and (2',y') belong to P. Suppose that (z,y)E (2/,y'). Then 2 EX 2, so that
2 = b-x for some b € G. Moreover, bo D,, = D, by Lemma 14.1.5, hence,
I(a’,y') = b-9(x,y). Conversely, let J(z',y') = b-9(z,y), so that &’ = b-x and
Dy =bo Dy, Then (x,y)E (2,4} by Lemma 14.1.5, as required. O

Theorem 14.1.1 is a particular case of the following conjecture which in general
remains open. The conjecture can hardly be true in all cases, but surprisingly
enough we do not know of any counterexample.

CONJECTURE 14.1.6 (ZAPLETAL). Suppose that XV, and P C X x Y are
Borel sets, F and E are Borel equivalence relations on X and P, respectively, such
that (z,y) E («',y') implies = F 2/, and for every E-class [wg]le € X the satwrated
cross-section P*(ag) = {(z,y) € P:a Eag} satisfies F | P*(xg) <g G, where G is
a one more Borel equivalence relation. Then E | P <z (F x G). O

Theorem 14.1.1 is related to the case when G is smooth and F is a count-
able Borel equivalence relation in Conjecture 14.1.6. It will be applied below in
the particular case when G is the A-group on Z%;,(N) that induces hyperfinite
equivalence relations, that is, the case F = G = Eg and E =smooth in Conjecture
14.1.6.

14.2. The two cases

Similar to the proof of Theorem 5.7.3 (see Section 11.3), Corollary 5.2.2 reduces
Theorem 5.7.6 to the following particular form.

THEOREM 14.2.1. Let D C (2NN be a B! set. Then either E3 [ D <g Eg or
E; Cg E3 | D — and then E3 [ D ~jp E3.
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PROOF. As usual, w.l.o.g. we can assume that the set D in the theorem is a
lightface X} set. The proof of the theorem begins with a few definitions necessary
to set up the partition onto cases here.

For z,y € Y)Y and n € N, define ¢ =, y iff 2 Ez3y and ¢ [<p = yl<n-
(The latter requirement means z(k) = y(k) for all k <n.) Let o/;;", resp., A,
denote the collection of all non-empty 27 sets A C (2M)N satisfying the first, resp.,
second, of the following two conditions:

Vo e A(theset {y(k):y € AAnz =, y} is finite);
Va € A(theset {y(k):y € AAa=, y} is a singleton).
LEMMA 14.2.2. If Ac o/}, then there is a Al set B ¢ o), with AC B.

n

PRrROOF. The I} set
P={ye(@2MV:Vac A (v=,y= 2(k) =yk))}

satisfies 4 C P, hence by Theorem 2.3.2 (Separation) there is a A} set U such
that A CU C P. The set

X={ecU:VycU (z=,y= a(k)=yk))}
is still 77} and A C X because A C U C P. Therefore, any Al set B such that
A C B C X is as required. 01

COROLLARY 14.2.3. The sets' AL, = |J &), belong to II} uniformly on n, k.
Therefore, the set S =, Nisn Anx also belongs to II} .

The set S is the structural domain here.

PROOF. The result follows from Lemma 14.2.2 by standard computations based
on the coding of A} sets (see Section 2.8) and Theorem 2.8.1. U

LEMMA 14.2.4. &7}, C /5", and conversely, every A € I is covered by a

n
union of sets in o7, . Therefore, each set AL, is equal to AL =) o™

PROOF. Given A in &/5", consider the T} set B of all y ¢ (2")™ such that
Jse 2 (s Cylk) AVaz e Az =, yAs Calk) = z(k) =y(k))).

Then obviously A C B, and hence there is a A} set U such that 4 CU C B. As
U C B, Theorem 2.4.5 (Kreisel Selection) yields a A} map o : U — 2<“ such that

VyeU (o(y) Cylk) AVa e Az =, yNo(y) C alk) = a(k) = y(k))).

Then A = |J, As, where each A, = {x ¢ A:o(z) = s C x(k)} is a set in LY, or
the empty set. (1

Now let us come back to Theorem 14.2.1. We have two cases.
Case 1. D C S. We will show below that in this case E3z [ D <g Eg.
Case 2. D~ S # @. We will prove that then E; Ty E3 [ D.

Let us finish this section with a few remarks connecting the partition to cases
with the material in Sections 10.8 and 10.9. Recall that, for z,y € 2"V, 2 =, y
means that 2 | <, =y [<, and xEsy, that is, x(j)Eoy(s) for all j. Let = =% y mean
that still @ <, = y <, and @(j)Eqy(j) for all j # k. In these terms, sets A € A

1 Al, is the union of all sets in &/ .
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are characterized by the requirement that for every o € A the set A} (2) = {y(k):
y € ANz =] y} is an Eg-transversal. Thus the ground idea behind the definitions
here can be formulated as a kind of unusual and not easily formalizable countable
product of the ideal Zg, defined in Section 10.8.

14.3. Case 1

The proof of the next theorem shows that the Case 1 assumption makes all Es-
classes inside the domain R look in a sense similar to Eg-classes. This will allow
us to employ Theorem 14.1.1 to obtain the result required.

THeoREM 14.3.1. If D C (2" is an arbitrary 51 set and D C S, then
Ez | D <g Eg, the “cither” case of Theorem 14.2.1. ‘

PROOF. By Separation thereis a A} set D’ such that D C D’ and still D’ C 8.
Thus it can be assumed that D is Al. Then by Kreisel Selection (Theorem 2.4.5)
there exists a Al map v: D — N such that

for all x € D. Pwt D, = {x € D:v(z) < n}, these are increasing Al subsets
of D, and D = |J,, Dn. According to Corollary 7.3.2, it suffices to prove that
Es [ D, <g Ep for every m. Thus let us fix n. Then by definition

(%) VeeD,Vk>n3Bec ol (xcBc Ay

Recall that C is the least class of sets containing all open sets and closed under
the A-operation and the complement. A map [ is called C-measurable iff all f-
preimages of open sets belong to C.

LEMMA 14.3.2. For every n there is a C-measurable map f : D, — (2NN
such that f(x) = f(y) =, ¢ whenever x,y € D,, satisfy ©=,y.

PROOF. Let Cod(Al) C N be the II} set of codes for Al subsets of (2M)N,
and let (W), € (2M)N be the Al set coded by e € Cod(A}). (We refer to Theo-
rem 2.8.1.) Then, by (%) above,

Vo € D, Yk >ndec Cod(A}) (x € (W), € ).

Now a straightforward application of the Kreisel Selection yields a Al map e :
D, x N — Cod(A}) such that @ € (W).(ux) € &), holds whenever x € D,, and
k> n. Let £(x, k) be the least of all numbers e(z’, k) with 2’ € D, N [2]=,. Then
£ is =,-invariant in the first argument. In addition, (W)zx) € &}, and the set
Zyp = Dy N [2]=, N (W)eg,k) is non-empty whenever z € D, and k> n.

Let @ € D,. For every k > n, the set Yy = {y(k):y € Zu} C 2V is a
singleton by the definition of &/;;. Let fix(x) be its only element. Define f(z) €
(2NN so that f(x)(k) = x(k) for k <n and f(z)(k) = fi(z) for k> n.

That f(z) = f(y) whenever © =, y follows from the invariance of €. To see
that f(z) =, @, note that by definition fi.(z)Eoxy for k > n : indeed, fi(x) = y(k)
for some y € [z]=,, but @ =, y implies @(k) Eq y(k) for all k. Finally, the C-
measurability needs a routine check. O (Lemma)

For any u € (2M)" define D, (u) = {z € Dy : T |<n = u}.

LEMMA 14.3.3. If u € (2N)", then E3 | Dy (u) is smooth.
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PROOF. As E3 and =, coincide on D, (u), the relation Ez | Dy (u) is smooth
by means of a C-measurable, hence, a Baire measurable map. Suppose toward
the contrary, that it is not really smooth, i.e., smooth by means of a Borel map.
Then, by the 2nd dichotomy theorem (Theorem 10.4.1), we have Eq <p E3 [ Dy, (u},
hence, Eg turns out to be smooth by means of a Baire measurable map, which is
easily impossible; see the proof of Corollary 10.7.2. O (Lemma)

To complete the proof of Theorem 14.3.1, let G denote the group Z;,(N)",
that is, the product of n copies of (Z%i,(N}; A). Let G act on X = (2M)" compo-
nentwise and as defined in Example 4.4.2 on each of the n coordinates. Then, for
every pair of u,v € X, wE v is equivalent to Vk < n (u(k) Eg v(k)). Apply Theo-
rem 14.1.1 with G and X as indicated, and P = D,,, E = E3 [ D,,. Lemma 14.3.3
witnesses the principal condition. Thus E3 [ D,, is Borel reducible to an equivalence
relations induced by a Borel action of G. Yet the group G is the increasing union of
a countable sequence of its finite subgroups. It follows that all equivalence relations
induced by a Borel action of G are hyperfinite, therefore Borel reducible to Eg.

O (Theorem 14.3.1 and Case 1 in Theorem 14.2.1)

14.4. Case 2

In this case the X1 set D NH, where H = 2¥ \ 8 is the chaotic domain, is
non-empty. A rather typical example is

D= {zec (Y :vn k1 (x(=<n k=) =a(<n, 1)},

where n, k > <n, k> = 2"(2k+1)—1 is a pairing function on N. Thus members of
D are those infinite sequences of elements of 2V in which every term is duplicated
in infinitely many copies. It can be verified that the intersection 8 N D consists
of all sequences « € D that contain a finite number of terms z(0),...,2(n}) such
that all other terms are A} in x(0),...,2(n). Obviously the difference D~ S is
non-empty.

We are going to prove

THEOREM 14.4.1. If D C 2NN 4s an arbitrary X} set and D ¢ S, then
Es Cg E3 [ D, the “or” case of Theorem 14.2.1.

Let us take some space for technical notation involved in the proof of the
theorem. Put

L(n) =max{r:3q ('<7"a g~ <n)}= {r:2"-1< n}

for any n. Then for instance L(0) = 0 and L(1) = L(2) = 1. If » < L(n),
then define (n), = {¢:=<7r,¢> < n}; this is a natural number > 1 (assuming
r < L(n)). For instance (0)g = 1 (since <0,0> = 0), (1)p = 2, and (1); = 1.
Obviously, n = Y5 ().,

Suppose that n € N and s € 2" (a dyadic sequence of length n). For any
7 < L(n) define (s), € 20" so that (s),(¢q) = s(=<r,¢>) for all ¢ < (n),. Thus
the original sequence s € 2<% of length lhs = n is split into an L(n)-sequence
of dyadic sequences of lengths 1h(s), = (n),. Formally this secondary sequence
{(s)r}r<r(n) belongs to the product set HIL,:'Z))A 200

We consider 2" to be a group with componentwise operation; that is, if «,b €
2%, then a-b € 2V and (a-D)(k) = a(k) +2 b(k), Yk, where +, is the addition
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modulo 2. The neutral element is the constant-0 sequence 0 = N x {0} (that is,
0(k) =0, Vk), clearly 0-a = a for all ¢ € 2V,

Accordingly, consider (2M)Y as the product of N-many copies of 2N, a group
with the componentwise operation still denoted by -, so that (f - g)(n)(k) =
f(n)(k) +2 g(n)(k) for all n,k. The neutral element is the constant-0 sequence
oM € (2M)N. Define suppg = {n € N: g(n) #£ 0}, the domain of non-triviality of
an element g € (2%¥)N,

The group (2Y)N contains the subgroup

F={gec @MW :VnIkyVk> ko (f(n)(k) =0)},

essentially the ideal .#3, acting on (2M)Y by the group operation -, and three more
series of subgroups:

Fon = {g€F:suppgC (n,00)} = {geF:Vk<n(g(k)=0)},
F>, = {9€F:suppgCn,00)} = {geF:Vk<n(gk) =0)},
F<, = {9€F:suppgC[0,n]} = {gcF:Vk>n(gk)=0)},

for all n. Obviously xEsy if ye F .2, and 2=, y iff ye€ Fs,, -z,
Finally, if X C (2")N, thenput g- X = {g-2:2 ¢ X}.

PRrROOF (Theorem 14.4.1, the proof ends in Section 14.8). Put H = D \ 8.
Then H =, Upsn Hak, Whe1e

14.4.2. Hyp = D\Ank = {,LED VA(,LEASA¢ 'fin)}
= {teD:VAecAl(cc A= A¢ L)}

by Lemmas 14.2.2 and 14.2.4, and H,,;, is X] by Corollary 14.2.3. Note also that
for every X set A C (2M)M and every n, k the following holds:

1443 Ad ey = VpeNIy,z€ A3j > p (y=n 2 Ayk)(j) # 2(k)(5)) .

14.5. Splitting system

To prove Theorem 14.4.1, we are going to define a rather complicated splitting
system of non-empty ] sets Xy C (2M)N, s € 2<%, the increasing sequence of
numbers kg < k; < ky <.+ € N, a collection of natural numbers p,;, m,j € N,
and elements g5 € F, where s,t € 2<%, lhs = 1ht, satisly the following list of
requirements 1°-9°;

1°% XA CH=D\S, X~ CX,, diam X, < 27185,

2°. The same as 7° in Section 11.5, so that, as a consequence, {1, Xan is a
singleton for every o € 2N.

3° If se 2™t then X, C ﬂl,<L () Hyy, .

4°, If s,t € 21 then supp gy C [0, ke, that is, gst € F<py (-

5% ko < ki <kg <., and pro < Pt < Pz < -+ for all m,

6°. gou = Gtu ' gst for all s,t,u € 271, Tt easily follows that ges = ON, Vs.

To formulate three more requirements, define, for arbitrary sets X,Y C (2N )N
X =, Y iff [X]z, =[Y]z,; thatis, for every & € X there exists y € Y satisfying
¥ =, y and vice versa for every y € Y there exists € X satisfying x =,, y. This
is equivalent to Fs,, - X = F.,, - Y,

m
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7% gst - Xs Zhyq,y Xt holds for all s,t € ontl,

8. If s,t € 21, ( < L(n), n' < n, and &, € 2" satisfy &' C s, t' C t,
and the equality (s),(¢) = (¢),(¢) holds whenever < ¢ and ¢ € N satisfy
n' < <r,¢> < n, then gg(i) = gop (2) for all ¢ < ¢.

9°, If 5,t € 2L, s(n) =0 # 1 = t(n), and n = <m, 5>, then x(kp)(Pm;) =
0 for all z € X, but y(ky)(pmy) =1 forall y € X;.

14.6. The embedding

Suppose that a system of sets X, elements g, and numbers k,, and pq;
satisfying 1°-9° has been defined. Let us show that this leads to the proof of
Theorem 14.4.1.

As usual it follows from 1° and 2° that for every a € 2V the intersection
M, Xan is a singleton in (2NN, Let us denote by J(a) = {Jp(a)}nen its only
element. Thus a > 9(a) is a map 2N — H while each J,, is a map 2N — 9N In
addition both ¥ and all ¥,, are continuous (in the Polish product topology). We
claim that the set X = {9(a):a € 2V} = (M, Uscon Xs satisfies B3 <g E3 [ X. Tt
follows that E3 <g E3 | D, and this proves Theorem 14.4.1.

To prove the claim, define a point ¢(a) = {pn(a) }nen € (2HF for every a € 28
such that @, (a)(k) = a(<n, k>) for all n,k. The map ¢ is a homeomorphism of
2N onto (2M)N, while each a +— ¢, (a) is a continuous map 28 — 2N, Thus the
following lemma implies the claim.

LEMMA 14.6.1. The equivalence (a) Ez o(b) < 9(a) E3 I(b) holds for all
a,b € 28, Therefore the map f(z) = (e 1)) : 2NN = 2NN s a continuous
embedding (that is, an injective reduction) of Es in Ez [ X.

ProOF. Assume that ¢(a) E3 ¢(b), take an arbitrary ¢ € N, and prove that
Je(a)Egde(b). In our assumptions there exists a number n’ such that ¢ < L(n') and
for every » < € and ¢, if <r,q> > n’, then a(=<r,¢>) = b(<r,¢>). Put ' = a|n’
and t =b|n/. Then ¢’ = got € F. Our goal is to prove that 9,(b) = (¢')¢-Ye(a);
this obviously implies 9¢(a) Eq 9¢(b).

Tt suffices to show that gg¢ - Xs =¢ Xt holds for all n > n/, where s = a|n and
t = bl n. We observe that g, Xs =¢ X¢ by 7° because £ < L(n') < krny < krgny-
On the other hand, gs:(i) = gs¢(¢) for all ¢ < ¢ by 8° and the choice of n’. It
follows that ggy+ Xs = gst - Xs =¢ X¢, as required.

To prove the converse, suppose that ((a) E3 ¢(b) fails, and hence there is at
least one index m such that ¢, (a)Eopm (b) fails as well, meaning that a(<m, j>) #
b(<m,7>) holds for infinitely many numbers j € N. Then by 9° we obtain
g, (@) (Praj) = 0 # 1 = D, (0)(pmy) for all j, and hence 9y, (a) Eg Vg, (b) fails
since the numbers pp,;, j € N, strictly increase by 5°. ]

O (Theorem 14.4.1 modulo the construction 1°~9°)
This accomplishes Case 2 in the proof of Theorem 14.2.1.
O (Theorems 14.2.1 and 5.7.6 modulo the construction 1°-9°)

REMARK 14.6.2. The first part of the proof of the lemma demonstrates that
for every ¢, if ¢, (a) Eg ¢,(b) for all » < £, then 9,(a) Eg 9.(b) for all » < ¢ as
well. Quite a similar argument shows that, for any a,b € 2V if ¢, (a) = ¢, (b) for
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all » < ¢, then 9,(a) = 4,(b) for all v < ¢. The principal ingredient here is 8° for
n' =0 and s =¢ = A. Then gy = OV, O

14.7. The construction of a splitting system: warmup

Now, to prove Theorems 14.4.1, 14.2.1, and 5.7.6, it remains to carry out the
construction of a system of sets X, and g, and numbers kp and po,; satisfying
conditions 1°-9° of Section 14.5. The construction goes on by induction on n, so
that at each step n we define the sets X, s € 2" and elements gst, S,t € 2", Here
we present only the transition from 0 to 1 as a warmup.

Put Xp = H and? by default gyp = 0N for the sequence A of length 0.

At the next stage, we have to define 21 sets Xy, X1y € Xy, an element
oyy = gayoy € F, and numbers kg and pog such that a relevant fragment of
1°-9° is satisfied. Note that L(0) = 0.

Stage 1. We shrink X, to make sure that conditions 1° and 2° of Section 14.5
are satisfied; the resulting 51 set is still denoted by Xa.

Stage 2. Consider any 2 € X,. Then z € ﬂk>0 Hyy, (see the beginning of the
prool of Theorem 14.4.1). Fix a number k = kg > 0 such that z € Hyk,. The set
X} = XA N Hoy, is still of class 27, and it does not belong to the family o5 by
14.4.2. Thus by 14.4.3 there exist points o, 2y € X} satisfying o =r(0) zo and
numbers kg > 0 = L(0) and pgyy such that Yol(ko)(poo) =0 # 1 = z(ko)(poo). The
X1 sets

Y = {y S X//\ ‘Y =L(0) Yo A y(ko)(poo) = 0} , and
Z = {zeX}:z =r0) 20 N 2(ko)(poo) = 1}
still contain elements yq, zo, respectively; therefore, so do the 31 sets

Y'o= {yeY:idze Z(y =10 2)}, and
7' = {z’EZ:HyEY(yEL(O) 2},

Finally, define giy(1y = 9ayoy € F so that giy1y(ko)(poo) = 1 and goyy(m)(j) =
0 for every other pair of m, j. Then easily 9(0)(1) Yo =k, 20, hence gey 1y Y’ =, 27,
Thus we get a pair of sets X = Y’ and Xy = Z' compatible with 7°, This
ends the construction for n = 1.

14.8. The construction of a splitting system: the step’

Now suppose that n = <m,j> > 1, and the construction has been ac-
complished up to the level n; that is, there exist sets X, C H and elements
gst € F, where s,t ¢ 2"'/, n’ < n, and numbers kg, ..., kr(n—1) and py,, i, where
<m/,j"> < n, such that conditions 1°~9° of Section 14.5 are satisfied in this do-
main. The goal is to define X, and gy, where s,¢ € 27! and numbers k, and
Pmj, such that conditions 1°-9° are satisfied in the extended domain.

The numbers n,m, j are fixed in the course of the arguments in this section.

LEMMA 14.8.1. Suppose that collections of X} sets Py € (29N, s € 27 and
elements go € F, s,t € 2™ satisfy both 6° and 7° of Section 14.5 for a fived k;
that is, gsu = gtu - gst and gsy - Py =5, Py for all s,t,u € 2"+,

2 But just every non-empty E% set H' C H can be considered to be X, .
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If 0 €2® and P C P, is a non-empty X} set, then the sets
Pl={z e Ps:3ye P(gos y=rz)}, s€2,

are non-emptly 51 sets still satisfying 7°, i.e. gst - Pl =y P for all s,t € 2"+,

PRrRoOOF. Fix s,¢ € 2. To show that g - X! =, X/, consider any © € X!, so
that gs - € gst - X.. By definition there exists y € X such that g,s -y =g @. It
follows from 4° that gs € F<y, therefore go-gos y =k gsi-®, thatis, gery =k gt @
by 6°. However by definition g,; -y € X, as required.

