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Preface 
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and graduate students. Although these notes underwent several revisions; 
which included the addition of a new chapter (Chapter V) and of many com­
ments and references, the final form still retains the informal and somewhat 
compact style of the original version. So this book is best viewed as a set 
of lecture notes rather than as a detailed and scholarly monograph. 
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J. Mycielski, F. van Engelen, and T. Zavisca for many helpful comments and 
suggestions. I am particularly grateful to A. Andretta, H. Becker, S. Solecki, 
and S. M. Srivastava for their extensive and detailed criticism as well as 
numerous corrections, which substantially improved the presentation. 

It is my pleasure to acknowledge the financial support of the National 
Science Fot.indation and the help from the Mathematics Department at 
Caltech while I was writing this book. In particular, I would like to thank 
J. Madow and J. Cassidy for typing the manuscript and B. Turring for 
preparing the diagrams. 
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September 1994 
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Introduction 

Descriptive set theory is the study of "definable sets" in Polish (i.e., sep­
arable completely metrizable) spaces. In this theory, sets are classified in 
hierarchies, according to the complexity of their definitions, and the struc­
ture of the sets in each level of these hierarchies is systematically analyzed. 

In the beginning we have the Borel sets, which are those obtained from 
the open sets, of a given Polish space, by the operations of complementation 
and countable union. Their class is denoted by B. This class can be further 
analyzed in a transfinite hierarchy of length w1 ( = the first uncountable 
ordinal), the Borel hierarchy, consisting of the open, closed, Fu (count­
able unions of closed), Gs (countable intersections of open), Fus (countable 
intersections of Fu ), Gsu (countable unions of Gs), etc., sets. In modern 
logical notation, these classes are denoted by !:~: fi~, for 1 < e < WJ, 

where 
:E~ = open, n~ = closed; 

:E~ = { U A .. : A,. is in ll~" for e,. < e}; 
nEN 

n~ = the complements of :E~ sets. 

(Therefore, :Eg = Fu, D3 = Gs, Eg - Gfi<n ng -
ramifies in the following hierarchy: 

:E~ E3 :E~ 

Fus, etc.) Thus B 

where ~ :::; 11 < w1 , every dass is coutaiued in any class to the right of it, 
and 
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B= U E~= U n~. 
e<wl e<wl 

Beyond the Borel sets one has next the projective sets, which are those 
obtained from the Borel sets by the operations of projection (or continuous 
image) and complementation. The class of projective sets, denoted by P, 
ramifies in an infinite hierarchy of length w (= the first infinite ordinal), 
the projective hierarchy, consisting of the analytic (A) (continuous images 
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous 
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical 
notation, we let 

E ~ = . analytic, n~ = co-analytic; 

E~+ 1 = all continuous images of n~ sets; 

n~+ 1 = the complements of E~,+l sets; 

so that in the following diagram every class is contained in any class to the 
right of it: 

~· n 

B 

and 

n n 

One can of course go beyond the projective hierarchy to study trans­
finite extensions of it, and even more complex "definable sets" in Polish 
spaces, but we will restrict ourselves here to the structure theory of Borel 
and projective sets, which is the subject matter of classical descriptive set 
theory. 

Descriptive set theory has been one of the main areas of research in 
set theory for almost a century now. Moreover, its concepts and results are 
being used in diverse fields of mathematks, such as mathematical logic, 
combinatorics, topology, real and harmonic analysis, functional analysis, 
measure and probability theory, po_tential theory, ergodi<; theory, operator 
algebras, and topological groups and their representations. The main aim 
of these lectures is to provide a basic introduction to classical descriptive 
set theory and give some idea of its connections or applications to other 
areas. 
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These lectures are divided into five chapters. The first chapter sets up the 
context by providing an overview of the basic theory of Polish spaces. Many 
standard tools, such as the Baire category theory, are also introduced here. 
The second chapter deals with the theory of Borel sets. Among other things, 
methods of infinite games figure prominently here, a feature that continues 
in the later chapters. In the third chapter, the theory of analytic sets, which 
is briefly introduced in the seeond chapter, is developed in more detail. The 
fourth chapter is devoted to the theory of co-analytic sets and, in particular, 
develops the machinery associated v.-ith ranks and scales. Finally, in the 
fifth chapter, we provide an introduction to the theory of projective sets, 
including the periodicity theorems. 

We view this book as providing a first basic course in classical descrip­
tive set theory, and we have therefore confined it largely to "core material" 
with which mathematicians interested in the subject for its own sake or 
those that wish to use it in their own field should be familiar. Throughout 
the book, however, are pointers to the literature for topics not treated here. 
In addition, a brief summary at the book's end (Section 40) describes the 
main further directions of current research in descriptive set theory. 

Descriptive set theory can be approached from many different view­
points. Over the years, researchers in diverse areas of mathelllatics-logic 
and set theory, analysis, topology, probability theory, and others-have 
brought their own intuitions, concepts, terminology, and notation to the 
subject. We have attempted in these lecture,s to present a largely balanced 
approach, which combines many elements of each tradition. 

We have also made an effort to present a wide variety of examples 
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and applications in order to illustrate the general concepts and results of 
the theory. Moreover, over 400 exercises are included, of varying degrees of 
difficulty. Among them are important results as well as propositions and 
lemmas, whose proofs seem be,st to be left to the reader. A section at the 
end of these lectures contains hints to selected exercises. 

This book is essentially self-contained. The only thing it requires is fa­
miliarity, at the beginning graduate or even advanced undergraduate level, 
with the basics of general topology, measure theory, and functional analy­
sis, as well as the elements-of f$et theory, including transfinite induction and 
ordinals. (See, for e.xample, H. B. Enderton [1977], P. R. Halmos [1960a] 
or Y. N. Moschovakis [1994].) A short review of some standard set theo­
retic concepts and notation that we use is given in Appendices A and B. 
Appendix C explains some of the basic logical notation employed through­
out the text. It is recommended that the reader become familiar with the 
contents of these appendices before reading the book and return to them 
as needed later on. On occasion, especially in some examples, applications, 
or exercises, we discuss material, drawn from various areas of mathematics, 
which does not fall under the preceding b.asic prerequisites. Iu such cases, 
it is hoped that a reader who has not studied these concepts before will at 
least attempt to get some idea of what is going on and perhaps look over a 
standard textbook in one of these areas to learn more about them. (If this 
becomes impossible, this material can be safely omitted.) 

Finally, given the rather informal nature of these lectures, we have 
not attempted to provide detailed historical or bibliographical notes and 
references. The reader can consult the monographs by N. N. Lusin [1972], 
K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection 
by C. A. Rogers et al. [1980] in that respect. The D.-Bibliography of Mathe­
matical Logic (G. H. Muller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also 
contains an extensive bibliography. 



CHAPTER I 
Polish Spaces 

1. Topological and Metric Spaces 

1. A Topological Spaces 

A topological space is a pair (X, 7), where X is a set and 7 a collection 
of subsets of X such that 0, X E 7 and 7 is closed under arbitrary unions 
and finite intersections. Such a collection is called a topology on X and its 
members open sets. The complements of open sets are called closed. Both 
0, X are closed and arbitrary intersections and finite unions of closed sets 
are closed. 

A set of the form nnEN u • ., where Un are open sets, is called a G6 set, 
and a set of the form UneN Fn, where Fn are closed sets, is called an Fa 
set. 

A subspace of (X, 7) consists of a subset Y C X with the relative 
topology 7IY = {U n Y : U E 7}. (In general, for a set X, a subset 
Y ~ X, and a collection A of subsets of X, its restriction to Y is defined 
by AIY ={AnY: A E A}.) 

A basis B for a topology 7 is a collection B ~ 7 with the property that 
every open set is the union of elemeuts of B. (By convention the empty w1ion 
gives 0.) For a collection B of subsets of a set X to be a basis for a topology, 
it is necessary and sufficient that the intersection of any two members of 
B can be written as a union of members of B and U{ B : B E B} = X. A 
subbasis for a topology 7 is a collection S ~ 7 such that the set of finite 
intersections of sets in S is a basis for 7. For any family S of subsets of 
a set X, there is a smallest topology 7 containing S, called the topology 
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generated by S. It consists of all unions of finite intersections of members of 
S. (By convention the empty intersection gives X.) Clearly, Sis a subbasis 
for T. A topological space is second countable if it has a countable basis. 

If X is a topological space and x E X, an open nbhd (neighborhood) 
of x is an open set containing x. A nbhd basis for x is a collection U of 
open nbhds of x such that for every open nbhd V of x there is U E U with 
ucv. 

Given topological spaces X, Y, a map f: X - Y is continuous if the 
inverse image of each open set is open. It is open ( resp. closed) if the image 
of each open (resp. closed) set i~ open (resp. closed). It is a homeomorphism 
if it is a bijection and is both continuous and open. Finally, it is called an 
embedding if it is a homeomorphism of X with /(X) (given its relative 
topology). A function f: X- Y is continuous at x EX (or xis a point of 
continuity of f) if the inverse image of an open nbhd of f(x) contains an 
open nbhd of x. So f is continuous iff it is continuous at every point. 

If (Yi)ie/ is a family of topological spaces and h :X - Yi, a family of 
functions, there is a smallest topology T on X for which all h are contin­
uous. It is called the topology generated by (Miei and has as a subbasis 
the family S = {fi-1(U) : U C Yi, U open, i E J}. If Si is a subbasis for 
the topology of Yi, we can restrict u to si here. 

The product fliEI Xi of a family of topological spaces (Xi)iei is the 
topological space consisting of the cartesian product of the sets Xi with the 
topology generated by the projection functions (xi)iE/ ~---+ x3 (j E J). It has 
as basis the sets ili Ui, where Ui is open in Xi for all i E 1, and Ui =Xi 
for all but finitely many i E J. If Bi is a basis for the topology of Xi, the 
sets of the form ni ui, where ui =xi except for finitely many i for which 
Ui E Bi, form a basis for the product space. Note also that the projection 
functions are open. If xi= X for all i E J, we let X 1 = niEI xi· 

The sum EBi Xi of a family of topological spaces (Xi)iEI is defined (up 
to homeomorphism) as follows: If we replace xi by a homeomorphic copy, 
we can assume that the sets Xi are pairwise disjoint. Let X= Uiei Xi. A 
set U ~X is open iff U n Xi is open in Xi for each i E J. 

J.B Metric Spaces 

A metric space is a pair (X,d), with X a set and d: X 2 - [0, oo) a function 
satisfying: 

i) d(x, y) = 0 <=> x = y; 
ii) d(x,y) = d(y,x); 
iii) d(x, y) < d(x, z) + d(z, y). 

Such a function is called a metric on X. 
The open ball with center x and radius r is defined by 

B(x,r) = {y EX: d(x,y) < r}. 
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(The corresponding closed ball is denoted by 

Bct(x, r) = {y EX: d(x, y) < r} .) 

These open balls form a basis for a topology, called the topology of the 
metric space. 

A topological space (X, T) is metrizable if there is a metric don X so 
that T is the topology of (X, d). In this case we say that the metric d is 
compatible with T. If T is metrizable with compatible metric d, then the 
metric 

d' = _d_ 
1+d 

is also compatible and d' < 1. 
A subset D ~ X of a topological space X L'l dense if it meets every 

nonempty open set. A space X admitting a countable dense set is called 
separable. Every second countable space is separable (but the converse does 
not hold). If X is metrizable, then X is separable iff X is second countable, 
so we use these terms interchangeably in this case. 

A subspace of a metric space (X, d) is a subset Y ~ X with the in­
duced metric diY (i.e., diY(x, y) = d(x, y) for any x, y E Y). The topology 
of (Y, diY) is then the relative topology of Y. Thus a subspace of a metriz­
able topological space is metrizable. Moreover, a subspace of a separable 
metrizable space is separable. 

A function f : X --+ Y between metric spaces (X, dx ), (Y, dy) is 
an isometry if it is a bijection and dx(xl> x2) = dy(f(x 1), j(x2)). Every 
isometry is clearly a homeomorphism. We call f an isometric embedding if 
f is an isometry of X with /(X). 

The product of a sequence of metric spaces ( (Xn, dn) )nEN is the metric 
space (D,. X,., d), where 

d( ) _ ~ 
2
-n-1 dn(Xn, Yn) 

x,y - ~ ' 
n=O 1 + dn(X,., Yn) 

with x = (x,.), y = (Yn)· The topology of this metric space is the product of 
the topologies of ( (Xn, <4,)). Thus the product of a sequence of metrizable 
topological spaces is metrizable. Moreover, the product of a sequence of sep­
arable metrizable spaces is also separable. The sum of a family ( (Xi, d,:)) iEI 
of metric spaces is defined (up to isometry) as follows: By copying the met­
ric of each Xi on a set of the same cardinality, we can assume that the sets 
Xi are pairwise disjoint. Let X = Uiei Xi. We define a metric don X by 
letting d(x, y) = di(x, y), if x, y E Xi, and d(x, y) = 1, if X E Xi andy E Xi 
with i =f j. The topology of this metric space is the sum of the topologies 
of ( (Xi, di)). Thus the sum of metrizable topological spaces is metrizable, 
and the smn of a sequence of separable metrizable spaces is separable. 

We recall here the following important metrization theorem. A topo­
logical space X is called T 1 if every singleton is closed and is called regular 
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if for every point x E X and open nbhd U of x, there is an open nbhd V 
of x with V ~ U (where, as usual, A denotes the closure of A, i.e., the 
smallest closed set containing A). 

(1.1) Theorem. (Urysohn Metrization Theorem) Let X be a second count­
able topological space. Then X is metrizable iff X is Tt and regular. 

We conclude with two basic results (the first of which is a special 
case of the second) concerning the existence of continuous real functions on 
metrizable spaces. 

(1.2) Theorem. (Urysohn's Lemma) Let X be a metrizable space. If A,B are 
two disjoint closed subsets of X, there is a continuous function f:X-+ [0,1] 
such that f(x) = 0 for x E A and f(x) = 1 for x E B. 

(1.3) Theorem. (Tietze Extension Theorem) Let X be a metrizable space. 
If A~ X is closed and f:A-+ JR is. continuous, there is ]:X-+ JR which is 
continuous and extends f. Moreover, iff is bounded by M, i.e., lf(x)l:::; M 
for all x E A, so is f. 
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2. Trees 

2.A Basic Concepts 

The concept of a tree is a basic combinatorial tool in descriptive set theory. 
What is referred to as a tree in this subject is not, however, the same 
notion as the one used either in graph theory or combinatorial set theory, 
although it is closely related. On the rare occasion that we will use the 
graph theoretic notion, we will refer to it as a "graph theoretic tree". 

Let A be a nonempty set and n E N. We denote by An the set of finite 
sequences s = (s(O), ... , s(n- 1)) =(so, ... , Sn-d of length n from A. We 
allow the case n = 0, in which case A0 = {0}, where 0 denotes here the 
empty sequence. The length of a finite sequences is denoted by length(s). 
Thus length(0) = 0. If sEAn and m:::; n, we let slm = (so, ... ,Sm-1). 
(So siO = 0.) If s, t are finite sequences from A, we say that s is an initial 
segment of t and t is an extension of s (in symbols, s ~ t) if s = tim, 
for some m :::; length(t). Thus 0 ~ s, for any s. Two such finite sequences 
are compatible if one is an initial segment of the other and incompatible 
otherwise. We use s .l t to indicate that s, t are incompatible. Finally, let 

be the set of all finite sequences from A. The concatenation of s = 
(sdi<n• t = (tj)J<m is the sequence s·t =(so .... ,Sn-ll to, ... , tm-1)· We 
write s·a for s'(a), if a EA. 

Let AN be the set of all infinite sequences .1: = (x(n)) = (xn) from 
A. If x E AN and n E N, let xln = (xo, ... ,Xn-l) E An. We say that 
s E An is an· initial segment of x E AN if s = xln. We write s ~ x if 
s is an initial segment of x. Also, for ~ E A<N and x E AN, we let the 
concatenation of s,x be the infinite sequence s·x = y, where y(i) = s(i) 
if i < length(s) and y(length(s) + i) = x(i). The (infinite) concatenation 
s0 • s 1• s2 • ..• of Si E A <N is the unique x E ANuA <N such that x(i) = so(i), 
if i <length( so); x(length(so) + i) = s 1(i), if i < length(s1); and so on. 

(2.1) Definition. A tree on a set A is a subset T C A<N closed under initial 
segments; i.e., ift E T and-~~ t, then sET. (In particular, 0 E TifT is 
nonempty.) We call the elements ofT the nodes ofT. An infinite branCh 
ofT is a sequence x E AN such that xln E T, for all n. The body ofT, 
written as (T], is the set of all infinite branches ofT, i.e., 

[Tj = {x E AN : \in(xln E T)}. 

Finally, we call a tree T pruned if every s E T has a proper· extension 
t ~ s, t E T. 

We visualize trees as follows (Figure 2.1): 
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0 

(c, d') T 

( ' ") c,e,g 

[11 

FIGURE 2.1. 

The bold line represents an infinite branch ( b, c', /", ... ) E [T]. The tree in 
Figure 2.1 is not pruned. The full binary tree {0, 1} <N pictured in Figure 2.2 
is, of course, pruned. 

0 

FIGURE 2.2. 
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2.B Trees and Closed Sets 

We can view a set A as a topological space with the discrete topology, i.e., 
the topology in which every subset of A is open. This is metrizable with 
compatible metric b(a, b) = 1, if a =f b. Therefore AN, viewed as the product 
space of infinitely many copies of A, is metrizable with compatible metric: 
d(x, y) = 2-n-l if x =f y and n is the least number with Xn =f Yn· 

(2.2) Exercise. A metric dis an ultrametric if 

d(x,y) ~ max{d(x,z), d(y,z)}. 

Show that the above metric is an ultrametric. 

The standard basis for the topology of AN consists of the sets 

Ns = {x E AN: s ~ x}, 

where s E A<N. Note that s ~ t <:::? N 8 2. Nt and s 1.. t <:::? Ns n Nt = 0. 

(2.3) Exercise. i) Show that if U ~AN is open, then there is a setS~ A<N 
such that: s, t E S, s =f t ~ s 1.. t, and U = UsES Ns. 

ii) Let U = Us N 5 , with D ~ A<N closed under extensions. Show 
that U is dense in AW>iff D is dense in A <N, i.e., 'its E A <N3t E D(s ~ t). 

iii) Let xn,x E AN. Show that xn- x iff'ili(xn(i) = x(i), for all large 
enough n). 

iv) Show that (AN)n (n:::: 1), (AN)N are homeomorphic to AN. 

(2.4) Proposition. Th.e map T ~--+ [T] is a bijection between pruned trees on 
A and closed subsets of AN. Its inverse is given by 

F ~--+ Tp = {x!n: x E F, n EN}. 

We call TF the tree of F. 

The proof is evident. 
For later reference we introduce the following notation. If T is a tree 

on A, then for any s E A<N, 

Ts = {t E A<N : s't E T} 

and 
1(8] = { t E T : t is compatible with s} . 

Thus [T[sJ] = [T] n Ns forms a basis for the topology of [T]. Note that T[sJ 
is a subtree ofT, butTs in general is not. 

(2.5) Definition. Let S,T be trees (on sets A,B, resp.). A map t.p:S- T is 
called monotone if s ~ t implies t.p( s) ~ t.p( t). For such t.p let 
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D(<p) = {x E [S]: limlength(<p(:~;ln)) = oo}. 
n 

For x E D(<p), let 
<p*(x) = U<p(xln) E [Tj. 

n 

We call <p proper i/ D(t.p) = [S]. 

(2.6) Proposition. The set D(<p) is G6 in [S] and <p*:D(<p)- [T] is contin­
uous. Conversely, if f:G- [T] is continuous, with G ~ [S] a G6 set, then 
there is monotone t.p:S - T with I = <p*. 

Prool We have x E D(<p) <:::? \in3m(length(<p(xlm)) > n), so D(t.p) = 
nn Un., with Un = {x: 3m(length(<p(xlm)) 2: n)} open. To see that <p* is 
continuous, note that the sets [T] n Nt = lit form a basis for the topology 
of [T] and (<p*)- 1(llt) = U{Ns n D'P: s E S, <p(s) 2 t} is open in D'P. 

Now, given G, a G6 set in [S] which we can assume is nonempty (oth­
erwise take <p(s) = 0), and f : G - [T] continuous, define <p : S - T as 
follows: Let (Un) be a decreasing sequence of open·sets in [S], with Uo = [S], 
such that G = nn Un. For any s E S, let k(s) E N be defined as follows: 
k(s) =the largest k:::; length(s) such that Ns n [S] ~ Uk. Now set <p(s) = 
the longest u E T of length :::; k( s) such that f ( Ns n G) ~ N,.., if N,. n G =f. 0, 
otherwise <p( s) = <p( slrn ), where rn < length( s) is large,st with N,lmnG =f. 0. 
(Note that if N8 n G =f. 0, and f(Ns n G) ~ Nun Nv, then u and v are 
compatible,) Clearly, s ~ s' ~ k(s):::; k(s') and <p(s) ~ <p(s'). 

If x E G, then limn k(xln) = oo because x E UN for each N, and 
thus there is n > N with Nr.in n [S] ~ UN, and so k(xln) 2: N. Also 
limn length(<p(xln)) = oc since for each N there is n with k(xln) > N 
such that 0 =f. f(Nxln n G) ~ NJ(x>IN• so /(x)IN C <p(xln). This also 
shows that G ~ D(t.p) and /(x) = <p*(x) for x E G. Finally, if x E D(<p), 
then limn k(xln) = oo, so for each N there is n with k(xln) 2: N; thus 
X E Nxln n [S] ~UN. Therefore, X E G and G = D(t.p). 0 

(2.7) Exercise. Let <p : S - T be monotone. We call <p Lipschitz if 
length(t.p(s)) = length(s). Show that in this case d(<p*(x),;p*(y)) < d(x,y) 
for any x,y E D(<p), where dis the usual metric on sequences (see remarks 
preceding 2.2). 

A closed set F in a topological space X is a retract of X if there is a 
continuous surjection f : X - F such that f (x) = x for x E F. 

(2.8) Proposition. Let F ~ H be two closed nonempty subsets of A~'~. Then 
F is a retract of H. 

Proof. Let S, T be pruned trees on A such that [S] = F and [T] = H. We 
will define a monotone proper <p : T - S with <p( s) = s for s E S (note 
that S ~ T). Then f '= <p* shows that F is a retract of H. We define <p(t) 
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by induction on length(t). Let cp(0) = 0. Given cp(t), we define cp(r a) for 
a E A and t' a E T as follows: If r a E S, let cp(r a) = t' a. If t' a ¢ S, let 
cp(r a) be any cp( tf b E S, which exists since S is pruned. 0 

2. C Trees on Products 

We will sometimes have to deal with trees T on sets A which are products of 
the form A= B xC or A= B xC x D, etc. When, for example, A= B xC, 
a member ofT is a sequence s = (si)i<n with Si = (bi, ci), bi E B, Ci E C. 
It is more convenient in this case to identify s with the pair of sequences 
(t, u) with ti = bi, Ui = Ci and to view T as being a subset of B<N x c<N 
with the property that (t, u) E T implies that length(t) = length(u), and 
(t,u) ~ (t',u') (i.e., t ~ t' and u ~ u'), (t',u') E T imply that (t,u) E 
T. With this convention [T] is the set of pairs (x, y) E BN x eN with 
(xln, yin) E T for all n. The meaning of Tt,Ul T[t,u) for (t, u) E B<N X c<N 
with length(t) = length(u) is also self-explanatory. 

According to 2.4, applied to (B X C)N' which we identify with BN X eN' 
the closed subsets of BN x eN are exactly those of the form [T], forT a 
pruned tree on B x C. 

If T is a tree on B x C and x E BN, consider the section tree T( x) on 
C defined by 

T(x) = {s E c<N: (xllength(s),s) E T}. 

Note that ifT is pruned it is not necessarily true that T(x) is pruned. Also, 

(x, y) E [Tj {::} y E [T(x)j. 

Similarly, for s E B<N, we define T(s) = {t E c<N length(t) < 
length(s) & (sllength(t),t) E T}. 

2.D Leftmost Branches 

We will now discuss the concept of the leftmost branch of a tree. Let T be a 
tree on a set A and let < be a wellordering of A. If [T] =f 0, then we specify 
the(<-) leftmost branch ofT, denoted by aT, as follows. We define aT(n) 
by recursion on n: 

aT(n) =the <-least element a of A such that [T(aTin)·a] =f 0. 

If for x =f y E AN, or x =f y E Am (for some m), we define the ( <-) 
lexicographical ordering <tex by x <tex y {::}for the least n such that x(n) =f 
y(n), we have x(n) < y(n), then it is clear that aT is the lexicographically 
least element of [T]. When T is pruned, aT is also characterized by the 
property that for each m, aTim is the lexicographically least element of 
TnAm. 
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2.E Well-founded Trees and Ranks 

If a tree T on A has no infinite branches, i.e., [T] = 0, then we call T 
well-foWlded. This is because it is equivalent to saying that the relation 
s -< t <:::? s ~ t restricted to T is well-founded. (See Appendix. B.) On the 
other hand, if [T] =f. 0, we call T iU-foWlded. If Tis a well-founded tree, we 
denote the rank fWlction of-< restricted toT by PT'· Thus 

PT(s) = sup{PT(t) + 1: t E T, t ~ s }, 

for sET. An easy argument shows that we also have 

PT(s) = sup{PT(s' a)+ 1 : s' a E T}. 

Also, P1·(s) = 0 if s E Tis terminal, i.e., for no a, s'a E T. We also 
put PT(s) = 0 if s ¢ T. The rank of a well-founded tree is defined by 
p(T) = sup{pT(s) + 1: sET}. Thus ifT =f. 0, p(T) = PT(0) + 1. 

If S, T are trees (on A, B, resp.), a map <p : S - T will be called 
strictly monotone if s ~ t =? ip(s) ~ <p(t), i.e., if <pis order preserving for the 
relation ~· Then if T is well-founded and <p : S- T is strictly monotone, 
we have that Sis well-founded and Ps(s) < PT(t.p(s)), for all s E S, so in 
particular p(S) < p(T). But we also have the converse here. If S, Tare well­
founded and p(S) < p(T), then there is a strictly monotone <p: S-T. We 
define <p(s) by induction on length(s) for s E S, so that ps(s):::; PT(t.p(s)). 
First let <p(0) = 0. Assuming that <p(s) has been defined, consider s'o. E S. 
Then Ps(s'a) < Ps(s) < PT(t.p(s)), so there is some b with <p(sfb E T and 
Ps(s'a) < n·(<p(sfb). Let <p(s'a) = <p(sfb. We have therefore shown the 
following fact. 

(2.9) Proposition. Let S, T be trees on A, B, respectively. If T is well­
founded, then S is well·founded with p(S) :::; p(T) iff there is a strictly 
monotone map <p:S- T. 

(2.10) Exercise. Given a relation -< on X, we associate with it the folloWing 
tree on X: 

(xo, ... , Xn-1) E T..,_ <:::? Xn-1 -< Xn-2-< • • · -< Xl -< Xo. 

(By convention, when n = 1, (xo) E T-< for any xo E X.) Show that 
-< is well-founded iff T..,_ is well-founded, and in this case for any x E X 
and any xo, ... ,Xn-1 with x -< Xn.-l -< · · · -< x1 -< xo, we have p..,_(x) = 
PT-<((xo, .. . ,Xn-ltx)). (We allow the case where n = 0 here, i.e., p..,_(x) = 
PT-<((x)).) Conclude that p(-<) = PT-<(0). 
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2.F The Well-founded Part of a Tree 

Even if a tree T is ill-founded, we can define a rank function on its well­
founded part WFT, which is defined as follows: 

s E WFT <:::?sET & Ts is well-founded. 

Note that. if s E WFT and s ~ t E T, then t E WFT. Also, the relation 
-<=~is well-founded on WFT, and so we can define the rank function PT 
on WFT by 

PT(s) = sup{PT(t) + 1: t E T, t ~ s} 

= sup{pT(s" a) + 1 : s" a E T}, 

for s E WFT. Note that any terminals E T belongs to WFT and PT(s) = 0. 
For a tree T on A, it is also convenient to define 

PT(S) = oo = the smallest ordinal of cardinality > max{ card( A), No}, 

for s E T \ WFT, so that PT(t) < PT(s) if t E WFT, s ¢ WFT. (Hence, 
if A is countable, PT(s) = w..) Finally, we can extend PT to all of A<N by 
letting PT( s) = 0 if s ¢ T. Again, we let 

p(T) = sup{PT(s) + 1: s E WFT}, 

so that PTIWFT maps WFT onto {a: a< p(T)}. 

(2.11) Exercise. For each tree Ton A, letT*= {sET: 3a(sAa E T)} and 
by transfinite recursion define: 

T(O) = T, 

r<a+ll = (T<a>)*, 

r<>.> = n r<n>, if A is limit. 
a<>. 

Let a 0 be the least ordinal a such that T(a) = T(a+l) and let T(cx.>) -
T(ao). Show that WFT = T \ r<oc> and soT is well-founded iff T(oo) = 0. 
Additionally, show that for s E WFT, 

PT(s) = the unique a with s E T(a) \ T(a+l). 

2. G The Kleene-Brouwer Ordering 

Now let (A,<) be a linearly ordered set. We define the Kleene-Brouwer 
ordering <KB on A<N as follows: If s =(so, ... ,Sm-1), t =(to, ... ,tn-1), 
then 
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s <KB t <:::? (s ~ t) or [3i < min{m,n}(\ij < i(sJ = tJ) & Si < ti)]. 

It is easy to check that <KB is a linear ordering (extending the partial 
ordering~). 

(2.12) Proposition. Assume that (A, <) is a wellordered set. Then for any 
tree T on A, T is well-founded iff the Kleene-Brouwer ordering restricted 
toT is a wellordering. 

Proof. If Tis ill-founded and x E [T], clearly x!(n + 1) <KB xln for each 
n, so <KB is not a wellordering on T. Conversely, let (sn) be an infinite 
descending chain in <KB restricted toT. Then so(O) 2: s 1 (0) 2: s2(0) 2: · · ·, 
so eventually sn(O) is constant, say sn(O) = s0 for n 2: no. Thus sn(1) 
exists for all n > no and Sno+l ( 1) 2: Sno+2( 1) > · · ·. Therefore, for some 
n1 > no, sn(1) is constant, say sn(1) = sll for n 2: nll and so on. Then 
(so,sl, ... ) E [T], i.e., Tis ill-founded. 0 
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3. Polish Spaces 

3.A Definitions and Examples 

Let (X, d) be a metric space. A Cauchy sequence is a sequence (xn) of 
elements of X such that lim.,., .. d(x.,., Xn) = 0. We call (X, d) complete if 
every Cauchy sequence has a limit in X. Given any metrie space (X, d), 
there is a complete metric space (X,d) such that (X, d) is a subspace of 
(X, d) and X is dense in X. This space is unique up to isometry and is 
called the completion of (X, d). Clearly, X is separable iff X is separable. 

( 3.1) Definition. A topological space X is completely metrizable if it admits 
a compatible metric d such that (X ,d) is complete. A separable completely 
metrizable space is called Polish. 

(3.2) Exercise. Consider the open interval (0, 1) with its usual topology. 
Show that it is Polish although its usual metric is not eomplete. 

The following facts are easy to verity. 

(3.3) Proposition. i) The completion of a separable metric space is Polish. 
ii) A closed subspace of a Polish space is Polish. 
iii) The product of a sequence of completely metrizable ( resp. Polish) 

spaces is completely metrizable (resp. Polish). The sum of a family of com­
pletely metrizable spaces is completely metrizable. The sum of a sequence 
of Polish spaces is Polish. 

EXAMPLES 

1) IR, e, !Rn' en' JRN' and eN are Polish; the unit interval 

1=[0,1], 

the unit circle 
'II'= {x E e: lxl = 1}, 

the n-dimensional cube In, the Hilbert cube IN, the n-dimensional toms 
'II'", and the infinite dimensional torus 'll'N are Polish. 

2) Any set A with the discrete topology is completely metrizable, and 
if it is countable it is Polish. 

3) The space AN, viewed as the product of·infinitely many copies of A 
Vlrith the discrete topology, is completely metrizable and if A is countable it 
is Polish. Of particular importance are the cases A= 2 = {0, 1} and A= N. 
We call 

the Cantor space and 
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the Baire space. 

(3.4) Exercise. i) The Cantor (1/3 -) set is the closed subset E113 of K 
consisting of those numbers that have only O's and 2's in their ternary 
expansion. Show that Cis homeomorphic to El/3· 

ii) Denote by Irr the space of irrationals (with the relative topology as 
a subset of JR). Show that the continued fraction expansion gives a homeo­
morphism oflrrn(O, 1) with (N\ {O})N, and therefore Irr is homeomorphic 
toN. 

4) The topology of any (real or complex) Banach space is completely 
metrizable and for separable Banach spaces it is Polish. 

Beyond the finite dimensional spaces !Rn, en, examples of separable 
Banach spaces that we will occasionally consider are the £P spaces ( 1 :5 
p < oo), in particular the Hilbert space £2; eo (the space of conve~ging to 
0 sequences with the sup norm); the LP(J.L) spaces (1 < p < oo), where J.L is 
a <T-finite measure on a countably generated <1-algebra; C(X), the space of 
continuous (real or complex) functions on a compact metrizable space X 
with the sup norm. 

5) Let X,Y be separable Banach spaces. We denote by L(X, Y) the 
(generally non-separable) Banach space of bounded linear operators T : 
X--+ Y with norm IITII = sup{IITxll: x EX, llxll < 1}. If X= Y, we let 
L(X) = L(X, .X). Denote by £ 1 (X, Y) the unit ball 

Ll(X, Y) = {T E L(X, Y): IITII :51} 

of L(X, Y). The strong topology on L(X, Y) is the topology generated by 
the family of functions fx(T) = Tx, fx : L(X, Y) --+ Y, for x E X. It has 
as basis the sets of the form 

Vx 1 , ... ,xn;-.;T = {S E L(X, Y) : IISx1 - Tx1ll < €, · ·., IISxn- Txnll < €}, 

for x., ... ,xn EX, € > 0, TE L(X,Y). 
The unit ball £ 1 (X, Y) with the (relative) strong topology is Polish. To 

see this, consider, for notational simplicity, the case of real Banach spaces, 
and let D s;;; X be countable dense in X and closed under rational linear 
combinations. Consider yD with the product topology, which is Polish, 
since Dis countable. The map T ~TID from L1(X, Y) into yD is injective 
and its range is the following closed subset of YD: 

F = {f E yD :'Vx, y E D'Vp, q E Q[f(px + qy) = pf(x) + qf(y)j 

& 'Vx E D(llf(x)ll :5 llxll)} · 

It is easy to verify that this map is a homeomorphism of £ 1 (X, Y) and F, 
thus £1 (X, Y) with the strong topology is Polish. 
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(3.5) Exercise. Show that the following is a complete compatible metric for 
the strong topology on L1 (X, Y): 

00 

d(S, T) = L Tn-111(8- T)(xn)ll, 
n=O 

where (xn) is a dense sequence in the unit ball of X. 

3.B Extensions of Continuous Functions 
and Homeomorphisms 

Let X be a topological space, (Y, d) a metric space, A s;;; X, and f : A ---+ Y. 
For any set B s;;; Y, let 

dian1(B) =sup{d(x,y) :x,y E B} 

(with dian1(0) = 0, by convention), and define the oscillation off at x EX 
by 

osc1(x) = inf{diam(f(U)): U an open nbhd of x} 

(where it is understood that f(U) = f(AnU)). Note that if x E A, then xis 
a continuity point off iff osc/(x) = 0. Letting Ae = {x EX: osc1(x) < €}, 
note that Ae is open and {x: OSCJ(x) = 0} = nn Alj(n+l) is a G6 set. Thus 
we have shown the following proposition. 

(3.6) Proposition. Let X be a topological space, Y a metrizable space, and 
f:X---+ Y. Then the points of continuity off form a G6 set. 

Let us also note the following basic fact about metrizable spaces. 

(3.7) Proposition. Let X be a metrizable space. Then every closed subset of 
X is a G6 set. 

Proof. Let d be a compatible metric for X. For x E X, 0 =f. A s;;; X define 

d(x,A) = inf{d(x,y): yEA}. 

Note that 
ld(x, A)- d(y, A)l ~ d(x, y). 

Thus thee-ball around A, B(A,€) = {x: d(x,A) < €} is open. It follows 
that ifF C X is closed (nonempty without loss of generality), then 

F = nB(F, 1/(n + 1)), 
n 

and so F is a G6. 0 
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We will use the preceding ideas to prove the following ba.<~ic extension 
theorem. 

(3.8) Theorem. (Kuratowski) Let X be metrizable, Y be completely metr·iz­
able, A ~X, and f:A --+ Y be continuous. Then there is a C6 set C with 
A~ C ~A a.nd a continuous extension 9:C--+ Y of f. 

Proof. In the preceding notation, let C =An {x: OSCJ(x) = 0}. This is a 
C6 set and since f is continuous on A, A~ C ~A. 

Now let x E G. Since x E A, find Xn E A, Xn --+ x. Then 
limn(diam(/({xn+l 1 Xn+2 1 ... }))) = 0, so (f(xn)) is a Cauchy sequence 
and thus converges in Y. Let 

9(x) = limf(xn). 
n 

It is easy to check that 9 is well-defined, i.e., it is independent of the choice 
of (xn), and extends f. To see finally that 9 is continuous on C, we have to 
check that osc9 (x) = 0, for all x E G. If U is open in X, then 9(U) ~ f(U), 
so diam(9(U)):::; diam(/(U)), thus osc9 (x):::; OSCJ(x) = 0. 0 

The following is an important application. 

(3.9) Theorem. (Lavrentiev's Theorem) Let X,Y be completely metrizable 
spq,ces. Let A ~ X, B ~ Y, .and f:A--+ B be a homeomorphi.sm. Then f 
can be extended to a homeomorphism h:C --+ H where C ~ A, H ~ B and 
C, H ar-e C6 sets. 

In particular·, a homeomorphism between dense subsets of X,Y can be 
extended to a homeomorphism between dense C6 sets. 

Proof. By 3.8, let h : C1 --+ Y, 91 : H1 --+ X, where C1 ~ A, H1 ~ B 
are C6 sets, be continuous extensions of /,/-1 respectively. Let R = 
graph(ft), s = graph- 1(91) = {(x, y) : X = 91 (y)}. Let c = proh(R n 
S), H = projy(R n S), so that A ~ C ~ C 1, B ~ H ~ H1, and 
x E C <:::? 91(/1(x)) = x, y E H <:::? h(9I(Y)) = y. Also, h = hiC is a 
homeomorphism of C with H. It is enough, therefore, to show that C, H 
are C6 sets. Consider, for example, C: The map 7r(x) = (x,fl(x)) is con­
tinuous from C 1 into X x Y and C = 11"- 1(8). ButS is closed in X x H1, 
so it is a C6 in X x Y. Thus, since inverse images of C6 sets by continuous 
functions are G6 too, C is C6 in C1, soC is C6 in X. 0 

(3.10) Exercise. Let X be a completely metrizable space and A~ X. Iff: 
A --+ A is a homeomorphism, then f can be extended to a homeomorphism 
h: C--+ C, where C ~A is a C6 set. 
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3. C Polish Subspaces of Polish Spaces 

We will characterize here the subspaces of Polish spaces which are Polish 
(in the relative topology). 

(3.11) Theorem. If X is metrizable andY <; X is completely metrizable, 
then Y is a G6 in X. Conversely, if X is completely metrizable andY <; X 
is a G6, then Y is completely metrizable. 

In particular, a subspace of a Polish space is Polish iff it is a G6. 

Proof. For the first assertion, consider the identity idy : Y --+ Y. It is 
continuous, so there is a G 6 set G with Y <; G <; Y and a continuous 
extension g: G--+ Y of idy. Since Y is dense in G, g =ida, soY= G. 

For the second assertion, let Y = nn Un, with Un open in X. Let 
Fn = X\Un· Let d be a complete compatible metric for X. Define a new 
metric on Y, by letting 

d'(x,y)=d(x,y)+f:min{Tn-l,ld( IF.)- d( lF.)I}· 
n=O X, n y, n 

It is easy to check that this is a metric compatible with the topology of Y. 
We show that (Y, d) is complete. 

Let (Yi) be a Cauchy sequence in (Y, d'). Then it is Cauchy in (X, d). 
So Yi ---+ y E X. But also for each n, limi,J-= I d(y;~Fn) - d(y;~Fn) I = 0, so 
for each n, d( \·, ) converges in IR, so d(yi, Fn) is bounded away from 0. 

11~' ?\ 

Since d(yi, Fn) --+ d(y, Fn), we have d(y, Fn) =f. 0 for all n, so y (j Fn for all 
n, i.e., y E Y. Clearly, Yi --+ y in (Y, d'). 0 

(3.12) Exercise. Let on = 0 ... 0 (n times). Show that the map f(x) -
oxo 1 ox• 1 ox2 •• • , where X = (xn), is a homeomorphism of N with a co­
countable G6 set in C. Identify f(N). 
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4. Compact Metrizable Spaces 

4.A Basic Facts 

A topological space X is compact if every open cover of X has a finite 
subcover, i.e., if (Ui)iel is a family of open sets and X = UieJ ui, then 
there is finite Io <;;;; I such that X = UiETo Ui. This is equivalent to saying 
that every family of closed subsets of X with the finite intersection property 
(i.e., one for which every finite subfamily has nonempty intersection) has 
nonempty intersection. 

Recall also that a topological space X is Hausdorff if every two distinct 
points of X have disjoint open nbhds. Metrizable spaces are Hausdorff. 

Here are some standard facts about compact spaces. 

(4.1) Proposition. i) Compact (in the relative topology) s·ubsets of Hausdorff 
spaces are closed. 

ii) A closed subset of a compact space is compact. 
iii) The union of finitely many compact subsets of a topological space 

is compact, Finite sets are compact, 
iv) The continuous image of a compact space is compact. In particular, 

if f:X ---+ Y is continuous, where X is compact andY is Hausdorff, f(F) 
is closed ( resp, Fq) in Y, ifF is closed ( resp. Fq) in X. 

v) A continuous injection from a compact space into a Hausdorff space 
is an embedding. 

vi) (Tychonoff's Theorem) The product of compact spaces is compact. 
vii) The sum of finitely many compact spaces is compact. 

For metric spaces we also have the following equivalent formulations 
of compactness. 

(4.2) Proposition. Let X be a metT'ic space. Then the following statements 
are equivalent: 

i) X is compact, 
ii) Every sequence in X has a com1ergent subsequence. 
iii) X is complete and totally bounded (i.e., for every € > 0, X can be 

covered by finitely many balls of mdius < €), 
In particular, compact metrizable spaces are Polish. 

Remark. A compact subset of a metric space is bounded (i.e., has finite 
diameter). So compact sets in metric spaces are closed and bounded. This 
characterizes compact sets in Rn, en, but not in general. 

(4.3) Exercise. Show that the unit ball {x E f 2 : llxll ~ 1} of Hilbert space 
is not compact. 
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(4.4) Exercise. If X is compact metrizable and dis any compatible metric, 
(X, d) is complete. 

Concerning continuous functions on compact metric spaces, we have 
the following standard fact. 

(4.5) Proposition. If (X,d) is compact metric, (Y,d') is metric, and f:X­
Y is continuous, then f is uniformly continuous (i.e., \fd6[d(x,y) < 6 =? 

d'(f(x),f(y)) < €]). 

Finally, metrizability of compact spaces has a very simple characteri­
zation. 

(4.6) Proposition. Let X be a compact topological space. Then X is metriz­
able iff X is Hausdorff and second countable. 

4. B Examples 

1) The finite or infinite dimensional cube.s Kn, IN, and tori 'll'n, 'll'N are com­
pact (but !Rn, en, f 2 , etc. are not). The Cantor space C is compact. 

2) Let X be a separable Banach space. The dual X* of X is the Banach 
space of all bounded linear functionals x* : X - IK, where K = IR or C is the 
scalar field, with norm llx*ll = sup{l(x,x*}l: x EX, llxll ::; 1}, where we 
let (x, x*} = x*(x). In other words, X* = L(X,K). For X= f 1 , X* = eoo, 
which is not separable. Consider now the strong topology on X*, i.e., the 
one generated by the functions x* ......-+ (x, x*}, x E X, which in this context is 
called the weak*-topology of X*. Let B1 (X*) ( = £1 (X, K)) be t.he unit ball 
of X*. As in Example 5) of Section 3.A, B1 (X*) with the weak*-topology is 
Polish, but actually in this case it is moreover compact. This is because in 
the notation established there, F S: Dxevl-llxll, llxll] (we are working with 
IR again) and Dxevl-llxll, llxll] is compact. We summarize in the following 
theorem. 

( 4. 7) Theorem. (Banach) The unit ball B 1 (X*) of a sepamble Banach space 
X is compact metrizable in the weak* -topology. A compatible metric is given 
by 

00 

d(x*,y*) = L2-n-ll(xn,x*}- (xn,y*}l 
n=O 

for (xn) dense in the unit ball of X. 

(4.8) Exercise. Show that B1(f00
) = [-1,1]N and that the weak*-topology 

on B1 ( f 00
) is the same as the product topology on [ -1, 1]N. (For the complex 

case replaee [-1, 1] by ]J)) = {x E C: lxl::; 1}, the unit disc.) 
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(4.9) Exercise. Let X, Y be separable Banach spaces. The weak topology 
on L(X, Y) is the one generated by the functions (from L(X, Y) into the 
scalar field) 

T ~ (Tx, y*} ; x EX, y* E Y*. 

Show that if Y is reflexive, L1(X, Y) with the weak topology is compact 
metrizable. Find a compatible metric. 

(4.10) Exercise. A topological vector space is a vector space X (over IR or 
C) equipped with a topology in which addition and scalar multiplication are 
continuous (from X x X into X and K x X into X, resp., where K = IR or C). 
So Banach spaces and their duals with the weak* -topology are topological 
vector spaces. A subset K of a vector space is called convex if for every 
x, y E K and 0:::; A :::; 1, AX+ (1- A)y E K. A point x in a convex set K 
is extreme (in K) if x = AY + (1 - A)z, with 0 < A < 1, y, z E K, implies 
y = z (= x). Denote by 8eK the extreme boundary of K, i.e., the set of 
extreme points of K. Show that if K is a compact metrizable (in the relative 
topology) convex subset of a topological vector space, then the set 8eK is 
G6 inK, and thus Polish. In particular, this holds for all compact convex 
subsets of B1 (X*), for X a separable Banach space. What is 8e(Bl (e=))? 

(4.11) Exercise. If T is a tree on A, we call T finite splitting if for every 
sET there are at most finitely many a E A with sA a E T. Show that if T 
is pruned, [T] is compact iff Tis finite splitting. In particular, if K ~ N is 
compact, there is x EN such that for ally E K, y(n) :::; x(n) for every n. 
Conclude that N is not a countable union of compact sets. 

(4.12) Exercise. (Konig's Lemma) Let T be a tree on A. If T is finit.e 
splitting, then [T] =f:. 0 iff T is infinite. Show that this fails if T is not finite 
splitting. 

(4.13) Exercise. (The boundary of a graph theoretic tree) An (undirected) 
graph is a pair g = (V, E), where V is a set called the set of vertices, 
and E ~ V 2 with (x,y) E E <=? (y,x) E E and (x,x) fj E. If (x,y) E 
E, we say that (x, y) is an edge of g. A path _in g is a finite sequence 
(xo,xl, ... ,xn), n > 1, with (xi,Xi+J) E E fori<. nand where the Xi are 
distinct except possibly for xo and Xn, when n ~ 3. A closed path, i.e., one 
in which xo = Xn is called a loop. A graph g is connected if for every two 
distinct vertices x, y there is a path ( Xo, ... , x n) with xo = x and x., = y. A 
graph theoretic tree is a connected graph with no loops. This is equivalent 
to saying that for any pair ( x, y) of distinct vertices there is a unique path 
(xo, ... 1 Xn) with X= Xo andy= Xn· 

The two-dimensional lattice in Figure 4.1 is an example of a connected 
graph that is not a graph theoretic tree. Figure 4.2 depicts a graph theoretic 
tree. 
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FIGURE 4.1. 

FIGURE 4.2. 

A rooted graph theoretic tree is a graph theoretic tree v.-ith ·a distin­
guished vertex, called its root. A tree T on a set A can be viewed as a 
rooted tree with 0 as the root, vertices the nodes ofT, and edges all pairs 
(s,s'a) or (s'a,s) for s,s·a E T. Conversely, every rooted graph theoretic 
tree g = (V, E) gives rise t.o a tree T (on V) as follows: Identify each v E V 
with the sequence ( vo. ·v1, ... , Vn), which is the unique path from Vo =root 
to the vertex Vn = v. (By convention, the root corresponds to 0.) 

A graph theoretic tree g is locally finite if every vert.ex v has finitely 
many neighbors (i.e., u for which ( v, u) E E). 

Given a tree g, an infinite path through g is a sequence (xo,xl, ... ) 
such that (Xi, Xi+l) E E and Xi =f. xi for each i =f. j. Two infinite paths 
(xi), (Yi) are equivalent if 3n3m\fi(xn+i = Ym+i). See, for example, Fig­
ure 4.3: 
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FIGURE 4.3. 

An end of g is the equivalence class of an infinite path. Denote the set 
of ends by ag. This is called the boundary of g. We define a topology 
on {)Q by taking as basis the sets of the form [xo, ... , Xn] = { e E oQ : 
3xn+l,Xn+2• ... (xo,Xl, ... ) E e} with (xo, ... ,xn) a path in Q. 

If Xo E V, then for each end e E oQ, there is a unique infinite path 
x = (x0,x1, ... ) with x0 E e. We call x the ~desic from xo toe and denote 
it by [x0 , e]. Thinking of x0 as a root of Q, we can view g as a tree T on 
V. Show that the ge.;Jdesic map e......-+ [xo, e] is a homeomorphism of ag with 
[T]. In particular, g is locally finite iff T is finite splitting and in this case 
ag is compact. 

4.C A Universality Property of the Hilbert Cube 

(4.14) Theorem. Every sepamble metrizable space i..<; homeomorphic to a 
subspace of the Hilbert cube IN. In particular, the Polish spaces are, up to 
homeomorphism, exactly the G6 subspaces of the Hilbert cube. 

Proof. Let (X, d) be a. separable metric space with d < 1. Let (xn) be dense 
in X. Define f: X- IN by f(x) = (d(x,xn)). Clearly, f is continuous and 
injective. It remains to show that r• :/(X) -X is also continuous. Let 
f(xm)--+ f(x), i.e., d(xm,xn)--+ d(x,xn) for all n. Fix € > 0 and then let n 
be such that d(x,xn) < €. Since d(xm,xn)- d(x,xn), let M be such that: 
m 2: M => d(xm, Xn) < €. Then if m 2: M, d(xm, x) < 2€. So xm --+ x. 0 

It follows that every separable metrizable (resp. Polish) space X can 
be embedded as a dense (resp. G6) subset of a compact metrizable space 
Y. 
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(4.15) Definition. If X is sepamble metrizable, a compactification of X is·a 
r..ompact metrizable space Y in which X can be embedded as a dense subset. 

(4.16) Exercise. Show that C and I are both compactifications of N. So 
compactifications are not uniquely determined up to homeomorphism. 

(4.17) Theorem. Every Polish space is homeomorphic to a closed subspace 
oflRN. 

Proof. The proof is similar to that of 3.11. We can assume that the given 
Polish space is a Gs set G ~ IN. Let (Un) be open with G = nn Un. Let 
Fn = IN\Un. Define f : G---+ JRN by letting f = (/n) with 

hn+l (x) = Xn, if X= (xi), 
1 

hn(x) = d(x,F,.)' 

where d is a compatible metric on IN. Clearly, f is injective and con­
tinuous. We check now that /(G) is closed and r• : /(G) ---+ G is 
continuous: H f(xn) = yn ---+ y E JRN, then xn ---+ x E IN and also 
1/d(xn,F;) converges for each i, so (d(xn,Fi)) is bounded away from 0, 
thus d(x, Fi) =limn d(xn, Fi) =f 0 and x fJ. Fi for each i, sox E G. Clearly, 
f(x) = y. 0 

Remark. It has been proved by R.. D. Anderson that JRN is homeomorphic 
to the Hilbert space £2; see J. van Mill [1989]. 

4.D Continuous Images of the Cantor Space 

(4.18) Theorem. Every nonempty compact metrizable space is a continuous 
image ofC. 

Proof. First we show that IN is a continuous image of C. The map f(x) = 
l:~=O x(n)Tn-l maps C continuously onto I, so (xn) ~--+ (f(xn)) maps 
eN, which is homeomorphic to c, onto nN, Since every compact metrizable 
space is homeomorphic to a compact subset of nN, it follows that for every 
compact metrizable space X there is a closed set F ~ C and a continuous 
surjection of F onto X. Using 2.8 our proof is complete. 0 

We will discuss next two important constructions of Polish spaces as­
sociated with compact spaces and sets. 
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4.E The. Space of Continuous Functions on a Compact Space 

Let X be a compact metrizable space and Y a metrizable space. We denote 
by C(X, Y) the space of continuous functions from X into Y with the 
topology induced by the sup or uniform metric 

d,.(f,g) = supdy(f(x),g(x)), 
xEX 

where dy is a compatible metric for Y. A simple compactness argument 
shows that this topology is independent of the choice of dy. When Y = IR 
or C, we write just C(X) when it is either irrelevant or clear from the 
context which of the two cases we consider. In this case C(X) is a Banach 
space with norm 11/lloo = SUPxEX 1/(x)l, and d.,(!, g)= II/- 9lloo is the 
associated metric. 

(4.19) Theorem. Ij X is compact metrizable andY is Polish, then C(X,Y) 
is Polish. 

Proof. Let dy be a compatiole complete metric for Y and let du be as 
above. If (/n) is Cauchy in C(X, Y), then supxEX dv(fm(x), fn(x))-+ 0 as 
rn, n -+ oo. In parti<;ular, (! .. ( x)) is Cauchy for each x, so f ( x) = lim f n ( x) 
exists in Y. It is easy now to check that f E C(X, Y) and In -+ f. So 
C(X, Y) is complete. 

We now prove separability. Let dx be a compatible metric for X and let 
Cm,n = {! E C(X, Y): \ix,y[dx(x,y) < 1/m:::} dy(f(x),f(y)) < 1/n]}. 
Choose a finite set Xm C X such that every point of X is within 1/m from 
some point of Xrn. Then let Dm,n s;;; Cm,n be countable such that for every 
f E Cm,n and every € > 0 there is g E Dm,n with dy(J(y),g(y)) < € for 
y E Xm· We claim that D = Um,n Dm,n is dense in C(X, Y). Indeed, if 
f E C(X, Y) and € > 0, let n > 3/€ and let m be such that f E Cm,n 
(which is possible since f is uniformly continuous). Let g E Dm,n be such 
that dy(f(y),g(y)) < 1/n for all y E Xm. Given x E X, let y E Xm be 
such that dx(x, y) < 1/m. Then dy(f(x),g(x)) < €. So du(f,g) < €. 0 

4.F The Hyperspace of Compact Sets 

Let X be a topological space. We denote by K(X) the space of all compact 
subsets of X equipped with the Vietoris topology, i.e., the one generated 
by the sets of the form 

{K E K(X): K C U}, 
{K E K(X): KnU =f 0}, 

for U open in X. A basis for this topology consists of the sets 

{K E K(X) : K s;;; Uo & K n U1 =f 0 & ... & K nUn =f 0} 
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for Uo, U1 , ••• , Un open in X. 

(4.20) Exercise. i) A point x in a topological space is isolated if {x} is open. 
Show that 0 is isolated in K(X). 

ii) Show that if X is a topological subspace of Y, K( X) is a topological 
subspace of K(Y). 

Now let (X, d) be a metric space with d < 1. We define the Hausdorff 
metric on K(X), dH, as follows: 

dH(K,L)=O, ifK=£=0, 

= 1, if exactly one of K, Lis 0, 
= max{o(K,L),o(L,K)}, if K,L =f 0, 

where 
o(K,L) = maxd(x,L). 

xEK 

Thus we have for nonempty K, L E K(X), 

dH(K, L) < € <* K <;: B(L, €) & L <;: B(K,€). 

(4.21) Exercise. Show that the Hausdorff metric is compatible with the 
Viet.oris topology. 

(4.22) Theorem. If X is a metrizable .~pace, so is K(X). If X is sepamble, 
so is K(X). 

Proof If D <;: X is countable dense in X, then K1(D) = {K <;: D : 
K is finite} is countable deiL<Je in K(X). 0 

Next we will study convergence in K(X). Given any topological space 
X and a sequence (Kn) in K(X), define its topological upper limit, 
T linlnK •• , to be the set . 

{ x E X : Every open nbhd of x meets Kn for infinitely many n}, 

and its topological lower limit, T limnKn, to be the set 

{x EX: Every open nbhd of x meets Kn for all but finitely many n}. 

Clearly, T limnKn ~ T limnKn, and both are closed sets. If they are 
equal, we call the common value the topological limit of (Kn), written 
as T liinn K ... Finally note that if X is metrizable and Kn =f 0, then the 
topological upper limit consists of all x that satisfy: 

3(x,.)[xn E Kn, for all n, and for some subsequence (xn.), Xn; --+ x], 

and the topological lower limit consists of all x that satisfy: 



26 I. Polish Spaces 

3(xn)[xn E Kn, for all n, and Xn --+ x]. 

(4.23) Exercise. Let (X, d) be metric with d:::; 1. Show that for nonempty 
K,Kn E K(X): 

i) o(K, Kn) --+ 0 =? K <;: T limnKn; 
ii) o(Kn, K)--+ 0 =? K :2 TlimnKn. 

In particular, dH(Kn,K) --+ 0 =? K = TlimKn· Show that the converse 
may fail. 

(4.24) Exercise. Let (X, d) be compact metric with d:::; 1. Then for Kn =f 0, 
i) if T limnKn =f 0, then o(T limnKn, Kn) --+ 0; 
ii) o(Kn, T limnKn) --+ 0. 

So if K = T limn Kn exists, dH(Kn, K) --+ 0. 

(4.25) Theorem. If X is completely metrizable, so is K(X). Hence, in par­
ticular·, if X is Poli-~h, so is K(X). 

Proof. Fix a complete compatible metric d:::; 1 on X. Let. (Kn) be Cauchy 
in (K(X), dH ), where without loss of generality we can assume Kn =f 0. 
Let K = TlimnKn. We will show that]( E K(X) and dH(Kn,K)--+ 0. 
Note first that K = nn (U:n Ki) and that K is closed and nonempty. 

Claim 1. K is compact: It is enough to show it is totally bounded. For 
that we will verify that for each n there is a finite set Fn <;: X with K <;: 
UxEF,. B(x, 2-n) or even that for Ln = u:n Ki, Ln <;: UxEFn B(x, 2-n). 
To see this, let F~ be finite with Ki <;: UxEF; B(x, 2-n-l ). Let p > n be 

n 

such that dH(Ki,Kj) < 2-n- 1 for i,j :2: p. Finally, let Fn = Un~i~pF~. 

Claim 2. dH(Kn,K)--+ 0: Fix € > 0. Then find N with: i,j :2: N =? 

dH(Ki, }(_1 ) < e/2. We will show that if n :2: N, dH(Kn, K) <e. 

i) If x E K. let Xn, E Kn,, Xn, --+ :r:. Then for large i, ni > N and 
d(xn;, x) < e/2. For such i, let Yn E Kn be such that d(xn,, y .. ) < e/2. Then 
d(x, Yn) < e, and therefore b(K, Kn) <e. 

ii) Now let y E Kn· Find n = k1 < k2 < k3 < · · · such that 
dH(Kkp Km) < 2-j-1e for all m :2: kj. Then define Xki E Kk as fol­
lows: Let Xk 1 = y and Xk

3
+1 be such that d(xk

3
+PxkJ < 2-j-fe. Then 

(xkJ is Cauchy, so Xkj --+X E K, d(y, x) < e, and finally, o(Kn, K) <e. 0 

(4.26) Theorem. If X is compact metrizable, so is K(X). 

Proof. It is enough to show that if d is a compatible metric for X, d < 1, 
then (K(X), dH) is totally bounded. Fix e > 0. Let F <;: X be finite with 
X = UxEF B(x, e). Then K(X) = UscF B(S, e) (the open ball of radius e 
around Sin dH ). - 0 
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(4.27) Exercise. Let (X, d) be a metric space with d < 1. Then x ~--+ {x} is 
an isometric embedding of X in K(X). 

(4.28) Exercise. Let X be metrizable and Kn E K(X), Ko 2 K 1 2 · · · . 
Then limn Kn = nn Kn. In particular, if Kn is t.he union of the 2n many 
closed intervals occurring in the nth step of the construction of the Cantor 
set El/3• Kn --+ El/3· 

(4.29) Exercise. Let X be metrizable. 
i) The relation "x E K" is closed, i.e., {(:~:, K) : x E K} is closed in 

X X K(X). 
ii) The relation "K ~ L" is closed, i.e., {(K,L) : K ~ L} is closed in 

K(X)2• 

iii) The relation "K n L =f 0" is closed. 
iv) The map (K,L) ~--+ KUL from K(X)2 into K(X) is continuous. 
v) For ICE K(K(X)), let U/C = U{K: K E /C}. Show that U/C E 

K(X) and U: K(K(X))--+ K(X) is continuous. 
vi) If .f : X --+ Y is continuous, where Y is a metrizable space, then 

the map f" : K(X) --+ K(Y) given by f"(K) = f(K) is continuous. 
vii) IfY is metrizable, then the map (K, L) ~--+ KxL from K(X) xK(Y) 

into K(X x Y) is continuous. 
viii) Find a compact X for which the map ( K, L) ~--+ K n L is not 

continuous. 

(4.30) Exercise. Let X be metrizable. Show that the set 

K1(X) = {K E K(X): K is finite} 

is F, in K(X). 

( 4.31) Exercise. A topological space is perfect if it has no isolated points. 
Let X be separable rnetrizable. Show that 

Kp(X) = { K E K(X) : K is perfect} 

is a G~ set in K(X). 

( 4.32) Exercise. View a tree T on N as an element of 2N<N by identifying 
it with its characteristic function (note t.hat T ~ N<N). Let Tr ~ 2N<~ 

N<N denote the set of trees and PTr ~ 2 denote the set of pruned trees. 
Show that if 2N<N is given the product topology vdth 2 = {0, 1} discrete 
(so that it is homeomorphic to C), Tr is closed and PTr is a G6. Now let 

2<N 2<N Tr2 ~ 2 denote the set of trees on 2 and PTr2 ~ 2 denote the set of 
pruned trees on 2. Show that they are both closed and that K ~--+ TK is a 
homeomorphism of K(C) with PTr2 • 
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Show that the sets Tr f of finite splitting trees on N and PTr 1 of fi­
nite splitting pruned trees on N are not G6 and that K ~--+ TK is not a 
homeomorphism of K(N) and PTr1. 
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5. Locally Compact Spaces 

A topological space is locally compact if every point has an open nbhd with 
compact closure. Clearly, compact spaces and dosed subspaces of locally 
compact spaces are locally compact. Products of finitely many locally com­
pact spaces are locally compact, but a product of an arbitrary family of 
locally compact spaces is locally compact iff all but finitely many of the 
factors are compact. The sum of locally compact spaces is locally compact. 

For example, all discrete spaces, !Rn and en are locally compact, but 
JRN and N are not. 

(5.1) Definition. G_iven a locally compact Hausdorff space X, its o~e.point 
compactification X is constructed a.s follows: If X is compact, X = X. 
Otherwise, let oo ¢ X. Let X = X U { oo}, and define the topology of X by 
declaring that its open sets are the open sets in X together with all the sets 
of the form X\K forK E K(X). 

Clearly X is open in X and X is compact Hausdorff. 
For example, the one-point compactification of IR is (up to homeo­

morphism) 'II'; the one-point compactification of (0, 1] is (0, 1]; and the 
one-point compactification of !Rn is S'\ the n-dirnensional sphere (i.e., 
{x E JRn+l: llxll = 1}). 

(5.2) Definition. A set A in a topological space X is Ka if A = Un Kn, 
where Kn E K(X). 

(5.3) Theorem. Let X be Hausdorff and locally compact. Then the follouring 
statements are equivalent: 

i) X is second countable; 
ii) X is metrizable and Kq; 
iii) X is compact metrizable; 
iv) X is Polish; 
v) X is homeomorphic to an open subset of a compact metrizable space. 

Proof. i) =? iii): By 4.6, it is enough to show that X is second countable. 
Fix a c01mtable basis {Un} for X. Then {Un : Un is compact} is also a 
basis, so we can assume that Un is compact for each n. If (X\K) with 
K E K(X) is an open nbhd of oo, then K ~ UnEF Un, for some finite F, 
so {Vn} = {nnEF(X\Un): F finite} is a countable nbhd basis for oo. Then 
{Un} U {Vn} is a basis for X. 

iii) =? v): Obvious since X h; open in X. 
v) =? iv): Open subspaces of Polish spaces are Polish. 
iv) =? ii): As in the first part of i) =? iii). 
ii) =? i): Let X = Un Kn, with Kn compact. We will define in­

ductively a sequence (Urn.) of open. sets in X with U m compact and 
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Um ~ Um+h Um Um = X, as follows: For m = 0, let Uo be open 
with U o compact and Ko ~ Uo. In general, let Um be open such that 
Um-l U Km ~Urn and Um is compact. 

Since Um is second countable, so is Um, and thus let {Um,n}neN be a 
oasis forUm. Then {Um,n}m,nEN is a basis for X. 0 
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6. Perfect Polish Spaces 

6.A Embedding the Cantor Space in Perfect Polish Spaces 

A limit point of a topological space is a point that is not isolated, i.e., for 
every open nbhd U of x there is a point y E U, y =f x. A space is perfect if 
all its points are limit points. If P is a subset of a topological space X, we 
call P perfect in X if P is closed and perfect in its relative topology. 

For example, !Rn, RN, en, eN, JIN, c, N are perfect. If X is perfect, so 
is K(X)\{0} (0 is an isolated point of K(X)). The space C(X), X compact 
metrizable, is perfect. 

(6.1) Definition. A Cantor scheme on a set X is a family (A8 ) 8 e2<w of 
subsets of X such that: 

i) As·o n As·l = 0, for s E 2<N; 
ii) As·i ~A,., for s E 2<N, i E {0,1}. 

(See Figure 6.1.) 

FIGURE 6.1. 

(6.2) Theorem. Let X be a nonempty perfect Polish space. Then there is an 
embedding of C into X. 

Proof. We will define a Cantor scheme (Us)se2<N on X so that 

i) Us is open nonempty; 
ii) diam(Us) < 2-length(s); 

iii) Us·i C U8 , for s E 2<N, i E {0, 1}. 

Then for X E c, nn Uxln. = nn Uxln is a singleton (by the completeness 
of X), say {f(x)}. Clearly, f : C --> X is injective and continuous, and 
therefore an embedding. 
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We define U.~ by induction on length( s ). Let U0 be arbitrary satisfying 
i), ii) for s = 0. Given Us, we define Us·o, Us·l by choosing x =f y in Us 
(which is possible since X is perfect) and letting Us·o, Un be small enough 
open balls around x, y, respectively. 0 

(6.3t Corollary. If X is a nonempty perfect Polish space, then card(X) = 
2No. In particnlar, a nonempty perfect snbset of a Polish space has the car­
dinality of the continnum. 

6.B The Cantor-Bendixson Theorem 

A point x in a topological space X is a condensation point if every open 
nbhd of x is uncountable. (Note that in a metrizable space a limit point is 
one for which every open nbhd is infinite.) 

(6.4) Theorem. (Cantor-Bendixson) Let X be a Polish space. Then X can 
be nniqnely written as X = PUC, with P a perfect snbset of X and C 
conntable open. 

Proof. For any space X let 

X* = {:~:EX: xis a condensation point of X}. 

Let P =X*, C = X\P. If {Un} is an open basis of X, then Cis the tmion 
of all the Un which are countable, soC is countable. It is evident that P if> 
closed. To show that Pis perfect, let x E P and U be an open nbhd of x in 
X. Then U is uncountable, so it contains uncountably many condensation 
points, and U n P is thus uncountable. 

To prove uniqueness, let X = P1 u C1 be another such decomposition. 
Note first that ifY is any perfect Polish space, then Y* = Y. This is because 
if y E Y and U is an open nbhd of y, then UnY is perfect nonempty Polish: 
thus having cardinality 2N°. So we have Pt = P1 and thus P1 <;;;; P. Now if 
X E C1, then, since C1 is countable open, X E C and SO C1 <;;;; C. It follows 
that P = P1 and C = C1. 0 

(6.5) Corollary. Any uncountable Polish space contains a homeomorphic 
copy of C and in particular· has cardinality 2No. 

In particular, every w1conntable G6 or Fq set in a Polish space contains 
a homeomorphic copy of C and so has cardinality 2No, i.e., the Continuum 
Hypothesis holds for such sets. 

(6.6) Exercise. In the notation of 6.4, show that P is the largest perfect 
subset of X. 
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(6.7) Definition. For any Polish space X, if X= PUC, where P is perfect 
and C is countable with P n C = 0, we call P the perfect kernel of X. 

6. C Cantor-Bendixson Derivatives and Ranks 

We will next give an alternative proof of the Cantor-Bendixson Theorem 
and a more informative construction of the kernel. First we need a gen­
eral fact. about monotone wellordered sequences of closed (or open) sets in 
second countable spaces. 

(6.8) Definition. We denote by ORD the class of ordinal numbers: 

0,1,2, ... ,w,w+1 ..... 

An ordinal a is successor if a= /3 + 1 for some ordinal /3 and limit if it is 
not 0 or successor. As usual, every or·dinal is identified with the set of its 
predecessors: a= {13:/3 <a.}, so 1 = {0}, 2 = {0,1}, ... , w = {0,1,2, ... }, 
etc. 

(6.9) Theorem. Let X be a second countable topological space and (Fa)a<p 
a strictly decreasing transfinite sequence of closed sets ('i.e., a < /3 =? 

Fat ~ Ff3). Then p is a countable ordinal. This holds similarly for strictly in­
creasing transfinite sequence8 of closed sets (and thus for strictly decreasing 
or increasing transfinite families of open sets). 

Pmof Let {Un} be an open basis for X. Associate to each dosed set F ~X 
the set of numbers N(F) = {n: Un n F =f 0}. Clearly, X\F = U{Un: n ¢ 
N(F)}, so F......., N(F) is injective. Also, F ~ G =? N(F) ~ N(G). Thus for 
any strictly monotone (i.e., decreasing or increasing) transfinite sequence 
(F~)a<p: (Na) = (N(Fa)) is a strictly monotone transfinite sequence of 
subsets of N, so obviously p is countable. 0 

(6.10) Definition. For any topological space X, let 

X' = { x E X : x is a limit point of X} . 

We call X' the Cantor-Bendixson derivative of X. Clearly, X' is closed 
and X is perfect iff X = X'. 

Using transfinite r-ecursion we define the iterated Cantor-Bendixson 
derivatives xo:, a E ORD, as follows: 

X 0 =X, 

xa+l = (Xa)', 

X>.= n xa, if A is limit. 
cr<>. 
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Thus (X")aeORD is a decreasing tmn.c;finite sequence of closed subsets of 
X. 

(6.11) Theorem. Let X be a Polish space. For some countable ordinal 
ao, Xct = xao for all a :::: ao and Xcto is the perfect kernel of X. 

Proof. It is easy to see by induction on a, that if P is the perfect kernel of 
X, P c xa (note that P' = P). U a 0 is now a countable ordinal such that 
Xa = xao for a :::: ao, then (Xct0 )' = xao+l = xao, so X<:to is perfect, 
therefore xao s;;; p. 0 

(6.12) Definition. For any Polish space X, the least ordinal ao as in 6.11 is 
called the Cantor-Bendixson rank of X and is denoted by IXIcB· We also 
let 

xoo = xiXIcs = the perfect kernel of X. 

Clearly, for X Polish, 

X is countable <=? X 00 = 0 . 
Note also that if X is countable compact, then xoo = 0, and so by com­
pactness, if X is nonempty, IXIcB = a+ 1 for ~Wme a. In this case it is 
customary to call a (instead of a+ 1) the Cantor-Bendixson rank of X. To 
avoid confusion, we will let IXI(;.8 =a in this case. (We also let 101(;.8 = 0.) 

(6.13) Exercise. For each countable ordinal a, construct a closed countable 
subset of C, Ka such that IKalc8 =a. 

(6.14) Exercise. Let T be a tree on A. We call T perfect if 

'ilseT3t,u(t2s & u2s & t,uET & tl.u), 

i.e., every member ofT has two inc.ompatible extensions in T. If T is a 
pruned tree on A, show that T is perfect iff [T] is perfect in AN. 

(6.15) Exercise. For any tree Ton A we define its Cantor-Bendixson deriva­
tive T' by 

T'={sET:3t,ueT(t2s & u2s & ti.u)}. 

Recursively, we then define its iterated Cantor-Bendixson derivatives by 
TJ = T, T"+l = (Ta)', T>. = na<>. TO<, if A is limit. Show that for some 
ordinal a 0 of cardinality at most max{card(A), ~0 }, Ta = rao for all a::=: 
a:0 . We call the least such a the Cantor-Bendixson rank ofT, written as 
ITicB· Let Tx; = TITles. For A = 2 or N show that [T00

] is the perfect 
kernel of [T], i.e., [T00

] = [T]00
• However, construct examples on A= 2 to 

show that [Ta] may be different from [T]a even for pruned trees T. How 
are [Ta] and [Tjt:r related? How about ITica and I[T]IcB? 
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7. Zero-dimensional Spaces 

7.A Basic Facts 

A topological space X is connected if there is no partition X = U U V, U n 
v = 0 where U, V are open nonempty sets. Or equivalently, if the only 
clopen (i.e., open and closed) sets are 0 and X. For example, JRn, C" are 
connected, but C, .N are not. 

At the other extreme, a topological space X is zero-dimensional if it 
is Hausdorff and has a basis eonsisting of clopen sets. 

For example, the space AN is zero-dimensional since the standard basis 
{Ns}seA<N consists of clopen sets. 

(7.1) Exercise. Let (X, d) be a metric space, where dis actually an ultra­
metric. Show that 

i) d(x,z) =f d(y,z) =? d(x,y) = max{d(x,z),d(y,z)}. 

ii) B(x,r) is clopen, and thus X is zero-dimensional. 

iii) y E B(x, r) =? B(x, r) = B(y, r) (and similarly for the closed balls). 

iv) If two open balls intersect, then one is contained in the other. 

v) (xn) is Cauchy iff d(xn,Xn+l)- 0. 

(7.2) Exercise. Let X be a second countable zero-dimensional space. If 
A, B <;;;; X are disjoint closed sets, there is a clopen set C separating A and 
B, i.e., A <;;;; C, B n C = 0. 

Notice that subspaces, products, and sums of zero-dimensional spaces 
are zero-dimensional. Finally, 2.8 is valid also for any separable metrizable 
zero-dimensional space (seeK. Kuratowski [1966], Ch. II, §26, Cor. 2). 

(7.3) Theorem. Let X be separ·able metr·izable. Then X is zero-dimensional 
iff every nonempty closed subset of X is a retract of X. 

7.B A Topological Characterization of the Cantor Space 

(7.4) Theorem. (Brouwer) The Cantor space C is the unique, up to home­
omorphism, perfect nonempty, compact metrizable, zero-dimensional space. 

Proof. It is clear that C has all these properties. 
Now let X be such a space and let d be a compatible metric. We will 

construct a Cantor scheme (C8 ) 8e2<N on X such that 

i) c0 =X; 

ii) Cs is clopen, nonempty; 
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iii) Cs = Cs·o U Cs·l; 
iv) limn diam(Cxln) = 0, for X E C. 

Assuming this can be done, let f: C--+ X be such that {f(x)} = nn Cxln· 
Then f is a homeomorphism of C onto X (by iii)). 

Construction of (Cs)se2<N: Split X into X = X1 U ... U X 11 , where 
Xi n Xi = 0 if i =f j and Xt is clopen of diameter < 1/2. Let Coi·t = Xi+l 
if 0 < i < n- 1, Co .. -• = Xn, and Co• = Xi+l U ... U Xn, for 0 ~ i < n- 1 
(here ai = aa ... a (j times)). (See Figure 7.1.) 

FIGURE 7.1. 

Now repeat this process within each Xi, using sets of diameter < 1/3, and 
so on by induction. 0 

7. C A Topological Characterization of the Baire Space 

(7.5) Definition. A Lusin scheme on a set X is a family (As) seN<N of subsets 
of X such that 

i) As'i n Ad= 0, if s E N<N, i =f j inN; 
ii) An<;;;; As, if s E N<N, i EN. 

(See Figur·e 7.2.) 
If (X,d) is a metric space and (As)seN<N is a Lusin scheme on X, we 

say that (As) seN<N has vanishing diameter if limn diam( Ax in) = 0, for all 
x EN. In this case if D = {x E N:nnAxln =f 0}, define f:D--+ X by 
{f(x)} = nn Axln· We call f the associated map. 

(7.6) Proposition. Let (As)seN<N be a Lusin scheme on a metric space (X,d) 
that has vanishing diameter. Then if f:D--+ X is the associated map, we 
have 
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FIGURE 7.2. 

i) f is injective and continuous. 

ii) If (X,d) is complete and each As is closed, then D is closed. 

iii) If As is open, then f is an embedding. 

Proof. Part i) is straightforward. F-or ii), note that if Xn E D, Xn --+ x, then 
(J(x .. )) is Cauchy since, given e > 0, there is N with diam(AxiN) < e and 
M such that xniN = xiN for all n > M, so that d(f(xn), f(x.,.)) < e if 
n,m > M. Thus, f(xn)--+ y EX. Since each As is closed, y E Axln for 
all n, so that x E D and f ( x) = y. Finally, iii) follows from the fact that 
f(N., n D) = f(D) n As· o 

Recall that the interior, Int(A), of a set A in a topological space X is 
the union of all open subsets of A. 

(7.7) Theorem. (Alexandrov-Urysohn) The Baire space N is the uniq?Le, 
up to homeomeorphism, nonempty Polish zero-dimensional space for which 
all compact subsets have empty interior. 

Proof Clearly, N has all these properties (recall 4.11 here). 
Now let X be such a. space. Fix a. compatible complete metric d < 1. 

We will construct a Lusin scheme (Cs)sEN<N on X such that 

i) C0 =X, Cs =f 0 for all s E N<N; 

ii) Cs is clopen; 

iii) Cs = uiEN Cs·i; 

iv) dia.m(C .. ) < 2-length(s). 

Let f: D--+ X be the associated map. By i)- iv) D = N, f(D) =X, and 
so by ii) and 7.6 iii) f is a. homeomorphism. 
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For the construction it is enough to show that for any nonempty open 
set u ~ X and any E > 0, there is a partition u = u .. EN ui into clopen 
nonempty sets of diameter < E. 

Since a cor:npact set in X has empty interior, it follows that the closure 
of U in X is not totally bounded, thus there is 0 < t' < E, so that no 
covering of U by finitely many open sets of diameter < £

1 exists. If we 
write U = UjEN \lj, where \lj are pairwise disjoint clopen sets of diameter 
< E

1 (which we can certainly do as X is zero-dimensional), we have that 
infinitely many \lj are nonempty. 0 

7.D Zero-dimensional Spaces as Subspaces of the Baire Space 

(7.8) Theorem. E-very zero-dimensional separable metrizable space can be 
embedded into both .Nand C. Every zero-dimensional Polish space is home­
omorphic to a closed subspace of .N and a G6 subspace of C. 

Proof. The assertions about C follow from those about N and the fact that 
.N is homeomorphic to a G" subspace of C (see 3.12). 

To prove the results about .N, let X be as in the first statement of the 
theorem and let d < 1 be a compatible metric for X. Then we can easily 
construet a Lusin scheme (Cs)sEN<~'~ on X such that 

i) c0 =X; 

ii) Cs is clopen; 

iii) C~ = Ui Cs·i; 
iv) diam(C

8
) < 2-Jength(s). 

(Some C8 may, however, be empty.) Let f : D ---+ X be the associated map. 
By iii) f(D) =X, so by 7.6 iii) f is a homeomorphism of D with X, and 
by 7.6 ii) D is closed if d is complete. 0 

7.E Polish Spaces as Contimwus Images of the Baire Space 

(7.9) Theorem. Let X be a Polish space. Then there is a closed set F ~ .N 
and a contin?Lous bijection f :F ---+ X. In particular, if X is nonempty, there 
is a continuous surjection g:.N ---+ X extending f. 

Proof. The last assertion follows from the first and 2.8. 
For the first assertion fix a compatible complete metric d < 1 on X. 

We will construct a Lusin scheme (Fs)sEN<N on X such that 

i) F0.= X; 



ii) Fs is an Fq set; 

iii) Fs = Ui Fs·i = Ui Fs·i ; 
iv) diarn(Fs) < 2-length(s) · 

7. Zero-dimensional Spaces 39 

Then let f : D ---+ X be the associated map. By iii) /(D) = X, so by 7.6 
i) 1 is a continuous bijection of D onto X.· It is thus enough.~o show th~t 
Dis closed. If Xn E D, Xn---+ x, then, as m the proof of 7.6 n), (f(xn)) lS 

Cauchy, so f(xn) ---+ y E X and y E nn Fxln = nn Fxln (by iii) above), so 
xED and f(x) = Y· 

To construct (Fs) it is enough to show that for every Fq set F ~X and 
every € > 0, we can write F = uiEN Fi, where the F, are pairwise disjoint 
Fq sets of diameter < t: such that Fi C F. For that let F = UiEN Ci, 
where Ci is closed and Ci ~ 'Ci+t· Then F = UiEN(Ci+t \Ci). Now write 

U E (i) h E . . d' . . F f d' Ci+l \Ci = jEN j , W ere j are prurwtse lSJOlnt q sets 0 1ameter 
(i) ~ < €. Then F = Ui,j Ej and Ej ~ ci+l \Ci ~ ci+l ~F. 0 

7.F Closed Subsets Homeomorphic to the _Baire Space 

Theorem 6.2 shows that every uncountable Polisb space contains a closed 
subspace homeomorphic to C, and, by 3.12, a G6 subspace homeomorphic 
toN. We cannot replace, of course, G6 by dosed, since N is not compact. 
However, we have the following important fact (for a more general result 
see 21.19). 

(7.10) Theorem. (Hurewicz) Let X be Polish. Then X contains a closed 
subspace homeomorphic toN iff X is not Kq. 

Proof. If X contains a closed subspace homeomorphic toN, then X cannot 
be Kq since N is not Kq (by 4.11). 

Assume now that X is not Kq, and fix a compatible complete metrie 
d < 1. We will find a Lusin scheme (Fs)sEN<N such that 

i) F0 = X, Fs =f:. 0; 
ii) F8 is clm;ed; 
iii) Fs ¢ K,; 
iv) for each n and eac::h x E X there is some open nbhd U of x such 

that Fs n U =f:. 0 for at most one s E Nn; 
v) diam(Fs) ~ 2-length(s). 

Then let f: D---+ X be the associated map. By i), ii), and v), D = N. 
We check next that f(D) is closed. Let x E /(D). Then, for each n, let 
Un be the open nbhd of x given by iv). We can assume that Un+l C Un. 
Since Unnf(D) =f:. 0, Un intersects some Fs"· Similarly, each nbhd U Cu .. 
intersects some Fsu, so by the uniqueness of sn, 8u = sn. Thus x E Fs" 
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and sn s;;; sn+l, so there is yEN with X E nn Fyln! i.e., X E /(D). Finally, 
to see that f is a homeomorphism, it is enough to verify that F8 is open in 
J( D) (by applying 7.6 iii) to As = j(D) n F8 ). But iv) immediately implies 
that Fs is Qpen in U{Ft: length(t) = length(s)}, thus in /(D) as well. 

We construct Fs by induction on length( s) = n. For n = 0, taking 
F0 = X clearly works. Assume Fs has been defined for s E fir satisfying 
i) - v). We will define Fs·k, for k E N. Let Hs = {x E Fs : 'if nbhd U of 
x (U n Fs is not KO' )}. Then Hs is closed and is nonempty since F5 is not 
Kq. Moreover, Hs cannot be compact for the same reason, since F.~ \Hs 
is contained in a Kq. It follows that we can find a sequence of distinct 
points (xk), Xk E Hs, with no converging subsequence. Then let Uk be an 
open nbhd of Xk of diameter :::; 2-n-k-l with uk n Urn= 0 if k =f m. Put 
F.~-k = Uk n F5 • This clearly works. 0 

(7.11) Exercise. Show that if X is zero-dimensional, so is K(X). Conclude 
that K(C)\{0} is homeomorphic to C. 

(7.12) Exercise. (Sierpmski, Frechet) Show that Q (the space of rationals 
with the relative topology as a subspace of R) is the unique, up to homeo­
morphism, nonempty, countable metrizable, perfect space. Prove that every 
countable metrizable space is homeomorphic to a closed subspace of Q. 

(7.13) Exercise. Let X s;;; R be Gfl and such that X, R\X are dense in R 
Show that X is homeomorphic to N. Prove that the same fact also holds 
when R is replaced by a zero-dimensional nonempty Polish space. Show 
that it fails if R is replaced by R2. 

(7.14) Exercise. A Souslin scheme on a set X is a family (As)seN<N of subsets 
of X. If (X, d) is a metric space, we say again that (As) has vanishing 
diameter if diam(Axln) --> 0 as n--> oo, for all x EN. Again, in this case, 
let D = {x: nnAxln =f 0} and for XED, {f(x)} = nnAxln· We call 
f : D --> X the associated map. 

i) Show that f is continuous. 
ii) If (X, d) is complete and each As is closed, then D is dosed in N. 
iii) U each As is open and As C Ui As·i for all s E)N<N, then f is 

open. 
iv) If X iH nonempty separable, show that there is a Souslin scheme 

(Us) with U0 = X, U .• open nonempty, Us·i C Us, Us = Ui Us·i, and 
diam(Us) < 2-length(s) if s =f 0. Conclude that if X is nonempty Polish, 
there is a continuous and ·open surjection f : N --> X. (In R. Engelking 
[1969] it is shown that X can also be obtained as a continuous and closed 
image of N.) 

(7.15) Exercise. Let X be a nonempty Polish space. Then X is perfect iff 
there is a continuous bijection f : N--+ X. 
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s.A Meager Sets 
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Let X be a topological space. A set A C X is called nowhere dense if its 
closure A has empty interior, i.e., Int(A) = 0.JThis means equivalently 
that X\A is dense.) So A is nowhere dense iff A is nowhere dense. A set 
A~ X is meager (or of the first category) if A= Unel'f An, where each An 
is nowhere dense. A non-meager set is also called of the second category. 
The complement of a meager set is called comeager (or residual). So a set 
is comeager iff it contains the intersection of a countable family of dense 
open sets. 

For example, the Cantor set is nowhere dense in [0,1], a compact set 
is nowhere dense in .N, and so a Kq set is meager in .N. A countable set is 
meager in any perfect space, so, for example, Q is meager in JR. Notice also 
that if X is second countable with open basis {Un}, then F = Un(Un \Un) 
is meager Fq andY= X\F is zero-dimensional. 

An ideal on a set X is a collection of subsets of X containing 0 and 
closed under subsets and finite unions. If it is also closed under countable 
unions it is called a u-ideal. The nowhere dense sets in a topological space 
form an ideal, and the meager sets form a a-ideal. Being a a-ideal is a 
characteristic property of many notions of "smallness" of sets, such as being 
countable, having measure 0, being meager, etc. 

B.B Baire Spaces 

(8.1) Proposition. Let X be a topological space. The following statements 
are equivalent: 

i) Every nonempty open set in X is non-meager. 

ii) Every comeager set in X is dense. 

iii) The intersection of countably many dense open sets in X is dense. 

The proof is straightforward. 

(8.2) Definition. A topological space is called a Baire space if it satisfies the 
equivalent conditions of 8.1. 

(8.3) Proposition. If X is a Baire space and U ~X is open, U is a Baire 
space. 

Proof. Let (Un) be a sequence of dense sets open in U and thus open in X. 
The~_un u (X\U) is dense open in X, so nnWn u (X\U)) = (nn Un) u 
(X\U) is dense in X, so nn U., is dense in U. 0 

(8.4) Theorem. (The Baire Category Theorem) Every completely metriz­
able space is Baire. Every locally compact Hausdorff space is Baire. 
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Proof. Let (X, d) be a complete metric space. Let (Un) be dense open in X 
and let U ~ X be a nonempty open set. We will show that n, Un n U =f. 0. 
Since U n U0 =f. 0, let B0 be an open ball of radius < 1/2 such that B 0 ~ 

U n U0 • Since B0 n U1 =f. 0, let B 1 be an open ball of radius < 1/3 such 
that B1 ~ B0 n U1, etc. Let Xi be the center of B •. Then (xi) is a Cauchy 
sequence, so Xi--+ X E nn Bn = nn Bn ~ (nn Un) n u. 

If X is Hausdorff locally compact, then for every point x and open 
nbhd U of x there is an open nbhd V of x with V compact and V ~ U. We 
can now use the same argument as above, but with B., open such that Bi 
is compact, so that again nn Bn =f. 0. 0 

(8.5) Definition. Let X be a topological space and P ~X. If Pis comeager, 
we say that P holds generically or tha.t the generic element of X is in P. 
(Sometimes the wo1d typical is used instead of generic.) 

In a nonempty Baire space X, if P ~ X holds generically, then, in 
particular, P =f. 0. This leads to a well-known method of existence proofs in 
mathematics: In order to show that a given set P ~ X is nonempty, where 
X is a nonempty Baire space, it is enough to show that P holds generically. 
Also in such a space, it cannot be that both P and X\P hold generically. 

(8.6) Exercise. Show that the generic element of C([O, 1)) is nowhere differ­
entiable. (So there exist nowhere differentiable functions.) 

(8.7) Exercise. Let X be a perfect Polish space. Let Q ~ X be cow1tahle 
dense. Show that Q is Fq but not G6. 

(8.8) Exercise. i) Let X be a Polish space. Recall from 4.31 that 

Kp(X) = {K E K(X): K is perfect} 

is G6 in K(X). If X is also perfect, Kp(X) is dense. In particular, the 
generic element of K(X) is perfect. 

ii) Let X, Y be Polish and f: X--+ Y continuous. Show that if /(X) 
is uncountable, there is a homeomorphic copy K ~X of C such that /IK 
is injective. In particular, there is a homeomorphic copy of C contained in 
/(X). 

(8.9) Exercise. Show that if G ; 2N is comeager, then there is a partition 
N = A0 U A1, A0 n A1 = 0 and sets Bi ~ Ai, i E {0, 1}, such that for 
A ~ N, if either A n A0 = B0 or A n A1 = B 1 , then A E G. (Here we 
identifY subsets of N with their characteristic functions so we view them as 
members of 2N.) 
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8. C Choquet Garnes and Spaces 

(8.10) Definition. Let X be a nonempty topological space. The Choquet 
game G x of X is defined as follows: Players I and II take tums in playing 
nonempty open subsets of X 

I U0 U1 

II Vo 

so that Uo 2 Vo 2 U1 2 V1 2 · · ·. We say tha.t II wins this run of the game 
if nn V,., ( = nn Un) =/: 0. (Thus I wins if nn Un ( = nn Vn) = 0.) 