The converse is similar. O (Lemma)

It follows from 4° (in the domain 2") that there is a number g € N such that
gst(7)(q) = 1 holds only in the case when both » < kp(,—1y and ¢ < p. We proceed
with several stages of successive reduction and splitting of the X} sets X, s € 2".
These further stages depend on whether the number n = ~<m, j> considered opens
a “new” axis k,, of splitting.

Case A. j > 0.

Then 7/ = <m, j — 1> < n, thus m is “old”. Moreover, L(n) = L(n—1). We
have to define p,; but needn’t to define any new k,.

Stage 1. Fix an arbitrary sequence ¢ € 2™; for instance this can be the sequence
0™ of n zeros. Consider an arbitrary = € X,. Then 2 € H,,;. by 3°, and hence
there exist points yg, 20 € X, and a number p,,; > g such that yo =p-1 20 and
Yo(km) (Pmj) = 0 but 2o(ku)(Pmy) = 1. Basily pmj > pnj—1 @ indeed pp, ;-1 < o
by the choice of p.

Stage 2. Define g € (2")M so that g(r)(q) = 1 iff both m < r < k() and
Yo(r)(q) # 20(r)(q). Then g € F since yE3z. Moreover we have suppg C [m, k1],
in other words, g € ¥>, NF<y, . In addition 9(km)(pmy) = L.
zp. Thus the X1 sets

m

We observe that by definition g-yo =,
Y = {yeXo:ylkm)(pmi) =0A3Iz € Z (2(kn)(pm;) =1Agy =k ) 2)},
7 = {zeXo:z(kn)Pmj) = 1Ay Y (y(km)(Pm;) =0Ag-y Zkoon z)}

are still non-empty (containing, resp. yo, zo) and satisty g-Y =4, o Z; in addition
Y(km)(Pmy) =0 and 2(kyp)(pm;) =1 for all y €Y and z € Z.

As a matter of fact, w.l.o.g. we can assume that Y UZ = X, : indeed otherwise
put P =Y UZ and apply Lemma 14.8.1.

Stage 3. Put X,y =Y and X,~; = Z, thus
(a) 9 Xono Sy Xor1s
and then
Xong = {2 € X513y € Xgrg (9os(¥) =i,y @)}
for all s € 2™ and £ = 0,1. It follows, by 7° at the level n, that
(b) Xsne =k Jos - Xo~¢ forall s €2 and £=0,1.
Put geng tmg = got DUt gomg s~(1—g) = gst + g for all s,t € 2" and £ = 0,1, or

saying it differently

3 In the definition of gs:, we make use of the fact that ((2™)¥;.) is an abelian group. In the
non-abelian case, we would have to define g ~; 4~ (1—i) = 9ot " 9" Gso and, accordingly, change

some other related definitions in a somewhat more complicated way.
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(€) Gs~e,t~n = st g¢7" forall s,t € 2" and £,n=0,1,

where g' = ¢g7! = g while g” = 0" is the neutral element in ((2¥)V; 3.

Stage 4. Lemma 14.8.1 allows us to reduce the sets X,, s € 2"+, in several
rounds to make sure that conditions 1° and 2° are satisfied at level n + 1, the
resulting %] sets ave still denoted by X,.

This ends the transition from n to n 4+ 1. It remains for us to show that
conditions 1°-9° of Section 14.5 are satisfied in the extended (< n 4 1)-domain.

Verification. As 1° and 2° are explicitly fulfilled, 3° in Case 1 is vacuous, and
4° and §° clearly hold by definition, we begin with 6°. We have to prove that

Js~¢,u~c = Yt~n,u~¢  Ys¢,t~n
for all 's,t,u € 2" and &, 7, = 0,1. By definition this equality is equivalent to
su -gf"c = g g7 ¢ Gst gg‘"’. However obviously gf‘c = g"’“C - g5, and on
the other hand in our assumptions g, = g, - gst by 6° at level n.

Let us check 7°, that is, Gs~e t~y * Xsne Skpy Xemy forall s,2 € 2" and
&n = 0,1. It follows from (b) that the left-hand side is Zhp-equivalent to
Gst - G5 Gos - X, ¢ while the right-hand side is =, (my-equivalent to gt - Xo .
On the other hand it follows from (a) that g7 X, ~, = L(my Xo~y This allows
us to easily get the result required.

Let us check 8°. Suppose that s,¢,0,n',s',# are as indicated in 8°. Then
s=8"¢ and t =t"n, where 5,7 € 2" while £ = s(n) and 1 = t(n) are numbers in
{0,1}. Then gsz(i) = gy (i) for all i < ¢ by 8° in the domain 2, Thus if & =7,
then the result holds immediately because then gz = gz by (c). Assume that, e.g.,
§=0and n=1. Then ¢ <m in the assumptions of 8°, and hence the set supp g
does not contain numbers i < ; in other words, g(i) = 0 for all ¢ < (. It follows
that gs (i) = gs(¢) for every i < ¢, as required.

We finally check 9°. Suppose that s~¢ and t7n belong to 2"T! and & # 1,
say { = 0 # 1 = n. We have to prove that x(k,,)(pm;) = & for all € = 0,1
and v € Xy~¢. First of all note that by definition @(k,,)(pim;) = & for all & €
Xg~¢. On the other hand g, 5(ky,) (pyj) = 0 since p,,; > p by construction. Thus
(Gos @) (k) (Pimy) = € for all z € Xo~g. It remains to use (b).

Case B. 7> 0.

Then there is no number n’ = <m/, 5> < n such that m’ = m — in other
words, m is “new”. Obviously m = L(n — 1) + 1 = L(n) in this case.

Stage 1. The first goal is to appropriately choose a number k,,. Let us fix
an arbitrary o € 2. Consider any v ¢ X,. As X, C X, C H = M Ussn ok,
it follows from 14.4.2 that = € Hp iy t1) by, for some Ky > kpg,oqy + 1. In
particular k,, > kn—1, kn > L(n), and o ¢ H L(n) k- Fix such a number k. It
can be assumed w.lo.g. that X, C Hp(,)1,,. (Indeed otherwise we can replace the
set X, by X! = X, NHp )k, still a non-empty 31 set, and apply Lemma 14.8.1
to shrink all sets X,, s € 2", accordingly.)

LEMMA 14.8.2. In this assumption, X, C Hpyk, for all s €2,

m

Fix an arbitrary number p and a Al set A C (2M)N containing 2. We have to

ProoF. Consider an arbitrary point x¢g € X; and prove that zg € H L(n) k
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show that A contains a pair of points z, @’ such that @ =g,y 2’ but a’(k,)(j) #
x(km)(j) for some j > p. '

Recall that Xs =g, (,_) os - X, by 7° in the domain 2", therefore there is a
point yo € X, satisfying zo =g, (,_1y Jos * Yo- Then there exists an element g € F
with suppg C [0, k] such that a9 =g,, ¢ yo. And it is clear that g extends gy s
in the sense that g(r) = gos(r) for all r < L(n —1).

The set B = {ye @M :3z € A(g y =y, x)} is then a ] set containing
yo. But in our assumptions yg € Xo € Hr(n)k,,, and hence there exist points
v,y € B and a number j > p such that y =pqy ¢ but y'(kn)(4) # y(km)(4)- By
definition there exist points @, 2’ € A satisfying gy =, @ and g-y' =, «/. In
particular @(r) = g(r) - y(r) and 2'(r) = g(r) - ¢'(r) for all » < k,. We conclude
that @ =p(,) @' but @'(k,)(j) # @(kn)(4), as required. O (Lemma)

Stage 2. It follows from 14.4.3 that there exist points yo,20 € X, and a
number pmo € N such that yo =p(ny 20 and yo(km)(Pmo) =0 #1 = 20(km ) (Pmo)-
Following the construction in Case A, define g € Fy,,,NF<y, ,, sothat g-yo =g,
2o, in particular, g(km)(Pmo) = 1. Then the £} sets

Yy = {y € Xo: @/(km)(Pmo) =0AdzeZ (Z(”v‘m,)(an) =1Agwy =k Z)},
Zz {z e X, Z(km)(])mo) =1A E!y ey (@/(km)(]?mo) =0Agy =ki(n) z)}

are still non-empty sets containing o, 2o, respectively, and satisfying g-Y =, ., Z.
In addition y(ky)(Pmo) = 0 and z(kp)(Pmo) = 1 for all y € Y and z € Z. And
still w.Lo.g. we can assume that Y U Z = X,.

Stage 3. We define the sets X~ C X, and elements gs~¢ 1~, (st € 2" and
3 9s~¢,t~n

€ =0,1) exactly as in Stage 3 of Case A. Conditions (a), (b), and (c) still hold and

by the same reasons.

Stage 4. Shrink the sets X, s € 2nt+l with the help of Lemma 14.8.1, in
several rounds, so that the resulting X1 sets, still denoted by Xj, satisfy 1° and
2° in the domain 271!, This completes the transition from n to n + 1.

Verification. A new feature here in comparison to Case A is the non-vacuous
character of condition 3°. It suffices to show that X ~c € Hpenyg,, forall s € 2"
and £ = 0, 1, or, which is sufficient, Xs € Hp (1, forall s € 2" — but this follows
from Lemma 14.8.2. The verification of 4°-9° is quite similar to the verification in
Case A. We leave it to the reader. O (The construction)

This finally accomplishes the construction of a system of sets X, and ge and
numbers k,, and pp,; satisfying conditions 1°-9° of Section 14.5, and the proof of
Theorems 14.4.1, 14.2.1, and 5.7.6; see the end of Section 14.6.

14.9. A forcing notion associated with Ej

Following Section 11.7, define a forcing notion Pg,g, that consists of all £ sets
X C (2NN such that E3 [ X ~g E3. Theorem 14.2.1 implies that the associated
ideal g, consists of all £} sets X C (2NN satisfying Ez [ X <g Eg. Thus for a
Borel set X C (2")V to be in gk, , it is necessary and sufficient that E3 [ X is a
hyperfinite equivalence relation. g, is a o-ideal by Corollary 7.3.2.

EXERCISE 14.9.1. Using Theorems 14.3.1 and 14.4.1, prove that for a 31 set
D C (2M)N to belong to Pg,g, it is necessary and sufficient that D Z 8. O
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The forcing IPg,e, has properties roughly similar to those of Pge, in Sec-
tion 11.7, in partucular:

LEMMA 14.9.2. Any set X € Pee, contains a closed subset Y € Pee, ¥V C X,

PROOF. Suppose that X is a lightface Y. Then D ¢ S by the result of
Exercise 14.9.1, and hence X ¢ Peg, contains a closed subset Y € X still in Peg,
by Theorem 14.4.1. O

The next theorem is similar to Theorem 11.7.4.

THEOREM 14.9.3. Pgg, forces the existence of a countable set X C 2N of
“old” elements not covered by any “old” set Y countable in the ground universe.

ProoF. It follows from Lemma 14.9.2 that Pgoe, forces a sequence x € (2M)N,
We claim that the terms x(k) of this sequence are forced to be “old” reals. This

is an immediate consequence (by Lemma 14.9.2) of the following lemma (in the
ground universe):

LEMMA 14.9.4. Assume that D € Pee,. Then for every k there ewists a set
Y € Peye;, ¥V C D such that a(k) = y(k) for all z,y €Y.

PROOF. As usual we assume that D is lightface X1. Then Case 2 of Sec-
tion 14.2 holds for D, since otherwise Es | D <p Eg; see Section 14.3. In other
words, the X} set H = D~ 8 is non-empty. Then (see Lemma 14.6.1 and
Remark 14.6.2) there exists a continuous injection f : NN — H satisfying
v B3y <= f(z) Es f(y) for all 2,y € (2Y)V, and also satisfying f@)(k) = f(y)(k)
whenever o,y € (2")N satisty a(r) = y(r) for all r < k.

Let us fix any 2 € (2Y)V. Put X = {x € (2M)N vy < k(z(r) = z(r))}. Clearly,
Es I X ~p E3, and hence the set ¥ = f[X] (still a compact subset of D) satisfies
Es 'Y ~g E3 by the choice of f, thus YV ¢ Pe,e,. Finally, it follows from the second
property of f that y(k) = (k) for all 2,y € Y. O (Lemma)

Now to accomplish the proof of the theorem, it suffices to show that for every
countable set W = {a;:k € N} C 2V in the ground universe, P, forces that
there is & such that x(k) ¢ W. The set X = {a € (2M)¥; Vn(z(n) € W)} is Borel,
more exactly, lightface I79. We claim that X does not belong to Pge,. Indeed
otherwise X ¢ S by the result of Exercise 14.9.1. Then (Lemma 14.6.1) there
exists a continuous injection f: (2M)N — X S satisfying = E; y <= f(2)Es f(y)
for all @,y € (2NN and also such that

2 2(0) Boy(0) = = f(x) (ko) Eo f(y)(ko) == f()(ko) # f(y)(ko)

for all =,y € (2M)™. It follows that {w(ky):z € Z } is uncountable, where Z =
ran f C X NS, yet {@(ko): @ € X} C W is countable, a contradiction.

Thus X ¢ Pg,e,. Therefore for every set ¥ € Pg g, the difference Y ~ X still
belongs to Pge,. We leave it to the reader to verify that then every Y € Pgp,
forces that x does not belong to the set X = {x € @MYV (2(n) € W)} (as
defined in the generic extension), and hence forces Ik (x(k) ¢ W ), as required.

O (Theorem 14.9.3)

REMARK 14.9.5. ZAPLETAL has considerably strengthened Theorem 14.9.3 by
showing that Pg,g, forces the collapse of the old continuum ¢ to N,
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To prove the result, begin with a sequence of ¢ mutually disjoint BERNSTEIN*
sets Xo C 28, where a < ¢. Coming back to the beginning of the proof of Theo-
rem 14.9.3, define, in the extension, «, to be equal to the first index a < ¢ such
that X, contains x(n). (Recall that x(n) is an “old” real by Lemma 14.9.4.)

We claim that the sequence {c, }nen contains all ordinals « < c.

Suppose toward the contrary that a condition D € Pgg, forces that some
a < ¢ does not belong to the sequence. Arguing as in the proot of Lemma 14.9.4,
we can find an index & and a perfect set A C 2% such that for every a € X the
set Py ={x € D:a(k) = a} is still a condition in Pgg,. Choose any x € X N X,.
Then D, forces ap = «, a contradiction.

Unfortunately this method does not work for the forcing notion Pgg,. (See
Theorem 11.7.4 with a much weaker result.) a

4 A Bernstein set is a set that a has non-empty intersection with every perfect set. The
construction of ¢-many mutually disjoint Bernstein sets is a rather standard application of the
axiom of choice.




CHAPTER 15

Summable equivalence relations

Recall that given a sequence of non-negative reals r,, the summable ideal
S,y consists of all sets ¥ € N such that fpr (@) = > onew™n < 4oco. The
corresponding equivalence relation E{r.} is defined on 22 (N) so that = Epy y iff
T Ay € Sy, and on 2V the same way, with o A b = {n:a(n) # b(n)} for a,
bec2N In particular, these families contain the ideal

jz = y{l/”} = {','L‘ CN: Zne.v:, n>1 n! < +OO}

and the equivalence relation E, = E , defined on 2N so that

cEpoyy iff Z n ! < 4oo.

ncxzAy, n>1

This chapter is mainly devoted to the prootf of Theorem 5.7.4 of HJORTH, the 4th
dichotomy theorem, saying that if E <p E2, then either E is essentially countable
or B ~p E;. Two results related to the forcing by E,-large sets are proved in the
end of the chapter.

We begin with a few remarks related to connections between different families
of summable ideals and equivalence relations.

15.1. Classification of summable ideals and equivalence relations

Suppose that r,, n € N, are non-negative reals. If 3>, < 400, then obvi-
ously &,y = Z(N), therefore E(.,} makes everything equivalent. This allows us
to concentrate on the non-trivial case D onTn = -too. FARAH [Far00, §1.12] gives
the following classification of summable ideals based on the distribution of reals 1,
satisfying Zi‘;o rn = +00 as the blanket assumption:

(S1) Atomic ideals: there is £ > 0 such that the set A, = {n:r, > e} is
infinite and satisfies ., 1 (N N\ A.) < +o0.

In this case Sy ={rianA ¢ Fin}, and hence the corresponding equivalence
relation E{r.y I8 ~g-equivalent to Eg. KECHRIS [Kec98] calls ideals of this type
trivial variations of Fin: see footnote 1 in Chapter 11.

(S2) Dense (summable) ideals: r,, — 0 (and 37, 7, = +o00).

In this case Eg,. y ~p o by Lemma 6.2.4; therefore, all equivalence relations in this
subfamily are ~g-equivalent to each other and to E{i/n}, that is, to Ej.

(S3) There is a decreasing sequence of positive reals &n — 0 such that all sets
A, = Aepii N Ac,, ave infinite.

181
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In this case still Eg,..} ~p Ea. Indeed, to prove Eg,.  <p Eaz, it suffices to associate

with any n a finite set u(n) C N such that [rn — 3 peuwm) % < 27" and u(n) N
w(m) = @ whenever m # n. The map @ — [J,¢, u(n) reduces Eg 3 (as an

equivalence relation on Z(N)) to Ep. To prove E» <g By}, note that under the
assumptions of (83) a finite set u(n) € N can be associated with an arbitrary n
so that | ;11- — Y keu(n) el < 27" and u(n)Nu(m) = @ whenever m # n. The map
& — e, w(n) reduces Ep to Egn .

(S4) Ideals of the form Fin @ dense : there is a real € > 0 such that the set Ae
is infinite, fig,, 3 (NN Ag) = 400, and lim, oo, nga, 1m = 0.

In this case Ey,. 3 ~p E2 X Eo by the above, thus in fact still Ey,  ~g E2 because
Eo <p Ez ~p E2 X Ea.

To conclude, every summable equivalence relation Eg,. 3 (where 7, > 0 and
Z“ Tn = +00) iIs ~p-equivalent either to Eo or to E,. Let us concentrate on the
summable equivalence relation Ez, or Eyi/ny, which is the same.

15.2. Grainy sets and the two cases

Beginning the proof of Theorem 5.7.4, note that the same simplifying argument
based on Corollary 5.2.2 as in Section 11.3 and Section 14.2 enables us to reduce
Theorem 5.7.4 to the following particular form.

THEOREM 15.2.1. Suppose that D C 2V is a 3} set. Then either Ey [ D is
essentially countable! or E; Cg Ep | D, and hence Ex [ D ~p E2.

The two cases of the theorem are incompatible because E; is not essentially
countable by Corollary 13.9.2. It is a major open problem (see Question 5.7.5) to
figure out whether the “either” case can be strengthened to Ex [ D <3 Ep.

PrROOF (Theorem 15.2.1). As usual we can assume that D C 2N is a lightface
51 set. The continuation of the proof below in this chapter will be accomplished
in Section 15.5.

Several new definitions are involved in the proof of Theorem 15.2.1. For a,
be 2N put? 8(a,b) = cans %, where a Ab = {n:a(n) # b(n)}. The value of
8(a,b) is a non-negative real or +oo, and a E» b is equivalent to &(a,b) < 4o00.

The following notation will be useful below. Put 8;"(a,b) = 3=, conp, k<nem

TN

for 1 < k < m, and accordingly 8°(a,0) = 3 conb . k<n<oo % . Define 8(a)
= l and similarly 87 (a) and 87°(a). The next definition introduces two
«a(n)=1 n Y Ok k
key notions: galaxies and grainy sets.

DEFINITION 15.2.2. If a € A C 2Y and ¢ € Q% then Gal%(a), the g-galazy
of a in A, is the set of all b € A such that there is a finite chain a = ag, a1,...,
a, = b of reals a; € A satisfying 6(a;, a;41) < g for all 1.

A set A C 2N is g-grainy, where ¢ € Q" iff 8(a,b) < 1 for all a € A and
b e Gal?(a). A setis grainy if it is g-grainy for some ¢ € Q™. a

For instance, all sets of &-diameter < 1 are g-grainy for all g.

1 Recall that essentially countable means Borel reducible to a (Borel) countable equivalence
relation, or, equivalently, Borel reducible to Eco = E(F2,2).

2 As % is not defined for n = 0, the default domain of summation will be [1,co) in this

chapter. For instance, 37, c,ap % is understood to be 35, coab, n>1 % .
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LEMMA 15.2.3. Suppose that A C 2V and ¢ € Q. If a,b € A, then the
galazies Gal’ (a) and Gal%(b) either coincide or are disjoint.

If 8(a,b) < +oo for all a,b € A, then the number of different galazies
Gal%(a), a € A, is at most countable.

Proor. To prove the last claim, suppose toward the contrary that there is an
uncountable set B C A such that Gal?(a) N Gal%(b) = @ for any two different «,
b€ B. Fix an arbitrary a € A. Note that b ¢ Gal%(a) and 8(b,a) > ¢ forall b #a
in B. On the other hand, as 6(a,b) < +oco for all b € B, there is m and a still
uncountable set B’ C B such that 827 (a,b) < ¢/2 for all b € B'. Now take a pair
of b#V € B' with b[[0,m)=1¥"1[0,m). Then §(b,¥) < q, a contradiction. [

CLAM 15.2.4. Any q-grainy X1 set A C 2% is covered by a q-grainy A} set.
PrROOF. ® The set Cop = {b € 2¥ : AU {b} is g-grainy} is II} and A C Cy,

hence, there is a A} set B; with A C By C Cy. Note that AU {a} is ¢-grainy for
all a € By. It follows that the I7] set

Cy={be By: AU{a,b} is ¢g-grainy for all a € B,}

still contains A, hence, there is a Al set B, with A C B, C C; C By. Note that
AuU{a1, a2} is g-grainy for all ay, ay € B,. In general, as soon as we have a A% set
B, with A C B,, and such that AU{ay,...,a,} is ¢-grainy for all ay,...,a, € By,
then the IT{ set

Cp={becB,:AU{ay,...,a,,b} is ¢g-grainy for all ay,...,a, € B,}

contains A, hence, there is a Al set B,y; with A C B, 11 C C, C B,.

As usual in similar cases, the choice of the sets B,, can be made effective enough
for the set B =), B, to bestill Al, not merely Borel. On the other hand, A C B
and B is g-grainy. O (Claim)

Let S be the union of all grainy A} sets, this is the structural domain here.
Accordingly, H = 2% \(S is the chaotic domain.

EXERCISE 15.2.5. Using ordinary computation, prove that the set S is IT{ and
the set H is X1, O

‘We have two cases.

Case 1. The set D in Theorem 15.2.1 (assumed to be X7 ) satisfies D C 8.
We will prove that then E; [ D is essentially countable.

Case 2. DN H # &. It will be shown that in this case E; ~g Eo [ D.

If D is not lightface X}, then it is 2} (p) for some parameter p € 2V, In this
case we should consider the union S(p) of all grainy Al(p) sets and its complement
H(p) instead of S and H, but the arguments would remain essentially the same.

15.3. Case 1

The next theorem shows that the Case 1 assumption leads to the “either” case
of Theorem 15.2.1.

3 The result can be achieved as a routine application of a reflection principle, yet we would
like to show how it works with a low level technique.
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THEOREM 15.3.1. If D C 2% is an arbitrary X} set and D C S, then Ey | D
is essentially countable.

PROOF. By Separation (Theorem 2.3.2) there is a Al set D’ such that D C D’
and still D’ C S. Thus it can be assumed that D is Al

Fix a standard enumeration (W), e € Cod(Al), of all Al subsets of 2V,
where, as usual, Cod(A}) C N is a II] set; see Section 2.8. By Kreisel Selection
(Theorem 2.4.5), there exist A] functions @ — e(a) and a — q(a), defined
on D and with values in Cod(A}l) and Q7 respectively, such that given a € D
the A set W(a) = (W)e(, contains a and is g(a)-grainy. The final point of our
argument will be an application of Lemma 7.6.1, with p being a derivate of the

function G(a) = Gal;{‘(,(z)a)(a)-

Cramv 15.3.2. If a € D, then v, = {G(b) : b € [a]g,N D} is at most countable.

PROOF. Otherwise there is a pair of elements e € Cod(Al) and ¢ € Q7 and
an uncountable set B C [alg, N D such that ¢(b) = ¢ and e(b) =e for all b € B
and G(b') # G(b) for all different elements b # &’ in B. Then the sets G(b), b€ B
are g-galaxies in one and the same set W(a) = W(b) = (W).. Lemma 15.2.3 ends
the proof. O (Claim)

It follows that a — G(a) maps every Ej-class in D onto a countable set of
galaxies G(a). Note that the sets G(a) are galaxies in different sets W(a) and
with different steps g(a); therefore, different G(a) are not necessarily disjoint. Yet
a weaker result holds. Put ¢(a) = J,,{0[m:b € G(a)}. Thus p(a) C 2<% codes
the Polish topological closure of the galaxy G(a).

CramMm 16.3.3. If a,b € D and —aEx b, then b does not belong to the topo-
logical closure of G(a), in particular, b|m & p(a) for some m.

Proor. Take m big enough for 6{'(a,b) > 2. Then u = b | m does not belong
to ¢(a) because every o' € G(a) satisfies 8(a,a’) < 1. O (Claim)

EXERCISE 15.3.4. Prove that the following sets belong to 3} :
I'={{a,b) :a € DAbe G(a)} and @ = {{a,u):a€ DAucEp()}. 0

This result does not imply that a — ¢(a) is a Borel map. Yet we can
change it appropriately to get a Borel map with similar properties. It follows
from Claim 15.3.3 and Kreisel Selection that there is a A function p: Dx D — N
such that b | p(a,b) & o(a) for every pair of a,b € D with — a E b. Define the
following 5] equivalence relation on D:

aFb it e(a) = e(db) A qla) = q(b) A G(a) = G(b).

(To see that F is X7, note that G(a) = G(b) is equivalent to b € G(a), and that
I' is X! by Exercise 15.3.4.) Then for every a € D, the set

Pla) ={bp(a’,b):d';be DAaFa A—a' Eyb)} C 2<¢
does not intersect ¢(a), and hence the ] set
U ={{a,hy:a€e DAheY(a)}

does not intersect ®. Note that by definition ¥ is F-invariant w.r.t. the first ar-
gument; that is, if a,a’ € D satisfy a F o/, then (a) = (a’). It follows from
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Lemma 10.4.2 that there exists a Al set @ C D x 2<% satisfying ® C © but
¥ NO =3, and F-invariant in the same sense. Then the map
ar ¥(a)={h:0(a,h)}
is obviously Al.

CraM 15.3.5. Suppose that a,b € D. Then aFb implies 9(a) = I(b), while
—aBxb implies 9(a) # I(b).

Proor. The first statement holds just because © is F-invariant. Now suppose
that — a Ez b. Then by definition h = b | u(a,b) € ¥(a), therefore h & 9¥(a). On
the other hand, h € (b)) C J(b). O (Claim)

Cramv 15.3.6. If a € D, then the set T, = {9(b) : b € [a]lg, N D} is at most
countable.

PRroo¥r. Suppose that b,¢ € [a]g, N D. It follows from Claim 15.3.5 that if
G(b) = G(c), e(b) = e(c), and q(b) = g(c), then I(b) = 9I(c). It remains to note
that G takes only countably many values on [alg, N D by Claim 15.3.2. O

Finally, note that if a,b € D and — aE; b, then ¥(a) # 9¥(b) by Claim 15.3.5.
Thus o witnesses that E, [ D is essentially countable by Lemma 7.6.1.

O (Theorem 15.3.1 and case 1 in Theorem 15.2.1)

15.4. Case 2

Accordingly, we obtain the “or” case in Theorem 15.2.1 in the assumptions of
Case 2. We prove:

THEOREM 15.4.1. If D C 2% 45 an arbitrary %] set and DNH # &, then
ExCp B [ D.

PROOF. Thus let us assume that the X| set H = DN H is non-empty. Note
that there is no non-empty X} grainy set A C H by Claim 15.2.4.
Put Bs ={a €2V :sCa} for s € 2<¥, a basic open nbhd in 2V,

DEFINITION 15.4.2. Suppose that X,V C 2N, We write 8°(X,Y) < ¢ iff
Vae X3beY (8;°(a,b) <e) and VbeY Jae X (6;°(a,b) <e).
Inequalities like 6;::/ (X,Y) < e will be understood accordingly. | o

To prove that E» Ty Ex [ H, we define an increasing sequence of natural num-
bers 1 = ky < k1 < kg < -+, and also objects Ag, g, for every s € 2<%, which
satisty the following list of requirements 1°-6°,

1°. If s € 2™, then g, € 2% and s C t = g, C g;.
2°. @4 A CHNA,, Asis X, and sCt= A, C A,.

3° If s € 2, then &;° (Agn, As) < 27772, where 0" is the sequence of n
Zeros.

4°. 10 s € 2", 1 <m <n, s(m) =0, then 8" (gy,gom) < 277",

5° If s€2", 1 <m<n, s(m)=1, then |5I,::Z“ (gs, gom ) — %| < g m-l
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6°. For every n, a certain condition, in terms of the Gandy—Harrington forcing
and a fixed countable transitive model 9 of ZFC™, similar to 2° in-
Section 10.2 or 2° in Section 10.6, related to all sets Ay, s € 27, so that,
as a consequence, [, Aqpn is a singleton for all a € 2N,

It obviously follows from 4° and 5° that

7°. If 5, €27, 1 <m < n, s(m) = t(m), then f&lz:“(gs,gt)l < 27™ but if
s(m) # t(m), then [547 (gs,9e) = | <27

m

With such a splitting system, we can accomplish the proof of Theorem 15.4.1
as follows. For every a € 2N, define ¢(a) = J,, gajn, so that ¢(a) € 2V is the only
element satisfying gq;n C @(a) for all n. It follows by 6° that ¢(a) = ), Aatn,
and hence ¢ : oN A4, C H C D is a continuous 1-to-1 map.

LEMMA 15.4.3. The map ¢ is an embedding of Ea into Ep [ H; that is, the
equivalence a Ey b <= w(a) Ez ¢(b) holds for all a,b e 2V,

PROOF. By definition 8(p(a), (b)) = 1im, eo 85 (gatn, goin). On the other
hand
|6?lcu (ga,[nagbln) - 6’1?(0 fn; b f”)| < Zm<n2_m <2
by 7°. Therefore |8(¢(a), (b)) — 8(a,b)| < 2, as required. O (Lemma)

O (Theorem 15.4.1 modulo the construction 1°-6°)
This accomplishes case 2 in the proof of Theorem 15.2.1.

O (Theorems 15.2.1 and 5.7.4 modulo the construction 1°~6°)

15.5. The construction of a splitting system

The construction of a system of numbers, sets, and sequences satisfying 1°—6°
goes on by induction. To begin with, we set kg = 0, ga = A, and Ap = H. Suppose
that, for some n, we have the objects as required for all previous levels n’ < n,
and extend the construction to the next level n+ 1.

The following shrinking method works. Suppose that o € 2™, and @ # A C A,
is a X1 set. Put

(1) gn = {a € Agn:dbe A (5;‘; (CL, b) < 2—11—2)},

and then
Al ={a€ A;:3be Ay (87 (a,b) < 274}

for all s € 2" except for s = o, where we put A, = A. Obviously all sets A/, are
non-empty Y{, and the system of those sets still satisfies 3°. Applying this con-
struction 2" times, we get a system of non-empty X} sets A% C A, still satisfying
the same requirements, and in addition satisfying 6° already for the step n + 1.
Redenote by A, the resulting sets A, s € 2",

Now carry out the splitting step. Recall that every non-empty 31 subset of H,
in particular, Agn, is not grainy, in particular, not 27" ?-grainy. It follows that
there is a chain ag,a1,...,a; in Ag~ such that &(ag,q;) > 1 while 8(a;,ai41) <

27772 for all i. Then we have &(ag,a;) > % but 8(ag,a;) — % < 272 for some

i. Put a® = ag and a! = q;. (If n =0 in the inductive step 0 — 1, then % could
be replaced by 1.) Note that a® [ k, = a' | k, by 1° and 2°; therefore, there is
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kn+1 >k, still satisfying |6§:“(a0,a1) = —’1;| < 272 According to 3°, for every
s € 2™ there exist B?, bl € A, with 5?;(@"',172) < 2772 for 4 = 0,1. We can, of

83 7s
course, assume that bj. = a!. Moreover, the number k,4; can be chosen large
enough for the following to hold:
(2) 8, (Bh,a') <27 forall s€2" and i=0,L

Put gg~; = bl [ kypy1 for all s74 € 271, This definition preserves 1°. To check
4° for s’ = 70 € 2! and m = n, note that

k?l kn b f S
8 (g, goner) = 804 (0, a”) <277
To check 5° for s’ =571 € 2! and m = n, note that

[0 (g5, o) = | < 837 (by,a!) 18,77 (0 at) = | < 27
Finally, let us define the sets Ay C A,, for all s’ = s7i € 2"F! (where s € 27
and 4 =0,1). To fulfill 2°, we begin with A’ , = A,N %, . Thisis a I subset
of A, containing bi. To fulfill 3°, define Agn+1 to be the set of all a € Aji1 such
that

Vs =s"ie2" dbe AL, (69°

kn+1 <a’? b) S 2_77'_3) 7

this is still a 3] set containing b3, = a® by (2). Finally, we put
Agj={be A, :3b e Agnrr (8, (a,b) <27"77)}

for all s7i # 0"+, 0 (The construction)

This accomplishes the construction of a system of sets Ag, sequences gs, and
numbers k,, satisfying conditions 1°—6° of Section 15.4, and the proof of Theorems
15.2.1, 15.4.1, and 5.7.4; see the end of Section 15.4.

15.6. A forcing notion associated with E,

Following Section 11.7 and Section 14.9, consider a forcing notion Pgg, that
consists of all X1 sets X C 2V such that E; | X ~p E;. By Theorem 15.2.1,
the associated ideal #g,, consists of all Borel sets X C 2N such that E [ X is
essentially countable. Note that #gg, is a o-ideal by Corollary 7.3.2.

EXERCISE 15.6.1. Prove following Exercise 14.9.1 and Lemma 14.9.2:
(a) A X set R C 2N belongs to Pg,e, iff RZS.
(b) Every set X € Pg,g, contains a closed subset ¥ € Pg,e,, ¥ C X.
(c) Moreover, if X € Pgg, and € > 0, then there exists a continuous injection

@ : 2N — X satistying |8(z,y)—6(p(2), p(y))| < e for all x,y € 2V, Every
such a map is obviously a reduction of E; to E; [ X.

To prove (c), assume as usual that X is a lightface X{ set. Then X ¢ 8§,
and hence we may assume that X C H. Then carry out the construction of A, as
in Sections 15.4 and 15.5, but with all bounds such as 27"~ uniformly replaced
everywhere by % +27=1 The inequality |8(¢p(a), (b)) — 86(a,b)| < 2 in the proof
of Lemma 15.4.3 strengthens to |8(¢(a), (b)) — 6(a,b)| <e. O

Yet there is a substantial difference between Pg,g, on the one hand and Pg,,
Pg,e, on the other hand: Pg g, preserves N;, and moreover,




188 15. SUMMABLE EQUIVALENCE RELATIONS

THEOREM 15.6.2 (joint with ZAPLETAL). Pg.g, forces that every countable set
X C 2N of “ld” elements in the extension is covered by an “old” set Y C 2N
countable in the ground universe.

PROOF (sketch). Suppose that, in the ground universe, {D,, },en is a sequence
of dense subsets D,, C Pgg,. We may assume that each D, consists of closed sets.
Fix X¢ € Pg,g,. Carry out the construction, as in Section 15.5, of objects satisfying
the list of requirements 1°-6° in Section 15.4, in which conditions 2° and 6° are
amended as follows:

2. A; C By, N KXo, As € Peyg,, As isclosed, and s Ct = A, C A,.
6'. If s € 2", then A, € D,,.

There is no need here in Gandy—Harrington style conditions because the non-
emptiness of intersections of the form (1, Aqjn, a € 2N follows from the assumption
that the sets A, are closed.

The shrinking method of Section 15.5 (in the step from n to n + 1) works in
the following slightly changed form.

Note first of all that if all A, s € 2", are closed sets in Pg,g, satisfying 3°
in Section 15.4, and A C A, for some o € 2" is still a closed set in Peg, , then
the set Afj. defined by equation (1) in Section 15.5 is a closed non-empty subset of
Agn. We claim that A}, € Pgp,.

Indeed, otherwise E; | Aj. is an essentially countable Borel equivalence relation
by Theorem 15.2.1. On the other hand, by definition for every a € A, the set
F(a) = {be A : 67 (a,b) < 2772} is a non-empty closed subset of Af.. Let
f(a) denote the least, in the sense of the lexicographic ordering of 2V, element
of F(a). Then f is a Borel map A — Aj, satisfying 850 (a, f(a)) < 27772, and
hence 6(a, f(a)) < co for all @ € A. It follows that f is a Borel reduction of E, | 4
to Ea [ Ajn. Thus Ep [ A is essentially countable since Ej [ A}, is also. However,
Ez ~g E2 [ A by the choice of A. Therefore, E; is essentially countable, contrary
to Corollary 13.9.2. Thus Aj. € Pg, .

The sets

Al ={a € Ay :Fbe Al (65 (a,b) <2772
s kn

are closed sets and conditions in Pgg, by the same reasons. Thus the shrinking
method works within the collection of closed sets in Pg,E, .

Now let us review the splitting step in Section 15.5. Suppose that A, s € 27,
are closed sets in Pg,g, satisfying the requirements at the level n and below. Fix a
parameter p € 2N such that all sets 4, s € 2", belong to Al(p). Then As Z S(p),
where S(p) is the p-parametrized version of S, since otherwise E, | A, would be
essentially countable by the p-version of Theorem 15.3.1. We can assume w.l.o.g.
that in fact Ay C H(p) for all s. (Otherwise apply the shrinking method modified as
just above. This allows us to successively shrink the sets A, with all requirements
preserved, so that the resulting sets are subsets of H(p).) In this assumption, the
sets A, are not grainy in the p-parametrized sense. This allows us to carry out the
last part of the splitting construction (in the step n — n + 1) as in Section 15.5:
the choice of elements a®, a' € Agn, etc.

Such a construction results in a closed set X ¢ Pe,e, such that for every n
there is a finite subset {X1,..., X, € D,} satisfying X € X;U---UX,. Now

to prove the theorem, it suffices to define D,, to be the family of all conditions in
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Pe,e, which decide the value of #(n), where ¢ is a given Pg,g,-term forced to be a
countable sequence of “old” reals. (1

1t is unclear whether the forcing Pg g, preserves larger cardinals. On the other
hand, Pg,g, has the minimality property!

THEOREM 15.6.3 (joint with ZAPLETAL). Pg,g, forces the generic real to be
minimal over the ground universe.

PROOF (sketch). Since the preservation of R, is established by Theorem 15.6.2,
it suffices to prove that for every X e Pee, and a continuous f : X — 2V there is
aset Y € Pk, ¥ C X, such that f[Y is either a bijection or a constant.

Assume as usual that f is Al while X is 21, Then it can be assumed w.Lo.g.
that X C H.

Suppose that there is no Y € Pgg,, ¥ C X, such that f 1Y a constant,

LEMMA 15.6.4. If X' € Pge,, X' € X, and r,v > 0, then there exist points
a,b € X such that [6(a,b) —r| <~ and fla) £ f(b).

PROOF. In view of the result of Exercise 15.6.1(c), we can suppose w.lLo.g. that
in fact X = X’ = 2", It is even more convenient to assume that

X=X'=H, where H={ac2V:Vk<~y!(alk)= 0)}.

Prove first that there exist a,b € H with §(a,b) < +oo and f(a) # f(b). Indeed
suppose toward the contrary that f satisfies

5(a,b) < +o0 = f(a) £ £(b).

In other words, f isan (E — Agu)-invariant map in the sense of Section 13.3, where
E=E|H.

Now we have to come back to the discussion in Section 13.9. The ideal
S = {z€ AH:minz > y71} is clearly a non-trivial Borel special ideal. The
equality Ayu obviously belongs to the family %, of Definition 13.5.2. Tt follows by
Theorem 13.9.1 that E is gen. Agu-ergodic. Therefore f is a gen. Aju-constant,
that is, f(a) = f(b) for all a, b in a comeager set C' C H. However, every comeager
C=N,U.C 2N where each U,, C 2N is open dense, contains a subset ¥ € Pe,e,,
Y € C. We leave it as an exercise for the reader to get such a Y by means of the
construction in Section 15.5, modified so that all sets A, are Baire intervals in 2N
satisfying A, C U,, whenever s € 2"*. Yet the existence of such a set contradicts
the assumption in the beginning of the proof of Theorem 15.6.3.

Thus there there exist a,b € H with §(a,b) < +oo and f(a) # f(b). We may
assume w.l.o.g. that 8(a,b) < . (If not, then connect ¢ with b by a finite chain
@ = g, a1, .., Gn = b of elements a; € H such that 6(a;,a;11) < for all 4. Such
a chain exists by the choice of H.) Now choose any ¢ € H satisfying 6(a,c) =r. If
f(a) # f(c), then the pair a,c proves the lemma. Otherwise, the pair b, ¢ works
as required. O (Lemma)

Come back to the theorem. Slightly modifying the construction in Section 15.5,
note that it suffices to prove the following. Given a system of non-empty X} sets
As; C X, s € 2", satisfying 8° in Section 15.4, and & > 0, there exists a system of
non-empty X sets A, C A satisfying 3° in a slightly weaker form,

(x) 8p (Aon, Ag) <272 4 ¢ for all s € 27,
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and also satisfying the following condition:

(1) forevery o # 7 € 2", there is a number n = n(o, 7) such that f(a)(n) =0
for all a € A, but f(a)(n) =1 for all a € A”, or conversely f(a)(n) =1
for all @ € AL but f(a)(n) =0 for all a € A”.