A strategy for I in this game is a "rule" that tells him how to play, for 
each n, his nth move Un, given II's previous moves Vo, ... ,Vn-l· Formally, 
this is defined as follows: LetT be the tree of legal positions in the Choquet 
game Gx, i.e., T consists of all finite sequences (Wo, ... ,Wn), where Wi 
are nonempty open sub !lets of X and Wo 2 W1 :::> • • · 2 W n. ( Thus T is a 
pruned tree. on { W C X: W is open nonempty}.) A strategy for I in G x is 
a subtree a ~ T such that 

i) a is nonempty; 

ii) if (Uo, Vo, ... .Un) E a, then for all open nonempty Vn ~ Un, (Uo, 
Vo, ... ,Un, V.,) E a; 

iii) if (Uo,Vo, ... .Un-l.Vn-1) E a, then fo·r a unique Un, (Uo,Vo,,,., 
Un-l,Vn-l·Un) Ea. 

Intuitively, the strategy a wor·ks as follows: I starts playing U0 where 
(U0) E a (and this is unique by iii)); II then plays any nonempty open Vo ~ 
U0 ; by ii) (Uo~ Vo) E a. Then I responds by playing the unique nonempty 
open U1 ~ V0 such that (Uo,Vo,U1) E a, etc. 

A position (Wo, ... ,Wn) E T is compatible with a if (Wo,.,. ,ll'n) Ea. 
A run of the game (U0 ,Vo,U1.V1,.,,) is compatible with a if (Uo,Vo,, .. ) 
E [a]. The strategy a is a winning strategy for I if he wins every compatible 
with a run (Uo,Vo,,,,) (i.e., (Uo,Vo, ... ) E [a]::::} nn Un ( = nn Vn) = 0). 

The corresponding notions of strategy and winning strategy for II are 
defined mutatis mutandis. 

(8.11) Theorem. (Oxtoby) A nonempty topological space X is a Baire space 
iff player I has no winning strategy in the Choquet game G x . 

Proof ~: Assume X is not a Baire space, and let Uo be a nonempty open set 
in X and (G .. ) be a sequence of dense open sets with nn GnnUo = 0. Player 
I starts by playing this U0 . U II then plays V0 ~ U0 , we have Vo n Go =ft 0, 
so I can play U1 = Von G0 ~ V0 . II plays next V1 ~ U1 and I follows by 
U2 = V1 n G1 ~ Vi, etc. Clearly, nn Un ~ nn Gn n U0 = 0, so we have 
described a winning strategy for L 
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=?:Suppose I now has a winning strategy a. Let Uo bel's first move ac­
cording to a. We will show that U0 is not Baire. For this we will construct a 
nonempty pruned subtreeS<;: a such that for any p = (Uo, Vo, ... , Un) E S 
the set Up = {Un+l : (Uo, Vo, ... , Un, Vn, Un+l) E S} consists of pairwise 
disjoint (open) sets and uup is dense in Un. If we then let Wn = U{Un : 
(U0 , V0 , ••• , Un) E S}, it follows that Wn is open and dense in Uo for each 
n. We claim that nn Wn = 0. Otherwise, if X E nn Wn, there is unique 
(Uo, Vo, U1, V1, ... ) E [S] with x E U.n. for each n, so nn Un =f. 0, contradict­
ing the fact that (Uo, Vo, ... ) E [a] and a is a winning strategy for I. 

To construct S we determine inductively which sequences from a of 
length n we put in S. First 0 E S. If (Uo, Vo, ... , Un-l, Vn-d E S, then 
(Uo, Vo, ... ,Un-1> Vn-l>Un) E S for the unique Un with (Uo, Vo, ... ,Un-1, 

Vn-l, Un) E a. If now p = (Uo, Vo, ... , Un) E S, notice that for any 
nonempty open Vn <;: Un if v; = Un+l is what a requires I to play next, 
we obviously have that Un+l is a nonempty open subset of Vn. Let, by 
an application of Zorn's Lemma (or by a transfinite exhauc;tion argument), 
Vp be a maximal collection of nonempty open subsets Vn <;: Un such that 
{V.;' : Vn E Vp} is pairv.rise disjoint. Put inS all (Uo, Vo, ... , U,., Vn, v;) with 
Vn E Vv. Then Up= {Un+l: (Vo, ... ,Un, Vn,Un+l) E S} = {V;: Vn E V1,} 

is a family of pairwise disjoint sets and UUp is dense in U, by the maxi­
mality of Vp, since if Vn <;: Un is nonempty open and disjoint from uup, 
then Vp U {Vn} violates the maximality of Vp. 0 

(8.12) Definition. A nonempty topological space is a Choquet space if player 
II has a winning strategy in G x. 

Since it is not possible for both players to have a winning strategy in 
G x, it follows that every Choqnet space is Baire. (The converse fails even 
for nonempty separable metrizable spaces, using the Axiom of Choice.) 

(8.13) Exercise. Show that products of Choquet spaces are Choquet. Also, 
open nonempty su bspaces of Choquet spaces are Choquet. (It is not true 
that products of Baire spaces are Baire. See, however, 8.44.) 

8. D Strong Choquet Games and Spaces 

(8.14) Definition. Given a nonempty topological space X, the strong Cho­
quet game Gx is defined as follows: 

I x0 ,U0 x.,u. 

II Vo 
Players I and II take turns in playing nonempty open subsets of X as in 
the Choquet game, but additionally I is required to play a point Xn E Un 
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and II must then play Vn s;;; Un with Xn E Vn. So we must have Un 2 Vo 2 
U1 2 V1 2 ···,X., E Un, Xn Ell,., .. 

Player II wins this run of the game if n.,. Vn ( = nn Un) =f. 0. (Thus I 
wins ifnn Un ( = nn ll,.,) = 0.) 

A nonempty space X is called a strong Choquet space if player· II has 
a winning strategy in G~. ( The notion of strategy is defined as before.) 

(8.15) Exercise. Any strong Choquet space is Choquet. (The converse turns 
out to be false.) 

(8.16) Exercise. i) Show that all nonempty completely metrizable or locally 
compact Hausdorff spaces are strong Choquet. 

ii) Show that products of strong Choquet spaces are strong Choquet. 

iii) Show that nonempty Gfl subspaces of strong Choquet spaces are 
strong Choquet. 

iv) If X is strong Choquet and f : X ~ Y is a surjective continuous 
open map, then Y is strong Choquet. 

B.E A Characterization of Polish Spaces 

(8.17) Theorem. Let X be a nonempty separable metrizable space and X a 
Poli~h space in which X is dense. Then 

i) (Oxtoby) X is Choquet ¢:>X is comeager in X; 
ii) (Choquet) X is strong Choquet {::}X is G6 in X¢:> X is Polish. 

This has the following immediate applications. 

(8.18) Theorem. (Choquet) A nonempty, second countable topological space 
is PoliSh iff it is T1, regular, and strong Choqnet. 

Proof. By 8.17 and 1.1. 0 

(8.19) Theorem. (Sierpinski) Let X be Polish and Y separable metrizable. 
If there is a continuous open surjection of X onto Y, then Y is Polish. 

Proof. Exercise. 0 

Remark. Va.lnstel'n has shown that 8.19 remains true if "open" is replaced 
by "closed" (see, e.g., R. Engelking [1977], 4.5.13). 

Proof. (of 8.17) i) ~:This is easy, since X contains a dense G6 set in X. 
::::}: Let a be ,a winning strategy for II in G x. Fix also a com pati­

ble metric d for X. As in the proof of 8.11, we can build a nonempty 
pruned tree S consisting of sequences of the form (Uo, Vo, u., V., ... , Un) 
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or (Uo, Vo, u1, v1' ... 'Un, '\%,), where ui are ilonempty open in X and 
Vi are nonempty open in X, V0 2 V1 2 · · ·, and if \li = Vi n X 
(so that \li are nonempty open in X), then (U0 ,lfo,U.,V1, ... ,Un) or 
(U0 , Vo, U1, V., ... , Un, Vn) are compatible with a, and moreovei S has the 
following property: If p = (Uo, Vo, ... , Un-1, Vn-1) E S (allowing the empty 
sequence too), and Vp = {Vn: (Uo, Vo, ... , Vn-hUm Vn) E S}, then Vp is 
a family of pairwise disjoint open sets with U Vp dense in Vn-1 (in X if 
p = 0) and such that diam(Vn) < T" for all Vn E Vp. 

Let Wn = U{Vn : (Uo, Vo, ... , Un, Vn) E S}. Then Wn is dense open 
in X. We claim that nn Wn ~ X. Indeed, if X E nn Wn, there is unique 
(Uo, Vo,U1, Vi, ... ) E [S] such that X E nn Vn. Siuce diam(Vn) < 2-n, we 

actually have then that {x} = nn. Vn. But, as (Uo, Vo, ... ) E [a], we have 

(nn V.,.) nx = nn Vn =f. 0, so X EX. 

ii) <=:: By 8.16. 

::::}: We need the following general lemma. 

(8.20) Lemma. Let (Y, d) be a separable metric space. Let U be a family of 
nonempty open sets in Y. ThenU has apomt-finiterefinement V, i.e., Vis 
a family of nonempty open sets with UV = UU, \WE V3U E U(V ~ U), 
and 'Vy E Y ( { V E V : y E V} is finite). Moreover, given t > 0 we can also 
assume that diam(V) < e, \fV E V. 

Proof. Since Y iS second countable, let (Un) be a sequence of open sets such 
that Un Un = UU and \fn3U E U(Un ~ U). FUrthermore, given t > 0 we 

can always assume that diam(Un) < €. Next let Un = upEN u~p) with u~P) 

U (p) C u,(P+ 1) d u,(P) C U P V. U \ U u,(m) F' open, n _ n. , an n _ n· ut m = m n<m n . 1rst 
we claim that Un Vn = Un Un: Indeed, if X E Un Un and m is least with 

X E Urn, then X E Vm. Clearly, Vm ~ Um. Finally, if X E Un, then X E u~'P) 
for some p, sox~ Vm if m > p, n. Let V = {Vn : Vn =f. 0}. 0 

Now fix a compatible metric d for X and a winning strategy a for II in 
Gx. Using the preceding lemma we can now construct (as in the proof of 
8.11 again) a tree S of sequenc.es of the form (xo, (Vo, Vo). x1, (:V., V1 ), ... , 
Xn) or (xo, (Vo, Vo), X1, (V1, V1 ), ... , Xn, (l/;t 1 Vn) ), where \li is open in X, ~i 
is open in X, Xi E 'Ci-1 n X (with v_1 = X), x.; E l/i, Vi n X ~ 
\li, Vo 2 V1 :::> .. ·,and ((xo,X), Vo,(x1, Von X), Vi, ... ) is compatible 
with a, such that S additionally has the following property: For each p = 
(xo, (Vo, Vo), x., (V1, V1), ... 'Xn-1, Wn-1, Vn-1)) E s (including the empty 
sequence), if Vp = {Vn : (xo, (Vo, Vo), X1, ... , (Vn-1, Vn-1), Xn, (Vn, Vrt)) E 
S}, then X n Vn-1 ~ U Vp, diam{Vn) < 2-n for all Vn E Vp, and for every 
x EX there are at most finitely many (xn, (Vn, V.,.)) with (xo, (Vo, Vo), ... , 
(Vr,-1, Vn-1),xn,(Vn, Vn)) E sand X E Vn. 

Let Wn = U{Vn : (xo, (Vo, Vo), ... , Xn, (Vn, Vn)) E S}. Then Wn is 
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open and X ~ Wn (as we can see by an easy induction -on n). It remains to 
show that nn Wn ~X: Let x E nn Wn. Consider the subtree Sx of S con­
sisting of all initial se~ents of the sequences (xo, (Vo, Vo), ... , Xn, (Vn, V,,)) 
E S for which x E Vn. Since x E nn Wn, Sx is infinite. By the pre­
ceding conditions on S, it is ~lso finite splitting. So, by Konig's Le~ma 
4.12, [Sx) =f. 0. Say (xo,(Vo,Vo), ... ) E [Sx)· Then ((xo,X),Vq,(xl,Von 
X), V1, (x2 , V1nX}, .. . ) is a run ofG~ compatible with a,so nn VnnX =f 0, 
thus, since diam(Vn) < 2-n, x E X. 0 

B.F Set..'i with the Baire Property 

Let I be a a-ideal on a set X. If A, B ~ X we say that A, B are 
equal modulo I, in symbols A =z B, if the symmetric difference A6.B = 
(A\B) U (B\A) E I. This is clearly an equivalence relation that respects 
complementation and countable intersections and unions. 

In the particular case where I is the a-ideal of meager sets of a topo­
logical space, we write 

A=* B 

if A, B are equal modulo meager sets. 

(S.21) Definition. Let X be a topological space. A set A ~ X has the Baire 
property (BP) if A =* U for· some open set U ~ X. 

Recall that a a-algebra on a set X is a collection of subsets of X 
containing 0 and closed under complements and countable unions (and 
thus under countable intersections). 

(8.22) Proposition. Let X be a topological space. The class of sets having 
the BP is a a-algebra on X. It is the smallest a-algebra containing all open 
sets and all meager .~ets. 

Proof. Notice that if U is open, U\U is closed nowhere dense and so is 
meager. Similarly, if F is closed, F\Int(F) is closed nowhere dense. Thus 
U =* U and F =* Int(F). 

Now if A has the BP, so that A=* U for some open U, then X\A =* 
X\U =* Int(X\U), so X\A has the BP. Finally, if each An has the BP, say 
An=* Un, with Un open, then Un An=* Un Un, so Un An has the BP. 

The last assertion follows from the fact that if A =* U, where U is 
open, then with M = A6.U, M is meager, and A= M 6.U. 0 

In_ particular, all open, closed, F q, and G 6 sets have the BP. 

(8.23) Proposition. Let X be a topological space and A C X. Then the 
following statements are equivalent: 
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i) A has the BP; 

ii) A= GUM, where G is G6 and M is meage1·; 

iii) A = F\M where F is Fa and M is meager. 

Proof By 8.22, ii) ::::} i) and iii) ::::} i). For i) ::::} ii), let U be open and F a 
meager F17 set with A6.U ~ F. Then G = U\F is Gs and G ~ A. Also, 
M = A\G ~ F is meager. To prove i) ::::} iii), use ii) for X\A. 0 

(8.24) Example. There is a subset A~ IR not having the BP. 

Proof Using the Axiom of Choice, one can show that there exists a Bern­
stein set A ~ IR, i.e., a set such that neither A nor IR\A contains a nonempty 
perfect set. To see this, let (Pe)e< 2"o be a transfinite enumeration of the 
nonempty perfect subsets of IR and find by transfinite recursion on ~ < 21-lo 
distinct reals ae, be with ae, be E Pe. Then let A = {ae : ~ < 2N°}. If A 
has the BP, since either A or IR\A is not meager, one of them contains a 
non-meager G6 set {by 8.23), which must therefore be uncountable and so, 
being Polish, must contain a homeomorphic copy of C, a contradiction. 0 

B.G Localization 

We localize the previous notions to open sets in a topological space. 

(8.25) Definition. Let X be a topological space and U ~ X an open set. 
We say that A is meager in U if AnU is meager in X. (Note that this is 
equivalent to saying that A n U is meager in U with the relative topology.) 
Then A is comeager in U if U\A is meager, which means that there is a 
sequence of dense open in U sets whose inter·section is contained in A. If 
A is comeager in U, we say that A- holds generically in U or that U forces 
A, in symbols 

UII-A. 

Thus A is comeager ifj' XII-A. 

Note that 

U ~ V, A ~ B ::::} {VII-A ::::} Ull-B). 

We now have the following important fa<:t. 

(8.26) Proposition; Let X be a topological space and suppose that A ~ X 
has the BP. Then either A is meager or there is a nonempty open set 
U ~X on which A is comeager (i.e., XII-(X\A) or there is nonempty open 
U ~ X, with Ull-A). If X is a Baire space, exactly one of these altematives 
holds. 

vk
Выделение

vk
Выделение
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Proof. Let A6.U = M, v.-ith U open and M meager. If A is not meager, 
then U =f 0 and A is comeager in U since U\A ~ M. 0 

A weak basis for a topological space X is a collection of nonempty 
open sets such that every nonempty open set contains one of them. It is 
clear that in the previous result U can be chosen in any given weak basis. 

We can now derive the following formulas concerning the forcing rela­
tion Ull-A. For convenience we put for A ~ X, 

"'A= X\A. 

(8.27) Proposition. Let X be a topological space. 

i) If An~ X, then for any open U ~X, 

Ull-nAn {::} \fn(UII-An). 
n 

ii) If X is a Baire space, A has the BP in X and U varies below o11er 
nonempty open sets in X, and V over a weak basis, then 

Ull- "'A{::} \fV ~ U(VW:A) 

(wher-e VW: A iff it is not the case that VII-A). 

Proof Part i) is straightforward. For ii), note that if U ~ X is open, then 
An U has the BP in U, so this follows by applying 8.26 to U. o 

(8.28) Exercise. If X is a Baire space, the sets An ~ X have the BP, and 
U below varies over nonempty open sets in X, and V, W over a weak basis, 
then 

Ull-U An {::} \f V ~ U3W ~ V3n(WII-An) . 
n 

Next we eompute a canonical open set equal modulo meager sets to a 
given set with the BP. 

(8.29) Theorem. Let X be a topological space and A ~ X. Put 

U(A) = U {U open: UII-A}. 

Then U(A)\A is meager, and if A has the BP, A\U(A), and thus A6.U(A), 
is meager, so A=* U(A). 

Proof Let (Ui)iei be a maximal pairwise disjoint subfamily of {U open: 
u II- A}. Let w = Ue/ ui, so that w is dense in U(A), i.e., U(A) ~ W. 
Then U(A)\W ~ W\W is meager. Since A is comeager in each Ui and 
these sets are pairwise disjoint, it follows that A is comeager in W. So 
U(A)\A ~ (U(A)\W) u (W\A) is meager. 
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To prove the second assertion, let U be open with A=* U. Then U\A 
is meager, so UII-A, i.e., U ~ U(A). Thus, A\U(A) C A\U is meager too. 

0 

We can express this also by the following formula. Let X be a topo­
logical space, and suppose A~ X has the BP. Then for the generic x EX, 

x E A<:::? 3 open nbhd U of x(UII-A). 

(8.30) Exercise. A set U in a topological space X is called regular open if 
U = Int(U). (Dually, a set F is regular closed if,...., F is regular open or 
equivalently F = Int.(F).) Let. A ~ X. Show that U(A) is regular open. 
Moreover, if X is a Baire space and A has the BP, then U(A) is the unique 
regular open set U with A=* U. Thus U(A) =* A and A=* B <:::? U(A) = 
U(B), i.e., U(A) is a selector for the equivalence relation =*, on the sets 
with the BP. 

Let BP(X) denote the a-algebra of subsets of X with the BP and let 
MGR(X) denote the a-ideal of meager sets in X. Let [A)= {B: B =*A} 
be the =*-equivalence class of A, and BP(X)/MGR(X) be the quotient 
space {[A] : A E BP(X)}. If we let RO(X) denote the class of regular 
open subsets of X, the preceding shows that we can canonically identify 
BP(X)/MGR(X) with RO(X), for Baire spaces X. 

(8.31) Exercise. Assume X is a second countable Baire space. Show that the 
a-ideal MGR(X) has the countable chain condition in BP(X), i.e., there is 
no uncountable subset. A~ BP(X) such that A¢ MGR(X) for any A E A, 
and A n B E MGR( X) for any two distinct A, B E A. 

(8.32) Exercise. Let X be a topological space. Equip the quotient space 
BP(X)/MGR(X) with the partial ordering 

[A)~ [B)<:::? A\B E MGR(X). 

Show that this is a Boolean c:T-algebra, i.e., a Boolean algebra in which 
every countable subset has a least upper bound. (For the basic theory of 
Boolean algebras, seeP. R. Halmos [1963).) If, moreover, X is a Baire space, 
show that it is a complete Boolean algebra, i.e., one in which every subset 
has a lea.':lt npper bound. This is called the category algebra of X, denoted 
as CAT(X). Show that it is uniquely determined up to isomorphism if X 
is nonempty perfect Polish. 
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B.H The Banach-Mazur Game 

We will charactel'ize meagerness in terms of games. 
Let X be a nonempty topological space and let A <; X. The Banach­

Mazur (or **-game) of A, denoted as G**(A) (or as G**(A,X) if there is a 
danger of confusion) iB defined as follows: 

Players I and II choose alternatively nonempty open sets with Uo :::> 
Vo :2 U1 2 V1 2 .. ·, 

I Uo U1 

II Vo V1 

Player II wins this run of the game if nn Vn (= nn Un) <;A. 

(8.33) Theorem. (Banach-Mazur, Oxtoby) Let X be a nonempty topological 
space. Then 

i) A is comeager <:::?II has a winning strategy in G**(A). 
ii) If X is Choquet and there is a metric d on X whose open balls are 

open in X, then A is meager in a nonempty open set <:::? I has a winning 
strategy in G**(A). 

Proof i) ::::}: Let (Wn) be a sequence of dense open sets with nn Wn <; A. 
Let II play Vn = Un n Wn. <=:: Exactly as in the proof of 8.11. 

ii) ::::}: If A is meager in the nonempty open set Uo, let (Wn) be dense 
open in Uo with nn W., <; ,...., A. Since Uo is Choquet, I has a winning 
strategy in the gan1e 

I u1 u2 

II Vo V1 

Uo :2 Vo :2 U1 :2 · · ·; Ui, Vi open nonempty; I wins iff nn Un ::f. 0. (Note 
that II starts first here.) Call such a strategy a. We describe now a strategy 
for I in G**(A): He starts by playing Uo. Then II plays Vo <; Uo. Let Vo' = 
Won lfo. Player I responds by playing the tmique U1 so that (Vo', Ul) Ea. 
Next II plays V1 ~ U1. Let V{ = V1 n W1 . Player I responds by playing 
the unique U2 such that (V0,U1,V{,U2) E a, etc. Then nnun ::f. 0 and 
nn Un = n .. V~ ~ nn W n ~ ,...., A, so nn Un ~ A, i.e., I wins. 

<=:Let a be a winning strategy for I in G**(A). Denote by U0 the first 
move of I according to a. We claim that we can find a new winning strategy 
a' for I such that a' also starts by U0 and if in the nth move it produces 
Un, then diam(Un) < 2-n, for all n :2: 1 (diameter here is in the metric d). 
We describe a' informally: I starts by playing U0 . If II next plays Vo ~ Uo, 
choose Vo' ~ Vo of diameter < 2- 1 and respond by a, pretending that II 
has played V~, to produce U1 ~ V0. Thus U1 <; Vo and diam(U1) < 2-1. 
Next II plays V1 ~ U1. Let V{ ~ V1 have diameter < 2-2 and respond by 
a, pretending that II has played Vo', V{ in his first two moves, to produce 
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U2 s;;; V{. Thus U2 c V1 and diam(U2) < 2-2 , etc. Using a' instead of a one 
now guarantees that nn Un is a singleton and thus is contained in ,...., A, i.e., 
nn Un c rvA. As in i) (and 8.11), it follows now that A is meager in Uo. 0 

(8.34) Definition. A game i.9 determined if at least one of the two players 
has a winning strategy. 

(8.35) Exercise. Assume X is as in 8.33 ii). Let A s;;; X. Show that A has 
the BP iff for all open U the game G**(,...., AU U) is determined. 

(8.36) Exercise. Let X be a nonempty topological space. Consider the vari­
ant of the Banach-Mazur game G**(A) in which players play open sets in 
some fixed weak basis instead of arbitrary nonempty open sets. Show that 
this variant is equivalent to G**(A). (Two games G, G' are equivalent ifl 
(resp. II) has a winning strategy in G iff I (resp. II) has a winning strategy 
in G'.) 

Use this to show that for X = AN, the game G**(B) for B s;;; X is 
equivalent to the following game: 

I so s2 

II s1 s3 

Si E A <N, .~i =f 0; II wins iff s0 A s1 A ••• E B. 

8.1 Baire Measurable Functions 

(8.37) Definition. Let X,Y be topological spaces. A function f:X --+ Y is 
Baire measurable if the inverse image of any open set in Y has the BP in 
X. 

If Y is second countable, it is clearly enough to consider only the inverse 
images of a countable basis of Y. 

For example, every continuous function is Baire measurable. If Y is 
metrizable, any function that is a pointwise limit of a sequence of continuous 
functions is Baire measurable. 

(8.38) Theorem. Let X ,Y be topological spaces and f:X --+ Y be Baire 
measurable. IfY is second countable, there is a set G s;;; X that is a countable 
intersection of dense open sets such that JIG is continuous. In particular, 
if X is Baire, f is continuo·us on a dense G6 set. 

Proof. Let {Un} be a basis for Y. Then r 1(Un) has the BP in X, so let 
~'n be open in X and let Fn be a countable union of closed nowhere dense 
sets with f- 1(Un)6.V., s;;; Fn. Then Gn = X\Fn is a countable intersection 
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of dense open !:lets and so is G = nn Gn. Since /- 1(Un) nG = Vn nG: JIG 
is continuous. 0 

(8.39) Exercise. Let X be a nonempty perfect Polish space, Y a secoud 
countable space, and f : X --+ Y be injective and Baire measurable. Then 
there is a homeomorphic copy of C contained in f (X). 

B.J Category Quantifiers 

It is sometimes convenient to use the following logical notation: When A ~ 
X we let 

A(x) <:::? x EA. 

We view A here as a property, with A(x) meaning that x has property A. 

(8.40) Notation. Let X be a topological space and A ~ X. Let 

\f* xA( x) <:::? A is comeager, 

3*xA(x) <:::?A is non-meager. 

Similarly for U ~ X open, let 

\f*x E U A(x) <:::?A is comeager in U, 

3*x E U A(x) <:::?A is non-meager in U. 

Thus (denoting negation by ...,) 

...,\f*x E UA(x) <:::? 3*x E U,...., A(x). 

We read\f*x as "for comeager many" x and 3*x as "for non-meager many:> 
X. 

With this notation, 8.27 (under the appropriate hypotheses) reads: 

i) \f*x\fnAn(x) <:::? \fn\f*xAn(x), 

ii) \f*x E UA(x) <:::? \fV ~ U3*x E VA(x) 

(we switched A and ,...., A here). 

B.K The K uratowski- Ulam Theorem 

We now consider sets in product spaces. 

(8.41) Theorem. (Kuratowski-Ulam) Let X,Y be .second countable topolog­
ical spaces. Let A c X x Y have the BP. Then 

i) \f*x(Ax = {y:A(x,y)} has the BP in Y). Sim·ilarly, \f*y(AY = 
{x:A(x,y)} has the BP in X). 



54 I. Polish Spaces 

ii) A is meager<:::? \f*x(Ax is meager) <:::? \f*y(AY is meager). 

iii) A ·is comeager <:::? \f*x(Ax is comeager) <:::? \f*y(AY is comeager) 
(i.e., \f*(x,y)A(x,y) <:::? \f*x\f*yA(x,y) <:::? \f*y\f*xA(x,y)). 

Proof First we need the following lemma. 

(8.42) Lemma. Let X be any topological space and Y a second countable 
space. If F. c; X x Y is nowhere dense, then \f* x( F x is nowhere dense). 

Proof We can assume that Y ::f. 0 and F is closed. Let U =(X x Y)\F. It 
is enough to show that \f*x(Ux is dense). Let {Vn} be a basis for Y, Vn ::f. 0. 
Then Un = proh(U n (X x Vn)) is dense open in X, since if G c; X is 
nonempty open, then U n (G X Vn) ::f. 0. If x E nn Un, then Ux n Vn ::f. 0 for 
all n, i.e., Ux is dense. 0 

It follows immediately that if M c; X x Y is meager, then \f*x(Mx is 
meager). 

Let A c; X x Y now have the BP, so A = U !::.M, with U open, M 
meager. Then Ax = Ux!::.Mx, so \f*x(Ax has the BP). Thus we have proved 
i) and::::}) ~f ii). (Clearly, ii) <:::?iii).) 

(8.43) Lemma. Let X, Y be second countable. If A c; X, B c; Y, then Ax B 
is meager· iff at least one of A, B is meager. 

Proof If A x B is ineager, but A is not meager, there is x E A with 
(A x B)x = B meager (by (::::}) of ii)). Conversely, if A is meager and 
A = Un Fn, with Fn nowhere dense, then A x B = Un (F .. x B), so it is 
enough to show that Fn x B is nowhere dense. This is clear since if G is 
dense open in X, G x Y is dense open in X x Y. 0 

F"inally, let A c; X x Y have the BP and be such that \f*x(Ax is 
meager). If A = U !::.M, U open, M meager, and A is not meager, U is 
not meager, so there are open G c; X, H c; Y with G x H c; U and 
G x H not meager (since X, Y are second countable). So by 8.43, G, H 
are not meager. So there is x E G with Ax meager and Mx meager. Since 
H\Mx c; Ux \Mx c; Ux!::.Mx = Ax, we have H c; Ax U Mx, so H is meager, 
which is a contradiction. 0 

Theorem 8.41 fails if A does not have the BP. For example, using the 
Axiom of Choice, there exists a non-meager A C [0, 1]2 so that no three 
points of A are on a straight line. 

(8.44) Exercise. Show that if X, Y are second cOlmtable Baire spaces, so is 
XxY. 

(8.45) Exercise. Let X, Y be topological spaces and f : X --+ Y be open 
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and continuous. Then the inverse image of a dense set is dense and of 
a comeager set is comeager. In particular, this applies to the projection 
function proh: X x Y--+ X. 

B.L Some Applications 

(8.46) Theorem. (First topological 0-1 law) Let X be a Baire space and G 
a group of homeomorphisms of X with the following homogeneity property: 
If u, V are nonempty open sets in X, there is g E G such that g( U) n V =f. 0. 
Let A <; X beG-invariant (i.e., g(A) = A for g E G). If A has the BP, 
then A is either meager· or comeager. 

Proof. If this fails, there are nonempty open sets U, V with Ull- A, VII- ,...., A. 
Let g E G be such that W = g(U)nV =f. 0. Since g(A) =A and g(U)II-g(A), 
we have Wll-A and WI I- ,...., A, so W is meager, which is a contradiction. 0 

Given a sequence (Xn) of sets, a subset A C On Xn is called a tail set 
if (xn) E A and if Yn = Xn for all but finitely many n implies that (Yn) E A. 

(8.47) Theorem. (Second topological 0-1 law) Let (Xn) be a SP_quence of 
second countable Baire spaces. If A <; On Xn has the BP and is a tail set, 
then A is either meager or corneager. 

Proof. Assume A is not meager. Then for some n and nonempty open sets 
ui <; Xi' 0 ~ i ~ n- 1' we have that A is co meager on n~:o1 

ui X n: .. xi. 
Let y = n;·~· xi, z = n:n xi, so that X = y X z under the obvious 
identification of x = (xi) with (y, z), where y = (xi)i<n• z = (xi)i~n· 
To show that A is comeager in X it is enough, by the Kuratowski-Ulam 
Theorem, to show that \f*y\f*zA(y,z). Fix xi E Ui (0 ~ i < n) with 
\f*zA((xi)i<n•z), which.is possible, since A is comeager in n~:o· ui X z, so 
\f*y E 0~,:-01 Ui \f*zA(y,z), and 0~~ U, is Baire, by 8.44. Since A is a tail 
set, this shows that \fy\f*zA(y,z), and thus we are done. 0 

(8.48) Theorem. Let X be nonempty, perfect Polish. Let < be a wellordering 
of)(. Then < <; X 2 does not have the BP. 

Proof. Assume < has the BP. If < is meager, then \f*x( <x and <x are 
meager), so for some x, <x and <x are meager and X =<xU <x U{x} is 
meager, a contradiction. 

So < is not meager. Then for some x, <x is not meager and has the 
BP. Let xo be the<- least such. Put Y = <xo and<'=< IY (= < nY2). 

Since<'=< n (X X Y) n (Y X X) and X X Y, y X X have the BP (by 
8.43), clearly<' has the BP. By the minimality of x0 , \f*x(( <'Y is meager). 
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Thus<' is meager and \f*x( <~ is meager). So there is x E Y with<',,, (<')a: 
meager. Then Y =<~ U ( <')"' U {x} is meager, a contradiction. o 

(8.49) Exercise. Let X be a Polish space. Let (I,<) be a wellordered set 
and (Ai)iEJ a family of meager sets in X. Let A = UiEJ Ai. Consider the 
relation x :::;* y defined by: 

x, y E A & (the <- least i with x E Ai) :::; (the <- least j withy E A1 ). 

If:::;* has the BP (in X 2), then A is meager. (Note that this is a strength­
ening of 8.48.) 

(8.50) Exercise. For any set X, Pow(X) denotes its power set: 

Pow(X) = {A: As;;; X}. 

An ultrafilter on X is a set U s;;; Pow(X) such that U =f. 0 and i) A E 
U, B 2 A=> B E U; ii) A, BE U =>An BE U; iii) A¢ U <:::?,....,A E U. 
An ultrafilter is principal if for some x E X, { x} E U or, equivalently, 
U = {A : x E A} for some x E X. 

Let U now be an ultrafilter on N. View U as a subset of 2N. If U is 
non-principal, then show that U does not have the BP in 2N. 

B.M Separate and Joint Continuity 

(8.51) Theorem. Let X,Y,Z be metrizable spaces and /:X x Y __. Z. As­
sume f is sepamtely continuow; (i.e., for· x E X,y E Y, fx:Y--+ Z given by 
fx(Y) = f(x,y) and f'Y:X--+ Z given by JY(x) = f(x,y) are both continu­
ous). Then there is a comeager set G s;;; X x Y such that for· all y E Y, GY 
is comeager in X a,nd f ts continuous at every point of G. 

Proof. Let dy,dz be compatible metrics for Y,Z. Let 

Fn,k = {(x,y): \f-u,v E B(y,2-k)[dz(f(x.u),f(x,v)):::; TnJ}. 

Since fx is continuous for each x, X X y = nn uk Fn,k· We claim that Fn,k 
is closed: Let (xi,yi) E Fn,k• (xi,Yi)--+ (x,y). Fix u,v E B(y,2-k) and ·io 
such that fori :::: io, u, v E B(yi, 2-k). For such i, dz(f(xil u), f(xi, v)) :::; 
2-n, so, as f"',jV are continUOUS and Xi--+ X, dz(/(x,u),f(x,v)):::; 2-n. 

Now let 
D = UU{(x, y): x E F%,k \Int(F!,k)}. 

n k 

Then D s;;; Un Uk(Fn,k\Int(Fn,k)), and so D is meager, and DY is also 
meager for all y. Let G = (X x Y)\D. It is enough to verify that f is 
continuous at each (x, y~ E G. Let f. > 0 and n be such that 2-n :::; f.. 
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Let k be such that (x, y) E Fn,k· Then x E F%,k \DY ~ lnt(F%,k). 
Since JY is continuous, let V be open with x E V C F:,k, and for 

8 
E V, dz(f(x,y),J(s,y)) < €. Then for s E V, t E B(y,2-k), we have 

dz(f(x,y),f(s,t)) < dz(J(x,y),f(s,y)) + dz(f(s,y),f(s,t)) < 2€, since 
s E F%,k and t E B(y, 2-k). 0 

1. Namioka [1974) has shown that if, for example, X, Yare also com­
pact, then we can take G to be of the form H x Y for H comeager in 

x. 
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9. Polish Groups 

9.A Metrizable and Polish Groups 

A topological group is a group (G, ·) together with a topology on G such 
that ( x, y) 1--+ xy -l is continuous (from G2 into G). 

First we have the following metrization theorem. 

(9.1) Theorem. (Birkhoff, Kakutani) Let G be a topological group. Then 
G is metrizable iff G is Hausdorff and the identity 1 has a countable nbhd 
basis. Moreover, if G is metrizable, G admits a compatible metric d which 
is left-invariant: d(xy,xz) = d(y,z). 

Similarly, of course, a metrizable group admits a right-invariant metric. 
However, in general it may not admit a (two-sided) invariant metric. A 
necessary and sufficient condition for that is the existence of a countable 
nbhd basis {Un} at 1 such that gUng-l = Un, for all g E G, n E N. 
Groups that admit compatible invariant metrics include the abelian and 
the compact groups (see E. Hewitt and K. A. Ross [1979], (8.6)). 

If dis a left-invariant compatible metric on G, consider the new metric 

It is easy to see that it is also compatible (but not necessarily left-invariant). 
If (G,p) is the completion of (G,p), then the group multiplication extends 
m1iquely toG so that G becomes a topological group (with compatible met.­
ric p). Thus every metrizable topological group can be densely embedded in 
a completely metrizable one (see C. A. Rogers et al. [1980], pp. 352-a5:{). 

(9.2) Definition. A Polish group is a topological grvup who.c;e topology is 
Polish. 

Every separable metrizable group is thus densely embedded in a Polish 
group. Also, every Hausdorff, second countable, locally compact group is 
Polish. 

A Polish group admits a compatible complete metric, but it may not 
admit a left-invariant compatible complete metric. 

9.B Examples of Polish Groups 

1) All countable groups with the discrete topology. 

2) (IR, + ), (JR* = IR\ { 0 }, · ), (1!', · ), and (X,+), where X is a separable 
Banach space. 

3) If (Xn) is a sequence of Polish groups, so is On X ... An example 
is Z~ (which is topologically the same as C), the so-called Cantor group. 
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Identifying x E Z~ with the subset of N, of which it is the characteristic 
function, we have x + Y = x!::.y. 

4) Let OC = IR or C. Any setS of n x n matrices vvlll be considered as a 
subspace of ocn

2
• Let G L(n, OC) be t.he group of no~-singular n x n matrices 

over OC. Then GL(n, OC) is an open subspace of ocn
2

, so it is a Polish locally 
compact group. Let SL(n, OC) be the subgroup of GL(n, JK) consisting of all 
matrices with determinant 1. This is a closed subspace of JKn

2
, and so is 

also a Polish locally compact group. 
For ann x n matrix A, denote by A* = (A)t its adjoint matrix. The 

unitary group U(n) consists of all A E GL(n, C) with AA* = A" A = I. 
Viewing en as an n-dimensional Hilbert space, we can view U(n) as t.he 
group of linear isometries ofCn. The orthogonal group O(n) is defined sim­
ilarly using IR instead of C. The groups SU(n) and SO(n) are also defined 
analogously to SL(n,K). The groups U(n), O(n), SU(n), and SO(n) are 
closed bounded subsets of K"

2
, so they are Polish compact groups. 

5) More generally, all (second countable) Lie groups are Polish locally 
compact. 

6) Let H now be a separable, infinite-dimensional Hilbert space, such 
as e2. Let L(H) be the algebra of b01mded linear operators T : H --+ H. 
For T E L( H) its adjoint T* : H --+ H is the bounded line.ar operator 
defined by (x, T*y} = (Tx, y}. An operator T for which TT* = T*T =I is 
called unitary. This is the same as saying that T is a linear isometry of H. 
Unitary operators form a group called the unitary group, U(H), if H is a 
complex space and the orthogonal group, O(H), if H is a real space. This 
group is a subspace of the unit ball £ 1 (H) of L(H), and it turns out that 
the strong topology (see Exalllple 5 in Section 3.A) and the weak topology 
(see Exercise 4.9) agree on U(H) and O(H). With this topology U(H) and 
O(H) are Polish groups (as they are G6 subsets of £ 1 (H) wit.h the strong 
topology). A compatible complete metric is 

00 

d(S, T) = 2: Tn-l(IISxn- Txnll + IIS*x.,- T*xnll), 
n=O 

where { Xn} is dense in the unit ball of H. 

(9.3) Exercise. Show that U(H) and O(H) are not locally compact. 

7) Let Soo be the group of permutations of N. With the relative 
topology as a subset of N, it is a topological group and it is a Pol­
ish group since Soc is a G6 set in N. A compatible complete metric is 
p(x, y) = d(x, y) +d(x- 1, y- 1 ), where dis the usual metric on N = NN (see 
Section 2.B). Again, S00 is not locally compact. 
. More generally, consider a structure A= (A, (~)iEI, (/j)jEJ, (ck)kEK) 

(m the sense of model theory) consisting of a set A, a family of relations 
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(Ri)iEI• operations (h).iEJ. and distinguished elements (ck)keK on A. As­
sume A is countably infinite. Let Aut(A) be the group of automorphisms 
of A. Thinking, without loss of generality, of A as being N, Aut(A) is a 
closed subgroup of Srx, so again Polish. (The group 800 is just the group 
Aut( A), where A= (N), the trivial structure on N.) 

8) Let X be a compact metrizable space. Let H(X) be the group 
of homeomorphisms of X. Then H(X) ~ G(X,X), and with the relative 
topology it is a topological group. Since H(X) is G6 in C(X, X), it is a Pol­
ish group. A compatible complete metric is p(f,,q) = du(f, g)+du(J- 1, g- 1 ), 

where du is the sup metric on C(X,X). Again, H(X) is in general not lo­
cally compact, for example, for X= [0, 1]. 

9) Let {X, d) be a complete separable metric space. Denote by Iso(X, d) 
the group of its isometries. Put on Iso{X, d) the topology generated by the 
functions f ~---+ f(x), for x EX. This is a Polish group with a compatible 
complete metric given by 

where {xn} is dense in X. 

(9.4) Exercise. If {X, d) is a compact metric space, show that Iso{X. d) is a 
compact subgroup of H(X). 

(9.5) Exercise. Let g be a graph theoretic tree {see 4.13). If g is locally 
finite, then Aut{g) is locally compact. 

(9.6) Exercise. Let H be a Polish group and G ~ H a subgroup of H. Show 
that if G is Polish (in the relative topology, that is, a Gli set in H), then G 
is closed in H. 

(9.7) Exercise. Let I be an ideal on N. View I as a subset of 2N identifying 
a set with its characteristic function. Show that if I is GfJ, then it is closed. 
Show that the Frecbet ideal, IFr ={A~ N: A is finite}, is Fq but not GfJ. 

9. C Basic Facts about Baire Groups and Their Actions 

A topological group is Baire if it is Baire as a topological space. Such groups 
have a number of interesting properties, which therefore also hold for all 
Polish groups. 

(9.8) Proposition. Let G be a topological gr·oup. Then G is Baire iff G is 
non-meager. 
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proof. Assume G is not meager. Let U be a nonempty open set. If U is 
meager, so is gU for any g E G, so G is a union of a family of open meager 
sets. Since for U meager open, Ul~ 0, it follows from 8.29 that U(0) = G, 

80 G is meager. 0 

(9.9) Theorem. (Pettis) Let G be a topological group. If A ~ G has the 
Baire property and is non-meager, the set A-1A (= {x- 1y: x,y E A}) 
c»ntairu; an open nbhd of 1. 

Proof. Let U be nonempty open with A6.U meager. By the continuity of 
xy-l, let g E G and V an open nbhd of 1 be such that g~rv-• ~ U. So 
gV ~ UnUh, for hE V. We will now show that V C A- 1 A, by showing that 
for all hE V, AnAh =/= 0. Indeed, if hE V, we have (UnU/i)6.(AnAh) ~ 
(U6.A)U((U6.A)h), so (UnUh)6.(AnAh) is meager. If AnAh is empty, 
then (U n U h) is meager, and then so is g V, a contradiction to the fact that 
G is Baire (by 9.8). 0 

(9.10) Theorem. Let G,H be topological gro·ups and t.p:G--+ H a homomor­
phism. If G is Baire, H is separable, and t.p is Baire measurable, then t.p is 
continumu;. 

Proof. It is enough to show that t.p is continuous at 1. Fix an open nbhd U of 
1 E H. Let V be an open nbhd of 1 E H such that v-• V ~ U. Let {hn} be 
dense iil H, so that, in particular, Un ( hn V) = H. Thus U., t.p -l ( hn V) = G, 
so for some n, <p- 1(hnV) is non-meager. By 9.9, (t.p- 1(hnV))- 1t.p- 1(hnV) 
contains an open nbhd of 1 E G. But clearly, ( 'P -l ( hn V)) -l t.p -l ( hn V) ~ 
t.p-•w-lv) ~ t.p-l(u). o 

(9.11) Exercise. Let G be a topological group. Let H ~ G be a subgroup 
that has the Baire property and is not meager. Show that H is clopen. 
Show also that every proper subspace of a Banad1 space which ha..-; the 
Baire property is meager. 

(9.12) Exercise. Let f : IR --+ IR be Baire measurable and satisfy the func­
tio!)al equation f(x + y) = f(x) + f(y). Show that for some a E IR, f(x) = 
ax. 

(9.13) Definition. Let G be a group and X a set. An action of G on X is a 
map (g,x) E G x X..--. g.x EX such that l.x = x, (gh).x = g.(h.x). 

Thus for each g E G, the map x ..--. g.x is a bijection of X with itself 
with inverse x ..--. g- 1.x. The map that sends g to x ..--. g.x is a homomor­
phism of G into the group of permutations of X. 

If G,X ar·e also topological spaces, the action is continuous if it is 
contmuous as a function from G x X into X. In this case we have a homo­
morphism of G into the group of homeomorphi.c;ms of X. 
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(9.14) Theorem. Let G be a group with a topology that is metrizable and 
Bair-e, such that for each g E G the function h ~--+ gh is continuous. Let 
X be a metrizable space and (g,x) ~--+ g.x an action of G into X which is 
separately continuous (i.e., the maps g ~--+ g.x for x EX, x ~--+ g.x forgE G 
are continuous). Then the action is continuous. 

Proof. Fix (go,xo) E G x X. By 8.51 the map (g,x) ~--+ g.x is continuous 
at (g, x0 ) for co meager many g. So let ho be such that (g, x) ~--+ g .x is 
continuous at (ho,xo). Since g.x = (goh01).(hog0 1g.x), the map (g,x)...., 
g.x is continuous at (g0 ,xo). o 

(9.15) Corollary. Let G be a group with a topology that is metrizable and 
Baire. Assume g 1--+ g-1 is continuous and (g,h) 1--+ gh is separately contin­
uous. Then G is a topological group. 

Proof. Let G act on itself by (g, h) ~--+ gh. 0 

Remark. In 9.15, if the topology is Polish one can drop the hypothesis 
that the inverse is continuous (see 14.15). It can also be shown that this 
hypothesis can be dropped if the topology is Hausdorff locally compact (see 
C. A. Rogers et al. [1980], pp. 35Q-352). 

(9.16) Exercise. i) Let G be a group with a metrizable Baire topology 
in which multiplication is separately continuous and let X be separable 
metrizable. Let (g,x) ~--+ g.x be an action of G on X, which for each g is 
continuous in x and for each x is Baire measurable in g. Show that this 
action is continuous. 

ii) Let G, H be groups with metrizable topologies in which multiplica­
tion is separately continuous. Assume G is Baire and H is separable. Then 
any homomorphism t.p : G --> H that is Baire measurable is continuous. 

(9.17) Theorem. (Miller) Let G be a topological group such that G and all its 
closed subgroups are Baire, X a T1 stcond countable space, and (g,x) ~--+ g.x 
an action of G on X. Assume that for a given x EX, the map g ~--+ g.x 
restricted to any closed subgroup H C G is Baire measurable on H. Thert 
the stabilizer Gx = {g E G:g.x = x} is closed. 

Proof. Clearly, Gx is a subgroup of G as is its closure H = Gx. By our 
hypothesis, if we restrict the action to H it has the property that h ~--+ h.x 
is Baire measurable on H for any x E X. So, replacing G by H if necessary, 
we can assume that G.'[; is dense in G. From this we want to conclude that 
Gx=G. 

If Gx is non-meager. we are done by 9.11 (since Gx has the BP, as points 
are closed in X). So assume G:r. is meager. Let {Vn} be an open basis for 
X and note that, since X is T1, {V.,} separates points in X (i.e., for each 
x, y EX with x =f y, there is n with x E Vn, y ¢ Vn)· Let f(g) = g.x, and 
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put An = f- 1 (Vn), so that An. has the BP in G. Moreover, A.,h =An if 
hE Gx· Since g.x = h.x <=? f(g) = f(h) <* 'iln(g E An <=?hE An), we have 
gGx =.n{An: g E An}· By. a~ply.ing 8.46 to the group of homeomorphisms 
of G induced by right mult1phcat10n by elements of Gx, we have that each 
A is either meager or comeager. Since gGx is meager, there is n with 
g ~ An and An m_ea~er. So G = U{An : A .. is meager}, so G is meager, 
which is a contradiCtiOn. 0 

9.D Universal Polish Groups 

We have seen in 4.14 that the Hilbert cube IN has an important universality 
property: Every Polish space is a subspace of UN (up to homeomorphism). 
We prove here that the Polish group of homeomorphisms H(UN) of IN has 
a similar property among all Polish groups. 

Given two topological groups G, H, we call them isomorphic if there 
is an algebraic isomorphism 7r : G --> H that is also a homeomorphism. 

(9.18) Theorem. (Uspenskii) Every Polish group is isomorphic to a ( nec­
essarily closed) subgroup of H (IN). 

Proof. For a separable Banach space X, let Llso( X) be the group of linear 
isometries of X. This is a closed subgroup oflso( X, d), where d is the metric 
induced by the norm of X, so it is Polish. 

Now let G be an arbitrary Polish group. First we will find a separa­
ble Banach space X such that G is isomorphic to a (necessarily closed) 
subgroup of Llso(X). 

Let d be a bounded left-invariant metric compatible with the topol­
ogy of G. Given g E G, associate with it the bounded continuous map 
! 9 : G __. 1R given by f 9 (h) = d(g, h). Let c,,(G) be the Banach space 
of bounded continuous real-valued functions on G with the sup norm 
llflloo = sup{lf(x)l : x E G}. (It is not necessarily separable.) Let X be the 
closed linear subspace of Cb(G) generated by the functions {!9 : g E G}. 
Then X is separable. Every g E G determines a linear isometry T9 : X --> X 
given by T9 (f)(h) = .f(g-1h). It is easy now to check that g ~--+ T9 is an· 
isomorphism of G with a closed subgroup of Llso(X). 

Now let K = B1(X*) be the unit ball of the dual X* of X with the 
weak* -topology. By 4. 7,, K is compact metrizable. For S E Llso( X), let 
S* E Llso(X*) be its adjoint, i.e., (x,S*x*} = (Sx,x*}. Then S*IK E 
H(K). ForTE Llso(X), let h(T) = (T-1)*1K E H(K). 

Claim. The map his an isomorphism ofLiso(X) with a (necessarily closed) 
subgroup of H(K). 

Proof. It is easily an algebraic isomorphism. We will show next that it is 
continuous. IfTn--> T and dis the metric on K given in 4.7, we will verify 
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that d(h(Tn)(x*), h(T)(x*)) --+ 0 uniformly on x* E K, or equivalently 
l:m 2-m-11(T;1(xm),x*}- (T-1(xm),x*}l --+ 0 uniformly on x* E K, 
where {xm} is dense in the unit ball of X. But this is easy, since Tn(xm)-. 
T(xm), for all m. 

Finally, we check that h-1 is continuous. Let h(T.,,) ---+ h(T) (in H(K)), 
so that d(h(Tn)(x*), h(T)(x*)) ---+ 0 uniformly on x* E K. In particular. 
I(T;1(xm),x*}- (T- 1(xm),x*}l-+ 0 uniformly on x* E K, for any m. To 
see that Tn --+ T, or equivalently Tn-: 1 --+ r-1, it is enough to check that 
T;;- 1(xm)--+ r- 1(xm), for all m, i.e., II(T; 1-T-1)(xm)ll--+ 0, for all m. But 
II(T; 1 - r- 1 )(xm)ll = sup{I(T.:-1 (xm), x*}- (T-1 (xm), x*}l : x* E I<} ...... 0 
for any m. 

We use now the following result in infinite-dimensional topology (tree 
C. Bessaga and A. Pelczynski [1975]). 

(9.19) Theorem. (Keller's Theorem) If X is a separable infinite-dimensional 
Banach space, B1(X*) with the weak* -topology is homeomorphic to the 
Hilbert cube IN . 

If X is infinite-dimensional, we are done. Otherwise, X is finite­
dimensional, so K = B1 (X*) is homeomorphic to Kn for some n. Then 
G is isomorphic to a subgroup of H(Kn), which is easily isomorphic to a 
subgroup of H(Kl'il), and the proof is complete. 0 



CHAPTER II 
Borel Sets 

10. Measurable Spaces and Functions 

JO.A Sigma-Algebms and Their Genemtors 

Let X be a set.. Recall that an algebra on X is a collection of subsets of X 
containing 0 and closed under complements and finite unions (so also under 
finite intersections). It is a u-algebra if it is also closed under countable 
unions (so also under countable intersections). Given£ <;;;; Pow(X), there is 
a smallest a-algebra containing£, called the u-algebra generated by£ and 
denoted by a(£). Also,£ is ealled a set of generators for a(£). A a-algebra 
is countably generated if it has a countable set of generators. 

(10.1) Theorem. Let X be a set. 
i) For any£ <;;;; Pow(X), a(£) is the smallest collection of subsets of 

X containing 0, £, and""£ ( = { rvA:A E £}) and closed under countable 
intersections and unions . 

. ii)· Let A C Pow(X) be an algebra on X. Then a(A) is the small­
est monotonically closed cla8s of subsets of X containing A, where M <;;;; 

Pow( X) is monotonically closed if for any decreasing ( resp., increa..~ing) 
sequence (An), where An EM, nn An EM (resp., Un An EM). 

iii) (The 7l'- A theorem) Let P <;;;; Pow(X) be closed under finite inter­
sections (a 1r-class). Then a(P) i.~ the smallest A-class containing P, where 

.£<;;;;Pow( X) is a ~-class if it contains X and is closed under complement8 
and countable disjoint unions. 



66 II. Borel Sets 

iv) Let£ <; Pow(X). Then a(£) is the smallest cla.<IS of subsets of 
X containing 0, £, and "' £ and closed under countable inter·sections and 
countable disjoint unions. 

Proof. i) LetS be the smallest such class. Clearly, S <;a(£). LetS' = {A c 
X : A,,...., A E S}. Then S' is a a-algebra containing£, so a(£) <; S' <; S.-

ii) Let M be the smallest monotonically closed class containing A. It 
is enough to verify that if A, B E M then A\ B, AU B E M. Indeed. 
if this holds, M is closed under complements and countable unions, sin~ 
Un An= Un(Ao U · · · U An-1). 

For A<; X, let M(A) = {B: A\ B, B\A, AUB E .... "'1}. Then M(A) is 
monotonically closed. If A E A: then A<; M(A), so M <; M(A). Thus if 
BE M, BE M(A), so A E M(B). Therefore, A<; M(B) for all BE M 
(i.e., M <; M(B) for all B EM), and we are done. 

iii) Let .C be the smallest A-class containing P. We will show that it 
is an algebra. It will then follow that it is a a-algebra, since Un An = 
Un (An\ ui<n Ai) and the latter is a pairwise disjoint union. 

For any A<; X, let .C(A) = {B: An BE .C}. Then .C(A) is a A-class 
for any A E .C since if AnB E .C, then A \B =,...., ((rv A)U(AnB)) E .C. So 
if A E P, P <; .C(A), so .C <; .C(A). Thus if B E .C, A E .C(B), soP <; .C(B) 
and therefore .C <; .C(B). It follows that if A, B E .C, then An BE .C. 

iv) Let R. c Pow( X) be the smallest class containing 0, £,"' £ and 
closed under countable intersections and countable pairwise disjoint unions. 
Let R.' = {A E R. : ,...., A E R.}. Then£ <; R.', and R.' is closed under 
complements. So it. is enough to show that R.' is closed under countable 
tmions. Since Un An = Un(An \ ui<n Ai), it is enough to show that R' 
is closed under finite unions. Let A, B E R.'. Then A U B = (A \ B) U 
(B \ A) U (An B) and tllis is a disjoint tmion, so AU B E R.. But al<>O 
"'(AUB) =("'-'A) n(rv B) E R., so AUB E R.'. 0 

10. B Measurable Spaces and Functions 

A measurable (or Borel) space is a pair (X, S), where X is a set and Sis 
a a-algebra on S. The members of S are called measurable. 

A subspace of (X, S) consists of a subset Y <; X with the relative 
u-algebra SlY= {AnY : A E S}. Notice that if S =a(£), then SlY= 
a(£1Y). 

Let (X, S), (Y, A) be measurable spaces. A map f : X --+ Y is 
called measurable if f- 1 (A) E S for any A E A. If£ generates A, it is 
enough to require this for A E £, since f- 1 (a(£)) = a(r 1(£)) (where 
f- 1(D) = {f- 1(A) : A E D} for V <; Pow(Y)). A (measurable) isomor­
phism between X, Y is a bijection f : X --+ Y such that both f, r 1 arc 
measurable. If such an isomorphism exists, we call X, Y(measurably) iso­
morphic. A (measurable) embedding of X into Y is an isomorphism of X 
with a subspace of Y. 
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If X is a set, ( (Yi, Si) )iel a family of measurable spaces, and fi : X --+ 

y. are maps, there is a smallest a-algebra S on X such that all fi are 
~easurable. We call it the u-algebra generated by (/i). If £i is a set of 
generators for Si, then {/i-1(A) : A ~ Yi, A E £i, i E I} generates S. 

Let ((Xi,Si))iEI again be a family of measurable spaces. The product 
measurable space (ili Xi, ili Si) is that generated by the projection maps 
(xi)iei 1--+ Xj (j E I). Equivalently, it is generated by the sets of the form 
0· A., where Ai ESt and Ai =Xi e.xcept perhaps for at most one i (or 
eq~ivalently except for finitely many i). If £i is a set of generators for Si, 
then the sets of the form iliA,, where Ai =Xi except perhaps for at most 
one i for which Ai E £i, form a set of generators for the product space. 

The sum ($i Xi, E~'i Si) of a family of measurable spaces ((Xi,Si))iel 
is defined (up to isomorphism) as follows: Replacing xi by an isomorphic 
copy, we can assume that the sets xi are pairwise disjoint. Let X = uiEJ xi. 
A set A ~ X is measurable if A n Xi E Si for each i E I. 

(10.2) Exercise. Let X, Y be measurable spaces. If A ~ X x Y is measurable 
(in the product space), then for each x E X, Ax is measurable in Y. 
Similarly if X, Y, Z are measurable spaces and f : X x Y --+ Z is measurable, 
then for each x E X the function f x : Y --+ Z is measw-able. Generalize 
these to arbitrary products. 
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11. Borel Sets and Functions 

11. A Borel Sets in Topological Spaces 

Let (X, 7) be a topological space. The class of Borel sets of X is the 11, 

algebra generated by the open sets of X. We denote it by B(X, T) (or 
by B(X) or B(7), when appropriate). We call (X, B(X)) the Borel space 
of X. If E is a countable subbasis for X, then clearly B(X) = a(E), so 
B(X) is countably generated when X is second countable. Note also that 
if Y is a subspace of X then (Y, B(Y)) is a subspace of (X, B(X)) (i.e., 
B(Y) = B(X)IY). It is obvious that B(X) contains all open, closed, Fu, 
and G6 sets in X. 

By applying 10.1 to the class of open sets in X, we see the following: 
(a) B(X) is the smallest collection of subsets of X containing the open 

as well as the closed sets and closed under countable intersections and 
unions; 

(b) B(X) is the smallest collection of subsets of X containing the open 
sets and closed under complements and countable pairwise disjoint unions; 

(c) B(X) is the smallest collection of subsets of X containing the open 
as well as the closed sets and closed under countable intersections and 
countable pairwise disjoint unions. 

Note also that if (Xn) is a sequence of second countable spaces, then 

By standard terminology, if (X, S) is a measurable space and Y a top~ 
logical space, we call a function f : X --+ Y measurable if it is measurable 
with respect to (X, S), (Y, B(Y) ). If {V.,} is a countable sub basis for Y, it 
is enough to require that f- 1(Vn) E S for each n. 

11.B The Borel Hierarchy 

Assume now that X is metrizable, so that every closed set is a G6 set. Let 
w1 be the first uncountable ordinal, and for 1 :::; ~ < w 1 define by transfinite 
recursion the classes Eg(X),ng(X) of subsets of X as follows: 

:E~(X) = {U <;;;;X: U is open}, 

ll~(X) ="' :E~(X), 

Eg(X) = {UAn: An E nt(X), ~ .. < ~. n EN}, if~> 1. 
Tt 

In addition let 
Ag(X) = :E~(X) n Dg(X) 

be the so-called ambiguous classes. 
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'fraditionally, one denotes by G(X) the class of open subsets of X, and 
by F(X) the class of closed subsets of X. For any collection£ of subsets of 

a set X, let 

n 

n 

Then we have :E~(X) = G(X), ll~(X) = F(X), :E~(X) = (F(X))q = 
Fq(X), ll~(X) = (G(X))6 = G.s(X), :Eg(X) = (G.s(X))q = G,sq(X), 
~(X) = (Fq(X)) 6 = Fq,s(.,X), etc. (Also, A?(X) = {A ~ X : A is 
cl~pen}.) In general, an easy transfinite induction shows that 

:E~(X) u ll~(X) ~ A~+l (X), 

80 in particular 
:E~+l (X)= (n~(X))q. 

Finally, it is easy to see that 

B(X) = U :E~(X) = U ll~(X) = U Ag(X), 
e<wi e<wl e<wi 

which gives us the following picture, 

:Eo 
1 :Eg :Eo e :Eo 

'1 
Ao 

1 Ag Ao e ... Ao 
'1 

no 
1 ng no e no 

'1 

B 

where~ :::; 1J and any class is contained in every class to the right of it. This 
gives a ramification of the Borel sets in a hierarchy (of at most w1 levels), 
the Borel hierarchy. We will study it in some detail in Section 22. 

EXAMPLES 

1) A number x in the interval (0, 1) is normal (in base 2) if its non­
terminating binary expansion x = O.b1 ~b3 ... is such that 

lim ca.rd({i ~ n: bi = 1}) = 
112

. 
n-oo n 

Let N be the set of normal numbers. We claim that it is Borel. To see this, 
let dn be the following step function on (0, 1) : d.,.. = 0 on (0, 1/2n), d,. = 
1 on (1/2",2/2n), dn = 0 on (2/214,3/2n), .... Then x = E~= 1 dn(x)/2n is 
the non-terminating bina.ry expansion of x. Let Q+ be the set of positive 
rationals. Then for x E (0, 1) we have: 

x EN<* 'if€ E Q+3n'Vm ~ n(I(E?;1di(x))/m -1/21< €). 
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Now E~ 1 d;(x) is constant on each dyadic interval (k/2m,(k + 1)/2"'], so 
the set Am.e = {x : I(E~ 1 d;(x))/m- 1/2 I< E} is a finite union of such 
intervals. Since 

N= nUn Am,e, 
eEQ+ n m;::n 

it follows that N is Borel in (0, 1 ). 

2) Let X= C((O, 1)) and denote by C 1 the class of continuously differ­
entiable functions in C([O, 1]). (At the endpoints we take one-sided deriva­
tives.) Then for f E X, f E C 1 iff for all € E Q+ there exist rational open 
intervals /o, ... , In-l covering (0,1) such that for all j < n: 

Va b c dE/· n (0 1] with a ...t. b c ...t. d( f(a)- f(b)- f(c)- f(d) < ) 
'·' ' J ' I ' I b d - € • a- c-

So if for an open interval J and € > 0, we put A.1,e = {! E C([O, 1)) : 
Va b c dE J n (0 1) with a ...t. b c ...t. d. I f(a)-f(b)- f(c)-J(d) I< E} we ha:Me 

' ' ' ' I ' I · a-b c d - ' 
that AJ,e is closed in X and 

c• = n u u n AI;,E> 
eEQ+ n (/o, ... ,In-d1<n 

where (Io, ... , In-d varie,s over all n-tuples of rational open intervals with 
Ui<n li :2 (0, 1). Thus C 1 is Borel. 

3) Let X= IN and consider C0 = conX = {(xn) EX: x,.-+ 0}. Then 
we have for (xn) EX: 

(xn) E Co<=? VEE Q+3nVm 2: n(xm ~E), 

so Co is Borel. 

4) Let f E C([O, 1)). Put DJ = {x E (0, 1) : f'(x) exists} (at endpoints 
we take one-sided derivatives). Then for x E (0, 1) : 

x E D1 <=?VEE Q+:lb' E Q+Vp, q E (0, 1) nQ: 

(I p- X I, I q- X I< 0 =? 

f(p)- f(x) f(q)- f(x) 
~ €), 

p-x q-x 

so again D1 is Borel. 

(11.1) Exercise. Show that all of the preceding examples are actually ng. 

11. C Borel Functions 

Let X, Y be topological spaces. A map f : X -+ Y is Borel (IQeasurable) 
if the inverse image of a Borel (equivalently: open or closed) set is Borel. 
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If y has a countable subbasis {Vn}, it is enough to require that rt(Vn) is 
Borel for each n. We call fa Borel isomorphism if it is a bijection and both 
J,rl are Borel, i.e., for 1 ~X, A E B(X) <* f(A) E B(Y). If X= Y, we 
all f a Borel automorphism. 

c It is clear that continuous ftmctions are Borel. 

(11.2) Exercise. i) Let (X, S) be a measurable space and ~ a. met_riz­
able space. Let In : X --+ Y be measurable. If In --+ f pomtw1se (1.e., 
lim fn(x) = f(x) for each x), then f is also measurable. 

n ii) Call a function f : [0, 1 I --+ IR a derivative if there is F : [0, 1 I --+ 

lR differentiable such that F' = f (again at endpoints we take one-sided 
derivatives). Show that derivatives are Borel functions. 

iii) Let X be a topological space and f: X--+ 1R a lower (resp., upper) 
semicontinuous function, i.e., {x: f(x) >a} (resp., {x: f(x) <a}) is open 
for every a E JR. Show that f is Borel. 

(11.3) Exercise. Let X: Z be metrizable with X separable and Y a topo­
logical space. Let f : X x Y --+ Z be such that fY : X --+ Z is continuous 
for all y E Y and fx : Y --+ Z is Borel for a conntable dense set of x E X. 
Show that f is Borel. 

(11.4) Exercise. Let X be a Polish space. 
i) Show that the family of sets {K E K(X) : K ~ U}, U open in 

X, generates B(K(X)). Prove the same fact for the family of sets {K E 

K(X): KnU =F 0}, U open in X. 
ii) Show that the map K ~--+ K' ( = the Cantor-Bendixson deriv-ative 

of K) on K(X) is Borel. Show also that the map (K, L) ~--+ K n L from 
K(X) x K(X) into K(X) is Borel. If Y is compact metrizable and F ~ 
X x Y is closed, show that x ~--+ Fx is Borel. 

The following obvious fact is important, as it allows us to apply the 
theory of Section 8 to Borel sets and fnnctions. 

(11.5) Proposition. Every Borel set has the Baire property, and every Borel 
function is Baire measurable. 

The Borel sets are generated from the open sets by the operations of 
complementation and conntable nnion. We will now see that. real-valned 
Borel fnnctions are generated from the continuous fnnctions by the oper­
ation of taking pointwise limits of sequences. (We will prove an extension 
and a more detailed version of this result in 24.3, but the present form will 
suffice in the meantime.) 

(11.6) Theorem. (Lebesgue, Hausdorff) Let X be a metrizable space. The 
class of Borel functions f:X --+ IR is the smallest cla.~s of functions from 
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X into IR which contains all the continuous functions and is closed under 
tak:ing pointwise limits of sequences of functions (i.e., if fn:X--+ IR belong 
in the class and f(x) =limn fn(x) for each x, then f is in the class too). 

Proof. Denote by B the smallest class of real-valued functions containing 
the continuous functions and closed under the operation of taking pointwise 
limits of sequence,s of functions. It is easy to see that B is a vector space, 
i.e., if r,s E IR and J,g E B then rf + sg E B. 

We claim first that the characteristic function XA of any Borel set 
A ~ X is in B. To see this we use 10.1, iii). Since X"'A = 1 - XA and 
XU A = limn(XAn + · · · + XAJ, if (An) are pairwise disjoint, it is enough 

n n 

to show that Xu E B for any open U. Let U = Un Fn, with Fn closed and 
Fn ~ Fn+l· By Urysohn's Lemma 1.2, let In :X --+ IR be continuous with 
0 ~ / .. < 1, In = 1 on Fn, In = 0 on,...., U. Clearly, In --+Xu pointwise, so 
Xu EB. 

Let now f : X --+ IR be a Borel function. We will show that f E 13. 
Now f = J+ - f- with J+ = 11':1 , !- = 111; 1 . Clearly 1/1, j+,J­
are also Borel, so it is enough to consider non-negative f. For such f, 
let for n = 1, 2, 3, ... and 1 ~ i ~ n2n, An,i = r 1W;!, 2i" )) and put 
fn = Ef~; (i - 1) /2n · XAn,c Then, since An,i is Borel, fn E B. But fn -+ f 
pointwise, so f E B. 

Since the class of Borel functions contains the continuous functions 
and is closed under taking pointwise limits of sequences of functions, our 
proof is complete. 0 

(11.7) Exercise. Show that 11.6 holds when IR is replaced by any of the 
following: !Rn. en ( n = 1, 2, ... ), an interval J C 1R or Jn. In particular, the 
class of bounded Borel functions f : X --+ IR is the smallest class of real­
valued functions containing the bounded continuous functions, which is 
closed under taking bounded pointwise limits of sequences of functions (i.e., 
if fn are in the class, with Ifni ~ M for some M, and fn--+ f pointwise, 
then f is in the class). 
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12. Standard Borel Spaces 

12.A Borel Sets and Functions in Sepamble Metrizable Spaces 

We characterize first the Borel spaces of separable metrizable spaces. 

(12.1) Proposition. Let (X,S) be a measurable space. Then the following 
are equivalent: 

i) (X,S) is isomorphic to some (Y,B(Y)), where Y is sepamble metriz­

able; 
ii) (X ,S) is isomorphic to some (Y ,B(Y)) for Y ~ C (and thus to 

some Y ~ Z for· any uncountable Polish space Z); 

iii) (X ,S) is countably generated and separates points (i.e., if x,y are 
distinct points in X, there is A E S with x E A, y ¢A). 

Proof. ii) =? i) =? iii) are trivial. We will prove now that iii) =? ii). Let 
{An} generateS. Define f: X--+ C by f(x) = (XA,.(x)), where XA =the 
characteristic function of A. Then f is injective, since {An} separates points. 
It is also measurable, since f(x)(n) = 1 <=? x E An. Let Y = f(X) C C. 
Since J(An) = {y E C : y(n) = 1} n Y, /- 1 is also measurable (i.e., 
(X, S), (Y, B(Y)) are isomorphic). 0 

For measurable spaces (X, S) satisfying the equivalent conditions of 
12.1, we will usually denoteS by B(X) and call its elements the Borel sets 
of X, when there is no danger of confusion. We will also call measurable 
maps between such spaces Borel maps. 

The following is an analog of 3.8. 

(12.2) Theorem. (Kuratowski) Let X be a measurable space and Y be 
nonempty Polish. If Z ~ X and f:Z --+ Y is measurable, there is a mea­
surable function /:X ~ Y extending f. 

Proof. It is enough to find a measurable set Z* ~ X, Z* 2 Z and a 
measurable function f* : Z* --+ Y extending f. 

Let {Vn} be a basis ofnonempty open sets for Y. There are measurable 
~ts Bn in X with /- 1(Vn) = ZnBn. Thus for z E Z, z E Bn <=? f(z) E Vn. 
Put Z* = {x E X : 3y E Y\fn(x E Bn <=? y E Vn)}, and for x E Z*, let 
J*(x) = y, where {y} = n{Vn: x E Bn}· Clearly, Z ~ Z*,J* extends f 
and !* : Z* ~ Y is measurable since (!*) -l (Vn) = Bn n Z*. It remains to 
show that Z* is measurable. 

Let (n,x) E B <=? x E Bn so that Bx = {n: x E Bn}· Then x E Z* iff 
{Vn : n E Bx} is the family of basic open nbhds of some point in Y, so that 
x E Z* iff the three following conditions hold: 

(1) 
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(3) 'Vn'Vm(m E B"' & "Vrn ~ Vn ::::} n E Bx). 

Conditions (1) and (2) guarantee, by the completeness of Y, that 
nnEB"' Vn consists of a unique point, say y, and then condition (3) guaran­
tees that Bx = {n: y E Vn}· 

Letting 

we have 

(k, e, m, n) E C ~ Vt ~ Vn n Vm & diam(V£) < 1/(k + 1): 

(m,n) ED<=? Vm ~ Vn, 

x E Z* <=? 3n(x E Bn) & 'Vk'ifn'ifm[x E Bn & x E Bm ::::} 

3f(x E B£ & (k,f,m,n) E C)) & 

'ifn'ifm[x E Bm & ( m, n) E D ::::} x E BnJ, 

so that Z* is measurable (see Appendix C). 

We have also the analog of Lavrentiev's Theorem 3.9. 

0 

(12.3) Exercise. Let X, Y be Polish and A~ X, B ~ Y. Iff: A---+ B is a 
Borel isomorphism, then show that there exist Borel sets A* ~ X, B* ~ Y 
with A C A*, B ~ B* and a Borel isomorphism f* : A* ---+ B* extending 
f. Formulate and prove an analog of 3.10. 

There is a basie connection between the measurability of functions and 
their graphs. 

(12.4) Proposition. Let (X ,S) be a measurable space, Y a separable metriz­
able space, and f:X---+ Y a measurable function. Then graph(!)~ X x Y 
is also measurable (with respect to S x B(Y)). 

Proof. We have 

f(x) = y <=? 'ifn(y E V.,::::} f(x) E Vn), 

where {Vr,} is a basis for Y. 

The converse is also true when X, Y are Polish (see 14.12). 

12.B Standard Borel Spaces 

0 

( 12.5) Definition. A measmuble space (X ,S) is a standard Borel space if it 
is isomorphic to (Y ,B(Y)) for some Polish space Y or equivalently, if there 
is a Polish topology T on X with S = B(T). 
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The product and snm of a sequence of standard Borel spaces are stan­
dard. We will also see later (see 13.4 ), tha~ if (X, S) is stan~ard and Y ~ X 
is ins, then (Y, SlY) is also standard. Fmally, from 12.1 1t follows that a 
countably generated and separating points (X,S) is a subspace of a stan­
dard Borel space (and conven>ely of conrse ). 

12. C The Effros Borel Space 

We will now discuss an important example of a standard Borel space. 
Given a topological space X we denote by F(X) the set of closed 

subsets of X. (When X is metrizable, we also nse n~ (X) for this set, but 
we will retain the classical notation F(X) in the context of the Effros Borel 
structure.) We endow F(X) with the a-algebra generated by the sets 

{FE F(X): FnU =f 0}, 

where U varies over open subsets of X. If X has a countable basis {Un}, 
it is clearly enough to consider U in that basis. The space F(X) with this 
a-algebra is called the Effros Borel space of F(X). 

(12.6) Theorem. If X is Polish, the Effros Borel space of F(X) is standard. 

Proof. Let X be a compactifieation of X. Then the map FE F(X) ~--+FE 
K(X) (F denotes the closure of F in X) is injective, since F = F n X. 
We claim now that G = {F : F E F(X)} is Ga in K(X). Indeed, for 
K E K(X), K E G <* K n X is dense in K, so if X = n, U.,, where U, 
is. open in X, and letting {Vm} be a basis for X, we have by the Baire 
Category Theorem: 

KEG<=? 'ifn(K nUn is dense inK) 

<=? 'ifn'ifm(K n Vm =f 0::::} K n (Vm nUn) =f 0). 

Thus G is Polish. Transfer back to F(X) its topology via the bijection 
F- F, to get a Polish topology Ton F(X). We have to verify that the 
Borel space of this topology is the Effros Borel space. By 11.4 i), the sets 
{K E K(X) : K n U =f 0} for U open in X generate the Borel space of 
K(X), so the sets of the form {FE F(X): F n U =f 0} generate the Borel 
apace ofT. But {FE F(X): FnU =f 0} ={FE F(X): Fn(UnX) =f 0}, 
so these are exactly the generators of the Effros Borel spac.e. 0 

Let d be a compatible complete metric on the Polish space X. G. Beer 
[1991) has shown that the topology on F(X) \ {0} generated by the maps 
F- d(x, F), x EX, is Polish and that the Effros Borel space on F(X)\ {0} 
is the Borel space of this topology. 

(~2;7) Exercise. Let X be Polish locally compact. Consider the Fell topology 
on F(X), which has as a basis the sets of the form {FE F(X) : F n K = 
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0 & F n U1 =f 0 & · · · & F nUn =f 0}, where K varies over K(X) and 
Ui over open sets in X. Show that the Fell topology is compact metrizable 
and its Borel space is exactly the Effros Borel space. (For X compact, this 
is the Vietoris topology.) 

(12.8) Exercise. Let X be separable metrizable. If X is Kq, then the Effros 
Borel space on F( X) is standard. 

(12.9) Remark. J. Saint Raymond [1978) has shown that for separable 
metrizable X, the Effros Borel space on F(X) is standard iff X is the 
union of a Polish space and a Kq. 

(12.10) Exercise. Let X = N. View a tree on N as an element of 2WN by 
identifYing it with its characteristic function. Recall from 4.32 that the set 
of pruned trees PTr is G 6 (thus Polish) in 2l'f<N. Show that the Effros Borel 
space of F(N) is exactly the one induced by its identification with PTr via 
the map F......-+ Tp (see 2.4). 

(12.11) Exercise. Let X be Polish. 
i) Show that K(X) is a Borel set in F(X). Moreover, the Borel space 

of K(X) is a subspace of the Effros Borel space. (In particular, if X is 
compact, the Effros Borel space on F(X) = K(X) is the Borel space of 
K(X), which also follows from 12.7.) 

ii) Show that the relation "F1 ~ F2" (in F(X)2) is Borel and that 
the function (Fl>F2) ......-+ F 1 U F2 (from F(X)2 into F(X)) is also Borel. 
In particular, F(Y) is Borel in F{X), if Y is closed in X. If Z is also 
Polish, show that the function (FI> F2) ......-+ F1 x F2 (from F(X) x F(Z) into 
F(X x Z)) is Borel and iff : X --+ Z is continuous, the map F......-+ f(F) 
(from F(X) into F(Z)) is also Borel. 

iii) Let RF(X) be the class of regular closed sets iu X. Show that 
RF(X) is Borel in F(X). 

(By 8.30 and 8.32 the category algebra CAT( X) can be identified with 
RO(X) and, by taking complements, with RF(X). So by 13.4 we can view 
CAT( X) as having a standard Borel structure.) 

(12.12) Remark. In general, the operation (F1 , F2) ......-+ F 1 n F2 is uot Borel 
(see 27.7). Also for U open in X. {F: F C U} is in general not Borel (see 
also 27.7). For F C X x Y closed, the map x ......-+ Fx is also in general not 
Borel (see 15.5). 

The following is a basic fact about the Effros Borel space. 

(12.13) Theorem. (The Selection Theorem for F(X)) (Kuratowski-Ryll­
Nardzewski) Let X be Polish. There is a sequence of Borel functions 
d.n,:F(X)--+ X, such that for nonempty FE F(X), {dn(F)} is dense in F. 



12. Standard Borel Spaces 77 

Proof Assume that X =f 0 and fix a compatible complete metric for X. 
t (U) be a Souslin scheme on X with U0 = X, Us open nonempty, 1 .. c Us, Us= ui Us·i, and diam(U .• ) ~ 2-length(s) if s =f 0. For X EN, let 

r j(~)} = nn U,ln· Then f: N--+ X is a continuous (and open) surjection 
~see 7.14). Given nonempty FE F(X), let Tp = {s E N<l'f: F nUs =f 0} 
· d note that Tp is a nonempty pruned tree on N. Denote by ap ( = aTF) 
~leftmost branch (see Section 2.0). Let d(F) = f(ap) so that d(F) E F. 
Define also d(0) = xo, some fixed element of X. Now the function g : 
F'(X) \ {0} --+ N given by g(F) = ap is Borel, since given a basic open set 
N s E ~, we have 
• S> 

g(F) E Ns <* F nUs =f 0 & 'Vt E Nn(t <tex s::::} F nUt = 0), 

where <tex is the lexicographical ordering on Nn. So d is Borel as well. 
Fix now a basis { Vn} of nonempty open sets in X. By the above argu­

ment, we can find, for each n, a Borel function d~ : F(X) --+X such that 
~(F) E F n Vn ifF n Vn =f 0. Finally, let 

dn(F) = { d~(F), ~f F n Vn =f 0; 
d(F), tf F n Vrt = 0. 

0 

(12.14) Exercise. Let X be a measurable space andY a Polish space, Show 
that a function f: X--+ F(Y) is measurable iff f- 1( {0}) is measurable and 
there is a sequence of measurable functions f n : X --+ Y such that {f., ( x)} 
is a dense subset of f(x) when f(x) =f 0. 

12.D An Application to Selectors 

(U.l5) Definition. Let X be a Het and E an equivalence relation on X. 
A selector for E is a map s:X --+ X such that xEy ::::} s(x) = s(y)Ex. 
A transversal for E is a set T s X that meets evenJ eqnivalence class in 
exactly one point. 

If sis a selector forE, then {x: s(x) = x} is a transversal for E. If T 
iS a transversal forE, then s: X--+ X, given by {s(x)} = Tn [x]E, is a 
selector forE (here [x]E is the equivalence class of x). 

For a set As X its (E-) saturation [A]E is defined by 

[A]E = {x EX: 3y E A(xEy)}. 

The following is a basic result on Borel selectors. (See also 18.20 iv) for a 
stronger theorem.) 
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(12.16) Theorem. Let X be a Polish space and E an equivalence relation 
such that every equivalence class is closed and the saturation of any open 
set is Borel. Then E admits a Borel selector (and thus a Borel transversal). 

Proof. Consider the map x ~---+ [x]E from X to F(X). We claim that it is 
Borel. Indeed, if U ~ X is open, then 

U n [x]E rf 0 <=?X E [U]E· 

By 12.13, let d : F(X) --+ X be Borel with d(F) E F if F rf 0. Then 
s(x) = d([x]E) works. o 

An important special case is the following: 

(12.17) Theorem. Let G be a Polish group and H ~ G a closed subgroup. 
There is a Borel selector for the equivalence relation whose classes are the 
(left) cosets of H. In particular, there is a Borel set meeting every (left) 
coset in exactly one point. 

Proof. It is clear that every (left) coset gH is closed. Let now U ~ G be 
open. Then the saturation of u is the set u H = uhEH Uh, which is open. 
So by 12.16 we are done. o 

(12.18) Exercise. Show that in 12.16 the condition that the saturation of 
open sets is Borel can be replaced by the condition that the saturation of 
closed sets is Borel. 

12.E Further Examples 

1) Every Polish space is homeomorphic to a closed subspace ofJRI'l by 4.17. 
So we can view F(JRI'f) as being a representation (up to homeomorphism) of 
all Polish spaces, and by giving it t.he Effros Borel structure we can endow 
the class of Polish spaces with a standard Borel structure. We can call this 
the Borel space of Polish spaces. For example, the set of compact Polish 
spaces is Borel. (This means that {FE F(JRI'f): F is compact} is Borel.) 

2) Similarly we can identify, by 9.18, the Polish groups, with the dosed 
subgroups of Go= H(nN). Let Subg(Go) ={FE F(Go) : F is a subgroup}. 
Then Subg(Go) is a Borel set in F(Go), since if (dn) is as in 12.13, 

FE Subg(Go) <* 1 E F & \fn\fm(dn(F)dm(F)- 1 E F). 

So we can endow the class of Polish groups with the relative Borel space 
on Subg( Go). It is standard, as it follows from 13.4. We can call this the 
Borel space of Polish groups. (See also here C. Sutherland [1985].) 
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(12•19) Exercise. Show that the classes of abelian Polish groups and of 
Polish locally compact groups are Borel. 

3) Let X now be a separable Banach space. Let $ubs(X) = {F E 
F(X): F is a closed (linear) subspace of X}. Then Subs( X) is a Borel set 
in F(X). To see this, notice that if (dn) is as in 12.13, then for FE F(X) : 

FE Subs(X) <=? 0 E F & 'ifn'ifm'ifp, q E Q[pdn(F) + qdm(F) E F]. 

(We consider here the case of real Banach spaces. One replaces Q by Q + iQ 
for the complex ones.) 

It is a basic result of Banach space theory that every separable Banach 
space is isometrically isomorphic to a closed subspace of C(2N), i.e., there is 
a linear isometry between the given space and a closed subspace of C(2N). 
(To see this, consider the unit ball B1 (X*) of X* with the weak*-topology. 
It is compact metrizable, so let <p : 2N --+ B1 (X*) be a continuous surjection 
by 4.18. For x EX, let '1/Jx E C(2N) be defined by '1/Jx(Y) = t.p(y)(x). Then 
x~---+ 1/Jx is a linear isometry of X with a closed subspace of C(2N).) 

So identifying separable Banach spaces with the closed subspaces of 
C(2N), i.e., with Subs(C(2N)), we can endow the class of separable Banach 
space:~ with the relative Borel space of Subs( C(2N) ), which again is standard 
by 13.4. We can call this the Borel space of separable Banach spaces. 

(12.20) Exercise. Show that the set of finite-dimensional Banach spaces is 
Borel. 

4) Again let X be a separable Banach space and X* its dual. Let 
Bw·(X*) be the class of Borel sets in X* in the weak*-topology. We claim 
that (X*, Bw· (X*)) is standard. To see this, notice that the closed balls 
Br(X*) = {x* EX* : llx*ll S r} are closed in the weak*-topology, so if 
Sn = Bn+l(X*)\Bn(X*), then X* is the disjoint union of the {Sn}, Sn E 
Bw•(X*) and thus (X",Bw·(X*)) is the direct sum of (Sn,Bw·(X*)ISn)· 
But B111 • (X*)ISn are just the Borel sets of Sn in the relative weak*-topology. 
Since Sn is open in the weak* -topology of Bn+l (X*), therefore Polish in 
the weak*-topology, Bw·(X*)ISn is standard and so is (X*, Bw• (X*)). 

(12.21) Exercise. If X* is separable, show that Bw.(X*) coincides with the 
dass of Borel sets in the norm-topology (which is of course Polish). 

5) Now let H be a (complex) separable infinite-dimensional Hilbert 
space and let L(H) be the non-separable Banach space of bounded linear 
operators on H. We have already seen, in Example 5) of Section 3 and 
in 4.9, the definition of the strong and weak topologies on L(H). There is 
another important topology on L(H), called the a-weak topology, defined 
as follows. 
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An operator T E L(H) is compact if T({x E H : llxll < 1}) ~ H 
has compact closure. We denote by Lo(H) the class of these operators. It 
is a closed subspace of L(H). Although L(H) is not separable, Lo(H) is 
separable. An operator T E L(H) is positive if (Tx,x) :2: 0 for all x E H. 
For such an operator we define its trace by tr(T) = En(Ten, en), where {e,,} 
is an orthonormal basis for H (this definition is independeut of the choiee 
of such a basis). Thus 0 ~ tr(T) ~ oo. Now for any T E L(H), there is a 
unique positive operatorS, usually denoted by ITI, such that IITxll = IISxll 
for all x E H. Denote by £1 (H) the set of trace class operators (i.e., those 
T E L(H) for which tr(ITI) < oo). They form a separable Banach spaee 
under the norm IITih = tr(ITI). It turns out that Lo(H)* = L 1(H) and 
£l(H)* = L(H). (Compare this with cQ = e1, (f1)* = f 00

.) So L(H) is 
the dual of a separable Banach space and its weak *-topology is called the 
17-weak topology. 

It. turns out that on L1(H) = {T E L(H) : IITII ~ 1}, the weak and 
a-weak topologies coincide and it is easy to see that on L1(H) the strong, 
weak, and 17-weak topologies have the same Borel space, which is standard 
by Example 5) of Section 3 or 4.9. Then, as in the preceding Example 4), 
the Borel space of the strong, weak and a-weak topologies on L(H) is the 
same and standard. We will denote it by B(L(H)). It turns out that the 
usual operations like ST, T* are Borel. (Actually, T ~--+ T* is continuous in 

, the weak and a-weak topology, but not in the strong one. The operation 
( S, T) 1--+ ST is not continuous in any of these topologies, but is separately 
continuous. It is continuous in the strong topology on L1(H).) 

6) (Effros) A von Neumann algebra is a subalgebra A ~ L(H) closed 
in the weak (equivalently in the strong) topology and such that IE A and 
TEA::::} T* EA. Since A is completely determined by A= AnL1(H), we 
can identify A with A. Clearly, A E K(£1 (H)), and it can be easily checked 
that VN ={A: A is a von Neumann algebra} is Borel in K(L1(H)), where 
£ 1 (H) is given the weak topology, so that it is compact metrizable. So 
we can endow the class of von Neumann algebras with the relative Borel 
space of VN, which is standard by 13.4. It is called the Borel space of von 
Neumann algebras on a separable Hilbert space. It turns out that the basic 
notion offactor, and the classification into types (I, II, III, etc.) define Borel 
subsets of this space (see 0. A. Nielsen [1980] or E. A. Azoff [1983]). 

(12.22) Exercise. Let X, Y be separable Banach spaces. Generalize the pre. 
ceding Examples 4) and 5) to show that the Borel spaces of the weak 
(see 4.9) and strong (see Example 5) of Section 3.A) topologies on L(X, Y) 
are the same and are standard. 

12. F Standard Borel Groups 

(12.23) Definition. A standard Borel group is a standard Borel space G 
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If G is a standard Borel group, it is not necessarily true that there exists 
Polish topology T giving its Borel space such that (G, T) is a topological 

~oup. However, if such a topology exists it must be unique. 

(12.24) Proposition. Let G be a standard Borel group. There is at most one 
Polish topology T giving its Borel space so that ( G, T) is a topological group. 

Proof LetT, T' be two such topologies. Then ide : (G, T) --+ (G, T') is a 
Borel, therefore Baire measurable, homomorphism. Consequently, by 9.10 
it is continuous, i.e. T' ~ T. Similarly, T ~ T', so T = T'. o 

(12.25) Definition. A standar·d Borel group G is Polishable if there is a 
(necessarily unique) Pol·ish topology T giV'ing its Borel space, so that (G,T) 
is a topological group. 

(12.26) Exercise. Consider the compact metrizable group 1'N and the sub­
group G ~ 1'N consisting of the sequences (xn) such that Xn = 1 for all 
large enough n. Show that G is Borel in 1'N and (G, B(G)) is a standard 
Borel group. Show that G is not Polishable. 

(12.27) Exercise. Consider the Polish group RN and the subgroup e2 ~ RN. 
Show that (e2 , B(f2)) is a standard Borel group that is Polishable. 
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13. Borel Sets as Clopen Sets 

13.A Turning Borel into Clopen Sets 

The folloV\.ing is a fundamental fact about Borel sets in Polish spaces. 

(13.1) Theorem. Let (X,T) be a Polish space and A C X a Borel set. Then 
there is a Polish topology TA 2 T such that B(TA) = B(T) and A is clopen 
in TA· 

Proof. We need the following two lemmas, which are interesting in their 
own right. 