Since the construction can be carried out iteratively so that each single step (of
27(2" — 1) total steps) takes care of a single pair of ¢ # 7, it suffices to maintain
the construction of sets A’ so that, together with (), condition (1) is fulfilled only
for one given pair of o # 7 € 2",

Choose, by the lemma, a pair of points ¥,4" € A, such that &§(/,0") < ¢
and f(V') # f(b"). As the sets A, satisfy 3°, there exist points @ € Ag» and
c € A; such that §(V,a) <2772 and 6(a,c) < 27" 2. Let b be that one of the
two points b, b which satisfies f(c) # f(b) (or either of them if both satisfy),
say f(c)(n) =0 # 1 = f(b)(n) for some n. Then obviously &(a,b) < 27" 2 +e¢.
It remains to choose a; € Ag for all s € 2™ so that agr = a, ay = b, ar = ¢,
and 8(agn,as) <2772 for all s & {b,c}. The construction of the A’ can now be
accomplished by the same method as at the end of Section 15.5, and we leave it as
an exercise. O (Theorem 15.6.3)




CHAPTER 16

co-equalities

Recall that the equivalence relation cg is defined on RY as follows: = co y if
and only if z(n) —y(n) — 0 with n — oo. This definition admits a straightforward
generalization leading to a family of Borel equivalence relations rather similar to co.
They are called co-equalities, and we will prove that there is a tamily of continuum-
many pairwise <pg-incomparable cy-equalities.

16.1. cp-equalities: definition

The letter D in this context is due to FARAH [Far0lb]. There is not any
association whatsoever with the diagonal, i.e., the true equality.

DEFINITION 16.1.1 (FARAH [Far01b]). Suppose that K is a non-empty index
set and (X ;di) is a metric space for every index k € K. An equivalence relation
D = D((Xx; di)rex) on the cartesian product X =[], Xy is defined so that 2 D y
iff 1im dy{x(k),y(k)) = 0, where the limit is associated with the filter of all cofinite
subsets of K. In other words lim dg{x(k), y(k)) = 0 iff for every e > 0 there exist
only finitely many indices k € K such that dy(z(k),y(k)) > €.

If K =N (the most typical case below), then we write D(X};dy) instead of
D({(Xy; di)ren) for the sake of brevity.

We will be interested mostly in the case when

(¥) X} are Borel sets in Polish spaces Xy, and the distance functions dj, are
Borel maps Xj x X — R, not necessarily equal to the restrictions of
Polish metrics of X,

Then D(Xy;dy) is obviously a Borel equivalence relation on X =[], Xp.

The equivalence relation D(Xy; dy) is non-trivial if 1imsup,_, . diam(X}) > 0.
(Otherwise D(Xy; dx) obviously makes everything equivalent.) ‘

A co-equality is any equivalence relation of the form D({X}; di)ren), where all
sets X are finite. 0O

Every cg-equality is easily a Borel equivalence relation, more exactly, of type
I19. The equivalence relation cq itself is essentially a co-equality (see below); this
explains the meaning of the term “cg-equality”.

The <g-properties of these equivalence relations are largely unknown, except
for the case of o-compact metric spaces (Xy;dy), easily reducible to the case of X
finite (= c¢p-equalities). This case is presented in this chapter. We prove that Borel
reducibility of a cg-equality to another one implies a stronger additive reducibil-
ity of an infinitely generated cg-subequality (Theorem 16.3.2), prove that c¢g is a
<g-largest cg-equality (Theorem 16.4.1), prove Theorem 16.5.1 on the turbulence
of cg-equalities except those ~g-equivalent to Eg and Ej, and finally show that

191
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the <g-structure of cp-equalities includes a substructure similar to (Z(N); C*)

(Theorem 16.6.3).

16.2. Some examples and simple results

The following examples show that many typical equivalence relations can be
defined in the form of ¢g-equalities.

EXAMPLE 16.2.1. (1) Let Xy = {0,1} with dp(0,1) = 1 for all k. Then
clearly the relation D(Xy;dy) on 28 =T, {0,1} is just Eq.

(i) Let Xy = {0,1} with dj(0,1) = k=1 for all k,I € N. Then the relation
D({Xyt; dpt) i gen) on 28%H = HA,‘J{O, 1} is exactly Es.

(i) Genmerally, if 0 = ng < 1y < ng < --- and ¢; is a submeasure on
[ni, Nig1), then let X; = P([n;,ni11)) and di(u,v) = @;(u AN v) for
w, ¥ C [ng, niy1). Then D(X;d;) is isomorphic to E », where

& =Exh(p) = {z C N: lim p(zN[n,o0)) = 0}

and @(a) = sup; wi(z NN, nig1)).

(iv) Let, for all k, Xy = R with dj being the usual distance on R. Then the
relation D((Xg; dp)ren) on RM™ is just cq. O

LEMMA 16.2.2 (FARAH [Far01b] with a reference to HIORTH). Bvery cg-equal-
ity D = D(Xy;dy) is induced by a continuous action of a Polish group.

The domain X = [], X} of D is considered with the product topology.

PRrROOF (sketch). For every k let Sy be the (finite) group of all permutations
of Xy, with the distance pp(s,t) =maxuex, di(s(z),#(z)). Then

G ={g el Sk: rlim pr(gr,ex) =0}, where e € S is the identity,

is easily a subgroup of [, Sk. Moreover, the distance d(g,h) = sup, pr(gk, hr)
converts G into a Polish group, the natural action of which on X, that is, (g z)x =
gr{zr), Vk, is continuous and induces D. O

Finally, let us show that the case of o-compact spaces X; does not give any-
thing beyond the case of ¢g-equalities.

LEMMA 16.2.3. Suppose that in the asswmptions of Definition 16.1.1(x)
(Xk; dy) are o-compact spaces. Then D(Xy; dy) is ~g-equivalent to a co-equality.

PRrROOF. Suppose that all spaces X, are compact. Then for every % there exists
a finite %-net X € Xy Given z € X =[], Xi, we define 9(z) € X' =[], X} so
that J9(x)(k) is the dj-closest to @(k) element of X} (or the least, in the sense of
a fixed ordering of X}, of such closest elements, whenever there exist two or more
of them) for each k. Then ¥ is obviously a Borel reduction of D(Xy; dy.) to the cg-
equality D(X7; dy).

The general o-compact case can be reduced to the compact case by the same
trick as in the beginning of the proof of Lemma 6.2.2. d
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16.3. cpg-equalities and additive reducibility

The structure of cp-equalities tend to be connected more with the additive
reducibility <, than with the general Borel reducibility.! In particular, we have

LeMmA 16.3.1. If D = D((Xy;di)ren) is a co-equality and D' is a Borel
equivalence relation on a set of the form [, Xi with finite non-empty factors X,
and D' <, D, then D' itself is a cg-equality,

PRrROOF. Let a sequence 0 = ng < n; < ng < -+ and a collection of maps
H;: X! — Hni<k<ni+1 Xy witness D' <, D. For 2/,y' ¢ X/ put
i@,y )= max  dp(Hi(z )i, Hy(y' i) -
i <k<niy
Then easily D' = D((X]; d}.)ren). 0

It is perhaps not true that D <y D' implies D <, D’ for any pair of ¢g-
equalities. Yet a somewhat weaker statement holds by the next theorem of FARAH
[FarO1b].

THEOREM 16.3.2. If D= D({Xy;dp)ren) and D'= D((X};d})rcn) are co-
equalities and D <g D', then there is an infinite set A C N such that the cg-
equality D= D((Xi; di)rea) satisfies Dy <, D'

PROOF. Define Xc =[], Xy and X{ =[], . X} for any set C'C N, and
de (%, y) = supyee di(a(k), y(k)) for all @,y € X’. Suppose that

v o T sl <
v:X = Hk'EN/\]" - X' = Hk'EN /\A"

is a Borel reduction of D to D’. Then there exists an infinite set A’ C N such that
D((Xw; di)rear) <c D' (via a continuous reduction); this can be proved analogously
to the second claim of Lemma 5.3.1. Thus it can be assumed from the beginning
that 9 is a continuous reduction of D to D’.

To extract an additive reduction, we employ a version of the construction used
in the proof of Theorem 6.3.1(i). In fact our task here is somewhat simpler because
the given countinuity of 9 allows us to avoid the Cohen genericity arguments.

Put [s] = {zcX:a|u=s} forany « € N and s € X,. Consider the
closed set W = (;cy[s;] of all points @ € X such that a | (ng,ni41) = s for
all 4. Arguing approximately as in the proof of Theorem 6.3.1(1), we can define
an increasing sequence 0 = kg = ng < k; < ny < ky < ng < -+ and elements
$i € X(n;,ni41) such that for all w,v € Xpo,n;) and all @,y € X[, | o) satisfying
x| (nj,nj41) = y | (nj,ni41) = s; for all indices j > ¢ and u | (nj,nj41) =
v [ (nj,njq41) = s; for all indices j < i,2 the following holds:

(a) YuUs;Ua) [0, kig1) =0(uUs; Uy) [ [0, kir), and
(b) dig,11,00) (P (wUs; Ua),d(vUs; Uz)) < 71 .

Put A = {n;:i € N} and fix z € X,. For any 1, if £ € X,,, then define
2% € W so that 2%¢(n;) = ¢, 2%(n;) = 2(ny) for all j # 14, and 2¢ [(nj,nj41) =8y
for all j. If @ € X4, then define H(z) ¢ X’ as follows:

(1) H(z) | ki, kig1) = 9(z0%0D) | [k ki) for every i€ N.

1 See Section 5.4 on <, and the associated relations <p and ~y .
2 Under this assumption the points uUs; Uz, uUs; Uy, vUs; Uz in (a), (b) belong to W.
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Clearly, H is a continuous map from X4 to X’ (in the sense of the Polish product
topologies). Moreover for every ¢ the value H(z) | [k;, kiy1) obviously depends
only on z(n;). Thus to accomplish the proof of the theorem, we need only prove
that H is a reduction of D4 to D’ .

For any @ € X4, define f(z) € W so that f(z) | A =2 and f(2)|(n;,nj41) =
s; for all j. Then f is a reduction of D4 to D. Therefore it suffices to prove that
9(f(x)) D' H(z) for every x € X 4. For an arbitrary i > 1, let us show that

(2) diy, gy (P(F(2)), H(z)) < 1/3.

The key fact is that by construction, the elements a = f(z) and b = z%(") of W
satisty a | (nj,njq41) =b[(nj,nj41) = s; for all j and in addition a(n;) = b(n;) =
xz(n;). Define an auxiliary element ¢ € W by

cl0,n] =al[0,n] and c¢[[nig1,00)="0b][ni1,0).
Then d{kl_’kiﬁ)(ﬂ(b),ﬂ(c)) < % by (b) and ¥(a) | [ki, kiy1) = 9(e) | [ki, kig1) by
(a). (Note that (b) is applied in fact for the value i — 1 instead of i.) It follows
that d[ki,kiﬂ)(ﬂ(a)’ﬁ(b)) < % . However, H(z) [ [ki, kit1) = 9(0) [ [ki, kita) by
(1). This proves (2), as required. O

16.4. A largest cg-equality

We define cpox = D(Xj;dy), where X = {0, %, %,...,1} and d is the
distance on X}, inherited from the real line R. The next theorem says that cpay is
<g-largest among all cg-equalities. The proof will show that in fact D <4 cpax in

(ii), in the sense of the additive reducibility.

THEOREM 16.4.1 (FARAH [Far01b] with a reference to OLIVER).

(1) Cnax ~™B €0,
(ii) If D is a co-equality, then D <p Cpay .
It follows from (i) and Lemma 6.2.3 that cpay ~p Zo.
PrOOF. (i) It is clear that cy.y is the same as ¢p [ X, where X C RY is defined
as in the proof of Lemma 6.2.3, where it is also shown that ¢p ~p ¢g [ X.
(ii) To prove D <g Cpax, it suffices by (i) to show that D <g €g. The proof is

based on the following:

CrAIM 16.4.2. Bvery finite n-element metric space (X ; d) is isometric to an n-
element subset of (R";p,), where p, is the distance on R™ defined by pn(z,y) =

maxicn (7) — y(0).
Proor. Let X = {xy,...,2,}. It suffices to prove that for every k # | there
is a set of reals {ry,...,r,} such that |r, —r/| = d(xy, ;) and

(1) |ri — 5] < dij = d(zy, @) : for all 4,7.

We can assume that k=1 and [ = n.
Step 1. There is a least number hy; > 0 such that (f) holds for the reals
{ri} = {0,0,...,0,h} for all 0 < h < hy. Then, for some index k, 1 < k < n,
(.

n—1 times
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we have h; — 0 = dj,, exactly. Suppose that k # 1; then it can be assumed that
k=mn—1
Step 2. Similarly, there is a least number hy > 0 such that (1) holds for the
reals {r;} = {0,0,...,0,h,hy + A} for all 0 < h < hy. (For example, hy = 0 in the
N’
n—2 times
case when in Step 1 we have one more index &' # &k such that hy = djs.) Then,
for some k,v, 1 < k<n-—1<v<n, wehave hy —0 = dy, exactly. Suppose that
k # 1; then it can be assumed that k =n — 2.

Step 3. Similarly, there is a least number hs > 0 such that (1) holds for the
reals {r;} ={0,0,...,0,h,ha + h,hy + ho + h} for all 0 < h < hz. Then again, for
N e’

n—3 times
some k,v, 1 <k <n-—2<wv<n, we have hg — 0 = di, exactly. Suppose that
k # 1; then it can be assumed that k =n — 3.

Kt cetera.

This process ends, after a number m (m < n) steps, in such a way that the
index k obtained at the final step is equal to 1. Then (}) holds for the numbers
{Oa 0> ey 07 Trn—m+1Tn—m+1y. .. >7’1zv}, where Tn—m+j = hm + hm*—l + 4+ hm*j+1

n—m times
for each 7 = 1,...,m. Moreover, it follows from the construction that there is
a decreasing sequence n = ko > ki > kg > -+ > k, = 1 (g < m) such that
Thi = Thip1 = kyy,k; €xactly for every 4. Then dy, < 37, 7k, —7%,,, by the triangle
inequality. But the right-hand side is a part of the sum r, = hy + -+ + A, and
hence r,, > di,. On the other hand we have v, < dy, by (t). We conclude that
7y = d1n, as required. O (Claim)

We come back to the proof of (ii), that is, D <p ¢y for an arbitrary cp-equality
D = D(Xg;di) on X = [y Xi, where each (Xj;dy) is a finite metric space.
Let nj be the number of elements in Xj,. By the claim, let 1 : X — R™ be an
isometric embedding of (X ;dy) into (R™;p,, ). It easily follows that the map
YI(x) = no(wo) “m(z1) "m2(22)” -+ (from X to RY) reduces D to cp.

O (Theorem 16.4.1)

16.5. Classification

Recall that for a metric space (A;d), a rational ¢ > 0, and a € A, the galaxy
Gal%(a) is the set of all b € A which can be connected with a by a finite chain
a=ag,01,...,0, =b with d{a;,a;41) < q for all 4. Define, for 7 > 0,

6(r,A) = inf {g € Q" :Ja € A(diam (Gal%(a)) > r)}
(with the understanding that here inf @ = 400), and
A(A) ={d(a,b):a#be A}, sothat diam A= sup(A(4A)U{0}).

Now suppose that D = D(X;dy) is a cp-equality on a set of the form X =
[Iren X&- The next theorem of FARAH [Far01b] shows that basic properties of D
in the <g-structure of Borel equivalence relations are determined by the following
two conditions:

(col) liminfy_,o 6(r, Xx) =0 for some r > 0.
(co2) Ve >03de €(0,e) 3%k (A(Xk) N[, €) # @).
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Clearly (col) implies both the non-triviality of D(Xy; dy) and (co2).
THEOREM 16.5.1. Let D = D({X},; di)ren) be a non-trivial €g-equality. Then:
(i) if (co2) fails (then (col) also fails), then D ~g Ep ;
(ii) 4f (col) fails but (co2) holds, then D ~p Ej ;

(iii) 4f (col) holds (then (co2) also holds), then there ewists a turbulent co-
equality D' satisfying Eg <p D' and D' < D.

Thus every non-trivial cp-equality D <p-contains a turbulent co-equality D’
with E3 <z D’ unless D is ~g-equivalent to either Eq or Ez. In addition, (col) is
necessary for the turbulence of D itself and sufficient for a turbulent cg-equality
D’ <g D to exist. The proof will show that in fact < can be improved to <, in
the theorem.

ProoF. (i) To show that Eg <p D, note that, by the non-triviality of D, there
exist a number p > 0, an increasing sequence 0 = ng < Ny < ng < --- , and, for
every i, a pair of elements @y, yn, € Xpn, With dn, (¥p,, ¥n,) = p. For n not of the
form n;, fix an arbitrary z, € X,,. Now, if a € 2V, then define I(a) € ][, Xy so
that ¥(a)(n) = 2, for n not of the form n;, while ¥(a)(n;) = x,, or = y,, if resp.
a; = 0 or = 1. This map ¥ witnesses Eg <p D.

Now prove that D <p Eg. As (co2) fails, thereis € > 0 such that for each &’ with
0 < ¢’ < e, we have only finitely many k with the propery that & < dp(&,n) < e
for some £,17 € Xi. Let G} be the (finite) set of all %—gala.xies in X, and let
¥ X =][, Xi = G =], Gk be defined as follows. For every k, 9(z)(k) is that
galaxy in G, to which x(k) belongs. Let E be the G-version of Ep, that is, if g,
h € G, then gEh iff g(k) = h(k) for all but finite k. As easily E <g Eg, it suffices
to demonstrate that D <z E via 4.

Suppose that z,y € X and J(x) E I(y), and prove x D y (the non-trivial
direction). Suppose toward the contrary that = B y, so that there is a number
p >0 with di(z(k),y(k)) > p for infinitely many k. We can assume that p < %
On the other hand, as ¥(x) EI(y), there is ko such that z(k) and y(k) belong
to one and the same %—galaxy in Xi for all & > kg. Then, for every k > kg
with di(x(k),y(k)) > p (and hence for infinitely many indices k) there exists an
element 2z, € X in the same galaxy such that p < dy(2z(k), 2z;) < e, but this is a
contradiction to the choice of ¢ (indeed, take ¢ = p).

(i1) First prove that if (co2) holds, then Ez <g D. It follows from (co2) that
there exist an infinite sequence €1 > €3 > €3 > -+ > 0, for every 7 an infinite set
Ji € N, and for every j € J; a pair of elements a;;,yy; € X; with d;(2ij,y15) €
[Ei41,€1). We may assume that the sets J; are pairwise disjoint. Then the co-
equality D" = D({{ij, v }; dj)ien, jes;) satisfies both D' <5 D and D' = E; (an
isomorphism via a Borel bijection between the underlying sets).

Now, assuming that, in addition, (col) fails, we show that D <g E3. For all £,
n € N let G}, be the (finite) set of all %—galaxies in Xj. Forevery . € X =[], X;

define 9(z) € G = [}, Gin so that for all k,n, J(x)(k,n) is that %L-galaxy in
G to which w(k) belongs (for all k,n). The equivalence relation

gEh it VaVek(g(k,n)=h(kn)) (9,h € @),

where Vo k means for all but finitely many k, is obviously <y Ejz, so it suffices to
show that D <g E via 9. Suppose that 2,y € X and J(2) Ed(y), and prove z D y




o

16.6. LV-EQUALITIES 197

(the non-trivial direction). Otherwise there is some r > 0 with dy(a(k),y(k)) >
r for infinitely many indices k. As (col) fails for this r, there is n big enough
for o(r, Xy) > % to hold for almost all k. Then, by the choice of 7, we have
G(x)(k,n) # I(y)(k,n) for infinitely many k, hence, 9(z) F I(y), a contradiction.

(iii) Fix r > 0 with liminfy_,. 6(r, X;z) = 0. For every increasing sequence
ng < np <ng <.+ wehave D((X,,, ; dp, >AeN) <g D. Therefore, it can be assumed
that 1imy d(r, Xy) = 0, and further that §(r, X;.) < % for all k. (Otherwise choose

an appropriate subsequence.) Then every set X contains a %—galaxy Vi C Xy
such that diam Yy > . As easily D(Yy;dy) <g D, the following lemma suffices to
prove (iii).

LeEMMA 16.5.2. Assume that v > 0 and each X is a ——galau and that
diam(Xy) > r. Then the co-equality D = D({Xy; di)ren) is turbulent and satisfies
B3 <g D.

ProoF. We know from the proof of (iii) above that E3 <z D. Now prove that
the natural action of the Polish group G, defined as in the proof of Lemma 16.2.2,
is turbulent under the assumptions of the lemma.

That every D-class is dense in X = [], X, (with the product topology on X)
is an easy exercise. To see that every D-class [z]p also is meager in X, note that
by the assumptlons of the lemma evely X}, contains a pair of elementa z, ) with
di(z},x)) > r. Let yi be one of @, z} which is dj-further than 2 from @p. The
set Z = {z € X1 3%k (2(k) = yx)} is comeager in X and disjoint from [z]p.