(13.2) Lemma. Let (X, T) be Polish and F s X closed. Let Tp he the 
topology generated by T U {F}, i.e., the topology with basi.<~ T U {U n p : 
U E T}. Then Tp is Polish, F is clopen in Tp, and B(TF) = B(T). 

Proof. Note that Tp is the direct sum of the relative topologies on F and 
"'F so, by 3.11, Tp is Polish. o 

(13.3) Lemma. Let (X, T) be Polish and let (Tn)nEI'l be a sequence of Polish 
topologies on X with T ~ Tn, n E N. Then the topology Too generated by 
Un Tn is Polish. Mor·eover, ifTn ~ B(T), B(Too) = B(T). (As we ·will see 
in 15.4, Tn. ~ B(T) is implied by T ~ Tn.J 

Proof. Let Xn =X for n EN. Consider the map t.p: X--+ Tin Xn given by 
t.p(a:) = (x, x, ... ). Note first that t.p(X) is closed in Tin (Xn, Tn)· Indeed, if 
(xn) ¢ t.p(X), then for some i < j, Xi =f Xj, so let U, V be disjoint open in 
T (thus also open inTi, Tj resp.) such that Xi E U, xi E V. Then 

(xn) E Xo X ••• X Xi-1 Xu X xi+1 X ... X Xj-1 X v X x1+l X .•. ~ "'t.p(X). 

So t.p(X) is Polish. But t.p is a homeomorphism of (X, Too) with <p(X), 
so (X, Too) is Polish. 

If Tn ~ B(T) and {ut•>hEN is a basis for Tn, then {Ui(n)}t.nEN is a 
subbasis for T00 , so Toe ~ B(T) as well. 0 

Consider now the class S of subsets A of X for which there exists a 
Polish topology TA 2 T with B(TA) = B(T) and A clopen in TA· It is 
enough to show that T ~ S and S is a 0'-algebra. The first assertion follows 
from 13.2. Clearly, S is closed under complements. Finally, let {An} ~ S. 
Let Tn = TA, satisfy the above condition for A ... Let Too be as in 13.3. 
Then A= Un An is open in Too and one more application of 13.2 completes 
the proof. 0 

(13.4) Corollary. Let (X,S) be a standar·d Bor·el space andY~ X be inS. 
Then (Y,SIY) is also standard. (Note that SlY = {A ~ Y:A E S}, since 
YES.) 
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Proof. We ca.u assume that X is Polish and S = B(X). Since Y is Borel, 
can assume without loss of generality, by 13.1, that Y is clopen and 

;.:refore Polish. Since B(X)IY = B(Y), (Y,B(X)IY) is standard. 0 

(13.5) Exercise. Let (X, T) be Polish and (An) a sequence of Borel sets. 
Show that there is a Polish topology T' on X with T ~ T', B(T) = B(T') 
and An clopen in T' for all n. Show, moreover, that T' can be taken to be 
zero-dimensional. 

The following application of 13.1 solves the cardinality problem for 
Borel sets in Polish spaces. 

For convenience we v.rill say that a subset C of a topological space is a 
cantor set if it is homeomorphic to the Cantor space C. 

(13.6) Theorem. (The Perfect Set Theorem for Borel Sets) (Alexandrov, 
Hausdorff) Let X be Polish and A ~ X be Borel. Then either A is countable 
or else it contains a Cantor set. In particular, every uncountable standard 
Borel space has cardinality 2No. 

Proof. By 13.1 we can extend the topology T of X to a new topology TA 
with the same Borel sets in which A is clopen, so Polish (in the relative 
topology.) By 6.5, if A is uncountable, it contains a homeomorphic (with 
respect to TA) copy of C. But since T ~ TA, this is also a homeomorphic 
copy vl-ith respect toT. 0 

13.B Other Representations of Borel Sets 

The following are useful representations of Borel sets. 

(13.7) Theorem. (Lusin-Souslin) Let X be Polish and A ~ X be Borel. 
There is a closed set F ~ N and a continuous bijection f:F--+ A. In par­
ticular, if A =f 0, there is also a continuous surjection g:N --+ A e.'Ltending 
f. 
Proof. Enlarge the topology T of X to a Polish topology TA in which A 
is clopen, thus Polish. By 7.9, there is a closed set F ~Nand a bijection 
f: F ~A continuous for TAlA. Since T ~ TA, f: F--+ A is continuous 
for T as well. The last assertion follows from 2.8. 0 

(13.8) Exercise. Derive 13.6 using 13.7 and 8.39. 

(13.9) Theorem. Let X be Polish and A C X Borel. Then there is a Lusin 
scheme (As)aEN<N such that -

i) As is Borel; 
ii) ~ = A, As = Un As·n, S E N<N; 
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iii) if X E N and Axln =f 0 for all n, then Ax = nn Axln is a singleton 
{x*} and for any Xn E An, Xn- x*. 

Moreover, if d is a compatible metric for X, we can make sure that 
diam(As) ::=; 2-length(s), if S =f 0. 

Proof. Let TA be a Polish zero-dimensional topology extending the topology 
T of X with B(TA) = B(T) and A clopen in TA (by 13.5). Let dA be a 
compatible metric for TA, and note that dA = d + dA is also a compatible 
metric for TA, so we can assume that d :::; dA. Now it is easy to define 
recursively on length(s), A 5 , so that As is clopen in TA and satisfies i), ii), 
and iii) of the statement, and diam(As) :::; 2-length(s) for s =f 0. 0 

(13.10) Exercise. Let X be Polish and A~ X Borel. Show that there is a 
closed set F ~ X x N such that 

x E A <:::? 3y(x, y) E F <:::? 3!y(x, y) E F, 

where "3!" abbreviates "there exists unique". Similarly, there is G ~ X x 
C, G a G6 set satisfying(*)· Show that G cannot in general be taken to be, 
Fu in X X C. 

13. C Turning Borel into Continuous Functions 

Finally, we derive some consequences concerning Borel functions. 

(13.11) Theorem. Let (X,T) be a Polish space, Y a second countable space, 
and f:X - Y a Borel function. Then there is a Polish topology Tj 2 7 
with B(TJ) = B(T) such that f:(X,TJ)- Y is continuous. 

Proof. Let {Un} be an open basis for Y. Consider the sets f- 1(U.,) and use 
13.5. 0 

(13.12) Exercise. i) Let (X, Tx ), (Y, Ty) be Polish and f :X - Y a Borel 
isomorphism. Show that there are Polish topologies Tx :::> Tx, T{ 2 Ty 
with B(Tx) = B(Tx ), B(T{) = B(Ty) such that f : (X, Tx) - (Y, T{) is 
a homeomorphism. 

ii) Formulate and prove versions of 13.11 and part i) of this exercise 
for a countable sequence of functions. 
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14. Analytic Sets and the Separation Theorem 

J4.A Basic Facts about Analytic Sets 

(14.1) Definition. Let X be a Polish space. A set A ~ X is called analytic 
if there is a Polish space Y and a continuous function f:Y - X with 
f(Y) =A. (The empty set is analytic, by taking Y = 0.) 

By 7.9, we can take in this definition Y = N if A =f 0. The class of 
analytic sets in X is denoted by 

(The classical notation is A(X).) 
It follows from 13.7 that 

B(X) c I:~(X). 

Th:s inclusion is proper for uncountable X. 

(14.2) Theorem. (Souslin) Let X be an uncountable Polish space. Then 
B(X)~I:{(X). 

Proof. Let r be a class of sets in arbitrary Polish spaces (such as open, 
closed, Borel, analytic, ete.). By r(X) we denote the subsets of X in r. 
If u ~ N X X, we call u N-universal for r(X) if u is in r(N X X) and 
r(X) = {Uy: yeN}. 

First notice that there is anN-universal set for I:~(N). Indeed, enu­
merate N<111 in a sequence (sn) and put (y,x) E U {:::} x E U{N~, : y(i) = 0}. 

Since .N2 is homeomorphic toN, it follows that there is anN- universal 
set for EY(.N2), and by taking complements there is an.N-universal set :F 
for ny(.N2). We now claim that A = {(y,x) : 3z(y,x,z) E :F} is N­
universal for Et{N). Since projection is continuous, A and all sections A, 
are I:{. Conversely, if A ~ N is El, there is closed F ~ N and continuous 
surjection f: F-A (F could be empty). Let G = graph(f)- 1, so that G 
is closed in .N2 and x E A<=> 3z(x, z) E G. Let yEN be such that G =:F._.,. 
Then A= Ay. 

Now A cannot be Borel, since then rv A would be too, so A = {X : 
{x,x) ¢A} would a.lso be Borel and thus analytic, so for some Yo, A= Ay0 

(i.e., (x,x) ¢A{:::} (yo,x) E A). Let x = y0 , to get a contradiction. 
Since every uncountable Polish space X contains a homeomorphic copy 

Qf N, it follows that B(X)~I:l{X) as well. 0 

The following exercise gives another representation of analytic sets. 
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(14.3) Exercise. Let X be Polish and let A C X. Then the following are 
equivalent: 

i) A is analytic. 
ii) There is Polish Y and Borel B ~X x Y with A= proh(B). 
iii) There is closed F ~X x N with A= proh(F). 
iv) There is G6 G C X x C with A= proh(G). 

Here are some additional basic closure properties of the analytic set.'l. 

(14.4) Proposition. i) If X is Polish and An ~ X are analytic, then 
Un A • ., nn A., ar-e analytic. 

ii) If X,Y ar-e Polish and f:X- Y is Borel, then for A~ X analytic 
and B ~ Y analytic, J(A), r 1(B) are analytic. 

Proof. i) Let Yn be Polish and fn : Y., - X ·continnons with fn(Yn) "" 
An. We can assume that the spaces Yn are disjoint and thus Un fn maps 
continuously the direct sum of (Yn) onto Un An, so Un An is analytic. 

Now let Z = {(yn) E On Yn : fn(Yn) = fm(Ym), for all n, m}. Then Z 
is closed in 0 .. Yn, and so is Polish. Iff: Z- X is defined by J((x.,)) =; 
/o(xo), f is continuous and /(Z) = nn An, so nn An is analytic. 

ii) We have 

y E /(A) {::} 3x(x E A & f(x) = y) 
{::} 3x(y, x) E F 

(where (y,x) E F {::} x E A & f(x) = y), i.e., f(A) = projy(F). Since 
projection is continuous and, obviously, continuous images of analytic sets 
are analytic, it is enough to show that F is analytic. By 12.4, {(y,x) : 
f(x) = y} is Borel, so it remains to check that {(y,x): x E A}= Y x A is 
EHY x X). Let Z be Polish and g: Z- X be continuous with g(Z) =A. 
Then g* : Y x Z- Y x X given by g*(y, z) = (y,g(z)) is continuous and 
g* (Y X Z) = y X A. 

Finally, note that 

x E /- 1(B) {::} 3y(f(x) = y & y E B), 

so we are done as before. 0 

(14.5) Definition. If X is a standard Borel space and A ~ X, we say that 
A is analytic if there is a Polish spaceY and a Borel isomorphism f:X­
Y such that f(A) is analytic in Y. (By the preceding proposition, this is. 
independent of the choice of Y,J.) We will again denote by E~(X) the 
class of analytic subsets of X. 

(14.6) Exercise. Show that for any standard Borel space X, Ef(X) ={A~. 
X: for some standard Borel spaceY and Borel f: Y- X, f(Y) =A}= 
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{A ~ X : for some standard Borel space Y and Borel B ~ X x Y, A = 

projx(B)}. 

J4.B The Lusin Separation Theorem 

The following result is of fundamental importance. 

(14.7) Theorem. (The Lusin Separation Theorem) Let X be a standard 
Borel space and let A,B ~ X be two disjoint analytic sets. Then there is a 
Borel set C ~X separating A from B, i.e., A~ C and C n B = 0. 

Proof. We can assume of course that X is Polish. Call two subsets P, Q of 
X Borel-separable if there is a Borel set R separating P from Q. 

(14.8) Lemma. If P = Um Pm, Q = U .. Qn, and Pm,Qn are Borel-separable 
for each m,n, then P,Q are Borel-separable. 

Proof. If Rm,n separates Pm, Qn, then R = Um nn Rm,n separates P, Q. 0 

Assuming now, without loss of generality, that A, Bare nonempty, let 
f: .N--+ A, g: .N- B be continuous surjections. Put As = f(N8 ), Bs = 
g(N8 ). Then As = Um As·m, Bs = Un Bs·n· If A, B are not Borel­
separable, toward a contradiction, then by repeated use of Lemma 14.8 
we can recursively define x(n), y(n) EN such that Axln• Byln are not Borel­
separable for each n E N. Then f(x) E A, g(y) E B, so f(x) =f g(y). Let 
U, V be disjoint open sets with f(x) E U, g(y) E V. By the continuity of 
f,g, ifn is large enough we have f(Nxln) ~ U, g(Nyln) ~ V, soU separates 
Axln from By in, a contradiction. 0 

The following extension is immediate. 

(14.9) Corollary. Let X be a standard Borel space and (An) a pairwise 
disjoint sequence of analytic sets. Then there are pairwise disjoint Borel 
sets Bn with Bn 2 An. 

14.C Souslin's Theorem 

(l4.10) Definition. Let X be a Polish space and let A ~ X. We call A 
co-analytic if "' A is analytic and similarly when X is a standard Borel 
space. We denote by ITt( X) the class of co-analytic subsets of X. (The 
classical notation is CA(X).) The hi-analytic sets ar-e those that ar-e both 
analytic and co-analytic. Their class is denoted by At{X), i.e., AHX) = 
EHX) n nt{x). 
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(14.11) Theorem. (Souslin's Theorem) Let X be a standard Borel space. 
Then B(X) = AHX). 

Pr·oof. Take B ="'A in 14.7. 0 

One final application provides a converse to 12.4 in standard Borel 
·spaces. 

(14.12) Theorem. Let X,Y be standard Borel spaces and f:X --+ Y. Then 
the following are equivalent: 

i) f is Borel; 
ii) graph{!) is Borel; 
iii) graph{!) is analytic. 

In particular, iff is a Borel bijection, then f is a Borel isomorphism (i.e., 
f- 1 is also Borel). 

Proof. It is enough to show that if graph{!) is analytic, f is Borel. Let A 
be Borel in Y. Then 

(1) 

(2) 
x E r' (A){::} 3y[f(x) = y & yEA] 

{::} \fy[f(x) = y =* y E A]. 

It is clear by (1) that f- 1(A) is analytic and by (2) that f- 1(A) is co­
analytic (sin<'.e the negation of (2) is 3y[f(x) = y & y ¢A]), so f- 1(A) is 
in AHX) = B(X). 0 

(14.13) Exercise. (The Perfect Set Theorem for Analytic Sets) (Souslin) 
Let X be a Polish space and let A ~ X be analytic. Show that either A is 
countable or else A contains a Cantor set. In particular, every uncountable 
analytic set in a standard Borel space has cardinality 2No. (This extends 
13.6 and solves the cardinalit.y problem for analytic sets in Polish spaces.) 

(14.14) Exercise. Let X be a standard Borel space. Let E be an analytic 
equivalence relation on X (i.e., E E EHX2)). Let A, B ~ X be disjoint 
E-invariant analytic sets. (A set A ~ X is £-invariant if x E A and xEy 
imply yEA.) Show that there is an E-invariant Borel set C separating A 
from B. 

(14.15) Exercise. Let G be a group with a Polish topology in which multi­
plication is separately continuous. Show tha.t G is a topological group. 

(14.16) Exercise. (Blackwell) Let X be a standard Borel spa('.e and (An) 
a sequence of Borel sets 'in X. Consider the equivalence relation xEy {::} 
\fn(x E An {::} y E An)· Show that a Borel set A ~ X is E-invariant iff it 
belongs to the a-algebra generated by {An : n E N}. 
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15. Borel Injections and Isomorphisms 

15.A Borel Injective Images of Borel Sets 

Although the continuous image of a Borel set need not be Borel, we have 
the following basic fact. 

(15.1) Theorem. (Lusin-Souslin) Let X,Y be Polish spaces and f:X - Y 
be continuous. If A~ X is Borel and JIA is injective, then f(A) is Borel. 

Proof. By 13.7 we can assume that X = Nand A is closed. Let Bs = 
J(AnNs) for s E N<N. Then, since /lA is injective, (B8 ) is a Lusin scheme, 
B0 = f(A), Bs = Un Bs·n, and Bs is analytic. So by 14.9 we can find a 
Lusin scheme (B~), with B~ Borel, such that B0 = Y, Bs ~ B~. We finally 
define by induction on length( s) Borel sets B;, such that ( B;) is also a 
Lusin scheme, as follows: 

B0 = B0, 
B(no) = B(no) n B(no)• 

B* - B' nB* nB (no, ... ,nk)- (no, ... ,nk) (no, ... ,nk-d (no, ... ,nk)' 

Then we can easily prove by induction on k that B(no, ... , .. k) ~ B(no, ... ,nk) ~ 
B We claim now that (no, ... ,nk) · 

/(A)= nUB;, 
k seNk 

which shows of course that f(A) is Borel. 
If x E /(A), let a E A be such that f(a) = x, so that x E nk Balk• and 

thus X E nk B:lk' Conversely, if X E nk UseNk B;' tpere is tmique a. EN 

such that X E nk B;lk' Then also X E nk Balk> so in particular Balk =f 0 
.for all k and thus A n Nalk =f 0 for all k, which means that a E A since A 
is closed. So f(a) E nk Balk· We claim that /(a.) =X. Otherwise, since f is 
continuous, there is an open nbhd Nalko of a with f(Nalko) ~ U, where U 
is open such that x ¢ U. Then x ¢ f(Nalko) :2 Balko• a contradiction. 0 

(15.2) Corollary. Let X ,Y be standard Borel spaces and f:X - Y be Borel. 
If A ~ X is Borel and JIA is injective, then f(A) is Borel and f ·is a Borel 
isomorphism of A with j(A). 

Proof First we can clearly assume that X, Yare Polish. Then we can apply 
15.1 to the projection of X x Y onto Y and the set (Ax Y) ngraph(f). 0 

(15.3) Exercise. Show that the Borel sets in Polish spaces are exactly the 
injective images by continuous (equivalently Borel) functions of the closed 
subsets of N. 
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(15.4) Exercise. i) Let (X, T), (X, T') be Polish with T ~ B(T'). Then 
B(T) = B(T'). (In particular, T ~ T' implies that B(T) = B(T')). 

ii) Let (X, S) be a standard Borel space. Let E; S be countable and 
assume E separates points. Then S =a( E). 

Remark. Notice that 15.1 implies the more general version in which Y is 
allowed to be just separable metrizable, since we can view Y as a subspace 
of a Polish space. Similarly, in 15.2 we can allow Y to be just count.ably 
generated and separating points (by 12.1). 

(15.5) Exercise. Show that there is a closed set F ~ /1/2 such that the map 
x 1---> Fx, from N to F(N), is not Borel. 

15.B The Isomorphism Theorem 

The next result classifies standard Borel spaces up to isomorphism. 

(15.6) Theorem. (The Isomorphism Theorem) Let X ,Y be standard Borel 
spaces. Then X,Y are Borel isomorphic iff card(X) = card(Y). In partic­
ular, any two uncountable standard Borel spaces are Bor-el isomorphic. 

Proof. It is enough to show that if X is an uncountable Polish space, then 
X is Borel isomorphic to C. By 7.8, 7.9 and 14.12, there is a Borel injection 
f: X- C. (As B. V. Rao and S. M. Srivastava. point out, this can be also 
seen in a more elementary way as follows: By 3.12 and 3.4 ii), C and n are 
Borel isomorphic and thus so are C and H111 • But X is homeomorphic to a 
subspace of n111 by 4.14.) By 6.5 there is a continuous, thus Borel, injection 
g : C - X. So it is enough to prove the following fact, which is important 
in its own right. 

(15.7) Theorem. (The Borel Schroder-Bernstein Theorem) Let X,Y be 
standard Borel spaces and f:X - Y, g:Y - X be Borel injections. Then 
there are Borel sets A ~ X, B ~ Y such that f(A) = Y\B and g(B) = 
X\A. In l'articular, X and Y are Borel isomorphic. 

Pmof. Define inductively Xn, Y., as follows: Xo = X, Yo = Y, Xn+l = 
gf(Xn), Yn+l = Jg(Yn)· Let XXJ = nn Xn, Yoo = n .. Y.,. Then /(Xco) = 
Y"" and /(Xn \g(Yn)) = .f(Xn)\Yn+l> g(Yn \.f(Xn)) = g(Yn)\Xn+l· Finally 
let A = X00 U U.,(Xn \ g(Yt,)), B = U .. (Y., \ f(Xn)). All the.se sets are 
Borel by 15.2. 0 

0 

Notice that, by the same proof, 15.7 holds more generally when X, Y 
are measurable spaces, f is an isomorphism of X Vl.rith a measurable sub-
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space of Y, and g is an isomorphism of Y with a measurable subspace of 
x. 

(15.8) Exercise. Let X, Y be standard Borel spaces and A ~ X, B ~ Y 
Borel sets. Show that there is a Borel isomorphism f: X- Y with f(A) = 
B iff card(A) = card( B) and card(X\A) = card(Y\B). 

15.C Homomorphisms of Sigma-Algebms Induced by Point 
Maps 

The Isomorphism Theorem is often used to reduce a problem from arbitrary 
standard Borel spaces to a particular one that is appropriately chosen for 
the problem at hand. Let us consider an example of this. 

Let (X, S) be a measurable space and I ~ S a u-ideal in S (i.e., I 
is closed under subsets that are inS and countable unions). As usual, we 
let for A,B E S: A =z B <:::? A~B E I and [A]= {B: B =z A}. Let 
S/I = {[A] : A E S}. With the partial ordering [A] :::; [B] <:::? A\B E 
I, S /I as a Boolean a-algebra. In general, in a Boolean a-algebra we 
denote by -a the complement of a and by Vnan the supremum of {a.,}, 
also called the countable join of {a., } . In the case of S /I we have - [A] = 
[rv A] and Vn[A.,] = !Un An]· A map between Boolean a-algebras is a 
u-homomorphism if it preserves complements and countable joins. 

(15.9) Theorem. (Sikorski) Let (X,S) be a measurable space, I~ S a a­
ideal in S, and Y a nonempty standard Bor·el space. If ci>:B(Y) - S /I is 
a a-homomorphism, then ther·e is a measurable map t.p:X - Y such that 
ci>(B) = [t.p- 1(B)] for any BE B(Y). This t.p is uniqu~ly determined modulo 
I (i.e., if '1/J is another such map, then { x:t.p(x) =f '1/J(x)} E I). 

Proof. By the Isomorphism Theorem we can assume that Y = [0, 1]. (The 
case where Y is countable is straightforward.) 

For p E Qn [0, 1] we can choose Bp E S with [Bpj = ci>([O,p]) such that 
B1 =X. 

For x EX, now let t.p(x) = inf{p: x E Bp}· Then t.p: X- [0, 1] aud 
{x: t.p(x) <a}= tJp<a Bp for a E (0, 1], so t.p is 1~1easurable. If cl>: B(Y)­

S/I is given by ci>(B) = [t.p- 1(B)], then ci> is also a a-homomorphism and 
cl>, cl> agree on the intervals [O,p), p E Qn [0, 1]. Since the class {BE B(X): 
ci>(B) = ci>(B)} is a a-algebra, we have ci> = ci>, which completes the first 
part of the proof. 

For the uniqueness, suppose that '1/J ifl another such map and, say, 
{x : t.p(x) < '1/J(x)} ¢ I. Then, since I is a a-ideal, there is a rational 
p with A = {x : t.p(x) < p < '1/J(x)} = t.p- 1([0,p])\'I/J- 1([0,p]) ¢ I. But 
[t.p- 1([0,p])] = ci>([O,p]) = ['I/J- 1([0,p])], so A E I, a contradiction. 0 
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This result in turn has the following consequence. 

(15.10) Theorem. Let X,Y be standard Borel spaces and I~ B(X), .J ~ 
B(Y) be a-ideals in B(X), B(Y), respectively. Then ci>:B(X)/I- B(Y)/ .J 
is an isomorphism (of the corresponding Boolean algebras) iff there are 
Borel sets Xo ~ X, Yo ~ Y with "" Xo E I, "" Yo E .J and a Borel 
isomorphism cp:Yo - Xo such that ci>([A]) = [cp- 1(A n Xo)]. Such a cp is 
uniquely determined modulo .J. If both I and .J contain uncountable sets, 
then we can actually take Xo = X and Yo = Y. 

~roof. By 15.9, let <p : Y - X be B_orel with ci>([Al) = [<p- 1(A)] and 
'1/J: X- Y be Borel with cp- 1([B]) = ['I/J- 1(B)]. Then '1/J o <p = idy modulo 
.J and cp o 1fi = idx modulo I. So there are Borel sets X0 ~ X, Yo ~ Y 
with ,...., Xo E I, ,...., Yo E .J such that cp = cpiYo : Yo - Xo is a Borel 
isomorphism. 

The last assertion is evident, since any two uncountable standard Borel 
spaces are Borel isomorphic. P 

(15.11) Exercise. Let X be a standard Borel space and I ~ B(X) a a­
ideal in B(X). If ci> is an automorphism of B(X)/I, then there is a Borel 
automorphism <p of X such that ci> ( [A]) = [ cp- 1 (A)]. 

(15.12) Exercise. Recall the eategory algebra of 8.32. Since every set 
with the BP is equal to a Borel set modulo meager sets, it follows that 
CAT(X) = BP(X)/MGR(X) = B(X)/(B(X) n MGR(X)) under the ob­
vious identifications. Show that if X is perfect Polish, any automorphism 
of CAT(X) is induced by a homeomorphism of a dense G6 in X (i.e., if ci> 
is an automorphism, there is a dense G6 set G <;;;;X and a homeomorphism 
cp of G onto itself with ci>([A]) = [cp- 1(A n G)]). 

15.D Some Applications to Group Actions 

Let G be a standard Borel group, X a standard Borel space, and (g, x) ...... 
g.x a Borel action of G on X (i.e., the action is a Borel map of G x X 
into X). The orbit of x E X is the set {g.x : g E G}: Any two distinct 
orbits are disjoint and thus the orbits give a partition of X. We denot.e the 
equivalence relation on X whose equivalence classes are the orbits by Ea. 
Thus for x, y E X, 

xEcy <=? 3g E G(g.x = y). 

It is easy to verify that Ea is analytic (in X 2). In general, however (see, 
e.g., Sections 16.C and 27.0), it is not Borel. Here are two cases where it 
is actually Borel. 
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(15.13) Exercise. i) Let G be a standard Borel group, X a standard Borel 
space, and (g, x) ~--+ g .x a Borel action of G on X. This action is called free 
if for x E X, g =f 1, g.x =f x. Show that if the action is free, Eo is Borel. 

ii) Let G be a Polish locally compact group, X a Polish space, and 
(g,x) ~--+ g.x a continuous action of G on X. Show that Ec is Fq. 

We have now the following basic fact concerning orbits of Borel actions 
of Polish groups. 

(15.14) Theorem. (Miller) Let G be a Polish group, X a standard Borel 
space, and (g,x) ~--+ g.x a Borel action ofG on X. Then every orbit {g.x:g E 
G} is Borel. 

Proof. By 9.17 the stabilizer Gx = {g : g.x = x} of x E X is a closed 
subgroup of G. So by 12.17, let Tx be a Borel set meeting every left coset of 
Gx in exactly one point. Note that g.x = h.x iff h-1g.x = x iff h-1g E Gx iff 
g E hGx iff g, h belong t.o the same left coset of Gx. Thus the map g ~--+ g.x 
is a Borel bijection of Tx with {g.x: g E G}, so this orbit is Borel. 0 

(15.15) Exercise. Let G be a Polish group, H a standard Borel group, and 
t.p : G - H a Borel homomorphism. Then <p( G) is Borel in H. 
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16. Borel Sets and Baire Category 

16.A Borel Definability of Category Notions 

Every Borel set has the BP, and every Borel function is Baire measurable. 
We will calculate next the complexity of the property of being meager for 
Borel sets. 

(16.1) Theorem. (Montgomery, Novikov) Let (X ,S) be a measurable space, 
Y a Polish space, and A C X x Y a measurable set (for S x B(Y)). Then 
for any open set U <;;;; Y, 

{x EX: Ax is meager in U} 

and the corresponding sets with "meager" replaced by "non-meager" or "co­
mp_ager" are measurable. 

Proof. If U is empty the result is trivial, so let us assume that U varies over 
nonempty open sets. Let {Un} be a basis of nonempty open sets for Y. 

Consider the class A of measurable sets A C X x Y such that the set 

Au= {x EX: Ax is not meager in U} 

= {x EX: 3*y E U(x,y) E A} 

is measurable for every open non empty U C Y. We will show that A con­
tains all the rectangles S x V with S E S and V open in Y and is closed 
under complementation and countable unions. This implies that it contains 
all measurable sets in X x Y, and our proof is complete. 

and 

This follows immediately from the following properties: 

i) If S E S, V is open in Y, then 

( S x V)u = S, if u n V =f 0, 

( S x V)u = 0, if u n V = 0. 

ii) (Un An)u = Un(An)u. 

iii) ("" A)u ="" nu .. ~u(A)un · 

Only iii) is not straightforward. We have 

x E ("" A)u <=? 3*y E U ""A(x,y) 

<=? .,'if*y E UA(x,y) 

<* .,'ifUn C U3*y E UnA(x,y), 

where the last. equivalence follows from 8.27 ii) (see also Section 8.J) since 
Ax is Borel and therefore has the BP. 0 
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Notice that the previous result can be expressed by saying that if A <;;;; 
X x Y is measurable, then so are 

B(x) <=? 'V*y E UA(x,y), C(x) <=? 3*y E UA(x,y); 

i.e., the category quantifiers 'if*y E U, 3*y E U preserve measurability. This 
is far from true for the usual quantifiers 'ify, 3y. (Why?) 

We will discuss now some applications to group actions and model 
theory. 

16.B The Vaught Transforms 

Let G be a Polish group, X a standard Borel space, and (g, x) ~--+ g .x a 
Borel action of G on X. 

Let us denote by [A] the saturation of A, i.e., the smallest invariant 
(under the action or equivalently the associated equivalence relation Eo) 
set containing A, and by (A) the hull of A, i.e., the largest invariant set 
contained in A. Then [A] = {x : 3g E G(g.x E A)}, (A) = {x : 'ifg E 
G(g.x E A)}, and (A) c A<;;;; [A]. 

If A is Borel, then (A) is co-analytic and [A] is analytic. 

(16.2) Definition. For A<;;;; X, let A* = {x:'if*g E G(g.x E A)} and A~ = 
{x:3*g E G(g.x E A)}, We call A*,A~ the Vaught transforms of A. We can 
also define the local Vaught transforms of A as follows: For U nonempty 
openinG, letA*u = {x:'if*g E U(g.x·E A)}, A~u = {x:3*g E lj_(g.x E A)}. 

(16.3) Proposition. i) The Vaught transforms A* ,A~ are invariant and 
(A) c A* <;;;;A~<;;;; [A]. Thus A i.~ invariant iff A= A* iff A= A~. 

ii) If A is Borel, so are A*u, A~u. In particular, A*, A~ are Borel 
invariant sets sandwiched between the hull and the saturation of A. 

Proof. i) Let x E A*, so that {g : g.x E A} is comeager. Then for any 
h E G, {g : g.x E A}h-1 = {gh- 1 : g.x E A} = {g : g.(h.x) E A} is 
also comeager, i.e., h.x E A*. The proof for A~ is similar. The inclusions 
(A) <;;;; A* <;;;; A~ <;;;; [A] are straightforward. 

ii) If A is Borel, let (x,g) E A<=? g.x E A, so that A is Borel and note 
that A*u = {x: Ax is comeager in U}, which is Borel by 16.1 (similarly for 
A~u). o 

(16.4) Exercise. i) Show that A~u = ,...., (rv A)*u, x E A*u <=? g.x E 

A•(Ug-'>, (nnAn)*u = nn(An)*u, and (UnAn)~U = Un(An)~u. 
ii) If {Un} is a weak basis for G and A,An are Borel, then (rv A)*u = 

,...., Uu cu A*Un and (Un An)*u = nu cu'Uu cu Un(An)*Uj. 
n._ ,_ J- ... 
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16. C Connections with Model Theory 

(16.5) Definition. Let L be a countable language, which for notational sim­
plicity we assume to be relational, say L = (R;).,Ef> where I is countable, 
and R; is an ni-arg relation symbol. Denote by XL the space 

which. is homeomorphic to C, if L =f 0. We view XL as the space of countably 
infinite structures for· L, since every x = (xi) E XL can be identified with 
the structure Ax= (N, (Rfx)ie1), wher-e Rfx(s) {::} Xi(s) = 1 for s E Nn•. 

The Polish group 800 acts in the obvious way on XL : 

In other words, g.x = y iff g is an isomorphism of Ax with Ay. This action, 
called the logic action, is clearly continuous. The associated equivalence 
relation is just isomorphism: i.e., 3g E S00 (g.x = y) iff Ax9!!Ay ("" denotes 
isomorphism of structures). It follows that"" is analytic (but in general not 
Borel; see Section 27.0). · 

We have immediately from 15.14 the following result. 

(16.6) Theorem. (Scott) The isomorphism clast; {y:Ax ""Ay} of any x E XL 
is Borel. 

Consider now the logic Lw 1w based on the language L. It is the ex­
tension of first-order logic associated with L in which for any countable 
sequence (<;n) of formulas whose free variables are among vo, ... , vk- 1 (for 
some k independent of n) we can form the infinite conjunction and disjunc­
tion 1\.,;pn, Vn\f>n· So every formula has finitely many free variables. For 
any structure A= (A, (R;)iei) for L, any formula cp(vo, ... , Vk-1) of Lw 1w 

whose free variables are among vo, ... : Vk-1> and any ao, ... , ak-l E A, the 
notation A I= cp[a0 , ... , ak- d means as usual that A satisfies the formula 
cp(vo, ... , Vk-1), when Vi is interpret.ed by ai. 

(16.7) Proposition. Let cp(vo, ... ,Vk-l) be a formula of Lw,w· Then the set 
A,.,,k C XL x Nk defined by 

(X: s) E Ap,k {::} Ax I= cp[so, ... :SA:- d, 

is Borel (in XL x N k, with N discrete). 

Proof. By induction on the const.rnction of cp. If cp is atomic, say, for exam­
ple, cp is Ri0 (vo,vl) (io E /),then letting x =(xi) E XL we have 
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(x,s) E A,.,,2 <=? Xi0 (so,s1) = 1, 

so this set is do pen. Clearly, A-.,.,,k = "" A,.,,k: (here ...,'P is the negation 
of ;p), A.l\,.,.on,k = nn A,.,n,k• etc., for the Boolean connectives, including 
the infinitary ones. Finally, if, e.g., <pis the formula 3vk1/J(vo, ... , Vk- 1, vk), 
then 

(x,s) E A,.,,k <* 3m(x,s·m) E A..,,,k+l! 

so A,.,,k = Um f,:;; 1(A,p,k+l), where fm : XL x Nk - XL x Nk+ 1 is the 
continuous function fm(x, s) = (x, s·m). 0 

Note now that if a is a sentence in Lw 1w (i.e., a formula with no free 
variables), then Aq ( = A<T,O = { x: A:c I= a}) is invariant Borel in XL (i.e., 
""'-invariant). The following is the converse. 

(16.8) Theorem. (Lopez-Escobar) The invariant Borel subsets of XL are 
exactly those of the form Aq, for a a sentence of Lw,w· 

Proof. (Vaught) The group 800 is topologically a G6 subspace of N. We fix 
a particular basis for 800 as follows: 

Denote by (N)k the set of u E Nk that are injective (i.e., ui =f u1 if 
i =f j). For u E (N)k, let 

[u] = {g E Boo : u <; g- 1 }. 

In particular, for k = 0, [0] = 800 • Clearly, {[u] : u E (N)k, k E N} is a 
basis for 800 • 

For A <; XL, k E N, let 

A*k = {(x, u): u. E (N)k & x E A*[ttl}, 

Aak = {(x, u) : u E (N)k & x E Aa(uJ}. 

The ba.c;ic fact now follows. 

(16.9) Proposition. For each Borel set A C XL and k E N, A*k is of the 
form A,.,k.k for some formula 'Pk(vo, ... , vk-1) of Lw,w· 

Granting this, let A <; XL be Borel invariant and take k = 0. Then 
A*= A is of the form Aq for a a sentence of Lw,w· 

Proof. (of 16.9) We show that the class of A<; XL satisfying 16.9 contains 
the sets of the form 1rj1(U) for .i E I and U a basic open set in 2N"' 
(here 7r3((xi)) = Xj) and is closed under complementation and countable 
intersections. 

First, fix j E I and U a basic open set in 2N"'. Then it is easy to check 
that 7rj 1(U) has the form 

A= {x E XL: A, I= 0[0, ... ,p-1]}, 
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for some pEN and a formula B(v0 , ••. , Vp- 1) that i.::s a boolean combination 
of atomic formulas of L. Then for any kEN, 

(x, u) E A*k <=? u E (N)k & 'if*g E [u](g.x E A) 

<=? u E (N)k & 'if*g E [u](A9 .x I= 8[0, ... ,p-1]) 

<* u E (N)k & 'if*g E [u](Ax I= B[g- 1(0), ... ,g-1(p -1)]). 

If k :2: p, then, since g E [u] <=? u <; g- 1, we have (g-1(0), ... ,g- 1(p-
1)) = (uo, ... , Up-l), so 

(x, u) E A*k <=? u E (N)k & Ax I= H[uo, ... , Up-d· 

Thus A*k = A,.,~:,k with IPk(vo, ... , Vk-l) being the formula J\i<J<k(vi =f 
Vj) /\ H(vo, ... , Vp-1)· 

On the other hand, if k < p, notice that 

'if*g E[u] (Ax I= H[g-1(0), ... ,g-1(p- 1)]) 

<=? 'ifw 2u, w E (N)P (Ax I= B[wo, ... , Wp_t)), 

since any comeager set in [u] must intersect all [v] with v 2 u, v E (N)P. 
So A*k = A,.,k,k' where <;k(vo, ... ,vk-1) is the formula J\i<j<k(vi =f Vj) /\ 
'Vvk'ifVk+I .. · 'ifvp_t(/\i<j<p(vi =f V_j)::::} H(vo, ... , Vp-1)). 

For the operation of complementation, let A*k = A,.,k,k fork EN and 
formulas IPk( vo, ... , Vk-d· Then, by 16.4 ii), 

(x,u) E ("-' A)*k <=? x E ("" A)*[tt] 

<=? 'iff :2: k 'ifw 2 u, 'UJ E (N)l (x ¢ A*lw!) 

<=?'iff :2: k'Vw 2 u,w E (N)t((x,w) ¢ A,.,t.t) 

so ("-' A)*k = A.,pk.k with '1/Jk(vo, ... ,vk-1) the formula J\i<J<k(vi =f Vj) /\ 
J\t?k'ifvk'ifVk+l '· ''ifVt-dJ\i<j<t(Vi =f Vj)::::} ""'IP£(Vo, · · ·, Vt-1)). 

Finally, for countable intersections, note that if A;,k = A,.,i: ,k for k E N 
and formulas ~Pi:(vo, ... , Vk-1 ), then if A= nn An., we have by 16.4 i), 

A*k = n A~k = Al\,.tpf:(vo, ... ,Vk-d,k• 
n 

Here a.re some applications to model theory. 

0 
0 

(16.10) Corollary. (Scott) For every countable structure A of L there is 
a sentence O'A of Lw1w such that for any countable structure B of L, B I= 
O'A iff B"" A. (Such a sentence is called a Scott sentence of A.) 
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Proof. This is straightforward if A is finite. For infinite A use 16.6 and 
16.8. 0 

The following is a form of the Interpolation Theorem for Lw,w· It is 
due to Lopez-Escobar. For sentences p, a of Lw1w we write p I=* a if for 
any countably infinite structure A for L, A I= p implies A I= a. 

(16.11) Corollary. Let R,S be two distinct symbols not in L and let p,a, 
respectively be sentences in ( L U { R} t, w and ( L U { S} t ,w. If p I=* a, then 
there is a sentence T in Lw,w with p I=* T and T I=* a. 

Proof. Let A = {x E XL : Ax I= 3Rp}, B = {x E Xr. : Ax I= \fSa}. 
Then A is analytic, B is co-analytic, and A <; B. Moreover, A and Bare 
invariant, so by 14.14 there is an invariant Borel set C with A <; C <; B. 
By 16.8, C = Ar for some sentence T of Lw,w· Thns pI=* T, T I=* a. 0 

16.D Connections with Cohen's Forcing Method 

The following is a brief and informal introduction to one approach to the 
Cohen method of forcing, which illustrates its connections with the cate­
gory methods studied here. Proofs are omitted and some knowledge of the 
axiomatics and models of set theory would be desirable. 

Let IP' = (P, $) be an infinite countable, partially ordered set (poset) 
with least element denoted bv 0. We call the elements of P conditions. If 
p :::; q, we say that. q extends ~. When there is r E P with p :::; r and q :::; r, 
we call p, q compatible. If p, q are incompatible we write p .l q. We will 
assume below that IP' is separative, i.e., if p 1, q, then there is r 2: q, r .l p. 

An ideal in IP' is a subset G <; P such that i) 0 =f G =f P; ii) (q E 
G & p:::; q::::} pEG); and iii) (p,q E G::::} 3r E G(p < r & q:::; r)). An 
ideal G is called strong maxii:nal if for every p ~ G there is r E G with 
p .l r. 

The ideals of IP' are in one-to-one correspondence with the equivalence 
classes of 

p(N) = { (pn) E pN : Prt+l > Pn} 

under the equivalence relation 

(p .. ) "-' (qn) <=? \fm3n(pm :::; Qn) & \fm3n(qm < Pn). 

If we write !Pn] for the equivalence class of (p .. ), the correspondence is 

!Pn] +-----+ G[p,.J = {p : 3n(p :::; Pn)}. 

Under this correspondence, the strong maximal ideals correspond to the 
maximal (Pn) E p(N), i.e., those for which \fp E P3n(p:::; Pn or p .l Pn)· Let 

Xr = { G ~ P : G is a strong maximal ideal}. 
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We view Xr as a subspace of 2P (= {0, lV, which is homeomorphic to the 
Cantor space). Then Xr is easily G6 and thus Polish. The topology of Xr 
has as basis the sets 

{G E Xr: Po, ... ,Pn-1 E G; Qo, ... , Qm-1 ¢ G}, 

which we denote by Up,-·-.q (if p = (po, ... ,Pn-1), ij = (qo, · · ·, qm-1)). But 
if G E Up,-.q, there are q~ .l Qi such that q~ E G. Then G E Up-q' ~ Up,-.q· 
Furthermore, if G E Up-q', then there is rEG with Pi,qj :S r for all i,j, so 
G E Ur ~ Up-q'. So we can take the sets 

Up= {G E Xr: pEG} 

as basis for Xp. Notice that they are clopen, since if p ¢ G there is r E G 
with p .l r so that ,...., Up = Ur.l.f Ur· Note also that Uo = Xp, p :::; q <=? 

Up 2 Uq and p .l q <* Up n Uq = VJ. 
Call D ~ P open if 'Vp E D'ifq > p(q E D), and dense if 'Vp E P3q E 

D(p < q). Then U C Xr is open (and dense) iff U = UpeD Up, forD open 
(and dense). 

For any A ~ Xr, put 

p II-A <=? Upll-A. 

If p II-A we say t.hat p forces A. 
Suppose now that M is a countable transitive model of Zermelo­

Fraenkel set theory (ZF) and IP' E M. Then Cohen has shown that for 
the generic G E Xr (i.e., for comeager many G E Xr) there is a smallest 
transitive model of ZF containing !vf as a subset and G as an element, de­
noted by M[G]; M[G] is also countable and has the same ordinals as M. If 
M satisfies the Axiom of Choice (AC), so does M[G]. 

By choosing IP' appropriately, one can make sure that. various state­
ments in set theory hold or fail in M [G], thus showing that they are con­
sistent or independent of ZF or ZFC (= ZF & AC). For example, if IP' is 
chosen to consist of all p which are functions with domain a finite subset of 
Nr x N (where Nr is the second uncountable cardinal in M) and values in 
{0, 1 }, with ordering p :::; q <=? p ~ q, then for the generic G, M[G]I= ..., CH, 
where CHis the Continuum Hypothesis (i.e., the assertion that 2No = N1). 

On the other hand, if one chooses IP' to consist of all functions in M with 
domain a countable in M ordinal and range included in Pow(N)M (i.e., the 
power set of N in M) with the partial order of inclusion, then for the generic 
G, M[G]I= CH. It follows that the CHis both consistent and independent 
of ZFC, which are results of Gooel (with a different proof than the above) 
and Cohen, respectively. 

We will give a brief sketch of the ideas involved in proving the ba­
sic facts about the so-called generic extension M [G] in order to see the 
connection with the category methods discussed here. 
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One first sets up a system of "naming" elements of the model M[G] 
by elements of M. This is done by defining in the language of set theory a 
class function K(x, y, z), which has the following properties: 

i) K is simply definable and therefore it has the same meaning (i.e., is 
absolute) in any transitive model of ZF. (Technically K is D.fF.) 

ii) Let M be a transitive model of ZF, IP' E M, and G E Xp. Let M[G] = 
{K(G,IP',a) :a EM}. Then M[G] is transitive, M ~ M[G], G E M[G], 
and for any transitive model N of ZF with lvl U {G} ~ N, M[G] C N. 
Finally, M and M[G] have the same ordinals. 

Thus every element x E M[G] is of the form Kr,c(a) = K(G, IP',a) for 
some a EM. We view a as a name of x. 

For a fixed countable transitive M and IP' E M, the forcing language 
(of IP' over M) is the language of ZF augmented by constant symbols for 
elements a EM. A sent.ence in this language is of the form cp(ao, ... , an-1), 
where cp( vo, ... , 'Vn- 1) is a formula in the language of set theory and 
ao, ... ,an-1 EM. We write 

M[G]I= cp(ao, ... ,an-l) {::} M[G]I= cp[KIP',c(ao), ... , Kr,c(a.,.-1)]. 

We also define the forcing relation 

p 11- cp(ao, ... • an-1) {::} p 11- {G: M[G] I= cp(ao, ... • an-1)}. 

Put 
A,.,(ao, ... ,an-;l = { G : M[G]I= cp( ao, . .. , a..-1) }. 

Then one shoV~>'S, by induction on the construction of cp, that A,.,(ao, ... ,an-d is 
Borel in Xp. The only difficulty is when cp is atomic, i.e., of the form "a E b" 
or "a= b". The proof is then by induction on max{ rank( a), rank(b)} and 
uses the particular definition of K, which we have not spelled out here. 

From the paragraph preceding 8.30 we have the Truth Lemma: For the 
generic G, for all cp(a.0 , . .. , an-1 ), 

M[G] I= cp(ao, .. . , an-1) {::} 3p E G(p II- cp(ao, ... , an-1)). 

(Notice here that there are only countably many such cp( ao •... , an-l).) 
Finally, one proves the key De&nability Lemma: For every formula 

cp(v0, ... , Vn-d of the language of ZF, we can find a formula cp*(vo, ... , 'Vn-1. 

Vn, Vn+l) such that 

p II- cp(ao, ... ,an-1) {::} M I= cp*[ao, ... ,an-1,p,IP'], 

which shows that the relation of forcing is definable within M. The proof 
of the definability lemma proceeds by induction on the construction of <p 
using the formulas of 8.27. 

For example, we have (omitting the ao, ... , an-1, when they are Wl­

necessary) 
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i) p lhp 1\ 'ljJ <=? p II- t.p & p II- '1/J; 

ii) p 11-·t.p <=? 'ifq :2: p(q.irt.p); 

iii) p 11-'Vv,.<p(ao, ... ,an-t.vn) <* 

'Van EM(pll-<p(ao, ... ,an-l,<Zn)) 

(since M is countable). Again one handles the atomic formulas "a = b", 
"a E b" by induction on max{rank(a),rank(b)} using the definition of K 
and the formulas of 8.27. 

Once the definability lemma. is established, it is used in conjunction 
with the truth lemma to verify that all the axioms of'ZF (or AC) are true 
in .M[G] for the generic G, essentially by reducing this verification to the 
fact that the corresponding axioms are true in M. 

The further development of the technique of forcing requires the fol­
lowing refinement. 

The various facts mentioned above are true generically: There is a dense 
G6 set of G's for which they hold. This means that there is a countable 
sequence of dense open sets Dn ~ p such that if G E nn UpeD,. Up, then 
G has the required properties. Notice that G E UveD,. Up just means that 
G n Dn =f 0, so if G meets all the Dn it has the required properties. The 
aforementioned refinement is that it is enough to take { Dn} to be the 
family of dense open sets which are in M. We say that G is M -generic if 
G meets all the dense open D E M. All the previous results hold when G 
is M -generic. 

(16.12) Exercise. i) Show that the Banach-Mazur game G**(A) for A~ Xr 
is equivalent to the following game: 

I Po P2 

II Pl P3 

Players I and II take turns playing Pi E P with Po < Pl < P2 :::; · · ·; player 
II wins iff (pn) is maximal and G[p,.J EA. 

ii) The Cohen poset is IP' = (P, :::;), where P = N<l'f and p :::; t <=? p ~ t. 
What is XJP? 
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17. Borel Sets and Measures 

17.A General Facts on Meas·ures 

Let (X,S) be a measurable space. A measure on (X,S) is a map J.L: S--+ 
[0, oo] such that J.t(0) = 0 and J.L(Un An) = I:n J.L(An) for any pairwise 
disjoint family {An} C S. A measure space is a triple (X,S,J.L), where 
(X,S) is a measurable space and J.L is a measure on (X,S). We often write 
(X, J.L) when there is no danger of confusion. 

A measure is called u-finite if X = Un Xn, with Xn E S, J.L(Xn) < oo, 
finite if J.L(X) < oo, and a probability measure if J.L(X) = 1.. 

A measure :;pace (Y, A, 11) is a subspace of (X, S, J.L) if Y E S, A = SlY 
and 11 = J.LIA (i.e., 11(A) = J.t(A) for A~ Y, A E S). In this case we write 
II= JLIY. 

A set A ~ X is called JL-null if there is B E S with A ~ B and 
J.L(B) = 0. We say that a property P ~ X holds JL-almost everywhere 
(JL-a.e.) and we write 

P(x) J,L-a.e., 

if X\ P is J,L-null. We denote by NULL~' the class of J,L-nnll sets. It is clearly 
a a-ideal on X. The a-algebra generated by S U NULL~', which is easil;y 
seen to consist of the sets of the form AU N with A E Sand N E NULL~, 
is denoted by MEAS~' and its members are called JL-measurable sets. The 
measure J.L is extended to a measure ji. on MEASI', called its completion, 
by ji.(A UN) = J.L(A). We will also write JL for this completion, if there is 
no danger of confusion. 

An outer measure on a set X is a map J.L* : Pow(X)--+ [0, oo] such that 
J.L* (0) = 0, A ~ B => J.L* (A) ~ J.L* (B), and J.L"' (Un An) ~ I:n J.L* (An)· A set 
A ~ X is JL*-measurable if for every E, J.L*(E) = J.L*(E n A)+ J.L*(E \A). 
The J.L* -measurable sets form a a-algebra MEASp•, and J.L* restricted to 
MEAS1,• is a measure. 

Every mea:;ure J.L on (X, S) gives rise to an outer measure J.L* defined 
as follows: J.L*(A) = inf{J.L(B) : B E S, B ~ A}. If J.L is a-finite, then 
MEASI' = MEASI'. and (the completion of) Jl· and J.L* agree on MEASw 

A function f : X --+ Y, where Y is a measurable space, is called JL­
measurable if the inverse image of a measurable set in Y is J.L-measurable. If 
Y is countably generated, this is easily seen to be equivalent to the assertion 
that there is a measurable g: X--+ Y such that f(x) = g(x) holds 11-a.e. 

When f : X --+ IR or C, and f is integrable with respect to J.L, we write 
J fdJ.L or J f(x)dJ.L(X) for its integral. 

If (X, S, J.L) is a measure space, (Y, A) is a measurable :;pace, and f : 
X --+ Y is J.L-measurable, then the image measure !J.L (also denoted /.(J.L)) 
is defined by 

for any B E A. Note that 
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J gd(f J.L) = J (go f)dJ1., 

in the sense that if one of these integrals exists, so does the other and they 
are equal. 

Given now a-finite measure spaces (Xi, Si, J.Li), i = 0, ... , n- 1, there 
is a unique product measure J.L = lli<nJ.Li on lli<n(Xi,Si) such that for 
Ai E Si 

tt(IT Ai) =IT J.Li(A,). 
i<n i<n 

~oreover, Jl is a-fiLUte. 
Consider, for notational simplicity, the case n = 2. Let (X, J.L), (Y, I/) 

be a-finite measure spaces. Then the Fubini Theorem asserts that if f is 
integrable with respect to J.L x 11 then .fx is integrable J.L-a.e., f11 is inte­
grable 11-a.e., and J fd(J.L x 11) = J(J fxdll)dJ.L(x) = J(J fYdJ.L)dll(y) (which 
implicitly implies also that x ......-+ J fxdll, y ......-+ J fYdJ.L are integrable). 

Let now ((X,., Sn, J.Ln))nel'l be a sequence of probability measure spaces. 
Then there is a unique product measure J.L = On J.Ln on (lln Xn, On Sn) 
such that J.L(lli<n Ai) = lli<n J.L(Ai) for Ai E Si. (Here lli<n Ai = {(xi) E 
lli Xi : 'Vi < n(xi E Ai) }. ) Clearly, J.L is a probability measure too. 

Given measure spaces ((Xn,Sn,J.Ln)) with Xn pairwise disjoint, we de­
fine their sum (E9nXn,E9nSn,E9nJ.Ln) by letting E9nJ.Ln = J.L, where 

J.L(A) = L J.Ln(A n Xn) 
n 

(17.1) Exercise. (The 0-1 law) Let (Xn, J.Ln) be probability measures and 
(X,J.L) = lln(Xn,J.Ln)· Let A ~ llnXn be a measurable tail set. Then 
J.L(A) = 0 or J.L(A) = 1. 

(17.2) Exercise. Let (X,S,J.L) be a a-finite measure space. Consider the a­
algebra ~EAS~' and the a-ideal NULLw Show that NULL~ has the count­
able chain condition in MEASw (Compare this with 8.31.) 

For A, B E ~EAS,., let A =; B <* A~B E NULL~', and denote by 
[A] the equivalence class of A. As in 8.32 and 15.C, consider the Boolean 
algebra MEAS~tfNULLI' of equivalence classes under the partial ordering 
[A]~ [B] <* A\B E NULL~' (which is clearly t.he same as S/(NULL~' nS)) 
and show that it is a complete Boolean algebra, called the measure algebra 
of J.L, in symbols ~ALGw 

Let J.L, 11 be measures on (X, S). We say that. J.L is absolutely contin­
uous with respect to 11, written as J.L « 11, if NULL11 ~ NULLw We say 
that J.L is equivalent to 11, denoted as J.L ,...., 11, if J.L « 11 and 11 « J.L (i.e., 
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NULL~' = NULL11 ). This is an equivalence relation and we denote by [J.L] 
the equivalence class of J.L, called its measure class. 

Two measures J.L, 11 as above are orthogonal, in symbols J.L ..l 11, if there 
exists A E S with J.L(A) = 0, 11(X\A) = 0. 

(17.3) Exercise. i) If J.L ,...., 11, then MEAS~' = MEAS,, and so MALG~' -
MALG 11 • 

ii) If J.L is non-zero a-finite, there is a probability measure 11 with J.L ,...., 11. 

The Radon-Nikodjrn Theorem asserts that if J.L, 11 are a-finite mea­
sures on (X,S), then J.L«II iff there is measurable f : X ~ [O,oo) with 
J.L( A) = J t\ f d11 ( = J f XA d11). This f i::; unique 11-a.e and also satisfies 
J gdJ.L = j gjd11 for all measurable g, which are integrable for J.L. It is de­
noted by ~ and called the Radon-Nikodjrn derivative of J.L with respect to 
11. The usual chain rule holds: If A«J.L«II, then ~~ = ~; · ~ holds 11-a.e. 

One can also characterize absolute continuity for finite measures J.L, 11 
as follows: J.L«II iff 'if€ > 036 > 0\fA E S(11(A) < 6::::} J.L(A) < €). 

(17.4) Exercise. Let (X,S) be a measurable space such that {x} E S for 
all x E X. A measure J.L on X is called continuous if J.L( { x}) = 0 for all x. 
Equivalently this means that J.L(A) = 0 for all countable A C X. A measure 
J.L on X is called discrete if J.L(X\A) = 0 for some countable set A ~ X; 
in other words, J.L = I:xeA J.L( { x} )ox, where Ox is the Dirac measure at x, 
i.e., Ox( A)= XA(x) for A E S. (Notations such as J.L = I:ieJ ai11i mean that 
J.L(A) = I:iei awi(A).) Show that if J.L is a-finite, there are only countably 
many points x E X with JL( { x}) > 0, and J.L can thus be uniquely written 
in the form J.L = J.Lc + J.Ld, where J.Lc is continuous and J.Ld is discrete. We call 
JLc the continuous and J.Ld the discrete part of J.L· 

17.B Borel Measures 

(17.5) Definition. Let X be a topological space or a standard Borel space. A 
Borel measure on X is a measure J.L on (X,B(X)). 

Let us consider some examples of Borel measures. 

1) Let m (= mn, if there is a danger of confusion) be the Lebesgue 
measure on Rn. It is a-finite, and every bounded Borel set has finite mea­
sure. Also mn = ( m 1 )n ( = the product of n copies of Lebesgue measure on 
R). 

2) Let G be a Polish locally compact group. Then there is a unique 
(up to a multiplicative positive constant) a-finite Borel measure J.LG on G 

·such that J.Lc(K) < oo if K is compact, J.Lc(U) > 0 if U =f 0 is open, and 
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J.Lc(gA) = J.Lc(A) for any g E G and Borel A. It is called the (left) Haar 
measure on G. Similarly there is a unique right-invariant oue. These are in 
general distinct but equivalent. (They are, however, the same if G is abelian 
or compact.) In the compact case, the Haar measure is normalized, making 
it a probability measure. 

3) Fix 0 < p < 1. Put on the set 2 = {0,1} the measure J.L({O}) = p, 
J.L( { 1}) = 1 - p, and let J.Lv be the product measure on 2N = C. Then 
J1.1,(Ns) = pa(l- p)b, where s = (so, ... , Sn-1) E 2n and a= card( {i < n: 
si = 0} ), b = n- a. The measure J.Ll/2 is the Haar me.asure on the compact 
group z~ (=C). We will denote it by JLc. 

4) Let (X, d) be a metric space and J.L* an outer measure on X. We call 
J.L* a metric outer measure iffor any A,B ~X with d(A,B) = inf{d(x,y): 
x E A, y E B} > 0, we have J.L"'(AUB) = J.L*(A)+J.L*(B). A standard result 
in measure theory asserts that J.L* is a metric outer measure iff every Borel 
set in X is J.L* -measurable. So in this case J.L* IB(X) is a Borel measure. 

An example of t.his is the Hausdorff measure. Let (X, d) be a met­
ric space and h : [0, oo) --+ [0, oo) a continuous non decreasing function 
with r > 0 ::::} h(r) > 0. For € > 0, let J.Lh(A) = infU::::n h(diam(Fn)) : 
Fn closed with dia.m(Fn) ~ € and A ~ Un Fn }. Then € ~ €

1 
::::} /Lit > J.L' 

and we put J.Lh.(A) = lime_,oJ.L/,(A). Tllis turns out to be a metric outer 
measure called the h-Hausdorfl' outer measure. It.s restriction to B(X) 
is called the h-Hausdorfl' measure J.Lh· It may not be a-finite. When 
h(x) = X 8

, s > 0, this is called the s-dimensional Hausdorff measure. 

Let A be an algebra on X and let J.L be a countably additive function 
J.L : A --+ (0, oo] (i.e., if An E A are pairwise disjoint and Un An E A, then 
J.t(A) = Ln J.L(An)) with J.L(0) = 0. This is also called a measure on A. It. 
is u-finite, if X = Un An, with An E A, J.L(An) < oo. Then one has the 
following standard extension theorem. 

(17.6) Proposition. If A is an algebm on X and ft a a-finite measure on A, 
then J.L has a unique extension to a measure, also denoted by J.L, on a(A). 

(17. 7) Exercise. Show that if VJ : 2<l'f --+ [0, 1] satisfies VJ(0) = 1 and <p( s) = 
VJ(s~O) + VJ(s~1) for all s E 2<l'f, then there is a unique probability Borel 
measure J.L on C with J.L(Ns) = VJ(s). Show also that all probability Borel 
measures on C arise in thil; way. 

(11.8) Exercise. Consider the map f : C --+ [0, 1] giveu by f(x) -I::0 x(i)2-i-l. Let ILC be the Haar measure on C. Show that fJ.Lc -
mi[O, 1]. 

(17.9) Exercise. Recall the Lebesgue Density Theorem for R: If A ~ R is 
Lebesgue measurable, then 
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m(Ani) 
limiii-oO m(I) = XA(x), m-a.e., 

where I varies over open intervals containing x and III= m(I) =length(/). 
Prove a similar result for the Haar measure J..Lc, namely, for all J..Lc­
measurable A <;;; C, 

lim 
n->oo 

J..Lc(A n Nxln) 
( 

'fV ) = XA(x), J..Lc-a.e. 
J..Lc l xln 

17.C Regularity and Tightness of Measures 

(17.10) Theorem. Let X be a metrizable space and J..L a finite Borel measure 
on X. Then J:L is regular: For any J..L-measurable set A <;;; X 

J..L(A) = sup{J..L(F): F <;;; A,Fclosed} 

= inf{J..L(U) : U ~A, U open}. 

In particular, a set A <;;; X is J..L-measurable iff there is an Fq set F C A 
with A\F E NULL~' iff there is a G6 set G ~A with G\A E NULLw 

Proof It is easy to check that the class of sets A <;;; X that satisfy the 
above condition contains all the closed sets (since they are G6) and is closed 
under complementation and countable unions. So it contains all Borel set:;. 
If now A E MEAS~', let B,C E B(X) and N <;;; C be such that J..L(C) = 
0, A = BUN. First, J..L(A) = J..L(B) = sup{J..L(F) : F <;;; B, F closed} ~ 
sup {it( F) : F <;;; A, F closed} ~ J..L(A). Also, given € > 0, let U1 :::> B be 
open with J..L(U1 \B) < €/2 and U2 ~ C be open with J..L(U2) < €/2. Then if 
U = U1 UU2, we have U ~A and J..L(U\A) < €. 0 

For Polish spaces we have the following strengthening. 

(17.11) Theorem. Let X be Polish and J..L a finite Borel mea.'lure on X. Then 
J..L is tight, i.e., for· any J..L-measurable set A. <;;; X 

J..L(A) = sup{J..L(K) : K <;;;A, K compact}. 

In particular, a set A <;;; X is J..L-measurable iff there is a Kq set F <;;; A 
with J..L(A\F) = 0. 

Proof By 17.10 we can assume that A is closed. Then A itself is Polish, so 
by considering J..L I A if necessary, it is enough to show that 

J..L(X) = sup{J..L(K): K compact}. 
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Fix a compatible complete metric for X. Let € > 0. For each n pick a se­
quence of closed balls B~n> with X= Ui Bin> and di~(B;-n>) ~ 2-n. Since 

J.L(Ui9 B~n>)--+ J.L(X) ask--+ oo, let kn be such that J.L(X\ Ui9 " Bin>)< 

€/2n+l. Let K = nn U~;0 Bin>. Then K is closed and totally bounded, and 

thus compact. Also, J.L(X\K) ~ Ln J.L(X\ ui9,. B;n>) < f... 0 

17.D Lusin's Theorem on Meas'IJ.mble Functions 

(17.12) Theorem. (Lusin) Let X be a metrizable space and J.L a finite Borel 
measure on X. Let Y be a second countable topological space and f :X --+ Y 
a J.L-measurable function. For every € > 0, there is a closed set F <;;; X with 
J.L(X\F) < € such that !IF is continuous. Moreover, if X is Polish, we can 
take F to be compact. 

In particular, if Y = R, there is a continuous g:X --+ R with 
J.L({x:f(x) =f g(x)}) < €. 

Proof Let {Un} be an open basis for Y. Then J- 1(Un) is J.L-measurable, 
so let Fn, Vn be closed, resp. open, such that Fn C /- 1 (Un) <;;; Vn and 
J.L(Vn \Fn) < €/2n+l. Let U = U,,,('ll~, \Fn), so that U is open and J.L(U) < €. 
Let F = X\U. Then F is closed and /- 1(Un) n F = Vn n F, thus /IF is 
continuous. 0 

(17.13) Exercise. i) Let G be a Polish locally compact group, J.LG its (left) 
Haar measure, A <;;; G a J.La-measurable set with p;a(A) < oo, and let 
f(x) = J.La(xA~A). Show that f: G--+ R is continuous. 

ii) Show that if A<;;; G is J.La-measurable and J.La(A) > 0, then A- 1 A 
contains an open nbhd of 1. 

Remark. Notice that this is the analog of 9.9 for measure instead of cat­
egory. For Polish locally compact groups, one can use measure instead of 
category in most results in Section 9. (It is instructive to do this as an 
exercise.) However, category methods apply to every Polish group. 

Mackey has shown that if a. standard Borel group G admits even a so­
called (left) quasi-invariant a-finite measure J.L (i.e., J.L(A) = 0 iff J.L(gA) = 0 
for all g E G, A E B(G)), then it must be Polishable loc.ally compact (i.e., 
Polishable and the unique topology given in 12.25 is locally compact) and 
J.L is equivalent to Jl·G· 

(17.14) Exercise. Prove the analog of 8.48 for measures: If X is a standard 
Borel space, < a wellordering on X, and J1 a continuous probability Borel 
measure on X, then < is not J.L2-measurable. Formulate and prove also an 
analog of 8.49. Using the notation of 8.50, show that. U is not J.Lc-measurable. 
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(17.15) Exercise. Let X be a Polish f>pace, A ~ X a Borel set, Y a second 
countable f>pace, and I : A --+ Y a Borel function. If J.L is a finite Borel 
measure on X, then for each € > 0 there is a compact set K ~ A with 
J.L(A\K) < € and IlK continuous. 

(17.16) Exercise. (The Kolmogorov Consistency Theorem) Let ((Xn,Sn)) 
be a sequence of measurable spaces and In : Xn --+ Xn-1 a surjective 
measurable map (for n :2: 1). Let 

l~nXn = {(xn) E II Xn: 'ifn :2: 1(/n(Xn) = Xn-1)}, 
n 

and let 7l'n : limnXn --+ X., be defined by 7l'n((xi)) = Xn· Thus In 0 7l'n = .... 
1t'n-l· Let 7l';- 1(Sn) = {7r;-1(A) : A E Sn}· Verify that 7r;-1(Sn) ~ 
7l';;-~ 1 (Sn+l)· Let Soo - Un 7r,~ 1 (Sn)· Verify that this is an algebra on 
!imnXn and let 

The measurable space (limnXn, limnSn) is called the inverse limit of .... .... 
((Xn, Sn), In)· Show that if (Xn, Sn) are all standard Borel spaces, so is 
their inverse limit. 

Now let J.Ln be a probability measure on (Xn,Sn) such that lnJ.Ln = 
J.Ln-l· Show tha.t if (Xn, Sn) are standard Borel spaces, there is a unique 
probability measure 

J.L = limnJ.Ln .... 
on (limnXn. limnSn.) such that 1l'nJ.L = J.Ln- We call (limnXn, limnSn, limnJ.Ln) 

~ ~ ~ ~ ~ 

the inverse limit of ((Xn, Sn, J.Ln), In)· 
Show that the product of ((Xn,Sn,J.Ln)), where (Xn,Sn) are standard 

Borel spaces, is a special case of an inverse limit. 

(17.17) Exercise. LetT be a pruned tree on N. Show that for every function 
t.p: T--+ [0,1) such that cp(0) = 1 and cp(s) = l:s·ieTt.p(s'i) there is a 
unique probability Borel measure I'· on [T) with J.L([T) n Ns) = cp(s ). Show 
t.hat all probability Borel measures on [T) arise iu this fashion. 

11.E The Space of Probability Borel Measures 

Let X be a separable metrizable space. We denote by P(X) the set of prob­
ability Borel measures on X and we denote by Cb(X) the set of bounded 
continuous real-valued functions on X. We endow P(X) with the topol­
ogy generated by the maps J.L ~-----+ J ldJ.L, where I varies over Cb(X). This 
-topology has as a basis the sets of the form 
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U,_.,e,fl, ... ,fn = {II E P(X) : I J /idll- J /idJ.LI < €, i = 1, ... , n}, 

for J.L E P(X), € > 0, /i E Cb(X). 
For many arguments we need a more manageable subclass of bounded 

continuous real-valued nmctions, which still defines the same topology. 
Fix a metric d compatible with the topology of X, such that the com­

pletion (X, d) of (X, d) is compact. Denote by Ud(X) the class of uniformly 
continuous (for d) :real-valued functions on X. Since every .f E Ud(X) has 
a unique extension j E C(X), it follows that Ud(X) ~ Cb(X). 

(17.18) Proposition. Iff E Cb(X), there are fn,gn E Ud(X), with In l f 
and gn ! f (i.e., Un) is monotonically increasing and converges pointwise 
to f and analogously for (gn)). 

Proof It is clearly enough to find Un)· Put fn(x) = inf {!(y) + nd(x, y) : 
y E X}. Then fn :5 fn+l :5 f. Also 1/n(i) - fn(z)l :5 nd(x, z), so in 
particular fn is uniformly continuous. It remains to check that fn - f. 
Clearly limn fn(x) < f(x). Fix € > 0. For each n, pick Yn with f(Yn) :5 
f(Yn)+nd(x, Yn) :5 fn(x)+€. Since f is bounded, Yn- x. So f(Yn)- f(x), 
and thus f(x) :5 limn fn(x) + €. 0 

It follows from this and from the usual convergence theorems of in­
tegration, that in the definition of the topology of P(X) we can replace 
Cb(X) by U11(X). 

Consider the vector space Ud(X) with the sup norm II/II=· Since every 
f E Ud(X) extends to a unique J E C(X) with llfll= = 11/11=• we have 
that (Ud(X), 1111=) is isometric with (C(X), 1111=), so in particular, Ud(X) 
is a separable Banach space. Pick a dense set Un} in Ud(X) with the sup 
norm, with fn not the const.ant 0 function. It follows immediately that we 
can replace Cb(X) by {/n} in the definition of the topology of P(X). 

The map J.L ~--+('[1:j~)neN from P(X) into [-1, l]N is an embedding, 
and so P(X) is separable metrizable with compatible metric 

;;( ) = ~ 2-n-1 I J fndJ.L- J fndlll 
u J.L,II f;:Q 11/nlloc • 

We summarize all of this in the following result, wpjch also determines 
canon,ical countable dense sets. 

(17.19) Theorem. Let X be separable metrizable and d a compatible metric, 
whose completion is compact. Let Un} be non-zero and dense in Ud(X) with 
the sup norm. Then P(X) is separable metrizable with compatible metric 

;;( ) = ~ 2-n-1 I J fndJ.L- J fndll I 
u J.L, 

11 f;:Q 11/nll= • 
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Moreover, if D ~ X is countable dense, the set of J.L E P(X) of the 
form I:~:~ elkOxk, with ak E Q, elk > 0, 2::~:~ elk = 1 and Xk E D is 
countable dense in P(X). 

Proof. It suffices to prove the last assertion. 
Note that if Xn - x in X, then O:r..,. - Ox in P( X) since J f d( Oy) = f(y) 

for f E Cb(X). So it is enough to show that the discrete measures of 
the form I:~:~ elkOxk, with elk E R, elk ;:::: 0, I: elk = 1, and Xk E X, 
are dense. Since a discrete probability measure I:neN an Ox.,., where eln E 
JR, eln > 0, 2:: eln = 1, and Xn E X, is the limit of the probability measures 
~ Q 6., '£sk "' "', it is enough to show that the discrete probability measures 

n<k <:tn. 

I:neN elnOx.,. as above are dense in P(X). 
Fix J.L E P(X). For each n, let X = Ui A~n) be a (finite or infinite) 

partition of X into Borel sets with diam(A~n)) < 2-n. Pick x~n) E A~n). 
Let J.Ln = I:i J.L(A!n))o <nJ. We claim that J.Ln - J.L· To see this, let x, 

f E Ud(X). Let el~n) = inf(JIA~n)), j3~n) = sup(JIA~n)). By uniform conti­

nuity, €(n) = sup .. (/3~n) - el~n)) - 0 as n - oo. So I J fdJ.Ln - J fdJ.L I = 

I I:i JA<nJ(/- f(x~n)))dJL I :S €(n)- 0 as n- 00. 0 
• 

We will prove now a number of important equivalences for convergence 
in P(X). 

(17.20) Theorem. (The Portmanteau Theorem) Let X be separable metriz­
able. The following are equivalent for J.L,J.Ln E P(X): 

i) J.Ln - J.L; 
ii.) J fdJ.Ln - J fdJ.L, for all f E Ch(X), or equivalently all f in any 

countable dense subset of Ud(X) with the sup norm, where d is a compatible 
metric fO'T' X, whose completion is compact; 

iii) limnJ.Ln(F) :::; J.L(F) for every closed F; 
iv) limnJ.Ln(U) > J.L(U) for every open U; 
v) limn J.Ln(A) = J.L(A) for every Borel set A whose boundary a A ( = 

A\ Int(A)) is J.L-null. 

Proof. It is clear that i) <=? ii) and iii) <=? iv ). 
ii)::::} iv): Let U be open, F = X\U and fk(x) = min{1,kd(x,F)}. 

Then !k E Cb(X) and 0 :::; fk l XU· So J.L(U) = f xudJ.L = limk f fkdJ.L. 
Now f fkdJ.L = limn f fkdJLn· In addition, f fkdJ.Ln < f xudJ.Ln = J.Ln(U), so 
lim.t J fkdJ.Ln :S limnJ.Ln(U), and thus J.L(U) :S llm .. J.Ln(U). 

iv)::::} v): We have by iv), and thus iii), J.L(Int(A)) < limnJ.Ln(Int(A)) < 
limnJ.L ... (A) :::; limnJ.Ln(A) :::; limJ.Ln(A) :::; J.L(A). If J.L(8A) = 0, then 
J.L(Int(A)) = J.L(A), so J.Ln(A)-- J.L(A) (= J.L(A)). 

v) ::::} ii): Fi:l\ f E Cb(X), say f: X - (a,b), in order to show that 
j fdJ.Ln - f fdJ.L. For each x E (a, b) consider the set Fx = r 1 ( { x} ). 
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These sets are pairwise disjoint, so at most counta.bly many of them have 
positive 11-measure. Fix € > 0 and then find a = to < t 1 < · · · < tm = b, 
with J.L(Ft,) = 0 and ti+l - ti < €. Let Ai = 1-'([ti-l,ti)). Then X = 
U~1 Ai and 8Ai ~ Fti-t U Ftn so JL(aAi) = 0, and thus J.Ln(Ai) - J.L(Ai), 
for i = 1, ... , m. Let g = 2::;:1 ti-lXA;. Then II/- glloo < €; therefore 
I J fdJ.Ln - J fdJ.L I < J I ! - g I dJ.Ln + J I ! - 9 I dJ'· + I J gdJ.Ln - .f gdJ.L I 
:S 2€ + 2::~ 1 I J.Ln(Ai) - J.L(Ai) I · I ti-l I· Letting n -+ oo, we have 
lim I J fdJ.Ln - J fdJ.L I :S 2€, SO J fdJ.Ln -+ J fdJ.L. . 0 

(17.21) Corollary. Let X be separable metrizable. Then for each open U ~ 
X, the function J.L ~---+ J.L(U) is lower semicont-inuous and for each closed 
F ~ X the function J.L ~---+ J.L(F) is upper .~ernicontinuous. 

(17.22) Theorem. If X is compact metrizable, so is P(X). 

Proof. Consider the separable Banach space C(X) (= C(X,R)) and its 
dual C(X)*. The unit ball B1(C(X)*) with the weak*-topology is compact 
metrizable. Let 

K ={A E B1(C(X)*): (1,A) = 1 & 

'iff E C(X)(f > 0 '* (!,A) ;::: 0)}. 

By the Riesz Representation Theorem there is a bijection A ~ JL between 
K and P(X) satisfying (!,A} = .f fdJ.L for f E C(X). It is immediate that 
this bijection is a. homeomorphism of K with P(X). Bnt K, being closed 
in B1(C(X)*), is compact metrizable, and thus so is P(X). 0 

(17.23) Theorem. If X is Polish, so is P(X). 

Proof. Let X be a compactification of X. Cousider the map J1 E P(X) ~---+ 
ji, E P(X) given by p,(A) = J.L(AnX) for any A E B(X). It. is easy to see that 
it is an embedding of P(X) into P(X) with range {J.L E P(X) : p.(X) = 1}. 
So it is enough to show that this set is G6 in P(X). 

Let Un be open in X with X = nn Un· Since /l(X) = 1 iff 'ifn(J.L(U,.) = 
1), it is enough to show that for any open U ~X, {JL E P(X): J.L(U) = 1} 
is G0 ; or equivalently ifF ~ X ic; closed, {J.L E P(X) : J.L(F) = 0} is G6· 
Sim:e J.L(F) = 0 <=? 'ifn(J.L(F) < 2-n), it suffices to show that {J.L E P(X) : 
J.L(F) < €} is open, which is immediate from 17.21. 0 

(17.24) Theorem. Let X be sepamble metriza.ble. Then B(P(X)) is genF:r·­
ated by the maps Jl~--+ J.L(A), A E B(X), and als.o by thP- maps J.L ~---+ J fdJ.L, 
where .f varies over bounded Borel real-valued functions. 

Proof. Denote by S the a-algebra generated by the maps J.L ~---+ J.L(A), A E 
B(X): and by S' the a-algebra generated by the maps J.L ~---+ J fdJ.L for f a 
bounded Borel real-v-alued function. It is clear that S ~ S'. To prove that 
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S' ~ S, use "step function" approximations of bonnded Borel functions, as 
in the proof of 11.6 and the Lebesgue Dominated Convergence Theorem. 

Finally, we show that S' = B(P(X)). Since the basic open sets of 
P(X) are in S', it is clear that B(P(X)) ~ S'. So it is enough to verify 
that J.L ......-+ J fdJ.L is Borel on P(X) for each bounded Borel real-valued f. By 
11.7 and the Lebesgue Dominated Convergence Theorem again, it is enough 
to verify this for f E c,,(X). But by definition J.L ......-+ J fdJ.L is continuous 
when f E Ch(X), so the proof is complete. 0 

For each standard Borel space X, we denote by P(X) the space of all 
probability Borel measures on X equipped with the a-algebra generated by 
the maps J.L ......-+ J.L(A), A E B(X). By 17.23 and 17.24 this is a standard Borel 
space and it is also generated by the maps J.L ......-+ J fdJ.L, where f varies over 
bounded Borel real-valued functions on X. We will denote by B(P(X)) this 
a-algebra. 

The following important computation is the analog of 16.1 for mea­
sures. 

(17.25) Theorem. Let (X,S) be a measurable space, Y a separ·able metrizable 
space, and A ~ X x Y a measurable set. Then the map 

(x, J.L) EX x P(Y) ......-+ J.L(Ax) 

is measurable (for· S x B(P(Y))). Sim·ilarly, if f:X x Y - R is bounded 
measurable, the map 

is measurable. 

Proof. Consider the class A of measurable sets A ~ X x Y such that the map 
(x, J.L) ......-+ J.L( Ax) is measurable. We will show that A contains all rectangles 
S x U, with S E S and U open in Y, and is closed under complementation 
and countable disjoint nnions. By 10.1 iii), thh; will prove the first assertion. 

This follows immediately from the following facts: 
i) If S E S, U is open in Y and A = S x U, then J.L(Ax) = J.L(U), 

if x E S, and Jl.(Ax) = 0, if x (j S. Since by 17.21 J1 ......-+ J.L(U) is lower 
semicontinuous, the proof for rectangles is complete. 

ii) Jl((rv A)x) = 1- J.L(Ax)· 
iii) If (An) are pairwise disjoint measurable, then J.L((Un An)x) = 

l:n J.L((An)x)· 
The secoud assertion follows, as f can be expressed as the pointwise 

limit of a bounded sequence of linear combinations of characteristic func­
tions of measurable sets (see the proof of 11.6). 0 

(17.26) Notation. Let (X,J.L) be a measure space and A C X. Let 
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\f~xA(x) <=? X\A is IL-null 

<* A(x) wa.e., 
3:xA(x) <=? A is not J.t-null. 

So if A is J.L-measurable, 3~xA(x) <* J.L(A) > 0. If J.L is a probabil­
ity measure, \f~xA(x) <* J.L(A) = 1. We call these the measure quanti­
fiers. In this notation and under the appropriate hypotheses, the F\tbini 
Theorem implies, for example, that '<i~xv(x,y)A(x,y) <=? \f~x\f~yA(x,y) <=? 

\f~y\f~xA(x, y). 
It follows from the preceding theorem that if A ~ X x Y is measur­

able, then so are B(x,J.L) <=? \f~yA(x,y) and C(x,J.L) <=? 3~yA(x,y), i.e., the 
measure quantities \f;,y, 3~y preserve measurability. 

(17.27) Exercise. Let X be separable metrizable. Then x ~ Ox is an em­
bedding of X into P(X). 

(17.28) Exercise. Let X, Y be separable metrizable and let f: X - Y be 
continuous. Show that the map J.L ~ f J.L from P(X) into P(Y) is continuous. 
If f is an embedding and /(X) E B(Y), then J.L ~ f J.L is an embedding. 
In particular, if X C Y is in B(Y), then P(X) is homeomorphic to {J.L E 
P(Y): J.L(X) = 1}. 

(17.29) Exercise. Let X be separable metrizable. Show that. 

{(J.L,K,a) E P(X) x K(X) x IR: J.L(K);::: a}, 

{(J.L,K,a) E P(X) x K(X) x IR: J.L(K) >a.}, 

{(11.,K,a) E P(X) x K(X) x IR: J.L(K) :5 a.}, 

are closed, Fr, and G6, respectively. In particular. for any IL E P(X), 
NULLt, n K(X) is G6 in K(X). 

(17.30) Exercise. By 17.7, we can identify P(C) with the set of all t.p: 2<N­
[0, 1) that satisfy <p(0) = 1 and <p(s) = <p(.s'O) + <p(s'1). Note that this is 
a dosed subset of [0, 1)2

<N (which is homeomorphic to the Hilbert cube). 
Show that this identification is a homeomorphism. 

(17.31) Exercise. (Prohorov) Let X be a Polish space and M ~ P( X). Then 
M has compact closure iff M is (uniformly) tight, i.e., for every € > 0 there 
is a compact set K ~X such that J.L(X\K) < e for all J.L EM. 

(17.32) Exercise. Let X be compact metrizable. Denote by MR(X) the 
dual space C(X, IR)"' of C(X, JR). By the Riesz Representat.ion Theorem the 
members of MR(X) can be viewed as signed Borel measures on X (i.e., 
they have the form J1 - 11 for Jl, 11 finite Borel measures on X). Similarly, 
Me( X)= C(X, C)* can be viewed as the space of complex Borel measures 
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on X (i.e., those of the form J.L + i11 for J.L, 11 signed Borel mea..,ures on X). 
As we pointed out in the proof of 17.22, P(X) is a closed subspace of 
B1(MR(X)) as well as of B 1(Mc(X)). So P(X) is a compact convex set in 
MR(X) and Mc(X). What is 8e(P(X))? (Recall 4.10 here.) 

(17.33) Exercise. Let X be a compact metrizable space and G a group of 
homeomorphisms of X. One can view Gas acting on X by g.x = g(x). Let 
Ec be the associated equivalence relat.ion xEcv <* 3g E G(g.x = y). We 
call a measure J.L E P(X) invariant if gJ.L = J.L, for all g E G. Denote by 
INVc the set of invariant J.L E P(X). Show that INVc is compact convex 
in P(X). 

We call J.L E P (X) G (or Eo )-ergodic if for every invariant Borel set 
A~ X we have J.L(A) = 0 or J.L(A) = 1. For example, if X= Z~ (=C) and 
G is the subgroup of Z~ consisting of all (xn) E Z~, which are eventually 0, 
acting on z~ by addition (g.x = g +X if g E G, X EX), then the invariant 
sets are exactly the tail sets, so the 0-1 law 17.1 implies tha.t every product 
measure J.L = Dnll·n, where J.Ln are probability measures on {0, 1} (= Z2), is 
ergodic. (Of course J.Ln has the form J.Ln = PnOo + (1- Pn)Ol for 0:::; Pn :::; 1.) 
In particular, the Haar measure J.Lc is both invariant and ergodic. 

Denote by EINV a the set of ergodic invariant J.L E P(X). Assuming 
that G is countable, show that 8e(INV G) = EINV G and therefore EINV G 

is a G6 set in P(X). 

(17.34) Exercise. Let X be a standard Borel space and JL E P(X) and let 
Y = xz and 11 = J.Lz be the corresponding product measure. Let S : Y - Y 
be the shift map S((xn)) = (xn+l)· Finally, let G = {Sn}neZ be the group 
generated by S. Show that 11 E EINVa. 

(17.35) Exercise. (The Measure Disintegration Theorem) i) Let X, Y be 
standard Borel spaces and f : X - Y be a Borel map. Let J.L E P(X) 
and 11 = fJ.L. Show that there is a Borel map y ~--+ J.Ly from Y into P(X) 
such that \f~y(J.Ly(/- 1 ({y})) = 1) and J.L = J J.Lydll(y) (i.e., for any Borel 
A ~ X, J.L(A) = J'J.Ly(A)dll(y), or equivalently for any bourided Borel 
VJ: X - R, J VJdJ.L = J(J VJdf.ly)dv(y)). Show also that if y ~--+ lly is another 
map with these properties, then J.Ly = lly, 11-a.e. 

ii) Apply this to the projection map projx of X x Y onto X to show that 
any probability Borel measure J.L on X x Y can be writt.en as an "iterated" 
measure, i.e., that there is a Borel map x ~--+ J.Lx from X into P(Y) wit.h 
J.L(A) = J J.Lx(Ax)dll(x) for any Borel set A ~ X x Y, where 11 = prohJ.L· 
(The case J.Lx = p gives, of course, the product measure 11 x p.) 

Check also the converse: If 11 is any probability measure on X and 
x ~--+ J.Lx is a Borel map from X into P(Y), then the formula J.L(A) = 
J J.Lx(Ax)dll(x) defines a measure J.L E P(X x Y) with projxJ.L = 11. Show 
that the following generalized Fubini Theorem holds: If f : X x Y - R is 
bounded Borel, then J fdJ.L = J(J fxdJ.L:r.)dll(x). 
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(17.36) Exercise. Let X be a measurable space, Y a separable metrizable 
space, and J.L a a-finite Borel measure on Y. If A ~ X x Y is measurable, 
show that the map x ~--+ J.L(Ax) is measurable (from X into [O,ool, viewed 
as the one-point compa.ctification of [0, oo) ). Simila,rly, show that if f : 
X x Y - [0, oo) is bounded measurable, the map x ~--+ J fxdJ.L is measurable. 

(17.37) Exercise. Let X be standard Borel. Show that {J.L E P(X) : J.L is 
continuous} is Borel in P(X). 

(17.38) Exercise. Let X be separable metrizable and J.L E P(X). The 
(closed) support of J.L (denoted by supp(J.L)) is the smallest closed set of 
J.L-measure 1. Show that this exists. Assume now that X is Polish and show 
that the map J.L ~--+ supp(J.L) is Borel from P(X) to F(X). 

(17.39) Exercise. Let X be standard Borel. Show that J.L « 11, J.L "' 11, and 
J.L J.. 11 are Borel (in P(X)2 ). 

(17.40) Exercise. Show that if X, Y are standard Borel, then the map 
(f.1, 11) E P(X) x P(Y) ~--+ J.L x 11 E P(X x Y) is Borel. Also, iff :X - Y is 
Borel the map J.L E P(X) ~--+ fp. E P(Y) is Borel. 

17.F The Isomorphism Theorem for Measures 

(17.41) Theorem. Let X be a standard Borel sjJace and J.L E P(X) a con­
tinuous measm-e. Then there is a Borel isomorphism f:X - [0,11 with 
fJ.L = m I [0,11 (=the Lebesgue meas·ure on [0,1)). 

Proof We can, of course, assume that X = [0, 11. Let g(x) = J.L([O,x)). 
Then g: [0, 11 - [0, 11 is continuous and increasing, with g(O) = 0, g(1) = 
1. Also, gJ.L = m, since if y E [0, 1 I and g(x) = y, we have gJ,L([O, y)) = 
J.L(g- 1([0,y))) = J.L([O,x)) = g(x) = y = m([O,y)). 

For y E [0, 1 I, let Fy = g-1 ( {y}) and note that Fy is an interval 
which may be degenerate, i.e., a point. Let N = {y: Fy is not degenerate}. 
Then N is countable and if M = g- 1(N), then J.1(M) = m(N) = 0. Clearly, 
gi([O, 1}\M) is a homeomorphism of [0, 11\.M with [0, 11\N. Let Q ~ [0, 11\N 
he an uncountable Borel set of m-measure 0, and put g-1(Q) = P, so 
that J,L(P) = 0. Then P U .M, Q UN are uncow1table Borel sets, so there 
exists a Borel isomorphism h : P U M - Q UN. Finally, define f by 
fi(P U .M) = h, /1([0, 11\(P U .M)) = gi([O, 11\(P U .M)). Then f is a Borel 
isomorphism of [0, 11 onto itself and fJ.L = mi[O, 11. 0 

(17.42) Exercise. Show that the measure algebra MALGI' of a continuous 
probability Borel measure on a standard Borel space is uniquely determined 
up t.o isomorphism. It is called the Lebesgue measure algebra. 
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(17.43) Exercise. i) Let X be a standard Borel space and J.L E P(X). Define 
the following metric on MALG~': 

o([PJ, [QJ) = J.L(P ~Q). 

Show it is complete separable. (This makes MALG~' a Polish space in this 
topology.) Show that if A ~ B(X) is an algebra that generates B(X), then 
{[P] : P E A} is dense. Show that the Boolean operations -[P) = ["' 
P), [PJ 1\ [QJ = [P n Q), and [P) V [Q) = [P U Q) are continuous. (Here /\, 
V denote the meet and join operations, respectively.) 

ii) Let A ~ MALG~' be a a-subalgebra, i.e., a subset closed under 
complements and countable joins. Show that A is closed in MALG w 

Show also that there is a standard Borel space Y and a Borel map 
.f : X --+ Y such that if 11 = f J.L and if f* : MALG.., --+ MALGI' is given 
by f*([Q)) = [f-1(Q)], then f* is a (Boolean algebra) isomorphism of 
1\tlALG.., with A. Thus A is (up to isomorphism) also a measure algebra of 
some measure. 

U A~ B(X) is a a-algebra and if A= {[P): PEA}, then show that 
f above can actually be taken to be measurable with respect to (X, A). 

Remark. Woodin has shown that there is no Polish topology in the category 
algebra (of IR) in which the Boolean operations are continuous. (See the 
Notes and Hints section for a simple proof by Solecki.) 

(17.44) Exercise. A measure algebra is a Boolean a-algebra A together with 
a strictly positive probability measure II: A--+ [0, 1], i.e., II( a)= 0 <=?a= 0 
and II(Van) = I:n 11(a .. ) for any sequence of pairwise disjoint elements (an) 
of A. (U a, b E A, we call a, b disjoint if al\b = 0.) The algebras MALGI', 
with 11([P)) = J.L(P), are clearly measure algebras. Show that all measure 
algebras are complete (as Boolean algebras). 

i) An isomorphism 1r : (A, 11) --+ (A', 11') between measure algebras 
is a Boolean algebra isomorphism that also preserves the measure, i.e., 
11(a) = 11'(1r(a)). Show that 17.42 is also valid in the sense of measure 
algebra isomorphisms. Also, 17.43 ii) holds in that sense, where A is viewed 
as a measure algebra by restricting the measure to it. 

ii) If (A, 11) is a measure algebra, we define the metric 6 or A as in 
17.43: o(a,b) = 11(a~b), where a~b = (avb)- (al\b). Show that (A,o) is 
complete. Show that it is separable iff A is countably generated as a Boolean 
a-algebra (i.e., there is a countable set B ~ A such that A is the smallest 
Boolean a-algebra containing B). 

iii) An atom in a Boolean algebra A is a non-zero element a E A such 
that: b < a ::::} (b = 0 or b = a). Show that any two distinct atoms are 
disjoint and also that in a measure algebra there are only countably many 
atoms. 

iv) A Boolean algebra is atomless if it contains no atoms. Show that 
the Lebesgue measure algebra is the unique (up to isomorphism) separable 
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(in the sense of ii)), atomless measure algebra. Show also that any sepa­
rable measure algebra is isomorphic to MALGI' for some probability Borel 
measure J.L on a standard Borel space X. 

(17.45) Exercise. Let X be a standard Borel space, J.L E P(X), and 
MFUNCT 1-' be the set of real-valued J.L-measurable functions. For I, g E 
MFUNCT1, let I ,...., g <=? l(x) = g(x) J,L-a.e. This is an equivalence rela­
tion and denote by [I) the equivalence class of I and by MIL the set of 
equivalence classes. Define on it the metric 

J 11-gl 
o([IJ, [g)) = 1+ I I- g I dJ.L. 

Show that this metric is complete and separable. (Thus M~-' is a Polish 
space in this topology.) Prove that [In) -+ [IJ iff In -+ I in measure, i.e., 
for all t > 0, J.L({x :1 l,.(x)- l(x) 1:2: €})-+ 0. 

Show that MALGI' is homeomorphic to a closed subset of Mw 

{17.46) Exercise. i) Let X be a standard Borel space and J.L E P(X). For 
S, T Borel automorphisms of X define the equivalence relation: S "' T <=? 

S(x) = T(x) J,L-a.e. Denote by [TJ the equivalence class ofT. (It is cus­
tomary to write often T instead of [TJ, if there is no danger of confusion.) 
A Borel automorphism T of X is (p,-) measure preserving if T J.L = J.L· Let 
Aut( X, J.L) be the set of equivalence classes [T) of such measure preserving 
automorphisms. It is a group under composition, called the group of mea­
sure preserving automorphisms of J.L· (Notice that this group is independent 
of J.L, if J.L is continuous.) By 15.11, we can canonically identify Aut( X, J.L) 
with the group of measure algebra automorphisms of the measure algebra 
MALGw 

Every T E Aut(X,Jt) gives rise to a unitary operator UT E U(L2 (X, 
J.L)), given by 

UT(f) =I oT-1
. 

Show that T .....-+ UT is an algebraic isomorphism of Aut(X,J.L) with a closed 
(thus Polish) subgroup of the unitary group U(L2 (X,J.L)). Put on Aut(X,J.L) 
the topology induced by this isomorphism, so it becomes a Polish group. 

Define the following metric on Aut(X, J.L): 

where A= {An} is an algebra generating B(X). Show that it is complete 
and compatible with the topology of Aut(X,J.L). Also show that Aut(X,J.L) 
is a closed subgroup of1so(MALG~',o), where MALG1, is endowed with the 
metric o as in 17.43 i). 

(We call T E Aut(X,J.L) ergodic if every invariant under T Borel set 
A ~ X has measure 0 or 1. Halmos has shown that the set of ergodic T is 
a dense G6 set in Aut(X,.J.L).) 
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ii) Let X be a standard Borel space and J.L E P(X). A Borel automor­
phism T of X is (p-) non-singular if TJ.L"' J.L· By 15.11, we can canonically 
identify the group of automorphisms of the Boolean algebra MALGI' with 
the group, denoted by Aut*(X,J.L), of all [T) with T non-singular (under 
composition). (Again, this group is independent of J.L, if J.L is continuous.) 

To each T E Aut*(X,J.L) we can assign the unitary operator UT E 
U(L2(X,J,L)), given by 

UT(f)(x) = (d~:) (x)) 112 f(T- 1x). 

Show that T .....-+ UT is an algebraic isomorphism of Aut*(X,J.L) with a closed 
subgroup of U(L2 (X,J.L)). Put on Aut*(X,J.L) the topology induced by this 
isomorphism so that it becomes a Polish group. Show that Aut(X,J.L) is a 
closed subgroup of Aut*(X,J.L). (Choksi and Kakutani have shown that the 
set of ergodic T is dense G6 in Aut* (X, J.L).) 

{17.47) Exercise. i) For each Lebesgue measurable set A~ (0, 1), let 

cp(A) = { x : x has density 1 in A} 

m(An I)_ } 
- { x : lim m(I) - 1 

xEI,III ..... O 

(where I varies over open intervals). Recall (from 17.9) that A =:'n cp(A). 
We thus have for any two Lebesgue measurable sets A, B : A =;, B =? 

cp(A) = cp(B) =:'n A; so A.....-+ cp(A) is a canonical selector for the equivalence 
relation A =:n B. (Compare this with A.....-+ U(A); see 8.30.) 

ii) We define a new topology on (0, 1) called the density topology, by 
declaring that the open sets are those Lebesgue measurable sets A~ (0, 1) 
for which A ~ cp(A). Prove that this is indeed a topology and that it 
contains the usual topology on (0, 1). 

iii) Show that for A~ (0, 1), A is nowhere dense in the density topology 
iff A is closed nowhere dense in the density topology iff A is meager in the 
density topology iff A has Lebesgue measure 0. 

iv) Show that for A~ (0, 1), A has the BP in the density topology iff 
A is Lebesgue measurable. 

v) Show that if A ~ (0, 1) is Lebesgue measurable and x E cp(A) n A, 
then there is a perfect nonempty set P ~A with x E cp(P) n P. 

vi) Show that the density topology is strong Choquet and regular. 
However, it is not second countable. 
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18. Uniformization Theorems 

18.A The Jankov, von Neu·rnann Uniformization Theorem 

Given two sets X, Y and P s;;; X x Y, a uniformization of P is a subset 
P* s;;; P such that for all x EX, 3yP(x,y) <=? 3!yP*(x,y) (where 3! stands 
for ''there exists unique"). In other words, P* is the graph of a function f 
with domain A= proh(P) such that f(x) E Px for every x EA. Such an 
f is called a uniformizing function for P. 

y 

A X X 

FIGURE 18.1. 

The Axiom of Choice makes it clear that such wliformizations exist. 
However, our interest here is to find "definable" uniformizations of "defin­
able" sets. We will study here the case when P is Borel. 

Given measurable spaces (X,S), (Y,A) and a function f: X'--+ Y, 
where X' s;;; X, we say that f is measurable if it is measurable with respect 
to the subspace (X', S I X'). As usual, a(ED is the a-algebra generated by 
the :E l sets. 

(18.1) Theorem. (The Jankov, von Newnann'Uniformization Theorem) Let 
X ,Y be standard Borel spaces and let P s;;; X x Y be El. Then P has a 
unifonnizing function that is a(El)-measurable. 

Proof. We can assume, of course, that X, Y are uncountable and, since 
a(ED is invariant under Borel isomorphisms, we can assume that X = 
Y = N. If P = 0, there is notlling to prove, so we also asswne that P # 0. 

Let 1r : N --+ X x Y be a continuous fw1ction with 1r(N) = P and d·efine 
F s;;; X x N by (x, z) E F <=? proh(7r(z)) = x. Then F is closed. Let A= 
proh(P) = proh(F). Iff uniformizes F, then g(x) = projy(1r(f(x))) 
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uniformizes P. Since tr, projy are continuous, iff is a(:El)-measurable, so 
is g. We can thus assume that actually Pis closed. 

By 2.C, there is a pruned tree Ton N x N such that P = [TJ. If for 
x EN, T(x) is the section tree determined by x, then we have 

Px = [T(x)J. 

So for each x E A= proh(P), let 

f(x) = aT(x) 

be the leftmost branch (see 2.0) of T(x) (with respect to the ordering 
on N). This is our uniformizing function. We will show that it is a(ED­
measurable. (Its domain A is clearly ED For that we will check that for 
each s E N<N, /- 1(Ns) = {x E A: s ~ aT(x)} is in a(ED. We prove this 
by induction on length(s). It is clear when s = 0. Assume it holds for s; 
now consider t = s"k. Then f- 1(Nt) is the intersection of f- 1(N8 ) and the 
set of x satisfying the following condition: 

3y{(x,y) E [T) & s"k ~ y} & 'iff< k--.3y{(x,y) E [T) & s"e ~ y}, 

so f- 1(Nt) is in a(ED (refer to Appendix C). 0 

In general, we cannot improve the above result to obtain a Borel uni­
forrnizing function, even when Pis closed and projx(P) =X; see 18.17. 

(18.2) Exercise. Give an alternative argument for 18.1 as follows: As before, 
assume X, Y are Polish and P ~ X x Y ~closed. Let p(x) = P:r., so that 
p: X --+ F(Y). Verify that pis a(ED-measurable and then use 12.13. 

(18.3) Exercise. Let X, Y be standard Borel spaces and f :X--+ Y a Borel 
function. Show that there is a a(:El)-measurable function g : /(X) --+ X 
such that f(g(y)) = y. 

(18.4) Exercise. Recall the notation of 4.32. Put IF = {T E Tr : [T) # 0}. 
Show that IF is :E} and that the map T E IF ~ aT E N (see 2.0) is 
a(:El)-measurable. Also denote by Tr 1 the set of finite splitting trees on N, 
and let IF 1 = IF n Tr 1. Show that Tr 1 is Borel in 2N<N, IF 1 is Borel, and 
T E IF 1 ~ aT is Borel. 

Next we will prove results that, under various conditions, allow us to 
uniformize Borel sets by Borel functions. They basically fall in two cat­
egories: One applies when the Borel set P ha.'l the property that all its 
nonempty sections Px are "large". The other applies when all the sections 
Px are "small". 
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18.B "Large Section" Uniformization Results 

{18.5) Definition. Let X ,Y be standard Bor-el spaces. A function ci>:X ~ 
Pow(Pow(Y)) is called Borel on Borel if for every standard Borel space Z 
and Borel set A~ Z x X x Y the set {(z,x):Az,x E cl>(x)} is Borel. 

We are particularly interested here in the case where to each x E X 
we assign a a-ideal cl>(x) = Ix of subsets of Y. For example, we could have 
a Borel map x ~-----+ J.Lx E P(Y) and take Ix = NULL!'.,. By 17.25, the map 
x ~----+ Ix is Borel on Borel. Also, if Y is Polish and Ix = MGR(Y) (this is 
independent of x), then again this is a Borel on Borel assignment, by 16.1. 

{18.6) Theorem. Let X ,Y be standard Borel spaces and P ~ X x Y be Borel. 
Let x ~----+ Ix be a Borel on Borel map assigning to each x E X a a-ideal in 
Y. If for x E proh(P), Px ¢ Ix, then there is a Borel unifonnization for 
P, and in particular proh(P) is Borel. 

Prvof. We can assume that X, Yare Polish. Consider then a Lusin scheme 
(P5 )seN<N associated to P according to 13.9 and satisfying i) - iii) of that 
theorem. For each x E X, let P: = (P·')x (= {y : P 8 (x,y)}). Then 
(P:)seN<N satisfies i) - iii) of 13.9 for Px· 

For each x E proh(P), let Tx = {s E N<N : P: rf. :Z:,} so that Tx 
is a nonempty pruned tree on N. Let ax be its leftmost branch. By the 
properties of (P:), f>;"' = nn P:xln is a singleton, say {f(x)}. This is our 
uniformizing function. We will show that it is Borel. Let {Vn} be an open 
basis for Y. 

We have for each open U ~ Y, 

f(x) E U <* 3k[Vk ~ U & 3m\fn :2: m\ft E Nn n Tx3s E Nn n Tx 

(s ~lex t & Vk n P:. rj. Ix)) 

<=? 3k{Vk ~ U & 3m\fn :2: m\ft E Nn[P; rf. Ix ::::} 

3s E Nn(s ~lex t & P: rj. Ix & Vk n P; rj. Ix)J}, 

where <tex is the lexicographical ordering on Nn. Since x ~-----+ Ix is Borel on 
Borel, f is Borel. 0 

(18.7) Corollary. Let X,Y be .qtandard Borel spaces and P ~X xY be Borel. 
Let x ~-----+ J.Lx be a Borel map from X to P(Y). If for x E proh(P), J.LAPx) > 
0, then P adm·its a Borel uniformization (and so proh(P) is Borel). Sim­
ilarly, this holds ~f Y is Poli.sh and if for each x E proh(P), Px is non­
meager. 

{18.8) Exercise. Show that if X, Y are standard Borel spaces and P ~ X x Y 
is EL then there is a uniform.ization P* ~ p of the form P* = nm Am, 
where each Am is a union of a :E~ and a n~ set. 
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Remark. Martin and Steel (see Y. N. M~chovakis [1980), 4F.22) have 
shown that p• cannot in general be of the form Uk Ak, with Ak an inter­
section of a :E~ and an{ set. 

(18.9) Exercise. Show that there is a closed set F C N x N such that. every 
nonempty F, is uncountable, but F admits no Borel uniformization. Prove 
also that if X, Yare uncountable standard Borel spaces and P ~X x Y is 
Borel, the set { x E X : Px is eountable} is not necessarily Borel. Show that 
't. ll1 
1 1S l' 

18.C "Small Section" Uniformization Results 

{18.10) Theorem. (Lusin-Novikov) Let X,Y be standard Borel spaces and 
let P ~ X x Y be Borel. If every section P.'" is countable, then P has a 
Bor-el uniformization and therefore proh(P) is Borel. 

Moreover, P can be written as Un Pn, where each Pn. i.'$ a Borel graph 
(i.e., if P,.(x,y) and P,.(x,y') hold, then y = y'). 

Proof. (Kechris) We will need the following result, which is interesting in 
its own right. 

(18.11) Theorem. (The set of unicity of a Borel set) (Lusin) Let X,Y be 
standard Borel spaces and let R ~ X x Y be Borel. Then 

. n1 ts }• 

{x EX: 3!y(x,y) E R} 

We will assume this temporarily and now complete the proof of 18.10. 

(18.12) Lemma. Let X,Y be standard Borel spaces and P ~X x Y a Borel 
set u,'ith each section Px countable. Then proh(P) is Borel. 

Proof. We can assume that X, Y are Polish. Let F ~ N be closed and 
1r: F-+ X x Y a continuous injection with 1r(F) = P. Let Q ~X x N be 
defined by (x, z) E Q <=? z E F & proh(7r(z)) = x. Then Q is closed, every 
section Qx is countable, and projx(P) = proh(Q). So we can assume that 
P is closed t.o start with. 

Since Px is countable closed, it must have an isolated point if it is 
nonempty. If {U n} is a basis of open sets for Y and we let 

An= {x: 3!y((x,y) E P & y E Un)}, 

then by 18.11 A,. is n~ and (by our preceding remark) projx(P) = Un An. 
Since then} sets are closed under countable unions, projx(P) is n} and 
thus, since it is clearly :El, it is Borel, by Souslin's Theorem. 0 
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To prove 18.10, note that it is enough to show that P s;;; Un Pn, where 
(Pn) is a sequence of Borel graphs (since then P = Un(P n Pn)) and 
so, by enlarging P if necessary, we can assume that each section Px is 
countably infinite. We will find then a Borel map P- : X --+ yN such that 
Px = {e(x)n: n EN} and put Pn = {(x,y): e(x)n = y}. 

For that purpose, let E s;;; X x yN be defined by 

(:~:,(en)) E E <=?(en) enumerates Px 

<=? \fn(en E Px) & 

\fy E Px3n(y = en)· 

We claim that E is Borel: Clearly, "\fn(en E Px)" is Borel. To see that 
"\fy E Px3n(y =en)" is Borel, consider its complement 

(x, (en)) E R <=? 3y[y EPa; & \fn(y =f e,.)J 

<=? 3y(x, (en), y) E S, 

where Sis Borel and its sections Sx,(e,.) are countable, and so by 18.12, R 

is Borel. 
We finally come down to the problem of finding a Borel uniformization 

of E. This will be accomplished using 18.6. 
For each x, give Px the discrete topology and then P~ the product 

topology. Thus P~ is homeomorphic toN. Clearly, Ex= {(en) E P~: (en) 
is surjective (i.e., \fy E Px3n(y = en))}. So Ex is a dense G6 set in Pf:. 
Then define the following a-ideal Ix on yN : 

A E Ix <=? A n E.r. is meager in P~. 

Thus Ex ¢ Ix. So if we can show that x ......-+ Ix is Borel on Borel, then, by 
18.6, E has a Borel uniformization and we are done. 

So fix a standard Borel space Z and a Borel set A s;;; Z x X x yN, and 
consider { (z, x) : Az,x E Ix} = {(z, x) : Az,x n Em E :Z:c} in order to show it 
is Borel. We can clearly a&'mme that As;;; Z x E. 

If e = (en) : N --+ Px is a bijection, e induces a homeomorphism 1rc 
between /v and P~ given by 1re(w) = eow. So Az,x E Ix <=? Az,x is meager 
in Pf: <=? 1r;1(Az,x) is meager inN<=? {wEN: eo wE Az,x} is meager. 
By 16.1, the set 

(z, x, e) E Q <=? (x, e) E E & \fn\fm(n =f m =?en =f em) 

& { w E N : ( z, x, e o w) E A} is meager 

is Borel. But 

Az,x E Ix <=? 3e(z,x,e) E Q 

<=? \fe{[(x, e) E E & \fn\fm.(n =f m =? 

en =f em))=? (z,x,e) E Q}, 
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so {(z, x) : Ax E Ix} is El a11d Dl (see Appendix C), and thus Borel, by 
Souslin 's Theorem. 0 

Finally, we give the proof of 18.11. 

Proof. (of 18.11) (Kechris) We <:an assume that X = Y = N, and as in the 
proof of 18.12, using the fact that R is the injective continuous image of a 
closed set inN, we can assume that R is closed. LetS be a pruned tree on 
N x N such that R = [S). Then we have 3!y(x,y) E R <=? 3!y(y E [S(x))). 
Since the map x .....-+ S(x) is easily continuous (from N to Tr) it is enough 
to show that the set 

UB = {T E Tr: 3!y(y E [T))} 

is ll~. We will prove this by a game argument. 
Let £ 00 ~ Tr be defined by 

T E L 00 <* \fn3s E Nn(s E T). 

L00 is clearly Borel. For each tree T on N, now consider the following game 
GT: 

I no x(O) x(1) 

II y(O) y(1) 

Player I starts with no EN. II responds with y(O) EN, then I plays x(O) E 
N, II responds by y(1) EN, etc. Player I wins this run of the game iff 

\fn;::: 1(yin E T => xin E T) & 3n < no(x(n) ¥= y(n)). 

(We require that player I play something different than player II before stage 
n0 , in order to make sure that I wins iff a certain condition is satisfied at 
each stage of the game, thereby ensuring that the set W below is G6.) 

The main claim is that, for T E Loc: 

( *) T ¢ UB <=? I has a winning strategy in GT. 

Granting this the proof is completed as follows. As in 8.10, a strategy for I 
in GT is a nonempty tree a on N such that if sEa has odd length, s'n E a 
for aJl n, and if s E a has even length, s' n E a for a unique n. It is winning 
if every run (no,y(O),x(O),y(1),x(1), ... ) E [a] is a win for I. Denote by 
WT ~ Tr the set of v.-inning strategies fol" I in GT· 

Define W ~ Tr x Tr by (a, T) E W <=?a E WT. Then we have 

(a, T) E W <=?a-:/= 0 & \fm,\fs E Nm [(sEa & 

m is odd => \fn(s'n E 17)) & 

(sEa & m is even => 3!n(s'n E a))] 

& \fn\f s E 1'\F\ft E Nn\fno { [ (no, to, so, ... , tn-1. s.,.-1) 

E a=> (t E T =>sET)) & (n;::: no=> 

3i < no(si ¥= ti)) }, 
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so W is clearly G6. Finally, T E UB iff T E £ 00 and I has no winning 
strategy in GT, i.e, 

T E UB <* T E Loo & -,3a(a, T) E W, 

so UB is n~. 
(The preceding calculation is a particular instance of 20.11.) 
It remains to prove ( *). 
~: Let T E UB. We will show that II has a winning strategy in GT 

(and thus I has no winning strategy). Since T E UB, let y be its unique 
infinite branch. Let II play this y, independently of what I does. 

=?: Now let T ~ UB. We will show that I has a winning strategy in 
GT· 

Case 1. [T] has at least two elements. Let x1 =f x2 be two infinite 
branches ofT and let n be least with x1(n) =f x2(n). Player I starts 
by playing no = n + 1. Then, independently of what II plays, I plays 
(x(O), ... ,x(n- 1)) = x1ln (= x2ln). If II now plays y(n), then for some 
i E {1,2}, y(n) =f xi(n), and I plays from then on (x(n),x(n + 1), ... ) = 
(xi(n),xi(n + 1), ... ), i.e. x =Xi· This is clearly winning for I. 

Case 2. [T] = 0. Then the tree Tis well-founded, and so let PT be its 
associated rank function. Since we are assuming that T E £ 00 , it follows 
easily that PT(0) > w. So PT(0) = A+ n, where A is a lirnit ordinal and 
n<w. 

The strategy of I is as follows: He starts by playing no = n + 1. To 
describe how I plays from then on, let us say that a position of the game 
(no,y(O),x(O), ... ,y(k),x(k)) with k < n0 is decisive if either: (A) yik E 
T, xik E T, Yi(k+1) ~ T, and x(k) =f y(k), or (B) yl(k+1) E T, xl(k+1) E 
T, and PT(YI(k + 1)) < PT(xi(k + 1)) (so that, in particular, Yi(k + 1) =f 
xl(k + 1)). Notice that if I can reach a decisive position, then in case (A) 
he plays from then on x(k + 1 ), x(k + 2), ... arbitrarily, and in case (B) he 
plays (after seeing y(k+1), y(k+2), ... ) x(k+1), x(k+2), ... in such a way 
that for any m > k, yl(m + 1) E T =? (xl(m + 1) E T and PT(YI(m + 1)) ~ 
PT(xl(m+1))). He can do that inductively on msince, if s, t E TnNm+l and 
PT(s) :::; PT(t), then for every p with t>'p E T, PT(s'p) < PT(s) ~ PT(t), 
so there is q with r q E T and PT( s 'p) :::; PTW q). In either case, ifl plays 
from then on this way he wins. 

So it is enough to show that I can play, responding to Il's moves, in 
such a way that he n;:aches a decisive position. Say II starts with y(O). If 
yl1 = (y(O)) ~ T, then I plays x(O) =f y(O), and I has reached a decisive 
position. Else yl1 E T. Then I tries to find x(O) such that xl1 = (x(O)) E T 
and PT(YI1) < PT(xl1). If he can do that he reached a decisive position. 
Otherwise, since PT(YI1) < PT(0) = sup{PT((p)) + 1: (p) E T} =A+ n, it 
must be that n > 0 and PT(YI1) = A+n-1. In this case, I plays x(O) = y(O). 
Player II next plays y(1). If yl2 ~ T, II plays any x(1) =f y(1) and we are 
done. Else yl2 E T. Player I again tries to find x(1) with xl2 E T and 
PT(YI2) < PT(xl2). If he succeeds, we are done. Else, as before, we must 
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have n > 1 and PT(YI2) = PT(YI1) - 1 = A+ n- 2, etc. If I has failed 
by k = n - 1 to reach a decisive position, we must have xln = yin E T 
and PT(Yin) = PT(xln) =A+ n- n =A. Then II plays y(n) and we have 
PT(YI(n+1)) < PT(Yin) =A, so there is definitely x(n) with PT(YI(n+1)) < 
PT(xl(n + 1)); thus we have reached a decisive position. 0 

(18.13) Exercise. Show the converse of 18.11: If X is a Polish space and 
A ~ X is n~, there is a Polish space Y and a Borel set R ~ X x Y with 
A= {x EX: 3!y(x,y) E R}. In fact, show that there is a Polish spaceY 
and a surjective continuous f: Y--+ X such that A= {x: 3!y(f(y) = x)}. 

(18.14) Exercise. Let X, Y be standard Borel spaces and f: X--+ Y a Borel 
function, which is countable-to-t (i.e., J- 1 ( {y}) is countable for any y E Y). 
Show that f(X) is Borel and there is a Borel function g: f(X) --+X with 
f(g(y)) = y for ally E /(X). 

(18.15) Exercise. Let X, Y be standard Borel spaces and P ~ X x Y a Borel 
set with countable sections Px for all x E X. Show that there is a sequence 
(! .. )of Borel functions fn : proh(P)--+ Y such that Px = {/n(x) : n EN} 
for all x E proh(P). 

Next show that if An = {x : card(Pc) = n} for n = 1, 2, ... , ~o, then 
An is Borel and for each n there is a sequence (fi(n))«n of Borel functions 

!?'·> : A.,. --+ Y with pairwise disjoint graphs such that for x E An, Px = 
{fi(n)(x): i < n}. 

(18.16) Exercise. (Feldman-Moore) Let X be a standard Borel space and 
E a Borel equivalence relation on X. We say that E is countable if every 
equivalence class [x}E of E is countable. Show that if E is countable, there 
is a countable group G of Borel automorphisms of X such that xEy <=? 

3g E G(g(x) = y). 

(18.17) Exercise. Show that there is a closed set F ~ N x N whose (first) 
projection is all of N, but F has no Borel uniformization. 

The uniformization theorem 18.10 admits a powerful generalization, 
which we will prove later in 35.46. 

(18.18) Theorem. (Arsenin, Kunugui) Let X be a standard Borel space, Y 
a Polish space, and P ~ X x Y a Borel set all of whose sections Px, for 
x E X, are Kq. Then P has a Bor-el uniformization and so, in particular, 
projx(P) is Borel. 
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18.D Selectors and Transversals 

Problems of uniformizat.iou are closely connected with those of selectors for 
equivalence relations. Recall here 12.15 for the basic definitions. 

A Borel equivalence relation need not have a "nice" selector or transver­
sal, e.g., a transversal having the BP or being measurable (with respect to 
some given measure). For example, if E is the Vitali equivalence relation 
on [0, 1] (i.e., xEy <=? x - y E Q), then E cannot have a transversal that 
either has the BP or is Lebesgue measurable. 

(18.19) Exercise. Prove the preceding statement. 

In the special case when E is a closed (in X 2) equivalence relation 
on a Polish space X, the map x ~----+ Ex = [x]E is a(I:n-measurable (see 
18.2) and so by 12.13 E has a a(I:n-measurable selector (and we will see 
later in 29.B that a(I:n-measmable functions are Baire measurable and 
p.-measurable, for any probability Borel measure p.). 'But such an E might 
not have a Borel selector or equivalently a Borel transversal. To see this, 
let F ~ N x N be closed such that its first projection is I:{ but not Borel. 
Then F clearly has no Borel uniformization. Take X = F and consider the 
equivalence relation E on X given by (a, b )E( a', b') <=? a = a'. A transversal 
for E is just a uniformization of F. 

For a special situation when we can obtain a Borel selector forE, recall 
12.16. 

(18.20) Exercise. Let X be a standard Borel space and E a Borel equivalence 
relation on X. We say that E is smooth if there is a Borel map f : X --+ Y, Y 
a standard Borel space, with xEy <* f(x) = f(y). 

i) Show that E is smooth iff there is a sequence (An) of Borel subsets of 
X with xEy <=? \fn(x E An <=? y E An)· Show that if E has a Borel selector 
or if X is Polish and E is closed: then E is smooth. (Thus smoothnes::; does 
not imply the existence of Borel selectors.) 

ii) (Kechris) Show that if E is smooth and moreover that x ~----+ I,. is 
a Borel on Borel map assigning to eaeh x E X a a-ideal of subsets of [x]E 
such that xEy =? I.r. = Iy and [x]E ~ Ix, then E has a Borel selector. 

iii) (Burgess) Show that if E is smooth and moreover it is induced 
by a Borel action of a PoliBh group G on X (i.e., in the notation of 15.D, 
E = Ec for a Borel action of G on X), then E has a Borel selector. 

iv) (Srivastava) Show that if X is a Polish space andEan equivalence 
relation on X such that every equivalence class is G 6 and the saturation of 
every open set is Borel, then E has a Borel selector. 
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19. Partition Theorems 

19.A Partitions with a Comeager or Non-meager Piece 

Recall the pigeon-hole principle: If N = Po U · · · U Pk-l is a partition of N 
into finitely many pieces, then for some i < k. Pi is infinite. Ramsey proved 
the following important extension: For any set X, let X, [X]n ={As;;; X: 
card(A) = n}, n = 1, 2, .... If [N]11 =Po U · · · U Pk-l is a partition of [N]11 

into finitely many pieces, there is infinite H s;;; N such that [H]n s;;; Pi for 
some i < k. Such an H is called a homogeneous set for the partition. 

We will consider here extensions of Ramsey's theorem involving Polish 
spaces instead of Nor infinite exponents. 

First we consider the case of partitioning with one large piece. 

(19.1) Theorem. (Mycielski, Kuratowski) Let X be a metrizable space. 
Let U s;;; xn be a dense open set. For any set A, let (At = {(xi) E 
An:xi =f Xj, if i =f j}. Then {K E K(X):(Kt s;;; U} is a den.~e G6 
in K(X). In pa·rt·icular, if Ri s;;; xn• are comeager fori E N, then {K E 
K(X):\f·i((Kt; s;;; ~)}is comea_qer in K(X). So ·if X is a nonempty perfect 
Polish space, there is a Cantor set C s;;; X with ( Ct' s;;; ~ for all i. 

Proof. Let D = {(x., ... ,Xn) E xn : Xi = Xj for some i =f j}: Then 
(K)"' ~ U <=? Kn s;;; U U D. Now the map K ~ Kn from K(X) to K(Xn) 
is continuous by 4.29 vii) and UUD is G6 in xn, from which it follows that 
{K: (K) 11 s;;; U} is G6 in K(X). 

We show next that {K : (K)n s;;; U} is dense. Notice first that if 
V s;;; K (X) is nonempty open and does not contain 0, there is m ;::: n and 
nonempty open u., ... 'Um s;;; X such that if Xi E ui, 1 ~ i ~ m, then 
{Xi : 1 ~ i ~ m} E V. It is enough then to show that we can shrink Ui to 
u: s;;; U,, u: nonempty open, such that for any distinct i1, ... , in ~ m we 
have u:, x · · · x u:" s;;; U. This is easily aecomplished by repeated (finitely 
often) application of the following fact, which holds since U is open and 
dense: If G1 , •••• Gn are nonempty open in X, there are nonempty open 
sets G~ s;;; Gi such that G~ x · · · x G~ s;;; U. 

The last statement follows from 8.8. 0 

(19.2) Exercise. i) Show that there is a Cantor set C s;;; lR whose members 
are linearly independent over Q. 

ii) Show that there is a Cantor set C s;;; 800 that generates a free group. 

(19.3) Exercise. Let X be a nonempty perfect Polish space and R s;;; X 2 be 
a comeager set. Show that there is Cantor set C s;;; X and a dense Gb set 
G s;;; X with c X G s;;; R. 
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(19.4) Exercise. Let X be a nonempty perfect Polish space and let Y be 
second countable. Let h : xn; --+ Y be Baire measurable (i E N). Then 
there is a Cantor set C ~X with hi(C)n' continuous for all i EN. 

(19.5) Exercise. Let X be a perfect Choquet space, and assume there is a 
metric d on X whose open balls are open in X. Let R ~ xn be comeager. 
Then there is a Cantor (in the topology of (X, d)) set C ~ X with (C) n ~ R. 

It is easy to see that if A ~ X 2 is non-meager and has the BP, it is 
generally not possible to find a Cantor set C ~X with (C)2 ~A. But we 
still have the following fact. 

(19.6) Theorem. (Galvin) Let X be a nonempty perfect Polish space and 
let P ~ xn have the BP and be non-meager. Then there are Cantor sets 
C}, ... .Cn ~ X with c, X ••• X c .. ~ P. In particular, if X" = uiEN Pi, 
where each Pi has the BP: then there are Cantor sets Ct. ... ,Cn ~X and 
i EN with cl X •.. X Cn ~pi· 

Proof Since P is non-meager and has the BP, let U1, ... , Un be nonempty 
open in X v.rith p comeager in ul X ..• X Un. So let Gm be open dense 
in ul X ••• X Un with nm Gm ~ P. Thus for any mE Nand nonempty 
open sets Vi ~ Ui, there are nonempty open sets ~' ~ v; with V{ x · · · x 

V~ ~ Gm· Using this, we can construct n Cantor schemes (R~i))..e2 < 1"' i = 

1, · · ·, n, such that R~i) = Ui, R~i) is a nonempty open subset of Ui, R~i)m ~ 
R~i), diam(R~i)) :::; 2-length(s) (with respect to some complete compatible 
metric for X) and for each m, if s1, ... , Sn are sequences of length m, then 
R~!) X ••• X R1~> ~ Gm. Then let ci be the Cantor set defined by the scheme 
( R~;>), i.e., 

C· = n u R(i) = u n R(i) . 
t s ~:lm 

XE2N m 

Then c, X •.• X C,. ~ nm Gm ~ P. 0 

19.B A Ramsey Theorem fo·r Polish Spaces 

If X is a nonempty perfect Polish space and X = UieN Pi with each Pi 
having the BP, then one of them will be non-meager, and will thus contain 
a non-meager Gb set and therefore a Cantor set. We need some "regularity" 
assumption for the Pi, as the Axiom of Choice can be nsed to show the 
existence of partitions IR = Po U P1, where neither Po nor P1 contain a 
Cantor set (see the proof of 8. 24). 

(19.7) Theorem. (Galvin) Let X be a nonempty perfect Polish space and 
[X]2 =Po U · · · U Pk-l a partition, where each Pi has the BP, in the sense 
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that Pt = {(x,y) E X 2 :{x,y} E Pi} has the BP in X 2 . Then there is a 
Cantor· set C ~X with [C] 2 ~ Pi for some i. 

Proof. We can clearly assume that the Pi are pairwise disjoint and thus 
so are the Pt. The function f(x,y) =the unique i with (x,y) E Pt, if 
x =f y, ( = 0, if x = y) is Baire measnrable; by 19.4 there is a Cantor 
set Y C X so that this function is continuous ou (Y) 2 . Then if Q1. = 
Pin [Yj2, {(x,y) E Y 2 : {x,y} E Qi} = {(x,y) E (Y)2 : f(x,y) = i} is 
open in Y 2• So by replacing X by Y, if necessary, we can assume that each 
Pt is open. Also notice that by induction we can assume that k = 2. So 
[Xj2 = Po U P1, with P0, P{ open in X2 . 

If there is a nonempty open set U C X with (U) 2 ~ P0, then any 
Cantor set C ~ U works. So assume that for all nonempty open U, (U) 2 n 
P1* =f 0, so by the openness of Pi we can find two disjoint nonempty 
opeu sets U', U" ~ U such that U' x U" ~ Pt. By repeating this, we can 
easily construct a Cantor scheme (Gs)~e2 <N with G0 = X, Gs nonempty 
open, Gs·i ~ G5 , diam(Gs) :::; 2-length(s) (with respect to some complete 
compatible metric for X), and Gs·o x G8 ·1 ~ Pi. If C is the Cantor set 
defined by this scheme, [Cj2 ~ P1. 0 

(19.8) Exercise. Let X be a nonempty perfect Polish space, let Y be a 
second countable Hausdorff space, and let f : X --+ Y be Baire measurable. 
Then there is a Cantor set C ~ X such that JIG is either a homeomorphism 
or a constant. 

(19.9) Exercise. Show that 19.7 fails in general for partitions of [Xj2 into 
infinitely many, even clopen, pieces. 

(19.10) Exercise. For distinct x, y E C, let ~(x, y) = least n such that 
x( n) =f. y( n). Let <lex be the lexicographical order on C and identify [Cj3 
with the set of triples (x, y. z) E C3 such that x <1ex y <1ex z. Considering 
the partition [Cj3 = Ptl U P1, where Po = {(x, y, z) E [C]3 : ~(x, y) :::; 
~(y,z)}, P1 = {(x, y, z) E [C]3 : ~(x, y) > ~(y, z)}, show that 19.7 fails in 
general for partitions of [X]3 into finitely many, even clopeu, pieees. 

Suppose now that n ;::: 2 and identify again [C]n wit.h the set of all 
lexicographically increasing n-tuples Xo <tex X1 <tex< · · · <tex Xn-1. We 
say that (xo, ... ,Xn-l) has a type if ~(xi,Xi+l) =f ~(xj,Xj+l) fori =f j, 
and in that case its type is the ordering of {0, ... , n- 2} given by: i < j <=? 

~(:~:.,,xi+.)< ~(xj,Xj+l)· Thus there are (n-1)! possible types. Theorem 
19.7 has been generalized by Galvin (for n = 3) and A. Blass [1981] (in 
general) to show that if [C]n = Po U · · · U Pk-1, wit.h each Pi having the BP, 
then there is a Cantor set C ~ C such that all (xo, ... ,Xn-l) E [C]n have a 
type and if (xo, ... , Xn-1). (yo, ... , Yn-1) E [C]n have the same type, they 
belong to the same Pi (depending on the type). It follows that if X is a 
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nonempty perfect Polish space and [X]n = Po U · · · U Pk-J, with each Pi 
having the BP, then there is a Cantor set C ~ X and S ~ { 0, ... , k - 1} of 
cardinality < (n- 1)! SUCh that [Cjn ~ UiES pi· 

19. C The Galvin-Prikry Theorem 

We will consider now an infinitary analog of Ramsey's theorem. For each 
set X, let 

[xto ={A~ X: card(A) = ~o}. 

Given a partition [Np-to = Po U · · · U Pk-1, is it possible to find an infinite 
H ~ N so that [H]No ~ Pi for some i'? It is easy to see that this fails for 
"pathological" partitions constructed using the Axiom of Choice. Indeed, 
enumerate all infinite subsets of N in a transfinite sequence (H{){< 2'~~o and 
by transfinite recursion on~ < 2No find distinct infinite subsets of N, A{, B{, 
with Ae U Be ~ H{. Let Po= {A{ : ~ < 2No }, P1 = [N]N°\Po. Clearly there 
is no i and infinite H with [H]No ~ Pi. 

However, we will see that for "definable" partitions this extension of 
Ramsey's theorem goes through. 

Consider [N]No as a G6 (so Polish) subspace of C, identifying subsets 
of N with their characteristic functions. 

(19.11) Theorem. (Galvin-Prikry) Let [Nt0 =Po U · · · U Pk-1, where each 
Pi is Borel. Then there is infinite H ~ N and i < k with [Ht0 ~ Pi. 

Remark. We cannot have an infinite partition [N]No = uiEN Pi, here, as the 
example Pi= {A E [N]No :the least element of A is i} shows. 

We will actually prove a much stronger result in the next section, which 
allows for considerable extensions of 19.11. 

19. D Ramsey Sets and the Ellentuck Topology 

We will introduce a new topology on [N]No called the Ellentuck topology. 
For distinction we will call the topology of [N]No its usual topology. 

Here the letters a, b, c, ... vary over finite subsets of N and A, B, C, . .. 
over infinite subsets of N. We v..Tite a< A if max( a) <min( A). For a< A, 
let 

[a, A]= {S E [N]No :a~ S ~aU A}. 

This notion is motivated by work of Mathias in forcing. Note that [0, A] = 
[A]No. The Ellentuck topology on [N]No has as basic open sets the sets of 
the form [a, A] for a < A. Note that there are continuum many of them. 

(19.12) Exercise. Show that [a, A] ~ [b, B] iff a :2 b, a\b ~ B, A~ B. 
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(19.13) Exercise. Show that the Ellentuck topology is strong Choquet but 
not second countable. Show also that it contains the usual topology of [Np-to. 

A set X ~ [N}No is called Ramsey if there is A with [0, A} ~ X or 
[0, A} ~ "' X. It is called completely Ramsey if for every a < A there is 
B ~A with [a,B} c X or [a,B} ~"'X. 

We now have "the main result. 

(19.14) Theorem. (Ellentu<'k) Let X ~ [Nt0
• Then X is completely Ramsey 

iff X has the BP in the Ellentuck topology. 

Let us see how this implies the Galvin-Prikry theorem. 

Proof. (of 19.11 from 19.14) By a simple induction and using the fact that 
the increasing enumeration of an infinite set H ~ N gives a homeomorphism 
of [N}No with [H}No, it is enough to consider the case [N}No = Po U P1, with 
Po, P1 Borel, Po n P1 = 0. Then Po is Borel in the Ellentuck topology, so it 
has t.he BP in this topology; thus it is completely Ramsey by 19.14 and we 
are done. 0 

We give now the proof of 19.14. 

Proof. (of 19.14) Everything below refers to the Ellentuck topology. 
If X is completely Ramsey, then we claim that Y = X\Int(X) is 

nowhere dense (so X has the BP). Indeed, if this fails, there is a < A 
with [a,A} ~ Y. Let B ~ A be sn<'h that [a,B} ~ X or [a,B} ~ "'X. 
Since [a, B} n Y =f 0, [a, B} ~ "' X is impossible. So, [a, B} ~ X, thus 
[a, B} ~ Int(X) and [a, B} n Y = 0, giving a contradiction. 

We will show now that every set with the BP is completely Ramsey. 

(19.15) Lemma. Let U be open. Then U is completely Ramsey. 

Pr·oof. Call [a, A} good if for some B ~ A, [a, B} ~ U; otherwise call it 
bad. Call [a, A} very bad if it is bad and for every n E A, [aU { n}, Afn} is 
bad, where Afn ={mE A: m > n}. Notice that: [a, A} is (very) bad and 
B ~ A=> [a, B} is (very) bad. 

We claim now that if [a, A} is bad, there is B ~ A with [a, B} very 
bad. Indeed, if this fails, let no E A be such that [aU {no}, A/no} is good, 
so there is Bo ~A/no with [aU {no},Bo} ~ U. Since [a,Bo} is not very 
bad, let n 1 > no, n 1 E Bo be such that [aU {n1 }, Bo/nd is good, so there 
is B1 ~ Bofn1 with [au {n.},Bd ~ U, etc. Let B = {no.n11 ••• }. Then 
[f.t, B} ~ U, so [a, A} is good, which e,stablishes a contradiction. 

Suppose now [a, A} is given. If it is good, we are done. So assume 
it is qad. We will then find B ~ A with [a,B} ~ "' U. To do this, use 
repeatedly the preceding claim to find a decreasing sequence A 2 Bo 2 
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B1 :2 · · ·, with ni = min(Bi) strictly increasing, such that for any b ~ 
{n0 , .•. , ni_t}, [aU b, Bi] is very bad and thus [aU b, Bi/ni] is had for all 
b ~ {no, ... ,ni}· Then let B = {no,nll···}· We claim that [a,B] ~ "'U. 
Otherwise, since U is open, there is [a', B'] ~ [a, B] such that [a', B'] ~ U. 
Then for some i, a' = aU b with b ~ {no, ... , ni} and B' /ni ~ Bdni, so, 
since [a Ub, B' fn•] C U, we have that. [a Ub, Bdni] is good, a contradiction. 

0 

(19.16) Lemma. If X is nowhere dense, then for any a < A, there is B ~ A 
with [a,B] ~"'X. 

Proof. By 19.15, X is completely Ramsey. So there is B ~ A such that 
[a, B] ~ "' X ~ "' X or else [a, B] ~ X. Since Int( X) = 0, the se<:ond 
alternative fails. 0 

(19.17) Lemma. If X is meager, then for every a <A, there is B ~A with 
[a,B] ~ rv X. 

Proof. Let X= Un Xn, with Xn nowhere dense. Let ao =a and let Ao ~A 
be such that [ao, Ao] ~ "' Xo. Put no = min(Ao). Let a 1 = ao U {no} 
and choose A1 ~ A0 fno such that [au b, A1] ~ "' X 1 for any b ~ {no}. 
Let n 1 = min(A1). Let a2 = a1 U {nt} and choose A2 ~ Atfn1 such that 
[aU b,A2] ~ "'X2 for any b ~{no, nt}, etc. Put B ={no, n 1 , ••. }. 0 

We can complete now the proof: Let X have the BP. Thus X = U ~y, 
with U open, Y meager. Given a < A, let B ~ A be such that [a, B] C "' Y. 
Let then C ~ B be such that [a, C] ~ U or [a, C] ~ "' U. ·In the first case, 
[a, C] ~ X, and in the second, [a, C] ~ "' X, 0 

(19.18) Exercise. A set X ~ [Np-to is Ramsey null if for any a < A there is 
B ~ A with [a, B] C "' X. Show that X is Ramsey null iff X is meager in 
the Ellentuck topology iff X is nowhere dense in. the Ellentuck topology. 

(19.19) Exercise. Let f : [N]No --+ X, with X second eountable, be a Borel 
function. Then there is infinite H ~ N with f I [H]No continuous. (Here 
"Borel" and "continuous" refer to the usual topology of [H]No .) 

19.E An Application to Banach Space Theory 

Let X be a real (for simplicity) Banach space with norm II II· Given a 
sequence (xn) in X we say that (xn) is equivalent to the unit basis of e1 if 
there are positive constants a, b such that for any n E N and eo, ... , Cn- 1 E 
IR, 

n-1 n-1 n-1 

a L lei I ~ IlL c.xdl ~ b L ICil· 
i=O i=O i=O 
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Then the map (ci) E f 1 
t-t I::o CiXi, which exists by the preceding in­

equalities, is an embedding of £1 into X. 
For each nonempty set S, denote by f 00 (S) the Banach space of 

bounded real-valued functions on S with the sup norm llfll= = snp{lf(x)l : 
XES}. 

(19.20) Theorem. (Rosenthal) If Un) is a bounded sequence in F(S), there 
is a subsequence (! 11k) such that either (! nk) is pointwise convergent or· eLi;e 
(! nk) is equivalent to the unit basis of e•. 

(19.21) Corollary. If X is a real Banach space, then the following are equiv­
alent: 

i) Every bounded sequence (xn) in X has a weakly Cauchy subsequence 
(xnk) (i.e., for any x* EX*, (x*(:~:nk)) converges). 

ii) f 1 does not embed in X. 

Proof. (of 19.21 from 19.20) i) =? ii): If en is the nth unit vector in f 1 (i.e., 
en is the infinite sequence with exactly one 1 in the nth position), then 
(en) has no weakly Cauchy subsequence, because if (enk) was such, then 
for x* E ( €1) * = eoo given by x* ( i) = 1 if i = n2k for some k, and by 
x*(i) = 0 otherwise, we have x*(enk) = I:x*(i)enk(i) = x*(nk)· 

ii) =? i): Immediate from 19.20, since every element x of X can be 
viewed as a function on S = B1(X*), namely x(x*) = x*(x). Note that 
llxlloo = llxll· 0 

Proof. (of 19.20; see J. Diestel [1984]) Given A, B ~ S, we say that (A, B) is 
disjoint if AnB = 0. A sequence ((An, Bn)) of disjoint pairs is independent 
if for any two finite disjoint subsets F, G ~ N, 

n An n n Bn :f 0. 
nEF nEG 

(19.22) Lemma. For rationals r < s, let An= A~{'= {x: fn(x) < r}, Bn = 
B~,s = { x : f n ( x) > s}. If ( (An, Bn)) is independent, then (!,.) i.~ equivalent 
to the unit basis of e1 • 

Proof. Since for some b, llfnll= ~ b < oo for all n, clearly II 2::~0
1 cdiiL:x> ~ 

b 2::;::-01 ICil· So it suffices to show that 

Let F = {i < n : Ci 2: 0}, G = {i < n : Ci < 0}. By independence, let 
X E niEF Ai n niEG Bi, y E n,EG Ai n niEF Bi· Then 

i<n iEF iEG 
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and 

i<n iEF iEG 

soc- d :2: (s- r) I:i<n ICil, and the proof is complete. 0 

We say that a sequence ((A.,, Bn)) of disjoint pairs is convergent if 
\fx[(for all but finitely many n, x ¢ An) or (for 'all but finitely many 
n, X¢ Bn)]. 

(19.23) Lemma. If for all rationals r < s ( ( A~s, B~·8 )) is convergent, then 
Un) com1erges pointwise. 

Proof. Otherwise, let r < s be such that for some x E S, limfn(x) < t' < 
s < limfn(x). Then for infinitely many n, x E A;,:s and for infinitely many 
n, x E B~·s, which gives a contradiction. 0 

So the proof can be easily completed using the following lemma and a 
simple diagonal argument. 

(19.24) Lemma. Every sequence ((An, Bn)) of disjoint pairs contains a con­
vergent subsequence or· an independent sub.~eq'ILence. 

Proof. Let P ~ [N]No be defined by: 

i<k,i even i<k,i odd 

where no < n1 < · · ·. P is clearly closed, so there is infinite H ~ N such 
that [HjNo ~ P or [HjNo ~ "'P. 

Case I. [Hp-to ~ P. We will show that if H = {mo,m., ... }, with mo < 
m1 <···,then ((Am2HP Bm2;+1)) is independent. To see this, it is enough 
to show that ifF, G ~ {0, ... , k -1}, F n G = 0, F u G = {0, ... ,k- 1}, 
then niEF Am2i+l n niEG Bm2i+l =f 0. But it is easy to see that there is 
I= {no,n., ... } c H, with no< nl < ... ,such that niEFAm2i+l n 
niEG Bm2i+l 2 ni<e,i .. ven An; n ni<l,i odd Bn; =f 0 (for some e > k), so we 
are done. 

Case II. [H]No ~"' P. If H = {mo,m., ... }, we show that ((Am.,Bm,)) 
converges. Otherwise, there is x and infinite I, J such that I = { mi : 
x E AmJ, J = {mi : x E BmJ· Note that In J = 0. So we can find 
K = {no,n1, ... } ~ H, with no< n1 < .. ·,such that {no,n2, ... } ~I and 
{n1, n3 , .• . } ~ J. Then K E P, which is a contradiction. 0 

0 
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20. Borel Determinacy 

20.A Infinite Games 

Let A be a nonempty set and X ~ Al'l. We associate with X the following 
game: 

I ao a2 

II a1 as 

Player I plays ao E A, II then plays a1 E A, I plays a2 E A, etc. I wins iff 
(an) EX. (Thus X is the payoff set.) 

We denote this game by G(A, X) or G(X) if A is understood. A strat­
egy for I is a map <p : A <l'l --+ A <l'l such that length( <p( s)) = length( s) + 1 
and s ~ t ::::} <p(s) ~ <p(t). Intuitively, if <p(0) = (ao), <p((a1)) = 
(ao, a2), <p( (a., as)) = (ao, a2, a4), .. . , then I plays, following <p, ao, a2, a4, 
... , when II plays a1 , as, .... 

Equivalently, a strategy for I can be viewed as a map <p : A <l'l --+ A 
with I playing ao = <p(0), a2 = <p((a1)), a4 = t.p((a., as)), when II plays 
a11 as, .... 

Finally, we can also view a strategy for I as a tree a C A <l'l such that 

i) a is nonempty and pruned; 
ii) if (ao, ah .. . , a2j) E a, then for all a21+1> ( ao, ... , a2h a2j+t) E a; 
iii) if (ao, a., .. . , a23-d E a, then for a unique a2j, (ao, ... , a2j-l> a2j) 

Ea. 

Again, this is interpreted as follows: I starts with the unique ao such 
that (ao) Ea. If II next plays a11 then (ao,a1) E a, so there is unique a2 
with (ao,a.,a2) E a, and this is I's next move, etc. 

We define the notion of a strategy for player II mutatis mutandis. 
A strategy for I is winning in G( A, X) if for every run of the game 

(ao, a1, a2, ... ), in which I follows this strategy, (an) E X. Similarly, we 
define a winning strategy for player II. Note that it cannot be that both I 
and II have a winning strategy in G( A, X). We say that the game G( A, X), 
or just the set X, is determined if one of the two players has a winning 
strategy. 

It is easy to see again, using the Axiom of Choice, that. there are 
"pathological" sets X ~ 2N that are not determined. For example, if X ~ 2N 
is a Bernstein set (see the proof of 8.24), then X is not determined (why?). 
However, we expect "definable:' sets to be determined. We will prove this 
below for Borel sets. 

It is often convenient to consider games in which the players do not 
play arbitrary ao, a., ... from a given set A, but have to obey also certain 
rules. This means that we are given A and a nonempty pruned tree T ~ 
A <l'l, which determines the legal positions. For X C [T] consider the gan1e 
fJ(T, X) played as follows: 
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I ao az 

II a 1 a3 

I, II take tnrus playing an, a1, ... so that ( ao, ... , an) E T for each n. I wins 
iff (an) EX. 

Thus if T = A <l'l and X ~ AN, G( A <l'l, X) = G( A, X) in our previous 
notation. 

The notions of strategy, winning strategy, and determinacy are defined 
as before. So, for example, a strategy for I would now be a nonempty pruned 
subtree a ~ T satisfying condition ii) before, as long as a2J+l is such that 
(ao,··. ,az3 ,a2J+l) E T, and iii). It will be winning iff [a]~ X. 

Note that all the games we considered earlier in Section 8 are particular 
instances of this general type of game. Note also that the game G(T, X) is 
equivalent to the game G(A, X'), where X' = {x E AN : [3n(xln ¢ T) & 
(the least n such that xln ¢Tis even)] or (x E [T] & x EX)}, where two 
games G, G' are equivalent if I (resp. II) has a winning strategy in G <=? I 
(resp. II) has a winning strategy in G'. Thus the introduction of "games 
with rules" does not really lead to a wider class of games. 

20.B Deter·rninacy of Closed Games 

As usual AN will be given the product topology with A discrete and [T], a 
closed subset of AN, the relative topology. We have first the following basic 
fact. 

(20.1) Theorem. (Gale-Stewart) LetT be a nonernpty pruned tree on A. 
Let X~ [T] be closed or open in [T]. Then G(T,X) is determined. 

Proof. Assume first that X is closed. Assume also that II has no winning 
strategy in G(T, X). We will find a winning strategy for I. 

Given a position p = ( ao, a., ... , azn-l) E T with I to play next, we say 
that it is not losing for I if II has no winning strategy from then on, i.e., II 
has no winning strategy in the game G(Tp,X1,), where Tp = {s: p"s E T} 
and Xp = {x: p"x EX}. So 0 is not losing for I. 

The obvious, but crucial, observation is that if p is not losing for I, 
there is az., with ( Uzn) E Tp snch that for any a2n+1 with ( azn, azn+l) E 
Tp, p"(azn,a2n+t) is not. losing for I too. 

We use this to produce a strategy for I as follows: 
I starts by choosing an ao, with (ao) E T, such that for all a1 with 

(ao, a1) E T, (ao, a1) is not losing for I. II then plays some a1 with (ao, a1) E 
T. I responds by choosing some az, with (ao,a 1,az) E T, such that for all 
a3 with (ao,a.,az,a3) E T, (ao,a11 a2,a3) is not losing for I, etc. 

We claim that this strategy is winning for I. Indeed, if ( a0 , a.1 , ••. ) is a 
run of the game in which I followed it, then (ao, a., ... , azn-1) E Tis not 
losing for I, for all n. If (a . .,) ¢ X, then, as "' X is open in [T], there is k 
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such that N(a0 , ... ,n.2k-d n[T] ~"'X. But then (ao, ... , a2k-1) is losing for I, 
as II has a t.rivial winning strategy from then on (i.e., she plays arbitrarily). 

The case when X is open is essentially the same, switching the roles of 
I and II. The only difference is that II plays second, but this is irrelevant 
in the previous argument. 0 

(20.2) Exercise. LetT be a nonempty pruned tree on A and let X~ [T] be 
closed. Thus X = [S] for Sa subtree ofT. Define by transfinite recursion 
Se ~ T as follows: 

PESo<=? P = (ao, ... , a2n-1) E T \ S, 

P E Se+l <=? P = (ao, ... ,a2n-1) E T & 
\fa2n[p. 0.2n E T::::} 3a.2n+l (p" a2n "0.2n+l E Se)], 

p E S>. <* ~ < A(p E Se), if A is limit. 

Show that II has a winning strategy in G(T, X) iff 0 E Ue Se. 

Note that because of the single-valuedness condition iii) in the defini­
tion of strategy (see Section 20.A), 20.1 requires in general the Axiom of 
Choice. 

(20.3) Exercise. Show that in fact 20.1 is equivalent (in ZF) to t.he Axiom 
of Choice. 

Without the Axiom of Choice, we can still prove a form of 20.1, by 
introducing the notion of quasistrategy, which is useful apart from these 
comments about choice. 

Let T be a nonempty prnned tree on A. A quasistrategy for I in 
T is a pruned nonempty subtree E C T snch that if ( a0 , .•• , a2J) E E 
and (ao, ... ,a2J,a21+1) E T, then (ao, ... ,a2j,0.2J+l) E E. Note that 
since E is pruned, if (ao, ... ,a2j-l) E E then there is some a2J with 
(ao, ... ,a2j-l,a2J) E E, but this may not be unique. Similarly, we define 
quasistrategies for II. If X ~ [T] is given, we say that a quasistrategy E for 
I is winning in G(T, X) if [E] ~ X (similarly for II). Note that if E ~ T 
is a wirming qnasistrategy for I (II) in G(T, X), t.hen there is a winning 
strategy a ~ E for I (II) in G(T: X), using the Axiom of Choke. 

Remark. It follows, using the Axiom of Choice, that both players cannot 
have winning quasistrategies in a game. Actually, one only needs for that 
the Axiom of Dependent Choices, which is the assertion that any nonempty 
pnmed tree on a set A has an infinite branch. Conversely, it is trivial to 
see that if T is a nonempty pruned tree on A with [T] = 0, then in the 
game G(T, 0), T itself is a winning quasistrategy for both players. Thus 
the Axiom of Dependent Choices is equivalent to the assertion that in all 
such games· it cannot be that both players have winning quasistrategies. 
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We can call a game G(T, X) quasidetermined if at least one of the 
players has a winning qua.<;istrategy. Then the proof of 20.2 shows that 
every closed or open game is quasidetermined without using the Axiom of 
Choice. 

(20.4) Exercise. Using the notation of 20.2, show that if 0 E Ue Se, then 
one can explicitly describe (without using the Axiom of Choice) a winning 
quasistrategy for player II in G(T, X), while one can do the same for player 
I if 0 ¢ Ue Se. 

Independently of these remarks about choice, it will be important in 
the sequel to isolate the quasistrategy for the "closed" player that arises 
in the proof of 20.1. So let T be a pruned tree and X <; [T] a closed set 
for which I has a winning strategy in G(T, X). Call a position p E T of 
arbitrary length (not necessarily even) not losing for I if II has no winning 
strategy from then on. If p = (ao, ... , a2n-1), this means the same thing 
as in the proof of 20.1. If p = (ao, ... , a2n-b a2n), it means that II has no 
winning strategy in the game G(Tp, Xp), with the convention that II starts 
first in this game. Let E = {p E T : p is not losing for I}. Then E is a 
winning quasistrategy for I in G(T, X), called the canonical quasistrategy 
for I in G(T, X). 

20. C Borel Determinacy 

(20.5) Theorem. (Martin) LetT be a nonempty pruned tree on A and let 
X<; [T] be Borel. Then G(T,X) is determined. 

The idea of the proof of this (and many other determinacy results) 
is to associate to the game G(T, X) an auxiliary game G(T*, X*): which 
is known to be determined, usually a closed or open game, in such a way 
that a winning strategy for any of the players in G(T*, X"') gives a win­
ning strategy for the corresponding player in G(T, X). Most often, in the 
game G(T*, X*) the players play essentially a rnn of the game G(T, X) but 
furthermore they play in eaeh turn some additional objects, part of whose 
role is to make sure that the payoff set becomes simpler, such as closed or 
open. "So, in particular, there is a natural "projection" from T"' into T. 

In our case the above general ideas are captured in the concept. of 
covering of a game. 

Let T be a nonempty pruned tree on a set A. A covering ofT is a 
triple ('i', 1r, t.p ), where 

i) T is a nonempty pruned tree (on some A} 
ii) 1r : T - T is monotone with length(-rr(s)) = leugth(s). Thus 1r 

gives rise to a continuous function from ['i'] into [T] also denoted here by 
-rr : [T] - [T]. 
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iii) t.p maps strategies for player I (resp. II) in T to strategies for player 
I (resp. II) in T, in such a way t.hat t.p(a) restricted to positions of length 
:::; n depends only on a restricted to positions of length :::; n, for all n. 

More precisely, we view here strategies as pruned trees as in Section 
20.A. Letting for any treeS, Sin= {u E S: length(u) < n}, this condition 
means that for each strategy a (for I or II) on T, t.p(a)ln depends only 
on aln. In other words, t.p is really defined on partial strategies i7ln in a 
monotone way (m < n ::::} t.p(alm) = <p(aln)lm) and t.p(a) is defined by 
t.p(a)ln = <p(ain) for each n. 

iv) If a is a strategy for I ( resp. II) in T and x E [T] is played according 
to t.p( a) (i.e., X E [t.p( a)]), then there is :i: E [Tj played according to a 
(i.e., x E [a]) such that 1r(x) = x. 

It is clear that if (T, 1r, t.p) is a covering ofT and X ~ [T], then the 
game G(T, X) can be "simulated" by the auxiliary game G(T, X), where 
X = 1r-1(X) (a run x E ['i'] giving rise to the run 1r(x) E [T]). If a is a 
"rinning strategy for I (resp. II) in G(T, X), then t.p(a) is a winning strategy 
for I (resp. II) in G(T, X). Indeed, otherwise there is x E [t.p(a )] with x ¢ X 
(resp. x E X). But, by iv ), we can find x E [a] with 1r(x) = x. Then x E X 
(resp. x ¢ X), so x E X (resp. x ¢ X), which is a contradiction. 

For technical reasons we will also need a 8trengthening of the concept 
of covering. Fork EN, we say that (T, 1r, t.p) is a k-covering if it is a covering 
such that Tl2k = Tl2k and 7ri(TI2k) is the identity. Intuitively, this means 
that in the auxiliary game G(T, X) the first k moves of each player are 
identical to those of G(T, X). Note that if ('i', 1r, t.p) is a k-covering, then for 
any strategy a in T (for either player), we have that t.p(a)l2k = al2k. This 
is because by iv) we have that <p(a)l2k ~ ai2k, so since Tl2k = Tl2k and 
t.p(a)l2k, al2k are both partial strategies for the same player in T, we must 
have t.p(a)l2k = al2k. 

Finally, we say that a covering (T, 1r, t.p) unravels X ~ [T] if 1r- 1 (X) = 
X is dopen (in [T]). 

It is clear then t.hat if (T, 1r, t.p) unravels G(T, X), then, by the Gale­
Stewart Theorem G(T, X) is determined and thus, by the preceding re­
marks, G(T, X) is determined. So 20.5 will follow from the following: 

(20.6) Theorem. (Martin) IfT is a nonempty pruned tree on A and X ~ [T] 
is Borel, then for each k E N there is a k-covering ofT whic.h unravels X. 

The reason for proving 20.6 for k-coverings {although we need it only 
for coverings to prove determinacy) is so that we can carry out an inductive 
argument. The two main lemmas that we need are given next. 

(20.7) Lemma. LetT be a nonempty pruned tree and let X~ [T] be closed. 
For each k £ N there is a k-covering ofT that unravels X. 
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(20.8) Lemma. (Existence of inverse limits) Let k E N. Let (Ti+l )7ri+l ,cp.;+l) 
be a (k +i)-covering of Ti, i = 0,1,2, .... Then there is a p·runed tree Too 
and 7r00 ,i, IPoo,i such that (T00 ,7r00 ,i,<poo,i) is a (k +i)-covering of Ti and 
11'i+l 0 1roo,i+l = 1roo,i> IPi+l 0 IPoo,i+l = IPoo,i· 

Granting these two lemmas, 20.6 can be proved as follows: 
Recall from Section 1l.B the Borel hierarchy on [T]. (Note that A111 

and thus [T] are metrizable.) We will prove by induction on 1 ~ ~ < w1 
that for all T, k E N and X ~ [T] in :E~ ( [T]) there is a k-covering ofT that 
unravels X. 

Notice that if a k-covering unravels X it also unravels "' X, so by 
20.7 this is true for { = 1. Assume now that it holds for all'T] < ~· So for 
each T, each Y E ll~([T]), 1] < ~. and for each k there is a k-covering 
that unravels "' Y, thus also Y itself. Let X E :E~([T]) and k E N. Then 
X= UiENXi, with Xi E ll~i([T]), ~i <~·Let (T1,1rl,cp1 ) be a. k-covering 
of To = T that unravels Xo. Then 7r1 1(Xi) is also in n~i ([Ti]) for i :2: 1, 
since it is easy to check that :E~, n~ are closed under continuous preimages. 
By recursion define now (Ti+l, 11'i+l•IPi+l) to be a (k+i)-covering of Ti that 
unravels 1ri

1 o 7ri_\ o · · · o 11'11 (Xi)· Let (Too, 7roo,i, IPoo,i) be as in 20.8. Then 
(Too, 1roo,o, IPoo,o) unravels every Xi. Thus 1r;,~0 (X) = Ui 1r;,~0 (Xi) is open 
in [T=l· Finally, let ('i', 1r, cp) beak-covering ofT=, that unravels 1r;,~0 (X) 
(by 20.7). Then (T, 7r00 ,o o1r, IPoo,o ocp) is a k-covering ofT that unrav~ls X. 

We now prove the two lemmas. 

Proof (of Lemma 20.8) Note that for any finite sequences, if 2(k + i) ;::: 
length( s ), then whether s E Ti or not is independent of i. So put 

s E Too<=? s E Ti for any i with length(s) ~ 2(k + i). 

It is easy to see that T00 is a pruned tree (on some set). It is also clear that 
Tool2(k + i) = Til2(k + i). 

We next define 7r00 ,i: If length(s) ~ 2(k + i), then 7roo,i(s) = s. If 
length(s) > 2(k + i) and 2(k + j) :2: length(s), we put 7roo,i(s) = 11'i+l o 
1ri+2 o · · · 7rj(s). Notice again that this is independent of j. 

Finally, we define IPoo,i· If C!00 is a strategy for T00 , let 1Poo,i(aoo)l2(k + 
i) = aool2(k + i), and for j > i, 1Poo,i(aoo)l2(k + j) = IPi+l o IPi+2 o · · · o 
<;j(aocl2(k + j)). (Note that since Tjl2(k + j) = Tool2(k + j), a 00 l2(k + j) 
is a partial strategy for Ti as well.) 

It remains to verify condition iv) of the definition of covering. Sup­
pose a 00 is a strategy for T00 , and let Xi E [<;oo,i(a00 )]. Let Xi+l E 
[<;oo,i+l(aoo)], Xi+2 E [IPoo,i+2(a00 )], ••• come from condition iv) for the 
coverings (Ti+l, 7ri+l, IPi+l), (Ti+2• 11'i+2• IPi+2), ... together with the fact 
that IPi+l (IPoo,j+l(aoo)) = IPoo,j(C!oo) for any j :2: i, so that 11'j+l(xj+l) = Xj 

for any j :2: i. Since 11'j+l is the identity on sequences of length ~ 2(k + j), 
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it follows that (Xi, Xi+ 1, Xi+2, ... ) converges to a sequence X00 defined by 
x00 l2(k + j) = Xjl2(k + j) for j ;::: i. Now C!00 and 'Poo,j(a00 ) agree on se­
quences of length ~ 2( k + j) so, as Xj E [<P.oo,j (a 00 )] for j > i, we have that 
X00 E [a00 ]. Finally, it is clear that 7r00 ,i(X00 ) =Xi. 0 

Proof. (of Lemma 20. 7) Recall that for a tree S, Su = { v : u • v E S} and 
for Y ~ [S), Yu = {x: u"x E Y}, so that Yu ~ [Su]· 

Fix k, T, X and let Tx be the tree of the closed set X, i.e., s E Tx <* 
3x E X(s ~ x). Thus Tx ~ T. 

The game G(T, X) has the form 

I xo x2 

II Xl X3 

(x0 , .•• , xi) E T for all i, and I wins iff (x.,) EX. 
The k-covering (T, 1r, t.p) that we will define ~ a way of playing an 

auxiliary game in which players I and II, beyond the moves xo, x1, .•• , 

make also some additional moves. First we informally describe this auxiliary 
game. Its legal moves ?efine the tree T. 

In the games on T players start with moves xo, x., ... , X2k-2,X2k-l, 

I xo X2k-2 

X2k-l 

which must be such that (xo, ... , Xi) E T fori~ 2k- 1. In her next move 
I plays (x2k, E1) 

I x0 

II X2k-l 

where (xo, ... ,X2k) E T and E1 is a quasistrategy for I in T(x 0 , ••• ,x2k)> with 
the convention that II starts first in games on T(xo, ... ,x2k)· In her next move 
II has two options: 

Option 1. She plays (x2k+1,u), 

I xo 

II 

where (x0 , ••. ,X2k+l) E T and u is a sequence of even length such that 
u E T(xu, ... ,X2k+d and u E (EI)(x2k+l) \ (Tx )(xo, ... ,X2k+!). 

If II chooses this option, from then on players I and II play X2k+2• 

X2k+3, . . . so that ( x0 , ••• , x j) E T for all j and moreover we have u ~ 

(x2k+2• X2k+ih .. . ), i.e., these moves are consistent with u. 

Option 2. She plays (x2k+l• Eu), 
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I xo 

II 

where (xo, ... ,x2k+l) E T and En is a quasistrategy for II in (EI)(x2k+l) 

with En ~ (Tx )(x0, ... ,x2k+I)' 

If II chooses this option, from then on players I and II play X2k+2• 
X2Jr.+3• .. . , so that (x2k+2,X2k+3· ... ,xe) E En, for all e;::: 2k + 2. 

Thus, formally, T consists of all finite sequences of the form 

(1) (xo, ... , X2k- t. (X2k, E1), (X2k+t. (1, u )), X2k+2• . .. , xe) 

or 

(2) (xo, ... , X2k-l, (x2k, E1), (X2k+J. (2, En)), X2k+2• .. . , xe) 

such that (:~:0 , ... ,xi) E T for all i ~ e; E1 is a quasistrategy for I in 
T(xo, ... ,x2 k) and for the sequences of type (1), u E T( 3,0 , ... ,x2 k+l) has even 
length, u E (EI)(x2 k+l) \ (Tx )(x0 , ... ,x2 k+ih and (x2k+2, ... , xe) is compatible 
with u, while for the sequences of type (2), En is a quasistrategy for II 
in (EI)(x2k+l) with En ~ (Tx)(xo .... ,x2 k+!)' and (X2k+2• ... ,xe) E En. (It 
is understood here that e could be ~ 2k + 1, in which case some of these 
conditions will be vacuous.) 

It is easy to check that T is pruned, i.e., that every player has a legal 
move at each turn. 

The map 1r is also straightforward: 

1r(xo, ... , x2k-I, (x2k, • ), (x2k+l, • ), X2k+2, . .. , xe) = (xo, ... , xe)· 

Notice also that 

x E 1r-1 (X) <* x(2k + 1) is of the form (x2k+l• (2, En)) 

(i.e., II chose option 2), so that 1r-1(X) is clopen. 
It remains to define t.p. We will informally describe how to play, given 

a strategy a on 'i', the strategy a= t.p(a) on Tin such a way that for any 
run x E [a] there is a run x E [a] with 1r(x) = x. It will be clear from our 
description that ain depends only on aln. 
Case I. a is a strategy for I in 'i'. 

For the first 2k moves, a just follows a. Next a provides I with (x2k• EI)· 
I plays X2k by a. 

Then II plays in T X2k+l· We have two subcases now. 

Snbcase 1. I has a winning strategy in 

G((EI)(x2 k+I)' [(EI)(x2k+l)] \ X(:co,--·,x2 k+I))• 

Then a requires I to play this strategy. After finitely many moves, a 
shortest position u of even length is reached for which u ¢ (Tx )(xo, ... ,,2 k J)• 
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say u = (x2k+2, ... ,xu-l)· Then (xo, ... ,X2k-l,(x2k,EI),(x2k+l>(1,u)), 
X2k+2, ... , x2e-1) is a legal position ofT, and a requires I from then on to 
play jnst following ii. 

Subcase 2. II has a winning strategy in 

G((Er)(x2k+i)> [(EI)(x2k+d] \ X(xo, .. ,X2k+t))· 

Let En be her canonical quasistrategy in this game (recall here that 
the set x(>:o, ... ,X2k+d is closed). In particular, En s;;; (EI)(x2k+!)' From then 
on I plays, according to a, just following ii, assuming that in the game on T 
II played (x2k+l• (2, En)) in her appropriate move. I can do that as long as 
II collaborates and plays her moves afterward so that (x21r.+2, ••• ,xu-1) E 
(En)(7:o, ... ,X2k+d' since then we have legal positions in 'i'. But if for some e 
with 2f -1 > 2k+ 2, II plays (in the game on T) so that ( x2k+2, ... , xu- I) ¢ 
(En)(x0 , ... ,x2k+d' then by definition of En it follows that I has a winning 
strategy in G((Er)(x2k+l• ... ,xu-d• [(EI)(x2k+l• ... ,xu_!)] \ X(x0 , ... ,x2e_!))· But 
then I can continue by a as in Subcase 1. 

Case II. ii is a strategy for II in 'i'. 

Again for the first 2k moves a just follows ii. Next I plays x2k (in the 
game on T). Put S = {EI : E1 is a quasistrategy for I in T(xo, ... ,x2k)} and 
U = {(X2k+lfu E T(x0, ... ,x2k): u has even length, and there is E1 inS such 
that ii requires II to play (x2k+l, (1, u)) when I plays (x2k, E1)}. Then 

U = {x E [T(x0 , .... x2k)]: 3(x2k+l)"v. E U(x ~ (x2k+lfu)} 

is an open set in [T(xo, ... ,x2k)l· 
Consider the game on T(x0 , ... ,x2k)' 

I 

where II plays first and wins iff (x2k+l,X2k+2: .. . ) E U. 

Subcase 1. II has a Vlrinning strategy in this game. 

Then (in the game on T) a follows after X2k this winning strategy for 
II, until (x2k+l,X2k+2· ... ,xu_ I) E U. Let u = (x2k+2• ... ,xu-!) and, by 
the definition of U, let E1 V\.itness that this sequence is in U. It is clear 
that from theu on (i.e., for (xu, ... )) II can play a by just following ii on 
(xo, ... , X2k-l, (x2k• E1), (x2k+l, ( 1, u) ), X2k+2, . .. , xu-1 ). 

Subcase 2. I has a winning strategy in this game. 

Call E1 her canonical winning quasistrategy. (This game is closed for 
1.) Then if I played in the game on T, (x2k, EI), ii cannot ask II to play 
&{)mething of the form (x2k+l• (1, u)). Because then (x2k+lfu E U and, by 
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the rules ofT, (x2k+ 1fu E E., contradicting the fact that no sequence in 
E1 can be in U. 

So if I played in the game on 'i', (x2k, E1), a asks II next to pla:y 
(x2k+l, (2, En)). So II plays according to a this x2k+l and continues to 
play by a just following a on (xo, ... ,X2k-l,(X2k,EI),(x2k+l,(2,En)), 
X2k+2, ... , xu) as long as I collaborates so that ( X2k+2, ... , x2e) E En. 
If for some f :2: k + 1, I plays x2e with ( X2k+2, ... , xu) ¢ En, then, since 
En is a quasistrategy for II in (EI)x2k+l so that l's moves are unrestricted 
as long as they are in E., it follows that (x2k+2• ... , X21.) ¢ (EI)(x2H 1 ) and 
we are back in Subcase 1 again. 0 

Notice that in order to unravel a closed game in which the moves are in 
{0, 1} (i.e., T = 2<N), we need to play in the preceding proof a game whose 
moves are essentially from Pow(N) ( quasistrategies are subsets of 2<N which 
can be "identified" with N by some enumeration). Tracing then the proof 
that Borel games on {0, 1} are determined, we see that one uses there the 
existence of Powe(N), the ~th iterated power set of N, for all~ < w1. Thus 
one uses set theoretic objects of very high type (natural numbers have type 
0, sets of natural numbers have type 1, etc.). A metamathematical result 
of H. Friedman [1971] shows that this is necessary for any proof of Borel 
determinacy. In other words, to establish the vc:Llidity of Borel determinacy 
for games on {0, 1}, which is a statement about simply definable subsets 
of the Cantor set, requires the existence of quite large sets, certainly much 
bigger than the reals, the sets of real.~, etc. This turns out to be a typical 
phenomenon in descriptive set theory. 

(20.9) Exercise. Give a direct proof that :Eg games a.re determined as fol­
lows: Let X ~AN be :Eg, so that X = Un Fn, Fn ~ AN closed. Let Tn be a 
pruned tree with Fn = [Tn]· Define by transfinite recursion we ~ A<N by: 

s E W0 <=? length(s) is even & 3n(I has a winning strategy in (Fn)s)· 

If lPI, TJ < ~. have been defined, let 

and put 

x E ce,n <=?'if even k(xik E u W 71 U Tn), 
11<e 

s E we <=? length(.~) is even & 

3n(I has a winning strategy in (Ce,n)s)· 

(Note that ce.n is closed.) Show that: 1) s E Ue we ~ I has a winning 
strategy in Xs; and 2) 0 ¢ Ue we ~II has a winning strategy in X. 
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20.D Game Q'uantifiers 

Let X ~ Al'l. Then the statement "I has a winning strategy in G(A, X)" 
can be abbreviated naturally as 

3ao\fa13a2\fa3 ···(an) EX. 

Similarly, 
\fao3al\fa23al .. ·-,(an) EX 

abbreviates the statement that II has a \\inning strategy in G( A, X). Thus 
the determinacy of G(A,X) can be expressed as 

-,3ao\fal ···(an) EX<=? '<iao3al ···...,(an) EX. 

So determinacy can be thought of I:IS an infinitary analog of the basic rule 
of logic 

...,3ao\fa1 · · · Qan-lX(ao, ···,an-d<=? 

\fao3al· · ·Qan-1-,X(ao,· ··,an-d, 

where Q = 3 or \f and Q ( = the dual of Q) is \for 3. Notice that this logical 
rule asserts the determinacy of the finite game 

I wins iff X(ao, ... , an- 1), where we took n to be eveu for definiteness. 
Thus this infinitary rule is valid if X is a Borel set in AN, but not for 

arbitrary X even in 2N, using the Axiom of Choice. As we will discuss later 
(see 26.B), it is one of the basic strong axioms of modern Ret theory that all 
"definable" games with moves in A, where A is a standard Borel space, are 
determined, so this rule is valid if X is a "definable" set in AN, A standard 
Borel. 

(20.10) Exercise. Define explicitly a game with moves in A= Pow(2N) which 
is not determined. (Remark: It is easy to define such a game explicitly and 
then show that it is not determined using the Axiom of Choice. In 21.4 we 
will ask for another example, where the Axiom of Choice can be avoided, 
even in the proof that the game is not determined.) 

For any nonempty set A the game quantifier gA is defined by 

9AYP(x, y) <=? 3ao\fa13a2\fa3 · · · P(x, (an)), 

where P ~X x AN. The dual game quantifier gA is defined by 

gAyP(x, y) <* \fao3al \fa23a3 · · · P(x, (an)). 

So if all games G( A, Px) are determined, then 
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(20.11) Exercise. Show that the sets of the form 9rwF(x,y), where F ~ 
N x N is closed, are exactly the El subsets of N. Show that the sets of 
the form 9NyC(x,y), where C ~ N x N is clopen, are exactly the Borel 
subsets of N. 
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21. Games People Play 

21.A The *-Games 

Let X be a nonempty perfect Polish space with compatible complete metric 
d. Fix also a basis {Vn} ofnonempty open sets for X. Given A~ X, consider 
the following *-game G*(A): 

I (UJo>,u~o>) (UJ1>,u~1)) 

II io 

U~n) are basic open sets with diam(U~n)) < 2-n u,<n> n u<n> = 0 i E 
t • •0 1 ,n 

{0, 1}, and uJn+1
) u uin+1) ~ ut>. Let X E X be defined by {x} = 

nn ut>. Then I wins iff x E A. 
Thus in this game I starts by playing t.wo basic open sets of diameter 

< 1 with disjoint closures and II next picks one of them. Then I plays 
t.wo basic open sets of diameter < 1/2, with disjoint. closures, which are 
contained in the set that II picked before, and then II picks one of them, 
etc. (So this is a version of a cut-and-choose game.) The sets that II picked 
define a unique x. Then I wins iff x EA. 

(21.1) Theorem. Let X be a nonempty perfect Polish space and A ~ X. 
Then 

i) I has a winning strategy in G*(A) iff A contains a Cantor set. 
ii) II has a winning strategy in G*(A) iff A is countable. 

Proof i) A winning strategy for I is essentially a Cantor scheme (Us)sE 2<,., 
with Us open, U.s·o U Us·l ~Us, dianl(Us) < 2-length(s)+I, if s =f 0, such 
that for each y E 2N' if {X} = nn Uyin• then X E A. So A contains a Cantor 
set. 

Conversely, if C ~ A is a Cantor set, we can find a winning strategy for 
I as follows: I starts with (a legal) (Ud0

), Ui0
)) such that Ui(O) n C =f 0, for 

i E {0, 1 }. Next II chooses one of them, say uJ0
> for definiteness. Since Cis 

perfect, I plays (a legal) (Ud 1
), up>) such that up> n C =f 0, for i E {0, 1 }, 

etc. Clearly, this is a winning strategy for I. 
ii) If A is countable, say A = { x0 , x1, ... } , then a winning strategy for 

II is defined by having her choose in her nth ll!OVe ui(n) so that Xn ¢ u}n> 
(i.e., plays in = i). 

Finally, assume a is a v..inning strategy for II. Given x E A, call a 
position 

((u.(O) U(O)) . (U.(n-1) u·(n-1)) . ) p= o ' 1 ,to, ... , o ' 1 ,tn-1 

good for x if it has been played according to a (i.e., pEa) and x E uL~1 >. 
By convention, the empty position 0 is good for x. If every good for x 
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position p has a proper extension that is also good for x, then there is a 
run of the game according to a, which produces x E A, so player I won, 
giving a contradiction. 

So for each x E A there is a maximal good p for x. If p is as just 
defined, then 

x E A = {y E U(n- 1) ·'if legal (U(n) U(n)) if 
P tn-1 ' 0 ' 1 ' 

i is what a requires II to play 

next, then y ¢ uF">}. 
Thus, As;;; Upeo Ap. Now notice that Ap contains at most one point, since 

if Yo =ft Y1 belong to Ap and I plays (a legal) (U~n), U~n)) with Yi E Ui(n), we 
have a contradiction to the fact that Yi E AP' The tree of legal positions in 
G* (A) is countable and thus so is a, being a subtree of it. So A is countable. 

0 

Since the map that sends a run of G*(A), ((U~0>,u~0>),i0 , ... ) to x, 
where {x} = nn utn>, is clearly continuous (from [T] into X, where T is 
the tree of legal positions of this game), this shows that if A s;;; X is Borel, 
this game is determined, so we have one more proof that an uncountable 
Borel set in a Polish space contains a Cantor set. (If the space X on which 
we are working is not perfect, replace it by its perfect kernel.) Recall that 
in 14.13 we proved that this so-called perfect set property also holds for all 
analytic sets. We can, in fact, prove this extension by using a further trick, 
called unfolding, which actually allows us to use only the determinacy of 
closed games. 

21.B Unfolding 

Suppose now X is a perfect Polish space, and let F s;;; X x N. Consider 
then the unfolded *-game G~(F): 

I y(O), (U~O), U~0)) y(1), (U~ 1 ), U~ 1 )) 

II zo 

I and II play moves as in the *-game, but additionally I plays y(n) EN in 
her nth move. If x is defined as before, then I wins iff (x, y) E F. 

(21.2) Theorem. Let X be a perfect Polish space, F s;;; X x N, and A = 
proh(F). Then 

i) I has a winning strategy in G~(F) ='*A contains a Cantor set. 
ii) II has a winning strategy in G~(F) ='* A is countable. 

Pr·oof. i) If I has a winning strategy in G~(F), then it is immediate that 
(by ignoring the y(n)'s) I has a winning strategy in G*(A), so A contains 
a Cantor set. 



21. Games People Play 151 

ii) If now II has a winning strategy a in G~(F), let x E A and choose a 
"witness" y0 with (x, Yo) E F. As in 21.1 there must exist a maximal good 
for (x, Yo) position 

where good means that pEa and x E ut_~1 ). So if a= y0 (n), we have that 

X E A~,a = { z E ut_~l) : \f legal (a, (Ucin), uin>)), 

if i is what a requires II to 

play next, then z ¢ ui<n>}. 

So A s;;; UPE<T,aEN A~,a and, as in 21.1, A~,a contains at most one element. 
So A is countable. 0 

In particular, if A s;;; X is analytic and (by 14.3) we choose F s;;; X x N 
closed with projx(F) = A, we have that G~(F) is a closed game for I, so 
determined. Thus, either A is countable or contains a Cantor set, so we 
have another proof of 14.13. 

(21.3) Exercise. For A s;;; 2N consider the following game 

I s0 s1 

II zo i1 

Sn E 2<N, in E {0, 1}. Let x = so"io" s1 "i1" .. ·.Then I wins iff x EA. 
Show that this game is equivalent to G*(A). (So it is also usually 

denoted G*(A).) Study its unfolded version as well. 

(21.4) Exercise. Define explicitly a game on A= Pow(2N) and show, without 
l1sing the Axiom of Choice, that it is not quasidetermined. (Recall 20.10.) 

21.C The Banach-Mazur or **-Games 

Let X be a nonempty Polish space and d a compatible complete metric on 
X. Also let W be a countable weak basis for X and let A s;;; X. We define 
the **-game G"'*(A) as follows: 

I Uo U1 

II Vo 

Ui, ViEW; diam(Un),diam(Vn) < 2-n, Uo 2 Vo 2 U1 2 V1 2 ···.Let x 
be such that {x} = nn Un = nn V n· Then II wins iff x EA. 
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This game is a variant of the Banach-Mazur game G** (A) as defined in 
8.H, but it is easy to see (compare, e.g., 8.36) that it is actually equivalent 
to it, so there is no danger of confusion. From 8.33 we have: 

i) I has a winning strategy in G** (A) <=?A is meager in some nonempty 
open set. 

ii) II has a winning strategy in G* * (A) <=? A is comeager. 

We can also consider the unfolded version of this game which allows 
us to show that all analytic sets have the BP. 

Let F ~ X x N, and define the unfolded **-game G~* (F) as follows: 

I Uo U1 

II y(O), Vo y(I), v1 
I and II play U0 , Vo, ... as in the **-game, but additionally II plays y(n) EN 
in her nth move. If x is defined as before, II wins iff ( x, y) E F. 

(21.5) Theorem. Let X be a Polish space, F ~X x N, and A= proh(F). 
Then 

i) I has a winning strategy in G~* (F) "* A is meager in some nonempty 
open set. 

ii) II has a winning strategy in G~* (F) ='*A is comeager. 

Proof. ii) If II has a winning strategy in G~*(F), she also has one in G**(A). 
i) Let Uo be I's first move by a winning strategy a. We will show 

that A is meager in U0 . Given x E An U0 , choose a witness y0 EN with 
(x, Yo) E F. Call a position 

p = (Uo, (Yo(O), Vo), · · ·, Un-1, (yo(n- 1), Vn-1), Un) 

good for (x, Yo) if p E fT and x E Un· Again it is clear that not every good 
position has a proper good extension, so let p be a maximal good for (x, yo) 
position. If a = y0 ( n) and p is as defined above, then 

x E Fp,n. = {z E U.,:,.: \f legal (a, V,~), if 

U n+l is played next by I 

following a, then z ~ Un+l}· 

Clearly, Fp,a is a dosed in Unset and has no interior, since if Vn is a set in the 
weak basis with Vn ~ Fp,a and diam(Vn) < 2-n, and II plays (a, Vn) in her 
nth move, then I, following a, plays Un+l ~ V .. , with Un+lnFp,a = 0, which 
is a contradiction. So Fp,a is meager and since AnUo ~ UPE<T,aEN Fp,a, An 
Uo is meager t.oo. 0 

In particular, if we take A to be analytic and choose F to be closed, so 
that the game G~*(F) is closed too, and thus determined, we obtain that 
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i) or ii) of the theorem holds, in particular that G**(A) is determined. But 
then, by 8.35, it follows that all ctnalytic sets have the BP. Thus we have 
the following result. 

(21.6) Theorem. (Lusin-Sierpinski) Let X be a Polish space. Then all an­
alytic sets have the BP. 

It also follows that all sets in 17(Et} have the BP, so by 18.1 every 
analytic set has a Baire measurable uniformizing function. 

(21.7) Exercise. Consider the game defined in the second part of 8.36. For 
countable A, analyze its unfolded version. 

21.D The General Unfolded Banach-Mazur Games 

The proof of 21.5 makes use of the existence of a countable weak basis 
for X. Actually, one can prove a much more general version of this fact 
which avoids such couutability assumptions and therefore applies to such 
topologies as the Ellentuck and the density with further applications. 

We will consider nonempty topological spaces X that are Choquet and 
have a metric whose opeu balls are open in X (see 8.33 ii)). Fix a weak basis 
W for X. As before, it is easy to see that for A ~ X the Banach-Mazur 
game G**(A), as defined in 8.H, is equivalent to the following: 

I Uo U1 

II Vo 

Ui, Vi E W, Uo :2 Vo :2 U1 :2 V1 :2 · · ·, diam(Ui), diam(Vi) < Ti. II wins 
iff nn \-:'n ( = nn Un) ~ A. 

Suppose now F ~ X x N, and let A - proh(F). Consider the 
l)nfolded Banach-Mazur game G~* (F) 

I Uo U1 

II y(O), Vo y(1), V1 

Ui, ViEW, Uo :2 Vo :2 U1 :2 '1/1 :2 · · ·, dianl(Ui),dia.m(Vi) < 2-i. II wins 
iff nn Vn x {y} ~F. 

Note that in both games if a player has a winning strategy then, since 
X is Choquet, she can guarantee, by modifying her winning strategy, also 
that nn Vn (= n, Un) is nouempty, thus a singleton (see the proof of 8.33 
ii)). 