It remains to prove that local orbits are somewhere dense. Let G be an open
nbhd of the neutral element in G and @ # X C X be open in X. We can assume
that, for some n, G is the jr;—ball around the neutral element in G while X =
{z e XuVE < n (2(k) = &)}, where elements &, € X, k < n, aIe fixed. It
is enough to prove that all local orbits, i.e., equivalence classes of N\,, are cense
subsets of X. Consider an open set ¥ = {y E X:VEk <m (y(k) = &)} C X, where
m > n and elements & € Xy, n < k < m, are fixed in addition to the above

Let # € X. Then x(k) = &, for all k < n. Let n < k < m. The elements
&, and (k) belong to X, which is a E—galaxy. Therefore, there is a chain, of
a length ((k), of elements of Xy, which connects x(k) to & so that every step
within the chain has dg-length < % Then there 1s a permutation gr of Xy such
that g (@(k)) = &, gu(€) = a(k), and di(€, gi(€)) < L forall € € X,

In addition let g be the identity on X, whenever k < n or k > m. This
defines an element g € G which obviously belongs to G. Moreover, the set X is
g-invariant and ¢‘(z) € U, where ¢ = [[}"¢(k). Tt follows that @ ~§ g(x), as
required. O (Lemma)

O (Theorem 16.5.1)

16.6. LV-equalities

By definition an Lv-equality is a co-equality D = D({Xy; di)ren) satisfying the
following condition:

16.6.1. Vimm Ve > 0 Yk Vag,...,z, € Xp (die(zo,zm) < € +
max; <m (25, 2j41)).
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In other words, the metrics involved are postulated to be asymptotically close
to ultrametrics. These sorts of cp-equalities were first considered by LOUVEAU and:
VELICKOVIC in [LV94].

EXERCISE 16.6.2. Put X, = {1,2,...,2%} and define the distance functions
by di(m,n) = loi"’(-'-mfn!——i_l) for all & and 1 < m,n < 2%, Prove that D(Xy;dy)
is an Lv-equality and satisfies (col) of Section 16.5. D

The next theorem of LOUVEAU and VELICKOVIC [LV94] is a major application
of cg-equalities. One of its corollaries is that there exist large families of mutually
irreducible Borel equivalence relations; see below.

THEOREM 16.6.3. Let D = D({Xy; dr)ren) be an Lv-equality satisfying (col)
of Section 16.5. Then we can associate, with each infinite set A C N, an W-equality
Da <a D such that for all A, B C N the following are equivalent:

(i) AC* B (that is, A~ B is finite);
(ii) Da <4 Dp (the additive reducibility);
(iii) Da <g Dg.

PRrOOF. Since D is turbulent, the necessary turbulence condition (col) of Sec-
tion 16.5 holds. Moreover, as in the proof of Theorem 16.5.1 (part (iii)), we can
assume that it takes the following special form for some r > 0:

(1) Each X} is a (min{%, Ln_li_—l})—gala,xy and diam(Xy) > 4r.

The intended transformations (reduction to a certain infinite subsequence of spaces
(Xy;dy) and then of each X to a suitable galaxy Y C X ) preserve the Lv-
condition 16.6.1, of course. Moreover, we can assume that 16.6.1 holds in the
following special form:

(2) di(mo,wp,) < ﬁf + max;<p, di(®i,©ip1) whenever wxg,...,2,, € Xi,

where pp, = H;;& card (X;) and card X is the number of elements in a
finite set X here.

(For if not, then take a suitable subsequence once again.)
We can derive the following important consequence:

(3) For every k there is a set Y, C X}, having exactly card(Yy) = P ele-
ments and such that di(z,y) >» for all @ £y in Yi.

To prove this, note that by (1) there is a set {wg,...,&n} C Xi such that
di (20, Tm) > 4r but dp (@i, 2i41) < r for all 4. We may assume that m is the least
possible length of such a sequence {z;}. Define a subsequence {yo,¥1,...,¥n} of
{z;}; the number n < m will be specified in the course of the construction.

(a) Put yo = xp.

(b) If y; = @) has been defined and there is an index I > i(j), { <m, such
that di(yj;,x1) > r, then let y;,1 = x; for the least such [.
Note that in this case di(y;, yj41) < 2r, for otherwise dy(y;, 1) > 7
because dy(x;_1,2) < 7.

(¢) Otherwise put n = 7 and stop the construction.
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By definition di(y;,yj+1) > r for all j < n, moreover, di(y;,y;4+1) > r for
all j/ < j by the minimality of m. Thus Y, = {y;:7 < n} satisfies dy(2,y) >
r for all @ # y in Y. It remains to prove that n > pi. Suppose otherwise.
Add yn41 = @ as an extra term. Then dy(zo, zm) = dik(Yo, Ynt1) < 3r by (2)
because di(yj, yi+1) < 2r (see above). However, we know that dy(zo, zm) 2> 4r, a
contradiction. This proves (3).

In continuation of the proof of the theorem, define D= D({Xy; dy)kea) for
all A C N. Thus Dy is essentially a co-equality on [], ., Xx. The direction
(i) = (ii) = (iii) is routine. Thus it remains to prove (iil) = (i). In view
of Theorem 16.3.2, it is enough to prove the following lemma.

LEMMA 16.6.4. If A, B CN are infinite and disjoint, then Dy <, Dp fails.

ProorF. Suppose toward the contrary that Dy <, Dp holds, and let this be
witnessed by a reduction ¥ defined (as in Section 5.4) from an increasing sequence

min B = ng < n; < ng < --- of numbers ny € B and a collection of maps
H.: X, — Hm,e[nk,nkﬂ)mB Xm, k€ A We put
fi(6) = max max A (Hi(§)(m), Hi(n)(m))

a
&EMEXy, di ()< m€[ny,ny+1)NB
for k € N and ¢ > 0 (with the understanding that max & = 0 if applicable). Then
f(0) = supye 4 fx(6) is a non-decreasing map Rt — [0, 00).

We claim that limg_g f(6) = 0. Indeed, otherwise there is € > 0 such that
f(6) = e for all §. Then the numbers

Sk =ming pex, ¢4y de(&,m) (all of them are > 0)
must satisty infrea s = 0. This allows us to define a sequence ko < k1 < kg <
- of numbers k; € A, and, for every k;, a pair of elements &;,1; € X, with
d; (&, m:) — 0 and also a number m; € [ny,, 7%,4+1) N B such that
dmi (Hki (f.i)(m,i,), sz‘ (77'i)(777"i)) > €.
Let @,y € [],cq Xk satisfy a(k;) = & and y(k;) = n; for all 4 and x(k) = y(k)
for all kK € A not of the form k;. Then easily @ D4 y holds but ¥(z) Dg ¥(y)
fails, which is a contradiction. Thus in fact lims g f(d) = 0.
Let k € A, and let Y}, C X}, be asin (3). Then there exist elements zy, # yj in
Yy such that Hy(zp) [k = Hyi(yx) I'k. By (1) there is a chain @y, = £,&1,...,8n =
yr of elements & € X, with dp(&;,&i41) < ﬁ for all © < n. Now Hy(&;) €
[lncpm nisyns Xm for each @ < n. ‘
Suppose that m € [ng,ngs1) N B, and hence m > ny, > k. The elements
Yyt = Hp(&)(m), 1 < n, satisfy d,(y", 9% ) < fk(ﬁ) Note that m # k
because k € A while m € B. Thus we have m > k strictly. It follows that
n < fiy . Therefore, by (2), we obtain

(4) dun(Hi(w)(m), Hilg)(m)) < ol 1) + g < PO + 5

for all m € [ng,ng41) N B.

Both = = {21}rca and y = {yr}rea are elements of [[, 4 X, and @ Dy y
fails because dp(zk,yx) = r for all k. On the other hand, we have U(z) Dp T(y)
by (4), because 1ims_,q f(§) = 0. This is a contradiction to the assumption that ¥
reduces Dy to Dg. O (Lemma 16.6.4)

O (Theorem 16.6.3)
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16.7. INon-o-compact case

For any metric space X = (X;d), let D(X) denote the equivalence relation
D(Xg;dy) on XN where (X ;dy) = (X;d) for all k. Thus ¢ is equal to D(R).
One may ask, what is the place of equivalence relations of the form D(X), where
X is a Polish space, in the global <g-structure of Borel equivalence relations?

The case of o-compact Polish spaces here can be reduced to the case of finite
spaces, 1.e., to cp-equalities, by Lemma 16.2.3. Thus in this case, we obtain a
family of Borel equivalence relations situated <g-between the relations E; and ¢
by Theorems 16.5.1 and 16.4.1, and this family has a rather rich <g-structure by
Theorem 16.6.3.

The case of non- o-compact spaces is much less studied.

EXAMPLE 16.7.1. Let X = NV be the Baire space, with the standard distance
d{a,b) = m, where m(a,b) (for a # b ¢ NV) is the largest integer m such

that a [m=10bm.> If € NY¥ and n,k € N, then (n) | k is a finite sequence
of k integers. It follows from the fact that NN is 0-dimensional that @ D(NY) y is
equivalent to

Vn3koVk > ko (z(n) | k=y(n) k).
for all ,y e NV, u

ExERCISE. Use this to show that D(NY) ~g E;.

QUESTION 16.7.2. Now let X be the Polish space C[0,1] of all contimous
maps f :[0,1] — R, with the distance d(f,g) = maxo<y<1|f(z) — g(z)|. (This
space is not o-compact, of course.) What is the position of D(C0,1]) in the global
<g-structure of Borel equivalence relations and what are its <g-connections with
better-known equivalence relations like E;, i =1,2,3, E., and £7, ¢5? ]

This question (see, e.g., SU GAO [Gao06]) remains open. The question is also
connected with cg-equalities, in particular, with cq itself from another side. Let us
consider the following continual version Cy of the equivalence relation ¢q. If f, g
are continuous maps from [0, +co) to R, then we define

zCoy iff ‘li+m |f(z) — g(z)| = 0.

It is clear that every continuous map f : [0,+00) — R can be identified with the
sequence of its restrictions to intervals of the form [n,, n,.41), n € N, that is, with
a certain point of the Polish product space C[0,1]N. With such an identification,
the domain of Cqy is naturally identified with a certain Borel set in C[0, 1]V, while
Co itself is identified with a Borel equivalence relation equal to D(C|0,1]) on that
set. (The domain of D(C[0,1]) is the whole space C[0,1]Y.) Question 16.7.2 can
also be addressed to Cg.

Su GAO proved in [Gao06] that Co (there defined as Ej ) satisfies Co <g uj,
where uj is an equivalence relation on R¥*N defined as follows:

zujy i Ve>03ImeVm>mpVn (Jzlim,n) —ylm,n)| <e).
3 Note that the relation D(X) depends on the metric rather than topological structure of a

space X, and hence it is, generally speaking, essential to specify a concrete distance compatible
with the given topology.
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In addition, a more complicated Borel equivalence relation ug on RN 5 NV g

defined in [Gao06] such that Co ~p ug. Investigations of ug, ug, Co, D(CY0,1])
remain work in progress.







CHAPTER 17

Pinned equivalence relations

In this chapter we consider a class of equivalence relations E characterized by
the property that if E has an equivalence class in a generic extension V' of the
ground set universe V, definable in V% in a certain way in terms of sets in V as
parameters, then this equivalence class contains an element in V. We call them
pinned equivalence relations.

The main goal will be to prove that certain families of Borel equivalence rela-
tions are pinned, while on the other hand the equivalence relation Ty of the equality
of countable sets of the reals is not pinned, and hence not Borel reducible to any
pinned equivalence relation. The family of pinned equivalence relations includes,
for instance, continuous actions of complete left-invariant groups and some ideals,
not necessarily polishable, and is closed under the Fubini product modulo Fin.
Reading this chapter is not possible without a substantial knowledge of forcing.

17.1. The definition of pinned equivalence relations
Recall that the equivalence relation T4 is defined on (NN )N as follows:
zTay iff ranz = rany.

DEFINITION 17.1.1. V will denote the ground set universe. In this chapter we
consider forcing extensions of V.1

Suppose that X is a 31 or I} set in the universe V, and an extension V7T of
V is considered. In this case, let X # denote what results by the definition of X
applied in V. There is no amblgmty here by SHOENFIELD’s absoluteness theorem,
and easily X = X# NV, ]

For instance, if, in the universe V, E is a £] equivalence relation on a fixed
Polish space X, then, still by SHOENFIELD’s absoluteness theorem E? is a =1
equivalence relation on X*. If now = ¢ X (hence, = € V), then the E-class
[zJe € X of 2 (defined in V) is included in a unique E*-class [¢]g# C X# (in
V1), Classes of the form [z]g#, = € X, belong to a wider category of E¥-classes
which admit a description from the point of view of the ground universe V.

DEFINITION 17.1.2 (based on an argument of HJORTH [Hjo99]). Assume that
E is a 2{ equivalence relation on a Polish space X and P is a notion of forcing in
V. A stable vmfual E- class is any P-term & such that P forces £ € X# and P x P
forces &4t E* ¢

rlght

! Basically, a more rigorous treatment would be either to consider boolean-valued extensions
of the universe or to to assume that in fact V is a countable model in a wider universe.

2 &.sr and Eright are [P X P-terms meaning £ associated with the left and right factors,
respectively, I in the product forcing. Formally, &;,:[U X V] = £[U] and &, [U X V] = £[V]
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A stable virtual class is pinned if there is, in V, a point & € X which pins it,
in the sense that P forces x E* ¢. Finally, E is pinned if, for every forcing notion
P ¢ V, all stable virtual E-classes are pinned. o

If £ is a stable virtual E-class, then, in every extension V* of V, if U and V
are generic subsets of P, then @ = &[U] and y = £[V] belong to X# and satisfy
2 E* y; hence ¢ induces a E*_class in the extension. If £ is pinned, then this class
contains an element in the ground universe V; in other words, pinned stable virtual
classes induce E#—equivalence classes of the form [z]|g#, © € V, in the extensions
of the universe V.

The following theorem (originally [KR04, KRO03]) is the main result in this
chapter. Part (ii) is from [Hjo99]. Part (iii) also belongs to HJIORTH and is pub-
lished with his permission.

Recall that a Polish group G is complete left invariant (cLi for brevity) if
G admits a compatible left-invariant complete metric dg. That is, dg has to
be a complete metric compatible with the given Polish topology of G, and in
addition dg(fg, fh) = dg(g,h) for all f,g,h € G. This class of groups contains,
for instance, all Polish abelian groups, all countable groups (by the trivial reason
that the discrete metrics 6(z,y) = 1 whenever x # y is invariant), in particular,
Z and E., =E(F3,2), and many more.

THEOREM 17.1.3. The class of all pinned 37 equivalence relations:
(i) is closed under Fubini products modulo Fin ;
and contains the following equivalence relations:

(ii) all orbit equivalence relations of Borel actions of (Polish) CLI groups on
Polish spaces;®

(iii) all Borel equivalence relations, all of whose equivalence classes are %3,
in particular, all countable Borel equivalence relations;

(iv) all equivalence relations of the form Ez, where & is an ideal of the form
S = Exhy,,y = {2 € N:py(z) =0},

where w;, i € 2V, are lower semicontinuous (LSC) submeasures on N and
Yoo(®) = limsup, . wi().
On the other hand, T4 is not pinned and hence Ty is Borel irreducible to pinned
equivalence relations.

COROLLARY 17.1.4. To s not Borel reducible to ¢g and to £,

Proor. £ isan F, relation, hence all its equivalence classes are Fs as well,
and we can apply (iil) of the theorem. The equivalence relation ¢y is TI3, but here
(iv) is applicable. Indeed ¢y ~p Zo by Lemma 6.2.3. Further Zg is Es,, where
Zo is the density-0 ideal. However, 2% = Exh,, for a certain LSC submeasure by
Lemma 3.3.5. Thus (iv) works. O

for every P x P-generic set U x V, where £[U] is the interpretation of a term £ wvia a generic set
U.

3 Quite recently, Thompson [Tho086] proved that for a Polish group G to be ¢LI it is not
only necessary (which is by (ii)) but also sufficient that all orbit equivalence relations of Polish
actions of G are pinned.
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In fact it is quite clear that each equivalence relation in Figure 1 on page 68
except for Ty belongs to one of the classes (ii), (iv), (iv), and hence by Theorem
17.1.3, Ty is not Borel reducible to any reasonable combination of all of them.

17.2. T, is not pinned
Here we prove the last claim of Theorem 17.1.3.
CramM 17.2.1. Tq is not pinned.

ProoF. To prove that T, is not pinned, consider, in V, the collapse forcing
notion P = CoLL(N, 2). Thus P consists of all functions p : u — 2N, where « C N
is finite, and P forces a generic map f from N onto the set 2¥ of V. It clearly
follows that the P-term € for f is a stable virtual Ta-class, but it is not pinned
because 2V is uncountable in the ground universe V. d

LEMMA 17.2.2. If E,F are 31 equivalence relations, E <g F, and F is pinned,
then so is E.

PrROOF. Suppose that, in V, ¥ : X — Y is a Borel reduction of E to F, where
X = domE and Y = domF. We can assume that X and Y are just two copies
of 2N, Let P be a forcing notion and a P-term € be a stable virtual E-class. By
SHOENFIELD’s absoluteness, 9# is a reduction of E* to F* in every extension of
V, hence, o, a P-term for 9% (¢), is also a stable virtual F-class. Since F is pinned,
there is y € Y such that P forces y F¥ o. Note that it is true in the P-extension
that y F# 9#(2) for some @ € X#. Hence, by SHOENFIELD’s absoluteness theorem
[Sho62], there is an element x € X in the ground universe V satisfying y F J(z).
But then P forces x E* £. a

EXERCISE 17.2.3 (S. THOMAS). Using the arguments in the proofs of Claim
17.2.1 and Lemma 17.2.2, prove the following. Suppose that F is a pinned %}
equivalence relation on a Borel set W, and 9 : (2¥)N — W is a homomorphism of
Ty to F. (That is, x Toy implies 9(z) F 9(y).) Then there is w € W such that for
all a € 2N there exist x € (2Y)N and n € N with 2(n) = a and J(z) Fw. 0

It would be interesting to prove Exercise 17.2.3 by a pure topological argument
(with no forcing involved) in some particular cases, for instance, in the case F = E,.

17.3. Fubini product of pinned equivalence relations is pinned

Here we prove part (i) of Theorem 17.1.3. Recall that the Fubini product
E = [[,en Ex / Fin of equivalence relations Ej on N N modulo Fin is an equivalence
relation on (N defined as follows: @ Ey if (k) Ey y(k) for all but finite k.

Suppose that 31 equivalence relations E; on Polish spaces X, are pinned.
Prove that the Fubini product E =[], .y Ex / Fin is a pinned equivalence relation
(on the Polish space X = ][, X ). Consider a forcing notion P and a P-term £.
Assume that £ is a stable virtual E-class. There is a number kg and conditions
p,q € P such that (p,q) (P x P)-forces &, (k) Ex¥ §rigne(k) forall k > ko. As
all E, are equivalence relations, we conclude that the condition (p,p) also forces
£ose (k) Ex € igni (k) for all k > ko. Therefore, since Ex are pinned, there is in V
a sequence of points xj € X such that the condition p P-forces xy E.7 € (k) for
all k> ko. Let 2 € X satisfy a(k) = xp for all k > kg. (The values (k) € X; for
k < ko can be arbitrary.) Then p obviously P-forces a E* ¢
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It remains to show that just every ¢ € P also forces » E* £. Suppose otherwise,
that is, some g € P forces that E# ¢ fails. Consider the pair (p,q) as a condition
in P xP: it forces 2 E¥ Elore and 2 E* ¢ as well as &, ¢ E* ¢ by the
choice of E and &, which is a contradiction.

right’ right

17.4. Complete left-invariant actions induce pinned relations

Here we prove part (ii) of Theorem 17.1.3. Note that according to Theo-
rem 4.3.3 it is sufficient to consider Polish (= continuous) actions. Thus suppose
that G is a Polish CLI group continuously acting on a Polish space X. By definition
G admits a compatible left-invariant complete metric p/. Then easily G also admits
a compatible right-invariant complete metric, for instance, p(g,h) = p'(g~ 1, A7),
which will be practically used in the proof.

Let IP be a forcing notion and £ be a stable virtual E-class. Let < denote the
partial order of P; we assume, as usual, that p < ¢ means that p is a stronger
condition. Let us fix a compatible complete right-invariant metric p on G. For
every € > 0, put G. = {9 € G : p(g,1g) < €}. Say that q € P is of size < ¢ if
(¢,q) P x P-forces the existence of g € G.¥ such that &, =g-&

right *

LEmMA 174.1. If ¢ € P and € > 0, then there is a condition r € P, r < q,
of size <e.