We now have the next theorem. 

(21.8) Theorem. Let X be a nonempty Choquet .c;pace that admits a metric 
rtiJhose open balls are open in X. Let F ~ X x N and A = proh (F). Then 
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i) I has a winning strategy in G~*(F) "* A is meager in a nonempty 
open set. 

ii) II has a winning strategy in G~* (F) ='* A is comeager. 

Proof. ii) is clear, since if II has a winning strategy in G~*(F), II clearly 
has a winning strategy in G** (A). 

i) Let a be a winning strategy for I. Let Uo be her first move by a. We 
will show that A is meager in Uo. 

Fix a fiuite sequence u. E N<N of positive length. We say that a finite se­
quence (Uo, Vo,Ut, V1, ... ,Un), with n < length(u), or (Uo, Vo, ... ,u .. , V,,) 
with n < length( u), is compatible with a, u if (Uo, ( u(O), Vo), U1, ( u(l), V1 ), 
... ,Un), respectively (Uo,(u(O),Vo), ... ,U .. ,(u(n),Vn)), is in a. It is easy 
now (see, e.g., the proof of 8.11) to construct for each u a tree Tu. of com­
patible with a, u sequences such that: 

a) For any (Uo, Vo, ... , Un) E Tu, the family U = {Un+l : (Uo, Vo, ... , 
U • ., V,., Un+l) E Tu} is pairwise disjoint and UU dense in Un if n + 1 < 
length(u). 

b) If u C u', then Tu is the restriction of Tu' to the sequences as above 
with n:::; length(u), respectively n <: length(u). 

Then let Wu = U{Utength(u) : (Uo, Yo, ... , Utength(u)) E Tu}· Thus Wu 
is open dense in Uo for each u E N<N. Let G = nu Wu. Then G is comeager 
in U0 , so it. is enough to check that G ~ "' A (i.e., if x E G then 'ify E 
N(x, y) rtF). Fix 11 EN. Since X En .. Wu, in particular X E nn Wyin• and 
so by a) and b) there is unique (Uo, Vo, ... , Un, V.., ... ) such that :1: E Un 
for each nand (U0 , (y(O), V0 ),U1, (y(l), Vt), ... ) E [a]. So (x,y) rtF and we 
are done. 0 

Now consider a Polish .space (X, 7) and let 7' 2 7 be another topol­
ogy on X which is Choquet. Let d be a compatible complete metric for 
(X, 7). The preceding result clearly applies to (X, 7'). Actually, it is more 
convenient to work in this context with the following equivalent variant of 
G**(A). Fix a weak basis W for 7'. Consider then the game 

I Uo Vt 

II V0 V1 

Ui, ViEW, Uo :::> Vo 2 Ut 2 V1 2 · · ·, diam(Ui),diam(Vi) < Ti. II wins 

if X E A, where {x} = n .. v~ (= n71o U~), with U
7 

=the closure of u in 
7. 

We define the unfolded games G~* (F) for F C X x N. Note here that 
ifF is closed in (X, 7) x N, then G~*(F) is determined, being a closed 
game. 
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(21.9) Theorem. (Silver) Let S ~ [Nt0 be analytic. Then S is completely 
Ramsey. 

Proof. Let [a, A] be any basic open set in the Ellentuck topology. Note that 
[a, A] is elosed in the usual topology of [Np-to. By applying Theorem 21.8 
and the preceding remarks to X = [a, A], 7 = the usual topology, 7' = 
the Ellentuck topology, we have that either S is comeager in [a, A] or there 
is [b, B] ~ [a, A] with S meager in [b, B]. 

In order to show that S is completely Ramsey, it is enough, by 19.14, 
to show that S has the BP in the Ellentuck topology; for the latter, it is 
enough to show by 8.29 that S \ U(S) is nowhere dense. Otherwise, there 
is [a, A] ~ S \ U(S), where closure is in the Ellentuck topology. If S is 
comeager in [a, A], then by definition [a, A] ~ U(S), contradicting the fact 
that [a, A] n (S \ U(S)) and thus [a, A]\ U(S) is nonempty. There must be 
therefore [b, B] ~ [a, A] with S meager in [b, B], so by 19.17 there is [b, B'] 
with B' ~ B such that [b, B'] ~ "' S. Since [b, B'] ~ [b, B] ~ [a, A], we 
have that [b, B'] n ( S \ U ( S)) (and thus [b, B'] n S) is nonempty, which is a 
contradiction. 0 

A set A ~ X, where X is a standard Borel space, is called univer­
sally measurable if it is JL-measurable for any a-finite Borel measure JL on 
X. A function f : X --+ Y between standard Borel spaces is universally 
measurable if it is JL-measurable for any a-finite Borel measure JL. 

(21.10) Theorem. (Lusin) Let X be a standard Borel space. Every analytic 
set S ~ X is universally measurable. 

Proof. Let JL be a li-finite Borel measure on X. We will show that S is J..t­
mea8urable. Since JL is equivalent to a probability measure, we can assume 
that J1 is actually a probability measure. By separating JL into its continuous 
and discrete parts, we can assume, without loss of generality, that JL is 
continuous. Then by 17.41 we can assume that X = (0, 1) and that JL is 
Lebesgue measure. 

Let P = "' S and p..(P) = sup{JL(A) : A ~ P, A Borel}. Clearly, 
JL.(P) = JL(A) for some Borel A~ P. Let P' = P\ A. Then JL.(P') = 0 and 
P' E ll}. If P' has J..t-measure 0, then P' ~ B for some Borel set B of JL­
measure 0, so A~ P ~ AUB and JL(A) = JL(AUB); thus P il'i JL-measurable, 
and so isS. Therefore it is enough to show that P' has JL-measure 0. 

As in the proof of 21.9, but working now with the density topology 
(see 17.4 7), we see that either "' P' is co meager or else "' P' is meager in 
a nonempty open set in this topology. In the first case, by 17.47, P' has 
measure 0 and we are done. In the second case, let U be nonempty open in 
the density topology so that U \ P' is meager. Thus U \ P' has measure 0, 
so U \ P' ~ G, where G is Borel of measure 0. Then U \ G ~ P' and U \ G is 
measurable of positive measure, thus JL.(P') > 0, which is a contradiction. 
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In particular, every set in a(I:D is universally measurable. Thus it 
follows (from 18.1) that every analytic set admits a universally measurable 
uniformizing function. 

(21.11) Exercise. Given X ~ [Np-to, consider the following game: 

I (ao,Ao) (a2,A2) 

II 

ai E Un[N]n, Ai E [N]No, ai < Ai, ai+l ~ ai, ai+l \ ai ~ Ai, Ai+l ~ 
Ai, card(ai) 2: i + 1. Let A= Un an E [N]No. II wins iff A E X. 

Show that this game is equivalent to the Banach-Mazur game for the 
Ellentuck topology (and similarly, for the unfolded version). 

(21.12) Exercise. For A~ (0, 1) consider the following game: 

I Fo F2 

II F1 F3 

Fi ~ (0, 1), Fi closed, Fo ~ F1 ~ F2 ~ · · ·, diam(Fi) < 2-i, m(Fi) > 0 (m 
is Lebesgue measure). Let {x} = nnFn. II wins iff x EA. 

Show that this game is equivalent to the Banach-Mazur game for the 
density topology (and similarly, for the unfolded version). 

21.E Wadge Games 

(21.13) Definition. Let X ,Y be sets and A ~ X ,B ~ Y. A reduction of A 
to B is a map f:X--+ Y with f- 1(B) =A, i.e., x E A<* f(x) E B. If X,Y 
are topological spaces, we say that A is Wadge reducible to B, in symbols 
A :::;w B, if there is a continuou.'l reduction of A to B. (Strictly speaking, 
we should write (X,A) :::;w (Y,B), but X,Y are usually understood.) 

This gives a notion of relative complexity of sets in topological spaces. 
If A :::; w B, then A is "simpler" than B. It is easy to see that :::; w is re­
flexive and transitive (i.e., a partial preordering) which is called the Wadge 
(pre)ordering. We will study here the Wadge ordering on Borel sets iu 
zero-dimensional Polish spaces. 

From now on we will consider sets A iu nouempty zero-dimensional 
Polish spaces X. By 7.8 we can view X as a closed subspace of N, thus 
X= [T] for a uonempty pruned tree on N. 

(21.14) Theorem. (Wadge's Lemma) Let S,T be nonempty pruned trees 
on N, and A ~ [S], B ~ [T] be Borel sets. Then either· A :::;w B or 
B :::;w'"" A ( = [S] \A). 
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Proof. Consider the Wadge game WG(A, B), 

I x(O) x(l) 

II y(O) y(l) 

x(i), y(i) E N; xln E S, yin E T for all n. II wins iff (x E A<=? y E B). 
Since A, B are Borel, this is clearly a Borel game, so determined. 
Suppose first that II has a winning strategy. We can view this strategy 

as a monotone map <p : S ---4 T such that length(<p(s)) = length(s) (a 
Lipschitz map; see 2.7). Thus <p gives rise to a continuous map <p* : [S] ---4 

[Tj. Since t.p is winning for II, x E A<=? <p*(x) E B, so A <w B. 
Notice that I wins the above game if (x ¢ A<=? y E B). So, as above, 

if I has a winning strategy, then B ~ w""' A. 0 

For sets A, B as above, let 

A =w B <*A ~w B & B <w A. 

This is an equivalence relation, whose classes 

A= [A]w 

are called Wadge degrees. We denote by WADGE the set ofWadge degrees 
and by WADGEB the set of Wadge degrees of Borel sets. Let also, 

A ~ B <* A ~w B, 

so that (WADGE, <)is a partial ordering. For each A define its dual A by 

A= [rv A]w. 

Note that A :::; B <* A :::; B. 
It is possible that A = A. For example, take X = 2N, A = N(o) = { x E 

2N : x(O) = 0}. It is also possible that A =fA. Take, for instance, A= 0 or 
for a more interesting example, A = Q = a countable dense subset of 2111 • 

When A =f A, the Wadge degrees A, A are clearly not (::=;-) comparable. 
\Vadge's Lemma asserts that, for Borel sets, these are the only incomparable 
pairs of Wadge degrees, in fact, for any given A, B with B =f A, A we must 
have B :::; A, A or A, A :::; B. 

We can define then a coarser equivalence relation by identifying A, A. 
Let 

A =W,· B <*A =w BorA =w""' B, 

and let 
A* = [A]w u [""' A]w = Au A. 

We call A* the coarse Wadge degree of A and denote the set of these coarse 
degrees by WADGE* (WADGE'B if we look at Borel sets only). Again, we 
can define an ordering on it by 
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Thus Wadge's Lemma says that (WADGE'B, :::;*) is a linear ordering. 
We will next show that it is actually a wellordering. 

First note though that if A~ [T], then there is B ~ N with A =w B. 
To see this, fix a continuous surjection f : N --+ [T] with f peing the identity 
on [T] (see 2.8). Put B = f- 1(A) ~ N. Then B :::;w A. But the identity 
map from [T] intoN also shows that A <w B. Thus, when studying Wadge 
degrees, we can work just with subsets of N. 

(21.15) Theorem. (Wadge, Martin) The ordering (WADGE'B, <*) is a well­
ordering. 

Proof. (Martin-Monk) It is enough to show that there is no infinite de­
scending chain · · · <* A2 <* Ai < A0, with Borel Ai ~ N. If such existed, 
toward a contradiction, then player I would have a wimling strategy, say a?,, 
in WG(A .. ,An+l) (since An iw A .. +l) and I would also have a winning 
strategy, say a!., in WG(An,""' An+l) (since An iw""' An+l)· 

O:x(O) 
0 

II 

II 

II 

FIGURE 21.1. 

)3(0) 

/ 
)3(1) 

(1)~,4:....._ ___ (_1) 

J3 Y4 
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(2)~~---(-2) 
J3 Y4 

/ / 

Fix x E 2N. Consider the diagram in Figure 21.1. I plays y~n) in the nth 

game following a;<n). This fills the first column. Then II copies as shown 
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to play y~n.+l) in the nth game. This fills the second column. I responds by 
following a;<n) in the nth game to play y~n). This fills the third column, 

etc. Let Yn(x) = (y~n))kEN· Then 

where A~= An, A~="-' A... Let 

X= {x E 2N :Yo(:~:) E Ao}. 

Since x ~--+ Yn(x) is continuous, X is Borel and thus has the BP. Notice 
now that if x, x E 2N and x, x differ at exactly one point, say x( n) = x( n) 
for n =F k, but x(k) =F x(k), then x E X <=? x rt X. To see this, note that 
Yn(x) depends only on x(n), x(n + 1), ... , so Ye(x) = Ye(x) iff> k. Then, 

by(*), Yk(x) rt Ak <=? Yk+l(x) E A~~l <=? Yk+l(x) E A~~l <=? Yk+l(x) rt 
A~~l <=? Yk(x) E Ak. Finally, since x(n) = x(n) for n < k, it follows from 
(*)again that Yo(x) E Ao <=? Yo(x) rt Ao. 

We will now derive a contradiction by showing that X does not have 
the BP. Otherwise, by 8.26, there is n E N and s E 2", so that X is 
either meager or comeager in N8 • Let t.p : N8 --+ N 8 be the homeomorphism 
given by ~P((xi)) = (xo, ... ,Xn-1! 1- Xn,Xn+l! .. . ). Then x EX<=? t.p(x) rt 
X, so t.p(X n N5 ) ="'X n N8 , which is a contradiction. 0 

We call a Wadge degree A self-dual if A = A. The following facts 
have been proved by Steel-Van Wesep (seeR. Van Wesep [1978]). If A is 
a self:.dual (resp., not self-dual) degree and B* is the successor of A* in 
(WADGE'B, <*), then B is not self-dual (resp., is self-dual). Moreover, it 
is easy to see that the least element of this ordering is [0]w U [N]w. At a 
limit stage A in the wellordering (WADGE8, ~*)we have a self-dual degree 
if cofi'nality(A) = w, and a non-self-dual degree if cofinality(A) > w. Finally, 
the ordinal type of (WADGE'B, <*)is a limit ordinal e, where wl < e < W2· 

Thus we have the following picture of the partial ordering of Wadge degrees 
(and by identifying a degree with its dual, of the wellordering of coarse 
Wadge degrees) of Borel sets: 

• • • • 
• • • 

• • • • 
(0) (1) (2) (3) (w) (w+ 1) 

Thus the Wadge ordering <w imposes an (essentially wellordered) hi­
erarchy on the Borel sets, called the Wadge hierarchy. Since the classes 
I:~, n~ are closed under continuous preimages, these classes are initial seg­
ments of the Wadge hierarchy. The Wadge hierarchy gives a very detailed 
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hierarchical analysis of the Borel·sets, much finer than that given by the 
classes I:~, n~. 

(21.16) Exercise. Show that [0]w = {0}, [N]w = {N} occupy level 0 of 
the Wadge hierarchy. Show that the clopen sets that are =f 0,N occupy 
level 1 of this hierarchy. Show that level 2 consists of U, F, where U is 
open, not closed, and F is closed, not open. Show that level 3 consists of 
A= [U E9 F]w, where U, Fare as above and U $ F = {i'x: (i even & x E 
U) or ( i odd & x E F)}. (It can be shown that level w1 is occupied by A, A, 
where A is F0 but not Gn.) 

(21.17) Exercise. Show that if Q ~ 2N is countable dense, then A :::;w Q 
for any A~ N in F0 • 

21.F Sepamtion Games and Hurewicz's Theorem 

Let S, T be nonempty pruned trees on N and let A ~ [S] and Bo, B1 be 
subsets of [T] with B0 n B1 = 0. The following generalization of the Wadge 
game, which is also due to Wadge, is called the separation game of A, Bo, B1, 
denoted as SG(A; Bo, B1), 

I x(O) x(1) 

II y(O) y(1) 

x(i),y(i) E N; xln E S,yin E T. II wins iff (x E A ='* y E Bo) and 
(x ¢A"* y E B1). In particular, SG(A;B,"' B)= WG(A,B). 

As in the proof of 21.14;, if I has a winning strategy, there is a continuous 
fimction f : [T] --+ [S] induced by this winning strategy such that (y E B1 "* 
f(y) E A) and (y E B0 "* f(y) ¢A), so f- 1(A) separates B1 from Bo. If, 
on the other hand, II has a winning strategy, there is a continuous function 
g : [S] --+ [T] induced by her winning strategy such that g(A) ~ Bo and 
g(rv A)~ B1. 

We will use such games to prove Hnrewicz's Theorem 7.10 and, in fact, 
much stronger results. Let us first state the original form of Hmewicz's The­
orem, of which 7.10 is a special case. (For the following results it is relevant 
to recall the fact that every countable dense subset of C is homeomorphic 
to Q (see 7.12) and that its complement is homeomorphic toN (see 7.13).) 

(21.18) Theorem. (Hurewicz) Let X be a Polish space and A ~ X an 
analytic set. If A 1~<1 not Fo, then there is a Cantor set C ~ X such that C\A 
is countable dense in C, so that C n A is a relatively closed subset of A that 
is homeomorphic toN. Therefore, if B ~ X is co-analytic, then either B 
is G6 (i.e., Polish) or else B contains a relatively closed set homeomorphic 
to Q. 
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Let us mention some corollaries. 

(21.19) Corollary. (Same as 7.10) Let X be Polish. Then X contains a 
closed sub.'lpace homeomorphic toN iff X is not Kq. 

Proof. (of 21.19 from 21.18) If X is Kq, it clearly cannot contain a closed 
set homeomorphic toN, since N is not Kq. Conversely, if X is not Kq and 
X is a compactification of X, then X is not F q in X: so it contains a closed 
set homeomorphic toN. 0 

Recall that every Polish space is Baire and so is every closed subspace of 
it (also being Polish). We call a topological space completely Baire if every 
closed subspace of it is Baire. Is every separable, metrizable, completely 
Baire X a Polish space? 

(21.20) Exercise. Use the Axiom of Choice to show that there exists A C IR 
that is completely Baire but not Polish (i.e., Gn)· 

However, for "definable" X the answer to the question preceding 21.20 
turns out to be positive. Below, call a separable metrizable space co-analytic 
if it is homeomorphic to a co-analytic set in a Polish space. 

(21.21) Corollary. Let X be a .'leparable metrizable co-analytic space. Then 
X is Polish iff it contains no closed subset homeomorphic to Q iff it is 
completely Baire. 

Proof. (of 21.21 from 21.18) We can assume that X~ Y, where Y is Polish 
and X is n~ in Y. If X is not Polish, then X is not G6 in Y, so there is a 
closed subspace of X homeomorphic to Q. But Q is not Baire. 0 

We will now prove 21.18 by actually proving a stronger "separation" 
result. 

(21.22) Theorem. (Kechris-Louveau-Woodin) Let X be a Polish space, let 
A ~ X be analytic, and let B C X be ar·bitrary ·with An B = 0. If there 
is no Fq set separating A from B, then there is a Cantor set C C X such 
that C ~ A U B and C n B is countable dense in C. In particular, C n B is 
homeomorphic to Q and C n A is homeomorph-ic toN. 

Hurewicz's Theorem 21.18 follows by taking B ="'A. 

Proof. (of 21.22) First we will verify that it is enough to prove the theorem 
for X= C. 

It is clear that we can replace X by a eompactific.ation X, so we may 
as well assume that X is compact. Then let 1r : C --+ X be a continuous 
surjection and put A'= 1r- 1(A), B' = 1r- 1(B). Then A' is analytic, A' n 
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B' = 0 and if an Fq set F' separates A' from B', then, as it is actually 
K,7 , 1r(F') is also Kq and separates A from B. So if the result holds for 
C, there is a Cantor set H <;;;; C with H <;;;; A' U B' and H n B' countable 
dense in H. Then K = 1r(H) is a closed subset of X, K <;;;; AU B, and 
K n A, K n Bare disjoint dense subsets of K, with K n B countable. 

In particular, K is perfect. It is easy now to construct a Cantor set C <;;;; 

K having the same properties. Just construct a Cantor scheme (Cs)se2<N, 

where Cs is open inK, diam(Cs) < 2-length(s), C .• ·i <;;;; C8 , together with 
points x,. E Cs n B such that x 8 ·o = x8 for all s. Then the set C = 

U:r.eC nn c,ln has all the required properties. 
In fact, from the preceding argument, we see that it is actually enough 

to prove the following: 

Let A, B <;;;; C, A analytic, and AnB = 0. If there is no Fq set separating 
A from B, then there is a closed set K <;;;; C with K C AUB, KnA,KnB 
dense in K and K n B countable. 

To prove this, consider the separation game SG(Q; B, A), where Q <;;;; C 
is a countable dense set. We note first that player I cannot have a winning 
strategy in this game, because a winning strategy would induce a continuous 
function f: C--+ C such that (yEA~ f(y) E Q) and (y E B "* f(y) ¢ Q). 
But then /- 1(Q) is Fq and separates A from B, a contradiction. 

So, if this game is determined, II has a winning strategy, which again 
induces a continuous function g: C--+ C such that g(Q) <;;;;Band g(rv Q) <;;;; 

A, so if K = g(C), K <;;;; AUB, KnA,KnB are dense inK and KnB 
is countable, so we are done. However, it is not clear how to prove that 
this game is determined since, among other things, B is arbitrary (not eveu 
necessarily "definable"). 

So we will work instead with an appropriate "unfolded" game. Denote 
by 1r1 : C x C --+ C the projection to the first coordinate. By 14.3, let 
G <;;;; CxC be G.s so that 1r1 (G)= A. Put Uo = U{U open in CxC: 1r1(UnG) 
can be separated by an Fq set from B}. Clearly, G \ U0 = G0 =f 0 since 
the union of countably many Fq sets is Fq. Also, G0 is G.s. Fix a basis of 
nonempty open sets {Wn} for Go (in the relative topology). We claim that 
1r1 (W.,.) n B =f 0. Indeed, otherwise, letting u:, be open with U~ n Go = Wn, 
we have that 1r1 (U~ n G) <;;;; 1r1 (ltrn) U 1r1 (Uo n G) <;;;; 1r1 (W.,) U 1r1 (Uo n G), 
which can be separated by an Fq set from B. Thus U~ <;;;; U0 , and soWn= 0, 
which is a contradiction. 

Therefore choose Xn E 1r1 (H-'n.) n B. Let Bo = {x.,. : n E N}. Then 
G0 , B0 x C are disjoint and there is no Fq set (in C x C) separating G0 

from Bo x C. To see this, let, toward a contradiction, Fn be closed with 
Go <;;;; Un Fn and (Un Fn) n Bo X c = 0. Then by the Baire Category 
Theorem (applied to the Polish space Go), there are m, n with W m <;;;; Fn: so 
7rl(Wm) <;;;; 7rl(Fn) since 7r1 (Fn) is closed, being compact. So Xm E 7rl(Fn), 
and thus Fn n (Bo x C) =f 0, which is a contradiction. 
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Consider the game SG( Q; Box C, Go). (To pnt it in the proper form as 
described in the beginning of this section, we can think of C x C as identified 
with C via the homeomorphism (x,y} = (x(O),y(O),x(1),y(1), ... ).) The 
payoff of this game is now a Boolean combination of G6 sets, so it is Borel, 
thus determined. Since there is no Fq set separating Go from Box C, player 
I cannot have a winning strategy as before. So II has a winning strategy, 
whkh again gives a closed set K' with K' C Go U (Bo x C), K' n G0 , K' n 
(Bo xC) dense inK' and K'n(Bo xC) countable. Then K = tr1(K') clearly 
~~. 0 

Let us finally notice oue more corollary of 21.22. Compare this with 
the perfect set theorem for analytic sets (see 14.13 and Section 21.B). 

(21.23) Corollary. (Kechris, Saint Raymond) Let X be Poliflh and A~ X 
be analytic. Either there is a closed set F ~ X homeomorphic to N which 
is contained ·in A or· elfle A is contained in a Kq subset of X (and exactly 
one of these alternatives holds). 

Proof. Consider a compactification X of X and let B = X \ X. If there is 
an Fq set separating A from B: then clearly A is contained in a Kq subset 
of X. Otherwise, there is a Cantor set C ~ X such that C ~AU (X\ X) 
and F = C n A = C n X is closed in X and homeomorphic to N. 0 

(21.24) Exercise. i) Recall that a tree T is perfect if every .s E T has 
an extension t 2 s in T with at least two distinct immediate extensions 
r a, r b E T (a =f b). We call T superperfect if every s E T has an extension 
t 2 s in T with infinitely many distinct immediate extensions in T. 

Show that if T is a nonempty superperfect. tree, then there is a closed 
subset of [T] which is homeomorphic to }\{, 

ii) Call A ~ N u-bounded if it is contained in a Kq subset of N 
(equivalently, if there is a countable set { Xn} ~ N such that 'ifx E A3n(x :::; 
x.,), where x < y {:::} x(i) < y(i), 'if'i). Show that ifF C N is closed, then 
F can be written uniquely as F =PUC, with P n C = 0, P = [T] with T 
snperperfect. (we call P itself superperfect in this case) and C a-bounded 
(which is an analog of the Cantol'-Bendixson Theorem). In particular, a 
closed set in N contains a closed subset homeomorphic to N iff it contains 
a nonempty superperfect set. 

iii) For A~ N consider the game G(A): 

I so Sl 

II 

si E N<N \ {0}, ki EN, si(O) > ki. I wins iff so·s1 ·s2· · · · E A 
Show that 

a) I was a winning strategy in G(A) {:::}A contains a nonempty super­
-perfect set. 
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b) II has a winning strategy in G(A) <=?A is a-bounded. 
Consider also the unfolded version of this game, and use it to show 

that for analytic A~ N, either A contains a nonempty superperfect ~tor 
A is a-bounded. (This is another proof of 21.23 for X= N.) 

21. G Turing Degrees 

Recall from 2.7 that every continuous function f: G ~ N, where G ~ N in 
G6, has the form f = <p* for some monotone <p : N<N --+ N<N. We call such 
a <p recursive (or often computable) if there is an algorithm that for each 
s E N<N computes the value <p(s). Note that there are only countably many 
such t.p. Given x, y EN, we say that x is recursive in y, in symbols x <T y, 
if there is recursive <pas above with <p*(y) = x. Intuitively, this means that 
x is computable relative to y. Since the identity is computable and if <p, '1/J 

are recursive, so is <p o '1/J, the relation :::;T is reflexive and transitive. Define 
the Turing equivalence relation x =T y by 

X =T Y <=? X <T Y & Y :::;T X. 

Its equivalence classes 
X= [x]T 

are called Turing degrees, and their set is denoted by D. On D we define 
the partial ordering 

X < Y <=?X <T Y· 

The study of the structure of (D, <) occupies a large part of recursion (or 
computability) theory. Tl.ris structure is very complex, but here are some 
elementary fact.s: 

i) (D, <) has a least element denoted by 0. It is defined by 0 = [0], 
where 0 = (0, 0, ... ). Clearly, 0 consists of the recursive .r EN, i.e.: those 
functions x : N --+ N that can be computed by algorithms. 

ii) The initial segments Ia = {b : b :::; a} are countable, but D has 
cardinality 2No. 

iii) (D, <) is not linearly ordered. This can be seen as follows: Notiee 
first that the relation :::;Tis :Eg (inN xN). If { t.p.,} enumerates the recu.Jsive 
monotone maps, then 

x <T y <=? 3n[ lim length('Pn(Yik)) = oo 
k-+oo 

& \fk(t.pn(Yik) ~ x)]. 

So <r has the BP. Now {x : x <T y} is c01mtable and thus meager. By 
8.41, <Tis meager, hence for comeager many x, {y: x :::;T y} is meager. 
Then if x <T y or y :::;T x holds for any x, y, N must be meager, which is 
a contradiction. 
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iv) Any two x,y ED have a least upper bound x V y = [(x(O),y(O), 
x(1),y(1), ... )]T (but in general not a greatest lower bound). 

v) Any sequence xo, x 1 , .•. in D has an upper bound (but not neces­
sarily a least one). Indeed, fix a recursive bijection (} : N x N--+ Nand let 
x((rn,n}) = Xm(n). Then xi< x, for each ·i. 

vi) (D, ~) has no maximal element. Indeed, given y, the set { x : x ~ y} 
is countable, so let zED be such that z 1: y. Then if y* = y V z, we have 
that y < y*. 

The cone of an element x E D is the set 

Cx = {Y E D : y > x}. 

We have now the following important fact about (D, ~). 

(21.25) Theorem. (Martin) Let A <; D be Borel, in the sense that A* = 
{x E N:x E A} is Borel. Then for some xED, Cx <;A or Cx <;"'A. 

Proof. Consider the game G(A*): 

I a(O) a(2) 

II a(1) a(3) 

a(i) EN. I wins iff a E A*. 
This game is Borel, :m determined. Say I has a winning strategy. (The 

argument in the other case is similar.) We will view this strategy as a map 
'1/J : N<N --+ N (see 20.A). Fix now a recursive bijection t.p : N --+ N<N 
and let x = '1/J o t.p so that :1: E N. We claim that Cx <; A. Let y E Cx 
so that x is recursive in y. Consider the run of the above game in which 
II plays ( a.(1), a(3), ... ) = y and I responds by 1/J to play (a(O), a(2), ... ). 
Then y <T a, so y < a. But also, a ~T (y(O), x(O), y(1 ), x(1 ), ... ), so 
a~ y V x = y, thus a= y. Since a E A, yEA, and we are done. 0 

Consequently, in any Borel partition of D into two pieces, one (and 
by iv) above, exactly one) of the pieces contains a cone. We define the 
Martin measure on the Borel snhsets of D by asserting that such a set 
has measure 1 if it contains a cone, and measure 0 otherwise. Since, by 
v ), the intersection of countably many cones contains another cone, this 
is a countably additive { 0, 1 }-valued mea.'lure on the Borel subsets of D. 
(Note that the only such measures on a standard Borel space are the Dirac 
measures.) 

(21.26) Exercise. Show that if A <; Dis Borel and cofinal (i.e., 'Vx E D3y E 
A(x ~ y)), then A contains a cone. 

Call y E D a minimal cover if there is x < y so that y is minimal 
above x, i.e., there is no z with x < z < y. A theorem of G. E. Sacks [1963] 
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shows that for any x E D there is y E D minimal above x. Use this to show 
that there is a cone consisting solely of minimal covers. 

(21.27) Exercise. Let A<; D be Borel and let A* = {x EN: x E A}, A'= 
{x E C: x E A}. Show that A* (and A') is meager or comeager. Show that 
if J.Lc is the usual product measure (Haar measure) on C (see Example 3) in 
17.B), then J.Lc(A') = 0 or 1. (This shows that category and measure also 
provide countably additive { 0, 1 }-valued measures on the Borel subsets of 
D.) 
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22. The Borel Hierarchy 

22.A Universal Sets 

For any metrizable space X recall the definition of the Borel hierarchy 
:E~(X), ll~(X), A~(X) in Section 11.B. Without repeating it explicitly, in 
this notation we always assume that 1 < ~ < w1 . 

Note that if X c Y, then :E~(X) = :E~(Y)IX = {An X: A E :E~(Y)} 
and similarly for ll~. But this fails in general for A~(X). Consider, for 
example, Q <; IR and let A C Q be such that A, Q \ A are dense. Then 
A E A8(Q), but there is no B <; IR in A~(IR) with B n Q = A. It is true, 
however, for ~ > 2 and X Polish, as it follows easily from 22.1 for ~ > 3 
and from 22.27 for~= 2. 

Let us note the following simple closure properties of the classes 
:E~,n~, and At 

(22.1) Proposition. For each~ > 1, the classes :E~,n~, and A~ are closed 
under finite intersections and unions and continuous preimages. Moreover, 
:E~ is closed under countable ?Lnions, n~ under countable intersections, and 
A~ under complements. 

Proof. By induction on~· 0 

There is a partial converse to closure under continuous preimages; see 
24.20. 

The classes :E~, n~, and A~ provide for each Polish space X a hierarchy 
for B(X) of at most w1 levels. We will next show that this is indeed a proper 
hierarchy, i.e., all these classes are distinct, when X is uncountable. This is 
based on the existence of universal sets for the classes :E~, and n~. 

(22.2) Definition. Let r be a class of sets in various spaces (such as :E~,n~, 
Borel, :Ef, etc.). We denote by r(X) the collection of subsets of X which are 
in r. We say that a set U <; YxX is Y-universal for r(X) if U E r(YxX) 
and {Uy:y E Y} = r(X). (Thus in the proof of 14.2 we have shown that 
there exists a set that is N -universal for E~ (N).) Such a universal set 
provides a parametrization (or· coding) of the set.~ in r(X), where we view 
y as a parameter (or wde) of Uy. 

For any class of sets r, we denote by t its dual class 

f'( X) = ""' r( X) = {X \ A : A E r( X)} 

and by~ its ambiguous part 

~(X)= r(X) n f'(X) = {A<; X: A,""' A E r(X)}. 
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(22.3) Theorem. Let X be a separable metrizable space. Then for each~> 1, 
there is a C-universal set for :E~(X) and similarly for ll~(X). 

Proof. We proceed by induction on~· Let {Vn} be an open basis for X. Put 

(y,x) E U {::} y E C & x EX & 

X E U{Vn: y(n) = 0}. 

Then U E :E~(C x X) and {Uy : y E C} = E?(X), soU is C-universal for 
EY(X). 

Note next that ifU is Y-universal for r(X), then"' U is Y-universal for 
the dual class f'(X). In particular, there exists a C-universal set for nY(X), 
and if there is a C-universal set for :E~(X), there is also one for ll~(X). 

Assume now that C-universal sets UTI for n~(X) are given for all TJ < ~· 
Let 'fin < ~, n E N, be such that 'fin :::; 'fln+l and sup{ 'f/n + 1 : n E N} = ~· 
For each y E C, let (Y)n E C, n EN, be defined by (Y)n(m) = y((n,m}), 
where ( } is a bijection of N x N with N. Then y ~----+ (y )., is continuous and 
for any sequence (Yn) E CN there is y E C with (y), = Yn> 'ifn EN. Put 

(y,x) E U {::} 3n((Y)n,x) E UT/n' 

Then U is C-universal for :E~(X). 0 

(22.4) Theorem. Let X be an uncountable Polish space. Then for each~. 
:E~(X) =f ll~(X). Then4or-e A~(X) ~ :E~(X) ~ A~+l (X), and similarly 
for ll~(X). 

Proof: Since X is uncountable, we can assume that C <; X. So if :E~(X) = 

n~(X), then :E~(C) = :E~(X)IC = ~(X)IC = llg(C). Let U be C-universal 
for :E~(C). Put yEA{::} (y,y) ¢ U. Then A E lle(C) = E~(C), so for wme 
Yo E C, A= Uy0 , which is a contradiction. 0 

(22.5) Exercise. Show that if X is an uncountable Polish space and A is a 
limit ordinal, then 

U :E~(X) ( = U ll~(X) = U A~(X)) ~ A~(X). 
e<>- e<>- e<>-

(22.6) Exercise. Show that if X, Y are Polish and Y is uncountable, then 
there exists a Y-universal set for :E~(X), and similarly for ll~(X). 

(22.7) Exercise. A class r is called self-dual if it is closed nnder complements 
(i.e., r = f'). Show that if r, a class of sets in metrizable spaces, is closed 
under continuous preimages and is self-dual, then for any X there cannot 
be an X-universal set for r(X). Conclude that the classes A~(X) cannot 
have X-universal sets. 



22. The Borel Hierarchy 169 

(22.8) Exercise. Show that for any uncountable Polish X, :E~(X) is not 
closed under either complements or countable intersections. Also ll~(X) is 
not closed under either complements or countable unions and, for ~ ~ 2 or 
~ = 1 and X zero-dimem;ional, A~(X) is not closed under either countable 
unions or intersections. 

22.B The Borel versus the Wadge Hiemrchy 

We discuss here the relationship between the Borel and the Wadge hierar­
chies. 

If A E :E~ (resp., nv and B ~w A, then B E :E~ (resp., nv. So :E~ 
and n~ are initial segments of <w. We will next see that all the sets in 
:E~ \ n~ are maxima in ~w among all :E~ sets (and similarly switching :E~ 
and ll~). 

(22.9) Definition. Let r be a class of sets in Polish spaces. If Y is a Polish 
space, we call A ~ Y r-hard if B ~w A for any B E r(X), where X 
is a zero-dimensional Polish space. Moreover, if A E r(Y), 'We call A r­
complete. 

Note that if r is not self-dual on zero-dimensional Polish spaces and 
is closed under continuous preimages, nor-hard set is in f'. Note also that 
if A is r-hard (r-complete), then "' A is t'-hard (t'-complete). Finally, if 
A is r-hard (r-complete) and A ~w B, then B is r-hard (r-complete, if 
also BE r). This simple remark is the basis of a very common method for 
showing that a given set B is r-hard: Choose an already known r-hard set 
A and show that A ~w B. 

(22.10) Theorem. (Wadge) Let X be a zero-dimensional Polish space. Then 
A ~ X is E~ -complete iff A is in :E~ \ n~. M oreove1·, a Borel set A ~ X is 
:E~ -hard iff it is not ll~ and 8imilarly interchanging E~ and ll~. 

Proof. If A is !:~-hard, it cannot be n~, since :E~(N) =f. ll~(N). If now A 
is Borel and A cj n~, Y is zero-dimensional and B ~ Y is :E~, then by 
Wadge's Lemma 21.14, A ~W"' B or B ~w A. The first alternative fails, 
soB ~w A. Thus A is !:~-hard. 0 

Recall from 21.16 that every clopen (=A?) set A, with 0 =f. A =f. N, 
is A~-complete. We will see in 22.28 that there is no A~-eomplete set for 
~ ~ 2. So for N we have the following picture of the Wadge degrees: 
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(22.11) Exercise. Show that if~ :::; 2 and X is an arbitrary Polish space, 
then every A <;: X, A E E~ \ ll~ is E~-complete (similarly, interchanging 
E~ and nv. 

It turns out that 22.11 holds (for any Polish space) for any~ :::: 1; see 
24.20. 

(22.12) Exercise. Let Y be Polish and U be Y-universal for E~(N). Show 
that U is E~-complete and similarly for ll~. 

(22.13) Exercise. Let X be Polish and let Ao, A1 <;: X be Borel sets with 
Ao n A1 = 0 and assume there is no E~ set separating A0 from A,. Let 
B <;: C be any n~ set. Show that for X = C there is a continuous function 
J: C--+ X with /(C)<;: Ao U At and B = r 1(Au). 

Again this holds for any Polish space X and ~:::: 1; see 24.20. Finally, 
26.12 and 28.19 are also relevant here. 

22. C Structural Pmperties 

(22.14) Definition. Let r be a class of sets. We say that r has the separation 
property if for· any X and A.B E r(X) with AnB = 0, there i.s C E ~(X) 
separating A from B. 

We say that r has the generalized separation property if for nny se­
quence A.. E r(X) with nn A.., = 0 there is a sequence Bn E ~(X) with 
An<;: Bn and nn B .. = 0. 

A class r has the reduction property if for any A,B E r( X) there are 
A*,B* E r(X) such that A*<;: A, B* <;: B, A* UB* = AUB, A* nB* = 0. 
(We say then that A* ,B* reduce A,B.) 

We say that r has the generalized reduction property if for any se­
quence An E r(X) then~ is a sequence A~ E r(X) 'UJith A;,<;: An~ A;,nA~ = 

0 for n =f m and Un An = UnA~· 
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Finally, r has the. number uniformization property if for any R s;;; 
X x N, R E r(X x N), there is a uniformization R* C R al8o in r(X x N). 

Let us note the following simple facts concerning these structural prop­
erties of a class. For convenience, let us call a class r reasonable if for any 
sequence (A.,.) with An s;;; X, An E r(X) for all n iff A E r(X x N), 
where (x, n) E A <=? x E An. Notice that if r, a dass of sets in metrizable 
spaces, contains all clopen sets and is closed under continuous preimages 
and finite unions and.intersections, and either r or f' is closed under COWlt­
able unions, then r is reasonable. This is because the projection functions 
(x, m) ......-+ x, (x, m) ......-+mas well as the functions x ......-+ (x, n) are continuous, 
while if (An), A are as above, A= Un An X {n}, rv A= Un( rv An) X {n} 
and An X {n} = Bn nCn, where Bn =An X N = {(x,m): X E An}, Cn = 
X x {n} = {(x,m): m=n}. 

In particular, E~ and ll~ are reasonable. 

(22.15) Proposition. Let r be a clas.s of sets in metrizable spaces. 
i) If r has the reduction property, f' has the separation property. 
ii) If r i.s closed under countable unions and has the generalized reduc­

tion property, f' h.as the generalized separation property. 
iii) IjT is reasonable, then r has the genemlized reduction property iff 

r has the number uniformization pmperty. 
iv) If r i.~ closed under continuous preimages and ther-e is a C-universal 

set for r(C), then r cannot hatre both the r-eduction and separation proper­
ties. 

Pmof i) To separate A, B reduce "' A,"' B . 
.ii) Let An E f'(X), nn A.n = 0 and consider Cn = "' An. By gen­

eralized reduction let c;, E r(X), c.: C Cr,, c;, n c;n = 0 if n =f m 
and Un c.: = Un Cn = X. Then {c,:} is a partition of X and so 
c; = rv Umfn c;,, thus c;. E ~(X), as r is closed under countable union.'!. 
Now let Bn = "' C;,. Clearly, An s;;; Bn and nn Bn = 0. 

iii) Let r have the number uniformization property, An E r(X), and 
(x,n) E A<=? x E An. Then, since r is reasonable, A E r. Let A* C A be 
a unifonnization of A that is in r(X). Set x E A~<=? (x,n) E A*. Again, 
A~ E r(X) and A~ s;;; An, A~ n A:n = 0 if n =f m, while Un An= UnA~. 
So r has the generalized reduction property. 

For the converse, let As;;; X xN be in r(X xN). Put x E An<=? A(x, n). 
Then An E r(X) and by the generalized reduction property, let .4.~ E r(X) 
satisfy the above properties and put ( x, n) E A* <=? x E A~. This easily 
works ru:~ before. 

iv) Let U s;;; C x C be C-universal for r(C). Put (y, x) E U0 <=? ((y )o, x) E 
U, (y,x) E U1 <=? ((y).,x) E U, where (Y)o(n) = y(2n), (y).(n) = y(2n+l). 
Then (U0 , U1 ) is a universal pair, i.e., if A, B E r( C) there is y E C such that 
(U0 )y = A, (U1 )y = B. By the closure of r under continuous preimages, 



U0 ,U1 E f. 
Assume now that r has both the reduction and separation properties. 

Then let U0 ,ijl E r reduce U0 ,U1 and let V E ~separate U0 ,U1• Then it 
is easy to check that Vis C-universal for ~(C), violating 22.7. 0 

(22.16) Theorem. In metrizable spaces and for any ~ > 1, the class E~ 
has the number· uniformization property, and thus the generalized reduction 
pmperty, but it does not have the separation prvperty. The dass ll~ has the 
generalized separation property but not the reduction.property. 

Thi.s also holds if~ = 1 for zero-dimensional spaces. 

Proof. It is enough to show that :E~ has the number uniformization property. 

Let R ~ X x N be in :E~ (~ > 1) and writeR= UieNRi, ~ E 

ngi, ~i < ~- So (x, n) E R <* 3i(x, n) E ~- Put Q(x, k) <* (x, (k)l) E 
R(k)o> where k ~--+ ((k)o,(kh) is a bijection ofN with N x N. Let 

(x,k) E Q* <=? (x,k) E Q& 'iff< k(x,£) fj Q 

and finally let (x, n) E R* <=? 3i(x, (i, n)) E Q*. Clearly, R* uniformizes R. 
Notice now that R* = Ui Si, where Si = {(x. n): (x, (i, n)) E Q*}, so it is 
enough to show that Si E :E~. Since :E~ is reasonable, it is enough to check 
that for each k, ( Q* )k = { x : ( x, k) E Q*} is :E~ or, since :E~ is closed 
under finite intersections, that Qk, ("' Q)k are in :E~. But this is clear, as 
each Qk is in n~ for some 'r/ < ~. 

For ~ = 1 and X zero-dimensional, write R = Ui Ri with ~ clopen 
and repeat the above proof. 0 

The above result allows to distinguish structurally the classes :E~ from 
the classes n~ by the faet that exactly one of them has the number uni­
formization (and reduction) property and the other has the (generalized) 
separation property. Then we have the following picture: 

where the boxed classes are those that have the number uniformization 
property (in zero-dimensional spaces if ~ = 1) and the others have the 
generalized separation property. 

(22.17) Exercise. (Kuratowski) Given any sequence of sets (An), An ~X 
let 
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= {x: x belongs to infinitely many An}; 

limnAn = U n Am 

= {x : belongs to all but finitely many An}· 

It is clear that limn An s;;; limn An. If they are equal, let limn An =lim .. An = 
limn An. 

Show that for ~ > 1, 

A is A~+l <=?A= l~ An, for some sequence (An) with An E A~. 

This is also true for ~ = 1, in zero-dimensional spaces. 
Show alo;o that if A is a limit ordinal, 

A E A~+l <=?A= li;n An, for some sequence (An) with An E U A?,. 
1)<>. 

22.D Additional Results 

We will discuss here level-by-level versions of results that we proved for 
Borel sets in earlier sections. Additional such results v.rill be given in Sec­
tion 24. 

The following is a refinement of results in 13.A. 

(22.18) Theorem. (Kuratowski) Let (X ,7) be a Polish space and An s;;; X be 
A~(X,7). Then there is a Polish topology 7' 2 T such that 7' s;;; :E~(X,7) 
and An E A?(X,r) for all n. 

Proof. By 13.3, it is enough to prove this for a single set A E Ag(x, 7). 
The proof is by induction on~ 2: 1. For~ = 1 take 7' = 7. For ~ = 2, 
both A and "' A are G6: so Polish in the relative 7-topology. Put on X 
the direct sum 7' of these relative topologies. So U E 7' iff U n A, U \ A 
are open in A,"' A respectively. This is clearly Polish, and A is A~ in 7'. 
Also, T' c A~( X, T) s;;; :E~(X, 7). 

Let now~ be a limit ordinal. Then A= Un An = nn. Bn, with An: Bn E 
At (X, 7), ~n < ~· Let 7~, ~' be topologies that work for An, Bn resp. 
Let 7' be the topology generated by U,J7~ U 7~'). By 13.3 it is Polish and 
clearly A E A~( X, T'). Since every set in r,:. U T~' is in :E~(X, 7), clearly 
7' s;;; :E~(X, 7). 

Finally, let ~ = 'f/ + 1 2: 3 be succes.'lor. Then, by 22.17, A = 
limn An, An E A~( X, 7). Let 7* 2 7 be Polish with 7* s;;; :E~(X, 7) 
and An E A?(X, T*) for all n (also using 13.3). Then again by 22.17, 
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A E Ag(X, T*). Apply now the case~= 2 to (X, T*) to obtain T' 2 T* 
with A E A~( X, T') and T' ~ :Eg(X, T*) ~ :E~+l(X, T) = :E~(X, T). o 

(22.19) Exercise. Using the notation of 22.18, show that if~ > 1 is successor 
and A E Ag(X, T), there is a Polish topology T' :::> T with T' ~A~( X, T) 
and A E A 1 (X, T'). 

(22.20) Exercise. Using the notation of 22.18, show that if ~ > 1 and 
An E A~( X, T), there is a Polish topology T' 2 T such that T' ~ 
:E~(X, T), An E A~(X, T') for all n, and T' is zero-dimensional. 

The next result refines 13.9. 

(22.21) Theorem. Let X be a Polish space and A E :E~(X). If~ > 1, then 
there is a Lusin scheme (As) seN<N such that 

i) As E A~(X), if s =f 0; 
ii) A0 = A, As = Un As·n; 
iii) if X E N and Axin =f 0 for· all n, then Ax = nn Axin is a singleton 

{x*} and for any Xn E Axin• Xn- x*. 
Moreover, if d is a compatible metric for X, we can make sure that 

diam( A
11

) :S 2-length( s) if s =f 0. 
The same result holds for ~ = 1 if X is zero-dimensional. 

Proof. First assume that X is zero-.dimensional and that A E :E~(X). Write 
A= Un An, with An clopen. of diameter::=; 1/2. Put A(n) =A,.. Since An is 
clopen, it is easy to find a Lusin scheme (A~)seN<N satisfying all the above 
properties for An and~ = 1, additionally with diam(A~) < 2-tength(s)-1 for 
s =f 0. Then for n :2: 2 and s E Nn' s = (so, ... ' Sn-l ), let As = A(~, .... ,Sn-1)' 

Now let ~ > 1 and A E :E~(X). Let T be the topology of X. Write 
A= Un An, with An E A~( X, T) and letT' be as in 22.20. Let d < d' be 
a compatible metric for T'. Now apply the case~ = 1 to A E :E~(X, T') 
(and the metric d') to find (A..,)seN<N, which clearly works, as A~( X, T') ~ 
A~(X, T). o 

The next exercises provide refinements of results given in Sections 16 
and 17. 

(22.22) Exercise. (Montgomery) Let X, Y be Polish, A~ X x Y be :E~ and 
let U ~ Y be open. Show that {x: Ax is non-meager in U} is :E~. Show the 
same for n~ if "non-meager" is replaced by "comeager". (Compare with 
16.1.) 

(22.23) Exercise. Let G be a Polish group, X a Polish space, and (g,x) ~----+ 
g.x a continuous action of G on X. Recall the definition of the Vaught 



transforms in 16.B. Show that if A is :E~, so is A~u and that if A is n~, 
so is A"u. 

(22.24) Exercise. (Vaught) Using the notation of 16.C, define the Eg,ng 
formulas of Lw1w as follows: The EY formulas are those of the form VnOn, 
where On is of the form 3vl · · · 3vk,.Pn, with Pn quantifier-free. The ng 
formulas are the negations of :E~ formulas. The :E~ formulas for ~ > 1 are 
those of the form V nOn, where On is of the form 3vl · · · 3vk" Pn, with Pn a 
nt formula, ~ .. < ~· 

Prove the following refinement of 16.8: An invariant subset of XL is 
:E~(nV iff it is of the form Aq for a a :E~(nV sentence. 

(22.25) Exercise. (Montgomery) Let X, Y be Polish spaces. If A C X x Y 
is :E~, then {(JL,X,r) E P(Y) x X x [0,1]: JL(Ax) > r} is :E~. (Compare 
with 17.25.) 

22. E The Difference Hierarchy 

We will finally study a method of constructing the class A~+l from the 
class :E~, which leads to the so-called difference hierarchy. (There is also 
a corresponding construction and ramification of the classes A~, A limit 
from Ue<>- A~ which we will not discuss here.) 

Every ordinal 0 can be uniquely written as 0 = A+ n, where A is limit 
or 0 arid n < w. \Ve call 0 even (resp., odd) if n is even (resp., odd). 

Now let (A,.) 11<ll be an increasing sequence of subsets of a set X with 
0 :2: 1, Define the set Dli((A,.1) 11 <ll) C X by 

x E De((A11 ) 11<e) <=? x E u A11 & the least 'f/ < 0 with x E A11 

11<11 

has parity opposite to that of 0. 

So Dl((Ao)) = Ao, D2((Ao,A1)) = A1 \ Ao, D3((Ao,A1,A2)) = (A2 \ 
A1) U Ao, .. ·, Dw((An)n<w) = Un(A2n+l \ A2n), Dw+l((A.,)n::;w) = Ao U 

Un(A2n+2 \ A2n+l) U (Aw \ Un An),···· 
For 1 ~ e, 0 < w1, X metrizable, let 

(22.26) Exercise. i) Show that De(EV is closed under continuous preimages 
and is reasonable. 

ii) Show that if X~ Y, then Dli(E~)(X) = De(E~)(Y)IX = {An X: 
.t\..E D8(E~)(Y)}. 
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iii) Show that for each separable metrizable space X, there is a C­
universal set for Do(E~)(X). Conclude that Do(!:~)( X) =f Do(!:~)( X), for 
any uncountable Polish space X, where Do(EV is the dual class of De(E~). 

iv) Show that for Arl.. ~ X, X\ Do((A11 ).,1<e) = Dll+l((A11 ) 11<o· X). 
Conclude that Do(EV u Do(EV ~ Do+l(EV. 

A. Louveau and J. Saint Raymond [1988] have shown that De(EV has 
the number uniformization property (in zero-dimensional spaces if e = 1), 
which gives us the following pictw·e 

(E~ =) \D1(EVI \D2(EVI 

(ll~ =) l>1 (Eg} l>2(EV 

\Do(E~) I 
Do(EV 

where() < ry, every class is contained in every class to the right of it, and the 
boxed classes are exactly those that have the number uniformization prop­
erty and the others have the separation property (again in zero-dimem;ional 
spaces if e = 1). 

We establish now the main result. 

(22.27) Theorem. (Hausdorff, Kuratowski) In Polish spaces and for any 
1 < e < wl> 

A~+l = U Do(Ev. 
1::;ll<w1 

Proof. Clearly, De(EV ~ :E~+l, and by 22.26 iv) Do(EV ~ Do+l (EV, so 

ul $11<wl Do(EV ~ A~+l· 
For the other inclusion, we claim that it is enough to prove it for ~ = 1 : 

Let (X, T) be Polish and A E A~+l (X, T). Then there are An E A~( X, T), 
with A = limn An, by 22.17. By 22.18, let T' ::> T be a Polish topology 
so that, An E A?( X, T') and T' ~ :E~(X, T). Then A E A~(X, T') (by 
22.17 again), so A E Do(!:?)( X, T') for some() by thee = 1 case. Since 
E?(X, T') = T' ~ :E~(X, T), clearly A E D~(:E~)(X, T). 

Consequently, we only have to prove that Ag ~ U11 De(E?). 
It will be actually convenient to work with de<:reasing sequences of 

closed sets as opposed to increasing sequences of open sets. It is easy to 
verify that the sets in Ue Do(EY) are exactly those of the form 

for some () < wb where Fo 2 Ho 2 F1 ::> H1 2 · · · 2 F11 2 
H 11 2 · · · are closed sets. To see this note that any set of that form 
is equal to Do· ( (Ae)e<o· ), where {)* = A + 2n if () = A + n, and 
Aw·e+2k = "' Fw·e+k• Aw·e+2k+l = "' Hw·e+k are open. Conversely, if 
A = De·((A11 ) 11 <o· ), where by 22.26 iv) we can assume that()* =A+ 2n 
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is even, and we define F'TI, H'TI for 'f/ < () = A+ n by the previous formulas, 
then A = U'TI<e(.Fr, \ H'TI). 

Now let X be Polish, and A ~ X and F ~ X be clOl:!ed. Put 

op(A) = (AnF) n (rvAnF) 

= the boundary of A n F in F. 

Define by transfinite recursion 

F0 =X, 

F'TI+l = op,JA), 

F>. = n F'TI, if A is limit. 
'T/<>. 

This is a decreasing sequence of closed sets, so let () < w1 be least such that 
Fe= Fe+I· 

Claim. If A E Ag, then Fe = 0. 

Proof. Note that if Z is nonempty Polish and C ~ Z is Ag, then the 
boundary of C cannot be equal to Z, since otherwise both C and "' C 
would be dense G6 sets. 

If now F6 =f 0, Fe is Polish nonempty and An Fe is Ag(Fe). Also 
Op8 (A) = boundary of An Fe in Fe, and Op6 (A) = Fe+l =Fe, which is a 
contradiction. 

Now let H'TI = (rv A) nF'TI ifry < 0. Thus Fo :::> Ho 2 F1 2 H1 2 .. · 2 
F'TI 2 H'TI 2 · · ·. Finally, we claim that if A E Ag, then A= U'T1<6 (F'TI \ H'TI): 

If x E A, let 'fJ be such that x E F'T/ \ F'fl+l· If X E H'TI, then X E 

(""' A) n F'TI n (A n F11 ) ~ F'TI+I, which is a contradiction. So x E F,1 \ H 'TI. 
Conversely, if x E F'T/ \ H'TI for some ry, but x ¢A, then x E (rv A) n F'TI ~ 
(""'A) n F'TI = H'TI, a contradiction. 0 

(22.28) Exercise. Show that for any ~ > 2 there is no A~-complete set. 

(22.29) Exercise. Show that Un<w Dn(EV is the smallest Boolean algebra 
containing the :E~ sets. 

(22.30) Exercise. Let X be Polish and A, B ~ X be such that A n B = 0. 
Define for any closed set F ~ X, 

op(A,B) = AnFnBnF. 

Use Op and the argument in 22.27, to show that if there is no Ag set 
separating A from B, there is a Cantor set C ~ X with A n C, B n C dense 
Jfi C (and t.he converse is also trivially true). 
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Use this also to show directly that any two disjoint G6 sets A, B can 
be separated by a set in Ull<w, De(E~) (which also follows from 22.16 and 
22.27). 

(22.31) Exercise. Let (A,.) 11<e, (B11 )11<e, where () < w1, be two transfinite 
sequences of subsets of a set X. For X E u11<ll A.,, let JLA(x) = least TJ(X E 
A'1) and for X ¢ u11<11 A'1 let JLA (x) = W}· Similarly define JLB· Put 

De((A11 )11<ll• (B,1)11<e) = {x: JLA(x) < JLB(x)}. 

(Thus if x E Dn((Aq) 11<e, (B11 )11<ll), then x E U11<11 A11 .) For()= A+ n, let 
()* = A +2n. Define c., 11 < ()*,recursively, by c)..! = Ue<N AeU Ue<N BeU 
B>h CN+2k = G>.'+2k-l U B>.'+k, and CN+2k-l = CN+2k-2 U A>.'+k-1 
if A' :::; A is limit or 0 and k > 0. Show that Dli((A11 )11 <11• (B11 ).,<e) -
De· ( ( C11 ),1 <II• ) and 

U De(:E~) = U {Dli((A 11 ),1<e, (B11 )11 <e): A11 , B 11 E :E~}. 
l~ll<w1 l~ll<w1 
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23. Some Examples 

23. A Combinatorial Examples 

Recall from 22.11 that any :Eg \ ng set is :Eg-complete and similarly inter­
changing :Eg, ng. It follows that if X is a perfect Polish space and Q ~ X 
~ countable dense, then Q is :Eg-complete and its complement N = X \ Q 
is ng-complete. 

(23.1) Exercise. Prove directly that any countable dense Q ~ C is !:~­
complete, by showing that player II has a winning strategy in the Wadge 
game WG(A,Q) for any A E :Eg(N). 

Let us abbreviate as follows: 

-v=nP(n) <=? {n EN: P(n)} is cofinite, 

300nP(n) <=? {n EN: P(n)} is infinite. 

Then it follows from the above that the sets 

Q2 = {x E C :-v=n(x(n) = 0)}, 

N2 = {x E C :300n(x(n) = 0)}, 
N~ = {x E C :300n(x(n) = 0) & 

300n(x(n) = 1)}, 

are respectively :Eg-, ng., n~-complete. 
Now let 

P3 = {x E 2l'fxl'f: \fm\f00n(x(m, n) = 0)}. 

(This is the set of all N x N 0-1 matrices, every row of which is eventually 0.) 
We claim that it is ng-complete. Indeed, let X be Polish zero-dimensional 
and A ~ X be ng. Then A= nm Am, with Am E :E~(X). Let /m :X - C 
be continuous such that x E Am <=? fm(x) E Q2. Define f : X - 2Nxl'f by 
f(x)(m, n) = fm(x)(n). Then f is continuous and x E A <=? \fm(fm(x) E 

Q2) <* f(x) E P3. 
It follows that the set 

83 = {x E 2Nxl'f: 3m300n(x(m,n) = 0)} 

is :Eg-complete. 
Below one should keep in mind the remarks following 22.9: One method 

for showing that a given set A in some class r is r-complete is to choose 
judiciously an already known r-complete set B and reduce it continuously 
to A (i.e., show B <w A). 

(23.2) Exercise. Show that the set 
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C3 = {x E Nl'f: limx(n) = oo} 
n 

is n~-complete, and thus the set 

D3 = {x E Nl'f: limnx(n) < oo} 

is !:~-complete. Show also that the set 

P3 = {x E 2l'fxl'f: 3=m\fn(x(m, n) = 0)} 

is ng-complete, and thus the set 

83 = {x E 2l'fxl'f: ~m3n(x(m,n) = 0)} 

is :Eg-complete. 

(23.3) Exercise. For each e < Wt, show that if the set A ~ cis !:~-complete, 
then the set A' = {x E 2Nxl'f : \fm(xm E A)} is ll~+1-complete, where 
Xm(n) = x(m, n). More generally, show that if the sets An ~ Xn are!:~­
complete, where Xn are Polish spaces, then Dn An ~ Dn Xn is n~+l­
complete. 

(23.4) Exercise. We saw in 9. 7 that every ideal on N which is n~ (in 2l'f) is 
actually n~ and the Frechet ideal is :Eg but not ng and so :Eg-complete. 
Show that for every e :2: 3 there is an ideal I on N which is !:~-complete, 
and similarly for n~. 

(23.5) Exercise. For each F ~ Pow(N), define the Hausdorff operation 
FnAn on sequences (An) of ~mbsets of a set X by 

FnAn = {x: {n: x E An} E F}. 

For example, if F = {N}, FnAn = nn An; if F = {A ~ N : A =f 
0}, FnAn = Un An; ifF = {A ~ N : A is cofinite}, F,.An = liffinAn; 
and ifF= {A~ N: A is infinite}, FnAn = limnAn. Usually F is mono­
tone (i.e., A E F & B :::>A::::} B E F), but this is not required in the above 
definition. 

For any class r of sets in metrizable spaces, let 

Also let 

FI' = {FnAn: A., E r(X), X metrizable}. 

\f= ={A ~ N: A is cofinite}, 

3= = {A~ N: A is infinite}. 

i) Show that if X is separable metrizable, then for any e :2: 1, 

3=n~(X) = n~+2 (X), 
~:Eo(X) =Eo +2(X). 



23. Some Examples 181 

ii) For each metrizable space X, show that 

B(X) = U{.r:E~(X): F Borel}. 

Show that for ~ ;::: 1 there is Borel FE. such that 

:E~(X) = Fe:E~(X). 

(23.6) Exercise. Consider the sets 

P4 = {~ E 2l'fxl'f: 3=m3=n(x(m,n) = 0)}, 

84 = {x E 2l'fxl'f: v=mv=n(x(m, n) = 0)}. 

Show that they are respectively ll~-, !:~-complete. 

(23.7) Exercise. (Ki-Linton) i) For a subset A ~ N we say that A has density 
x if limn card(An{O, ... ,n-l}) = x. Show that {A C N : A has density 0} in 
ng-complete (in 2M). 

ii) Show that the set of normal (in base 2) numbers (see Example 1 in 
11.B) is ng-complete. 

23.B Classes of Compact Sets 

(23.8) Exercise. Let X be a perfect Polish space. Show that the set 
KJ(X) = {K E K(X): K finite} is :Eg-complete (and so K=(X) = {K E 
K(X).: K infinite} is ng-complete). Show that for each n, {K E K(X) : 
card(K) = n} is in D2(:Ey), but not in :E~ or n~. 

(~3.9) Exercise. i) Let X be a perfect compact metrizable space. Show that 
the set {K E K(X) : K is meager (i.e., nowhere dense)} is ng-complete. 

ii) Let X be compact metrizable. Show that if J.L E P(X) is continuous, 
then {K E K(X) : IL(K) = 0} is ng-complete. 

(23.10) Exercise. The following class of closed subsets of 11' is of interest in 
harmonic analysis: 

H = {K E K('ll') : 3 an open interval (arc) I in 11' 

3no < n1 < n2 < · · · 'ifx E K'Vi(nix ¢ /)}, 

where if x = ei8 E 11', then nx = einiJ. For example, show that K = { ei8 : 
0/27r E E 113 } is in H, where E 113 is the Cantor set (see 3.4). Show that H 
is :E~. (T. Linton [1994] has shown that His actually :Eg-complete.) 
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The Cantor-Bendixson analysis of closed sets provides examples of 
classes of compact sets occupying higher levels of the Borel hierarchy. Con­
sider K(C), and recall 6.12 and the notation introduced in the comments 
following it. For a < w1, let 

Kc.(C) = {K E K(C): IKicB <a} 
= {K E K(C) : K"' = 0}. 

D. Cenzer and R. D. Mauldin [1983] have shown that Kn is :Eg .. -complete 
if n < w, and that K>.+n is :E~+2n-complete if A is limit and n < w. 

Let ARn = {K E K(Rn): K is an AR (absolute retract)} and 
ANRn = {K E K(Rn): K is an ANR (absolute nbhd retract)}. (See 
J. van Mill [1989] for these basic topological concepts.) It was shown in 
R. Cauty, T. Dobrowolski, H. Gladdines and J. van Mill [199?] that AR2 
is ng-complete and ANR2 is D2(:Eg)-complete, while T. Dobrowolski and 
L. R. Rubin [199?] prove that ARn, ANRn are ll~-complete for n 2: 3. (For 
n = 1 these classes are :Eg.) 

23. C Sequence Spaces 

(23.11) Exercise. Consider the Hilbert cube nN. For 0 < p < oo let 

Also let 
Co= {(xn) E nN: (xn) E Co (i.e., Xn ~ 0)}, 

C = {(xn) E nN: (xn) converges}. 

Show that Lv is :Eg-complete and that Co,C are ng-complete. Show, in 
fact, that there is no :Eg set S with Co ~ S ~ C. 

(23.12) Exercise. (Becker) A sequence (xn) in. Co converges weakly to x E Co 
if (xn,x*} ~ (x,x*} for any x* E (co)*= e• (i.e., (llxniD is bounded and 
Xn(i)--+ x(i) for each i). Let X= B1(eo) be the unit ball of co. Show that 
the set 

W = {(xn) E xN: (xn) is weakly convergent in eo} 

is n~-complete. 

23.D Classes of Continuous Functions 

A function f E C('Ir) is in c= ('II') if it is infinitely differentiable (viewed as 
a 2tr-periodic function on R). It is analytic if it can be expressed as a power 

= n• 
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class of such functions by AN('II'). Finally, we denote by cn('ll') the class of 
n-times continuously differentiable functions. 

It is known from Fourier analysis (see Y. Katznelson [1976]) that for 
f E C('ll'), 

f E c=('II') {::} 'Vk3M\fn E Z(lf(n)l < Mlnl-k), 

i.e., the Fourier coefficients {j(n))nez, where f(n) = 2~ fo2
.,. f(t)e-intdt, 

converge to 0 "faster than polynomially" . It is also known that for f E C ('II') 

f E AN('f) {::} 3M3a > O'Vrt E Z(lf(n)l ~ Me-alnl), 

i.e., (j(n)) converges to 0 "exponentially". 

(23.13) Exercise. Show that cn('ll'), c=('ll') are all ng and that AN('Il') is 
!:~-complete. 

(23.14) Theorem. The sets cn('II'),C00 ('1l') are ng-complete. 

Proof. We prove the result for c=('II'). The proof for cn('ll') is similar and 
can be left as an exercise. 

We will need the following simple lemma. 

(23.15) Lemma. For any closed interval I ~ R, any € > 0 and any k :2: 1 
there i.~ a c=-function in I which is 0 in open nbhds of the endpoints of I 
and llf(k)lloo = €. 

Proof. Say I= [a, b]. Pick a< c < d <b. Let g(x) = e-l/(x-c)
2

• e-l/(x-d)
2

, 

when x E (c, d), and g(x) = 0, in (a, bj \ (c,d). Then g E C00
• Let llg(k)ll = o. 

Put f = (€/b)g. D 

Consider the ng-complete set P3 given in 23.A. We will construct a 
continuous function x ~-+ fx from 2Nx!'f into C('II') and show that x E P3 {::} 

fx .E COO('Il'). 
Start with the interval I = [0, 21r] and split it into the subintervals 

Io, It, ... as in Figure 23.1. 

0 
• • 

FIGURE 23.1. 
• 

12 I ··· 2tr 
• 3 •• 

Thus IInl = 271" · 2-(n+l) (III :::: length of/). Split each also I,. into subin­
tervals In,o, In,h ... by the same subdivision process, so that IIn,kl = 
lin I . 2-(k+l). By the lemma, let fn,k be a c=-function that is non-zero 
only in an open concentric interval properly contained in the interior of 
l,.,k, and 
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For x E 2NxN, let 
fx = l:x(n, k)Jn,k· 

n,k 

Since 11/n,klloo :::; IIn,kl: this is a uniformly convergent series, so fx E C('ll') 
(by extending fx with 211'-periodicity toR; note that fx(O) = fx(211') = 0). 
It is easy also to check that x ~--+ f., is continuous (from 2Nxl'f into C('ll') ): 
Given € > 0, choose N so that. I:n>N k 11/n,kll= < E/2 and then K such 
that I:n<N.k>K 11/n,kll= < E/2. Then if x(p, q) = y(p, q) for p < N, q < K, 
we have 11/a:.:: /ylloc < €. 

First let x E P3. Clearly, fx E C('ll') and fx(O) = fx(27r) = 0. Assume 
inductively that f~n) exists and f~n)(O) = An)(27r) = 0. Clearly, f~n+l)(Y) 
exists for y E (0, 211' ). Also, the right derivative of f~n) at 0 is 0. It is then 
enough to show that the left derivative of /~n) at 211' is also 0. Let a E Ie,k, 
where e > n. Then 

2
11' /~n)(a)- /~n)(27r) < 11/;~11= < 

a- 211' - 2-(e+l) -

llt?t1
>11= 2-2£ 

2.:..(e+l) = 2-(£+1) ...... 0, as e ...... oo. 

So f:~n+ 1)(27r) = 0. 
If now x ¢ P3 , let n be such that for infinitely many k, x(n, k) = 1. 

Consider /~n+l). Clearly, /~n+l) = ~~~;: 1 > in the interior of In.k if x(n, k) = 
1. So, for each k with x( n, k) = 1, pick ak> bk E I .. ,k with 

1/~n+l)(ak)l = 2-2n, f~n+l)(bk) = 0. 

This shows that /~n+l) cannot be continuous at the right endpoint of In, 
so f., ¢ c= ('II'). o 

Of course it is well known that AN ('II') ~ coo ('II'), but the preceding 
faet shows that there is an interesting "defina.bility" distinction between 
the classes. 

It is also known (again see Y. Katznelson [1976]) that if f E C('ll') 
and I: lniPI/(n)l < oo, then f E CP('Il'), while if f E CP('Il'), then 

nEZ 
](n) E O(lni-P). Notice that conditions of this form cannot exactly char­
acterize CP('Il'), since otherwise they would give :Eg definitions of CP('Il'). 
So, for example, there exists f E C('ll') with ](n) E O(lni-P), but for which 
f ¢ CP('Il') (while on the other hand, for such /, f E CP-2('11')). This is an 
analysis result proved by definability methods. It is a typical use of clas­
sification results to prove existence theorems: If A s;;; B are sets and A, B 
have different "definable complexity", then A ~ B in particular, i.e., there 
exists an element of B that is not in A. 
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23.E Uniformly Convergent Sequences 

Let X be a separable Banach space and let 

UCx = {(xn) E xN: (x .. ) converges (in X)}. 

(23.16) Exercise. Show that UCx c X~'~ is ng-complete. In particu­
lar, for X = C('ll') show that UC = UCc(T) = {(/n) E C('ll')N : 
Un) converges uniformly} is ng-complete. Show also that UCo = {(In) E 
C('ll')N : In --+ o uniformly} is ng-complete. 

00 A O 

For f E C('ll'), let E f(n)emx be its Fourier series. We denote by 
n=-oo 

N A • 

SN(/) its partial sums: SN(/)(.7:) = E f(n)emx, N = 0, 1, 2, .... We say 
n=-N 

00 A 0 

that E f(n)emx converges (uniformly) ifl' the sequence of partial sums 
n=-oo 

(SN(/)) converges (uniformly). Now let 

00 

UCF = {! E C('II'): L j(n)einx converges uniformly} 
n=-oo 

be the class of functions with uniformly convergent Fourier series. (Note 
that iff E UCF, E f(n)einx = f(x) uniformly.) 

(23.17) Exercise. Show that UCF is ng. (Ki has shown that it is ng­
complete.) 

23. F Some Universal Sets 

Let X be a Polish space and f = Un) a sequence of continuous functions 
In: X--+ R Let 

Cj= {x EX: Un(x)) converges}. 

(23.18) Theorem. (Hahn) Let X be Polish. A subset A ~ X is ng ·iff it is of 
the form cj for some sequence of continuous functions i = Un), fn:X --+ 
JR. 

In particular, if X is compact, the set 

U = {(f~x) E C(X)l'f x X: (/n(x)) converges} 

is C(X)N -universal for ng(X). 

Proof. If fn :X--+ IR, then 
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(f .. (x)) converges <* 'Vm3NVk, e > N(l/k(x) - fe(x )I ::::; 1/(m + 1)), 

so Cl is ng, and if X is compact metrizable, U is ng since the map (/, x) E 

C(X) x X~--+ f(x) E R is continuous. 
It remains to show that if A ~ X is ng, then A = C l for some l 
We claim first that it is enough to show that if A ~ X is :Eg, then 

there exists a sequence fn : X - [-1, 1] of continuous functions such that 
A= Cl and moreover fn(x) - 0, 'ifx E A. Indeed; if A is a ng set and 

A = nm Am with Am E :Eg, let (/~m))nEN work as above for Am with 

11/~m)ll= < 1/(m + 1). Rewrite (f~m))m,n as a single sequence (/i)iEf'l· 
Clearly, f;(x) - 0 for all x E A, since for each € > 0, 1/~m)(x)l < € for 
all but finitely many m, and for these m, I/~ m) ( x) I < € for all but finitely 
many n. On the other hand, if x ¢ A, so that x ¢ Am for some m, then 
(f~m)(x)) diverges as n- oo, so (/i(x)) diverges too. 

So it is enough to prove the above fact about :E~ sets. For that we use 
a basic result about semicontinuous functions. 

Recall that an extended real-valued function j': X- [-oo, oo] is lower 
semicontinuous if for each a E R, {x: a< f(x)} is open. Then we have: 

(23.19) Theorem. Let X be a metrizable space. Let f : X - [-oo,oo] be 
bounded from below. Then f is lower semicontinuous iff there is an incTeas­
ing sequence fo ::::; It < h < · · · of continuous functions f : X - R such 
that f(x) = .supnf,.(x). 

Proof. If f is the sup of an increasing sequence of continuous functions, it 
is clearly lower semicontinuous. 

For the converse, we can assume that f is not identically oo, since 
otherwise we can take fn = n. Let d be a compatible metric for X. Put 

fn(x) = inf{f(y) + nd(x,y): y EX}. 

Then In : X -Rand fn(x) :S ln+l(x) :S f(x). Also, lf.,(x)- fn(.iJ)I :S 
nd(x,y), so fn is continuous. We will now show that fn(x)- f(x). Fix € > 
0. For all n, let Yn EX be such that f(Yn) < f(Yn) +nd(x,yn) :S fn(x) +E. 
If M is a lower bound for J, then d(x,yn)::::; f,.(x)~e-M. If fn(x)- oo, 
then f(x) = oo and we are done. So we can assume that (f,~(x)) is bounded 
and thus that Yn - x. By the lower semicontinuity off, f(x)::::; lim1J(Yn)· 
Thus f(x) :S limnf(Yn) :S limn(/n(x)+E) =limn fn(x)+E, i.e., limn J~(x) = 
f(x). 0 

Say now A E :Eg, A= Un>l Fn, with Fn closed and F1 C F2 ~ · · ·. 
Consider the function J : X - r:...oo, oo] given by 

f(x) = 1 on F1; f(x) =non Fn \ Fn-1 for n > 2; f(x) = oo on "'A. 

Then for a E R, 
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{x: f(x) >a}= X if a< 1; 

{ x : f ( x) > a} = "' Fn if n :::; a < n + 1, n 2: 1. 

So f is lower semicontinuous. By 23.19, let 'Pn: X--+ R be continuous with 
'Pl :::; 'P2 :::; · · · and SUPn'Pn(x) = f(x). 

For any two real-valued functions J,g let f 1\ g(x) = min{f(x),g(x)}, 
fVg(x) = max{f(x), g(x)}. Clearly, if J, g are continuous, so are fVg, f I\ g. 

By replacing 'Pn above by ( 'Pn V 1) 1\ n, Vl.re can assume also that 1 :::; 
'Pn :::; n. Finally, since 'Pn+l - 'Pn :::; n, we can interpolate between t.pn, 'Pn+l 
the functions 'Pn + 2: ( 'Pn+l- 'Pn) for k = 0, ... , 2n, so that by renumbering 
we can assume that 1 = <po :::; 'Pl :::; · · · and 'Pn+l - 'Pn :::; 1/2. Finally put 

fn(x) = sin(11't.pn(x)). 

Then fn : X--+ [-1, 1] is continuous and fn(x) --+ 0 for x E A, as 'Pn(x) 
converges to an integer. On the other hand if x ¢ A, then 'Pn(x) --+ oo 
and since 'Pn+l(x)- 'Pn(x) < 1/2, for each k there is at least one n with 
'Pn(x) E [k + 1/4,k + 3/4], so (-1)k sin(11't.pn(x)) 2: sin(11'/4) and Un(x)) 
diverges. 0 

(23.20) Exercise. Show that 23.18 remains valid if Cl, U are respectively 

replaced by C{ = {x: J,.(x)--+ 0} and U0 = {(!~ x): fn(x)--+ 0}. 

(23.21) Exercise. Show that for X compact metrizable the set 

U = {([,x) E C(X)N x X: iuf,tfn(x) > 0} 

is C(X)N-universal for :Eg(X). 

(23.22) Exercise. Prove the following uniform version of 23.18: Let X, Y be 
compact metrizable. Show that for any A s;;; Y x X, A E ng, there is a 
continuous function F: Y--+ C(X)N such that Ay = CF(y)' 

Consider now f E C([O, 1]). Let 

DJ = {x E [0, 1]: .f'(x) exists}. 

(At endpoints we consider one-sided derivatives.) 
Zallorski (see, e.g., A. Bruckner [1978], p. 228) has shown that the sets 

of the form D1 are exactly those that can be written as AnB, with A E :Eg 
and B E ng with m( B) = 1 (where m is Lebesgue measure). 

(23.23) Exercise. Show that the set D = {(!, x) E C([O, 1]) x [0, 1] : x E DJ} 
is n~. Let X be a G6 subset of (0, 1) with m(X) = 0. Show that 

U = {(f,x) E C([O, 1]) x X: f'(x) exists} 
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is C([O, !])-universal for ng(X). 

A set E ~ 'II' has logarithmic measure 0 if for every € > 0 there is a 
sequence (/n) of intervals (arcs) in 'II' withE<;;: Un In and I: 1/llogllnll < €. 

For any f E C('ll'), let 

00 

CJ = {x E 'II': L f(n)e;.nx converges} 
n=-oo 

00 

= {x E 'II': L f(n)eim; = f(x)}. 
n=-oo 

Sladkowska (see, e.g., M. Ajtai and A. S. Kechris [1987]) has shown 
that if B ~ 'II' is a Eg set of logarithmic measure 0 and A ~ B is Eg, then 
there is f E C('ll') with A= "'C1. 

(23.24) Exercise. Show that the set C = {(f,x) E C('ll') x 'II': x E CJ} is 
ng. Show that if X ~'II' is Ag of logarithmic measure 0, the set 

U = {(f,x) E C('ll') x X: x E CJ} 

is C('ll')-universal for ng(X). 

23. G Further Examples 

We now discuss a couple of examples related to logic. 

(23.25) Exercise. Call a function f : Nn --+ N arithmetical if its graph is 
definable by a formula of first-order logic on the structure of arithmetic 
(N, +, ·). It is known that there is a bijection h : N<l'f --+ N such that the 
functions 

f(s) = length(h- 1(s)) 

and 

( ') = {the ith element of h-1(s), if i < f(s); 
g s, t 0 h . , ot erw1se. 

are arithmetical. Let E be the set of sentences in first-order logic for the 
language { +, ·, U}, U a unary relation symbol. Then E is countable, so we 
can view it as a discrete Polish space. Show that the truth set 

TR = {(xA,cp) E c x E: (N, +,·,A) 1= cp} 

is in A~ but not in UnA~ (in the space C x E). 

Consider next the language L = { R}, consisting of one binary relation 
symbol Rand the space XL= 2l'f»l'f as in 16.5. For a< .:.v1, let 
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'fO<ct ={ x E 2NxN : Ax = (N, RAx) is 

a wellordering of order type <a} ~XL· 

J. Stern [1978] has shown that wo<w"' is EL,-complete (a :::: 1) and if 
wa < j3 < wa+l, then WO<fJ is A~·a+2 but not :Eg·a+l' 

In conclusion, we would like to mention that we do not know of any 
interesting "natural" examples of Borel sets in analysis or topology which 
are in one of the classes :E~ or n~ for ~ > 5, but not in a class with lower 
index. 
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24. The Baire Hierarchy 

24.A The Baire Classes of Functions 

(24.1) Definition. Let X,Y be metrizable spaces. A function f:X--+ Y is of 
Baire class 1 if r• (U) E :Eg(X) for· e11ery open set U ~ Y. IJY is separable, 
it is clearly enough in this definition to restrict U to any countable subbasis 
for Y. Recursively, for 1 < ~ < w1 we define now a function f :X --+ Y to be 
o/Baire class e if it is the pointwise limit of a sequence of functions fn:X --+ 

Y, where fn is of Baire class ~n < ~· We denote by Be(X,Y) the set of Baire 
class~ functions from X into Y. As usual, BdX) = B~(X,OC), where][(= R 
or C (the conte.rt should make clear which case we are considering). 

Clearly, continuous ~ 81 ~ B2 ~ · · · ~ B~ C · · · ~ B.., ~ · · ·, for any 
~ < 'f/ < w •. 

(24.2) Definition. Given a class r of sets in metrizable spaces, we say that 
f:X --+ Y is r-measw-able if r 1(U) E r for every open set U ~ Y. If 
r is closed under countable unions and finite intersections, it is enough to 
restrict U to any countable subbasis for· Y, when Y is separable. 

Thus !:~-measurable = continuous and :Eg-measurable = Baire class 
1. The following is an extension and refinement of 11.6. 

(24.3) Theorem. (Lebesgue, Hausdorff, Banach) Let X,Y be metrizable 
spaces, with Y separable. Then for 1 :::; ~ < w1, f:X --+ Y is in B~ iff f is 
E~+1-measurable. In particular, U~ B~ is the class of Borel Junctions. 

Proof ::::}: By induction on~· It is clearly true for~ = 1. Next notice that 
if In --+ f pointwise, U ~ Y is open and we write U = Um B.,. = Um Bm, 
with Bm open balls, then r 1(U) = UmUnnk>n/; 1(Bm)· If In is in 

.- o o n- .- o Be,., ~n < e, then/;; (B.,) E ll~ .. +l ~ ll~, so k~n J; (Bm) Ell~ and 
thus r 1(U) E :E~+l' 

~: Again, the proof is by induction on ~· It is obvious for ~ = 1. So 
let~> 1. 

We first prove the result in case f : X --+ {0, 1} is a characteristic 
function f = XA for A~ X. To say that f is !:~+1-measurable just means 
then that A is A~+l' If~= 'f/ + 1 is successor, then by 22.17 A = limn An 
with An E A~ = A~+l· Then XA,. is in B..,, b3( induction hypothesis, and 
since XA = limn XAn, XA is in B,1+1 = B~. If now ~ is limit, then by 22.17 
A = limn An, where An E U..,<~ A~, say An E A~n+t, with 'f/n < ~· Then 
XA,. is in B..,,., so XA is in B~. 

The preceding argument easily extends to the case f : X --+ Y, with 
Y finite. For this, note that if Ai = limn A~) for i = 1, ... , k, where X = 
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A A . . . fX d A-(i) A(i)\U A(i) h A-(i) A-(i) 1U···U k1sapart1t10no an n = n .1<i n ,ten 1 , ... , k 

are pairwise disjoint and still Ai = limn A~> . 
Notice also that if Y is finite with a metric d and if I, g : X --+ Y are 

such that d(f(x),g(x)) :::; a for all x and ln,9n are !:~-measurable with 
In --+ I, g., --+ g pointwise, then we can find g~ --+ g also !:~-measurable 
with d(Jn(x),g:,(x)):::; a for all x. For that just define 

g~(x) = { nn(x), 
ln(x), 

if d(/n(X ), gn(X)) :::; a; 
otherwise. 

Let Y now be an arbitrary separable metrizable space and, by consid­
ering a compactification of Y, find a compatible metric d for Y such that 
for any € > 0 there are finitely many points Yo, ... , Yn-l E Y with Y ~ 
Ui<n B(yi, E). Then for each k, let y(k) = {y~k), ... , y~~>_ 1 } ~ Y be such 

that Y ~ Ui<nk B(y~k), 2-k) and y(k) ~ y(k+l). Then I- 1(B(y;k>, 2-k)) E 

:E~+l' so by the reduction property 22.16, since Ui<nk r1 (B(y~k>,2-k)) = 
X we can find 4.(k)EA0 v1rith A(k) C I- 1(B(y\k) 2-k)) such that X = ' · • , e+1 • - , ' 
A~k) U · · · U A~~-l is a partition of X. Then l(k) :X--+ {y~k>, ... ,y~~-d 
given by l(k) (x) = Yi # x E A~k), is !:~+ 1 -measurable, and so by the finite 

. t d l f(k) X { (k) (k) } b f . . B case we JUS prove , et n : --+ Yo , ... , Ynk- 1 e unct1ons m ,1,.,k 
for some 'fink<~ with l~k) --+ l(k) pointwise. Since d(f(x), l(k)(x)) :::; 2-k, 
so that d(J(k>(x), l(k+l>(x)) < 2·2-k, we can also assume, by the preceding 

. h d(/(k)( ) /(k+l)( )) -k L I l<k> Th l<k> .. remark, t at n x , n x :::; 2 · 2 . et k = k . en k lS m 
Bek for some ~k < ~ and !k --+ I pointwise, so I is in Be. 0 

(24.4) Exercise. In this exercise spaces are separable metrizable. 
i) Let d be a compatible metric for Y. If In : X --+ Y is in Be and 

.f n --+ I uniformly with respect to d, then I is also in Be. 
ii) Show that the two possible compositions of a function in Be and a 

continuous function are in Be. 
iii) Show that if 1 is !:~-measurable and g is !:~-measurable then go I 

is !:~+,1 - measurable. 

(24.5) Exercise. Let (X, 7), Y be Polish spaces and I: X--+ Y. Show that 
I is in Be iff there is a Polish topology 7' ~ 7 with 7' ~ :E~+l (X, 7) such 
that I :·(X, 7')--+ Y is continuous. 

(24.6) Exercise. Let X, Y be Polish. For each ~show that there is a Borel 
function Fe : C x X--+ Y snch that Be(X, Y) ~ {(Fe)a :a E C}. 

(24.7) Exercise. Let X, Y be Polish and A ~ X x Y be :E~. Then the. 
function (J.L, x) E P(Y) x X ~ J.L( Ax) is in Be. 
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(24.8) Exercise. Show that if X, Y are Polish and if A ~ X x Y is :E~ and 
such that for some fixed JL E P(Y), Ax =f 0 => J.L(Ax) > 0, then A has a 
uniformizing function in Be(proh(A), Y) for~> 1 (and for~= 1 if X, Y 
are zero-dimensional). Prove the same result in case Ax =f 0 => Ax is not 
meager. (Recall 22.22 and 22.25 here.) 

(24.9) Exercise. (Cenzer-Mauldin) Consider the space K(C) and the map 
Da : K(C) --+ K(C) given by Da(K) = Ka = the ath iterated Cantor­
Bendixson rlerivative of K (see 6.10). Show that Dk is in B2k fork< wand 
v>+k is in B>-.+2k if A is limit and k < w. Use the result of Cenzer-Mauldin 
mentioned at the end of 23.B to show that this estimate is best possible, 
i.e., Dk is not in ~k-l and D>-.+k is not in B>-.+2k-l· 

24.B Functions of Baire Class 1 

We will conclude with a study of the important class of Baire class 1 func­
tions. 

It is easy to check that the pointwise limit of a sequence of continuous 
functions is in B1. The converse fails in general. (Take, for example, f : 
R--+ {0, 1} to be any non-constant function in B1, e.g., X[o,lj·) However, we 
have the following result. 

(24.10) Theorem. (Lebesgue, Hausdorff, Banach) Let X,Y be separable 
metrizable and f:X --+ Y be in B1 . If either X is zero-dimensional or else 
Y = R, then f is the pointwise limit of a sequence of continuous functions. 

Proof. The case of X zero-dimensional is exactly as in the proof of 24.3, 
using the fact that 22.17 goes through for ~ = 1 as well in this case. 

Consider now the caseY= R Fix a homeomorphism h: R--+ (0, 1). If 
f is in B1, so is h of : X --+ R If the result holds for g : X --+ R in B1 with 
g(X) C (0, 1), then h of= limn. g.,,, where 9n: X--+ Rare continuous; by 
replacing 9n by (gn V 1/n) 1\ (1- 1/n), we can assume that 9n: X--+ (0, 1). 
Then fn = h-1 o 9n--+ f. So it is enough to prove the result for f: X--+ R 
in B1 with /(X) ~ (0, 1). 

For N 2: 2, i = 0, ... , N- 2, let Af" = r 1·((i/N, (i + 2)/N)). Then 
Af" is :Eg and u::-;;2 Af" = X. So by the reduction property for :Eg (see 
22.16) we can find Bf ~ Af" so that Bf" is A.'g and X = B/;' U · · · U B~ _2 

is a partition of X. Then XBN is in B1 and if g N = "'f:.f':(/ ( i / N) XBN, then . , 
9N --+ f uniformly. So the result follows from the next two lemmas. 

(24.11) Lemma. Let each Pn : X --+ R be the point'urise limit of a sequence 
of continuous functions. Then if pn. --+ p uniformly, p is also the pointwise 
limit of a sequence of continuous functions. 
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(24.12) Lemma. Let A ~ X be Ag. Then XA is the pointwise limit of a 
sequence of continuous functions. 

Proof. (of 24.11) It is enough to show that if each qn : X --+ R is the 
pointwise limit of a sequence of continuous functions and llqnll= :::; 2-n, 
then I: Qn is the pointwise limit of a sequence of continuous functions. So 
let q~n) be continuous with q~") --+ Qn as i --+ oo. Clearly, we can assume 

that llq~n)ll= :::; 2-n. So ri = I:~=O q~n) is continuous and it is enough 
to show that ri --+ I: Qn· Fix x E X and € > 0. Find N so that for all 

i, I I:~=N+l q~">(x)l :::; €/3 and I I:~=N+l Qn(x)l :::; €/3. Then lri(x)­

I: qn(x)l < 2€/3+ I::=o lq~n) (x)- qn(x )I. So for all large enough i, lri(x)­
I: qn(x)l < €, and thus ri--+ I: qn. 0 

Proof. (of 24.12) Let A= UnFn, rv A= UnHn with Fn,Hn closed, 
Fn ~ Fn+l> Hn ~ Hn+l· By Urysohn's Lemma 1.2, let hn : X --+ R be 
such that hn(x) = 1 on Fn and h,.(:c) = 0 on Hn. Then hn--+ XA· 0 

0 

(24.13) Exercise. Show that 24.10 holds when Y is an interval in R, Y = 
C, Y = Rn, or Y =en. 