Proor. Otherwise for every r € P, r < q, there is a pair of conditions 7/,
r"" € P stronger than » and such that (r',7”) (P x P)-forces that there is no
g€ G with ¢ teft = 9 Erigng. APplying an ordinary splitting construction in such
a generic extension VT of V where Z(P)NV is countable, we find an uncountable
set % of generic sets U C P with g € U such that every pair (U, V) with U # V
in % is IP x P-generic (over V); hence, there is no g € G.* with £[U] = g-¢[V].*
Fix Uy € %. We can associate in V' with each U € %, an element gy € G#
such that £[U] = gy -£[Uq); then gy & G.¥ by the above. Moreover, we have
gvgyt-€[U) = €[V] for all U,V € % . Hence gvga1 ¢ G." whenever U # V,
which implies p(gy,gv) > € by the right invariance. But this contradicts the
separability of G. O (Lemma)

Coming back to the proof of (iii) of Theorem 17.1.3, suppose toward the con-
trary that a condition p € PP forces that there is no x € X (in the ground universe
V) satisfying « E# ¢. According to Lemma 17.4.1, there is, in V, a sequence of
conditions p, € P of size < 27", and closed sets X,, C X with X-diameter < 277",
such that pg < p, Ppt1 < Pn, Xnt1 © X, and p, forces &€ € X7 for évery n.
By the completeness of X, let = be the common point of the sets X, in V.

We assert that py forces = E# £.

Indeed, otherwise there is condition ¢ € P, ¢ < pg, which forces — 2 E? £.
Consider an extension VT of V rich enough to contain, for every n, a generic set
U, C P with p, € U, such that each pair (U,,U,;1) is P x P-generic (over V),
and, in addition, ¢ € Up. Let @, = £[U,] (an element of X¥), then {z,} — .
Moreover, for every n, both U, and U,y contain p,. Hence, as p, has size
< 2771 there is gn41 € GE# with 2,41 = gny1°®n. Thus, z, = h, 2o, where
hp = gn---g1. However p(hn, hn_1) = p(gn, 1g) < 2777 by the right invariance of
the metric, thus, {h,}nen is a Cauchy sequence in G¥. Let h = lim,_,o b, € G¥

4 ¢[U] is the interpretation of the P-term & obtained by taking U as the generic set.
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be its limit. As the action considered is continuous, we have z = lim, z, = h-zq.
It follows that & E* 2y holds in V7, hence also in V[Up]. However, aq = & [Uo)
while ¢ € Uy forces — o E¥# &, which is a contradiction.

Thus the condition py P-forces & E# ¢, Then every conditon r € P also forces
x E# ¢, Indeed, if some r € P forces — 2 E# ¢, then the pair (po,7) P x P-forces
that 2 E¥ ¢ Lory and - g E¥ ¢ which contradicts the fact that P x P forces

Eleft E# gright :

17.5. All equivalence relations with % classes are pinned

rights

Here we prove part (iii) of Theorem 17.1.3. Suppose that E is a Borel equiv-
alence relation on NV and all E-equivalence classes are X9, that is, Gss. Prove
that then E is pinned.

It follows from a theorem of LOUVEAU [Lou80] that there is a Borel map -,
defined on N, such that v(z) is a %9-code of the equivalence class [z]e for every
o € NV, that is, for instance, y(z) € N? x N<* and

[2]g = Uﬂ U Bs, where By ={acN':sCa} forall s c N,
i g {hgs)ev(a)

(It is not asserted that y(z) = y(2') whenever x Ea’.) Let us fix such a coding
map .

Now let us consider a forcing notion P = (IP; <) and a stable virtual E-class €.
By definition P x P forces &4, E#gright; hence there is a number i¢ and a condition
{po,q0) € P x P which forces £,.¢, € 9% (£,,4), Where 9(z) = M Utio, g,y ev(z) Bs
for all z € NV

The key idea of the proof is to substitute P by the Cohen forcing. Let S denote
the set of all s € N<“ such that py does not P-force that s ¢ £&. We consider S to
be a forcing, and s C ¢ (that is, ¢ is an extension of s) means that ¢ is a stronger
condition. And A, the empty sequence, is the weakest condition in S. If s € S,
then obviously there is at least one n such that s™n € S. Therefore, S forces an
element of NV, whose S-name will be a.

LEMMA 17.5.1. The pair (A, qo) (S x P)-forces a € 9#(£&).

ProoF. Otherwise some condition (sg,q) € S x P with ¢ < gy forces a &
9% (¢). By the definition of ¥ we can assume that

(%) (s0,q) (S x P)-forces = Is ({io,Jo,s) € ¥(€)AsC a)

for some jo. Since sg € S, there is a condition p' € P, p’ < pg, which P-forces
80 C £€. By the choice of {pg, qy) we can assume that

<P/) q¢) (P x P)-forces (i0,J0,8) € 'Y(gright) NS C &qope
for suitable s € S and ¢’ € P, ¢’ < g. This means that
1) p' P-forces s C £, and
2) ¢’ P-forces (ig,jo,s) € v(&).

In particular, p’ forces both sg C € and s C € by the above. It follows that
either s C sg, then we define s’ = sg, or sg C s, then we put s’ = s. In either
case, the condition (s’,¢") (S x P)-forces (ig,jo,s) € v(€) and s C a, and this is
a contradiction to (%). O (Lemma)




208 17. PINNED EQUIVALENCE RELATIONS

Note that S is a subforcing of the Cohen forcing C = N<“, therefore, by
Lemma. 17.5.1, there is a C-term o such that the condition (A, qg) (C x P)-forces
o € 97(¢), and hence, forces o E# &. It follows, by consideration of the forcing
C x P x P, that generally C x IP forces o E# ¢. Therefore, by ordinary arguments,
first, C x C forces oiest E# Orignt, and second, to prove the theorem it suffices now
to find @ € NV in V such that C forces @ E? o. This is our next goal.

Let a be a C-name of the Cohen-generic element of N™. The term o can be of
a complicated nature, but we can substitute it by a term of the form f#(a), where
f NY 5 NY is a Borel map in the ground universe V. It follows from the above
that f#(a) E# f#(b) for every C x C-generic, over V, pair {a,b) € NN x NN, We
conclude that f#(a) E# f#(b) also holds even for every pair of separately Cohen-
generic elements a, b € NN, Thus, in a generic extension of V, where there are
comeager-many Cohen-generic reals, there is a comeager Gg set X C NN such
that f#(a) E* f#(b) for all a,b € X. By SHOENFIELD's absoluteness theorem,
the statement of existence of such a set X is true also in V; hence, in V, there
is & € N" such that @ E f(a) holds for comeager-many a € NV, This is again a
SHOENFIELD-absolute property of «,> hence, C forces x E? [#(a), as required.

17.6. Another family of pinned ideals

Here we prove part (iv) of Theorem 17.1.3.

Let us say that a Borel ideal & is pinned if the induced equivalence relation
E.s issuch. It follows from Theorem 17.1.3(ii) that every P-ideal is pinned because
Borel P-ideals are polishable by Theorem 3.5.1 while all Polish abelian groups are
CLI. Yet there are non-P pinned ideals, like 7.

Suppose that {p;}ien is a sequence of LSC submeasures on N. Define the
exhaustive ideal of the sequence,

Exhe,,y = {8 CN:igpe(x) =0}, where @oo(x) = limsup p;(z).
1— 00

It follows from Theorem 3.5.1 that for every Borel P-ideal .# there is an 1.SC sub-
measure ¢ such that % = Exhy,.y = Exh,, where @;(z) = ¢(x N [i,00)). On
the other hand, the non-polishable ideal .#, also is of the form Exhg,,;, where
for @ C N? we define an LSC submeasure ¢; by o; (#) = 0or 1 if & C or
¢ {0,...,n — 1} x N, respectively. Therefore, the class of ideals of the form
Exhy,,} includes Borel P-ideals but is strictly larger.

Thus suppose that ; is an LSC submeasure on N for each 7 € N. The goal is
to prove that the ideal . = Exhy,,,} is pinned.

We can assume that the submeasures g; decrease, that is @;41(z) < p;(2) for
all @, for if not, then consider the LSC submeasures }(z) = sup,; v;(2).

Suppose toward the contrary that the equivalence relation E = E is not
pinned. Then there is a forcing notion P, a stable virtual E-class £, and a condition
p € P which P-forces — & E¥ £ for all & ¢ Z(N) in V. By definition, for every
p' € P and n € N there are i > n and conditions ¢,r € P with ¢, < p/, such
that (g,7) (P x P)-forces the inequality ©;(€ o0 A €pigne) < 27" Hence, (g, q)
(P x P)-forces ¢;(€ oy O Erigns) < 277 It follows that, in V, there is a sequence

5 Indeed, it is formally written as 3z V*a (z E f(a)), where V*a means “for comeager-many
a”. However it is known that ¥*a applied to a Borel relation results in a Borel relation, see e.g.
[Kec95]. Therefore the formula 3aV*a (z E f(a)) can be re-written as a 5} formula.
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of numbers iy < ¢y < iy < -+, and a sequence py > p1 > po > -+ of conditions
in P, and, for every n, a set w, C [0,n), such that py < p and

(1) each p,, P-forces £ N[0, n) = u,;
(2) each (pu,pa) (P X B)-forces i, (Exagy A Eyigns) < 270

Arguing in the universe V, put ¢ = U, n; then an{0,n) = u, for all n. We claim
that po forces a E* &. This contradicts the assumption above, ending the proof of
(iv) of Theorem 17.1.3.

To prove the claim, note that otherwise there is a condition gq < pg which forces
- a E# €. Consider a generic extension V' of the universe, where there exists a
sequence of P-generic sets U, C P such that for every n, the pair (Upy Upt1)
is (P x P)-generic, p, € Uy, and in addition gy € Up. Then, in V7', the sets
x, = E[U,] € P(N) satisfy ¢;, (@, A ) < 27" by (2), whenever n < m. It
follows that ;, (2, Aa) < 27", because a = lim,x, by (1). However, we
assume that the submeasures ; decrease, thervefore pu(z, Aa) < 27", On the
other hand, e (z, A xg) = 0 because € is a stable virtual E-class. We conclude
that woo(2oAa) < 27" for all n. In other words, poo(wgAa) = 0, that is, aq E*a,
which is a contradiction with the choice of Uy because zg = £[Up] and qq € Uy.

O (Theorem 17.1.3)

One might ask whether all equivalence relations of the form E s, where .# is
a Borel ideal, are pinned. This question is answered in the negative. Indeed it will
be proved in the next chapter that for every Borel equivalence relation E there
exists a Borel ideal .# C Z2(N) such that E <z E . In particular this is true
for the equivalence relation Ty, non-pinned by Theorem 17.1.3. It follows, still by
Theorem 17.1.3, that every Borel ideal .# satisfying To <g E s is non-pinned as
well.

One more interesting question is motivated by the fact that there seems to be
no known mechanics to define non-pinned Borel equivalence relations except for
application of Ty is one or another way.

QUESTION 17.6.1 (IKECHRIS). Is it true that Ty is the <g-least non-pinned
Borel equivalence relation ? a

QUESTION 17.6.2. What is the nature of those Borel ideals # on N which
satisfy Ty <g E#7 ‘ O







CHAPTER 18

Reduction of Borel equivalence relations
to Borel ideals

The main goal of this chapter is to show that any Borel equivalence relation is
Borel reducible to a relation of the form E_# for some Borel ideal .#, and moreover,
there is a <g-cofinal w;-sequence of Borel ideals. The proof of this important result
involves a universal analytic equivalence relation generated by an analytic ideal,
followed by a well-known construction of upper Borel approximations of 3 sets.
In the end we briefly outline the results of subsequent study [KLO6]: the ideals &
and the corresponding relations E 7. as above can be explicitly and meaningfully
defined on the basis of a certain game.

18.1. Trees

We begin with a review of basic notation related to trees of finite sequences.
Recall that for any set X, X™ denotes the set of all sequences, of length n, of
elements of X, and X<“ = (J, .y X" —the set of all finite sequences of elements
of X. Regarding product sets, note that any s € (X3 x -+ X Xn)<w is formally
a finite sequence of n-tuples (x1,...,2,), where x; € X;, Vi. We identify such
a sequence s with the n-tuple (si,...,s,), where all s; € X;<“ have the same
length as s itself, and s(i) = (s1(4), ..., s,(4)) for all 7.

The length of a sequence s is 1hs. A, the empty sequence, is the only one
of length 0. If s is a finite sequence and x any set, then by sz, resp., "s, we
denote the result of adjoining = as the new right-most, resp., left-most, term to s.
If s, are sequences, then s C ¢ means that ¢ is an extension of s, that is, s =1t¢|m
for some m < 1ht,

A tree on a set X is any subset T C X <% closed under restrictions; that is, if
teT, s€ X<%, and s Ct, then s € T\ Note that A, the empty sequence, belongs
to any tree @ # R C X<“. An infinite branch in a tree T C X<* is any infinite
sequence b € XN such that b |m & T, Vm. A tree T is well founded iff it has no
infinite branches. Otherwise, T is 4l founded.

The following transformations of trees on N preserve in this or another way
the properties of well- and ill-foundedness.

Finite union. If S,T" are trees, then sois W = SUT, and clearly SUT is ill
founded iff so is at least one of S,T.

Contraction. Let S C 2<% be a tree. Fix once and for all a bijection b : N2 onte
N. For any sequence s = (ko, ky,...,kn) € 2<% with lhs = n+ 1 > 2, define a
sequence st = (b(ko, k1), ko, ..., kn) of length n. The contracted tree
$t={A}U{8:s€ SA1lhs> 2}
is ill founded iff & itself is ill founded.
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Countable sum. Countable unions do not preserve well-foundedness. Yet there
is another useful operation. For any sequence of trees 7T}, C N<, we let Z; Tn
denote the tree 7= {A}U{n"t:¢t € T,,}. Clearly, T is ill founded iff at least one
of the trees T}, is ill founded.

Countable product. Let HZ T, denote the set T of all finite sequences of
the form ¢ = (tg,...,t,), where tx € T and 1lhty = n for all k¥ < n. We put
(to,. . tn) < (80, ., 8m) iff n < m and tp C s (in N<) for all k¥ < n. In
addition, let A belong to T, with A <t for any ¢ € T'. Obviously, (T'; <) is an at
most countable tree, order isomorphic to a tree in N<“, Moreover, T = HZ T, is
ill founded iff every tree T, is ill founded.

Component-wise addition. This is a less trivial operation. First of all, if s,
t € 2<¥ then s <., t (the component-wise ordering) means that lhs = 1lht and
s(3) < ¢(3) for all 4 < 1lhs. Similarly, then s 4+, ¢ denotes the component-wise
addition of finite sequences s,t of equal length. We now define

S+ T={s+ut:s€SAtETALlhs=1ht}

for any trees S,7 C N<“, The following lemma shows that the component-wise
addition of trees behaves somewhat like the “equal-length” cartesian product

SxT={(st):s€ SAt €T Alhs=1ht}.

LEMMA 181.1. Let S,T € N<“ be any trees. The tree W = S +¢, T is ill
Jfounded iff both S and T are ill founded.

PROOF. In the non-trivial direction, suppose that v € N N is an infinite branch
in W, i.e., v[n € W for all n. Then, for each n, there exist s, € S and t, € T of
length n such that s, +eutn = v [n. The sequences s, t, then belong to {t € N <
t <ew 7y [ 1ht}, a finite-branching tree. Therefore, by KONIG's lemma, there exist
infinite sequences «, 3 € NN such that

Ym3nzmam=s, [mAJB]m=t,[m).

Then «, 3 are infinite branches in S, T', respectively, as required. g

18.2. Louveau—Rosendal transform

Suppose that A is a 31 subset of 28 x2N. It is known from elementary topology
of Polish spaces that any X1 subset of a Polish space S is is equal to the projection
of a closed subset of S x N¥ on . Thus there exists a closed set P C 2N x9N » NN
satisfying '

A=domP = {{z,y):3z P(z,y, 2)}.
Further, there is a tree R C (2 x 2 x N)<“ (a tree on 2 x 2 x N) such that

P =[R] = {{z,y,7):Yn R(z [ n,y [ n,7 [ n)},

and hence
18.2.1. (z,y) € A <= Ry, ={s € N*“: R(z[1hs,y[1lhs,s)} is ill founded.

(Obviously R, is a tree in N <@ ) If A is an arbitrary 31 set, then, perhaps, not
much can be established regarding the structure of a tree R which generates A in
the sense of 18.2.1. However, assuming that A = E is an equivalence relation on
2N, we can expect a nicer behaviour of R. This is indeed the case.

The following key definition goes back to [LR05, Ros05].
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DEFINITION 18.2.2. A tree T on a set of the form X X N is normal if for
any w € X< and s,t € N<“ such that lhw = 1hs = 1h¢ and s <ew t, We have
(u,8) € T = (u,t) € T O

Thus normality means that the tree is <,,-closed upwards w.r.t. the second
component. X =2 x 2 in the next theorem, and the case X = 2 = {0, 1} will also
be considered. But in all cases, (X x N)<“ itself is a normal tree.

THEOREM 18.2.3. Suppose that Q C (2 x 2 x N)“ is a tree and the set
(%) E = {{z,y) € 2" x2V:Q,, is ill-founded}

is an equivalence relation on 2N, Then there s a tree R C (2 x 2 x N)Y satisfying
the following requirements.

(i) Symmetry: R(u,v,s) <> R(v,u,s), hence Ry, = R, for all z,y.
(i) If ue2¥ se NV 1ns= lhu, then R(u,u,s).

)
(iii) Normality: if R(u,v,s), t € NY, and s <., t, then R(u,v,1).
(iv) Transitivity: if R(u,v,s) and R(v,w,t), then R(u,w, s 4, t).
)

(v) For any wx,y € 2, R,, is ill founded iff so is Qay; hence, (x) holds for
the tree R mstead of Q.

This theorem is equal to Theorem 4 in [LRO5]. The transformation from Q
to R asin the theorem is called here the Louveau—Rosendal transform.

Proor. Part 1. We observe that the tree
Q= QU {{u,u,s) uc2"As e NV Alhs = lThutU{(u,v,8):Q(v,u,s)}

satisfies @%y QauyUQya UD,,, where D, vy = = N<¥ plov1ded r=yand Dy, =@,
otherwise. It easily follows that () still holds for Q In addition, Q obviously
satisfies both (i) and (ii). Thus we can assume, from the beginning, that Q satisfies
both (i) and (ii).

Part 2. In this assumption to fulfill (iii) we define

Q= {(u,v,t) € (2x2x N)*: 3(u,v,5) € Q (s <en 1)},
This is still a tree on 2 x 2 x N, contaimng Q) and satisfying (i), (ii), (iii). In
addition, we have Q. = Q. +u, 2<% for any x,y € 2N; therefore, the trees Quy
and sz are ill founded simultaneously by Lemma 18.1.1. Tt follows that (%) still

holds for Q. Thus, we can assume that Q) itself satisfies (i), (ii), (iii).
Part 3. It is somewhat more difficult to fulfill (iv). A straightforward plan
would be to define a new tree R containing all triples of the form (10, Unt1, S0 Feu
*rtenSk), where (i, uip1,8) € Q forall i = 0,1,. .., k. However, to work properly,

such a construction has to be equipped with a kmd of counter f01 the number k of
steps in the finite chain. This idea can be realized as follows.

Working in the assumption that Q satisfies (i), (ii), (iii) (see Part 2), we define
atree R C (2 x2x N)<w as follows. Suppose that n € N, u,v € 2", s € N",
k€N, and 7,5 € 2={0,1}. We put (u~i,v°g,k7s) € R iff

) Fug,ur, .y u €27 (ug = u Aug = v AV < kQup,ury, 5)).
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In addition, we put (A, A,A) € R, of course. (A is the empty sequence.) Note that

R isatree on 2 x 2 x N because so is (.

We claim that, in our assumptions, the tree R satisfies all of (i)—(v).

() If up, . .., uy, witness R(u"i,v74,k"s), then the reversed sequence uy;, .. -,
ug witnesses R(v"4,u"i,k"s) in the sense of (1), because the tree ) satisfies (i).

(iii) Suppose that (u™4,v7j,k"s) € R, and let uo,...,up witness (f). Let
n = lhu = lhw = 1hs = lhug, V(. Suppose that & < k' and s <., & (still
lhs’' = n). Put u, = v whenever k < £ < k'. Note that Q(ue, ues1,8) also
holds for k < ¢ < k' by (i) for Q. (Indeed, in this case u; = ugy1.) Thus,
Q(ue,wey1,8') holds for all ¢ < k' by (iii) for Q. By definition, this witnesses
(u™i,v" 5,k ~8) € R, as required.

(i) If £ = 0 and u = v, then Lemma 6.1.1 obviously holds (with the empty
list of internediate sequences u1, ..., ux_1 ), and hence R(u"%,u" 3,07 s) holds for
all we 2N, s ¢ NN of equal length, in particular, R(w,w,0™) for all n and u € NN
with 1hu = n. It remains to apply property (iii) just proved.

(iv) Suppose that the triples (u"i,v"j,k"s) and (v™j,w"p,x"0) belong to
R, and n is the length of all sequences u, v, s,w,t. Let R(u"i,v"j, k™ s) be wit-
nessed, in the sense of (t), by g, ..., ux and, accordingly, R(v"j,w”p,x"0c) be
witnessed by vg,...,v. (All ug and v, belong to 2".) Since @Q satisfies (iii),
the same sequences also witness R(u"i,07j,k"t) and R(v"j,w"p,x"t), where
t = s +eq 0 (component-wise). It easily follows that the concatenated complex
Ugy -y Um1, Uk = V0, V1, - -, VU Witnesses R(u"i,w™p, (k+ k) "t), as required.

(v) We observe that, by definition, Q(u,v,s) = R(u"i,v7j,17s) for any 1,
j = 0,1. Tt follows that, for any =,y € N s € Quy = 17s € Ryy, and hence
Ry is ill founded provided so is Quy.

The inverse implication in (v) needs more work. This argument belongs to
LouvEAU and ROSENDAL [LRO5]. Assume that Ry, is ill founded; that is, there
exists an infinite sequence ¢ € N™ such that VnR(z{n,y[n,§[n). Let k = §(0) and
~y(m) = 6(m + 1) for all m, so that § = k~v. By definition, for any n there exist
sequences u?,...,uf € 2" such that uj =« |n, uf =y [n, and Q(uf,ufy,y fn)
for all ¢ < k. Each k + 1-tuple (u®,...,u}) € (2")**! can be considered to be an n-
tuple in (2¥+1)", By KONICG’s lemma, there exist infinite sequences @o, ...,z € 2N
such that for any m there is a number n > m with @, | m = uj [ m for all £ <k.
Tt follows that zo = , zx = y, and, as Q is a tree, Q(z¢ [ ™, xoq1 [m,y [ m) holds
for all £ < k and all m. We conclude that 2, E 21 for all £ < k by (x) for Q.
Therefore, 2 Ey because E is an equivalence relation. Finally, Qg is ill founded
still by (¥) for Q. O

18.3. Embedding and equivalence of normal trees

Let NT denote the set of all non-empty normal trees T' C (2 x N)<¢. Suppose
that S, T € NT. The set of all finite sequences f € N <¢ such that
(u,8) €S = (u,s 4w (f[n)) €T

for all n < 1hf and u € 2%, s € N", will be denoted by EmMB(S,T). Obviously
EMB(S,T) is a tree in N<“ containing A.
We proceed with the following key definition of [LRO5].
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DEFINITION 18.3.1. Suppose that 5,7 € NT. Define S <yr T if and only if
the tree EMB(S, T) is ill founded, that is,

JyeNVVnVue2"Vs e N" ((u,s) € S == (1,8 ey v [ 1) € T).
Define S Eyp T if and only if S <y T and T" <pxr 5.1 O

Thus S <yr T indicates the existence of a certain shift-type embedding of S
into T. We assert that the relation <y, is a partial order on the set NT.

Indeed to check that <y, is transitive, suppose that R <yr S and S <ur T,
where R,S,T are normal trees in (2 x N)<¢. Then the trees U = EMB(R, S) and
V = EMB(S,T) (trees in N<*) are ill-founded, and hence so is W = U +, V by
Lemma 18.1.1. On the other hand, easy verification shows that W C EmMB(R,T).
Thus EMB(R,T) is ill founded, as required. It follows that Ey; is an equivalence
relation on NT.

Moreover, applying the component-wise addition to the sequences ~ that wit-
ness <yr, one proves that S Ey, T is equivalent to the existence of v € N¥ such
that for all n and all u € 27, s € N, the following holds simultaneously:

(u,8) € S = (U, s +oyyIn) €T and (u,s) €T = (u,s+eyy[n) €S.

COROLLARY 18.3.2. If S,T € NT, then S Ew T iff the tree EMB(S,T) N
EMB(T, S) is ill founded. O

Note that every tree T' € NT is, by definition, a subset of the countable set
(2 x N)<“. Therefore NT is a subset, of the Polish space 2((2 x N)<“) identified,
as usual, with the product space 2(2xN)= (Elementary estimations show that in
fact NT is a closed set.} It follows that the relations <y, and Ey; are, formally,
subsets of P((2 x N)<¥) x 2((2 x N)<¥),

LEMMA 18.3.3. <yr and Ey; are E% relations.

Proor. Straightforward estimations. The principal quantifier expresses the
existence of vy € NY with certain properties. O

It occurs that Eyr belongs to a special type of £1 equivalence relations.

DEFINITION 18.3.4. An 31 equivalence relation U is universal, or complete, if
and only if F <g U holds for any other 1 equivalence relation F. m]

There is a simple construction that yields a universal %1 equivalence relation.

EXAMPLE 18.3.5. We begin with a X! set U C (NV)?, universal in the sense
that for any %} set P C (NM)2 there is an index 2 € NV such that P is equal to
the cross-section (U), = {(y,2): (z,y,2) € U}. (See Section 2.5 on the existence
of universal sets.) Define a set P C (NV)3 so that every cross-section (P), is equal
to the equivalence hull of (U),, that is, to the least equivalence relation containing
(U)s. Formally, (y, z) € (P), iff there is a finite chain y = yo, y1, Y2, - - - Un, Yna1 = 2
such that, for any k < n, either (yx,yr+1) belongs to U, or (yr+1,yx) belongs to
(U)a, or just yr = yrr1.

Clearly, P isstill a 31 subset of (N™)3, with each (P), beinga 3! equivalence
relation. Moreover, if (U), is an equivalence relation, then (P), = (U),. Thus the
family of all cross-sections (P),, 2 € NV, is equal to the family of all £ equivalence

! <y and Eyr are denoted in [Ros05] by <., and E¥,., respectively.
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relations on N¥. We claim that the equivalence relation U on (NV)?, defined so
that (z,y) U (z/,y) iff 2 = &’ and (y,y') € P,, is universal. For instance, take
any ! equivalence relation F on N¥. Then F = (P), for some @ by the above.
Therefore, the map 9(y) = (z,y) is a continuous reduction of F to U, as required.
O

The next theorem proposes a more meaningful universal equivalence relation.

THEOREM 18.3.6 (Theorem 5 in [LRO5]). Eyr is a universal 31 equivalence
relation on NT.

PRrROOF. Consider any 3} equivalence relation E on 2N, Then E is a 3} subset
of 2N x 2N and hence there is a tree @ C (2 x 2 x N)<“ (a tree on 2 x 2 x N) such
that, for all a,y € 2N,

x Ey <= the cross-section tree (), is ill founded.

It can be assumed, by Theorem 18.2.3, that @ satisfies requirements (i)-(v) of
Theorem 18.2.3. We claim that the map

@ — I(z) = {{u,s) € (2x N): Q(u,z | 1hu, s)} (z € 2M)
is a Borel reduction of E to Eyy. That 4 is a Borel, even continuous map, is rather

easy. That J(z) € NT immediately follows from (iii). The reduction property
follows from the next lemma.

LEMMA 18.3.7. If a tree Q C (2 x 2 x N)Y satisfies requirements (i)—(iv) of
Theorem 18.2.3, and =,y € 2V, then EMB(Y(2),9(y)) = Quy -

PROOF. Suppose that f € EMB(d¥(2),¥(y)), m = 1h f. Then, by definition,
Qu,z Im,s) = R(u,y [ m, s+ f)
holds for all w € 2™ and s € N™. Here take « =z [ m and s = 0™ (the sequence
of m 0s); then Q(z [ m,x [ m,0") = Q(z [ m,y [ m, f). Yet the left-hand side
holds by (ii). Therefore, the right-hand side holds, thus f € Q,, .
To prove the converse, let f € Qyy, that is, Q( ['m,y|m, [), where m =1h f,

and hence Q(z [ n,y [ n,f | n) for any n < m as @ is a tree. Assume that n <m
and u € 2", s € N, We have to prove

Qu,w [ n,8) = Qu,y [ 1,8 tew (f [ 1)),

So suppose that Q(u, 2 [ n,s). In addition, Q(z [n,y [n, f [ n) holds by the above.
Then Q(u,y [ n,s +e (f [ 1)) holds by (iv), as required. O (Lemma)

To accomplish the proof of Theorem 18.3.6, suppose that «,y € 2¥. Then zEy
iff the tree R, is ill founded, iff (by the lemma) EMB(d(y),d(z)) is ill founded,
iff 9(z) Exr 9(y) (by Definition 18.3.1). O (Theorem 18.3.6)

18.4. Reduction to Borel ideals: first approach

We present two different proofs of the following theorem, the main result of
this chapter.

THEOREM 18.4.1 (ROSENTAL [Ros05]). There is a C-decreasing sequence of
Borel ideals F¢ (¢ <wy) on N, <g-cofinal in the sense that every Borel equivalence
relation is Borel reducible to one of the relations Ejg .




18.4. REDUCTION TO BOREL IDEALS: FIRST APPROACH 217

Note that this theorem, together with Covollary 13.9.4, accomplishes the proof
of Theorem 5.8.1,

The first proof, due to ROSENDAL [Ros05], involves the ideal A on (2 x N)<¥
finitely generated by all sets of the form SAT, where S,T C (2 x N)<“ are normal
trees and SEy;T. Thus #yr consists of all subsets of (2 x N )<w, covered by unions
of finitely many symmetric differences S A T of the type just indicated.

THEOREM 18.4.2. Ay is Ti as a subset of the Polish space P((2 x N)<¥).
Furthermore, the equivalence relation Eyy is equal to Eg | NT. This means that
for any S,T € NT, the following holds: S Ey T if and only if SAT € Fyp .

PROOF. That Jyr is ¥ is quite clear: the principal quantifier expresses the
existence of a finite collection of elements of NT, whose properties are expressible
still by a ZJ relation because Ey; is E

Suppose that S AT € Ay, and prove S Eyy T (the non-trivial direction). By
definition S AT C Ul 1(Si AT;), where S;,T; € NT and S; Exy T;. Then the
trees R; = EMB(S;, T;) NEMB(T},.S;) are ill founded by Corollary 18.3.2. We have
to prove that EMB(S,T) and EMB(T,S) are ill-founded trees, too. To check the
ill-foundedness of EMB(.S, T'), note that the tree R = R; 4oy - 4oy B is ill founded
by Lemuma 18.1.1. Thus it remains to prove that R C EMB(S,T).

Consider any 7 = 71 +¢; 4oy 1, € R, where all sequences 1; € R; , 1=
1,...,k, have one and the same length, say m. Suppose toward the contrary that
r & EMB(S,T), ie., there exists a pair (u,s) € S such that (u,s 4e, (r [ n)) €T,
where n = lhwu = 1lhs < m. Then

(i) <'ll., 8 Feu '/J> §Z T whenever ' 211 > Loy T r

In particular, (u,s) ¢ T' by normality, and hence (u,s) € SAT, thus (u,s) € S5, A
T;, for some 1 <y < k. This implies (u,s1) € S;, NT},, where s; = s 4, (ry, I'n).
(Indeed we have (u,s) € S;, UT}, by the choice of i;. If say (u,s) € S;,, then
(u,s1) € T;, because r;, € R;, C EMB(S,I,T ). In addition (u,s1) € S;, by the
normality of .Sy, .)

Once again, we have (u,s1) € S\ T by (f). It follows that (u,s;) € S;, AT},
for some 1 < iy < k by the same argument. This implies (u, sy) € 312 1i,,
where sy = 81 ey (13, | 1), because r;, belongs to R;,. Note that i, £ 11 as
(u,81) € S;, NT;,, and still (u,s3) € S;, NT}, since S; and T} are normal trees.

After k steps of this construction, all indices 1 < i < k will be considered, and
the final sequence s = s+, (r ['n) will satisfy (u,sg) € S;NT; forall i =1,... k.
It follows that (u,si) ¢ S AT. However, (u,s;) € S since (u,s) € S and § is a
normal tree. Thus, (u,s;) belongs to 7', contrary to the above. O

Theorems 18.4.2 and 18.3.6 imply
COROLLARY 18.4.3. Ez, is a universal 3} equivalence relation. O

Let us show now that these properties of Fy; suffice to prove Theorem 18.4.1.

We begin with a very general fact of basic descriptive set theory. As any i
set, Hyr can be presented in the form #, = Ne<an Frr, where S5 are Borel
subsets of P((2 x N)<¥), ¢ <y — AL C #%, and for any I} set X in the
same Polish space containing %, there is an ordinal ¢ < wy such that ﬂNgT CcX.
' (This index restriction property was first established by LUsIN and STERPINSKI
[LS18], essentially in the dual form saying that the canonical representation of any
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I} set C, in the form of a union C' = UE <w; C¢ of C-increasing Borel approxi-
mations, has the property that for any 3} set X C C there is an index £ < w)
with X C C. The shortest proof consists of observation that otherwise the relation
x < y iff « appears in sets C¢ not later than y on X is a 31 prewellordering
of uncountable length, contrary to the KUNEN-MARTIN prewellordering theorem,
see, e.g., {Mos80 2G.2].)

The sets %5 e are called (upper) Borel approzimations of Hyr.

The next lemma is the key fact.

LEMMA 18.4.4. For any £ < wy there exists an ordinal v, £ < v < wy, such
that the Borel approzimation #y,. is still an ideal.

PROOF. Step 1. We claim that for any £ < wq, there is an ordinal 5 = n(€),

£<n<wy,suchthat yCaoe K =—ye Z5.. Indeed the set
P={uestiVyCalyess))

is a TI} superset of Fyr (since Fyr is an ideal). It follows that there is an ordinal

7> & with A C P.

Step 2. We claim that for any & < wy, there is an ordinal ¢ = {(€), £ < { < wy,
such that z,y € fNCT = axUye ngT. The argument contains two substeps. First,
the set X = {z € /,fT Vy € Iy (zUy € f,fT)} is a IIj superset of #y; since
Syr is an ideal. Thus there is an ordinal o > ¢ with A& C X. Then we have
tUy € 75 whenever z € £2 and y € Sy It follows that the IT} set

Y={ye g :Vee s (xUy e Ig)}
is a superset of %y, and hence there is an an ordinal 5 > « such that % C Y.
Obviously 7 is as required.

Final argument. Put & = ¢ and &40 = n(¢(&,)) for all n. The ordinal
v = sup,, §, Is as required. O

It follows that the set Z = {£ < w; : JfT is an ideal} is unbounded in w;. We
also note that E ;¢ is a Borel equivalence relation on 2((2 x N)<*) for any £ € =,
and the sequence of these equivalence relations is C-decreasing and satisfies E o =
ﬂ&eE 5 The proof of Theorem 18.4.1, our main result here, is accomplished with
the following lemma.

LEMMA 18.4.5. If E is a Borel equivalence relation on a Polish space X , then
there is an ordinal £ € E such that E <g Eff} .

Proor. It follows from Corollary 18.4.3 that E <y E 4, that is, there exists a
Borel map ¥ : X — Z((2 x N)<¥) such that s Ey <= 19( ) A (y ) € Syr. Thus
the full ¥-image Y[P] of the set P = (X x X)\E is a X1 set disjoint from Fyr.
Then by Lemma 18.4.4 there is an ordinal £ € Z such that J[P] does not intersect
ngT, too. Thus ¥ reduces E not only to E g, but also to the approximating Borel
ecuivalence relation E & O

O (Theorem 18.4.1, first proof)

18.5. Reduction to Borel ideals: second approach

Is there any method to prove Theorem 18.4.1 by a sequence of more “effective”
and mathematically meaningful upper Borel approximations of a <g-maximal an-
alytic ideal? A suitable definition is given in [KLO6].
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First of all recall that any tree 7' C X <% admits the rank function, a unique
map rnkg : R -— 0rd U {co}, where oo denotes a formal element larger than any
ordinal, satisfying the following requirements:

(a) rnkg(r) = —1 whenever r ¢ R;

(b) rnkg(r)=sup, ~,cgrokp(r"n) for any r € R.? In particular, rnkg(r)=
0 if and only if » € R is a C-maximal element of R ;

(c) rnkg(r) = oo if and only if R has an infinite branch containing r, i.e.,
there exists v € XN such that v [n € R for all n, and v [1hr =17,

In addition, put rnk(@) = —1 for the empty tree &, and rnk(R) = rnkz(A) for any
non-empty tree R. (A, the empty sequence, belongs to any tree @ # R C X<¢)
Obviously, any tree R is well founded iff rak(R) < oo.

DEFINITION 18.5.1. Suppose that S,7 € NT and £ < w;.
Define § <$; T iff the tree EMB(S,T) satisfies rnk(EMB(S,7T)) > £.3
Define S Ef;T T iff both S SET T and T §§T S. a

It is demonstrated in [KLO06] by simple and rather straightforward arguments
that all relations E§T are Borel equivalence relations on NT of certain explicitly
defined Borel ranks. A notable part of this result is the proof of transitivity of §§T
and EET, based on the following generalization of Lemma 18.1.1.

LEMMA 18.5.2 (Lemma 4 in [KLO06]). rnk(S +¢; 7) = min{rnk(S),rnk(7)}
for any trees S, T C N<“, well or ill founded independently of each other. O

In addition, Eyy = ﬂE <o EET, and this intersection has the same restriction
property as above: if P is a II} subset of NT x NT containing Eyr, then there is
an ordinal £ < wy such that Ef,T CP.

It follows, essentially by the same arguments as above, that the sequence of
Borel relations E§,T is <g-cofinal among all Borel equivalence relations.

The following construction of Borel ideals that generate the equivalence rela-
tions Ef; is a modification of a construction in [KL06].

Consider a set X C (2 x N)“. Suppose that f € N<“, v € 2<%, n = 1lhu <
1h f. Let G¥(X) be the game in which player I plays s1,s0:-- € N, player II
plays 1,15+ € N" so that t) 4oy +egbm <cu [ n for all m, and player I wins if
and only if {(u,sy) € X for all k, where 5} = 81ty b1 +ew* * tew Sk—1 Few bh—1 Fou Sk

Define WID(X) to be the tree of all f € N<“ such that for any n < 1h f and
u € 2", player II has a winning strategy in G(X). Thus, informally, f € WiD(X)
can be seen as a statement of the possibility of leaving X for good in finitely many
steps, the +,-total length of which is at most f. Let _Zy; be the collection of all
sets X C (2 X N)<w such that WID(X) is ill founded. For ¢ < wy, let /1\5T be the
collection of all sets X C (2 x N)<“ with rnk(WID(X)) > €.

LEMMA 18.5.3. _Zxv and all sets /NET are ideals on (2 x N)<“,

2 We define sup (2, for §2 C Ord, to be the least ordinal strictly larger than all ordinals in 2.
We also define sup §2 = oo provided {2 contains oo.

3 The inequality rnk(EMB(S,T)) > £ means that either EMB(S,7) (a tree in N<¥) is ill
founded (then rnk(EMB(S,T)) = oco) or it is well founded and its rank is an ordinal > £.
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PROOF. Suppose that sets X,Y C (2 x N)<“ belong to _#yr, and hence the
trees F' = WID(X) and G = WID(Y) are ill founded. Then the tree F' 4o, G is
ill founded by Lemma 18.1.1 (to be replaced by Lemma 18.5.2 for the ideals /NET ),
and hence it suffices to prove that F' 4., G C WID(X UY).

Take any f € F and g € G with 1h f = lhg. To prove that h = f 4¢, g
belongs to WID(X UY), fix any w € 2™, n < 1h f, and a pair of winning strategies
&, for player IT in games G (X) and G (Y'), respectively. To describe a winning
strategy for player ITin G} (X UY), let s1,t1,83,t2,... be a full sequence of moves.
Put

K={k:5,eX} and K' ={k:5, €Y X}
and let K = {ky, ko,...} and K’ = {k{,k},...}, in the increasing ordenr.

For every k, if k = k; € I, then player II plays t, =£(oy, 71,...,05-1,Tj—1,03),

where 7; =13, and, forall 1 <¢ <7,

O = Sky_1+1 Few tk‘,i‘1+1 Feu Ski_14+2 Feu tk,-,1+2 dow o tew Ski—1 Feu tk'i—l v Skeye

Accordingly, if k =k} € K', then ty =n(oy,7,...,05 1,7/ _,0%), where
!
O3 = Spf_ 41 Feu tk;_DLl Few Skl 42 Feu tk:§_1+2 Few  Few Skl—1 Few tk§—1 Feu Skt

and 7/ =t for any 1 <4 < j. If to the contrary, player T wins, then KUK’ = N.
Let, say, K = {k,ks,...} be infinite. Then player IT must win the auxiliary play
01,T1,02,T2,... in G¥(X). Hence one of the finite sums

g; =01 Few T1 Feow - tew Oj—-1 Feu Tj-1 Feu 2]

satisfies o; ¢ X. But obviously o; = 5, which is a contradiction with k; € K. O

Thus _#yr is a 331 ideal while each jﬁT is a Borel ideal.

THEOREM 18.5.4. The equivalence relation Eyr is equal to E g [ NT, while
for any €, EET s equal to E/ﬁ [ NT.

Proor. Consider any S,T € NT. Assume that S Eyy 7. Then the trees F =
EMB(S,T) and G = EMB(T, S) are ill founded, and hence H = F +, G is also by
Lemma 18.1.1. (Lemma 18.5.2 is used in the case of /fT) Note that H CGNF
since both S and T are <,-transitive to the right. Thus it suffices to prove that
GNF C Win(SAT). Consider any f € G N F. By definition, for any (u,s) €
SUT, lhu = lhs = n < 1h f, we have (u,s 4c, (f [ n)) € SNT. In particular,
(u,8) € SAT = (U, 8 +eu (f 1)) € S AT, and easily f € WID(SAT).