The following result shows that Baire class 1 functions have many 
continuity points. 

(24.14) Theorem. (Baire) Let X ,Y be metrizable, with Y separable, and 
f:X--+ Y be of Baire class 1. Then the set of points of continuity off is a 
com eager G 6 set. 

Proof. Fix an open basis {Vn} for Y. We then have 

f is not continuous at X<=? 3n[x E r 1(V.,.) \ Int(r 1(Vn))], 

i:e., {x : f is not continuous at x} = Un r 1(Vn) \ Int(f-'(Vn)). Now 
J- 1(Vn.) is :Eg, thus so is /- 1(V.,)\Int(f-1(V.,)). Say it is equal to Uk Fk, Fk 
closed. Clearly, Fk has no interior, so the set of points of discontinuity of x 
is a countable tmion of closed, nowhere dense sets. 0 

This leads to the following, final characterization of Baire class 1 func­
tions. 

(24.15) Theorem. (Baire) Let X be Polish, Y separable metrizable, and 
f:X --+ Y. Then the .following are equivalent: 

i) f is of Baire class 1; 
ii) JIF has a point of continuity for every nonempty closed set F ~X; 
iii) JIG has a point of continuity for every Cantor set C ~X. 
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Proof i) :::} ii) follows from 24.14 since every such F is Polish and /IF is 
of Baire class 1 too. ii) :::} iii) is trivial. So we will prove iii) :::} i). 

Let U be open in Y in order to show that r 1 (U) is I:g. Put U = 
UnFn, with Fn closed. Then f- 1(Fn), f- 1(rv U) are disjoint. If we can 
show that they can be separated by a 4g set Dn, then clearly f- 1(U) = 
Un Dn E I:g, and we are done. 

Assume therefore, toward a contradiction, that this fails for some n. 
Then, by 22.30, there is a Cantor set C ~X with f- 1(rv U)nC, f- 1(Fn)nC 
dense in C. By iii), let x E C be a continuity point for JIG. If Xm E f- 1("' 

U) n c is such that Xm -4 x, then f(xm) - f(x) and f(xm) E rv U, so 
f(x) E "' U. Similarly, if Ym E /- 1(Fn) n C is such that Ym - x, then 
f(Ym)- J(x) and f(Ym) E Fn, so f(x) E Fn, a contradiction. 0 

(24.16) Exercise. Let X be metrizable. Recall that a ftmction f: X -4 IRis 
lower (upper) semicontinuous if {x: f(x) >a} ({x: f(x) <a}) is open for 
any a E JR. Show that all such functions are in B1 . 

(24.17) Exercise. Let X be Polish and f : X - IR have only countably 
many discontinuities. Then f is in B1 . In particular, all f : [0, 1] - IR that 
are monotone or of bounded variation are in B1. 

(24.18) Exercise. Let F : [0, 1] -4 IR be differentiable (at endpoints we take 
one-sided derivatives). Then its derivative F' is in B1 . 

There are many interesting relationships between derivatives and B1 
functions on [0, 1]. First, recall that derivatives have the Darboux property, 
that is they send intervals to intervals. Denote by DB1 the cla.'!s of functions 
on B1 that have the Darboux property. Also, denote by ~ the class of 
derivatives F' of differentiable functions. So ~ C DB1 • Although ~ :F DB1, 

one has the following facts (see, e.g., A. Bruckner [1978], and A. Bruckner, 
J. Marik and C. E. Weil [1992]): · · 

i) (Maximoff) A function f : [0, 1]- IR is in DB1 iff there is a homeo­
morphism h of [0, 1] with f o hE~. 

ii) (Petruska-Laczkovich) Let H ~ [0, 1]. Then m(H) = 0 iff for every 
f E B1 there is g E ~ with JIH = giH. 

iii) (Preiss) A function f : [0, 1] -4 IR is in B1 iff f = g + hk, where 
g,h,k E ~. 

Finally, Preiss has shown that f : [0, 1] -4 IR is in B2 iff it is the 
pointwise limit of a sequence of derivatives. 

(24.19) Exercise. Show that if X is Polish and if IF. :X -4 IR, e <WI, is a 
pointwise increasing (i.e., J.,(x) ::::; if.(x), when 'TJ < e) transfinite sequence 
of Baire class 1 functions, then for some a: < w., IF. = !a for all e :?: a. 
Conclude that if ( Af. )F. <w1 is an increasing or decreasing sequence of 4g 
sets, then (AF.) is eventually constant. (Compare with 6.9.) 
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(24.20) Exercise. (Saint Raymond) Let X, Y be compact metrizable spaces, 
Z a separable metrizable space, f : X ~ Y a continuous surjection, and 
g : X - Z a Baire class ~ function. Show that there is a Baire class 1 
functions: Y- X so that s(y) E f- 1( {y}) and go sis also of Baire class 
e. Conclude that if X, Y are compact metrizable spaces, f : X ---+ Y is a 
continuous smjection, and A ~ Y is such that f- 1(A) is I:~ (resp., ng), 
then A is I:~ (resp., D~). 

Use this to prove also that 22.11 and 22.13 are valid for any Polish 
space X and any e ;::: 1. 



CHAPTER III 
Analytic Sets 

25. Representations of Analytic Sets 

25.A Review 

Let X he a Polish space. Recall that a set A ~ X is analytic if it if> the con­
tinuous image of a Polish space. We denote by I:l{X) the class of analytic 
subsets of X. 

The analytic sets contain all the Borel sets and are closed 1mder count­
able intersections and unions as well as images and preimages by Borel 
functions. In particular, they are closed under projections (i.e., existential 
quantification over Polish spaces). 

In 14.3 the following basic equivalent formulations of analyticity were 
established. Given X Polish and A ~ X, the following statements are equiv­
alent: 

i) A is analytic. 
ii) For some Polish Y and Borel B ~X x Y, A= proh(B). 
iii) For some closed set F ~X x .N, A= proh(F). 
iv) For some G6 set G ~X x C, A= proh(G). 

(25.1) Exercise. Let X, Y be Polish spaces with X~ Y. Show that I:l{X) = 
I:t{Y)IX (={An X: A E I:l{YH) ={A~ X: A E I:t{Y)}. 

Given a standard Borel space X we call A C X analytic if for some (all) 
Borel isomorphisms 1r : X - Y, with Y Polish, the set 1r(A) is analytic. 
Equivalently, by 14.6, A is analytic if it is the Borel image or projection of 
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a Borel set. We use again the notation I:}( X) for the class of analytic sets 
in X. 

We can also extend the definition of analyticity to arbitrary separable 
metrizable spaces X by calling A ~ X analytic (or I:l{X)) if for some 
Polish Y 2 X and analytic B ~ Y, A = B n X. This is easily equivalent to 
saying that A= proh(F) for some closed F ~X x .N (or A= pro.ix(G) 
for some G6 set G ~ X xC). A subset A~ X such that both A and X\ A are 
analytic is called hi-analytic or 4{(X). It is not true that for any separable 
metrizable X we have 4l{X) = B(X) (see the remarks following 35.1), so 
a 4~ set A may not be of the form B n X, where B is in 4l(Y) = B(Y) 
for some Polish space Y 2 X. 

Finally, the following concepts are of interest. A separable metrizable 
space is called analytic if it is homeomorphic to an analytic set in a Polish 
space (with the relative topology), or equivalently if it is a continuous image 
of a Polish space. Al<;o, a mea.cmrable space is called analytic or usually an 
analytic Borel space if it is isomorphic to (X, B(X)) for some analytic set 
(or space) X. 

25.B Analytic Sets in the Baire Space 

In the Baire space .N we can represent analytic sets in a simple combina­
torial fashion using trees. 

Given a tree Ton a set A= B x C, recall that for x E BN, T(x) = 
{s E c<N: (xllength(s), s) E T} is the section tree. 

Let 
p[T] = {x: T(x) is ill-founded} 

= {x: [T(x)] :F 0} 

={x: 3y(x,y)E[T]} 

be the projection of [T] ~ BN X eN on BN. 

(25.2) Proposition. Given A~ .N, the following statements are equivalent. 
i) A is analytic. 
ii) There is a (pruned) tree T on N x N with A= p[T]. 
iii) There is a (pruned) tr-ee T on N x 2 with x E A# 3y E N(x,y) E 

[T], where N = {x E C:3~n(x(n) = 1)}. 

Proof The equivalence of i) and ii) is clear since .all the closed subsets of 
.N x .N are of the form [T] for a (pnmed) tree on N x N and the analytic 
subsets of N are just the projections of closed sets in .N x.N. The equivalence 
with iii) follows from the same remark plus the fact that N is homeomorphic 
to .N (see 3.12). 0 

(25.3) Exercise. Let X be Polish and A~ X. Then the following statments 
are equivalent: 

i) A is analytic. 
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ii) There is a closed F ~X x .N with x E A# QNyF(x, y), where 9N 
is the game quantifier (see 20.D). 

25. C The Souslin Operation 

(25.4) Definition. Let (Ps)sef>!<N be a Souslin scheme on a set X, i.e., a 
family of subsets of X indexed by N<N. The Souslin operation A applied to 
such a scheme produces the set 

AsPs = U n Pxln· 
xEN n 

Given any collection r of subsets of a set X we denote by Ar the class 
of sets AsPs, where Ps ~X are in r. 

(25.5) Exercise. i) A Souslin scheme (Ps) is regular if s ~ t => Ps 2 Pt. 
Show that if ( P..) is a So us lin scheme and Q s = ntcs Pt, then ( Q s) is regular 
and AsPs = AsQs. -

ii) Denoting by r 17 , r 6 the class of sets that are respectively countable 
unions or countable intersections of sets in r, show that if X E r, then 
r" ur6 ~ Ar. 

The following is an important stability property of the operation A. 

(25.6) Proposition. Let X be a set and r ~Pow( X). Then AAr =AT. 

Proof It is trivial that for any r, r ~ Ar. So it is enough to show that 
AAr ~ Ar. Let A = AsPs, with Ps E Ar, so that Ps = AtQs,t with 
Qs,t. E r. Then 

x E A# 3y E .Af'Tim(x E Pylm) 

# 3y E .Af'Tim3z E .Af'Tin(x E Qylm,zln) 

# 3y E .N3(zm) E .AfN'Vm'Vn(x E Q111m,z,ln). 

Fix now a bijection (m, n) of N x N with N, so that m < (m, n) and 
(p < n =*' (m,p) < (m,n)) (e.g .. (m,n) = 2-m(2n + 1)- 1). Let also for 
k E N, (k)o, (kh be sueh that ((k)o, (kh) = k. Then encode (y, (zm)) E 
.Nx.NN by wE .N given byw(k) = (y(k), Z(k)o((kh)). This gives a bijection 
of .N x .AfN with .N. Note that knowing wl(m, n) determines ylm and Zmln, 
by the above properties of ( ) (i.e., there are flmctions <fJ, '¢ : N<N - N<N 
such that if w encodes (y, (z)m) and s = wl(m, n), then <P(s) = ylm and 
'¢(s) = Zmln). It follows that 

x E A# 3w E .Af'Tik(x E Rwlk) 

#X E AsRs, 
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where Rs = Prp(s),.P(s) is in r. 0 

The next result gives a basic representation of analytic sets. 

(25.7) Theorem. Let X be a Polish space and d a compatible metric. For 
any A ~ X the following statements are equivalent: 

i) A is analytic. 
ii) A= As.P-. urith Fs closed. 
iii) A = AsFs, with Fs closed and (Fs) regular of vanishing diameter 

(i.e., diam(Fxjn)-+ 0, 'Vx E .N), and .P~ -:F 0 if A -:F 0. 
iv) A = AsPs, with Ps analytic, P0 = A, Ps = Un Ps·n, (Ps) of 

vanishing diameter a.nd nn Pxln -:F 0, 'Vx E .N, if A -:p 0. 

Proof. Clearly, iii) :::} ii). Also iv) => i) and ii) :::} i), since if A = AsPs with 
Ps analytic, then A= proh(P), with P ~X x .N given by (x, y) E P # 

'Vn(x E Pyjn), and so P is analytic. We prove next i) :::} iii). Let A ~ X 
be analytic and, without loss of generality, assume that A -:p 0. Then there 
is a continuous function f : .N -+ X with f(.N) = A. Put F8 = f(N8 ). 

Clearly, (Fs) is regular. Since f is continuous, (Fs) has vanishing diameter. 
Note now that if X E nn ~vln> then for each 'fl. there is Xn E f(Nyjn.) with 
d(x,x .. ) < 2-n. Let Yn 2 yin be such that f(Yn) = Xn· Then Yn-+ y, so 
f(Yn) = Xn -+ f(y), i.e., X = f(y). So {f(y)} = nn Fyln· Thus AsFs = 
A. Finally, to prove i) :::} iv), take P.. = f(N.,) and apply the preceding 
argument. 0 

Thus I:l{X) = An?(X), for any Polish space X. In particular, we 
have: 

(25.8) Corollary. Let X be a Polish spa.ce. Then AI:!( X)= I:}( X). 

(25.9) Exercise. Show that 25.7 i) # ii) and 25.8 are valid in any separable 
·metrizable space. 

(25.10) Exercise. Let X be a set and (Ps) a regular Souslin scheme on X. 
For x EX put 

Tx = { s E N<N : x E Ps}. 

Show that Tx is a tree on Nand if A= A..,Ps, then 

(25.11) Exercise. Using the notation of 25.7, fix a countable open basis 
{Un} for X containing 0, X. Show then that in ii) one can take (Fs) to be 
regular, with each Fs of the form Un with diam(Fs) S 2-length(s) if s -:p 0. 

{25.12) Exercise. Let (Ps) be a Lusin scheme on X. Then show that 
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AsPs= n UPs, 
n sel\ln 

so that if P8 is closed, A.~Ps is ng (for X metrizable). 

The following is also an important representation of analytic sets. 

(25.13) Theorem. Let X be a Polish space and A ~ X be analytic. Then 
there is a regular Souslin scheme (Ps) with A= AsPs such that: 

i) P8 is analytic; 
ii) P0 = A,Ps = Un Ps·n and also Ps·m ~ Ps·n if m :$ n; 
iii) for each y E .N, P11 = nn P11 1n is compact; 
i'V) if U ~ X is open and P11 ~ U, then for some n, Pyln ~ U. 

P-roof. For each s E N<N, let N; = {y E .N: Vi< length(s)(y(i) ::::; s(i))}. 
Then for y E .N, let 

N; = nN;1n = {z E .N: z ::5 y pointwise}, 
n 

so that N; is compact in .N. 
If A= 0, we can clearly take P8 = 0, so assume A :F 0. Let f: .N-+ X 

be continuous with f(.N) =A. Put 

Since N; = Un N;.n and N;.m ~ N;.n if m ::5 n, i), ii) are dear. To prove 
iii) and A= As.P~, it is enough to check that 

n 

Clearly, f(N;) c nn .f(N;In). Conversely, let X E nn f(N;In) so that for 
each n there is Yn E N;1 .. with f(Yn) = x. Since Yn(i) ::5 y(i), Vi < n, it 
follows that there is a subsequence (YnJ of (Yn) converging to some z::::; y. 
Then f(Yn;)-+ f(z) = x E f(N;). 

Finally, let P11 ~ U with U open. If for all n, Pyln n (X \ U) :F 0, 
let Yn E N;1n be such that f(Yn) E X\ U. As before, some subsequence 
(yn.) of (yn) converges to a z ::5 y and so f(Yn;) -+ f(z) E X\ U, thm; 
f(z) E P11 n (X\ U), which is a contradiction. 0 

Comparing 25.7 and 25.13, we see that 25.7 (and its proof) give a 
representation A= As.P., where actually i) Fs is closed, iii) F11 = nn F11 1n 
is singleton or empty, and iv) of 25.13 is true as well. However, ii) does not 
necessarily hold. 

(25.14) Exercise. Let Y be a topological space, X a metrizable space, and 
f : Y -+ K(X). We call f upper semicontinuous if for any ope~ U ~ 
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X, {y : f(y) ~ U} is open in Y. So 25.13 implies that if X is Polish and 
A ~ X is analytic, then the map f(y) = ~~ from .N into K(X) is upper 
semicontinuous and A= UyeN Py. Show that if Y, X are Polish spaces and 
y ~ Ky from Y into K(X) is upper semicontinuous, then it is Borel and so 
in particular, A= Uy Ky is analytic. If Y = .N, show also that A= AsFs, 

with Fs = UyeN, Ky. 

(25.15) Exercise. Let (Ps) be a regular Souslin scheme. 
i) Put Rs = UxeN nn Ps·xln· Show that Rs is a regular Souslin scheme, 

R0 =AsPs= AsRs, and R .• = Un Rs·n· 
ii) Put for any sequences s, t E Nn, sSt# Vi< n(s(i) S t(i)). Let 

for s E Nn, 

Qs = U nPxli· 
x,xln::Ss i 

Show that Qs if> regular, Q0 = AsPs = AsQS, Qs = Un Qs"n' and Qs"m ~ 
Qs·n if m S n. Let also for s E Nn, 

Qs = U Pt. 
tEN"· ,t::;s 

25.D Wellordered Unions and Intersections of Borel Sets 

Although, as we saw in 14.2, there are analytic non-Borel sets, we will see 
now that analytic sets can be expressed both as intersections and unions of 
w1 Borel sets in a canonical fashion. 

(25.16) Theorem. (Lusin-Sierpinski) Let X be a standard Borel space. If 
A~ X is I:l, then A= U~<w1 A~ = n~<w1 B~ with A~,B~ Borel sets. 

Proof. (Sierpinski) We can assume without loss of generality that X= .N. 
So, by 25.2, let T be a tree on N x N with A = p[T] and put C = .N \ A. 
For e < Wl' s E N<N let 

C! = {x E .N: PT(x)(s) < e}. 

(Recall here the notation of 2.F; the tree T(x) may be ill-founded). 
Since 

x E C # T(x) is well-founded 

# 3~ < wl(PT(,c)(0) S e), 

clearly c = Ue<wl q, where c~ = c~ = {x: PT(x)(0) s e}. So if B~ = rv 

C~, then A = n~ B~. We claim now that each c; (and thus C~) is Borel. 
For this notice that 
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is closed and 

C2 = {x E .N: s E T(x) is terminal or s tf. T(:.r:)} 

= {x E .N: V'n(xl(length(s) + 1),s~n) tf. T} 

c; = n u c;.n, if e > 0, 
n 11<~ 

so by induction on e, each C~ is Borel. 
Now let 

A~ = {x: T(x) is ill-founded and p(T(x)) :5 e}. 

Then clearly, A = U~ <w
1 
A~, so it is enough to show that A~ is Borel. For 

this note that 

This is true because if x E A~, then PT(x)(0) = oo > e, and we cannot 
have PT(x)(s) = e, since then s E WFT( 2:) and e < p(T(x)). Conversely, 
if PT(x)(0) > e and PT(x)(s) ::p e for all s, then T(x) is ill-founded and 
p(T(x)) :5 e, since otherwise, there would be somes vvith PT(x)(s) =e. 

Thus 
"'A~=C~u U (C;\UC;'), 

xEJII<N 11<~ 

so ~ is Borel. 0 

(25.17) Exercise. (Sierpinski) Let(~.) be a regular Souslin scheme on X and 
(as in 25.10) let Tx = {s E N<N: x E .Ps}· Define by transfinite recursion on 
e < Wl Souslin schemes (P$) by F1 = Ps, P!+l = Un p;.n. p; = n~<>. J1, 
for ,\ limit. Show that if T~ = { s E N<N : x E J1}, then r; = TJ ~) (in the 
notation of 2.11). 

Show that 

X E AsPs # [Tx] :F 0 

# ve < w1(T~ :F 0) 

# 3{ < w1 (T~ = T~+l & T$. :F 0), 

and use this to show that if r is a class of subsets of X and A E Ar, then 
A= U~<w1 A~ = n~<w1 B~, where A~, B~ E a(r). 

25.E Analytic Sets as Open Sets in Strong Choquet Spaces 

The following result can be viewed as an analog of 13.1 and 13.5 for analytic 
sets. 
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(25.18) Theorem. Let X be a nonempty Polish space, (An) a sequence of 
analytic sets in X. Then there is a second countable strong Choquet topology 
T, extending the topology of X and consisting of analytic sets, such that 
each An is open in T. 

Proof We can clearly work with X = .N. So, by 25.2 fix a sequence of trees 
(Rn) on N x N such that An = p[Rn]· 

For any two trees S, T on N x N, let S * T be the tree on N x N defined 
by 

(s, u) E S * T #((so, ... , Sm-d, (uo, u2, ... , Uz(m-1))) E S & 

((so, ... , Sm-d, (ub ua, ... , Uzm-d) E T, 

where m is the largest number with 2m- 1 < length(s) (= length('u)). 
Then note that p[S * T] = p[S] np[T]. Recall also that if (s, u) E Nn x Nn, 
then S[s,ul = {(t,v) E S: (t,v) is compatible with (s,u)}. 

Fix now a countable set S of nonempty trees on N x N such that 
{Rn: n EN}~ S, {(t,v) : length(t) = length('u) & tis compatible with 
s} ~ S for all s E N<"" if S, T are inS, so is S * T, and if S is in S, then 
for all (s, u), Sr.~,ul E S. LetT be the topology with basis {p[S] : S E S}. 
Clearly, T consists of analytic sets, is second countable, and contains all An 
and N8 , and thus the topology of .N. It remains to prove that Tis strong 
Choquet. 

It is clear that the strong Choquet game for this topology (see 8.14) is 
equiV'a.lent to the following: 

I xo, So x1, S1 

II To T1 

Si, Ti 'E S; p[So] '2 p[To] '2 p[S1] '2 p[T.] '2 · · ·; ::r:n E p[SnJ, Xn E p[Tn]· 
Player II wins iff nnp[Sn] (= nnp[Tn]) -:1 0. 

We describe a winning strategy for II in this game: I starts with 
.7:ij,So. Since Xo E p[So], fix (s~0>,u~0)) E W x W with (s~0>,u~0)) E 

So and xo E p[(So)[ <o> <o>1]. II plays To = (So)[ <o> <o> 1· Next I plays 
so ,u.o so ,un 

x1,S1. Since x1 E p[S1] ~ p[To], let (s~0>,u~0)) E N2 x N2 be such 
h ( (O) (O)) ( (O) (n)) c.< d [(S ) ] Also I t at s0 ,u0 ~ s1 ,u1 E vo an X1 E p o [sio>,uio>l. et 

(s~1 ), u~1)) E N2 x N2 be such that (s~1 ), u~1 )) E S1 and x1 E p[(Sl)[ (1) (1>1]. so ,-uo 
Then II plays Tl = (So)[ (0) (0)1 * (SI)[ (1) (1)1· If I next plays X2, s2, 

sl ,ul su '"'u 

then Xz E p[S2] ~ p[(So)rsio) ,uiO)II n p[(Sl)[s~1) ,u~1)11 n p[S2], so find 

(s~0>,u~0)) E N3 x N3 in So extending (si0>,·ui0>), (s~1 >,up>) E N3 x N3 

in S1 extending (s~1 >, u~l)) and (s~2 >, u~2)) E N3 x N3 in S2 such that 
x2 E p[(So)r <o> <o>1] n p[(SI)[ .<1> (1J1] n p[(Sz)r (2) <2> 1]. Then II answers 

s2 ,u2 .sl ,ul So ,uo 
by playing 
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T2 = ( (So )[8~o) ,u~o)] * ( Sl)[·•il) ,u:l)]) * (82)[8~2) ,u~2i]' 

etc. It is clear from the definition of s~n) that s~o) = s~12 1 = s~22 = · · · = 
.s~n) = Xnl(n + 1), so let x = limxn. Also, there are Yo, Yb ... such that 
u~n) ~ Yn for all n, i, and so (x, Yn) E [Sn] for all n, thus x E nnp[Sn] and 
the proof is complete. 0 

(25.19) Exercise. (Becker) Show conversely that if X is nonempty Polish, 
and T is a second countable strong Choquet topology extending the topol­
ogy of X, then T ~ I:~ (X). 

Remark. If in the proof of 25.18 one chooses the family S to consist of 
all trees recursive in a given x E .N (see 21.G), one obtains a much more 
canonical topology T that has a lot of remarkable properties. This topol­
ogy, called the Gandy-Barrington topology (relative to x), has become, 
through the use of the methods of "effective descriptive set theory" (which 
are beyond the scope of these lecture.s), one of the most powerful tools in 
descriptive set theory (see A. Louveau [199?]). 
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26. Universal and Complete Sets 

26.A Universal Analytic Sets 

For any class r of sets in Polish spaces and each Polish space Y, let 

3Yr = {proh(B) : B E r(X X Y), X Polish}. 

Thus from 25.A we have 
I-:~= :r'n? 

-3Yno - 2> 

for any uncountable Polish space Y. 
Note now that if u ~ y X X X z is y -universal for r( X X Z), then 

V = projy x x (U) 

is Y-universal for 3zr(X). So from 22.6 we have the next result. 

(26.1) Theorem. Let X,Y be Polish spaces withY 1wcountable. Then there 
exists a Y -universal set for I-:HX). 

As in the proofs of 14.2 and 22.4, we now have the following. 

(26.2) Corollary. For each uncountable Polish space X, B(X) ( = 4l(X)) ~ 
I-:HX). 

Similar facts hold, of course, for standard Borel spaces. 

2'6.B Analytic Determinacy 

We discuss next 1:":~-complete sets (see 22.9). Clearly, ifU is Y-universal for 
I":l(N), U is I":f-complete. In fact, by the argument in the proof of 22.10, 
every set in I-:} \Dl in a zero-dimensional space is 1:":~-complete. This proof, 
which is based ou the argument in Wadge's Lemma 21.14 cannot be carried 
through within the framework of classical set theory that is codified in the 
standard ZFC (Zermelo-Fraenkel with the Axiom of Choice) axioms. It 
requires the determinacy of games that are Boolean combinations of I":~ 
sets and these, as it can be shown, cannot be proved determined in ZFC 
alone. (The determinacy of Borel games is the best possible result provable 
in ZFC.) 

Following extensive studies in the foundations of set theory in the last 
25 years, there is now overwhelming evidence of the validity of the "Princi­
ple of Definable Determinacy", or just "Definable Determinacy", originally 
proposed by Mycielski and Steinhaus (see J. Mycielski and H. Steinhaus 
[1962], and J. Mycielski [1964, 1966]) which asserts the determinacy of all 
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"definable'' games on A, where A i<; a standard Borel space, i.e., the games 
G(A, X), with X ~ AN "definable". This evidence comes on the one hand 
from the structural coherence of the theory of "definable" sets in Polish 
spaces developed on the basis of this principle and on the other hand on 
the deep connections of this theory with that of the so-called "large cardi­
nals" in set theory; see Y. N. Moschovakis [1980], J. Mycielski [1992], and 
D. A. Martin [199?]. 

We will be freely using various instance,s of "Definable Determinacy" 
as needed in the sequel. In this and the next chapter we will only need that 
all Boolean combinations of I:~ games on N are determined. 

(26.3) Definition. We will abbreviate by 

I:~-DeterD1UJacy 

the principle that all games G(N,X), where X ~ NN is in the Boolean 
algebra generated by the analytic sets, are determined. 

The name "!:}-Determinacy" is justified by a result of Harrington and 
Martin (see D. A. Martin [199?]) according to which this principle is equiv­
alent (in ZFC) to the determinacy of all games G(N, X), with X ~ NN 
analytic. 

In the last chapter we will make use of a stronger instance of "Defin­
able Determinacy," namely "Projective Determinacy," which is the princi­
ple that all projective games on N are determined. This principle (and so 
in particular !:~-Determinacy) can be proved outright from the exi<;tence 
of sufficiently large cardinals (see D. A. Martin and J. R. Steel [1989]). 

26. C Complete Analytic Sets 

From now on we will explicitly indicate theorems whose proof depends on 
some instance of determinacy. 

(26.4) Theorem. (!:~-Determinacy) Let X be a zero-dimensional Polish 
space. If A E I:HX) \ Dl(X), then A is !:}-complete (similarly switching 
I:I,nD. 

Proof Let B be a I:~ subset of a zero-dimensional spaceY. Assuming, as we 
can without loss of generality, that X= Y = .N, consider the Wadge game 
WG(B, A). This is a game on N whose payoff set is a Boolean combination 
of I:} sets, so it is determined, thw.;, as in the proof of 21.14, either B ::5 w A 
and we are done, or else A ::5 W"' B and so A is n~, which is a contradiction. 

0 

Remark. L. Harrington [1978] has shown that the above statement is actu­
ally equivalent (in ZFC) to !:~-Determinacy. 
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(26.5) Exercise. (!:~-Determinacy) Show that 26.4 is valid in any Polish 
space X. 

In fact, show the following result, whic.h is reminiscent of Hurewicz's 
Theorem 21.18: Fix any set S E I:t{C) \ D}(C). Let X be Polish and 
A, B ~ X be disjoint sets that are inn~, I:~, respectively. If there is no I:~ 
set separating A from B, then there is a continuous function f : C ~ X 
with J(C) ~Au B and /- 1(B) = S. (See also 26.12.) 

(26.6) Exercise. (!:!-Determinacy) Let X be a Poli.;;h space and A~ X be 
a Boolean combination of analytic sets. If A is not n}, then it is I:}-hard. 

(A more general result can be proved for "definable" A if "Definable 
Determinacy" is used.) 

(26. 7) Definition. Given a class r of .sets in standard Borel spaces and a 
subset A ~ X, where X is standard Borel, we say that A is Borel r -hard 
~f for any standard Borel space Y and B E r(Y) there is a Borel function 
f:Y ~ X with B = f- 1(A). If, moreover, A E r(X), we say that A is 
Borel r -complete. 

These notions are similar to t.he ones we used in Polish spaces except 
that we use Borel instead of continuous reductions. It turns out (although 
we will not prove it here) that if X is Poli.;;h, then for A ~ X, A is Borel 
I:~-hard (complete) iff A is I:~-hard (complete), and so these two notions 
coincide in the context of Polish spaces (similarly for DL of course). 

26.D Classification up to Borel Isomorphism 

In 15.6 we classified Borel sets up to isomorphism. We do this here for 
analytic sets. 

(26.8) Theorem. (Steel) (!:}-Determinacy) Let X,Y be standard Borel 
spaces and let A ~ X, B ~ Y be analytic. If A,B are not Borel, then 
there is a Borel isomorphism f:X-+ Y with f(A) =B. 

Proof We can of course assume that X = Y =C. So from 26.4 we have 
that t.here are continuous functions g, h. : C -+ C with g-1(B) = A and 
h-1(A) = B. If g,h are injective, then, by the Borel Schroder-Bernstein 
Theorem 15. 7, it follows that there is a Borel h;omorphism f : X ~ Y with 
!(A)= B. 

So it is enough to show that we can find such g, h that are injective. 
We do this for g, the other case being similar. The following argument is 
due to Harrington. 

For any set C ~ C define the set C ~ C as follows: If x E C is eventually 
0, x E C. If x is eventually 1, x tf. C. If x has infinitely many O's and 1 's, 
view x as a sequence of blocks of O's separated by 1 's. (Two consecutive 1 's 
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determine the empty block.) Let x E C be defined as follows: x( n) = 0 iff 
there is an even number of O's in the nth block in x. Then we put x E 6 iff 
xE c. 

If it is easy to check that A is also I:t. So by 26.4 there is a continuous 
function g : C ~ C with A= (g)- 1(B). Our proof is complete then from 
the following lemma. 

(26.9) Lemma. Let A ~ C, X be Hausdorff and g : C ~ X be continuous 
such that g(A) ng("' A) = 0. Then there is a continuous function p : C ~ C 
such that A= p-1(A) and g =gop is injective. 

Proof. By 2.6, we will view continuous functions on C as being of the form 
<P*, where <P : 2<"" ~ 2<N is proper monotone. 

We will then define a proper monotone ;p so that p = ;p* work<; a<; 
above. We define ;p( s) recursively on the length of s so that it has the 
following properties: 

i) ;p(0) = 0; 
ii) the last value of ;p( s) is 1; 
iii) if s E 2m, then ;p( s) has exactly m blocks of O's separated by 1 's, and 

s(i) = 0 iff there is an even number of O's in the ith block of ;p(s), Vi< m; 
iv) g(N:p(s'O)), g(N'P(s'l)) are disjoint. 

Then clearly, g o ;p* is continuous, injective, and for any x E C, ;p* ( x) ------ -has infinitely many O's and 1 's. Also, ;p* ( x) = x, so x E A {::} ;p* ( x) E A. 
To construct<{), assume <P(s) is defined for s E Um<n 2m and satisfies 

i), ii) and iii) above, as well as iv) provided that length( sf< n. Givens E 2n 
we will define ;p( s'O), ;p( s '1) satisfying i) - iv ). Let X = ;p( 8 rooo. '.' y = 
;p(.~ru1 · · ·. Then x E A, y tf. A, thus g(x) =F g(y). So let k be large 
enough, so that g(Nxlk), g(Nylk) are disjoint. Then let ;p(s'O) = xlk'u 
where u E 2<!':1 is chosen so that ii), iii) are satisfied and similarly define 
;p(s'1) = yik'v for an appropriate v. 0 

0 

(26.10) Corollary. (!:~-Determinacy) Let X,Y be analytic Borel spaces. If 
X,Y are not standard, then they ar·e Borel isomorphic. 

(26.11) Exercise. Let r contain I:~ U ng and be closed under continuous 
preimages and finite unions and intersections (e.g., I:~, n~ for ~ > 3 or 
I:L n1). If X is Polish and A~ X, then A is r-hard iff for every BE r(C) 
there is an embedding f: C ~X with f- 1(A) =B. 

(26.12) Exercise. Strengthen 26.5 by showing that f can be taken to be an 
embedding. Additionally, strengthen 22.13 by showing that f can again be 
taken to be an embedding when e > 3. 
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27. Examples 

27.A The Class of fll-founded Trees 

The following is perhaps the archetypical !:}-complete set. Recall from 4.32 

that Tr is the space of trees on N (viewed as a closed subspace of 2!11<~'~). 
Let 

IF = {T E Tr : Tis ill-founded} 

= {T E Tr : [T] :;f 0}. 

(27.1) Theorem. The set IF of ill-jo11.nded trees on N is I:f-complete. 

Proof. Since T E IF {:::} 3x E .N'v'n(xln E T), clearly IF is 1:::. Now 
let A ~ .N be I:~. Then A = p[T], with T a pruned tree on N x N (by 
25.2). Then the section map x ~ T(x) is continuous from .N to Tr and 
x E A{:::} T(x) E IF, so IF is !:~-complete. 0 

(27.2) Exercise. (Lusin) Consider the space X = (N\ {0} )!':1 (which is home­
omorphic to .N) and the set L ~ X defined by 

x E L {:::} 3ko < k1 < k2 < · · · (x(ki) divides x(ki+l)). 

Show that it is !:}-complete. 

If instead of trees on N we look at trees on 2 = {0, 1}, it is easy to see 
that the class of ill-founded trees IF2 on 2 is a G6 :mbset of Tr2 (the space 
of trees on 2 as in 4.32). This follows from Konig's Lemma 4.12. 

There is still, however, an analog of 27.1 for trees on 2. 

(27.3) Exercise. Let N ~ C be the set of all binary sequences with infinitely 
many 1 's. Put 

IF;= {T E P'Tr2: 3x E N(x E [T])}. 

Then IF2 is !:~-complete. 

27.B Classes of Closed Sets 

It is clear that 27.3 can also be formulated in the following form. The set 

{K E K(C): K n N :;f 0} 

is !:}-complete (see 4.32 again). There is a corresponding fact for [0, 1] and 
indeed for general Polish spaces. 

(27.4) Exercise. (Hurewicz) i) Show that the set {K E K([O, 1]): K contains 
an irrational} is 1:::-complete. 
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ii) More generally, show that if X is Polish, and G ~ X is n~ but not 
I:~, then {K E K(X) : K n G -:p 0} is !:}-complete. 

The following is also a fundamental example of a !:}-complete set. 

(27.5) Theorem. (Hurewicz) Let X be a Polish space. Then 

{K E K(X): K is uncountable} 

is I:l and if X is uncountable it is !:{-complete. 
Similarly, {F E F(X): F is uncountable} is I:t and if X is uncount­

a.ble it is Borel I: f -complete. 

Proof. By the Cantor-Bendixson Theorem 6.4, for any F E F(X), F is 
uncountable# 3H E F(X)(H ~ F & His nonempty perfect). 

Now the set {HE F(X): His perfect} is Borel in F(X), since if {V,.J 
is an open basis for X, we have 

H is perfect # V'k{Vk n H -:p 0 :::::} 
3£3m[VI. n Vm = 0 & V1. u Vm ~ Vk 

& Ve n H -:F f/J & Vm n H =F 0]}. 

So it is clear that {F E F(X) : F is uncountable} and {K E K(X) 
K is uncountable} are I:l. 

To prove the completeness result, notice that it is enough to work with 
X= C, since C embeds in any uncountable Polish space (by 6.2). 

Recall the set N from 27.3. Define f : C ~ K(C) by f(x) = {y E C : 
y < x pointwise}. Then f is continuous and ( x E N :::::} f ( x) is perfect 
nonempty), while (x ft N:::::} f(x) is finite). ForK E K(C) now let g(K) = 
Uf(K). Then, by 4.29, g is continuous and 

K n N -:p 0 # g(K) is uncountable, 

and so the set {K E K(C) : K n N =F 0} (see the first paragraph of 27.B) 
is Wadge reducible to {K E K(C) : K is uncountable}, so this set is I:l­
complete. 0 

The preceding argument illustrates again a very common method for 
showing that a given I:l set A is !:}-complete: Choose an already known 
I:l-complete set B and show that B < w A. 

Let H now be an infinite-dimensional separable Hilbert space (e.g., £2 ). 

Let B1(H) = {x E H: llxll S 1}, S1(H) = {x E H: llxll = 1} be its unit 
ball and sphere, respectively. These clearly are closed subsets of H. 

(27.6) Theorem. (Christensen) The set 

{FE F(B1(H)): Fn S1(H) -:p 0} 
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is Borel I:t -complete. 

Proof. It is enough to find a Borel map f : Tr -+ F( B 1 (H)) ::such that 
T E IF # f(T) n S1(H) :f 0. 

Fix an orthonormal basis (em,n)m,nEN for H. ForsE Nn, let 

1 1 1 
Vs = J2eo,s(O) + ( J2)2 el,s(l) + · · · + ( J2)n en-l,s(n-l)· 

Clearly, llvsll < 1. ForTE Tr let 

f(T) = {vs: sET} E F(B1(H)). 

It is easy to check that f is Borel. We next verify that T E IF # f(T) n 
St(H) =1: 0. 

1fT E IF, let X E [T]. Then Vxln+l -V.r.ln = (.J2~n+l en,x(n)> so llvxln+l-
Vxlnll = (.J2;n+l and 'Vxin converge::s to some v E Bt(H). Also 

llvxlnll2 
= L 2~ -+ 1 = llvll2

• 

l$i.::;n 

So v E J(T) n St(H). 
Conversely, let v E f(T) n S1 (H). Find {si: i EN} ~ T with V8 , -+ v. 

Since for each n and s E Nn, llvsll2 = Lt<i<n i· < 1, it follows that 
length( si) is unb01mded. So, by going to a subsequence we can assume that 
length(si) ;::=: i and llvs,- Vs;+ 1 11 2 < 2-i-l. Notice next that if s,t E _N<N 

and s(i) =1: t(i), then llvs- VtW ;::=: 2-i-l, and so snln = Sn+tln. Thus there 
is x E .N with xln = snln for all n. Then x E [T], soT E IF. 0 

(27.7) Exercise. Using the notation of 27.6, show that the operation 
(F.,F2) ~ F1 nF2 is not Borel in F(B1(H)). Also find open U in B1(H) 
such that {F E F(B1(H)) : F ~ U} is not Borel. (Compare with 12.12 
here.) 

Show that {FE F(.N) : Fn{x E .N: 'V even n(x(n) = 0)} =I= 0} is Borel 
I:l-complete. Conclude that for any Polish space X that is not K17 , there 
is a closed set Fo ~X with {FE F(X) : F n Fo =I= 0} Borel I:l-complete. 
On the other hand, verify that if X is Polish K 17 , then (F., F2) ~ F1 n F2 
is Borel on F(X). 

(27.8) Exercise. i) Show that {FE F(.N) : F' =I= 0}, where F' is the Cantor­
Bendixson derivative ofF, is Borel I:l-complete. 

ii) Let X be an uncountable Polish space. Show that the map that 
sends F E F( X) to its perfect kernel is not Borel. 

(27.9) Exercise. Let X be a Polish space that is not K 17 • Show that 

{ F E F(X) : F is not contained in a K 17 set} 
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is Borel !:~-complete. Show also that there is no analytic set A with {FE 
F(X) : F is countable} ~A~ {FE F(X): F is contained in a K 17 set}. 

(27.10) Exercise. Consider F(.N/~ and its Borel subset 

D = {(Fn) E F(JV)N: Fo 2 F1 2 · · ·}. 

For (Fn) ED, let 

n 

Show that (Fn) ~ n(Fn) (from D into F(N)) is not Borel. 

An important example of a !:~-complete set was discovered in the 
1980's in the theory of trigonometric series. A subset A ~ 'll' is called a 
set of uniqueness if every trigonometric series Lnez Cneinx (where Cn E 

C, x E IR) that converges to 0 (i.e., limN E~=-N eneinx = 0) outside A is 
identically 0. (We view here A as a subset. of [0, 21T) identifying x E [0, 21T) 
with eix E 'll'.) Otherwise it is called a set of multiplicity. Denote by UNIQ 
the class of closed sets of uniqueness and by MULT the cla.<;s of closed 
sets of multiplicity. (Thus UNIQ, MULT ~ K('ll').) Kaufman and Solovfl.y 
(independently) (see R. Kaufman [1984]; A. S. Kechris and A. Louveau 
[1989]) have shown that MULT is a !:~-complete set. One proof of the 
hardness part of this result is based on the following facts: 

i) There is a continuous function f: [0, 1] -+ K('ll') such that: x '¢ Q # 

f(x) E MULT. 
ii) (Bary) The union of countably many closed sets of uniqueness is a 

set of uniqueness. 

(27.11) Exercise. i) Use these facts to complete the proof that MULT is 
I:~-hard. 

ii) Use only the fact that MULT is not Borel, and the easy fact that 
every closed set of positive measure is in MULT, to show that there is 
a trigonometric series E Cn einx that converges to 0 a. e. (with respect to 
Lebesgue mea.sw-e), but is not identically 0. This is a classical theorem 
of Menshov and should be contrasted with the fact that a Fourier series 
E }(n)einx that converges to 0 a.e. is identically 0. 

We will return to this example in 33.C. 

27.C Classes of Structures in Model Theory 

Let L be the language containing one binary relation symbol R. Consider 
XL = 2N

2
, the space of structw-es of th.is language with universe N, as in 

16.C. Put 
LO = {x E XL: Ax is a linear ordering}, 



27. Examples 213 

so that LO is a closed subspace of XL. Put 

WO = {x E LO: Aa; is a wellordering}, 

NWO = LO\ WO. 

The following result is closely related to 27.1. 

(27.12) Theorem. (Lusin-Sierpinski) The set NWO is !:~-complete. 

Proof. Recall from 2.G the concept of the Kleene-Brouwer ordering <KB 

on ,N<N (with N given its usual ordering). Given a tree T on N, define 
x(T) E LO as follows: Fix a bijection h : N - ,N<N and put 

x(T)(m,n) = 1 {::? (h(m),h(n) E T & h(m) <KB h(n)) or 

(h(m) E T & h(n) ~ T) or 

(h(m), h(n) ~ T & m < n). 

Thus x(T) is a linear ordering on N isomorphic (via h) to the ordering of 
N<"" in which all elements ofT precede those of N<"" \ T, the elements 
ofT are ordered by <KB, and the elements of ,N<N \ T are ordered by 
h- 1(s) < h- 1 (t). It is clear then (using 2.12) that 

T E IF{::? x(T) E NWO. 

Since T ~ x(T) is continuous from (Tr to LO), we are done. 0 

(27.13) Exercise. Identify Pow(Q) with 2Q (which is homeomorphic to C). 
Show that the set {A C Q: The ordering of Q restricted to A is not a 
wellordering} is !:~-complete. 

27.D Isomorphism 

Consider now the relation of isomorphism"' between elements of XL, L = 
{R}, R binary, i.e., 

X "' Y {::? Ax "' A.y · 

It is clearly I:~ (in XL x XL). It can be shown (see H. Friedman and L. 
Stanley [1989]) that it is also !:~-complete, but the only proof we know 
that can be carried in ZFC uses methods of effective descriptive set theory, 
which we do not develop here. However, using a result that we will prove in 
Section 31, it is much easier to show that ~ is not Borel and then use 26.4 
to conclude, using !:~-Determinacy, that it is !:~-complete. This is a typical 
situation: The lL'!e of I:l-Determinacy often allows to find simpler proofs of 
results that can be also proved in ZFC by more difficult arguments. 

To see that "' is not Borel, note that if it was I:~, for some e < WJ ' 

toward a contradiction, then all its equivalence classes would also be I:~, 
thus, in particular, for every a < w1 
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woor. = {X E wo : Ax has order type :::; Q} 

would be I:~. This violates 31.3. (See also the results of Stern mentioned 
in 23.G.) 

We will see also in 33.26 that the isomorphism relation on separable 
Banach spaces is Borel !:}-complete (in X 2 , where X is the standard Borel 
space of separable Banach spaces as in Example 3) of 12.E). 

(27.14) Exercise. Let G be a Polish group, X a standard Borel space and 
(g,x) ~ g.x a Borel action of G on X. If Gx is the stabilizer of x, then, 
by 9.17, Gx is a closed subgroup of G. Show that the map x ~ Gx from 
X into F(G) is a(I:D-measurable. Show also that if it is Borel, then the 
equivalence relation xEay {:::} 3g E G(g.x = y) is Borel. 

Notice that for the logic action of Soo on XL (see 16.C) the stabilizer 
Gx for x E XL is just the automorphism group Aut(Ax) of the structure 
Ax· Show that the map x ~ Aut(Ax) is not Borel on LO. 

27.E Some Universal Sets 

Poprougenko has shown that if we let 

R1 = {y E IR: 3x E [0, l](f'(x) = y)}, 

for f E C([O, 1]), then the sets of the form R1 are exactly the I:} subsets 
of JR. It follows that the set 

U(f, x) {:::} f E C([O, 1]) & x E R1 

is C([O, !])-universal for I:i{IR). 
Let L(eo) = L(c0 ,eo) be the space of bounded linear operators on c0 • 

By 12.22 its Borel structure in either the weak or strong operation topology 
coincides and is standard. So, by putting a Polish topology that generates 
this Borel structure, we will view L(eo) as being Polish itself. 

Given a separable Banach space X and T E L(X), its point spectrum 
ap(T) is the set 

a,(T) = {,\ E C: 3x :f O(T(x) = ..\x)}. 

This is a I:~ subset of C that is bounded, since it is contained in the 
spectrum of T. 

Kaufman has shown that every bounded I:i sub8et of C is of the form 
ap(T) for some T E L(eo). It follows that the set 

U = { ( (Tn), ..\) E L( Co)!ll x C : ,\ E U a,(Tn)} 
n 

is (L(coW1-universal for I:l{C). 
Our last example is due to Lorentz and Zeller. 
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A summability method is an infinite matrix A= (aij),i E N,j EN, 
of real numbers. Given a (formal) series I::=o Um of real numbers, we say 
that it is A-snmmable to s E IR if the numbers Vn = I::=o anmUm exist 
and L~=O Vn = s. (If A= (8ij), where 8ij is the Kronecker delta, then A­
summability is ordinary summability.) In this ca.<;e, we write A-I::=o Um = 
s. A rearrangement of a series I::=o Um is any series I::=o Un(m) where 
tr is a permutation of N. The A-rearrangement set of I: Um is the set of 
real numbers R (L Um, A) given by 

00 00 

{A- L u,(m): tr a permutation of N & A- L u,.(m) exists}. 
m=O m=O 

By a classical theorem of Riemann, if A= (8i;), the A-rearrangement set 
of I: Um is either 0, a singleton, or R 

Clearly, R(l: Um, A) is an analytic set. Conversely, Lorentz and Zeller 
showed that if P ~IRis analytic, then there is A such that R(I: em, A)= P, 
where I: em = e11 + 0 + e21 + 0 + e3' + 0 + · · ·. It follows that the set 

is JR!':I
2 
-universal for I:HIR). 

27.F Miscellanea 

(27.15) Exercise. Let X be a Polish space. Consider the set 

CS = {(xn) E XN: (xn) has a convergent subsequence}. 

Show that CS is I:} and that if X is not K 17 , it is !:}-complete. 

(27.16) Exercise. Consider the Polish space [N]No of infinite subsets of N as 
in 19.C. For F ~ [N]No, let F* ={HE [N]No: 3H' E F(H' ~H)}. Find a 
closed set F for which F* is !:}-complete. · 

Woodin has shown that the set of all f E C([O, 1]) which satisfy Rolle's 
Theorem (i.e., those f for which for all a< bin [0, 1], if f(a) = f(b), there 
is c E (a, b) with f'(c) = 0) is !:}-complete. 

(27.17) Exercise. Show that this set is indeed I:}. 

Humke and Laczkovich have shown that {! o f : f E C([O, 1])} ~ 
C([O, 11) is I:l but not Borel (but it is not known how to prove in ZFC that 
it is I:l-complete). 

R. Kaufman [1989] has shown that the class of Wiener sets (a subset 
of 2z) is I:l-complete, where A ~ Z is a Wiener set if there is a continuous 



216 Ill. Analytic Sets 

complex Borel measure on 'll' with lit(n)l ?: 1, 'Vn E A, where P,(n) = 
J ... e-intd/-L(t) (we identify here 'll' again with [0, 211")). 

P. ErdOs and A. H. Stone [1970] have shown that there is a closed set 
A ~ IR and a G6 set B ~ IR with A+ B (analytic but) not Borel. (Note 
that. if A, Bare Fen then A+ B is F17 too.) 

L. Dub ins and D. Freedman [1964] have shown that there is a G 6 subset 
of na whose convex hull is (analytic but) not Borel. 

(27.18) Exercise. (Sierpi.Dski) Show that there is a G6 setH ~ IR2 such that 
the distance set D(H) = {lx- yl: x,y E H} is (analytic but) not Borel. 

Finally, several other examples will be discussed iu Section 33. 
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28. Separation Theorems 

28.A Th(~ L-usin Separation Theorem Revisited 

We first recall the Lusin Separation Theorem (14. 7). 

(28.1) Theorem. (The Lusin Separation Theorem) Let X be a standard 
Borel space and let A,B ~ X be two dis_ioint analytic sets. Then there is a 
Bor-el set C ~X separating A frorn B. 

We will give two (related) proofs of this result. The first one is es­
sentially the proof of 14.7, but it is expressed in the language of Souslin 
schemes, which is convenient for the further results that we will prove in 
this section. This is formulated as a proof by contradiction. The second 
proof is inst.ead a "constructive" one. 

Proof (I of 28.1) We can assume that X is Polish. Let d be a compat­
ible metric for X. Taking A, B t.o be nonempty, without loss of gener­
ality, let (P8 ), (Qt) be Souslin schemes for A, B as in 25.7 iv). Call a 
p8ir ( s, t) E N<N bad if P8 , Qt cannot be separated by a. Borel set. So 
asswne toward a contradiction that (0, 0) is bad. Now if (s, t) is bad, 
there are m, n such that (s'm, t'n) is bad: Otherwise, every Ps-m can 
be separated from every Qrn by a Borel set, say Rm,n· Then, since 
Ps = Um Ps·m, Qt = U,. Qt·n· Urn. n .. R,.,,,n is Borel and separates Ps, Qt. 

So, by recursion, define x, y E .N such that (xln, yin) is bad for all n. 
Let {p} = nn Pxln• {q} = nn Qylw Thenp E A,q E B, sop :f q. Let U, V be 
disjoint open sets with p E U, q E V. Then for large n, Pxln ~ U, Q yin ~ V 
(by the vanishing diameter condition), so U separates P.,:ln from Qyln• a 
contradiction. 0 

Proof (II of 28.1) It clearly suffices to prove the result for X = .N. So let 
A, B ~ .N be pairwise disjoint I:~ sets. By 25.2 let TA, TB be trees on N x N 
E>uch that A= p[TA], B = p[TBI· Form the separation tree Ton N x N x N 
as follows: 

(s,u,v) E T # lengt.h(s) = lengt.h(1l) = leugt.h(v) & 

(s,u) ETA & (s,v) E TB· 

Since An B = 0, T is well-fowtded. Thus (see Appendix B) we can define 
functions f on T recursively by specifying the values of f at the terminal 
nodes of T, and then, as!luming f(s', u', v') is kuowu for all ( s', u', v') ~ 
( s, u, v ), ( t/, u', v') E T define f( s, u, v) in terms of them. (Here ( s', u', v') ~ 
(s,u,v) means that s' ~ s,u' ~ u,v' ~ v.) For s,t,u,v E N<N, let 

(TA)[s,u] = {(s', u'): (s',u') ETA & (s', u') is compatible with (s,u)}, 

(TB) t,·u = {(t',v'): (t',v') E TB & (t',v') is compatible with (t,v)}, 
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and 

Thus 

and 

A0,0 =A, B0,0 = B, 

As,u = U As·k,u"l 1 

k,l 

Bt,v = U Bcm,v·n· 
m,n 

It will be enough to define for each ( s, u, v) E T a Borel set Cs,u,v sepa­
rating A.s,u from Bs,v· Then C0,0,0 separates A from B. To define Cs,u,v, it is 
enough to define Borel sets Cs,u,v;k,l,m,n separating As·k,u"l from Bs·m.v·n, 

since then 

u n Cs,u,v;k,l,m.,n ·= c .. ,1L,1J 

k,l m,n 

separates As,u from Bs.v· 

If k =I m, let Cs,u,v;k,l,m,n = Ns-k· If k = m, we define Cs,u,v;k,l,k,n 

recursively on (s, u, v) E T (for all k, l, n). 

Case 1. (.s, 1l, v) E T is terminal: Then (s' k, u' l) ft TA or (s • k, v 'n) ft TB. 
In the first case, As·k,u"l = 0, so take C,..u,v;k,l,k,n = 0. In the second, 
Bs·k,v"n = 0, SO take Cs,u,v;k,l,k,n = .N. 

Case 2. Assume (s, u, v) E Tis not terminal, and Cs',u'.v';k',l',m',n' has been 
defined for all (i,u',v') ~ (s,u,v) with (s',u',v') E T and all k',l',m',n'. 

If (s'k,u'l,v'n) E T, then Cs·k,u"l,v"n 1 as defined by(*), separates 
As·k,u"l from B,.·A:,v"n· So take Cs,u,v;k,l,k,n = Cs·k,u"l,v"n· If, on the other 
hand, (s'k,u'l,v'n) ft T. proceed as in Case 1. 0 

(28.2) Exercise. Show that I:t does not have the reduction property. 

(28.3) Exercise. Recall from 25.A the definition of an analytic Borel space. 
If (X,S) is an analytic Borel space, a subset A C X is called analytic (or 
I:D if there is an isomorphism 1r of (X, S) with (Y, B(Y)), where Y is 
an analytic set in some Polish space Z, such that 1r(A) is analytic. Show 
that A ~X is analytic iff A= AsPs, where Ps E S. Show that the Lusin 
Separation Theorem goes through in any analytic Borel space and thus so 
does the Souslin Theorem 14.11. 
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28.B The Novikov Separation Theorem 

(28.4) Exercise. Let r, I" be two classes of subsets of a set X such that 
for any two disjoint sets A, B E r there are disjoint sets A', B' E I" with 
A <; A', B ~ B'. Assume that r, r' are closed under finite unions and 
intersections and that if"' A E f', B E r, then An B E r. Show that for 
any A 11 ... , An E r with A1 n ···nAn= 0, there are B1, .•. , Bn E f' with 
Ai ~ Bi and B1 n · .. n Bn = 0. 

Conclude that for any standard (or even analytic) Borel space and any 
I:l sets A1, ... , An with A1 n ···nAn = 0, there are Borel sets Bi 2 Ai 
with B1 n · · · n Bn = 0. 

We extend this to infinite sequences. 

(28.5) Theorem. (The Novikov Separation Theorem) The class of I:} sets 
in standard Borel spaces has the generalized separation property, i.e., for 
a standard Borel space X and any sequence (An) of I:l sets in X with 
nn An = 0, there is a sequence of Borel sets Bn :> An with nn Bn = 0. 

Equivalently, if X is a standard Borel space, (Bn) is a sequence of Dl 
sets with X = Un Bn, thus there is a sequence (Cn) of pairwise disjoint 
Borel sets with Cn C Bn and X= Un Cn. 

Still equivalently, if X is a standard Borel space and B ~ X x N is 
Dl such that Vx3nB(x, n), there is a Borel function f : X -+ N with 
B(x; f(x)), Vx. 

Thus Dl satisfies a weaker version of the generalized reduction (or 
number uniformization) property. We will actually see in 35.1 that it satis­
fies the full generalized reduction (or equivalently the number uniformiza­
tion ). property. 

Proof. (Mokobodzki) We can assume of course that X is Polish. Again let 
(PJi)) be a Souslin scheme for Ai as in 25.7 iv). We can assume again that 
A; :rf 0, Vi E N. 

Call an infinite sequence ( s0 , s1 , ••• ) of elements of N<"" ba.d if the 
conclusion of the theorem fails for (Pt>). So assume, toward a contra­

diction, that (0,0, ... ) is bad. Since P~i) = Um~~~~n' if (so,St,···) is 
bad, then for every n there is m with (so, s1, ... , Sn-11 Sn 'm, Sn+l• ... ) 

also bad. So recursively, we can define xo, Xt, . • • E N such that for each 
n, (xoln,xtln, ... ,xnln,0,0, ... ) is ha.d. 

Let {pi} = nn P~:ln. Since Pi E Ai and ni Ai = 0, there are 
i < j with Pi :rf Pj· Let Ui, Uj be open disjoint with Pi E Ui, Pj E 

Uj. Thus find m > i,j such that P;:l.,. <; Ui, P;~~m <; Uj. Then 
(X, ... ,X,Ui,X, ... ,X,Uj,X, ... ) shows that (xolm,xtlm, ... ,xmlm,0, 
0, · · ·) is not bad, which is a contradiction. 0 
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(28.6) Exercise. Show that the Novikov Separation Theorem goe!> through 
in any analytic Borel space. 

28. C Borel Sets with Open or Closed Sections 

The following is an important application of the Novikov Separation The­
orem. 

(28.7) Theorem. (Kunugui, Novikov) Let X be a standard Borel space, Y 
a Polish space, and A ~ X x Y a Borel set such that every section Ax is 
open. Then if {Vn} is any open basis for Y, A = U .. (Bn x Vn), wit.h Bn 
BoTel in X. 

Proof. If (x,y) E A, then for some n, y E Vn ~Ax. So A= Un(Xn x Vn), 
where Xn = {X E X : Vn ~ Ar. }. Clearly, x .. L<; an} set. If Zn = Xn X Vn, 
then Zn is nf, and A= Un Zn, so by 28.5, there is a sequence (A .. ) of Borel 
sets with A= Un An and An~ Zn. Let Sn = proh(An) ~ Xn. Then Sn 
is :El, so by the Lusin Separation Theorem (applied to Sn, "'Xn) there is 
a Borel set Bn with Sn ~ Bn ~ Xn. Then An ~ Bn X Vn ~ Xn X v,.. = Zn, 
and so A= Un(Bn X Vn)· 0 

The preceding result completely determines the structure of Borel sets 
in product spaces whose sections are open and therefore, by taking comple­
ments, those whose sections are closed. Applying this to the particular case 
of Borel sets with compact sections, we obtain the following result, which, 
in particular, proves a special case of 18.18. 

(28.8) Theorem. Let X be a standard Borel space, Y a Pol·ish space, and 
A ~ X x Y a Borel set, all of whose sections Ax are compact. Then the map 
x ~ Ax (from X to K(Y)) is Borel. Equivalently, a map f:X ~ K(Y) is 
Borel iff the set F(x,y) # y E f(x) is Borel. In particular, if A is as abov~:;, 
A has a Borel uniform.ization (and so prohA is Borel). 

Proof We can first assume that Y is compact, by replacing it by a com­
pactification if necessary. By 28.7, "'A= Un(Bn x v;.,), where {Vn} is an 
open basis for Y and each Bn ~ X is Borel. Thus 

y E Ax # V'n(x E Bn => Y ft Vn)· 

Put Y \ Vn = Kn, b(x) = {n: x E Bn}· Then b: X ~ 2!\1 is Borel and 
Ax = nnEb(x) Kn. The proof that X ~ Ax is Borel is t.hen clear from the 
following. 

Claim. The mapS~ nnes Kn, from 2N into K(Y) is Borel. 

Proof of Claim. By 11.4 it is enough to show that if F ~ Y is closed, then 
P = { S E 2N : n., s K n n F -:F 0} is Borel. Put 
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R(S,x) # V'n(n E S:::} x E Kn) & x E F. 

Then R ~ 2!11 x Y is closed, so compact, and P = prohN(R) is compact too. 

The final assertion about uniformization follows immediately now from 
12.13. 0 

(28.9) Exercise. Let X be a standard Borel space and A ~ X x.N a Borel set 
all of whose sections Ax are closed. Show that there is a Borel map x ~ Tx 
from X into Tr such that [Tx] = Ax, V'x E X. Show that, in general, Tx 
cannot be taken to be always pruned, even when projx(A) =X. 

There is a general version of 28.7 for Borel sets with :Eg sections. Given 
a standard Borel space X and a Polish space Y, consider the following 
classes of sets in X x Y, where {Vn} is an open basis for Y, 

:E~·y = n~·y ={Ax Vn: A E B(X), n EN}; 

:E:.v = {UAn: An E n:~v, ~n < ~. n EN}, if~;::: 1; 
n 

n:·y = {.-v A: A E :E:.Y}, if~;::: 1. 

Then we have this result. 

(28.10) Theorem. Let X be a standar-d Borel space, Y a Polish space, and 
A.~ X x Y a Borel set all of whose SP-<:tions Ax are Eg. Then A E :E: ,Y. 

This is 28.7 for~= 1, it is due to J. Saint Raymond [1976a] for~= 2, 
J. Bourgain [1980,1980a] for~= 3, and A. Louveau [1980,1980a.] in general. 
We will prove in 35.45 the case~= 2 and use it also to prove 18.18. 

Note that 28.10 can be also formulated in the following equivalent form: 
If X is standard Borel, Y Polish, and A ~ X x Y is Borel all of whose 

sections Ax are :Eg, then there is a Polish topology Ton X giving its Borel 
structure such that A is :E~ in (X, T) x Y. 

28.D Some Special Separation Theo·rems 

\Ve will next prove two special separation theorems and use them to produce 
"generation" results for Borel sets. 

Consider first the space Pow(N), which we identify with 2!11. The Borel 
sets in this space form the smallest class containing the sets of the form 

Un={x~N:nEx}, 

Un={x~N:nftx}, 

which is closed under countable intersections and unions. To see this, notice 
that the ba.'lic open sets N 6 ( s E 2<!11) of 2!\1 are finite intersections of 
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sets of the previous form. The Borel sets obtained from the sets Un only 
by countable intersections and unions (i.e., the sets in the smallest class 
containing the U., and closed under these operations) are called positive 
Borel sets (since the variable "x" is used only positively in their definitions). 
If A ~ Pow(N) is positive Borel, then it is clearly monotone (i.e., x E 
A & y 2 x:::} yEA). The converse turns out to be true as well. 

(28.11) Theorem. For every Borel set A~ Pow(N), A is monotone iff A is 
positive. 

This result will be proved by actually establishing, as usual, a stronger 
separation theorem. 

(28.12) Theorem. (Dyck) Let A,B ~ Pow(N) be disjoint :E: sets with A 
monotone. Then there is a positive Borel set C separating A from B. 

Proof Let {P8 ), (Qt) be Souslin schemes for A, B as in 25.7 iv). Call a 
pair ( s, t) E _N<N x _N<N bad if P8 cannot be separated from Qt by a pos­
itive Borel set. So assume, toward a contradiction, that (0, 0) is bad. As 
in proof I of 28.1, if (s,t) is bad, then for some m,n, (sAm,rn) is also 
bad. So by recursion define x, y E .N with (xln, yin) bad for all n. Let 
{p} = nn Pxlm {q} = nn Qyln· Since pEA, q ft A and A is monotone, and 
so p ~ q, let n E p, n ft q (i.e., p E Un, q E U.,). Now find k large enough 
so that Pxlk ~ Un, Qylk ~ Un. Then Un separates Pxlk from Qylk> which is 
a contradiction. 0 

We look next at convex Borel sets in !Rn. We need the following stan­
dard fact. 

(28.13) Proposition. If K ~ !Rn is compact, its convex hull (i.e., the smallest 
convex set containing it) is also compact. 

Proof. Let H(K) be the convex hull of K. Then by Caratheodory's theorem, 

n+l n+l 

H(K) = {L aixi : La, = 1, ai ~ 0, Xi E K}. 
i=l i=l 

(x, Xt, X2, ... , Xn+ll a1, ... an+ I) E L #XI! ... , Xn+l E .K & ai ~ 0 & 
n+l n+l 

La;. = 1 & x = L xiai. 
i=l •=1 

Thus, Lis compact and so is H(K). 0 
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Notice now that the intersection of a family of convex sets is convex and 
so is the union of an increasing sequence of convex sets. So we call a Borel 
set in !Rn convexly generated if it can be obtained from the compact convex 
sets by the operations of countable intersection and increasing countable 
union (i.e., it belongs to the smallest class of sets containing the compact 
convex sets and closed under these operations). Note that in thi<; definition 
we could have used "open convex" instead of "compact convex" (using 28.13 
and the simple faet that if A is a (:onvex set, so is { x: d(x, A) < € }, where 
dis the usual Euclidean distanc..e in !Rn). 

Clearly, the convexly generated Borel sets are convex. The following is 
the converse. 

(28.14) Theorem. Given a Borel set A ~ !Rn, A is convex iff A is convexly 
generated. 

Again this is a corollary of the following separation theorem. 

(28.15) Theorem. (Preiss) Let A,B ~ !Rn be disjoint E~ sets with A convex. 
Then there is a convexly generated Borel set C separating A from B. 

Proof. We will use now also the representation of analytic sets given in 
25.13. Let {P8 ) be a Souslin scheme for A as in 25.13 and (Q8 ) a Souslin 
scheme for Bas in 25.7 iv). Call (s, t) bad if Ps cannot. be separated from 
Qt by a convexly generated Borel set. So assume (0, 0) is bad, toward a 
contradiction. We claim again that if ( s, t) is bad, then there are m, n 
with (s'm, t'n) bad: Otherwise, each Ps·m can be separated from each 
Qrn by a convexly generated Borel set Cm,n· Since Ps·m ~ Ps·(m+l)' the 
set Dm = nl>m nn Ct,n is convexly generated and separates Ps·m from 
Un Qrn = Q~. Clearly, Dm ~ Dm+l' so D = Um Dm is also convexly 
generated and separates Um P,,·m = P8 from Qt, which is a contradiction. 

Thus define x, y E .N recursively such that (xln, yin) is bad for all n. Let 
K = nn Pxln and { q} = nn Qyln· Then K ~ A and K is compact, so the 
convex hull H(K) of K is compact and H(K) ~A since A is convex. Hence 
q ft H(K). Then for some € > 0, the €-nbhd U = {p: d(p, H(K)) < €} of 
H ( K) is convex open, and thus convexly generated, and is disjoint from 
some open nbhd V of q. Now choose n with Pxln ~ U, Qyln ~ V, to obtain 
a contradiction. 0 

(28.16) Exercise. Show that the class of (:onvexly generated Borel sets in !Rn 
is the smallest class containing the compact convex sets and closed under 
increasing countable unions and decreasing countable intersections. 
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28.E "Hurewicz- Type" Sepamtion Theorems 
Recall first the following two results that we proved in 22.30 aud 21.22, 
respe<~tively. 

(28.17) Theorem. Let A,B be two disjoint (arbitrary) subsets of a Polish 
space X. Then A,B can be separated by a 4g set iff there is no Cantor set 
C ~ X with An C,B n C dense in C. 

(28.18) Theorem. Let A,B be two disjoint subsets of a Polish space X, with 
A analytic. Then A,B can be separated by a :Eg set iff there is no Cantor 
set C C A U B with C n B countable dense in C. 

A. Louveau and J. Saint Raymond [1987] have proved extensions of 
28.18 for :E~, when A,B are :E~. 

(28.19) Theorem. (Louveau-Saint Raymond) Let { ;::: 3 and let A,B ~ X be 
disjoint analytic s·ubsets of a Polish space X. Let Hf. be any n~ \ :Eg subset 
of C. Then A,B can be separated by a :E~ .set iff there is no embedding 
g:C-+ X with g(C) ~Au B and g(C) n A= g(HF.)· (Compare this with 
22.13 and 26.12.) 

We will give only a simple proof of 28.19, using :E~-Determinacy, in 
the case when X is zero-dimensional: 

Let T be a pruned tree on N and A, B C [T] be disjoint :E~ sets. 
Consider the set iff. as in the proof of 26.8. Since ~ ;::: 3, it is easy to see that 
iff. is also n~. Consider then the separation game SG(iff.; A, B) as in 2l.F. 
It is a Boolean combination of :El games, so it is determined. If player I has 
a winning strategy, then there is a continuous function f : [T] -+ C such that 
r 1("' iff.) separates A from B, which is impossible because r 1("' iff.) is 
:E~. So player II has a winning strategy, and there is a continuous function 
g: C-+ [T] with g(ife) ~A, fi("' iff.)~ B. By 26.9 there is a continuous 
function p: C-+ C with Hf. = p- 1(ifF,) and g =gop an embedding. Clearly, 
g(C) ~Au Band g(C) n A= g(HF.)· 

(28.20) Exercise. (:E~-Determinacy) Let X be a separable metrizable ana­
lytic space. Then X is Polish iff it contains no closed set homeomorphic to 
Q iff it is completely Baire. (Compare this with 21. 21. More generally, from 
"Definable Determi.na(!y" one can see that this holds for any "definable" 
separable metrizable space X.) 

(28.21) Exercise. Provide the details for the following different proof of 
21.22 ( =28.18) for the case where A, B ~ C are analytic sets. The proof 
uses only closed games as opposed to the more complicated ones used in 
the proof of 21.22. This proof is due to A. Louveau and J. Saint Raymond 
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Let A = p(S], B = p(T] be disjoint, where S, T are trees on 2 x N. 
Let Q ~ C be the set of all eventually 0 binary sequences, and consider 
the following game SG'(Q; B,A), which we can think of as some sort of 
unfolded version of SG(Q; B, A). 

I €(0) €(1) 

II x(O), y(O) x(1), y(1) 

€(i),x(i) E {0, 1}; y(i) EN. II wins iff for each n the position (€1n,xln,yln) 
is good, i.e., the following hold: 

i) If €(n- 1) = 0 and k < n is least with €(k) = €(k + 1) = ... = 
€(n- 1) = 0, then (xl(n- k), (y(k), ... , y(n- 1))) E T. 

ii) If €(n- 1) = 1 and io < i1 < · · · < iz-1 = n- 1 are those integers 
i < n for which E( i) = 1, then (xll, (y( io), ... , y( iz-1))) E S. 

So this game is closed for II. Show first that if II has a winning strategy 
r (which we view here as a continuous function from C into C x C) and we let 
r(€) = {f(€),g(€)), then f is continuous and f(C) ~ AuB, f(C)nA, f(C)nB 
are dense in f(C) and f(C) n B is countable, so, as in the proof of 21.22, 
there is a Cantor set C ~ AU B with C n B countable dense in C. 

So assume I has a winning strategy a, which we view here as a function 
from Un(Nn x Nn) into {0, 1}. For x E C, we say that u ENnis x-good if II 
plays xln, u in his first n moves, I plays according to a, and the positions 
( €lk, xlk, u.ik ), k s n, are good. By convention, 0 is x-good. Let 

C = {x E C :3n3u E Nn[(u is x-good & 

for n > 0, a(xl(n- 1), ul(n- 1)) = 1) & 

'Vv :2 u(v is x-good :::} a(xllength(v), v) = 0)]}. 

Check that C is Eg and then show (arguing by contradiction) that C sep­
arates A from B. 
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29. Regularity Properties 

29.A The Perfect Set Property 

The following basic fact has been proved by various means in earlier sections 
(see 8.8 ii), 14.13, 21.2 and the remarks folloVI.'ing it). 

(29.1) Theorem. (The Perfect Set Theorem for Analytic Sets) (Souslin) 
Let X be a Polish space and A ~ X an analytic set. Either A is countable 
or else it contains a Cantor set. 

(29.2) Exercise. (Solovay) Fill in the details in the following alternative 
proof of the Perfect Set Theorem. 

First, argue that it is enough to consider the case X = .N. So let T be 
a t.ree on N x N such that p[T] = A. Define a derivative S ~ S~ for trees on 
N x N (reminiscent of the Cantor-Bendixson derivative of 6.15) by letting 
SJ. be the set 

{(s,u) E S: 3(t,v),(r,w) E S[(t,v) d (s,u) & (r,w) d (s,u) & t l_ r]}. 

By transfinite recursion define TP = T, Tf+l = (Tf)~ and T[ = n.:t<.X Tf 
if,\ is limit. Let ao be least such that T} = Tf0 for 0: ~ ao. Put Tf' = Tf0

• 

So (Tf')~ = Tf'. Show that if Tf' = 0, then A is countable, while if 
Tf' :F 0, A contains a Cantor set. 

A result having the same general flavor as 29.1 is the following, which 
we proved in 21.23. 

(29.3) Theorem. Let X be a Polish space and A~ X an analytic set. Either 
A is contained in a K 17 set or else A contains a closed set homeomorphic 
to.N. 

(29.4) Exercise. Use an idea similar to that of 29.2 to give another proof of 
29.3 for X= .N. (See 21.24.) 

29.B Measu.re, Category, and Ramsey 

The following result was proved in 21.6. 

(29.5) Theorem. Let X be a Polish space and A~ X an analytic set. Then 
A has the BP. 

(29.6) Exercise. Let G, H be Polish groups and 1.p : G ~ H a Borel ho­
momorphism. Then if ~.p(G) is non-meager, 1.p is open (and continuous by 
9.10). 
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Given a standard Borel space X, we call a subset A ~ X universally 
measurable if for any a-finite (equivalently: probability) Borel measure ll 
on X, A is wmeasurable. Sets having this property form a a-algebra con­
taining B(X). We have now by 21.10: 

(29.7) Theorem. (Lusin) Let X be a standard Borel space and A~ X an 
analytic set. Then A is uni11ersa.lly measurable. 

Finally by 21.9 we have: 

(29.8) Theorem. (Silver) Let A~ [Nt0 be analytic. Then A is completely 
Ramsey. 

If X, Y are standard Borel spaces, we say that a function f: X ~ Y 
is universally measurable iff is wmeasurable for any a-finite (equivalently, 
probability) Borel measme on X. We extend this definition to apply to 
functions f : X' ~ Y, where X' ~ X is universally measurable. 

From 18.1 we have also the following: 

(29.9) Theorem. (Jankov, von Neumann) If X,Y are standar-d Borel.'tpaces 
and P ~ X x Y is lJf, then P has a uniformizing function that is a(lJl)­
measurable and thus universally measurable. If X is Polish, it is also Baire 
measv.ra.ble. 

(29.10) Exercise. Show that universally measurable functions are closed 
under composition. (This is not generally true for ~-£-measurable functions.) 

29. C A Closure Property for the Souslin Operation 

We will prove now the results in 29.B by a different general method, which 
is based on a key property of the operation A. 

Let (X,S) be a measurable space. Given A~ X, an S-cover of A is a 
set A E S with the following properties: 

i) A~ A; 
ii) if A ~ B E S, then every subset of A\ B is in S. 

If every A ~ X has an $-cover, we say that (X, S) admits covers. The 
main examples of such measurable spaces are given next. 

(29.11) Theorem. Let X be a topological space and BP(X) the a-algebra of 
subsets of X that have the BP. Then (X,BP(X)) admits covers. 

Prvof For any A~ X consider the closed set E(A) ="' U("' A). Then 
A\ E(A) is meager, so A\ E(A) ~ W, where W is an F17 meager set. Put 
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A= E(A)uW, which is also F17 • So A E BP(X). Now let A~ BE BP(X). 
Clearly, E(A) ~ E(B), so A \B = (W\B)u(E(A) \B)~ Wu(E(B) \B). 
But, by 8.29, as B has the BP, 

E(B)tiB = U("' B)ti("' B) 

is meager. So A\ B is meager, thus every subset of it is also meager, and 
therefore has the BP. 0 

(29.12) Theorem. Let X be a standard Borel space and /-L a a-finite Borel 
measure on X. Then (X, MEAS~') admits covers. 

Proof We can clearly assume that /-L is a probability measure. For A ~ X, 
let 

/-L*(A) = inf{I-L(B): BE B(X) & A~ B} 

be the associated outer measure. Then there is A E B(X), A~ A such that 
1-L*(A) = 1-L(A). If A ~ B E MEAS~'' then 1-L(A \B) = 0, since otherwise 
there is a Borel set C ~A\ B ~A\ A with 1-L(C) > 0, which is impossible. 
So every subset of A\ B is in NULL,., and so in MEASw 0 

We have now the following basic fact. 

(29.13) Theorem. (Szpilrajn-Marczewski) Let (X,S) be a measurable space 
admitting covers. Then S is closed under the So11.slin operation A. 

Proof Let (Ps) be a Souslin scheme with P... E S. As in 25.5 i) we can 
assume that (Ps) is regular. Let 

P =AsPs. 

We will show that P E S. For s E _N<N, let 

ps = U nPxln ~ Ps. 
:cEN,x2s n 

Then P 0 = P and ps = Un P" ·.,.. Let ps be an S-cover for ps. Since Ps E S 
and P·' ~ Ps, we can intersect ps with Ps to obtain another $-.cover for 
ps, and so we can assume that ps ~ Ps. Put 

Since ps = Un ps · n ~ Un ps · n, it follows that every subset of Q s is in S 
and every subset of Q = Us Q.s is also in S. 

Claim. P0 \ P ~ Q. 

Granting this, P0 \ P E S, so P = P0 \ (P0 \ P) E S (recall that 
p0 ;;2 p0 = P). 
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Proof of cla·im. Let x E P0 \ Q in order to show that x E P. Notice that if 
x E ps \ Q, then X ft Qs and so X E Un ps·n; thus for some n, X E ps·n. 
So by recun;ion we can define y E .N such that x E pyin for all n. But 
pyln ~ Pyln• so x E nn Pyln ~ P. 0 

(29.14) Corollary. (Nikod:Ym) The class of sets with the BP in any topo­
logical space is closed under the operation A. 

(29.15) Corollary. (Lusin-Sierpinski) Let X be a standard Borel space and 
/-L a a-finite Borel measure on X. Then the class of 1-L·measurable sets is 
closed under the operation A and so is the class of universally measurable 
sets. 

There is also a version of 29.15 for outer measures (which are not 
necessarily a-finite). 

(29.16) Theorem. (Saks) Let X be a set a.nd /-L* an outer measure on X. 
Then the class MEAS~· of /-L* ·measurable sets is closed under the Souslin 
operation A. 

Proof. Let (P.,) be a regular Souslin scheme of /-L* -measurable sets and 
define (Qs), (Qs) as in 25.15. Let P = A .. Ps. We have to show, for every 
set A~ X, that /-L*(A) ?: /-L*(AnP) + 1-L*(A \ P). We can assume, of course, 
that /-L* (A) < oo. 

For every set B, let 

1-LA(B) = inf{/-L*(AnC): B ~ C, C lli ll*·mea..;;urable}. 

Clearly, this infimum is attained. Also, for any increasing sequence (Bn), 
/-L*(A nUn Bn) :s I'·A<Un Bn) = limn I-LA (Bn)· (This follows ea..;;ily from the 
fact that /-L*(AnUn Dn) = Ln /-L*(AnDn), when (Dn) is a pairwise disjoint 
sequence of /-L*·measurable sets.) 

Now fix € > 0. Using these facts we can define x E .N recursively so that 
I-LA ( Q(x(O))) ?: /-L*(A n P) - € = 2, and I-LA ( Qxl(n+l)) ?: I-LA ( Qxln) - € = 2n+l 
ifn?: 1. Then for n?: 1, /-L*(AnQxln)?: 1-LA(Qxln)?: 1-L*(AnP) -€, as 
Qxln 2 Qxln and Qxln is 1-L*- measurable. So, for n?: 1, 

Since (Qxln) is decreasing and n .. Qxln ~ AsQs = AsPs = P, we have 
that ("-' Qxln) is increasing and Un "' Qxln 2 "' P, SO /-L*(A \ Qxln) -+ 

1-L*(AnUn("' Qxln))?: ~t*(A\P), and thus 1-L*(A)?: 1-L*(AhP)+!-L*(A\P)-€. 
Since € is arbitrary, we are done. 0 
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29.D The Class of C-Sets 

Let X be a topological space or a standard Borel space. A subset A ~ X 
is called a C-set if it belongs to the smallest a-algebra of subsets of X 
containing the Borel sets and closed under the operation A. We denote by 
C(X) the clasl:! of C-sets in X. In general, this class is much bigger than 
the a-algebra a(I:D generated by the analytic sets. 

(29.17) Exercise. For each Polish space X and each uncountable Polish 
spaceY show that there is a Y-universal set for Anl(X). Also show that 
a(I:~)(X) ~ ADl(X). Conclude that when X is uncountable, 

a(I:~)(X) ~ AII~(X) ~ C(X). 

It follows from 29.13 that if X is a topological space, every set in C(X) 
has the BP, and that if X is a standard Borel space, then every set in C(X) 
is universally measurable. 

By 29.9, I:~ sets admit uniformizing functions that are a(I:D-measur­
able. But this class of functions is not very useful since it is not closed under 
compositions. However, the C-measurable functions have this important 
closure property. (If X, Yare standard Borel spaces, a function f: X-+ Y 
is C-measurable if the inverse image of any Borel set in Y is in C(X).) 

(29.18) Exercise. i) Show that the C-measurable functions on standard 
Borel spaces are closed under composition. 

ii) Show that if X is a standard Borel space, and if S is a a-algebra on 
X containing I:HX) which has the following property: 

(A E I:~(X) & f: X-+ X is $-measurable) :::} f- 1(A) E S, 

then AS~ S. 

Thus, in particular, C is the smallest class r of sets in standard Borel 
spaces containing the I:~ sets and closed under complements and count­
able unions, for which the class of r-measurable functions is closed under 
composition. 

29.E Analyticity of "Largeness" Conditions on Analytic Sets 

Given standard Borel spaces X, YandA~ X x Y, as well as some notion 
of "largeness" for subsets of Y, consider the set { x : Ax is "large"}. We will 
show that when A is analytic, this set is also analytic for various standard 
notions of "largeness". The simplest example of a "largeness" property is of 
course "being nonempty". Then { x : Ax is nonempty} = { x : 3y( x. y) E A} 
is obviously analytic. 
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(29.19) Theorem. (Mazurkiewicz-Sierpinski) Let X ,Y be standard Borel 
spaces and A ~ X x Y be analytic. Then 

{ x : Ax is uncountable} 

is also analytic. 

Proof. We can assume of course that X, Y are Polish. Our proof is based 
on the following fact, which is important in its own right. 

(29.20) Theorem. Let Z, W be Polish spaces and H ~ Z x W be closed. If 
B = projz(H) is uncountable, there is a Cantor .set K ~ H with projz 
injecti-ve on K (so that in particular projz(K) is also a Cantor set). 

Proof. By 8.8 ii). 0 

So if B ~ Y is analytic and H ~ Y x .N is closed with projy(H) = B, 
we have that B is uncountable iff 

3K E K(Y x .N)[K ~ H & projy(K) is nonempty perfect]. 

Let F ~X x Y x .N be closed with projxxY(F) =A so that for any 
x EX, Ax= projy(F.,) and Fx ~ Y x.N is closed. Then Ax is uncountable 
iff 

3K E K(Y x .N)[K ~ Fx & projy(K) is nonempty perfect]. 

Now 
R(x, K) # K ~ F., # { x} x K ~ F 

is closed (in X xK(Y x.N)), K ~ projy(K) is continuous (from K(Y x.N) 
into K(Y)), and {L E K(Y) : L is perfect} is Go (see 4.29 and 4.31), so 
{ x : A~. is uncountable} is analytic. 0 

(29.21) Exercise. Let X be Polish. Show that A~ X is analytic iff there is 
a closed set F ~ X x .N such that 

x E A# Fx :F 0 
# F.-r is uncountable. 

Vile next consider "largeness" in the sense of category. 

(29.22) Theorem. (Novikov) Let X be a standard Borel space, Y a Polish 
space, and A ~ X x Y an analytic set. For any nonempty open U ~ Y we 
have that the sets 

{ x EX : Ax is not meager in U} 

and 
{x EX: Ax is comeager in U} 
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are analytic. 

Proof. The first a.<;sertion follows from the second, since if {Wn} is a basis 
of nonempt.y open sets for Y, we have 

Ax is not meager in U # 3n(Wn ~ U & Ax is comeager in Wn)· 

Also, by replacing Y by U if necessary, it is enough to show that 

{ x : Ax is comeager} 

is analytic. Finally, we can of course take X to be Polish as well. 
Let F ~X x Y x .N be closed with A= pro.ixxy(F). Then, by 21.5 

Ax is comeager #II has a winning strategy in G:*(Fx)· 
For the argument below, it would be convenient to use the following 

equivalent variant of a:*(H), H ~ Y x .N (see the comments following 
21.8): Fix a complete compatible metric d for Y and a countable basis of 
nonempty open sets W for Y. 

I U0 U1 

II z(O), Vo z(l ), V1 

Ui, Vi E W, Uo 2 Vo 2 U1 2 V1 2 · · ·, diam(Ui), diam(lti) < 2-i. II wins 
iff (y, z) E H, where {y} = nn Vn ( = nn Un)· 

Consider the tree T of legal moves in these games. The tree T is clearly 
countable, so we can view it as a pruned tree on N. Givens E T, say of even 
length, it corresponds to a position (U0 , (z(O), Vo), U1, ... , (z( n), lf,,)) of the 
game. Put f(s) = Vn x N(z(O) .... ,z(n))· Similarly, we define f(s) for s of odd 
length. Then f: T-+ F(Y x .N) \ {0} and s, t E T & s ~ t:::} f(s) 2 f(t). 
Moreover, for any b E [T], nn f(bln) is a singleton, say {/(b)}, where 
/(b) = (y, z) is the outcome of the run corresponding to bE [T]. Finally, 
if Wn E f(bln) for all n, then Wn -+ /(b). So, now viewing strategies as 
subtrees of T, we have, letting 

that 

W(a,x) #a~ Tis a winning strategy for II in G~*(Fx), 

W(a,3:) #a~ Tis a strategy for II & 'Vb E [a](/(b) E Fx) 
#a~ T i.s a strategy for II & 'Vs E a(f(s) n Fx :F 0), 

so clearly W is I:~ (in TrxX). Since Ax is comeager # 3aW(a,x), {x : 
A, is comeager} is also I:~ . 0 

This result can be also expressed by saying that if A(x, y) is analytic, 
so are B(x) # 'V*y E UA(x,y)'and C(x) # 3*y E UA(x,y), i.e., that the 
category quantifiers preserve analyticity. 
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(29.23) Exercise. In the notation of 16.B, show that if A is analytic, so are 
its Vaught transforms A*u, A~u. 

(29.24) Exercise. Give a proof of 29.19 similar to that of 29.22 by using 
unfolded *-games (see 21.B). 

(29.25) Exercise. Show that if X is standard Borel, Y Polish, and A ~ X x Y 
is analytic, then so is { x : Ax is not contained in a K u}. 

We conclude with a result about measures. 

(29.26) Theorem. (Kondo-Tugue) Let X,Y be standard Borel spaces and 
A ~ X x Y an analytic set. Then the set 

{ (Jl, x, r) E P(Y) x X x IR : ~-t( Ax) > r} 

is analytic. 

Proof. We can assume that X, Y are Polish. We have now the following 
basic fact. 

(29.27) Theorem. Let Z,W be Polish spac~ and H ~ Z x W be closed. If IL 
is a Borel probability measure on Z and for some a E IR, ~-t(projz(H)) > a, 
then there is a compact set K ~ H such that t.£(projz(K)) >a. 

Proof. Let f : projz( H) -+ W be a a(I:~ )-measurable function nniformizing 
H. In particular, f is wmeasnrable. Since projz(H), being analytic, is w 
measurable, by regularity there is a closed set C ~ projz( H) with ~-t( C) > a. 
By Lusin's Theorem 17.12 applied to JIG and ~-tiC, there is a compact set 
L ~ C with ~-t(L) >a and fiL continuous. Then K = {(z,f(z)): z E L} is 
a compact subset of Hand projz(K) = L, so t.£(projz(K)) > a. 0 

So ifF~ X x Y x .N is closed with projxxY(F) =A, then 

~t(Ax) > T # 3K E K(Y x .N)(K ~ Fx & t.£(projy(K)) > r). 

Since the function (t.£, L) E P(Y) x K(Y) ~ ~t(L) is Borel (by 17.25) our 
proof is complete. 0 

Again, from 29.26 it follov,."S that the measure quantifiers (see 17.26) 
v~, 3~ preserve analyticity. 

(29.28) Exercise. Show that if X, Y are standard Borel spaces and IL is a 
a-finite Borel measure on Y, then for any analytic set A~ X x Y the set 
{ ( x, r) : ~-t( A.,) > r} is also analytic. 

(29.29) Exercise. Give a proof for 29.22 similar to that of 29.26. 
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30. Capacities 

30.A The Basic Concept 

We will present here a short introduction to Choquet's theory of capacities 
and its relationship with the theory of analytic sets. 

(30.1) Definition. Let X be a Hausdorff topological space. A capacity on X 
is a map"(: Pow (X) -+ [O,oo] s11.ch that: 

i) A~ B =?I'( A) :5 I'( B); 
ii) Ao ~ A1 ~ · · · =? (/'(An) -+I'( Un An)); 
iii) for any compact K ~ X, I'(K) < oo; and if ~t(K) < r, then for 

some open U 2 K, I'(U) < r. 

(30.2) Exercise. Consider the following condition: 
iii)' For any compact K ~ X, I'(K) < oo; and if Ko 2 K 1 2 · · · are 

compact, then f'(Kn) -+ l'(nn Kn)· 
Show that i), ii), iii) =? i), ii), iii)', but not conversely. Show that i), 

ii), and iii) are equivalent to i), ii), and iii)' in compact metrizable X. 

Two capacities I', I'' on X are called equivalent if I'( K) = 1' ( K) for 
any compact K ~X. 

30. B Examples 

1) Outer measures and capacities. Let X be a Polish space and /-L a finite 
Borel measure on X. Let /-L* be the outer measure associated to /-L, i.e., 
/-L*(A) = inf{!-L(B) : B E B(X). B 2 A}. Then it is easy to verify that. /-L* 
is a capacity. 