To prove the converse, suppose that S AT € #Zyp, thus WID(S A T) is ill
founded. It suffices to prove that WID(S A T) C EMB(S,T). Suppose toward the
contrary that f € WID(S A T) but f ¢ EMB(S,T). The latter means that there
exists a pair (u,s) € S, lhu = lhs = n < 1h f, such that j(u,s 4oy (f [ 1)) € T.
Then also {u,s) ¢ T, and hence both (u,s) and {u, s 4¢ (f [ 7)) belong to S\ T.
We conclude that

18.5.5. {u,s +g) € ST holds for all g € N" with g <¢, (f [n).

Now consider a play in G (SAT) in which player II follows its winning strategy
(which exists because f € W ID(S A T)) while player T plays s; = s and 55 = 0"
(the sequence of n zeros) on every round k > 2. Let t1,i,... be the sequence of
player IT’s moves. Then #1 4y * +ou the <ew (f [ 1) for all &, and hence, by 18.5.5,
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the sum §p, = s 4oy 1 +oy + + - Foy £ Satisfies (u, Sk) € S AT, which contradicts the
choice of the strategy. O

O (Theorem 18.4.1, second proof)

18.6. Some questions

It can be reasonably conjectured that Ej. <y Ewr <p E“2™™ whenever 5 <
wv and n > 1. The background idea here is that there is no <g-largest Borel
equivalence relation (noted in [HKL98]). Therefore, the sequence of equivalence
relations EgT has uncountably many indices of <g-increase (in strict sense). On
the other hand, it seems plausible that E<% ™ ~p E“XT M piovided n > 1.

A couple of more interesting questions. ‘

Which Borel classes contain complete equivalence relations ?

A related problem can be discussed here. It was once considered a viable con-
jecture (see, e.g., [KRO3]) that the equivalence relation T, is not Borel reducible
to any equivalence relation E s induced by a Borel ideal & C £ (N). It follows
from Theorem 18.4.1 that this is not the case, in fact there is an ordinal ¢ < wy
such that Ty <g EﬁT. What is the least ordinal £ satisfying this statement, and
what is the nature of the corresponding ideal?

Finally, it should be stressed that all evaluations of the Borel class of equiv-
alence relations in this paper were related to the actual Borel class in Cantor’s
discontinuum-like spaces. A somewhat deeper approach of “potential” Borel classes
of equivalence relations in [HKL98] may require suitable adjustment of arguments.







APPENDIX A

On Cohen and Gandy—Harrington forcing
over countable models

Forcing was invented as a tool to prove independence results, and it has been
used extensively in this role in set theoretic investigations; see e.g., [Kun83]. But
here we are mainly interested in applications of forcing, especially of Cohen forcing
and the Gandy-Harrington forcing in proofs of usual theorems in descriptive set
theory. Cohen forcing, connected with the Baire property in Polish spaces, facil-
itates arguments with Cohen-generic points of Polish spaces. Gandy-Harrington
forcing makes much more transparent several difficult arguments in the theory of
Borel reducibility.

This appendix is by no means a manual on forcing. And reading it requires a
certain minimal knowledge of this common set theoretic tool and related topics like
models, formulas, theories, etc.

A.1. Models of a fragment of ZFC

Basically, forcing is a method of extension of models of set theory to bigger
models by adding generic objects. As long as we deal with independence problems,
the models considered are normally models of ZFC or even stronger theories. But
working in ZFC we cannot use models of the full ZFC as a default prerequisite.
Fortunately, models of different fragments of ZFC are sufficient substitutions in
many cases.

DrrFINITION A.1.1. ZFC™ includes all ZFC axioms, minus the Power Set axiom
but plus the axiom that says, “for every set X, the countable power set Py (X) =
{y € X : cardy < Wo} exists.” O

This theory is strong enough to prove the existence of such sets as N, R, 28, NN
wy, the set HC of all hereditarily countable sets, and many more of the same types,
as well as typical properties of them. For instance, ZFC™ proves the existence of
the cartesian power set XY for all sets X and all at most countable sets Y.

The following definition introduces a natural model of ZFC™ .

DEeFINITION A.1.2. H + is the collection of all sets = such that the transitive
closure TC(z) has cardinality card TC(z) < ¢. O

Recall that ¢ = 2% = card 2N is the cardinality of the continuum, and TC(x)
is the least transitive set y such that z C y.

A set y is transitive iff acbey == acy.

Note that H.+ is a rather large set. For instance, it obviously contains sets
such as N, R, 2V, NN, wy, and H+ satisfies ZFC™ (in the presence of the axiom
of choice), simply because ¢fo = (2R0)Ro = oRoxRo — 9o — ¢,
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REMARK A.1.3 (Submodels). It is known from model theory that if X C H .+
is at most countable, then there exists a countable elementary submodel M C H_+
such that X C A. Note that A contains all natural numbers, the set N, sets like
R, 2N, NN, w1, and generally all sets @ € H.+ €-definable in H_+ .

The set M is not necessarily transitive, but it can be converted to a transitive
set by means of the Mostowski collapse.

Namely, define a function ¢ on M such that ¢(x) = {¢(y):y € x N M} for
all © € M. This is a definition by €-induction, in particular ¢(&) = @. The range
M = {p(x):x € M} of ¢ is a transitive set, and clearly ¢ is an C-isomorphism of
M onto M. Therefore, M is a model of ZFC™ as well because M is also. O

THEOREM A.1.4. Suppose that M, M, ¢ are as in Remark A.1.3. Then

(i) ¢(n) = n forall n € N, ¢(N) =N, ¢(x) = « for all x € M NN,
H(X)=XNM forall X e M, X C NV,

(ii) 9N is an elemeniary submodel of He+ w.r.t. all €-formulas that contain
only elements of (NYUNUR) NI as parameters;

(iil) therefore, MM is an elementary submodel of the universe of all sets w.r.t. all
analytic formulas (in the sense of Section 1.4) that contain only elements
of NY N9 as parameters;

(iv) #f X € M is a countable set, then X is countable in M, that is, there

exists a map he M, h: N ong X, and hence $(X) is countable in M ;
(v) if X € M is countable and X C NYUR, then ¢(X)=X.
PROOF., We leave the proof as an easy exercise. O

CoROLLARY A.1.5. If X is o hereditarily countable set (that is, the transitive
closure TC(X) 14s at most countable), then there is a countable transitive model N
of ZFC™ such that X € M and M is an elementary submodel of the universe
w.r.t. all analytic formulas with elements of M as parameters.

Proor. Let M be any countable elementary submodel of H.+ satisfying X €
M and TC(X) C M. Define ¢ and 9 as in Remark A.1.3. Use Theorem A.1.4
to prove that ¢(z) = a for every @ € TC(X), and therefore ¢(X) = X € M.
In addition, we have ¢(x) = x for all = € 9 NNV, It follows that 9, M, H.+
are elementarily equivalent w.r.t. all analytic formulas. And finally note that H .+
contains all elements of NV, so that H.+ is an elementary submodel of the universe
w.r.t. all analytic formulas, O

A few words about absoluteness. A formula ¢ is said to be absolute w.r.t. a
model M if ¢ is either true in both M and the universe of all sets or false in both
IN and the universe of all sets. Here it is assumed that ¢ is a formula with sets in
M as parameters. See [Sho62] on the next well-known theorem.

THEOREM A.1.6. Suppose that M is a transitive model of ZFC™. Then every
X1 formula with parameters in 9 is absolute for M (MosTOwsKI).

If in addition wy C M, then every X1 formula with parameters in M s
absolute for M (SHOENFIELD). U
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A.2. Coding uncountable sets in countable models

Suppose that 9 is a countable transitive model of ZFC ™, for instance a model
defined as in Remark A.1.3. By definition it cannot contain uncountable sets.
However, many uncountable sets, especially sets in Polish spaces, can be explicitly
coded in such a model.

(i) By a code of a Polish space X, we understand a pair that consists of a
countable dense subset Dy C X and the distance function restricted to Dx, that
is, dx [ Dx. We consider here only those Polish spaces X that satisfy X C NN (but
the distance and the topology may have nothing in common with those of N™ ), but
obviously every Polish space is isometric to one of this type. In this case the sets X,
dx, Dy, and dy [ Dx belong to H .+, and if M, 9, ¢ are as in Remark A.1.3 and
the sets D and dx [ Dx belong to M, then ¢(Dx) = Dx and ¢(dx [ Dx) = dx | Dx.
It follows by Lemma A.1.4 that the sets D and dyx | Dx belong to 9 as well and
D is countable in 9.

Say that X is coded in M, if the sets Dy and dx | Dx belong to 9 and D
is countable in 9 in the sense that there is a map f € 9, f: N onte Dx.

(ii) Say that an open set U C X is coded in 9, if there exists a set ¢ € I,
¢ C DxxQ" such that U = U(mﬂe(: U (x), where U (2) = {y € X: dx(z,y) < r}
(a basic open ball in X). Such a set ¢ is called a code of U.

Say that a Gs-set W C X 4s coded in 9, if it can be presented in the form
W =, Un, where all U,, € X are open sets, and there exists a sequence ¢ =
{en}nen € M such that each ¢, is a code of U,, (as an open set). Such a sequence
¢ is called a code of W,

(ili) Now suppose that Polish spaces X and Y are coded in 911 as in (i), and
U X — Y is a Borel map that we would like to code as well. The coding of
arbitrary Borvel sets as in Section 2.8 can be employed, yet it is too complicated.
In addition, our goal is somewhat simpler: we need to code not the function ¥ as
a whole but rather the vestriction ¥ | X, where X C X is a Gs set already coded
in M as in (ii), and such that ¥ | X is continuous.

Note that the set X, = {@ € X :dy(y,9(x)) <r} is relatively open in X for
every y € Dy and r € Q1. Therefore, there exists an open (in X) set U, C X
such that X,. = X N U,. By a code of ¥ | X we understand an arbitrary set
c = {cy,.}yepl,’ reg+ such that every element ¢, is a code of the open set Uy as
in (ii). And we say that ¢ [ X is coded in 9 if this model contains a code of ¥ | X
and also contains a code of X itself (as a Gy set).

A.3. Forcing over countable models

Suppose that NN is a countable transitive model of ZFC™, for instance, a model
chosen as in Remark A.1.3. Let P = (P; <) € 9 be a partially ordered set. It is
called a notion of forcing in M. Elements p € P are called (forcing) conditions,
and p < ¢ means that p is stronger than g. A set D C P is

dense: if for every condition ¢ € P there is a stronger condition p € D;

open dense: if in addition for every p € D, all conditions ¢ € P stronger than
p also belong to D.
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An easy argument shows that w.lo.g. dense sets can be replaced by open dense
ones in the following definition of genericity. A set G C P is P-generic over m
if it satisfies the following three conditions:

1) if p,q € G, then there is r € G such that r <p and r < g;
2)ifpe G, qge P, p<gq,then q€G;
3) if D €M, D C P is dense, then GND # @.

If D is sucl, then there is a certain unique countable model 9 [G] that contains
both G and all sets in 91 and is the least model satisfying these requirements.
This model is called a P-generic extension of M by adjoining G. It can be defined
explicitly by M[G] = {2][G]:x € M}, where z[G] is defined by induction on the
set theoretic rank of x so that @[G] = @ and, for all x € M, = # &,

e[G] = {y[G]:3p € G ((p,y) € 2)}.

To see that every z € M belongs to M[G], define & € M by induction on
the set theoretic rank of z so that & = @ and & = {J:y € 2} for 2 # &. Then
obviously #[G] = z. To see that G € M|a], define G € M to be the set of all pairs
of the form (p,p), where p € P. Then G[G] = G for all G.

Sometimes they identify 2 with z itself and also G with G. Regarding the
latter identification, one has to keep in mind that by definition G is a fixed element
of 9 that does not depend on any choice of a factual generic set G

LEMMA A.3.1. If M is a countable transitive model of ZFC™, P is countable
in M and G C P is P-generic over M, then Mla] still is a model of ZFC™ .

Proor. Emulate the proof that generic extensions of models of ZFC are still
models of ZFC. a

The next “forcing product lemma” is helpful in some arguments.

THEOREM A.3.2. Let Py, P, € M be partially ordered sets. A set G C Py X Py
is P; x Py-generic over N iff there exist o Pi-generic set Gy C Py over MM and
a Ps-generic set Go C Py over OM|G4] such that G =G1 X Ga. a

Finally, if ¢(y1,...,¥s) is an €-formula with sets y1,...,y, € M as param-
eters, and p € P, then p | ¢(y1,...,¥n) (the P-forcing relation) means that
if G C P is P-generic over 9, then the sentence p(y[G],...,¥,[G]) (with sets

1[G, ..., 2, [G] € M[G] as pa1ametels) is true in M[G].
They mostly use this relation in the case when the given sets y; have the form
& or G. For instance, if @(21,...,2p, ) is an €-formula, z1,...,2, € M, and

p € P, then p |- (&, .. .,i‘n,Q) it p(x1,...,2,,G) is true in Sm[G] for every
set G C P P-generic over 9.
The following is the main forcing theorem.

THEOREM A.3.3. If @(1,...,&p,2) is an €-formula, 1,...,2, € M, a set
G C P is P-generic over M, and the sentence o(1,...,2,, Q) is true in M[G],
then there is a condition p € G such that p |- ¢(i1,...,%,,G). a

See [Sho71], Chapter 4 in [Bar78], or [Kun83| (a standard reference) for more
on forcing.

! Sometimes a set is M-generic if P is fixed in the context.
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A.4. Cohen forcing

Cohen forcing belongs to a wide class of forcing notions that “add a real”.

Let us fix a countable transitive model 9t of ZFC™ and a Polish space X
coded in 901 so that a certain countable dense set Dy C X belongs to 9 along
with the restricted distance function dy | Dx .

DErFINITION A.4.1. The Cohen forcing Cx consists of all open balls in X of
the form U, (z) = {y € X:dx(x,y) <}, where r ¢ Q7 and z € Dx.
We order Cyx by inclusion, so that smaller balls are stronger conditions. There-
fore, following the general definition in Section A.3, a set D C Cyx is:
dense: if for every condition X € Cx there is a condition Y € D, Y C X;
open dense: if in addition X € D =Y € D whenever X,Y ¢ Cx, Y C X. O
Sets of the form U, (x) are, generally speaking, uncountable, and hence they
cannot belong to M. However, the set Cf = Q" x Dx with the order
(rye) < (', 2’y it U.(z) CUq(2)
does belong to 9 under the assumptions of Definition A.4.1, and is similar (order
isomorphic) to Cx. In this sense Cx can be adequately considered as a forcing in
9. Accordingly, a set G C Cx is Cx-generic, or Cohen-generic, over 9t iff it
satisfies the following modified forms of 1), 2), and 3) of Section A.3:
1) if X,Y € G, then thereis Z € G such that ZC X NY;
)i XeG, YeCx, YCX,then Y € G,
3) if D C Cx is dense and coded in Mt in the sense that the corresponding
set D' = {(r,x) € C : U.(x) € D} belongs to M, then GN D # @,

THEOREM A.4.2. If M, X are as above, then Cx adds a real in the sense that
if a set G C Cx is Cohen-generic over MM, then the intersection (G of all sets
X € G is a singleton, which will be denoted by ac .

Proor. The intersection Aq of all closed balls
Up(z) = {y € X:dg(a,y) <r}, where U,(z)ed,

is a singleton, say, ag, because the space is complete. Fix an arbitrary X =
Uy (2") € G and prove that ag € X. It is quite clear that the set

PX)={Y €eCx:YNX=0VY C X}

is a dense subset of Cx coded in 9. Therefore, there is ¥ € G'N 2(X). However
Y NX =@ is impossible because X € G, too. Therefore, Y C X. But ag € Y by
definition, as required. O

Elements of X of the form ag, where G C Cx is a Cohen-generic' set over 9N,
are called Cohen-generic over 9, too.
The following characterization of Cohen generic points is well known:

ProrosITioN A.4.3. Suppose that a € X, Fither of the two following condi-
tions is necessary and sufficient for a to be Cohen-generic over M :

(i) the set G(a) ={X € Cx:a € X} is Cohen-generic over IM;
(i) a belongs to every dense open set B C X coded in .
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In addition if a set G C Cyx 1is Cohen-generic over M, then IM|G]| = Mag] and
G = G(CLG) . c

COROLLARY A.4.4. The set of all points @ € X Cohen-generic over M is a
dense Gg subset of X (since 9 is countable). |

REMARK A.4.5. Some forcing thieorems and definitions admit convenient mod-
ifications in terms of generic points in the case of Cohen forcing. In particular

the condition X € Cx forces p(&1,...,3,,G) if and only if
oAx1,. .o, 0, G(a)) is true in Mla] for every Cohen-generic
point a € X.

Theorem A.3.3 can be reformulated as follows:

If a €X is Cohen-generic over M and p(z1,...,%,, G(a)) is
true in Mla], then there evists a condition X € Cx such that
o€ X and X |- o(¥1,...,%,,G).

Theorem A.3.2 now says that a pair {z,y) € X x Y is Cohen-generic over 9 iff
is Cohen-generic over M and y is Colhen-generic over M[z]. a

REMARIK A.4.6. Some Polish spaces X admit special, more convenient defi-
nitions of the Cohen forcing notion. For instance if X = NN, then Cx can be
identified with the set N<* of all finite sequences of natural numbers, longer se-
quences being stronger conditions. And every sequence s € N<“ produces the
clopen ball Us = {a € NY:s Ca}. A similar definition works for 2V,

As for the space Z(N) (essentially the same as 2V, see Section 3.1), we can
define Cgyy to be equal to the set C of all pairs (n,u), where n € N and
u C [0,n), with the order (n,u) < (m,v) iff m < n and v = wN[0,m). The
set € obviously belongs to every countable transitive model of ZFC™., To see
that this is essentially the same as Cg(yy in the sense of the general definition
(Definition A.4.1) identify each condition p = (n,u) € C with the clopen set
{ae Z2(N):an0,n) =u}.

And it is quite easy to prove that a set a € Z?(N) is Cohen-generic over a
transitive model MM of ZFC™ iff the set G(a) = {p = (n,u) € C:aN0,n) = u} is
C-generic over M. a

A.5. Gandy-Harrington forcing
Here we discuss some special issues related to Gandy-Harrington forcing.

DerFNiTION A.5.1. Fix a countable elementary submodel M C H.+ and use
the Mostowski collapse to get a countable transitive model 91 C H.+ as in Remarlk
A.1.3. Then 9M is a model of ZFC™ and an elementary submodel of the universe
of all sets w.r.t. all analytic formulas with parameters in 91 by Theorem A.1.4. O

DEFINITION A.5.2. The set P = P[NV] = {@# X C N¥: X is 5!} is the
Gandy—Harrington forcing for the space NN, Smaller (in the sense of C) sets in P
are stronger conditions. =

Forcing notions P[2N], P[(2")M], etec., can be defined similarly, and since all
product spaces are Aj-isomophic those will be isomorphic forcing notions.
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REMARK A.5.3. Obviously P ¢ and & M, of course, but P can be adequately
coded in M. For instance, if X € P, then X N9 belongs to 9 and is a I} set
in 9. In fact, as 9 is an elementary submodel of the universe w.r.t. all analytic
formulas, the set X N9 can be defined in 9M by the same 2t formula as X itself
is defined in the universe. Therefore, the set P/ =— {XNnom: X € P} belongs to M.
And by the same reasoning we have X CYiIFXNnOMCYNM forall X,Y € P,
and hence the C-ordering of P is similar to the C-ordering of P'. a

Thus, P can be adequately treated as a forcing notion in 9. Similar to Sec-
tion A.d, aset G C P is P-generic over M iff

1) for every pair of X, ¥ € (@ there exists Z € (¢ such that Z C X Y,
2)if XeGand Y EP, X CY, then Y ¢ G and

3) for every set D € 9, D C P dense in P, and coded in 9 in the sense
that the corresponding set D' = {X N 9M: X € D} (then dense in P')
belongs to 9, the intersection DN @& is non-empty.

A set D C P is dense if we have X ¢ D whenever X e P and X CY € D,
Similar to Cohen forcing, the Gandy-Harrington forcing adds a real.

THEOREM A.5.4. If G C P is P-generic over IR, then (NG contains a single
element of NN, denoted by w¢. Fvery A€ P forces that xg belongs to A,

Elements of the form 2, G as in the theorem, are called P-generic, or Gandy-
Harrington generic (over 9M).

PROOF. Let us return to the proof of Theorem 2.10.4. We defined there a
collection 2(P,s,t) of non-empty It sets X € NV for each triple P,s,¢ that
consists of a II) set P C NY x NN and s,t € N°“. We proved that all sets
D(P,s,t) are dense subsets of P = %, and the (obviously countable) family of
all collections P(P,s,t) witnesses the Polish-likeness of P. In addition, the sets
P(P,s,t) are obviously coded in 9. Therefore, G N P(P,s,t) # & for all P,s,t
as indicated.

An elementary forcing techuique allows us now to obtain a C-decreasing se-
quence of Gandy-Harrington conditions X,, € G which

1) has a term X,, in common with every family of the form 2(P,s, t) (n
depends on P, s,t), and in addition

2) for every X ¢ P there exists n such that XpnCXo X,NX =0,

Then by the Polish-likeness and 1) (), X,, # @, and hence NG # &. That the
intersection cannot contain more than one element easily follows from 1), for take
as X all sets of the form X, = {a ¢ NV:s C a}, where s € N<“, O
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