More generally, if I' : B(X) -+ [0, oo] satisfies i) -iii) on B(X) and we 
define /'* from I' as above, then /'* is a capacit.y. 

(30.3) Exercise. Verify that /-L*, /'* are indeed capacities. 

2) Lifting. Let X, Y he Hausdorff topological space~ and f : X -+ Y 
a continuous function. If I' is a capacity on Y and we define 

/'J(A) =I'(!( A)), 

then it is routine to verify that I'/ is a capacity on X. A typical example 
of this is the case where X= Y x Z and f = projy. 

3) Capacities alternating of order oo. Let X, Y be compact metrizable. 
Let K ~ X x Y be compact. For any capacity I' on X define the capacity 
f'K on Y by 
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A capacity ~, is called alternating of order oo if it satisfies the fol­
lowing conditions: For compact sets K. L1 , L2 , .•. let ~~ (K; L1 ) = -y(K) -
-y(KU LI), ~n+l(K;L., ... ,L • .,Ln+l) = ~n(K;L., ... ,Ln)- ~n(KU 
Ln+l; L 11 ... , Ln)· Then for all n 2: 1, ~., < 0. The capacity "YK meets 
these criteria if -y = /-L* with /-L a finite Borel measure on X. 

(30.4) Exercise. Let Y be a compact metrizable space and /-La probability 
Borel measure on K(Y). Define for A~ Y, 

-y(A) = /-L*({K E K(Y): KnA :f; 0}). 

Show that this is a capacity on Y. In fact, show that if X = K(Y), K = 
{(L,x): x E L}, then -y = (/-L*)K in the preceding notation. A theorem of 
Choquet asserts that every capacity -y on Y alternating of order oo with 
-y(0) = 0 is equivalent to one of that form for a uniquely determined 1-L· 

4) Strongly subadditive capacities. Let X he a Hausdorff space and 
p: K(X) -+ [0, oo) a function such that: 

i) K ~ L =r- p(K) < p(L); 
ii) p( K U L) + p( K n L) :S p( K) + p( L) (i.e., p is strongly subadditive ); 
iii) p(K) < r =r- for some open U 2 K and all compact L ~ U we have 

p(L) < .,., 
Then p can be extended to a capacity -y on X as follows: 

-y(U) = sup{p(K) : K compact, K ~ U} 

for U open, and 

~t(A) = inf{"Y(U): U open, U 2 A} 

for arbitrary A. 

(30.5) Exercise. i) For p, -y as above show that -y satisfies i), iii) of Definition 
30.1 and-y extends p. Show also that -y is st.rongly subadditive, i.e., for all 
A, B ~X we llave -y(A u B)+ -y(A n B) :S -y(A) + -y(B). 

ii) Show that if Ai ~ Bi ~ X, i = 1, ... , n, then -y(U;~. Bi) + 
E~. -y(Ai) :s -y(U~. Ai) + E~. -y(Bi). 

iii) Show that -y is a capacity. 

Remark. Note that for a monotone function p : K(X) -+ [0, oo) strong 
subadditivity is equivalent to the condition ~2 :S 0, where ~2 is defined as 
above (with p instead of -y). 

The classical example of a capacity constructed in this fashion is the 
Newtonian capacity on IR3 defined as follows: For a finite Borel measure 
in IR3 define the potential function U'-'(y) = J 1 j:~·~~ 1 • Then for a compact 
subset K of JR3 , let 
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It turns out actually that the Newtonian capacity is moreover alternating 
of order oo. 

5) Capacities induced by compact families of measures. Let X be a 
compact metrizable space and let P1(X) be the compact convex subset of 
B 1(MIR(X)) (see 17.32) consisting of all positive Borel measures /-Lon X 
with 1-L(X) :S 1. Also, let C ~ P1 (X) be a compact subset of P1 (X). Put 

'Yc(A) = sup~'ec/-L*(A). 

Then 'Yc is a capacity on X. 

(30.6) Exercise. i) Prove the following minimax principle: If Y is a compact 
space and fn : Y ~ IR are upper semicontinuous with /o 2: h 2: h > · · ·, 
then 

infn SUPyfn(Y) = SUPy infnfn(y). 

ii) Verify that 'Yc is indeed a capacity. 

It turns out that if -y :S 1 is a strongly subadditive capacity on a 
compact metrizable space X, then 

C = {/-L E P1(X): 'VL E K(X)(/-L(L) :S -y(L))} 

is compact convex (in P1(X)) and ),')'care equivalent. However, not all 
'Yc, for C ~ P1 (X) compact, are strongly subadditive (Preiss). 

6) Capacities associated to Hausdorff measures. Let (X, d) be a com­
pact metric space. Recall the definition of h-Hausdorff outer measure given 
in Example 4) of 17.B. The functions /-Lh, /-L~ defined there may not be ca­
pacities. Now let 

oo rli~m(X) 
1-Lh = 1-Lh 

be /-L~ for € = diam(X), in other word">, with no restriction on diam(Fn). 
Then it can be shown that 1-L'f':' is a capacity. 

(30.7) Exercise. Show that for any A~ X, /-Lh(A) = 0 iff 1-Li:"(A) = 0. 

(30.8) Exercise. What is /-Lh if h = 1'? 

7) The separation capacity. Let X be a Polish space and let 1r1 , 1r2 
be the two projection fwtctions of X x X. Define for A ~ X x X 

{

0, if1rt(A),1r2(A) can be 
-y(A) = separa~ed oy a Borel set; 

1, otherwise. 

Then -y is a capacity. 

(30.9) Exercise. Verify this statement. 
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30. C The Choq·uet Capacitability Theorem 

(30.10) Definition. Let "Y be a capac·ity on the Hausdor.ff topological space 
X. We say that A~ X is ""(-capacitable if "Y(A) = sup{"Y(K):K compact, 
K ~A}. We call A universally capacitable if it is 1-capacitable for every· 

"Y· 

(30.11) Exercise. Let X be a Polish space and /-L a finite Borel measure on 
X. If "Y = ll*, then A is 1-capacitable iff A is Jl-measurable. 

(30.12) Exercise. Show that if X, Y are Hausdorff topological spaces and 
f : X --+ Y is continuous, then if A ~ X is universally capacitable, so is 
f(A). 

The main fact about capacitability follows. 

(30.13) Theorem. (The Choquet Capacitability Theorem) Let X be a Pol­
ish space. Then every analytic sub.<Jet of X is universally capacitable. 

Proof. Let A~ X be analytic and (P8 ) a Souslin scheme for A as in 25.13. 
Let "Y be a capacity on X. Let "Y(A) > r. We will find a compact set K ~A 
with "Y(K) > r. 

Since A = Un P(n) and P(m) ~ P(n) form :5 n, let no be such that 
"Y(P(no)) > r. Since P(no) = Un P(no,n) and P(no,m) ~ P(no,n) for m < n, 
let. nt be such that "Y(P(no,n1 )) > r, etc. Thus we can find y E .N with 
1(P111.,) > r for all n. We claim that if Py = nn Pyln• then "Y(Py) 2: r, which 
completes the proof because P.v is compact by 25.13 iii). If this fails (i.e., 
"Y(P~) < ·r), then there is open U with Py ~ U and "Y(U) < r. However, 
by 25.13 iv) there is large enough n with Pyln ~ U, so "Y(P111n) < r, a 
contradiction. 0 

(;JO.l4) Exercise. i) Use Example 7) in 30.B and 30.13 to give another proof 
of the Lusin Separation Theorem. 

ii) We will prove in 35.1 iii) that there are two disjoint Dl sets in C 
which cannot be separated by a Borel set. Use this to show that not all Dl 
sets are universally capacitable. (On the other hand, Busch, Mycielski and 
Shochat have shov.rn, using !:~-Determinacy, that all Dl sets in compact 
metrizable spaces are 1-capacitable for any capacity "Y, with "Y(0) = 0, which 
is alternating of order oo; see 36.22.) 

(30.15) Exercise. Show that if "Y is a capacity on a metrizable space X, the 
set 

{(K,r): K E K(X) & r E IR &"Y(K) < r} 

i±l open in K(X) x IR (and so {K E K(X): "Y(K) = 0} is G6). Also show 
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{(K,r): K E K(X) & r E IR & I'(K) > r} 

(30.16) Exercise. Generalize 29.27 and 29.28 as follows: 
i) Let Z, W be Polish spaces and H ~ Z x W be closed. If I' is a 

capacity on Z and f'(projz(H)) > r, then there is a compact set K <; H 
with f'(projz(K)) > r. 

ii) Let X. Y be Polish spaces and A ~X x Y an analytic set. Then 
for any capacity I' on Y, the set 

{(x,r) EX x IR: /'(Ax)> r} 

is analytic. 

(30.17) Exercise. Let X be a Hausdorff topological space and A ~ X be 
universally capacitable. Then for any capacity')', I'(A) = inf{'y(B) : BE 
B(X), B 2 A}. 

(30.18) Exercise. Let X be a Polish space and 1-£ E P(X). For any Polish 
spaceY, let I' be the following capacity on X x Y: /'(A)= IJ.*(proh(A)). 
Sho.w that for A ~ X x Y, A is ')'-capacitable iff for every € > 0, there is a 
Borel set B ~ proh(A) with /'(A) :5/l(B)+€, and a Borel map j: B-+ Y 
that uniformizes An (B x Y). Show also that B can be taken here to be 
compact. 

(30.19) Exercise. Give proofs of 28.12 and 28.15 by introducing appropri­
ate capacities (reminiscent of the separation capacity) and applying the 
Choquet Capacitability Theorem. 
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31. Analytic Well-founded Relations 

31.A Bounds on Ranks of Analytic Well-founded Relations 

If -< is a well-founded relation on a standard Borel space X and p( -<) 
its rank (see Appendix B), then p( -<) < card( X)+ $ (2No)+. Moreover, 
sup{p(-<) :-< is a well- founded relation on .N} = ( 2No) +. However, when 
-< is "definable" one can expect to find better upper bounds for p( -<). We 
prove this here for analytic well-founded relations. 

(31.1) Theorem. (Boundedness Theorem for Analytic Well-founded Re­
lations) Let X be a standard Borel space and -< an analytic well-founded 
relation. Then p(-<) is countable. 

Proof (Kunen) We can clearly assume that X = .N. As in 2.10 associate 
with -< the tree T-< on .N given by 

(xo, ... , x.,_l) E T-< # Xn-1 -< Xn-2 -< · · · -< x1 -< xo 

(when n = 1, by convention, (xo) E T-< for all xo E X). 
As shown in 2.10, T-< is well-fow1ded and p( -<) = PT.J0). So it is 

enough to show that p(T-<) < w1. This will be done by proving that there 
is a.n order preserving map from (T-< \ {0}, ~) into (W, -<.), where -<. is a 
well-founded relation on a countable set W. Then (see Appendix B again) 
p(T-<.) :S p( -<.) + 1 < W1· 

Let S be a tree on N x N x N such that 

x-< y # 3z(x,y,z) E [S]. 

Let W consist of all sequences of the form 

w =((so, to, uo), ... , (sn-1, tn-1, u .. _l)), 

where ( si, ti, ui) E S and si = ti+l for all i < n - 1. (We allow also w = 0 
here.) For w, w' as above let w' -<. w he defined by 

length(w) < length(w') &Vi< length(w) [(s~,t~,uD ~ (si,ti,ui)]. 

We claim that the relation -<. is well-founded. Otherwise, let Wn -
((s6,t(l,u6), ... ,(sf: .. -l'tk"-l' ut_1)) be such that Wn+l -<. Wn· Then 
kn j oo and if ln = length( sf) ( = length( ti) = length( ui), for i < kn), 
also ln j oo, and there are xo, x1, ... in .N and zo, z1, ... in .N such that for 
all n, t0 ~ xo, s0 = t]: ~ x., sit= t2 ~ x2, ... and u0 ~ zo, uJ: ~ Z1,···· 
Thus (x1,x0 ,zo) E [S], (x2,x1,zl) E [S], ... , that is, X1-< Xo,X2-< X1,·· ., 
which is a contradiction. 

We will find now an order preserving map from (T-< \ {0}, ~) into 
(W, -<.). For this, note that if x -< y, the section tree S(x, y) = { s E N<N : 
(xllength(s),yllength(s),s) E S} is not well-founded, so let hx,y E [S(a-:,y)] 
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(for example, its leftmost branch). Consider the map f : T-< \ {0} ~ W 
given by 

f((xo)) = 0, 

and for n 2: 2, 

f(xo, · · ·, Xn- I) = ((x.ln, xoln, hx1 ,x0 In), (x2ln, XJ In, hx2 ,x1 ln ), 

· · ·, (Xn-lln,Xn-zln, hxn-t.Xn-21n)). 

Then f(xo, ... , Xn-1, Xn) -<. f(xo •... , x ... _l) for any n 2: 1, so our proof is 
complete. 0 

Recall from 27.1 that the set IF of ill-founded trees on N is !:}-complete 
and therefore the set 

WF = {T E Tr: Tis well-founded} 

of well-founded trees on N in n}-complete. To each T E WF we associate its 
rank p(T). It is easy to see that {p(T) : T E WF} = { 0: + 1 : a < w1 } u {0}. 

(31.2) Theorem. (The Boundedness Theorem for WF) Let A ~ WF be 
analytic. Then sup{p(T):T E A}< w1 . 

Proof Consider the following relation -<on T'rxN<111 : 

(S, s) -< (T, t) # S =TEA & s, t E T & s ~ t. 

Clearly-< is analytic and well-founded. Sop(-<) < w1 • But ifT E A, the map 
t E T 1--+ (T. t) is order preserving from (T, ~)into-<, so p(T) < p( -<) < w1. 

0 

(31.3) Exercise. (Lusin-Sierphiski) Consider the set WO (of wellorderings 
on N) as in 27.C. For x E WO, let lxl =the order type of Ax < w1• Clearly, 
{lxl: x E WO} =w1 \w. 

From 27.12 WO is D}-complete. Show that if A ~ WO is analytic, 
then sup{lxl : x E A} < w1. · 

Use this to show that if X is a standard Borel space and A ~ X is 
Borel, then there is a Borel function f : X - LO and a < w1 such that 
A= r• (W0°), with W0° = {x E WO: lxl <a} (similarly with X zero­
dimensional Polish and f continuous). Use this to justify the argument in 
27.0 that c::: is not Borel. 

(31.4) Exercise. Give a different proof of 31.1 using the fact that WF is not 
I:} and using 2.9. 
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31.B The Kunen-Martin Theorem 

Let X be a Polish space and Y any set. A set A ~ X is called Y -Souslin 
if A = proh(F), where F is a closed set in X x yN (with Y discrete). 
Usually, Y is an ordinal number K. So N-Souslin ( = w-Souslin) =analytic. 
The following generalizes 31.1. 

(31.5) Theorem. (The Kunen-Mrutin Theorem) Let X be a Polish space, 
,.., an infinite ordinal, and -< a well-founded K-Souslin relation on X. Then 
p(-<)<K+. 

The proof is identical to that of 31.1, so we will not repeat it. In fact, 
that proof is essentially Kunen's proof of 31.5. (Martin's independent proof 
was somewhat different and used forcing.) For another (earlier) proof of 
31.1, see 31.4. 



CHAPTER IV 
Co-Analytic Sets 

32. Review 

32.A Basic Facts 

Given a Polish (or standard Borel) space X, a set A~ X is co-analytic if 
rv A is analytic. We denote by nl{X) the class of C9-analytic subsets of X. 

If X ~ Y are Polish (or standard Borel) spaces, clearly Dl{X) = 
Dl{Y)IX ={An X: A E nHY)} ={A~ X: A E Dl(Y)}. 

More generally, a subset A of an arbitrary separable metrizable space 
X is co-analytic (or D}(X)) if"' A is analytic. We also call a separable 
metrizable space co-analytic if it is homeomorphic to a co-analytic set in 
a Polish space. Finally, a co-analytic Borel space is a measurable space 
isomorphic to (X,B(X)) for some co-analytic set (or space) X. 

The co-analytic sets contain all the Borel sets and are closed under 
countable intersections and unions and Borel preimages. They are also 
closed under co-projection (or universal quantifiers) over Polish spaces: 
If X, Yare Polish spaces and A~ X x Y is co-analytic, so is B ~X given 
by B ="' proh("' A), i.e., 

x E B # Vy(x,y) EA. 

They are not closed under continuous images or the Sousli.n operation A. 
For each Polish X, Y, with Y uncountable, there is a Y-universal set 

for Dl(X), so for each uncountable Polish X, B(X) = 4l{X) ~ nHX). 
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Moreover, assuming !:~-Determinacy, any Dl{X) \ I:t{X) in a Polish space 
X is n~-complete (see 26.5) and any two such sets are Borel isomorphic 
(see 26.8). 

32.B Representations of Co-Analytic Sets 

From 25.A we have that for each Polish space X and A ~ X, the following 
statements are equivalent: 

i) A is co-analytic. 
ii) For some Polish Y and Borel B ~X x Y, x E A# Vy(x,y) E B. 
iii) For some open G C X x .N, x E A# Vy(x, y) E G. 
iv) For some F17 set F ~X x C, x E A# Vy(x, y) E F. 

From 25.B we have that the following are equivalent for A ~ .N: 

i) A is co-analytic. 
ii) For a (pruned) tree Ton N x N, x E A# T(x) is well-founded. 

More generally, if WF = Tr \IF is the cla..'!S of well-founded trees and 
WO the class of wellorderings on N, then by 27.1 and 27.12, WF and WO 
are D}-complete. So the following are equivalent for any Polish space X 
and A c X: 

i) A is co-analytic. 
ii) There is a Borel fw1ction f: X ~ Tr such that x E A# f(x) E 

WF. 
iii) There is a Borel function f: X~ LO such that x E A# f(x) E 

wo. 
(Note also that by 26.11 and 15.6 one can take f in ii), iii) here to be 

injective.) 

Also, from 25.3, we have the following: For any Polish space X and 
A ~ X, the following are equivalent: 

i) A is co-analytic. 
ii) For some open G ~X x .N, x E A# grwG(x,y). 

Next recall 18.11 and 18.13. For any Polish space X and A C X the 
following are equivalent: 

i) A is co-analytic. 
ii) For some Polish space Y and Borel (equivalently: closed) F C 

X x Y, x E A# 3!yF(x,y). 
iii) For some Polish spaceY and continuous surjection f: Y -X, x E 

A# 3!y(J(y) = x). 

We have, moreover, the following representation, using 29.21. For any 
Polish space X and A ~ X, the following are equivalent: 

i) A is co-analytic. 
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ii) For some closed set F ~ X x .N, x E A # Fcx is countable. 
iii) For some closed set F ~ X x .N, x E A # F.-r is countable 

# Fcx = 0. 

Finally, from 25.16, we have that every co-analytic set is both the union 
and the intersection of w1 Borel sets. 

(32.1) Exercise. The dual Souslin operation A is defined by 

AsPs ="'As("' Ps) 

= n UPxln· 
cxEN n 

Show that the co-analytic sets in a Polish space X are those of the form 
- 1 -AsGs, with Gs open, and that D 1 is closed under A. 

32. C Regularity Properties 

We saw in Section 29 that all co-analytic sets in Polish spaces have the 
BP and are universally measurable and that in [Njl~o they are completely 
Ramsey. Concerning the Perfect Set Property we have the following: 

(32.2) Theorem. (The Perfect Set Theorem for Co-Analytic Sets) (I:l­
Determinacy) Let X be a Polish space and A~ X a co-analytic set. Eithe-r 
A is countable or else it contains a Cantor set. 

Proof We can assume that X is perfect. This follows then from 21.1. since 
t.he game G*(A) is n~. 0 

(32.3) Exercise. (I:l-Determinacy) Let X be Polish and A ~ X be co­
analytic. Then either A is contained in a K 17 set or else it contains a closed 
set homeomorphic to .N. 

As we pointed out in 30.14, not all co-analytic sets are universally 
capacitable (but they are capacitable for any capacity "'{ with ry(0) = 0 
alternating of order oo; see 36.22). 

The following are analogs of 29.22, 29.23, 29.26 and 29.28. 

(32.4) Exercise. i) Let X be a standard Borel space, Y be a Polish space, 
and A ~ X x Y be co-analytic. Then for any nonempty open set U ~ Y 
the sets { x : Ax is not meager in U} and { x : Ax is com eager in U} are 
co-analytic. 

ii) In the notation of 16.B, if A is co-analytic, so are A*u, A~u. 
iii) If X, Yare standard Borel spaces and A~ X x Y is co-analytic, 

then the set { (J.t, x, r) E P(Y) x X x IR : J.t( Ax) > r} is co-analytic. The same 
holds, if J.t is a 17'-finite Borel measure on Y, for the set { (x, r) : J.t(Acx) > r }. 
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33. Examples 

33.A Well-founded Trees and Wellorderings 

Let WF ~ Tr be the set of well-founded trees on N. Then WF is Dl­
cornplete (see 32.B). Also, by 27.3, the set WF2 = Tr2 \IF; of all pruned 
trees on 2 which have no infinite branch in N is n~-complete. Recall also 
from 32.B that the set WO of wellorderings on N is Dl-complete. 

(33.1) Exercise. i) Let UB = {T E Tr : T has a unique infinite branch}. 
Show that UB is Dl-complete. 

ii) Let C = {T E PTr2 : [T] is countable}. Show that C is Dl­
complete. 

iii) Let Wn = {T E Tr: II has a wiiming strategy in the game 
G(N, [T])}. Show that Wn is Dl-complete. 

(33.2) Exercise. A linear ordering (A,<) is scattered if there is no order 
preserving map of (Q, <) into (A,<). For example, N,Z are scattered. 
Consider the following subset of LO: 

x E SCAT # x E LO & Ax is scattered. 

Show that SCAT is Dl-complete. 

33.B Classes of Closed Sets 

For .any Polish space X and A ~ X, let K(A) be the set of all compact 
subsets of A, i.e, K(A) = {K E K(X): K ~A}. 

If A is ng, then it is immediate that K(A)" is ng too (in K(X)). 
However, from 27.4 ii), we have that ifF ~ X is :E~ \fig, then K(F) is 
Dl-complete. (In general, it is ea.'!y to see that if A is DL so is K(A).) 

Now let 

KNu(X) = {K E K(X): K is countable}, 

and 
FN0 (X) ={FE F(X): F is countable}. 

Then from 27.5 we have the following result of Hurewicz: 
For any uncountable Polish space X, KN0 (X) is Dl-complete and 

FN0 (X) is Borel,Dl-complete. 
Also, from 27.9 we have that for each Polish X that is not K 17 the set 

{FE F(X): F is contained in a K 17 } is Borel Dl-complete. 
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33. C Sigma-Ideals of Compact Sets 

If X is a Polish space, a subset I ~ K(X) is called a u-ideal of compact 
sets if i) I is hereditary on K(X) (i.e., K E K(X) & K ~ L E I => K E I) 
and ii) I is closed under countable unions that are compact (i.e., Kn E 

I & Un Kn = K E K(X) => K E I). For example, K(A) and KN0 (X) as 
defined in 33.B, are a-ideals of compa,ct sets. 

(33.3) Theorem. (The Dichotomy Theorem for Co-Analytic a-Ideals) 
(Kechris-Louveau-Woodin) Let X be a Polish space and I ~ K(X) a co­
analytic a-ideal of compact sets. Then either I is Go or else it is Dl­
complete. 

Proof A.b'Sume I is not G6. Then by 21.18 there is a Cantor set C ~ K(X) 
such that Q = C n I is countable dense in C. ForK E K(C) ~ K(K(X)), 
let as usual UK = U{K : K E K}. By 4.29 v), K ~--+ UK is continuous 
from K(C) into K(X). Moreover, 

since Q is countable and I is a a-ideal of compact sets. So K(Q), which 
is Dl-complete by 33.B, is reduced to I by a continuous function, so I is 
Dl-complete. 0 

For any probability Borel measure J..L on a Polish space X, we denote 
by I,_. (= NULL,_. n K(X)) the a-ideal of compact sets of J..L-measure 0. 
More generally, let "Y be a capacity that is subadditive on compact sets 
(i.e., ry(K U L) :5 ry(K) + ry(L) if K, L E K(X)) and let I-r = { K E K(X) : 
ry(K) = 0}. Then 1-y (and so I,_.) is a a-ideal of compact sets and it is G6 
by 30.15. 

(33.4) Exercise. Let X be a Polish space. Show that IMGR = {K E K(X): 
K is meager (i.e., nowhere dense)} is a G6 a-ideal of compact sets. 

On the other hand KN0 (X) is a Dl-complete a-ideal of compact sets, 
when X is uncountable. 

(33.5) Exercise. Let X be a Polish space and A ~ X a co-analytic set. Then 
the following are equivalent: 

i) A is Polish; 
ii) K(A) is Polish; 
iii) K(A) is not Dl-complete. 

Remark. It has been shown in A. S. Kechris, A. Louveau and W. H. Woodin 
[1987] that every analytic a-ideal of compact sets is actually ng. 
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We revisit next an example that we introduced in 27.B. Recall that 
we denote by UNIQ the class of closed sets of uniqueness in 'll'. As we 
mentioned there the union of countably many closed sets of uniqueness is 
a set of uniqueness; in particular, UNIQ is a a-ideal of compact sets in 'll'. 

(33.6) Theorem. (Kaufman, Solovay) The a-ideal UNIQ of closed sets of 
uniqueness in 'll' is n~-complete. 

Proof. We will omit the proof that UNIQ is nt, which requires some knowl­
edge of harmonic analysis (see A. S. Kechris and A. Louveau [1989]). To 
show that it is nt-complete, by 33.3, it is enough to show that UNIQ is 
not ng. For that we will find a continuous function f : [0, 1] ~ K('ll') such 
that x E Q # f(x) E UNIQ. 

For TJo = 0 < T/1 < · · · < T/k < 1, put e = 1 - TJk and assume that 
e < 'T/i+l - T/i for all i < k. Construct a perfect set E(e; TJ1, ... , TJk) as 
follows (in [0, 211"] or, equivalently, 'll'): For each interval [a, b] with l = b- a 
consider the disjoint intervals [a+ lTJi, a+ lTJi + le], i = 0, ... , k and let E 
be their tmion (see Figure 33.1). 

a I~ I~ I~ I~ b 
• • • • • • • • 

l l l 
a+ 11]1 a+ 11] 2 a+ I1Jk 

FIGURE 33.1. 

We say that E results from [a, b] by a dissection of type (e; ,.,.,. .. , TJk)· 
Starting from Eo = [0, 211"], define closed sets Eo 2 E1 2 E2 2 · · · by 
performing a dissection of type ( e; 'T/1, ... , TJk) to each interval of Em to 
obtain Em+l· Finally, let E(e; TJl, ... , TJk) = nn En. 

We have here the following remarkable characterization. 

(33.7) Theorem. (Salem-Zygmund) The set E(e;TJ., ... ,TJk) is in UNIQ iff 
9 = 1/e is a Pisot number, i.e., an algebraic integer > 1 all of whose 
conjugates have absolute value < 1, and 111, . .. ,TJk E Q( 9). 

Note now that all integers > 1 are Pisot numbers. Let 

f(x) = E(1/4;3/8+x/9,3/4). 

0 
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(33.8) Exercise. Show that the class of perfect sets of uniqueness in 'll' is 
n}-complete in the G6, thus Polish, space of perfect subsets of 'll'. 

A classical problem concerning the theory of uniqueness sets is the 
so-called Characterization Problem: To find necessary and sufficient con­
ditions for a perfect set in 'll' to be a set of uniqueness. Although this is a 
vague problem, it appears that its intended meaning was to find somewhat 
explicit structural conditions that will characterize among perfect sets those 
that are sets of uniqueness (such as those in 33.7 that provide such a char­
acterization in a special case). By 33.8 no such characterization is possible, 
which can be expressed by conditions t.hat lead to a Borel definition of t.he 
perfect sets of uniqueness. This can be viewed as an important negative 
implication concerning the Characterization Problem. (For more on this, 
see A. S. Kechris and A. Louveau [1989].) 

33.D Differentiable Functions 

The following is one of t.he earliest examples of a n~-complete set in· anal­
ysis. 

(33.9) Theorem. (Mazurkiewicz) The set DIFF of differentiable functions 
in C([0,1]) is n}-complete. 

Proof. As usual, at the endpoints we consider one-sided derivatives. 
From 23.23, we see that DIFF is D}. To show it is D}-complete, we 

will reduce WF by a continuous function to DIFF. 
Given a closed interval I = [a, b] C [0, 1], let <P(x; I) be the following 

function on [0, 1], 

<P( x; I) = (b-a 3 ' 1 x E ; 
{ 

16(a;-a)2 ~x-b)~ 'f I 

0, otherwise. 

(See Figure 33.2.) 
Now define for each s E N<N, an open interval Js and a closed interval 

K 8 such that: 

i) Ks s; Js is concentric in J.. and IKsl :S 2:-(s)(IJ.~I-IK8 1), where IJI 
is the length of the interval J aud ( } is a bijection of N""N with N; 

ii) Js·n s; K~L) = the left half of K 5 • (Denote also by K!R) the right 
half of K 8 .); 

iii) Js·n n Js·m = 0, if n "' m. 

Note then that all the K!R) are pairwise disjoint and for each x E 

.N, nn Jxln = nn Kxln = nn K~f~ is a singleton. 
Given now a tree T on N, let 
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b-a 

0 a b 1 

FIGURE 33.2. 

FT(x) = L <P(x; K~R>). 
sET 

Since 0 :5 <P(x; K{t) < IK!R)I < 2-(.•), cle-arly FT E C([O, 1]). Moreover, 
T f-+ FT is continuous from Tr into C([O, 1 ]), since if the trees S, T agree 
for all s with (s} < N, then 

(s)?:,N 

Now let 

GT = U nJyln 
yE[T) n 

Then 

TE WF# GT =0, 

and so, to complete the proof, it is enough to show that 

x tf. GT # F~(x) exists. 

If x E GT, let y E [T] be such that x E K~f2, for all n. Let Cn be the 

midpoint of K;~; and let 2ln = IK~~;I (see Figure 33.3). 
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X 

2/ 
n 

K yin 

FIGURE 33.3. 

Then FT(x) = 0, as x tf. K!R) for any s. Also FT(Cn + ln) = 0, 
so FT c,.+l,.)-F·r x) = 0. Moreover, I FT(c,.)-FT(x) I > ~ = £. Since 

Cn +ln -X c,. X - 31,. 3 

Cn, Cn + ln-+ x, FT(x) does not exist. 
Now let x ft GT. Find N so that for s E T and (s} ,;::: N, x tf. .l8 • Fix 

such an s. (See Figure 33.4.) 

X 

• • • • • • 

FIGURE 33.4. 

It is ea.'ly then to see that 

<P(x;K!R))- <P(X + ~x;K!R)) 
~X 

Thus, if for n ,;::: N we let 

I<P(X + ~x;K}R))I 
-

l~xl 

IK(R)I 
< 2 s < 2-(s) 
- IJsl- IKsl - ' 



F¥(x) = L cp(x; K!R>), 

we have 

FT(x) - FT(x + ~x) 
~X 

·•ET,(s)~n 

F¥(x) - F¥(x + ~x) < 
~X 

00 

2:: 

But as ~X-+ 0, Ff(x)-~~(x+~x) -+ {.fT)'(x), so lim~x-o FT(x)-~~(x+~x) 

lim FT(x)-FT(x+~x) < 2-n+l and letting n -+ oo we see that 
-~x-o ~x - ' ' · 
FT(x)-~~( . .:+~x) converges as ~x -+ 0, which means that FT(x) exists. 0 

(33.10) Exercise. Show that the set of differentiable functions with deriva­
tive bounded in absolute value by 1 is n~-complete (in C{[O, 1])). 

33.E Everywhere Convergence 

Consider now the space C([O, 1])!':1 and the sets 

CN = {{!n) E C{[O, 1])!\1: {!n) converges pointwise}, 

CNo = {{!n) E C([O, 1])!\1: fn-+ 0 pointwise}. 

(33.11) Theorem. The sets CN,CN0 of pointwise converyent, respectively to 
0, sequences of continuou.<J functions are n~ -complete. 

Proof. From 23.18 we know that CN,CN0 are n~. We will next reduce WF 
to CN,CN0 by a continuous function. 

Let Is, Js be closed subintervals of [0, 1] such that: 

i) I0 = [0, 1]; 
ii) J .• is a proper concentric subinterval of Is; 
iii) Is·n ~ Js and Is·m n Is·n = 0 if m "' n; 
iv) lis I :5 2-length(s). 

Also let 0 :5 Is :5 1 in C{[O, 1]) be equal to 1 on ] 8 , and 0 outside I 8 • 

Fix a.J.so a bijection h of N with N<N, and for n E N and T E Tr let 
f! E C{[O, 1]) be equal to 0 if h{n) tf. T and to ih(n) if h{n) E T. The 
function T ~ (!'£) from Tr into C([O, 1])N is clearly continuous, and we 
claim that 

T E WF # {!~}E CN 

# {!'[;) E CNo. 

Given any x E [0, 1] we have for each nat most ones EN"· with x E I8 • 

Thus, if T E \VF, there are at roO&t finitely many s E T with x E Is· So for 
all but finitely many n, f!(x) = 0 (i.e., f!(x) -+ 0). 
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Conversely, if T tf, WF, let y E [T]. Then let { x} = nn I yin = nn Jyln. 
So there are infinitely many k for which /{(x) = 1 and also infinitely many 
k for which /{(x) = 0 (i.e., (f:f(x)) diverges). 0 

(33.12) Exercise. Show that the following sets are ll~-complete: 

{(fn) E C([O, 1])!11: V'x3nV'm 2: n(fm(x) = 0)}, 

{(fn) E C([O, 1])!11: 0 ::5 fn ::51 & V'x(inf(f .. (x)) > 0)}. 

Consider now C('ll') and the set 

CF = {! E C('ll') : L ](n)einx converges everywhere} 

= {! E C('ll') : f(x) = L ](n)e·inx, for all x E 'll'} 

of continuous functions on 'll' with everywhere convergent Fourier series. 
Then we have the next result. 

(33.13) Theorem. (Ajtai-Keehris) The set CF of continuous functions with 
everywhere converyent Fourier series is n~ -complete (in C('ll')). 

33.F Parametrizing Baire Class 1 Functions 

The set CN can be used to encode or parametrize Baire class 1 functions 
on [0: 1] as follows: 

Assoeiate to each 1 = Un) E CN the following function in 8 1([0, 1]): 

bf(X) =lim fn(x). 
n 

By 24.10, {bJ: 1 E CN} = B1([0, 1]). We view 1 as a code or parameter 
of bJ· 

Using this parametrization, we can also classify sets of 8 1 functions 
descriptively. Given a class r of sets in separable metrizable spaces, and a 
set C ~ 8 1 ([0, 1)), we say that Cis in r (in the codes) if C = {!: bf E C} 
is iu the class r(CN). For example, if~ is the set of derivatives, then ~is 
in n~ (Ajtai) but not in :E~ (Dougherty-Kechris); see R. Dougherty and A. 
S. Kechris [1991). 

For each f E ~ denote by <P(x) = fox f its unique primitive with 
value 0 at 0. Then it turns out that the operation f ~ <P has a graph 
that is both :E~ and n~ in 3. X C([O, 1]) (Ajtai) but not Borel (Dougherty­
Ke<:hris). In fact {! E 3. : J; bJ > 0} is both :EH3.) aud nH3.) but not 
B(~). This has interesting implications concerning the so-called Classical 
Problem of the Primitive and the role of transfinite constructions in the 
process of antidifferentiation; see R. Dougherty and A. S. Kechris [1991]. It 
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also provides a natural instance of failure of the Souslin Theorem B(X) = 
4HX) for the co-analytic space X = ~. Abstractly, one can see that 
the Souslin Theorem fails in general for co-analytic spaces X, by taking 
X = AU B, where A, B are D! disjoint subsets of some Polish space Y 
which are not separable by a Borel set; see 35.1 and the remarks following it. 
Hecall from 28.3 that Souslin's Theorem goes through for analytic spaces. 

33.G A Method for Proving Completeness 

We will give now a different proof that CN (see 33.11) is n~-complete. This 
proof illustrates a powerful technique for proving such completeness theo­
rems. It can be applied to many other examples discussed in this section. 

Let A ~ C be a n~ set. From 32.B we have that there is an F17 set 
B ~ C x [0, 1] with 

x E A # Vy(x, y) E B 

# Bx = [0, 1] 

(recall here that C can be viewed as a closed subset of [0, 1]). From 23.22 
there is a continuous function F: C-+ C([0,1])N with Bx = CF(x)' So 

x E A# F(x) E CN, 

and thus CN is ll~-complete. 
Similarly, we can use the fact that Zahorski's Theorem (mentioned 

in the paragraph preceding 23.23) holds uniformly. to give another proof 
of 33.9. More precisely, to take a particular case, one can show that if 
B C N x [0, 1] is :Eg, there is a continuous function F : .N-+ C([O, 1]) with 
Bx = DF(x)· Then, exactly as in the previous example, if A C .N is n~ and 
B t .N x [0, 1] is :Eg with 

we have 

so DIFF is ll~-complete. 

x E A# Vy(x,y) E B, 

X E A{:::} B:r, = [0, 1] 

# DF(x) = [0, 1] 
# F(.x) E DIFF, 

(33.14) Exercise. The result of Kaufman mentioned in 27.E admits a uni­
form version: Let A c H3 be analytic. Then there is a Borel function 
f : n -+ L(c-o) such that for all x, Ax = ap(f(x)). Use this to show 
that {T E L(c0 ) : ap(T) = 0} and {T E L(eo) : ap(T) C 'll'} are Borel 
n~-complete. 
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33.H Singular Functions 

(33.15) Theorem. (Mauldin) Let NDIFF be the set of functions in C([0,1]) 
that are nowhere diffe-rentiable. Then NDIFF is Borel n~ -complete. 

Proof (Kechris) The idea of the proof is the following: 
To each K E K((O, 1)) we will associate in a Borel way a function !K E 

C([O, 1]), which is differentiable at exactly the points of K, and a function 
9K E C([O, 1]), which is differentiable exactly at the points outside K nQ. 
Then let hK =!I<+ 9K· Clearly, K ~ hK is Borel and if Q = Q n (0, 1), 
then forK E K((O, 1)), 

K C Q # hK E NDIFF. 

Since {K E K((O, 1)) : K C Q} is n~-complete (see 33.B), we are done. 

Construction of gK: Since the map K ~ K n Q from K((O, 1)) to 2Q is 
Borel, it is enough to show that we can associate in a Borel way to each 
P C Q a ftmction gp E C([O, 1]), which is differentiable exactly outside P. 
This is done as follows: 

Let Q = { q1, q2, ... } be an enumeration without repetitions and let 
/p = {n EN: qn E P}. Fix now a continuous function <P on IR such that 

<P(O) = 0, I re(x2::;"(y) I < 1 for x :F y, and <P has no one-sided derivative at 0 

but has a derivative at every other point. Then let gp(x) = LnElp 2-n<P(x­
qn) for x E [0, 1]. (If P = 0, let gp = 1.) 

Constmction of fK: We can w1iquely write (0, 1) \K as a pairwise disjoint 
union of intervals (a, b) with a, b E K, or a = 0, b E K, or a E K, b = 
1. These are called the contiguous intervals of K. Clearly, there are only 
countably many of them. 

(33.16) Lemma. There is a Borel function 

C: K((O, 1))-+ ([0, 1]2 )!11 EB EJ7([0, 1]2t 
n~l 

such that C(K) = ( (a{;, b!;)) is an enumeration without repetitions of the 
contiguous intervals of K. 

Proof Consider the set R C K((O, 1)) x [0, 1]2 given by 

R(K, (a, b)) # (a, b) is an interval contiguous to K 

#[(a,bEK&a<b)or 

(a = 0 & b > 0 & b E K) or (a E K & a < 1 & b = 1)] 

& ...,3c(a < c < b & c E K). 
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R i<; clearly Borel. Moreover, for each K, RK is countable, so by 18.15 we 
are done. 0 

Let now f be continuous on [0, 1] with II/I leo < 1, but having no 
derivative at any point of (0, 1). For 0 < a < b < 1, let 

t (x) = { f(x)(x- a) 2(x- b) 2 if x E (a, b); 
a,b 0 ifxE[0,1]\(a,b). 

Note that 11/a,blloo < b-a, !a,b has no derivative in (a, b) and has derivative 
0 at a, b. Also 

fu,b(x) !a,b(x) < b _ 
' a. x-a x-b -

If a = 0 < b, define !a,b to have similar properties in (a, b) and at b, but no 
right derivative at 0 and analogously for a < b = 1. 

Finally, put 

n 

Since 'L(b!{- at{) < 1, !K is continuous. It is easy to see that !K has 
no derivative at any point outside K and (using ( *)) it has derivative 0 at 
every point of K. 0 

The above method can be also used to show the following result of 
Mauldin: The class of Besicovitch functions is Borel ll~-complete, where a 
Besicovitch function is a continuous function on [0, 1] with no one-sided, 
finite or infinite, derivative at any point. (Besicovitch first proved that 
such nmetions exist.) Finally, one can show that the class of functions in 
£1 ('ll') whose Fourier series diverge everywhere is also Borel ll}-complete 
(Kechris). (Kolmogorov first showed that such functions exist.) 

33.1 Topological Examples 

Given an open set U ~ IR2 , we define its components as being the equiv­
alence cla.<;Ses of the following equivalence relation on U: p "' q iff there is 
a path from p to q contained in U (i.e., a continuous map ry : [0, 1) -+ U 
with ry(O) = p, ry(1) = q). A Jordan curve in IR2 is a homeomorphic copy 
of 'll'. By the Jordan Curve Theorem, if J is a Jordan curve, then IR2 \ J 
has exactly two components: one bounded and one unbounded. We call the 
bounded component the Jordan interior of J, Jint(.J). 

We say that a compact set K C IR2 has no holes if for every Jordan 
cmve J ~ K, Jint(J) C K. Denote by NH the class of compact sets with 
no holes. We say that K is simply connected if it is path connected (i.e., 
every two points of K are connected by a path contained in K) and has no 
holes. We denote their class by SCON. 
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(33.17) Theorem. (Becker) The sets NH and SCON are n~ -complete. 

Proof We will only give the proofs that NH is n~-complete and SCON is 
n~-hard. The proof that SCON is actually n~ is much harder and we will 
not give it here. 

We compute first that NH E n~. Denote by JC the class of Jordan 
curves, JC ~ K(JR2). 

(33.18) Lemma. JC is :E~ and the set {(x, J) E IR2 x .JC: x E Jint(J)} is 
clearly open in IR2 x JC, so it is also :E~ in IR2 x K(JR2). 

Proof We have 

K E .J C ¢=> 3h E C ('ll', IR2 )( h is injective & K = h('ll')). 

Now for hE C('Jl',JR2), 

hi.;; not injective¢=> 3x3y(x -:p y & h(x) = h(y)). 

The set 
R = {(h,x,y): x -:p y & h(x) = h(y)} 

is F17 in C('ll',IR2 ) x 1l'2, so since 1l' is compact, {h: 3x3y(h,x,y) E R} is F17 

in C('ll', IR2), thus 
{ h E C('ll'.IR2 ) : h is injective} 

i.;; G6. Also if {Un} is an open basis for IR2, 

K = h('ll') ¢::> 'Vn(K nUn -:p 0 ¢::> h('ll') nUn -:F 0} 

and { h : h('ll') n Un =F (/J} is open, so { ( h, K) : h('ll') = K} is Borel in 
C('ll',IR2) x K(IR2), and JC is thus :El. 0 

We now have that 

L tf. NH ¢=> 3x3K(K E JC & x E Jint(K) & K ~ L & x tf. L), 

so NH is ll~. 
We will show now that WF can be reduced by a continuous function 

to NH and SCON. 
We will u.;;e below a standard example of a connected but not path 

connect.ed compact set in IR2, as in Figure 33.5. 
To each tree Ton N, we will assign a sequence of c.ompact sets KJ} ~ 

IR2, n ,2: 1, with K.} C K:j. ~···,so that KT = UnK'T is also compact, 
T ~ K T is continuous, and 

T E WF ¢::> KT E NH ¢::> KT E SCON. 

Construction of K.}: K.} consists of a horizontal segment l, a verti­
cal segment l0, and a line p from a point r to the left end of l, together 
with a "zig-zag curve" as in Figure 33.5 converging to l0 (see Figure 33.6). 
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FIGURE 33.5. 

Moreover, enumerating as 0, 1, 2, ... the local minima of thi<; curve, we 
hang down a line segment r(n) below the nth minimum iff (n) E T. The 
bottom of this segment is half the distance from r to l. (In Figure 33.6, 
( n) E T # n = 0, 2, 5, .... ) 

Construction of Kf. : Kf. consists of K} together with some additional 
"zig-zag curves" and line segments as in Figure 33.7: We add a line l(n) iff 
(n) E T and ~his line goes from l to the same height as the bottom of r(n) 
and lies vertically between the nth and ( n + 1 )th local minimum of the 
"zig-zag curve" of Kj.. For exactly these n we also add a "zig-zag curve" 
converging t.o l(n) starting from the bottom of r(n)· Finally, we hang a line 
segment r(n,m) from the mth local minimum of the "zig-zag curve" starting 
from t.he bottom of r(n) iff ( n, m) E T. The bottom of this line segment 
is half the distance froml to the bottom of r(n)· (In Figure 33.7, (O,m) E 
T#m= 1,3, ... , (2,m) ET#m=O, ... , (5,m) ET#m=2, .... ) 

We proceed analogously to define KJf recursively. The verification that 
K;r = Un K'!f. works is straightforward. Notice that K;r is path connected. 

0 

33.J Homeomorphisms of Compact Spaces 

Let X be a eompact metrizable space and hE H(X) a homeomorphi<;m of 
X. We call h periodic if for some n, and all x, hn(x) = x (i.e., all orbits of 
h have finite cardinality :5 k, for some k). 

(33.19) Exercise. Show that the set of periodic homeomorphisms is :Eg in 
H(X). 

Let us say now that h E H(X) is quasiperiodic if all orbits of h are 
finite. 
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(33.20) Theorem. (Kechris) The set QP of quasiperiodic homeomorphisms 
of c is n~ -complete. 

Proof. For h E H(C) 

hE QP # V'x3n(hn(x) = x), 

and so QP is ll~. 
Consider now the following set of pruned trees on 2: 

S = {T E PTr2 : 3x E [T](for infinitely many n, xln has a unique 

immediate extension xln'i (= xl(n + 1)) E T)}. 
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FIGURE 33.7. 
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4 5 6 

~5) 

If s E T and there is a unique immediate extension s'i E T, then we say 
that s is a non-.split ofT. Thus 

S = {T E PTr2 : 3x E [T](there are infinitely many non-splits xln)}. 

We will show t.hat S is El-complete and that it can be reduced by a con­
tinuous function to ......, QP. This will complete the proof. 

(33.21) Lemma. S i-'1 !:~-complete. 

Proof. Clearly, S is E~. Recall now the !:~-complete set IF2 of 27.3. We 
··will show that IF2 can be continuously reduced to S. 
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By a k-tree, we mean a nonempty finite tree t C U.n<k 2n such that 
if tl E t and length( u) < k, then u has at least one immediate extension 
u' i E t. By recursion on k we will associate to each k-tree t a 2k-tree t* 
and maps i) u ~ u* from t tot* such that length(u*) = 2·length(u) and, 
ii) v ~ 11. from all even length sequences oft* into t, such that ( u*). = u. 
Moreover, if for u E 2<!':1 we let 

lui = number of 1 's in u, 

and for any v E t* of even length, say 2l, we let 

llvll = the number of non-splits of t*contained in 111(2l- 1), 

i.e., llvll is the number of m < 2l-1 such that vim has a unique immediate 
extension (i.e., vl(m + 1)) in t*, then we will also have 

llu*ll 2: lui & lv.l > llvll, 

so llu*ll = lui. Finally, the map t ~ t* and the associated u*, v. are 
monotone: If t -< s, in the sense that t = s n Un<k 2n, then t* :::5 s* and 
u ~ w => u* ~ w*, v ~ z => v. ~ z.. -

If this can be done, for each T E PTr2 let Tk = T n (U.n<k 2n) and 
put T* = Uk(Tk)*. If T E w; and X E [T] has infinitely many 1's, then 
x* = Uk(xlk)* is such that there are infinitely many non-splits x*ln, so 
T* E S. Conversely, if T* E S and y E [T*] is such that yin is a non-split 
for infinitely many n, and x = y. = Uk(yl2k)., then x has infinit.ely many 
1's, soT E IF;. SoT E IF; # T* E S, and T ...... T* is clearly continuous. 

We define now t ~ t* and t.he associated maps u ~ u*, v ~ v., by 
recursion on k. 

Basis: k = 0. Let t = {0}, t* = {0}, 0. = 0, and 0* = 0. 

Induction step: k --> k + 1. Assume t ~ t* and the associated maps have 
been defined for all k-trees. Let t1 be a. k + 1-tree and putt= t 1 n Un<k 2n 
so t.hat t is a k-tree. -

We define tr as follows: First, tj n Un<2k 2n = t*. Next let v E t* n 22k. 

We will define the extensions of v in tr hi considering cases: 
If v is not of the form u* for u E t n 2\ we put all v"i, v'i'j for 

i,j E {0,1} in tr. 
If v = u* for u E t n 2k, we consider subcases: 

Subca...e 1. u' 1 E t1 . Then we put 

Subcase 2. u'O E t 1 ,n'1 ft t 1 • Then we put 

v'i,vTj E t~ for alli,j E {0,1}. 
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We now describe the map ui ~ u';' for UI E ti. [f UI = u E t*, then u* 
has been already defined. Else UI E 2k+l. Put u = uiik. Then we define u';' 
according to the preceding subcases. In Subcase 1, we put ( u' 1 )* = u* '1 · 0, 
and if u'O E ti, (u'O)* = u*'O'O. In Subcase 2, we put (u'O)* = u*'O'O. 

It remains only to define (vi). for VI E t';'. Again if VI = v E t*, v. 
has already been defined. Otherwise, VI E t';' n 2 2(k+l). Put v = 11II2k. If 
VI is not of the form u';' for UI E tin 2k+I, then put (vi). = v. 'i, where 
v. 'i is some immediate extension of v. in ti. Otherwise, VI = u';' for some 
UI E tin 2k+l, and we let (vi). = ui. 0 

We will find now a continuous reduction of S to "' QP. To do this we 
need some preliminaries on the so-called Lipschitz homeomorphisms of C. 

Given a permutation 1r of 2n, n > 1, and a permutation p of 2m, where 
m > n, we write 11' < p if p((xo, ... ,Xm-d)ln = 1r((xo, ... ,Xn-d). If 11'n is 
a permutation of 2n and 7ri :::; 1r2 :::; • • ·, then h: C - C given by 

h((xo, XI, ••• )) = U 7r.,(xo, ... , Xn-d 
n 

is ~homeomorphism of C called a Lipschitz homeomorphism of C. Note that 
( 11' n) is 1miquely determined by h, since 11' n ( ( Xo, ... , Xn-.)) = (yo, ... , Yn-.) 
iff h(N(xo, ... ,Xn-1)) = N(yo, ... ,Yn-d· 

Given a Lipschitz homeomorphism has above, we define its orbit tree 
Th as follows. First notice that for n:?: 1 and an orbit (J of 11'n on 2n exactly 
one of the following happens: \Vhen we look at 1r n+I, (J extends to one orbit 
or to two orbits as in Figure 33.8. (In particular, card(9) = 2m for some 
m.) 

So we can form a binary tree (i.e., a tree in which every nodes has at 
most two immediate extensions s 'a) as follows: The nth level of Th consists 
of tlie orbits of 1r n on 2n. Every nth level node has one or two ( n + 1 )th 
leyel immediate extensions according to the above cases. 

For x E C, there is a unique infinite branch a.x E [Th] such that xl(n + 
1) E ax(n). If for all large enough n, ax(n) splits into two orbits as above, 
so that axi(n + 1) has two immediate extensions in Th, then it is easy to 
check that the h-orbit of x is finite. On the other han<:l, if for infinitely many 
n, axl(n + 1) has a unique immediate extension axi(n + 1)'i = axl(n + 2) 
in Th, then the h-orbit of xis infinite. It follows that h ft QP # there is an 
infinite brandi a E [Th] such that for infinitely many n, aln has a unique 
immediate extension in T,. 

It is easy now to define for each tree T E PTr2 a Lipschitz homeomor­
phism hT of C such that ThT is isomorphic (in the obvious sense) to T and 
T ~ hT is continuous. Thus 

and our proof is complete. 0 
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FIGURE 33.8. 

Concerning classes of homeomorphisms we have also the following re­
sult. Let (X, d) be a compact metric space. A homeomorphism h of X is 
minimal if there is no proper closed subset of X invariant under h. It is 
distal if for x -:p y in X, there is € > 0 such that d(hn(x), hn(y)) > €, 'Vn. 
The class of distal minimal homeomorphisms has been studied extensively 
in topological dynamics (see H. Furstenberg [1963]). We now have the fol­
lowing result. 

(33.22) Theorem. (Beleznay-Foreman) The set MD of minimal distal home­
omorphisms of TN is Borel n~-complete (in H(TN)). 

(33.23) Exercise. Show that for any compact metric space the set of minimal 
distal homeomorphisms is n~. 

33.K Classes of Separable Banach Spaces 

Consider the standard Borel space of separable Banach spaces as in Exam­
ple 3) of 12.E. We will denote it by SB. 

A separable Banach space X is called universal if every separable Ba­
nach space is isomorphic to a closed subspace of X. This is equivalent to 
saying that C(2N) is isomorphic to a closed subspace of X. A separable Ba-



33. Examples 263 

by NU the class of non-universal separable Banach spaces and by SD the 
class of separable Banach spaces with separable dual. 

(33.24) Theorem. The classes NU of non-universal separable Banach spaces, 
and SD of separable Banach spaces with separable dual, are Borel n~­
corn plete (in SB). 

Proof The main part (i.e., that NU, SD are Borel n~-hard) uses an argu­
ment due to Bourgain. 

Given K E K(C) \ {0}, consider C(K). The dual C*(K) of C(K) is the 
space of signed or complex (depending on the scalar field) Borel measures 
on K (see 17.32). If K is countable, then C*(K) is isomorphic to zl, if K 
is infinite and to ocn (OC = the scalar field) if card( K) = n is finite. So, 
clearly, C* ( K) is separable if K is countable. On the other hand, if K is 
uncountable, C*(K) is non-separable. (Consider, for example, the Dirac 
measures 6x for x E K. Then ll6x - 6yll = 2 if x :F y.) Moreover, in tllis 
case C(K) is universal as can be seen as follows: 

Let L ~ K be a Cantor set contained in K. By 2.8 there is a continuous 
surjection f: K-+ L. Then the map hE C(L) ~---+ h of E C(K) is a linear 
isometry, so C(L) is iu particular isomorphic to a closed subspace of C(K), 
and C(K) is thus universal. 

So we have for K E K(C) \ {0}, 

K is countable # C(K) E NU 

# C(K) E SD. 

By 33.B it is enough to show that K ~---+ C(K) is "Borel" in the sense that 
there is a Borel map K ~---+ g(K) from K(C) \ {0} into SB such that g(K) is 
isomorphic to C( K). 

By 4.32, we can identify K(C) with PTr2. Given T E PTr2 \ {0}, there 
is a monotone map <PT : 2<"" -+ T with length(<PT(s)) = length(s) and 
<PT(s) = s if s E T (see the proof of 2.8). It is easy to check that T ~---+ <PT 
from PTr2 \ {0} into (2<N)2

<N (which i-; homeomorphic to .N) is Borel. Let 
!T = <PT (as in 2.5). Then !T is a continuous surjection of C to [T] and 
!T = id on [T]. Thus the map f E C([T]) ~---+ f ofT E C(2"") is a linear 
isometry of C([T]) onto a closed linear subspace g(T) of C(2""). It only 
remains to show that g is Borel, and for that it is enough to show that 
there is a sequence (gn) of Borel functions 9n : P'Ih \ {0} -+ C(2"") v.dth 
{gn(T)} dense in g(T). 

Enumerate, in some canonical fashion, {fn(T)}, the set of all continu­
ous functions on [T] which are rational linear combinations of characteristic 
functions of the basic nbhds N8 n [T] of [T], and let 9n(T) = fn(T) ofT. 
It is not hard to see that T ~---+ 9n. (T) is Borel. Clearly, {gn (T)} is dense in 
g(T). 
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For NU: It is enough to show that for any fixed separable Banach 
space Xo, the set 

{X E SB : Xo is isomorphic to a closed subspace of X} 

is 1:::. We can assume, of course, that X0 E SB as well. 
Fix a countable dense subset Do ~ Xo, which is also closed un­

der rational linear combinations. Say Do = {dn}neN· Then, Xo is iso­
morphic to a closed subspace of X # 3(e.,) E C(2"")""[Vn(en E X) 
& {en} is closed under rational linear combinations & 3 positive reals 
a,b V'n(bllenll < lldnll :5 alleniD & dn ~ en is a bijection of {dn} with 
{en} preserving rational linear combinations], which is clearly I::. 

For SD: We will use the following standard fact from Banach space 
theory. 

(33.25) Exercise. Let X be a separable Banach space. Let B1(X*) be the 
unit ball of its dual with the weak *-topology. Then X* is not separable 
iff there is e: > 0 and an uncountable closed set K ~ B1 (X*) such that 
llx*- y*ll > e:, for all x*, y* E K with x* :F y*. 

So we have 

X ft SD # 3e: > 03K E K(B1 (X*))[K is uncountable & 

V'x*,y* E K(x* :F y* => llx*- y*ll > e:)]. 

We will express this now as a 1::: property. For each X E SB, let {d:} be a 
countable dense subset of X closed under rational linear combinations. By 
12.13 we can assume that X~ (d:) E C(2"")"" is Borel. Put z: = lid: II. We 
will view every element x* E B1(X*) as an element of [-1, 1]"" identifying 

it with n ~ x·~~;i> (if d: = 0, we define this ratio to be 1). (We work 
" here with real Banach spaces; the obvious modifications are made for the 

complex case.) With this identification B1 (X*) becomes a closed subset 
of [ -1, 1]"", since it consists of all f E [ -1, 1]"" that satisfy the following 
condition: 

q.J(n)l: + q2f(m)l~ = f(k)lf 

for any rationals q1 ,q2 and any k,m,n. wit.h q1d: + q2d~ = df. (Given 
such an J, the corresponding x* is defined by x*(d:) = f(n)l:. Note that 
lx*(d;;)l :5 lld:ll = z;.) Moreover, this identification is a homeomorphism 
of B1(X*) and this closed subset of [-1,1]"", which we denote by K)c. 
Finally, iff, g E Kx and x*, y* are the corresponding elements of B1(X*), 
then 

= sup{lf(n)- g(n)l: d?: :F 0} 

= sup{lf(n)- g(n)l : n EN} 

= II!- gll:.o· 
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So we have 

X ft SD # 3€ > 03K E K([-1, 1]~'<~)[K ~ Kx & 

K is uncountable & 

'VJ,g E K(f oF 9 =?II/- 9lloo > €)]. 

Now the map X~ K)c is Borel from SB into K([-1, 1]!11), as it follows 
from the fact that the relation "! E K)c" is Borel in [-1,1]Nx SB and 
28.8. Also "K is uncountable" is I:~ by 27.5. Finally, the negation of the 
last condition in the above expression is 

3J,g[J,g E K & f oF 9 & II/- 9lloo :5 €], 

which is a projection of the Ku set 

{(K,J,g) E K([-1, 1]!\1) x [-1, 1]!\1 x [-1, 1]N: 

J,g E K & f oF 9 & II/- 9lloo :5 €}, 

so it is K u too. Thus "' SD is I:~. 0 

(33.26) Exercise. Show that the relation of isomorphism between separable 
Banach spaces is Borel !:~-complete. In fact, show that the set. of separable 
Banach spaces isomorphic to C(2N) is Borel !:~-complete. (You might need 
to use here the following result of Milutin (see, e.g., P. Wojtaszczyk [1991], 
p. 160): If K is uncountable, compact metrizable, then C(K) is isomorphic 
to C(2N).) 

Show also that the relation of embedding (i.e., being isomorphic to a 
closed subspace) between separable Banach spaces is Borel !:~-complete. 

The following extension of 33.24 has been proved by B. Bossard [1993]: 
Denote by REFL, NL1 the classes of separable Banach spaces that are 
reflexive, respectively contain no closed subspace isomorphic to l1

• Thus 

REFL ~ SD ~ NL1 ~ NU. 

Then there is a Borel function f: Tr- SB such that f(WF) ~ REFL and 
f("' WF) ~ "'NU. In particular, REFL, NL1 are also Borel IT~-complete. 

We present now an application of 33.24. 
Given a class :F of separable Banach spaces, a separable Banach space 

X is called universal for :F if every Y E :F is isomorphic to a closed subspace 
of X. An old problem in Banach space theory (Problem 49 in the Scottish 
Book, due to Banach and Mazur- seeR. D. Mauldin [1981]) asks whether 
there is a separable Banach space with separable dual, which is universal 
for the class of separable Banach spaces with separable dual. Wojtaszczyk 
answered this negatively using methods of Szlenk. Bourgain then showed 

,. that if a separable Banach space X is universal for the above class it must 
be tmiversal (for the class of all separable Banach spaces). We used his 
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argument for this in the proof of 33.24. Let us see how it follows from what 
we have proved here: 

Suppose Xo was universal for the class of separable Banach spaces with 
separable dual. Then {K E K(C) : C(K) is isomorphic to a closed subspace 
of X0 } in I:l (by 33.26) and contains {K E K(C) : K is countable}, which 
is Dl but not I:L so there must be some uncountable K with C(K) iso­
morphic to a closed subspace of Xo, thus C(K) is universal and so is Xo. 

33.L Other Examples 

First we consider an interesting example of a D{-complete set of probabil­
ity measures, that is studied in harmonic analysis. Recall from 23.10 the 
concept of a (closed) H-set. Denote by Hl. the set of probability Borel 
measures on 'll' which annihilate H, i.e., p, E Hl. <=? 'VK E H(JL(K) = 0). 

(33.27) Theorem. (Kechris-Lyons, Kaufman) The set Hl. is ll{-complete 
(in P('ll')). 

In 4.10 we saw that the extreme boundary &eK of a compact metrizable 
convex set K (in a topological vector space) is G 6 in K. Actually, it can be 
shown (see G. Choquet. [1969], Vol. II, p. 189, and R. Haydon [1975]) that 
every Polish space is homeomorphic to such a &eK. On the other hand, if F 
is a closed, convex bounded set in a separable Banach space, &eF is easily 
a Dl set. In fact we have: 

(33.28) Theorem. (Kaufman) Every separable metrizable co-analytic space 
is homeomorphic to some &eF, F a closed convex bounded set in a separable 
Banach space. 
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34. Co-Analytic Ranks 

34.A Ranks and Prewellorderings 

Given a set S a rank (or norm or index) on Sis a map <p : S- ORD. 
Such a rank is called regular if <p(S) is an ordinal, i.e., an initial segment 
ofORD. 

A preweUordering on a set S is a relation < on S which is reflexive, 
transitive, and connected (i.e., x < y or y :::; x for any x, y E S) and 
has the property that every nonempty subset of S has a least element, or 
equivalently the strict part x < y # x :::; y & ..., y :::; x is well-founded. If < 
is a prewellordering, consider the associated equivalence relation 

X "'y #X ::5 y & y < X. 

Then < induces a relation, also denoted by :::;, on Sf"', namely 

[x],., :::; [y],., # x :::; y. 

Clearly, :::; on Sf "' is a wellordering. 
To each rank <p : S - ORD on S we associate a prewellordering :::;"" 

by 
x :::;"" y # <p(x) < <p(y). 

Conversely, given a prewellordering :::; on S, there is a unique regular rank 
<P : S - ORD such that :::; = :::;"", defined as follows: Let 1/J : Sf"' -
ORD be the canonical isomorphism of (Sf"'' ::5) with an initial segment of 
ORQ and put <p(x) = 'l/l([x]"'). Calling two ranks <p,<p' on S equivalent if 
:::;"" = :::;I"', we see therefore that every rank has a unique equivalent regular 
rank. 

34.B Ranked Classes 

A key property of the co-analytic sets is that they admit ranks with nice 
definability properties. Roughly speaking, given a Dl set A in a Polish 
space, there is a rank <p : A - w1 such that the initial segments A~ = { x E 
A: <p(x) :::; e} are ~l "uniformly". We will make this more precise below. 

Let r be a class of sets in Polish spaces. Let X be a Polish space and 
A C X. A rank <P : A - ORD is called a r-rank if there are relations. 
:::;~, :::;~ ~ X x X in r, t respectively such that for y E A: 

<p(x) ::5 <p(y) (# x E A & <p(x) < <p(y)) 

{:::}X :5~ y 
t 

{:::} X :51" y. 

In other words, the initial segments <~ are uniformly in r n f' = ~. This 
notion is primarily of interest if A itself is in r. Note that <P being a r-rank 
depends only on <"". 
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(34.1) Exercise. Let <'P be the strict part of <'P, i.e., x <'P y # <P(x) < <P(y). 
Show that if r is closed under continuous preimages, finite intersections and 
unions, and A E r, then <P : A --+ ORD is a r-rank iff there are relations 
<~, <~ in r, f' respectively such that for y E A: 

x <'P y (# x E A & <P(x) < <P(Y)) 

#X <~y 
t 

#X <'P y. 

We give now another convenient reformulation of the concept of r­
rank. Given As; X and a rank <p: A--+ ORD, we extend <P to X by letting 
for x EX\ A, tp(x) = oo = the first ordinal of cardinality bigger than the 
cardinality of <P( x) for all x E A. So <P( x) < <P(Y) if x E A and y ¢ A. Now 
define the relations :::;~, <~ s; X x X by 

x <~ y # x E A & <P(x):::; <P(Y) 

(# x E A & (y ft A or (yEA & <P(x) $ <P(Y)))), 

X <~ y {:::}X E A & <P(X) < <P(Y) 

( # x E A & (y ft A or (y E A & <P( x) < <P(Y))) 

# <P(x) < <P(Y)). 

(34.2) Exercise. Assume r is closed under continuous preimages and finite 
intersections and unions. If A E r, then <P : A --+ ORD is a r-rank iff 
:::;~, <~ are both in r. 

(34.3) Exercise. Let r, A, <P be as in 34.2. Show that <Pis a r-rank iff there 
are relations :::;~, <~ in f' such that for y E A, 

<P(x) $ <P(Y) (# x E A & <P(x) < <P(y)) 
t 

#X $'P y, 

<P(x) < <P(Y) (#X E A & <P(x) < <P(y)) 
t 

#X <'P y. 

We say now that a class r is ranked or has the rank property if every 
A E r admits a r-rank. (Other terminologies used include: normed or has 
the prewellordering property.) 

34. C Co-Analytic Ranks 

A fundamental property of the n~ sets is the following: 
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Proof. It is enough to show that some D}-complete set admits a n~-rank. 
We will work with WO (see 33.A). 

If x E WO, then Ax = (N, <x) (where m <x n # x(m, n) = 1) is a 
wellordering, so it is isomorphic to a unique ordinal ax = p( <x), which is 
traditionally denoted by lxl. (Clearly, {lxl : x E WO} = w1 \ w.) We will 
show that x ~ lxl is a n~-rank. By 34.3, it is enough to find relations 
<:E~, <:E~ such that for y E WO: 

Put 

and 

x E WO & lxl :5 IYI # x :::;E: y, 

x E WO & lxl < IYI # x <:E: Y· 

x <:E: y # 3/ E NNV'mV'n(m <x n:::} /(m) <v f(n)) 

X <:E: y # 3k3f E NNV'mV'n[f(m) <y k & 

(m <x n:::} /(m) <y f(n))]. 

Clearly, these work. 0 

Actually, from the preceding proof we have the following additional 
information. 

(34.5) Corollary. (of the proof) Every n~ set A in a Polish space admits 
a nt-rank ~P:A --+ w1. 

If <P: A--+ o is a r-rank, then for each e < a let 

A~ = {x E A: ~P(x) :5 e}. 

Then A~ is in~= rn f', A~ c A'~ if e :5 1J, and A= U~<o A~. So A is the 
union of an a sequence of sets in~. In particular, we see again that every 
D} set is the union of w1 4} (=Borel) sets (see 32.B). Also, if IP: A--+ w1 

is a n~-rank on a Dl but not Borel set, then sup{ ~P( x) : x E A} = w1 • 

(34.6) Exercise. i) Show that T ~ p(T) is a D~-rank on the Di-complete 
set WF (of well-founded trees on N). 

ii) (Solovay) Show that if X is Polish, A ~ X is n~ and E is a :E~ 
equivalence relation on X such that A is E-invariant, then there is a Df­
rank IP: A--+ w1 !>Uch that ~Pis E-invariant (i.e., x,y E A & xEy:::} ~P(x) = 
~P(Y)). 

(34.7) Exercise. LetT be a tree on N x N, A = p[TL and C = "'A. For 
x E C, let ~P(x) = p'(T(x)) = PT(x)(0). Show that ~P: C--+ w1 is a Dl-rank 

-on C. Note that the decomposition C = U <w C~, where C~ = {x: ~P(x) :5 
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Remark. Note that the concept of n~-rank, 34.4 and 34.5 extend in an 
obvious way to D} sets in standard and analytic Borel spaces. 

Theorem 34.4 gives us an abstract ranking with nice definability prop­
erties. for any given co-analytic set. In many concrete situations, however, 
it is important to be able to find a "natural" D~-rank on a given Dl set 
which reflects the particular stm<:ture of this set. For example, in the proof 
of 34.4 and in 34.6 we found such "natural" rankings associated with WO 
and WF. 

Canonical rankings often arise in practice from transfinite iteration of 
derivation processes, such as the Cantor-Bendixson derivative (see 6.10). 
We will next discuss rankings associated to such processes and show that 
under fairly general conditions they lead to nt-ranks. We will use this 
then to compute canonical n~-ranks for some of the D}-complete sets we 
discussed in Section 33. 

34.D Derivatives 

Let X be a set and V ~ Pow(X) be a collection of subsets of X closed 
under nonempty intersections. Typical examples we have in mind are 

i) V = Pow(X); 
ii) X a Polish space and V = F(X) or V = K(X). Note that the 

case V = F(X) contains that of i) when X is countable (with the discrete 
topology). 

A derivative on V is a map D : V --+ V such that D(A) ~ A and 
A~ B => D(A) ~ D(B). If Dis a derivative and A~ X, A E V, we define 
by transfinite recursion its iterated derivatives as follows: 

Note also that 

D0 (A) =A, 

D 0 +1(A) = D(D0 (A)), 

D·\A) = n D 0 (A) if,\ is limit. 
o<>. 

D"(A) = n D(Df3(A)) if a> O. 
{ko. 

There is a least ordinal a < card(X)+ such that D 0 (A) = D 0 +1(A) (= 
Df3(A), 'V/3 2: a). We call it the D-rank of A, denoted as lAID· We also 
put D00 (A) = DIAID(A). If x E A\ D""(A), we let lx,AID = the (unique) 
ordinal a such that x E Do.(A) \ D 0 +1(A) and calllx,AID the D-rank of 
x in A. 

We can also define the dual notion of expansion. Let £ ~ Pow( X) be 
closed under nonempty unions. A map E: £--+£is an expansion if E(A) 2 
A and A ~ B => E(A) ~ E(B). We define E 0 (A), IAis, E 00 (A), lx, Als 
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for A E £ by dualizing in the obvious fashion the preceding definitions. 
Note that if D : V --+ V is a derivative, its dual b : t> --+ t>, where 
t> ={"'A: A E V}, given by D(A) = "'D("' A) is an expansion and vice 
versa. 

We now discuss some examples. 

1) Let X= A<"", V = Pow(X), and D(T) = {s .E T: 3a E A(s'a E 
T) }. If T is a tree on A, so are all D 0 (T), and D00 (T) is the largest pruned 
subtree ofT. SoT is well-founded iff D00 (T) = 0. This is the same as the 
derivative introduced in 2.11, where in that notation T* = D(T), r<o> = 
D 0 (T), and r<oo) = D00 (T) for a tree T. Also, Is, TID= PT(s). 

2) Let X= A<"", V = Pow(X), and D(T) ={sET: 3t,u E T(t 2 
s, u ::> s & t l. u)}.IfT is a tree, so are all D 0 (T), and D00 (T) is the largest 
perfect subtree ofT. So, for countable A, [T] is countable iff D00 (T) = 0. 
This is the same as the derivative introduced in 6.15. 

3) Let X= N<"", V = Pow(X), and D(T) = {sET: 3u E T(u 2 
s & for infinitely many n, u'n E T}. Again if Tis a tree, so are all Da(T), 
and D 00 (T) is the largest superperfect subtree ofT. So [T] is a-bounded iff 
D 00 (T) = 0. (See also 21.24 here.) 

4) Let X = (N x N)<"", V = Pow,(X) and D(T) = {(s,u) E T: 
3(t, v), (r, w) E T[(t, v) 2 (s, u) & (r, w) 2 (s, u) & t l. r]}. If Tis a tree; so 
are all D 0 (T). Also, p[T] is countable iff D 00 (T) = 0 (see 29.2). 

5) Let X = T be a nonempty pruned tree on some set A, let £ = 
Pow(~), and define the following expansion on £: E(P) = P u {p E T : 
length(p) is even & Va E A(p'a E T:::} 3b E A(p'a'b E P)]}. 'If S ~Tis a 
subtree and Ps ={pET: length(p) is even & p ft S}, then in the notation 
of 20.2, Sf. = Ef.(Ps), so player II has a winning strategy in G(T, [S]) iff 
0 E E':"(Ps). 

6) Let X be a Polish space and V = F(X) or V = K(X). Given a 
hereditary set l3 ~ V ( i.e., A E l3 & (B ~ A, B E V) :::} B E !3), define 
the following gene~alized Cantor-Bendixson type derivative: 

DB( F)= {x E F: Vopen nhbd U of x (U n F ft !3)}. 

Note here that U can be restricted to a basis of X since l3 is hereditary. 
Put 

IFIB = IF IDs, lx, FIB = lx, FIDs, 
and note that IFIB < w •. 

The following is a basic fact concerning DB. 

(34.8) Proposition. For any FE V, D'g'(F) = 0 iff FE !317 • 

Proof. Let D'g'(F) = 0. Given x E F, let a= lx, FIB· Let {Un} be a basis 
for X. Then for some n, x E Un n Dg(F) E !3. Since a < IFIB < w1, 
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there are only countably many such u .. n Dg(F), so F E T317 • Conversely, 
ifF = Un Fn, Fn E T3 but D8(F) :F 0. by the Baire Category Theorem 
there are m, n with 

Um n D8'(F) ::p 0 & Um n D8'(F) ~ Fn. 

If x E Um n D8(F) and D8(F) = Dg(F), then x ft D8+l(F) = D8(F), a 
contradiction. 0 

If T3 = {{x}: x E X}U{0}, then DB(F) = F' is the CMtor-Bendixson 
derivative. If V = F(X) and T3 = K(X), then DB is a derivative such that 
D8(F) = 0 iff F is in K,. 

(34.9) Exercise. Let X= N in Example 6). Define the following derivative 
D8 on Pow(N<N) : D8(T) = { s E T : [T[sJ] ( = [T] n Ns) ft T3}. Show that 
for a tree T, [D8(T)] = DB([T]). 

34.E Co-Analytic Ranks Associated with Borel Derivatives 

(34.10) Theorem. Let X be a Polish space and either· V = K(X), or X is 
also K 17 and V = F(X). Let D:V- V be a Bor-el derivative. Put 

Then nD is Dl and the map F ~ IFio is ant-rank on nD. 
Proof. We will use the following simple fact about V. 

(34.11) Lemma. Let X be a Polish space and V = K(X), or X is also K 17 

and V = F(X). Then the map n: VN - V, given by n(Fn) = n,. Fn, is 
Borel. 

Proof. Let {Un} be a basis of nonempty open sets in X. 
IfV = K(X) and U is open in X, then Un(nnFn) :F 0 iff3mV'n(Um ~ 

U & Um n (ni<n Fi) :F 0), so n is Borel since finite intersection is Borel in 
K(X) by 11.4--ii). 

If X is K 17 and V = F(X), let X = Un Kn, Kn E K(X) and note that 

u n (nF .. ) ::p 0 # 3m3i(Um ~ u & Um n Kin (nFn) ::p 0). 
n n 

But for any K E K(X) the map F E F(X) ~ F n K E K(X) is Borel, 
because if X is a compactification of X, then F E F(X) ~ FE K(X) is 
Borel and F n K = F n K (where F is the closure of F in X). It follov,-s 
that (F1, ... , Fm) ~ K n F1 n · · · n Fm is also Borel, and we are done as 
before. 0 
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For convenience, we will now introduce a variant of WO and the rank 
x ~ lxl. Denote by LO* the set of x E 2NxN which encode a linear ordering 
on some subset of N, whieh has as least element 0. In other words, if for 
x E 2NxN we let D*(x) ={mEN: x(m,m) = 1} and we define m ::;; n <=? 

m, n E D*(x) & x(m, n) = 1, then by definition 

x E LO* <=? 0 E D*(x) & ::;; is a linear ordering of D*(x) & 

0 ::;; m, 'Vm E D*(x). 

Clearly, LO* is closed in 2NxN. We denote by WO* the set of x E LO* for 
which ::;; is actually a wellordering and by lxl* the associated ordinal < w1 • 

As for WO and x ~ lxl, we can see that WO* is ill-complete and x ~ lxl* 
is ant-rank on WO*. Note that {lxl*: X E WO*} = Wl \ {0}. 

To prove the theorem, we claim that it is enough to prove the following: 

i) nD En~. 
ii) There are :E~ relations R, S ~ LO* x V such that: 

a) IfF E flD \ {0}, then 

x E WO* & lxl* :5 IFID <=? R(x, F). 

b) If x E WO*, then 

FE flD & IFID = lxl* <=? S(x, F). 

Indeed,. granting these, we have for FE [!D \ {0} that 

HE nD & IHio :5 IFID {::} H = 0 or 3x[R(x, F) & S(x, H)], 

which is cleal'ly :E~. Also. 

HE flD & IHID < IFID <=? H = 0 or 3x[R(x',F) & S(x,H)], 

where x ~ x' is a Borel function from LO* to LO* such that x E WO* iff 
x' E WO*, and for x E WO* we have lxl* + 1 = lx'l*, so that this is al~ 
:Et. By 34.3, F ~ IFI D is a nt-rank. 

So it remains to prove i), ii). 

For i): We have 

F ft nD <=? 3H ~ F[D(H) = H & H -:j; 0], 

For ii): Pnt 
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R(x, F) # x E LO* & 3h E VN ( h(O) = F & 

'Vm E D*(x) [h(m) :F 0 & 

(m -:j; 0:::} h(m) ~nom D(h(n)))]) 
X 

(where n <; m -¢:::> n :F m & n :5.~ m). To see that this works, let F E 
nD \ {0}. Direction :::} of a) is clear. For ~, notice first that if 0 :F m E 

D*(x), then for some Q < IFID we have nn<*m D(h(n)) ct. D 0 +1(F) . ., 
(Otherwise, for all Q < IFID, 0 :F h(m) ~ nn<•m D(h(n)) ~ D 0 +l(F), so 

"' D00 (F) = na<IFID D 0 +l(F) :F 0.) So put /(0) = 0 and for 0 :F mE D*(x): 

f(m) = least Q < IFID such that n D(h(n)) ct. D 0 +1(F). 
n<;m 

We claim that m <; p:::} /(m) < f(p), so f is order preserving from <; 
into IFID, and thus x E WO* & lxl* :::; IFID· To see this, note that for 
0 :F mE D*(x), 

n D(h(n)) ~ n D 0 +l(F) = Df(rn)(F), 
n<;,m o<f(m) 

so h(m) ~ nn<*m D(h(n)) ~ Df(rn)(F), and thus D(h(m)) ~ Df(m)+l(F). 
"' So if m <; p, then nq<;p D(h(q)) ~ D(h(m)) ~ Df(m)+l(F) and therefore 

f(m) < f(p). The ca.<;e rn = 0 can be proved ea.<;ily. 
Finally, let 

S(x,F) # x E LO* & 3h E vN( h(O) = [" & 

'Vm E D*(x)(h(m) :F 0 & 

(m -:1 0:::} h(m) = n D(h(n)))) & 
n<;m 

n D(h(m)) = 0 )· 
mED*(.r.) 

Then Sis :E~ by 34.11, and satisfies easily b). 0 

Remark. One can show (using, for example, 27.10 and its hint) that in 34.10 
and for the case V = F(X) the assumption that X is K 17 is necessary. 

(34.12) Exercise. Let X be Polish and either V = K(X), or X is K 17 and 
V = F(X). Let l3 ~ V be hereditary Borel. Show that Dr3 is Borel and 
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(34.13) Exercise. The following parametrized version of 34.10 is very useful 
iu applic.ations. 

Let X, V be as iu 34.10, let Y be a standard Borel space and let 
ID>: Y x V -+ V be Borel such that for each y E Y, ID>y is a derivative on V. 
Put 

On= {(y, F): ID>:'(F) = 0}. 
Show that no is n~ and that the map (y, F)~ IFinll is a n~-rank on On. 

(34.14) Exercise. Formulate and prove an analog of 34.10 for expansions. 

(34.15) Exercise. Let D be a Borel derivative on Pow(N) ( = F(N)). Let 
no EN. Put 

n~o ={A~ N: no~ D00 (A)}. 
Then n~o is DL and the map A~ IAI~o = least a such that no ~ D 0 (A) 
. nl k r.nn IS a 1-ran on HD. 

Prove a similar result for expansions on Pow(N). 

(34.16) Exercise. Let X be Polish and D a derivative on F(X). A1:1sume 
that 

S(F,H) # F ~ D(H) 
is :E~. Show that f2D (={FE F(X): D 00 (F) = 0}) is Dl and if A~ f2D is 
:EL then sup{IFID :FE A}< w1• In particular, show that this applies to 
the Cantor-Bendixson derivative and in fact all DB for l3 ~ F(X) hereditary 
n~. 

34.F Examples 

1) Consider Example 1) of 34.0. The set nD n Tr is clearly the same 
as WF and the n~-rank T ~ ITID (restricted to WF) is clearly the rank 
T ~ p(T) discussed in 34.6. 

(34.17) Exercise. Define a parametrized derivation, as in 34.13, whieh gives 
appropriately the canonical n~-rank on WO, which was defined in the proof 
of 34.4. 

(34.18) Exercise. Consider the example discussed in 33.2. Given a linear 
ordering (A,<), we define a transfinite sequence of equivalenee relations 
(Eo) on A as follows. For x <yEA, put [x,y] = {z: x::; z::; y} and, by 
abuse of notation, also put [x, y] = [y, x] if x ;::: y. Then let 

Eo ={(x,x): x E A}, 

Eu+l ={(x,y): 3xl3x2···3xn(x., ... ,x .. E [x,y] 

& 'V z E [x, y]3i( zEaxi))}, 

E = E if ,\ is limit. 
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Show that Eo ~ E1 ~ · · ·, and if we let E= = Uo Eo, then 

(A,<) is scattered iff E 00 =A x A. 

Use this to define a canonical rank on the set SCAT and show that it is a 
n}-rank. 

2) Consider next the set 

Wu = { S E Tr : II has a winning strategy in the game G(N, [ S])}. 

Let E be the expansion defined in Example 5) of 34.0 (for X = N<""). 
Using Ewe can assign the following rank on Wu: 

ISin = the least e such that 0 E s~ (= ~(Ps)). 

By 34.15 we see that Wn is Dl (and (:omplete by 33.1 iii)) and S ~ 18111 

is ant-rank. 

3) Let X be a Polish space, let V = K(X), and let D = Dr3, where 
l3 = {{x} : x EX} U {0}, be the Cantor-Bendixson derivative. Since l3 is 
clearly Borel, we have by 34.12 that K ~ IKID = IKicB is ant-rank on 
the Dl set nD = KN0 (X). If X is also K17 and D = F(X), then the same 
D shows that F ~ IFicB is ant-rank on the nt set FNo(X). 

On the other hand, the Cantor-Bendixson rank is not a Dl-rank on 
the Dl set FN0 (X), when X is not K 17 • To see this, notice that X, since 
it is not K17 , contains a clo..'!ed. subspace homeomorphic toN (see 7.10), so 
we can assume that X = N. Now if F ~ IFicB was a n~-rank, the set 
A= {FE FN0 (N): IFicB:::; 1} = F(N) \{FE F(N): F' :F 0} would be 
Borel, which contradicts 27.8. 

(34.19) Exercise. Use Example 2) of 34.0 to find a canonical n~-rank on 
FN0 (N). 

We do not know a "natural" nt-rank on FNo(X) for a general Polish 
space X. 

(34.20) Exercise. Let X be a Polish space and consider again KN0 (X). 
As is sometimes customary (see comments following 6.12), we associate to 
K, instead of the least a (= IKicB) such that K 0 = 0, which is always 
a successor ordinal if K :F 0, its predecessor IKicB = a - 1. Clearly, 
K ~ IKicB and K ~ IK1(:.8 are equivalent rank.c; on K(X) \ {0}. (We also 
let l0lcB = o.) 

We define now the Cantor-Bendixson degree of K E KN0 (X) to be the 
(finite) cardinality of the compact set K 0

, where a= IK1(:.8 . Denote it by 
d(K). Thus d(K) < w, and d(K) = 0 iff K = 0. Put now 

IIKIIcB = w ·IKicB + d(K). 
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Note that IIKIIcB is essentially the pair (IKIC.8 , d(K)) ordered lexicograph­
ically, i.e., 

IIKIIcB :SIILIIcB # IKicB < ILicB or (IKicB = ILicB & d(K) :5 d(L)). 

Show that K ~ IIKIIcB is a Dl-rank on KN0 (X). 

4) (A. S. Kechris and W. H. Woodin [1986)) We will now describe 
a canonical Dl-rank on the Dl set DIFF of differentiable functions in 
C([O, 1)). 

For f E C([O, 1)) and 0 :5 x < y :5 1, let 

fit(x, y) = f(x)- f(y). 
x-y 

Given a positive rational € > 0 and f E C([O, 1)), define the following 
derivative on K([0,1)): 

DE,t(K) = {x E K: 'V open nbhd U of x 

3 rational p < q, r < sin U n [0, 1] such that 

([p, q] n [r, s] n K :F 0 & lti,(p, q) - fit(r, s)l 2: €)}. 

It is easily seen that DE./ is Borel uniformly in €, f, i.e., D(€, f, K) -
DE,J(K) is Borel. 

(34.21) Exercise. Iff E C([O, 1]), K E K([O, 1]) \ {0}, and 'Vx E K(f'(x) 
exists), then DE,J(K) is nowhere dense inK, so DE,J(K) ~ K. 

It follows that for f E C([O, 1)), 

f E DIFF # 'V€ E Q+(D~1 ([0, 1)) = 0). 

Note that it is enough here to restrict € to the numbers 1/n for n EN\ {0}. 
Now define 

I!IDIFF = sup 1[0, 1]ID.,~ 
€EQ+ 

= sup 1[0, 1]ID11,,,. 
n>O 

(34.22) Exercise. Show that for f E DIFF, {x E [0, 1] : !' is discontinuous 
at x} = UEeQ+ DE,t([O, 1]), so that 

1/IDIFF = 1 # f E C 1([0, 1)). 

(34.23) Exercise. Show that if fo(x) = x2 sin(1/x) for x :F 0, fo(O) = 0, 
then lfoiDIFF = 2. (One can actually construct examples off E DIFF with 
I!IDIFF an arbitrary countable ordinal > 0.) 
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We verify now that f ~---+ I!IDIFF is a n~-rank on DIFF. 
Consider t.he space X= EB:'=l Xn, where Xn = [0, 1], and the deriva­

tive ID>/ on F(X) given by 

00 

ID>J(F) = U Dtfn,J(F n Xn)· 
n=l 

Since ID>( €, J, K) is Borel, it is easy to see that ID>(J, F) = ID> 1 (F) is Borel 
(from C([O, 1]) x F(X) to F(X)). Also, 

f E DIFF <=? (!,X) E On 

and, since X is K17 , we have by 34.13 that 

is a nf-rank. 
The rank I!IDIFF can also be described in a different way, which serves 

to illustrate another method for defining nf-ranks. 
For f E C([O, 1]), € E Q+, define a tree Tj on A = { (p, q) : 0 :::; p < 

q :::; 1, p, q E Q} as follows: 0 E Tj and 

((pt, q1), ... , (pn, qn)) E Tj <=? qi- Pi $ 1/i & 
n n [pi, qi] :;f 0 & 

i=l 

Then it is not hard to see that 

f E DIFF <=? 'V€ E Q+(Tj is well-founded) 

<=? 'Vn > O(T]In is well-founded), 

so we can define 

lflr>IFF = sup{p(T'j) : € E Q+} 

( = sup{p(T]In) : n EN, n > 0} ). 

It can be shown in fact that except for linear f (for which lflrnFF = 2), 

lflr>IFF = w · IJimFF· 

(34.24) Exercise. For f E C([O, 1]), define the following tree: 

81 = {0}U{(n, (pl,ql),. · ·, (pm,qm)): 

((pl> q1), · · ·, (pm, qrn)) E T]ln, n > 0}. 

Show that 
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f E DIFF <=? s, is well-founded 

and for f E DIFF 

lflr>IFF = Ps,(0). 

Conclude that f ~---+ lflr>IFF is a Dl-rank on DIFF (without using its 
relationship with 1/IDIFF ). 

This "tree description" of the rank 1/lmFF can be viewed as a combi­
natorial analysis of it. Abstractly, from the fact that WF is a iii-complete 
set, one can always assign, given a Polish space X and a Dl set A C X, 
a tree Tx to each x E X such that x ~---+ Tx is Borel and x E A <=? T.-. is 
well-founded. Then x ~---+ p(Tx) is a n~-rank on A. One often seeks, for a 
given ni set A, to find a "natural" tree assignment X 1-+ Tx, which reflects 
the structure of A. If a "natural" rank <P on A can also be described by some 
other means, then this tree assignment and the associated rank x ~---+ p(Tx) 
often give an essentially equivalent rank and so provide a "combinatorial" 
analysis of <P· 

5) Let X = C([O, 1])N and consider the set CN = {(fn) E X : Un) 
converges pointwise}. A canonical rank for CN comes from work of Z. Zal­
cwasser [1930] and independently from D. C. Gillespie and W. A. Hurwitz 
[1930]. 

Given Un) E X and K E K([O, 1]), x E K, the oscillation of Un) at x 
on K, is defined by 

W(i >(x, K) = inf inf sup{lfm(x')- fn(x')l: 
" 6>0 pEN 

m > n > p & x' E K & lx' - xi < 6}. 

Define for € E Q+, Un) EX the following derivative on K([O, 1]): 

D,,(f,.)(K) = {x E K: wu .. >(x,K) 2: €}. 

It is easily seen that D(€, Un), K) = DE,(f .. )(K) is Borel. 

(34.25) Exercise. If Un) E C([O, 1])N and K E K([O, 1]) \ {0} is such 
that Vx E K(fn(x) converges), then DE.(f,.)(K) is nowhere dense in K, 
so DE,(/,.)(K) ~ K. 

It follows that 

So for Un) E CN, define its Zalcwasser rank by 

IUn)lz = sup 1[0, 1]ID. <I J' 
EEQ+ ' n 
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(34.26) Exercise. Show that for Un) E CN, l(fn)lz = 1 <=? (f".n) converges 
uniformly (i.e., {(fn) E CN : IUn)lz = 1} = UCx, as in 23.16, for X = 
C([O, 1]). 

(34.27) Exercise. Find Un) E CN with IUn)lz = 2. (Again, examples of 
Un) E CN can be constructed with any countable ordinal> 0 as Zalcwasser 
rank.) 

As in the case of DIFF, 'it is easy to verify that Un) ~ IUn)lz is a 
Df-rank on CN. 

We can also apply this idea to the set CF off E C('ll') with everywhere 
convergent. Fow·ier series, to obtain the n~-rank 

1/lz = I(Sn(f))lz, 

where Sn(f)(x) = 'E~=-nf(m)e'mx is the nth partial sum of the Fourier 
series of f. In particular, 1/lz = 1 <=? the Fourier series of f converges 
uniformly. Thus{! E CF: 1/lz = 1} = UCF (as in 23.17). It follows from 
33.13 and the remarks after 34.5, that for every countable ordinal a there 
is f E CF with l!lz > a (i.e., there are f E C('ll') that can be expanded to 
Fourier series but for which their convergence is "arbitrarily bad"). 

(34.28) Exercise. Consider the set QP of quasi-periodic homeomorphisms of 
H(X), X compact metrizable (as in 33.J). For.h E H(X), let Bh = {K E 
K(X) : 3n'v'x E K(hn(x) = x)}. Show that Bh is hereditary Borel and if 
Dr3h = Dh is the eorresponding derivative on K(X). then 

h E QP <=? X E (T3h).,. <=? X E ODh. 

Show that if lhl = IXIDh' then h ~ lhl is a Df-rank on the Dl set QP. 
What is {hE QP: lhl = 1}? 

Canonical Df-ranks for other examples of Dl-complete sets we dis­
cussed in Section 33 have been studied in the literature, such as for the 
class UNIQ of closed sets of uniquenes:,;, using work of Piatetski-Shapiro 
(see A. S. Kechris and A. Lonveau [1989]) and for the clw;-s of minimal 
distal homeomorphisms, using the structure theorem of Furstenberg (see 
F. Beleznay and M. Foreman [199?]). 
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35. Rank Theory 

35.A Basic Prope·rties of Ranked Classes 

We will first derive some immediate properties of ranked classes, which are 
valid in particular for Dl. 

(35.1) Theorem. Let r be a class of sets in Poli.sh spaces that contains all the 
clopen sets and is closed under continuo1Ls preimages and finite intersections 
and unions. If r is ranked, then: 

i) r has the reduction property and i' the separation property; and, 
if there is a C-universal set for r(C), then r Jails to have the separation 
property and i' fails to have the reduction property. 

ii) If r i,s closed under countable intersections, then r has the number 
uniformization property and the generalized reduction property. 

iii) If r is closed under countable intersections and unions, then t 
has the generalized separation property. 

In particular, i) -iii) hold for r = nt. 
ProQj. i) Let A, B ~X, X Polish, be in r{X). Put 

(x,,n) E R <=? (n = 0 & x E A) or (n = 1 & x E B). 

Then R E r(X x N), so let r.p: R-+ ORD bear-rank. Put 

x E A*<=? (x,O) <~ {x,1), 

x E B* <=? {x,1) <~ (x,O). 

Then A*,B* E r{X) and reduce A, B. 
The fact about the separation property of i' follows from 22.15 i). 

Finally, the last statement of i) follows from 22.15 iv). 
ii) Let R ~ X x N, X a Polish space, he in r(X x N). Let <P : R-+ ORD 

bear-rank. For each x E proh{R), we will look at then with (x, n) E R 
and choose among them those for which <P( x, n) is least. There may be 
many of them, so we will then choose among them the least one in the 
usual ordering of N. In other words, let 

( x, n) E R* <=? ( x, n) E R & 

<P(x, n) =min{ <P(x, m) : (x, m) E R} (=a) & 

n = min{m: (x, m.) E R & <P(x, m) =a}. 

Then R* clearly uniformizes R. To see that R* E r note that 

(x, n) E R* <=? (x, n) E R & V'm[(x, n) $~ (x, m)] & 

V'm[(x, n) <~ (x, m) or n :5 m]. 
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The second statement, about the generalized reduction property, fol­
lows from 22.15 iii) (since r is reasonable). 

iii) Follows from ii) and 22.15 ii). 0 

Note that from iii) of the preceding theorem we obtain another proof 
of the Novikov Separation Theorem 28.5. 

It also follows from i) that there are two disjoint Dl sets that cannot be 
separated by a Borel set (e.g., in the space C, and thus in any uncountable 
Polish space). The union of these sets is an example of a co-analytic space 
in which Souslin's Theorem 14.11 fails. 

We will see now some concrete examples of this phenomenon. 

(35.2) Exercise. (Becker) For any set A~ X x Y, where X, Y are Polish, 
put 

A1 = {x EX: 'Vy(x, y) (j. A}, 

A2 = {x EX: 3!y(x,y) E A}. 

If A is Borel, show that A 1 , A 2 are n:. Prove that there is a closed F ~ 
N x N such that F 1 , F2 cannot be separated by a Borel set. 

Use this to show that the following two disjoint n: subsets of Tr are 
Borel inseparable: WF, UB (see 33.A). Next use the proof of 33.9 to show 
that the following two disjoint n: sets are Borel inseparable: DIFF, {! E 
C([O, 1]) : /'(.7:) exists except at exactly one point}. Formulate analogous 
results related to 33.11 and 33.13. 

Remark. Note that if A, B ~ X, are n~ sets that are Borel inseparable, 
then for any Borel set P with A~ P, there is x E P n B, i.e., we have the 
following overspill property: Any Borel condition true for all elements of A 
must necessarily (overspill and) hold for some element of B. 

(35.3) Exercise. Let r contain all clopen sets and be closed under continuous 
preimages and countable intersections and unions. Assume r is ranked. 
Then r satisfies the following Principle of Dependent Choices: 

If A ~ X X N X N, X Polish, is in r and 'Vx'Vm3n( x, m, n) E A, then 
for each g : X -+ N with graph in ~ there is f : X x N -+ N whose graph is 
in ~such that f(x, 0) = g(x), (x, f(x, n), f(x, n + 1)) ~A for every n, x. 

In particular, this holds for r = Dl. 

For completeness let us also state the following fact. 

(35.4) Exercise. Show that the classes I:~, ~ :?: 2, on Polish spaces and the 
class I:? on zero-dimensional Polish spaces are ranked. 

This gives us the following picture: 
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where the boxed classes are ranked and have the nwnber uniformization 
and generalized reduction properties, and the others have the generalized 
separation property (only in zero-dimensional spaces if e = 1). 

35.B Parametrizing Bi-Analytic and Borel Sets 

It is clear (see, e.g., 22.7) that there is no X-universal set for 4HX), for any 
Polish space X. The following result provides however a nice parametriza­
tion of the 4~ sets. 

(35.5) Theorem. Let X be a Polish space. There is a Df set D C C and 
s E I:l{C X X), p E DHC X X) such that fordED, sd = Pd, which we 
denote by Dd, and {Dd:d E C} = 4f{X). 

Proof. By 32.A, let u <; c X X be C-universal for nt(X) and as in the proof 
of22.15 iv) form the universal pair (U0 ,U1). So for A,B E Dl(X) there i::; 
y E C with (U0 )y =A, (U1 )y =B. By 35.1, let lf,U

1 beD~ sets reducing 
U0 ,U1 and put 

,....,(} -1 
dE D <=? V'x[(d.x) E U or (d,x) E U] 

( <=? V' x[ ( d, X) E U0 or ( d, X) E U 1]). 

Clearly, D is n~. Let also 

,....,(} 

P(d,x) <=?U (d,x), 
-1 

S( d, X) {::} ..., u ( d, X). 

Since U
0 n U1 

= 0, it is clear that for d E D, P,1 = Sd, which we denote by 
Dd. Also, it is clear that Dd E 4f{X). Conversely, let A E 4HX) and put 
B ="'A. Then for some d, (U0)11 =A, (U1 )d =B. Since AU B =X, it is 

-0 -1 
clear also that (U )d = A, (U )d = B, and !>O d E D and Dd = A. 0 

Such a triple ( D, S, P) provides a parametrization (or coding) of 
4HX), viewing d E D as a parameter (or code) of Dd. Note that if 
(d,x) E V <=? x E Dd, then Vis 4f on D x X. We will see in 35.8 that the 
requirement that D E Dl{C) cannot be replaced by DE I:f{C). 

By Souslin's Theorem this clearly also provides a parametrization of 
the Borel sets. However, there are several natural ways to parametrize Borel 
sets directly based on their definition. We describe one next. 

Let B <; C be defined as follows: Given x E C, let (x)o(n) = 
x(3n), (x)I(n) = x(3n + 1), and (x)2(n) = x(3n + 2). Fixing a bijection 
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( ) : N<N -+ N, we can view (x)o as being the characteristic function of a 
subset of N<N, which we denote by Tx, and (x)t as the characteristic func­
tion of a set Sx ~ N<N. We can also view (x)2 as a function fx: N<N-+ N, 
where we let fx(s) = n iff there is a unique n with (:.c)2(((s),n)) = 0, 
otherwise fx( s) = 0. Let B now be the set of all b satisfying: 

Tb is a nonempty well-founded tree & Sb = {s E Tb: sis terminal}. 

Clearly, B E DHC). Fix now an open basis {Vn} for X including 0,X. 
For each b E B define a set Bb ~ X as follows: By recursion on the well­
founded relation -< = ~ on n, we define a set Bg ~ X for s E n by letting 
Bg = v,b(S) if s is terminal, and for s non-terminal, Bg = Us·nETb Bf" 
if length(s) is even, Bg = ns'nETb srn if length(s) is odd. Finally, let 
Bb = B~. It is easy to see that {Bb: bE B} = B(X). 

There is an alternative way to think of B,,. Forb E B consider the tree 
Tb, and given any x EX, let G(b,x) be the following clopen game: 

I no n2 

II n1 n3 

ni E N; Vi[ (no, ... , ni-d E Tb is not terminal => (no, ... , ni) E Tb]; I wins 
iff for the unique i E N such that s = (no, ... , ni-l) E n is terminal, we 
have X E v,b(s)· (If i = 0, s = 0 here.) Then we have: 

(35.6) Exercise. i) Forb E B, x EBb<=? I has a winning strategy in G(b,x). 
ii) There are Q E I:f{CxX), R E n:(cxX) such that forb E B, Qb = 

Rb = Bb. 

Using these parametrizations one can also prove a "uniform" version of 
the Lusin Separation Theorem 14.7 and Souslin's Theorem 14.11, which is 
a version of the so-called SousUn-Kleene Theorem (see Y. N. Moschovak.is 
[1980]). For simplicity we will consider the case X= N only. 

(35.7) Exercise. Let U be C-universal for Dl(N), and (U0 ,U1) he the corre­
sponding universal pair. Show that there is a continuous function f : C -+ C 
such that if("' U0 )y, ("-' U 1)y are disjoint, then f(y) E Band Bf(y) sep­
arates ("-' U0 )y from ("' U1)y· In particular, if d E D (as iu 35.5), then 
f(d) E Band Dd = Bf(d)· (For definitiveness, in the definition of Bb we fix 
{Vn} to be an enumeration of {Ns : s E N<N} U {0}.) 

(35.8) Exercise. Show that there is no D' E I:~ (C) and S' E I:~ ( C x C), P' E 
Df{C x C) such that for dE D', Sd = Pd (= Dd) and {Dd : dE D'} = 
4HC). 
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35. C Reflection Theo·rems 

(35.9) Definition. Let X be a Polish space and r a class of .set.s in Polish 
spaces. If~ ~ Pow( X), we say that ell is r on r if for any Polish spaceY 
and any A E r(Y x X) the set 

A<t> = {y E Y : Ay E ~} 

is also in r. 

For example, if X = N x Z, with Z Polish and ell( B) <=? Un Bn = Z, 
then ell is Di on Df. (Recall that eii(B) <=?BE ell.) 

(35.10) Theorem. (The First Reflection Theorem) Let r be a class of sets in 
Polish spaces which is close.d under continuous preimages and finite union:; 
and intersections. Assume r is ranked. Then for any Polish space X and 
ell~ Pow(X) which is r on f, and any A~ X in r, we have 

eii(A) ::;- 3B ~ A(B E ~ & ell( B)). 

In particular, this holds for r = Dl. 
Proof. Let <P : A - ORD be a f-rank. If ell( A) but for no B ~ A, B E ~ 
we have eii(B), then we claim that 

x (j. A<=? ell({y: y <~ x}). 

Indeed, if x (j. A, then {y : y <~ x} = A, while if x E A, then B = {y : 
y <~ x} is in~ and clearly B ~A. 

By 34.2, <~ is in r, so since ell is r on r, "' A E r, and thus A E ~' 
which is a contradiction. 0 

Sometimes the First Reflection Theorem is formulated in an equivalent 
"dual" form: 

Let r be a elass of sets in Polish spaces, X be Polish, and ell ~ Pow (X). 
We say that ell is r on t if for any Polish space Y and any A E t'(Y x X) 
the set 

A<t> = { y E Y : Ay E ell} 

is in r. Then 35.10 is equivalent. to the statement (under the same hypothe­
ses on f) that if ell is r on f' and ell( A) holds for A E f' then we also have 
ell( B) for some B 2 A, BE~. To see this, apply 35.10 to eii'(A) <=? ell(rv A). 

(35.11) Exercise. Derive the Novikov Separation Theorem 28.5 from 35.10. 
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(35.12) Exercise. Let (An) be a sequence of I:~ sets in a standard Borel 
space with limnAn = 0. Show that there are 4~ sets Bn 2 An such that 
limnBn = 0. 

(35.13) Exercise. (Analytic sets with countable sections) (Lusin) Let X, Y 
be standard Borel spaces and A ~X x Y be analytic such that V'x(Ax is 
countable). Show that there is B 2 A, B Borel with V'x(B:c is countable). 
In particular, there is a sequence of Borel functions fn : X - Y with 
Ax~ Un(x): n EN}. (See also 39.23 here.) 

(35.14) Exercise. Let X be a standard Borel space, < a n~ partial pre­
ordering on X (i.e., x ::::; x & (x ::::; y & y ::::; z :::} x ::::; z)), and A ~ X be 
I:} such that ::::; I A is a linear preordering (i.e., moreover, x ::::; y or y < x 
for all x, y E A). Show that there is B 2 A, BE 4~ such that ::::; I B is a 
linear preordering. 

(35.15) Definition. Let X be a Polish space and r a class of sets in Polish 
spaces. If ell ~ Pow( X) X Pow( X), we say again that ell is r on r if for 
any Polish Y,Z and any A~ Y x X, B ~ Z x X in r, the set 

A<t> = {(y, z) E Y X Z: eii(Ay, Bz)} 

is also in r. We say that ell is monotone if ell( A,B) & A ~ A' & B ~ B' :::} 
ell( A' ,B') for any A,B ~ X. Finally, we say that ell is continuous downward 
in the second variable if eii(A,Bn) & Bn 2 Bn+l :::} ell( A, nn Bn)· 

(35.16) Theorem. (The Second Reflection Theorem) Let r be a class of sets 
in Polish spaces closed under continuous preimages, countable unions and 
intersections, and co-projections. Assume r is ranked. Then for any Polish 
space X and ell ~ Pow(X) x Pow(X) which is r on r, monotone, and 
continuous downward in the second variable, we have for any A ~ X, A E r 

ell( A,"' A) :::} 3B ~ A[B E ~ & eii(B,"' B)]. 

In particular, this holds for r = n:. 
Proof. Assume A~ X is in r and ell( A,"' A) holds. 

Claim. If C ~ X, C E ~. and C ~ A, then there is C E ~. C ~ C ~ A 
with eii(C,"' C). 

Proof of claim. Let 

\II( D)<=? C ~ D & eii(D,"' C). 

Then \II is r on r, and \II (A) holds, as "' C 2 "' A and ell is monotone. So 
let C ~A be in~ with \II( C). 

Using this claim, starting from any C0 C A, Co E ~ we can define 
recursively Cn such that Cn ~ Cn+l ~ A, Cn E ~' and ell( Cn+l,"' Cn) 
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holds for any n. Put B = Un Cn. Then BE~. B ~A, and by monotonic­
ity, f'P( B, rv Cn) holds for each n, so by downward continuity in the second 
variable, f'P(B,nn"' Cn), i.e., f'P(B,rv B) holds. 0 

Again there is also a "dual" formulation of this reflection theorem: If 
ip is ron r, hereditary (i.e., closed under subsets instead of supersets), and 
continuous upward in t.he second variable, then for any A ~ X, A E f' 

f'P(A,"' A) :::} 3B 2 A[B E ~ & f'P(B,"' B)]. 

(35.17) Exercise. Let X be a Polish space and P ~ X x X be D~. Put 

f'P(A, B)¢:> 'Vx (j. A'Vy (j. B(x, y) E P. 

Show that f'P is n~ on n~, monotone, and downward continuous in the 
second variable. 

(35.18) Exercise. (The Burgess Reflection Theorem) Let r be as in 35.16. 
Let X be a Polish space, R ~X~"~ x xn (n EN) be in r, and let 

f'P(A) <=? 'Vx E XN'Vy E Xn{[Vi(xi (j. A) & 

Vi< n(yi E A)]:::} R(x, y)}. 

Show that if A~ X is in r, then 

f'P(A) :::} 3B ~ A(B E ~ & f'P(B)). 

(35.19) Exercise. (Burgess) Let X be a standard Borel space, E ~ X 2 

a I:~ equivalence relation. If E ~ A (~ X 2), where A is DL show that 
there is a Borel equivalence relation F with E ~ F ~ A. Conclude that 
E = n~<w1 E~, where. (E~) is a decreasing transfinite sequence of Borel 
equivalence relations. 

A theorem of Silver, that we will not prove here, asserts the following: 

(35.20) Theorem. (Silver) If X is a Polish space and E C X 2 an~ equiv­
alence relation, then either E has only countably many equivalence classes 
or there is a Cantor set C ~ X such that if x,y E C, x :f y, then ...,xEy. 

(35.21) Exercise. i) Show that 35.20 implies the Perfect Set Theorem for 
I:l sets. 

ii) (Burgess) Use 35.19 and 35.20 to show that if Eisa I:~ equivalence 
relation on a Polish space X, then either X has at most N1 many equivalence 
classes or there is a Cantor set C ~X with x, y E C, x :f y:::} ...,xEy. Give 
an example of a I:l equivalence relation with exactly N1 many equivalence 
classes for which there is no such Cantor set. 
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35.D Roundedness Properties of Ranks 

(35.22) Theorem. Let r be a class of sets in Polish spaces closed under 
continuous preirnages, finite intersections and unions, and co-projection.s. 
If X is Polish and A~ X is in r \ ~. then for every r-rank <P=A---> ORD 
and every B ~ A in f', there is xo E A with <P(x) :::; <P(x0 ), 'Vx E B. 

Proof. Otherwise, 

x E A<=? 3y(y E B & x <~ y), 

so A E f', thus A E ~.which is a contradiction. 

We apply this now to r = n~. 

0 

(35.23) Theorem. (The Boundedness Theorem for ll{-ranks) Let X be a 
Polish space, let A ~ X be a n~ set and let <P=A ~ ORD be a regular 
n~-rank, with <P(A) =a. Then a:::; w1 and A is Borel iff a< w1 . 

lf'ljJ:A ~ w1 is any n~-rank and B ~A i.s I:l, then sup({'I/J(x):x E 
B}) < W)· 

Proof. Let x E A. Then the relation 

is Borel and well-founded, so p(-<) = <P( x) < w., by 31.1. So a :::; w1. 
If A is Borel, then the relation 

y -<' z <=? y, z E A & y <'P z 

is Borel and p( -<')=a< w1. If a< w., A is clearly Borel. 
The last statement follows from 35.22. 0 

(35.24) Exercise. Let X be a Polish space, A~ X a n~-complete set, and 
<P : A ~ w1 a Dl-rank. Let Y be a Polish space, B ~ Y a .6.~ set, and 
f: Y ~X a Borel function withy E B <=? f(y) EA. Put Aa = {x E A: 
<P(x) :::; a}, a< w1. Show that for some a< w., x E B <=? f(x) E A0 • 

(35.25) Exercise. Show that there is no uncountable I:~ set A~ WO such 
that for any two distinct x, y E A we have lxl =F IYI· Similarly, assuming 
I:f-Determinacy, show that there can be no such A E Dl. (More generally, 
there is no such "definable" A using "Definable Determinacy".) 

There is an even stronger boundedness property of ranks v1rith respect 
to well-founded relations, which generalizes 31.1. For its proof v..-e will bor­
row a basic tool from effective descriptive set theory, which is a form of the 
so-called Recursion Theorem. 
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(35.26) Theorem. (Kleene) Let r be a class of sets in Polish spaces which 
is closed under continuous preimages. Assume that for each Polish space 
X there is a C-universal set for r(X). Then for each .such X there is a 
C-universal set for· r(X), U with the following fixed point property: If P ~ 
c X X is in r, there is PoE c with Pvo = Upo· 

Proof. Let v ~ c X (C X X) be C-universal for r(C X X). For p E c, let 
(p)o(n) = p(2n), (p)I(n) = p(2n + 1) and put p = (q, r) if q = (p)0 , r = 
(p)l. Define 

U(p,x) <=? V((p)o,(p)I,x). 

Clearly, u is C-universal for r(X). Now given p E r(C X X), there is qo with 
V( qo,p, .r.) <=? P( (p,p), :-c). SoU( (qo,p), x) <=? P( (p,p), x). Let Po = (qo, qo). 

0 

(35.27) Theorem. (Moschovakis) Let r be a class of sets in Polish spaces 
containing the Borel sets and closed under Borel preimages, finite intersec­
tions and union.s, and co-projections. Assume for each Polish space X there 
is a C -universal set for r( X). Then if A ~ X. X a Polish spac.e, is Bor-el 
r-complete and <P=A ~ ORD is a Tegular r-rank with <P(A) = 6, then for 
any well-founded relation -< in t we have p( -<) < 6. 

Proof. We can assume that -< is a relation on X. Let U be as in 35.26. Let 
f: C x X~ X be Borel with u E U <=? f(u) EA. Let 1/J(u) = <PU(u)). 
Clearly, 1/J is a r-rank on U and for u,v E U, u <.p v '* f(u) <'P f(v), so 
it is enough to find Po E C such that (po, x) E U for all x and x -< y :::} 
(pu, x) <.p (po, y). It will follow then that {!(Po, x) : x E X} = B is a I:L 
sot subset of A, and by 35.22 there is ao E A with <P(f(po,x)) :5 <P(ao) 
for all x. Sinee also x -< y :::} <P(f(p0 ,x)) < <P(f(p0 , y)), it follows that 
p(-<) :5 <P(ao).< 6. 

To find po, let P ~ C x X he defined by 

P(q, y) <=? 'v'x[x-< y '* (q, x) <~, (q, y)J. 

Clearly, P E r, so by 35.26 let Po be such that P(po, y) <=? U(po. y). We 
claim that (po, y) E U for all y. Otherwise, pick y minimal in -< for which 
(Po,Y) ft U. Then ...,P(po,y), so let x be such that [x-< y & ...,(po,x) <~ 
(po,Y)]. Since (po,Y) ft U, ...,(po,x) <~ (pu,y) implies that (po,x) ft U, 
contradicting the minimality of y. Since P(po, y) holds for any y, it is clear 
that for any x-< y, (po,x) <~ (po.y), so 1/J(po,x) < ·1/J(po,y). 0 

Here, for a prewellordering :5 on a set S, we denote by < its strict part: 
x < y <=? x :5 y & y 1, x. If <Pis the unique regular rank on S with :5 = :::;'P, 
then <P(S) = p( <). 

For each class r of sets in Polish spaces, define 

6r = sup{p( <) : :5 is a ~ prewellordering}. 
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(35.28) Corollary. Let r be a ranked class as in 35.27. Then 

6r = sup{p( -<) :-< is at well-founded relation} 

= p( <""), for any regular r-rank <P: A~ ORD, 

on a Borel r-complete set A. 

For r = ll}, we let 6} = 6nt. Thus 6f = w1. 
1 

(35.29) Exercise. (Moschovakis) Let r be a ranked class as in 35.27. If X 
is a Polish space and \II: Pow( X)~ Pow(X) is an expansion, we say that 
\}1 is ron r if for each A E r(Y X X), y a Polish space, 

AIJI = {(x,y): x E \II(Ay)} 

1s m r. Show that if A E r(X) and 111 is r on r, then W00 (A) = 
Ue<6r we(A), W00(A) is in r, and if B <; W00 (A) is in t, there is~< 6r 
with B <; we(A). In particular, this holds for r = Df. 

35.E The Rank lvfethod 

Theorem 35.23 is the basis of another method for showing that a given Df 
set is not Borel, which is called the rank method: Given a Df set A, find a 
n~-rank <P: A~ WI and construct for each a< WI an element x E A with 
<P(x) ?: a. 

(35.30) Exercise. Use the rank method to show that WF, WO, KN0 (X), for 
X an uncountable Polish space, DIFF are not Borel. 

Note also that 35.23 implies the following overspill property: If A is a 
n~ set, <P: A~ w1 is a n~-rank, and B is a I:l set such that 'Va < w13x E 
A(x E B & <P(x) > a), then there is x E B \A, i.e., every I:f property, 
which is true for elements of A of arbitrarily large rank, must "overspill" 
and hold for some element outside A. This can be used as an existence 
proof method. 

(35.31) Exercise. Let X be a separable Banach space. Show that X is uni­
versal iff it contains closed subspaces isomorphic to C(K), forK countable 
closed subsets of C of arbitrarily large Cantor-Bendixson rank. 
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35.F The Strategic Uniformization Theorem 

We will next use boundedness to show that one can define winning strategies 
for open games on N "in a Borel way". 

(35.32) Theorem. (The Strategic Uniformization Theorem) Let X be a 
standard Borel space and A <; X x N a Borel set with open sections. If 
player I has a winning strategy in G(N,Ax) for all x, then there is a Borel 
function cr1:X ~ Tr such that 'v'x(ai(x) is a winning strategy for· I in 
G(N,A."')). (We view strategies here as trees on N.) 

Proof. It will be more convenient to show the easily equivalent statement 
that if A <; X x N is Borel with closed sections, and II has a winning 
strategy in G(N, Ax) for all x, then there is Borel cr11 : X ---> Tr, with 
cru(x) a winning strategy for II in G(N, A,) for all x. 

By 28.9, let x ~---+ Sx be a Borel map from X into Tr such that Ax= [Sx]· 
Thus, in the notation of Example 2) of 34.F, Sx E Wn for every x E X. 
Now {Sx : x EX} is a I:l subset of Wn and since S ~---+ ISin is a Dl-rank 
on the n}-complete set Wn, there is an ordinal ~ < wl with ISxln ::::; e for 
all x. It is easy now to read off the strategy cr11 (x) from 20.2 (see 20.4) and 
show that cr11 is Borel. 0 

There is actually a stronger version of 35.32: If X is a standard Borel 
Hpace and A <; X x N is Borel with open sections, then A+ = { x : I has 
a winning strategy in G(N, Ax)} is a Dl subset of X and there is aD}­
measurable function cr1 on A+ (i.e., for open V, cri1(V) is in nl) such that 
'v'x E A+(cri(x) is a winning strategy for I in G(N, Ax)). For a proof, see 
39.22. 

(35.33) Exercise. Show that if X is a standard Borel space and A<; X x N 
iH Borel with open sections, then there is a cr(I:l)-measurable function cr11 

from B = { x : II has a winning strategy in G (N, Ax)} into Tr such that for 
x E B, cru(x) is a winning strategy for II in G(N, Ax)· Find an example of 
such an A for which 'v'x(II has a winning strategy in G(N, Ax)) but there is 
no Borel function ern : X ~ Tr such that 'v'x(cr11 (x) is a winning strategy 
for II in G(N, Ax)). 

(35.34) Exercise. Show that if X is a standard Borel space, A<; X x N is 
I:l, and 'v'x(Ax is meager), then there is a sequence (An) of Borel sets with 
closed sections such that A<; Un An, and 'v'x((An)x is nowhere dense). 

(35.35) Exercise. In the notation of 35.34, if 'v'x(Ax is a-bounded), there is 
a sequence fn : X ---> N of Borel functions such that 'v'x'v'y E Ax3n(y ::5 
f.,.(x)). (See 21.24.) 
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35. G Co-Analytic Families of Closed Sets and Their Sigma­
Ideals 

Let X be a Polish space. A subset F ~ F(X) is hereditary ifF E F & HE 
F(X), H ~ F '* H E F. We will study here ll~ (in the Effros Borel 
structure) hereditary families of closed sets and the a-ideals they generate. 

Examples of such F that we will encounter are F(X), all closed sets 
of cardinality < 1, all nowhere dense closed sets, all compact sets, and all 
closed subsets of a Dl set A ~ X. 

(35.36) Exercise. Verify that all these examples are indeed Dl. 

We denote by F; the a-ideal of subsets of X generated by F, i.e., 
A E F; <=? 3(Fn) (Fn E F & A ~ Un Fn)· So if A E F17 , then A E F; <=? 

A E F17 • 

First note the following simple fact. 

(35.37) Proposition. Let X be a Polish space and F ~ F(X) a hereditary 
Dl family. Then { F E F( X):F E Ft7} i.s Dl. 
Proof. Consider the derivative D;: on F(X) associated with F as in Ex­
ample 6) of 34.0. Then by 34.16 and 34.8, {FE F(X): FE F17 } ={FE 
F(X): DJ'(F) = 0} is D~. D 

We generalize this now to I:l sets. 

(35.38) Theorem. Let Y be a Polish space and F ~ F(Y) a hereditary Dl 
family. Let X be a standard Borel space and A C X x Y a I:l set. Then 
{x:Ax E F;} is Dl. 
Proof. We can assume, of course, that X is Polish. Let f : N ~ X x Y 
be continuous with f(N) = A (assuming, without loss of generality, that 
A :10). Let H ~X x N be defined by 

(x, z) E H <=? proh(f(z)) = x. 

So H is closed. Let J: ~ F(N) be defined by 

FE J: <=? projy{f(F)) E F. 

As F ~---+ projy{f(F)) is Borel (from F(N) into F(Y)), J: is hereditruy Df. 
It is easy now to check that for each x, 

Ax E F; <=? Hx E J:; <=? Hx E F17 • 

Since Hx is closed, as in the proof of 35.37, we have 

Hx ft F17 <=? D';(Hx) :10 

<=? 3F E F(N)(F ~ Hx & DO:O(F) :f 0), 
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which is I:} by 35.37 and the fact that 

(F, x) E R <=? F ~ Hx 

is I:l, since if {Vn} is an open basis for Y, then 

F ~ Hx <=? V'n[F n Vn :10:::} 3y(y E Vn & (x, y) E H)]. 

0 

(35.39) Corollary. Let Y be a Polish space and F ~ F(Y) a hereditary 
Dl family. Let X be a standard Borel space and A<; X x Y a I:l set. If 
V'x(Ax E F;), then there is a Borel set B 2 A with V'x(Bx E F;). 

Proof. By 35.38 and the First Reflection Theorem 35.10. 0 

Next we prove the following separation theorem. 

(35.40) Theorem. Let Y be a Polish space and F ~ F(Y) a hereditary Dl 
family. Let X be a standard Borel space and A,B ~ X x Y be disjoint I:l 
sets. If V' x( Ax E F), then there is a Borel set C separating A from B such 
that V'x(Cx E F). 

Proof. Let ell ~ Pow( X x Y) be defined by 

~(P) <=? V'x(Px E F) & P n B = 0. 

Then ell is Dl on I:l since if P ~ Z x X x Y, Z Polish, is I:l, then if {Vn} 
is a basis for Y we have 

and so 

is clearly Dl. 

eii(Pz) <=? V'x(Pz,x E F) & Pz n B = 0 

<=? V'x'v'F E F(Y)(F ~ Pz,x:::} FE F) & 

Pz nB = 0 
<=? V'xV' F E F(Y) [V'n(V., n F :f 0 :::} 

Vn n Pz,x :f 0) :::} F E F] & 

Pz nB =0, 

Since ell( A) holds, we have, by the First Reflection Theorem, that there 
is a .6.1 set D with A ~ D and eii(D). So Dx E F and D n B = 0. Put 
E ="'D. 

Since"' A is Dl and "'Ax is open for each :z:, we have 

n 
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where Qn = {x: Vn <;"'Ax}, and thus Qn is IIf. Since E <;"'A, 'Vw E 
E3n(w E Qn x V.,). By the First Reflection Theorem again, applied to 111 <; 
Pow(N x X) given by 

IJI(R) <=? 'V(x, y) E E3n[(n, x) E R & y E Vn] 

(<=? 'Vw E E3n(w ERn x Vn)), 

we can find Borel C~ with C~ <; Qn and 'Vw E E3n(w E C~ x Vn)· Put 
"' C = Un(c:, x Vn)· Then Cis Borel, Cx is closed for all x, and since 
E <; Un(C~ X Vn) = rv c, we have Cx <; rv Ex = Dx <; Dx E F, so 
Cx E F. Finally, C <; "' E = D, so C n B = 0, and "' C <; "' A, so 
A<;Q o 

(35.41) Exercise. State explicitly the applications of 35.40 for the examples 
of 35.36. 

(35.42) Exercise. Show t.hat if Y is Polish, F <; F(Y) is hereditary II}, X 
is standard Borel, A, B <; X x Y are disjoint I:L and 'Vx(Ax E F;), then 
there is Borel C separating A from B such that 'Vx( Cx E F;). 

The following gives the main result concerning Borel sets with sec­
tions in F;. It generalizes a result of Saint Raymond, which we will see 
immediately after. 

(35.43) Theorem. (Burgess, Hillard) Let Y be a Polish space, F <; F(Y) 
a hereditary Ill family. Let X be a standard Borel space and A <; X x Y 
a I:~ set such that 'Vx(Ax E F;). Then A <; Un Au., with An Borel and 
'Vn'Vx[(An)x E F]. Moreover, if A is Borel and every section Ax is in F17 

(so Ax E F 17 ), then we can find An Borel with A= Un An and (An)x E F 
for all n,x. 

Proof. We will reduce it first to the special case where X i~:~ Polish, Y = N, 
and A is closed, in which case we have Borel An with A = Un An and 
(An)x E F for all n,x. 

We can clearly assume that X is Polish and A :f 0. Then let f : N ~ 
X x Y be continuous with f(N) =A. Define H C X x N by 

(:~, z) E H <=? proh(f(z)) = x, 

so H is closed in X x N. Define J: <; F(N) as in the proof of 35.38, i.e., 

FE J: <=? projy{f(F)) E F. 

Again, J: is hereditary Ill and, since Ax E F; <=? Hx E F17 , we have 
'Vx(Hx E F17 ), so assuming the special case above, H = Un Hn, Hn Borel 
with (Hn)x E J:. Put (x,y) E Bn <=? y E projy_(f((Hn)x)), so that Bn_is 
I:L (Bn); E F, and A= Un Bn. Pnt (x, y) E Bn <=? y E (Bn)x. Then Bn 



35. Rank Theory 295 

is Ef and (Bn.)x E F. By 35.40, let An be Borel such that Bn ~ An and 
(An)x E F. 

So we have proved the first assertion of the theorem from the special 
case. To prove the second assertion, assume additionally that A is Borel 
and Ax is F17 for all x. Then instead of using J: as before, we use J:, where 
J: ~ F(N) is given by 

F E F ¢:!1 F E J: & f(F) C A. 

This is again hereditary ll~. Since Ax E F17 for all x, it follows that Hx E F17 

for all x. So let H = Un H~, with H~ Borel, be such that (H:Jx E F for 
all x. Let (x, y) E Dn ¢:!1 y E projy(f((H~)x)). T~en Dn is El, (Dn)x E 
F, (Dn)x ~ Ax for all :r:, and A = Un. Dn. Put Dn(x, y) {::} y E (Dn)x. 
Then Dn is El, (Dn)x E F, and A = Un Dn. Applying 35.40 to Dn and 
,...., A, we get Borel sets An with Dn ~ An ~ A and (An)x E F, for all x. 
Also, A = Un An, and we are done. · 

So it remains to prove the special case: If A ~ X x N is closed, F ~ 
F(N) is hereditary nL and 'v'x(Ax E Ft7 ), then A= Un An, with An Borel 
and 'v'x((An)x E F). 

Consider the derivative D;: = D associated with F, as in Example 6) 
of 34.0. Thus for each x, Ax E nD. We first argue that sup{IAxiD : x E 
N} < w1• To see this, notice that {F E F(N) : 3x(F ~ A!,:)} is E~ and 
contained in nD, and so we are done by 34.16. 

The main claim is now the following: 

Claim. We can write A= Un En, where E., is Borel and for each x, (En)x E 
F(N) and D((En)x) = 0. 

Granting this, the proof is completed as follows: It is enough to show 
that if E ~ X xN is Borel such that for each x, Ex E F(N) and D(Ex) = 0, 
then E can be v..Titten as a countable union of Borel sets with sections in 
F. If y E Ex, then there iss E N<N such that Ns n Ex E F andy E N 5 • So 
if for sEN<"", Cs = {x: Ns n Ex E F}, then E c Us(Cs X Ns), and Cs is 
n~. By the First Reflection Theorem, we can find Borel sets D s ~ Cs such 
that E ~ Us(Ds X Ns)· Hence if Es =(D .• X Ns) n E, then E =UsEs, Es 
is Borel and (Es)x =Ex n Ns E F if x E Ds (C C8 ), while (Es)x = 0 E F 
(as we can clearly assume that F :10) if x ft D8 • This comP,letes the proof 
modulo the claim. 

Proof of claim. Let F' = {F E F(N) : D(F) = 0}. Then F' is also 
hereditary n~, since 

FE F' ¢:!1 'v'x(x ft D(F)) 

¢:!1 'v'x3s E N<""(x E Ns & Ns n FE F). 

For each a < w1 , let 
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Then by induction on a we can show that k~ is I:l. The point is that if 
B C X x N is I:~ with closed sections, then 

y E D(Bx) # (x,y) E B & 'Vs E N<""[y ENs:::} 

3F E F(N)(F ~ Ns n Bx & F ft F)], 

so "y E D(Bx)" is I:l as well. 
We will finally prove by induction on a that if Q ~ X x N is a Borel 

set with closed sections and k~ C Q, then A\ Q is contained in a countable 
union of Borel sets with sections in F'. Since for some a < w., A£~ = 0, 
taking Q = 0 we are done. 

Case /. a = 1. Then A 1 c Q. Since Q has closed sections, "' Q = 
UseN<N(Qs x Ns), with Qs Borel by 28.7. Thus A\ Q = U8 ((Qs x N.~)nA) = 
Us As, where As = (Qs x Ns) n A is Borel and has closed sections. Also, 
(A.~)x C Ax\ Ai, so D((As)x) C D(Ax) n (As)a: = 0, i.e., (As)x E F'. 

Case II. a= A is limit. Let A>. ~ Q. Since A>.= no<>. A'\ by the Novikov 
Separation Theorem there are Borel sets Bo 2 A0 with n .. <>. Bo ~ Q. By 
35.40, for F = F(N) we can find Borel sets Q0 such that N• ~ Q0 ~ Ba. 
and Qo has closed sections, 'Va < A. So also no<>. Qo ~ Q. By induction 
hypothe::;is, A\ Q0 can be covered by countably many Borel sets with 
sections in F' for a< A, and since A\ Q ~ Ua.<>.(A \ Q0 ), so can A\ Q. 

Case Ill. a = {3 + 1. Let A.8+l ~ Q. As in Case I, write A.8 \ Q = Us A . ., 
with As now analytic with sections in F' (note that D(A~) = A~+l ). So 
by 35.40 again, A.8 \ Q is contained in a countable union, say M, of Borel 
sets with closed sections in F'. Since Ai3 \ Q C M, Af;l ~ Q U M, and 
one more application of 35.40 shows that there is a Borel set Q' 2 Ai3 
with closed sections and Q' ~ Q u M. By induction hypothesis, A \ Q' can 
be covered by a countable union of Borel sets with sections in F'. Since 
A\ Q ~(A\ Q') U (Q' \ Q) ~(A\ Q') U M, we are done. 0 

(35.44) Exercise. i) State the particular inst~nces of 35.43, corresponding 
to the examples of 35.36. 

ii) Let Y be a Polish space, F C F(Y) a hereditary Dl family. Let X 
be a standard Borel space and A, B ~ X x Y be I:l sets such that for all 
x, Ax can be separated from Bx by an F 17 set. Then we can find Borel sets 
Cn with ( Cn)x E F for all n, X and Un Cn separating A from B. 

35.H Borel Sets with F17 and Ka Sections 

(35.45) Theorem. (Saint Raymond) Let Y be a Polish space, X a standard 
Borel space, and A C X x Y a Borel set with Ax E F17 for all x E X. Then 
A = Un An, with An Borel such that (An) is closed for all :r. 
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In other words, in the notation of 28.1 0, A E E: 'Y. 

Proof. Take F = F(Y) in 35.43. 0 

(35.46) Theorem. Let Y be a Polish space, X a standard Borel space, and 
A~ X x Y Borel such that Ax is K 17 for all x. 

i) (Saint Raymond) There is a sequence of Borel functions Kn:X ---> 
K(Y) with Ax = Un Kn(x) for all x. 

ii) ( Arsenin, K unugui) There is a Borel uniformization of A (and so 
in particular, projx(A) is Borel). 

Proof. i) By 35.43 and 35.36, let An be Borel with compact sections such 
that A= Un An. Then, by 28.8, x ~---+ (An)x = K .. (:r) is Borel. 

ii) Note that projx(A) = {x : 3n(Kn(x) :f= 0)} is Borel and the 
function 

.f: proh(A)---> K(Y) 

given by 
f(x) = Kn(x)(x), 

where 
n(x) = least n such that Kn(x) :f= 0, 

is also Borel. Let c : K(Y) ---> Y be Borel with c(K) E K if K :f= 0. Then 
g(x) = c(f(x)) is a Borel uniformizing function for A. 0 

(35.47) Exercise. (Hurewicz) Let Y be a Polish space, let X be a standard 
Borel space, and let A ~ X X y be Borel. Show that for e ::::; 2, {X : Ax is 
EV is n}. (Similarly for n~. if e::::; 2, and for Kt7.) 

A. Louveau [1980,1980a] has shown that 35.47 is true for all ~ < w1. 

Moreover, he has proved the following extension of 35.46 i): Let Y be a 
Polish space, X be a standard Borel space and A ~ X x Y be Borel. Let 
B = {x : A,c is K 17 } (so that by 35.47 B is nt). Then there is a sequence 
of functions Kn : B ---> K(Y) each of which is Dl-measurable in B, i.e., for 
any open U ~ K(Y), K;; 1(U) is DL and 'Vx E B(Ax = Un Kn(x)). (A 
proof of this ean be given using 28.21 and 39.22.) 

(35.48) Exercise. (Louveau-Saint Raymond) Give a proof of 35.45 and 35.46 
based on 35.32 and 28.21. In fact, show by this method the following result 
of Saint Raymond: 

If Y is a Polish space, X is a standard Borel space, and A, B ~ X x Y 
are disjoint E: sets such that Ax, Bx can he separated by an F17 set for 
each x, then there is a sequence ( Cn) of Borel sets with closed sections such 
that Un Cn separates A from B. 

A. Louveau [1980,1980a] has appropriately extended this result to Eg 
for all e ;::: 2. 
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(35.49) Exercise. Let G be a Polish locally compact group, X a standard 
Borel space, and (g, x) ~---+ g.x a Borel action. Show that the equivalence 
relation 

xEoy <=? 3g E G(g.x = y) 

is Borel. (Recall also 15.13 ii).) 

(35.50) Exercise. Let X be a Polish space and E a Borel equivalence relation 
on X. Recall (from 18.20) that E is called smooth if there is a Borel function 
f : X - Y, Y standard Borel, with xEy <=? f(x) = f(y). Show that if E is 
smooth, with witness f as above, and E has K 17 equivalence classes, then 
f(X) is Borel and for some Borel g: f(X)- X we hav~ f(g(y)) = y, 'Vy E 
f(X). In particular, E has a Borel selector. 
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36. Scales and Uniformization 

36.A Kappa-Souslin Sets 

We will study in this section the problem of uniformization for co-analytic 
sets. We want to find a canonical procedure to select a point from a given 
nonempty co-analytic set. (To uniformize a co-analytic set A ~ X x Y, we 
will then apply this procedure to each nonempty section Ax.) It is clear 
that, without loss of generality, we can work in the Baire space .N. 

There is a canonical such procedure for the class of ~~:-Souslin sets, ~~: 

an ordinal (see 3l.B), a procedure that we used in the proof of the Jankov, 
von Neumann Uniformization Theorem 18.1. 

Let A ~ .N be a nonempty ~~:-Souslin set so that for some tree T on 
N x ~~:,A= p[T] = {x E .N: 3f(x,f) E [T]}. 

We will first define the leftmost branch (ar, h) of [T] and then let 
a = ar be the canonical point we select from A. The leftmost branch 
( ar, fr) of [T] (see also 2.D) is defined recursively as follows: Define first 
the ordering < on pairs (k, a) EN x 11: by 

(k,a) < (f,{3) <=?a< {3 or (a= {3 & k <f), 

i.e., < is the anti-lexicographical ordering on N x ~~:. (We use this instead 
of the lexicographical ordering for technical reasons related to definability 
calculations that will become apparent later on -see the proof of 36.8.) 

Then let 

(ar(n),fr(n)) =the <-least element (k,a) of 

N x 11: such that [Ta7-ln"k,/Tin'o] :10, 

where as usual Ts,u = {(t,v) : (s"t,u"v) E T}. Clearly, (ar,Jr) is the 
lexicographically least element of [T]. 

The uniformization problem for co-analytic sets will be solved therefore 
by showing that every co-analytic set A can be represented as a ~~:-Souslin 
set A= p[T], T a tree on N x 11: (where actually 11: will turn out to be wl), 
with nice definability properties. 

Remark. Note that the notion of ~~:-Sonslin set is uninteresting without 
some definability or size restrictions on ~~:, as the next exercise shows. 

(36.1) Exercise. Using the Axiom of Choice, show that every set A ~ .N is 
~~:-Souslin for some 11: < 2No. 

36.B Scales 

We will now introduce an alternative viewpoint concerning the represen­
tation of a set as a projection of a tree, that will make more transparent 
these definability considerations. 
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Let T be a tree on N x "' and A = p[T]. For each x E A, let 
<jT(x) = (<P;(x)) be the leftmost branch of T(x) (in the usual ordering 
of the ordinals). Thus <P; : A -+ "' and note that ( <P~) has the following 
property: 

If Xi E A, Xi -+ x and also <P;(xi) -+ an (for some ordinal an) for all 
n, then x EA. Moreover, <jT(x) <1ex (an)· 

Here we view the ordinals < "' as having the discrete topology, so that 
ai -+ a just means that ai = a eventually, and <1ex is the lexicographical 
ordering of "'N (see 2.D). 

Conversely, if A ~ .N and <Pn : A -+ "' is a sequence of ranks such that 
xi E A, xi -+ x, and <Pn(xi) -+an for all n imply x E A, then we can define 
a tree Tr;; on N x "' as follows: 

((ko, · .. , kn-d, (ao,. ·.,On-d) E Tr;; <=? 

3x E A[xln = (ko, ... , kn-t) & Vi< n(ai = <f?,(x))], 

and easily verify that A= p[Tr;;]. 
Given a Polish space X and A ~ X, a sequence of ranks <Pn : A -+ 

ORD is called a semiscale if Xi E A, xi -+ x and <Pn(xi) -+ an for all n, 
imply x E A. It is called a ~-semiscale if <Pn : A -+ "'· 

Thus to each tree Ton N x "'' with A = p[T), we have associated a 
canonical K-semiscale ( <P;) and conversely to each K-semiscale <P on A we 
have associated a canonieal tree Tr;; on N x "'' with A= p[Tr;;]· 

As we noted earlier the semisca.le ( <P;) has an additional important 
property: If Xi E A, Xi -+ X and <Pn(xi) -+ On, then <jT(x) <1ex (an)· 
We can make this property more transparent by using the following device. 
Given an ordinal "'' consider "'n ( n :?: 1) and the lexicographical ordering 
on it: 

This is a wellordering with order type the ordinal K.n (ordinal exponen­
tiation). We denote by (ao, ... , a.,._ 1) the ordinal ( < K") correspond­
ing to (no, ... , On-d under the isomorphism of (K.n, <lex) with "'n. So 
(ao, ... ,ctn-1) < (f3o, ... ,f3n-l) <=? (ao, ... ,Ctn-d <1ex (f3o, ... ,f3n-d· 

Define now from ( <P;) a new sequence ( ¢;,) as follows: 

1/J;:(x) = (<P5(x), ... , <P;:(x)). 

Then, denoting by f ~ g the pointwise ordering on ~equences of ordinals, 
f ~ g <=? Vn(f(n) < g(n)), we have for J,g E KN, f ~lex g <=? ((fin))~ 
((gin)). It follows that (1/l;:) ha..;; the following property: 

If Xi E A, xi -+ x, and 1/J;(xi) -+ an for all n, then x E A and 
P(x) ~(an)· 

We have thus arrived at the following basic concept due to Moschovakis. 
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(36.2) Definition. Let X be a Polish space and A C X. A scale on A is a 
sequence <Pn:A- ORD of ranks such that Xi E A, Xi- x and.:pn(xi)- an 
for all n imply that x E A a.nd (<Pn(x)):::; (an). (This last property of scales 
is called semicontinuity.) 

If <Pn:A - "'' we say that ( <Pn) i.s a K-scale. 

(36.3) Exercise. LetT be a tree on N x"' and A= p[T]. We say that T has 
pointwise leftmoSt br_~ches if for each x E A there is a pointwise leftmost 
branch o(T(x), i.e., 3f E [T(x)]V'g E [T(x)](f :::; g). Show that in this 
case the canonical semiscale ~ on A associated to T is actually a scale. 
Conversely, if tjJ is a K-scale on A and Tr,0 is its associated tree on N x "'• 
then Tr,0 has pointwise leftmost branche::s. 

Given a scale (<Pn) on A C .N, we now have the following canonical way 
of selecting an element out of A: Successively minimize <Po(x), x(O), <P1(x), 
x(1), .... More precisely, let A0 = {x E A : <Po(x) is least}: Ao = {x E 
A~: x(O) is least}, A1 = {x E Ao: <P1(x) is least}, A1 = {x E A1 : x(1) is 
least}: etc. Then A0 2 Ao 2 A1 2 A1 2 · .. and the properties of a scale 
easily imply that nn An is a singleton { ar,0}, with ar,0 E A. 

(36.4) Exercise. If T is a tree on N x "'• A = p[T], t{JT is the canonical 
semiscale, and ;pr is the canonical scale on A associated to T, show that 
a,j;T = ar and fr = ~(ar), i.e., the procedure just described coincides 
with that explained in 36.A. 

Again we can make this procedure more transparent by defining a new 
scale ( 1/Jn) from the scale ( <Pn) as follows: 

1/Jn(x) = (<Po(x),x(O),<Pl(x),x(1), ... ,.:pn(x),x(n)). 

Note that additionally ( 1/Jn) has the following properties: 

i) 1/Jn(x) ::5 1/Jn(Y) =? Wm(x) ::5 1/Jm(y), V'm ::5 n; 
ii) If xi E A and 1/Jn(xi)- an for all n, then Xi - x for some x EA. 

(36.5) Definition. Let X be a Poli.'lh space and A ~ X. A scale (<Pn) on A 
is called very good if: 

i) <Pn(x) < <Pn(Y) =? V'm ::5 n(<Pm(x) < <Pm(Y)); 
ii) If Xi E A and <Pn(xi) -an for all n, then xi - x for some x EA. 

Given a very good scale (.:Pn) on A~ X, we have the following picture 
(Figure 36.1) of the prewellorderings <""" associated to <Pn, i.e., each <<,<>,. 
refines :51"n-t (n > 1). 

For a very good scale <Pn on A; the procedure of selecting an element of 
A is now very simple: Just minimize <Po(x), <P•(x), ... , i.e., let Ao = {x E · 
A: <Po(x) is least}, A1 = {x E A: <P1(x) is least}, A2 = {x E A : <P2(x) 
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FIGURE 36.1. 

is least}, etc. Then Ao 2 A1 2 · · · and nn An = {x}, with x E A, as it 
easily follows from the properties of a very good scale. (If ( <Pn) is a scale 
on a subset of .N and ( 1/J.,) is the very good scale associated to it by the 
procedure described just before 36.5, then this procedure applied to ( 1/Jn) 
gives exactly the canonical element a<P E A determined by $.) 

If ( <Pn) is a very good ~~:-scale on A, we can also associate to it a 
generalized (~-) Lusin scheme (Au)ue,..,<N as follows: 

Au= {x E A: Vi< length(u)(·ui = <Pi(x))}. 

Then A0 = A, Au = U.:~<"' Au·a, and Au·o n Au·.a = 0 ifa =I {3. 
In terms of the associated ~~:-Lusin scheme (Au)ue,..,<" we can describe 

this procedure as follows: Suppose first that f E ~~:"" is such that A fin :f 0 for 
all n. Then A/l(n+l) ~A fin for all n, but nn A fin may be empty. However, 
if Xn E A fin• then by the properties of a very good scale, Xn- x E A and 
although we do not necessarily have X E nn A fin• we have X E nn Agln 
for some g < f. So iff = fo is defined by fo(n) = min{<Pn(x) : x E A}, 
then clearly g:::; fo => g = fo, so that X E nnA/oln and {x} = nnA/oln = 
nn An, is the canonical element of A described before. 

36. C Smled Classes and Uniformization 

{36.6) Definition. Let r be a class of sets in Polish spaces. Let X be a Polish 
space, A C X, and (<Pn) a scale on A. We say that (<Pn) is a r-scale if each 
rank <Pn is a r -rank. {Again this notion is primarily of inten~st if A E r .) 
The class r is scaled or has the scale property if every A E r admits a 
r-scale. 

Clearly, every scaled class is ranked. 
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(36. 7) Exercise. Show that I:~ for e > 2 (and for e = 1 in zero-dimensional 
spaces) is scaled. In fact, show that each A E I:g admits a 1::g-scale 
I.Pn : A - w that has the following stronger continuity (instead of semi­
continuity) property: If Xi E A and I.Pn(xi) - on, then xi - x E A and 
I.Pn(x) = On, 'Vn. (This continuity property does not extend to definable 
classes beyoJld the Borel sets. It is easy to see though, using the Axiom of 
Choice, that every set A~ X, X a Polish space, admits a scale I.Pn: A- o 
with this continuity property.) 

(36.8) Proposition. Let r be a class of sets in Polish spaces containing all 
Borel sets and closed under Borel pTeimages and finite intersections and 
unions. If A E r admits a r -scale, A admits a 11ery good r -scale. 

Proof. First let A ~ X, where X is zero-dimensional, so that we can assume 
X= [T], for some pruned tree Ton N. Let (I.Pn) bear-scale on A. Define 
as usual 

1/Jn(x) = (<po(x),x(O), ... , I.Pn(x),x(n)), 

so that (1/J.,) is a very good scale. To see that it is a r-scale, note that for 
yEA, 

x E A & 1/Jn(x) :51/Jn(Y) 

holds iff (x <~0 y), or (x :5~0 y & y $~0 x & x(O) < y(O)), or (x :5~0 
y & y <~0 x & x(O) = y(O) & x <~1 y), or ... , and similarly using <~, 
so that 1/Jn is a r-rank. (Notk-e that this works because we first compare 
<p11 (x) with <po(y) and then x(O) with y(O), which also explains our use of 
the anti-lexicographical ordering in 36.A.) 

Let X be arbitrary Polish and A ~ X be in r. Let F ~ N be closed 
and f: F- X a continuous bijection. Put A'= f- 1(A).If (<p .. ) is a r-scale 
Ori A, then <p~ = :Pn 0 f is a r-scale on A'. By the special case proved above, 
A' admits a very good r-scale (1/1~). Let 1/Jn = 1/J:, o f- 1 • This is easily a 
very good r-scale on A. o 

Finally, we have the following basic connection between definable scales 
and uniformization. 

(36.9) Theorem. Let r be a cla.ss of sets in Polish spaces containing all 
Borel sets and closed under Borel preimages, countable intersections and 
finite unions, and co-projections. If X ,Y are Polish and A ~ X x Y in r 
admits a r-scale, then A has a uniformization in r. 
Proof. By 36.8, let (I.Pn) be a very good r-scale on A. Then y ~---+ <p;,(y) = 
I.Pn(X, y) is a very good r-scale on Ax. Let Yx be the canonical element 
determined by ( <p~.) on A:r. if Ax :f 0, as in 36.B. Put 

A*(x, y) <=? Y = Yx· 

We claim that A* E r. Indeed, 
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A*(x,y) # V'n'v'z[(x,y) :S~ .. (x,z)]. 

0 

(36.10) Corollary. (Lusin-Sierpinski) Every Borel set admits a Dl-uniform­
ization. 

(36.11) Exercise. i) Let X be an uncountable Polish space. Show that there 
is function f : X - X that has D} graph but is not Borel. 

ii) (Kanovei) Show that there are two funct.ions f, g : IR - IR with D} 
graphs and f(x) < g(x), V'x, but for which there is no Borel set 1\. ~ IR x IR 
such that V'x(Ax :10) and V'y E Ax(f(x) < y < g(x)). 

36.D The Novikov-Kondo Uniformization Theorem 

(36.12) Theorem. The class D} is ~caled. In fact, for every Polish space X 
and A E n} (X), A admits a Dl-scale that is also an w1 -scale. 

Proof. As in the argument in 36.8, we can assume that A~ .N. So letT be 
a tree on N x N with x E A# T(x) is well-founded. 

For s E Nn, define the following linear ordering < s on { 0, ... , n - 1}: 

i <s j <:::} (ti>tj ft T(s) & i < j) or 

(tift T(s) & tj E T(s)) or 

(ti,tj E T(s) & ti <KB tj), 

where { ti} is a bijection of N with N<N such that t0 = 0~ tj ~ ti => j > i, 
and length(ti) < i, and T(s) = {u: length(u) :S length(s) & (sllength(u)~ 
u) E T}. Thus, identifying ti with i, <s is the Kleene-Brouwer ordering on 
T(s) n {0, ... , n- 1} with the rest of {0, ... , n- 1} thrown at the bottom 
with its natural ordering. 

Note now that 

i) s :f 0 => 0 i.e; the largest element of <S> 
ii) S ~ t =><s ~ <t. 

since (fori)) to= 0 is the largest element of <KB and (for ii)) length(ti) < i. 
Put. for x E .N, 

<x= U <xln• 
n 

so that <x is a linear ordering on N with largest element 0. It is just the 
Kleene-Brouwer ordering on T(x) with the rest of N thrown at the bottom 
with its natural ordering. So 
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x E A<=? T(x) is well-founded 

<=? <KB I T(x) is a wellordering 

<=? <x is a wellordering. 

Define now the following tree S on N x w1, called the Shoenfield tree, 

(s, u) E S <=? 3n(s E Nn & u E w1 & 

Then 

u: n - w1 is order preserving for< . ., 

i.e., forO:::; i,j < n, i <s j => Ui < Uj)· 

x E A <=? <x is a wellordering 

<=? 3!: N- w1(J is order preserving for <x) 
<=? 3f(x, f) E [S]. 

So S shows that A is w1 -Souslin. 
Next let us note that for each x E A, S(x) has a pointwise leftmost 

branch. Since <x is a wellordering, let h, : N - a be its canonical iso­
morphism with a countable ordinal a. Then hx = P<.,, the rank function 
of <x, and so iff : N - w1 is order preserving, i.e., f E [S(x)], then 
hx(n) :::; f(n), 'Vn (see Appendix B). Thus hx E [S(x)] is the pointwise 
leftmost branch of S(x). 

Put <Pn(x) = hx(n). Then by 36.3 (<Pn) is a scale on A. It may not be, 
. however, a D~-scale. We will modify it a bit to produce a D~-scale. 

Denote by <~ the restriction of <x to the initial segment of <x deter­
mined by n (i.e., {mEN: m <x n}). Let 

An = {x :<~ is a wellordering}, 

and for x E An, let 

1/Jn(x) = the ordinal isomorphic to <~ = p( <~). 

Then, as in the proof of 34.4, '1/Jn is a D}-rank on An· 
Note that A= Ao (since 0 is the largest element of <x) and A~ An for 

each n. Also for x E A, <Pn(x) = P<.,(n) = p(<~) = ·1/J .. (x). But although 
1/Jn is a D~-rank on An, <Pn = 1/JniA may not be a D~-rank on A. So put 

<Pn(x) = (<Po(x),<Pn(x)). 

Then it is ,easy to check that ( <Pn) is a scale on A and that it is a n~-scale 
since for y E A, 

X E A & <,O .. (x) ::5 <f?n(Y) <=? X<~} y or (x ::5~~ y & y :5~~ X & X :5~1 y), 

and similarly with I':~. 
Strictly speaking, (<Pn) is not an w1-scale but rather an wr-scale. 

However, if we replace <Pn by the unique regular rank <P~ equivalent to 
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it, then (<P~) is a Dl-scale, and if <P~(x) :::; <P~(y) for some y E A, 
then <Pn(x) :::; <Pn(Y), thus in particular, <Po(x) :::; <Po(Y) = o, and so 
<Pn(x) = P<,(n) :::; P<,(O) = <Po(x) < o. It follows that <P~(y) is count­
able, so (<P~) is an w1-scale. 0 

In view of this result and 36.7, the picture at the end of 35.A applies 
to scales as well. 

(36.13) Definition. We say that a class r has the unifonnization property 
if every set in r admits a unijormization in r. 

We have now immediately the next result. 

(36.14) Theorem. (The Novikov-Kondo Uniformization Theorem) (Kondo) 
The class n~ has the unijormization property. 

Proof By 36.12 and 36.9. 0 

(36.15) Theorem. (Shoenfield) Every Dl set is w1 -So·uslin. 

Proof This is clear from 36.B and 36.12 for every n~ subset of .N. Let 
X be any nonempty Polish spaee and A ~ X a Dl set. Let p : .N -+ X 
be a (:ontinuous surjection and put p-1(A) =A'. Then A' is DL so A' = 
proJJI((F), with F C ]\[ x w~ closed. So :1: E A # 3y E ]\[3f E wr(p(y) = 
x & (y,J) E F)# 3g E wr(x,g) E H, where H C X x w~ is the following 
closed set: 

(x,g) E H # (go,gt) E F & p(go) = x, 

where forgE w~, go(n) = g(2n), g1(n) = g(2n + 1) (we view here N = w 
as a subset of w1). 0 

(36.16) Exercise. (Martin) Show that every n~ well-founded relation has 
rank< w2. Construct n~ well-founded relations of rank w11 w1 + 1, w1 +w1. 

(36.17) Exercise. (Mansfield) Show that if"' is an infinite ordinal and A is 
K-Souslin, then A ha.<; cardinality :::; card( K.) or else A contains a Cantor set. 
In particular, every n~ set has cardinality :::; ~ 1 or else contains a Cantor 
set. 

Remark. This is the best result that can be proved in ZFC concerning the 
cardinality problem of n~ sets. Recall, however, 32.2. 

(36.18) Exercise. (Keehris) Show that if "' is an infinite ordinal and A ~ .N 
is K-Souslin, either A C Ue<~< Ae with each Ae compact or else A contains 
a superperfect set. So every n~ set can be covered by ~ 1 compact sets or 
else contains a superperfect set. (Recall, however, 32.3.) 



36. Scales and Uniformization 307 

(36.19) Exercise. Generalize 25.16 to ~~:-Souslin sets. 

36.E Regularity Properties of Uniformizing Functions 

Let X, Y be Polish spaces and A ~ X x Y a D~ set. Let A* be a D~ 
uniformization and f: proh(A) -+ Y be the corresponding uniformizing 
function, f(x) = y <=? A*(x, y). Even when projx(A) = X, we cannot 
prove in ZFC alone that for every probability Borel measure /-L, f is 1-L­
measurable or that f is Baire measurable. This is because for any open set 
U ~ Y, r 1(U) = {x: 3y(y E U & A*(x, y))} is a I:~ set (i.e., a continuous 
image of a n~ set) and such sets (which form a class bigger than that of 
the I:~ or n~ sets- see Section 37) cannot be proved to be measurable or 
have the BP in ZFC alone. However, they have these regularity properties, 
as we can see using I:~-Detenninacy. 

(36.20) Theorem. (I:l-Determinacy) Let X be a Polish space and A~ X 
a I:~ set. Then A is universally measurable and A has the BP. 

Proof We prove the second assertion first. Let X be Polish and A ~ X 
be I:~. Note that for some n~ set F ~ X X .N, A= proh(F). Indeed, 
let f : Y -+ X, Y a Polish space, be continuous and B ~ Y be n~ with 
f(B) =A. Then let g: .N-+ Y be a continuous surjection (we can assume 
of course that Y :10). Then 

x E A<=? 3y(y E B & f(y) = :~;) 

<=? 3z E .N[g(z) E B & f(g(z)) = x] 
<=? 3z(x, z) E F 

for some n~ set F c X x .N. 
Consider now the unfolded game G~*(F) as in 21.5. Since X has a 

countable basis, we can view it as a game on N that easily has a nt payoff 
set, so it is determined. Thus all Banach-Mazur games G**(A) for A E 
I:~(X), X Polish, are determined, and so by 8.35 (and the obvious fact 
that I:~ is closed under finite unions) it follows that all I:~ l>ets have the 
BP. 

We prove now the first assertion. Note that I:~ is closed under Borel 
isomorphisms, so we can work with X = C. Also, by separating a given 
probability Borel measure into its discrete and continuous parts, it is enough 
to consider only continuous measures; thus, by 17.41 it is enough to show 
that if A ~ C is I:~ and /-L = J.Lc is the usual measure on C, then A is 
wmeasurable. 

For any A~ C, let 

1-L•(A) = sup{p,(B): B ~ A,B Borel}, 

p,*(A) = inf{p,(B): B 2 A,B Borel}. 
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Clearly, IL•(A) = J-L(B) for some Borel B ~ A. Let A' = A\ B. Then 
J.i•(A') = 0, and since (as it is easy to see) I:~ sets are closed under finite 
intersections, if A E I:~, then so is A'. If ~-t*(A') = 0, then, as ~t*(A') = tL( C) 
for some Borel C 2 A', we hav~ that B ~A~ BuG and J-L(B) = ~t(BUC), 
so A is J.L-measurable. 

Thus it is enough to prove the following: 

If A~ Cis I:~ and ~-t.(A) = 0, then J-L*(A) = 0. 

Let (since .N can be viewed as a subspace of C) F ~ C x C bent such 
that 

x E A<=? 3y(x, y) E F. 

Consider then the following "unfolded version" of the covering game due 
to Harrington. 

Let ( Gi) be a bijection between N and all finite unions of basic open 
sets N 8 of C. Fix € > 0. The game is defined as follows: 

I x(O), y(O) 

II z(O) 

x(1);y(1) 

z(1) 

x(i),y(i) E {0,1}; z(i) EN; J-L(Gz(i)) < E/23i. Player II wins iff [(x,y) E 

F =>X E ui Gz(i)l· 
This game is clearly I:L and so determined. 
If I has a winning strategy, this induces as usual a continuous function 

f: N-+ C x C, and f(.N) ~ F, soB= {x: 3y(x,y) E /(.N)} ~A and 
B is I: l· So B is IL- measurable and J-L( B) :::; J.i• (A) = 0. Let z then be such 
that J-L(Gz(i)) :::; €/23 i and B ~ Ui Gz(i)· Then z beats I's winning strategy, 
which is a contradiction. 

So II has a winning strategy. Let n;::: 1 and for (s,t) E 2"' x 2n. Gs,t = 
Gu(n- 1), where (u(O), ...• u(n -1)), is what II plays following this strategy 
when I plays (s(O), t(O)), (s(1), t(1)), ... , (s(n- 1), t(n- 1)). Clearly, A~ 
Un U(s,t)E2"X2" Gs,t: SO 

J-L*(A):::; Jl(U U Gs,t):::; 2)2n)2 23(=-1) = LE/2n-3:::; 8€. 
n (s,t)E2" x2" n n 

Since f. was arbitrary, J-L*(A) = 0 and we are done. 0 

(36.21) Corollary. (I:l-Determinacy) Let X,Y be Polish spaces and A~ 
X x Y be Di. Then projx(A) is universally measurable and has the BP. 
Moreover, A has a uniformizing function f: proh(A) -+ Y with Di-graph 
and such that f is universally measurable and Baire measurable. 

(36.22) Exercise. Recall from 30.14 ii) that Dl sets are not necessarily uni-' 
versally capacitable. (Busch, Mycielski, Shochat) Using I:l-Determinacy, 
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show now that if Y is a compact metrizable space and 1 a capacity alter­
nating of order oo with !(0) = 0, then every Dl set A~ Y is 1-capacitable. 

36.F Uniformizing Co-Analytic Sets with Large Sections 

We will next prove a uniformization theorem for Dl sets with large sections 
which extends 18.6. 

Let Y be a Polish space and I a a-ideal in Y. Given a class r of sets in 
Polish spaces we say that I is r -additive provided that for any transfinite 
sequence (Ao)o<17 (11 some ordinal) of subsets of Y, if Aa E I and the 
prewellorderiug on Uo<,., Aa defined by 

x :5* y <=?(the least a with x E Ao) :5 (the least {3 withy E A.a) 

is in r, then Uo<17 Ao E I. 
If r contains only sets that have the BP and I = MGR(Y), or if p, is a 

a-finite Borel measure, r contains only ll-measurable sets and I= NULL~', 
then I is r-additive, by 8.49 and 17.14. Thus the a-ideals of meager sets 
and p,-measurable sets are Dl-additive. 

If X is a Polish space and x ~---+ Ix is a map from X into the a-ideals of 
Y, we say that. it is ron r if for every Polish space Z and A~ Z x X x Y 
in r the sets {(z,x): Az,:r. (j. Ix} and {(z,x): "'Az,x E Ix} are also in r. 
(Note that this agrees with 18.5 for r = Borel.) 

Again, if x ~---+ J.Lx E P(Y) is Borel and Ix = NULL~'"' or if Ix = 
MGR(Y), then x ~---+ Ix is Dl on Dl by 32.4. 

Finally, if X, Yare Polish spaces, A~ X, and f: A-+ Y, we say that 
f is r-measurable if for U open in Y, f- 1(U) is ron A (i.e., of the form 
An p with p ~ X in r). Notice that if r is closed under COWltable unions 
and intersections, then f-measurability is equivalent to f'-measurability. To 
see thi'i, write u = Un rv Un, with Un open in Y, so that f- 1 (U) = Un rv 
f- 1(Un)· Clearly, if A E rand r is closed under finite intersections, this just 
means that f- 1(U) E r. Also, if A= X and r = DL then n~-measurable 
= I:l-measnrable = 41-measurable = Borel. 

(36.23) Theorem. (Kechris) Let r be a class of sets in Polish spaces con­
taining all clopen sets and closed under Borel preim,ages and countable in­
tersections and unions. Ass?lme r is scaled. If X 1-+ Ix is a r on r ma.p 
from X to a-ideals on Y such that each Ix is r -additive, and A ~ X x Y 
is in r, then B = {x:Ax (j. Ix} is in rand there is a f-measurable junction 
f:B-+ Y with f(x) E Ax for all x E B (i.e., f unijormizes An (B x Y)). 

In particular, this holds for r = n~. 

Proof. We can clearly assun1e that X = Y = .N. B is clearly in r, since 
X 1-+ Ix is a r on r map. 

Let <Pn: A-+ ORD be a f-scale and let 
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1/Jn (x, y) = (<Po(x, y), x(O), y(O), <Pl (x, y ), x(1), y(1), ... , <Pn(x, y), x( n), y( n)) 

be the associated very good r-scale. Then for each x, 1/J~(y) = 1/Jn(x, y) 
is a very good r-scale on Ax. Notice, moreover, that 1/J~(y) = '1/J~(z) => 
Yl(n + 1) = zi(n + 1). For each x E B, we will select an element Yx of Ax 
as follows: 

Since 1/1~ is a r-rank on Ax, Ax ft Ix, and Ix is r-additive, it follows 
that for some a, A~·"' = {y E Ax : 1/J~(y) = a} is not in Ix. Let a,, be 
the least such. Then by r-additivity again, {y E Ax : 1/J~(y) < an} E Ix. 
Since ( 1/J~) is very good, we must have (by the same reasoning) that A~·: 2 
A~~·; 2 A;·; 2 · · ·, and there is a uniquely determined y = Yx such that 
Yxl(n + 1) = zi(n + 1) for any z E A~:; by the above property of (1/1~). If 
Yn E A~~x, then Yn --+ Yx, so by the properties of scales, Yx E Ax. 

It remains to show that f(x) = Yx is r-measurable. So fix .s E N", n :?: 
1. Then for x E B, 

f(x) ENs <=? Yx E Ns 
<=? N n An-l,x d I 

S O:n-1 "F X 

<=? {yENs: Y E Ax & {z: Z :5~:;_ 1 Y & Y :5~~- 1 z} ft Ix & 

"'{z: Y :5~:;_ 1 z} E Ix} ft Ix, 

so since X 1-+ Ix is a ron r map, f- 1(Ns) is in rand we are done. 0 

The following results have been proved by G. E. Sacks [1969], H. 
Tanaka [1968] for measure, and by P. G. Hinman [1969], S. K. Thomason 
[1967] for category. 

(36.24) Corollary. Let X ,Y be Polish spaces and A ~ X x Y a Dl set. Let 
x ~--+ J.Lx E P(Y) be Borel and Ix = NULL~', or else let Ix = MGR(Y). 
Then {x:Ax ft Ix} is D~ and there is a Di-measurable function f:B--+ Y 
with f(x) E Ax, 'Vx E B. In particular, if Ax has positi11e 11",-measure for 
all x, or if Ax is not meager for all x, then there is a Borel uniformizin,q 
function for A. 

(36.25) Exercise. Show that there is an analytic set A ~ .N x .N such that 
for each x, .N \Ax has cardinality :5 1, but A has no Borel uniformizing 
function. 

36. G Examples of Co-Analytic Scales 

In 34.F we discussed several examples of canonical Df-ranks on various Dl 
sets. We consider here the question of finding canonical n~-scales. It turns 
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c.an often be obtained from it by a "localization" process, so one can view 
such a scale as a "local rank". We will illustrate this point by discussing 
a few examples. Other cases to which it has been applied include the set 
DIFF of differentiable functions and the set CF of continuous functions 
with everywhere convergent Fourier series. 

1) We consider first the set WF of well-founded trees on N. A canonical 
nt-rank on WF is T ~---+ pr(0) (= 0 if T = 0). For any givens EN<"", we 
can "localize" this to the tree Ts = { t : s • t E T} to obtain 

<Ps(T) = PT.(0) = Pr(s). 

We will veri(y that this is indeed a scale (viewing (<Ps) as a sequence via 
some enumeration of N<""). 

Let Ti E VVF, Ti ~ T in Tr, and <Ps(Ti) ~ a8 for all s. Note that 
s E T iff for all large enough i, s E 7i. We will show that T E WF and 
cp8 (T) ~ a 8 for all s. To see this it suffices to show that s ~---+ a 8 is order 
preserving on T (i.e., s, t E T & s ~ t ==> a 8 < at). Because then for 
s E T, <Ps(T) = Pr(s) < a8 , while if s (j. T, <Ps(T) = 0 ~ a8 • So fix 
s ~ t, s, t E T. Then s. t E Ti for all large enough i, and so for all large 
enough i, a 8 = PT,(s) < pr.(t) =at. 

Now, as in the proof of 36.12, we can obtain ant-scale from (cp8 ) by 
letting 

~s(T) = ( <P0(T), <P .• (T)). 

2) Next we look at the set WO of wellorderings on N. In the proof 
of 34.4 we associated to it the canonical Dl-rank lxl = p( <x)· We can 
"localize" this to any n E N to obtain the rank 

lxln = p( <~), 

where <~ is the initial segment of <:c determined by n. Then, as in 
Example 1), one can easily check that (lxln) is a scale on WO and if 
<Pn(x) = ( lxl, lxl .. ), then (<Pn) is ant-scale on wo. 

3) (Kechris-Louveau) Consider finally a nonempty Polish space X and 
the Dl set KN0 (X) of all countable compact subsets of X. LetK ~---+ IIKIIcB 
be the nt-rank associated to KN0 (X) in 34.20. Given a basis of nonempty 
open sets {Vn} of X, closed under finite intersections with X E {Vn}, we 
"localize'r'IIKIIcB to each U E {Vn} to obtain 

'Pu(K) = IlK n UllcB· 

We claim that (after enumerating it in a sequence) this is a scale on 
KN0 (X), from which it follows as usual that ~u(K) = (IIKIIcB,<Pu(K)) = 
(<Px(K), <Pu(K)) is a Dl-scale on KN0 (X). 

So assume Ki E KN0 (X), K,--.... K (in K(X)), and <Pu(Ki) ~ w ·au+ 
du (au < w1, du < w) for all U E {Vn}. We will show that K E KN0 (X) 
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We can clearly a.'!l:iume that Ki =I 0 and IKi ic 8 = a ( = ax) is constant. 
The proof will be by induction on a. So assume this has been proved for 
all {3 < a. Let U E {V,.,}. Then for all large enough i, IKi n Ulc8 = au. 
Put Li = ( Ki n U)ou. Then L, = {xi, ... , x~u} for all large enough i. 
Since K u Ui Ki is compact, by going to a subsequence we can assume 
that xj -+ x3 for j = 1, ... , du. Let L = { x3 : j = 1, ... , du}. This has 
cardinality S. du. 

Claim. (K n U)ou ~ L. 

Granting this, we get (letting U =X) K E KN0 (X) as well as <Pu(K) S. 
w · au + du, so the proof is complete. 

Proof of claim. Otherwise, (K n U)au ~ L, so let V E {Vn} be such that 
(K n U)ou n V =10 and V n L = 0. Thus (since L.,-+ L) for all big enough 
i, (Kin U)ou n V = 0. 

By going to a subsequence if necessary, we can also assume that 
Kin U n V-+ FE K(X). Now (Kin U n V)uu C (Kin U)ou n V = 0, so 
IKi nUn VIC.8 < au. Since IKi nUn Vlc8 is eventually constant, namely 
{3 = a:unv, we can assume that IKi nUn VicB = {3 < au S. a. So by 
the induction hypothesis (since Kin U n V -+ F and <Pw(Ki nUn V) = 

iiKi nUn V n WllcB = IIKi nUn V n WllcB = <Punvnw(Ki) converges, 
for all W E {V,}) we have F E KN0 (X) and also IFI(:8 S. {3. Since 
K n U n V ~ F and {3 < au, ( K n U n v)uu ~ pou = 0. But by an 
easy induction on 1 it can be shown that for M E K(X) and any open 
w, M"'~ n w s;;; (M n wp, so 

which is a contradiction. 

Since a scale { 'Pn} on a set A gives a form of convergence criterion 
for membership in A (if Xi E A, Xi -+ x and <Pn(xi) converges for each 
n, then x E A), it appears that the determination of canonical scales on 
concrete Dl sets like the above examples (and other ones that we have 
not discussed here, i.e., DIFF and CF) eould be useful in applications to 
analysis and topology. 



CHAPTER V 
Projective Sets 

37. The Projective Hierarchy 

37. A Basic Facts 

For each n > 1 we define the projective (or Lusin) classes I:~, n~, 4~ 
of sets in Polish spaces as follows: We have already defined the I:~ ( = 
analytic), Dl (=co-analytic) sets. Then we let, in general, 

I:~+1 = {proh(A): X Polish, A~ X X N, A E n~(X X N)} 
= 3-"'n1 n• 

D~+l = "'I:~+l ={X\ A: X Polish, A E I:~+l(X)}, 

4~ = I:~ nn~. 

Classically, one uses the notation A, CA, PCA, CPCA, ... for the classes 
I:L nL I:~, n~, .. .. 

Since it is clf.ar that I:~ ~ I:~, it follows easily by induction that 
1 1 . A 1 I:n U Dn s;· '-&n+l· Put 

P = U I:~ = U n~ = U 4~ · 
n n n 

The sets in the class P are called the projective sets. So we have the fol­
lowing picture of the projective hierarchy: 
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p 

where every class is contained in any class to the right of it. 
We will first state some ba.<Jic closure properties of the projective 

classes. 

(37.1) Proposition. i) The classes I:~ are closed under contirmous preim­
ages, countable intersections and unions, and continuous images (in partic­
ular, projections, i.e., existential quantification over Polish spaces). 

ii) The classes n~t are closed under continuous preimages, countable 
intersections and unions, and co-projections (i.e., unive-rsal quantification 
over Polish spaces). 

iii) The classes 4~ are closed under continuous preimages, comple­
ments, and countable unions (i.e., they form a a-algebra). 

Proof By induction on n. We have already proved these for n = 1. Assume 
therefore they have been established for n and consider i) for n + 1 (clearly, 
ii) and iii) then follow). 

Closure under continuous preimages is straightforward. Let Ai E 
I:~+l(X), i EN, say Ai = proh(Bi), Bi E D~(X x .N). Then 

x E n Ai # V'i3y(x, y) E B7• 

i 

# 3y'v'i(x, (y)i) E Bi, 

where (y)i(m) = y( (i, m)) with ( ) a bijection of N x N with N. If 

(x, y) E B # V'i(x, (y)i) E Bi, 

then BE D~(X x .N) by the closure properties of D~, so niAi E I:~+l· 
Closure under countable unions is straightforward. 

Finally, if A E I:~+l (X) with A = projx(B), B E n~(X X N), and 
f : X -+ Y is continuous, then 

y E f(A) # 3x3z[(x, z) E B & f(x) = y]. 

Let g : N -+ X x N be a continuous surjection. Then we have 

y E J(A) # 3w EN[g(w) E B & 

J(proh(g(w))) = y] 
# 3w E N(y, w) E C 

for some C E D~(Y x .N) by the closure properties of D~. So f(A) E 
I:~+l (Y). o 
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It follows that for each n :?: 1 and any fixed uncountable Polish Y, 

I:~+l = {proh(A): A E D!,(X x Y), X Polish}, 

= {!(A) :A E D~(Z), f: Z-+ X continuous, X, Z Polish}. 

(37.2) Exercise. If X~ Yare Polish, then I:~(X) = I:~(Y)IX ={A~ X: 
1 ( )} 1 1 A E I:n y ' and 1:!imilarly for nn., 4n. 

(37.3) Exercise. Let X, Y be Polish. Show that a function f : X -+ Y has 
I:~ graph iff it has 4~ graph iff it is 4~- (or I:~- or n~-) measurable. 
Such functions will simply be called 4~ functions. (The 4} functions are 
clearly the Borel functions.) A projective function is a function that is 4~ 
for some n. 

Show that I:~, n:P and 4~ are closed under preimages by 4~ func­
tions. Show also that I:~ is closed under images by 4~ functions. 

Remark. By 36.11 there are functions with Df graphs that are not 4f. 

(37 .4) Exercise. (Kantorovich-Livenson) Show that I:~, n~, and 4~. are 
closed under the Souslin operation A, if n :?: 2. 

(37.5) Exercise. Show that if X, Y are Polish spaces, U is nonempty open 
in Y, and A ~ X x Y is projective, so are { x : Ax is countable}, { x : Ax is 
meager in U}, { x : Ax is contained in a K 17 set}, and (p,, x) E P(Y) x X ~---+ 

J.t* (Ax). 

(37.6) Exercise. Consider the structure 'R = (R., +, ·, Z) in the language 
L = { F, G, U} where F, G are binary function symbols and U is a unary 
relation symbol. Show that a set A ~ R.n is projective iff it is first­
order definable with parameter1:1 in 'R, i.e., there is a first-order formula 
'f'(Ull· .. , Un. w1, ... , Wm) inLand r 1, ... , rm E IR such that 

(xll ... ,xn) E A# 'R I= 'f'[Xll ... ,Xn, .,.., ... , rm]. 

We can also define the projective classes I:~(X),n:t(X), and 4~(X) 
and P(X) for any standard Borel space X by asserting that A~ X is in one 
of these classes if for some Polish space Y and Borel isomorphism f : X -+ 

Y, f(A) is in the corresponding class of Y (this is independent of J, Y by 
37.1). Also, for any separable metrizable space X and any r = I:~,n~,P, 
we can define A ~ X to be in r( X) iff for some Polish space Y 2 X and 
some BE r(Y). A= BnX. We also let 4~(X) = I:~(X)nD~(X). Again 
it is easy to check that one can equivalently define I:~ (X), n~ (X) for any 
separable metrizable X by the same inductive process as in Polish spa~:.-es. 
Finally, we call a separable metrizable space I:~, n~, 4~ or projective if it 
is homeomorphic to a I:~, n~, 4~ or projective subset of a Polish space. 
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We prove next that the projective hierarchy is indeed a proper hierar­
chy. 

(37.7) Theorem. For every Polish space X and every uncountable Pol·ish 
spaceY there is a Y-un·iversal set for I:~(X) and similarly for n~(X). In 
particular, 4~(X) ~ I:~(X) ~ 4~+ 1(X) for any uncountable Polish space 
X. 

Proof By a simple induction on n, noting that if U E r(Y x X) is Y­
universal for r(X), then rv u is Y-universal for f'(X), and if u E r(Y X 

X X .N) is Y-universal for r(X X .N), then 

V= {(y,x): 3z(y,x,z) EU} 

is 1miversal for 

~r(X) = {proh(A): A E r(X x .N)}. 0 

(37.8) Exercise. Show that for n :?: 1 and any uncountable Polish space 
X. a(I:~,)(X) ~ 4~+1 (X). Show also that C(X) (= the class of C-sets of 
X) ~ 4HX) and formulate and prove an analogous result for all 4~, n:?: 
2. 

37. B Examples 

We will discuss here a number of examples of projective sets that are neither 
analytic or co-analytic. 

1) We can use the method described in 33.G, together with some 
uniformities (:oncerning universal sets described in 2i.E, to produce several 
examples of n~-~:.-omplete set.s. 

Consider first the result of Poprougenko described in 27 .E. It can be 
shown that it admits a uniform version: Namely, if A ~ .N x IR is I:~, 
then there is a ~:.-ontinuous function F : .N-+ C([O, 1]) such that for every 
X E .N, Ax = RF(x)· Let 

S = {! E C([O, 1]): Vy E IR3x E [0, 1](/'(x) = y)}. 

Then S is D~-~:.-omplete. To see this, let B ~ .N be D~. Then find A ~ .N x IR 
in I:{ with x E B # Vy(x, y) E A. Then x E B # Ax = IR # RF(x) = IR # 

F(x) E S, soB is reducible to S by a continuous function. 

(37.9) Exercise. Show (using the notation of 27.E and 33.14) that {T E 
L(eo) : O'p(T) = 'll'} and {T E L(eo) : O'p(T) hat; nonempty interior} are 
Borel D~-complete. 
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2) Woodin has shown that 

MV = {! E C([O, 1]): f satisfies the Mean Value Theorem} 

is D~-complete, where f E C([O, 1]) satisfies the Mean Value Theorem if 
for all a < b in [0, 1] there is c, with a < c < b, such that f'{c) exists 
and f'(c) = f(b&"=~(a). This should be compared with the result of Woodin 
mentioned in 27.F that the set off E C([O, 1]) satisfying Rolle's Theorem 
is I:h:omplete. 

(37.10) Exercise. Show that MV is n~. 

3) Consider compact subsets of !Rn. Recall that such a set is path 
connected if every two points in it are connected by a path contained inK. 
Let PCONn = {K E K(!Rn): K is path connected}. 

(37.11) Theorem. (Ajtai, Becker) For n ?: 3, the set PCONn is n~­
complete. 

Proof Consider the construction in the proof of 33.17. Modify it by elim­
inating the path p from Kr ~ IR2 . Call the resulting compact set Lr. For 
definitiveness, we will take the point r in Lr to be the origin (0, 0) of IR2 

and the segment foo to be parallel to the x-a.xis. Note that 

T ft WF # Lr is path connected. 

Now let A ~ N be a n~ set and B ~ N x C be I:} \\ith 

x E A# 'Vy(x,y) E B. 

Let T be a tree on N x 2 x N with 

B = {(x,y): 3z(x,y,z) E [T]} = {(x,y): T(x,y) ft WF} 

(where, as usual, T(x, y) denotes the section tree {sEN<"": (xllength(s), 
yllength(s), s) E T} ). For each x EN, let Px be now the compact subset of 
JR3 defined as follows: Identify C with the Cantor set E 1; 3 ~ [0, 1]. For each 
y E C, let Lx,y be the set Lr(x,y) placed on the plane {(a,b,c) : c = y}. 
Then let Px = UyeC Lx,y U {(x, y, z) : :r = 0, y = 0, z E [0, 1]}. It is clear 
that Px E K(IR3) and x ~----> Px is continuous. We will check next that 

x E A # P:r. E PCON3, 

which completes the proof. We have 

x E A# 'Vy(x, y) E B 

# 'Vy(T(x, y) ft WF) 

# 'Vy(Lx,y is path connected) 

# Px is path connected. 0 
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For n = 2, Ajtai and (independently) Becker have shown that PCON2 
is n~ but not Df. This is all that is known about the descriptive clas­
sification of this set. (On the other hand, it is not hard to see that 
{K E K(!Rn): K is connect~d} is closed in K(!Rn).) 

Denote by NHn the set of (:ompact subsets of JRn with no holes, i.e., 
those K E K(!Rn) such that every continuous map from the unit circle 
'll' into K can be extended to a continuous map of the unit disk ID> into 
K. (For n = 2, this definition agrees with the one we gave in 33.1 and so 
NH2 = NH.) Let SCONn = PCONnnNHn be the set of simply connected 
compact subsets of JRn. (So SCON2 = SCON as in 33.1.) Becker has shown 
that SCONn is n~-complete if n ,;::: 4 and for n = 3 that it is n~ but not 

1 1 I: 1 orD1 . 

(37.12) Exercise. (Becker) Let P be a class of compact sets in !Rn. A (:ompact 
set Lin some JRk generates P if P = {f(L) : f: L -+ !Rn is continuous}. 
Show that there is no compact set generating PCONn for n ;::: 3. (This 
should be contrasted with the classical Hahn-Mazurkiewicz Theorem ac­
cording to which [0, 1] generates {K E K(!Rn): K is connected and locally 
connected}.) 

4) We discuss next an example of a universal I:~ set due to H. Becker 
[1987]. Let U ~ C([O, 1])!11 x C([O, 1]) be given by 

( (.f n), f) E U # there is a subsequence Un;) converging pointwise to f. 

Then U is C([O, 1])!11-universal for I:HC([O, 1])). Moreover, this holds uni­
formly: If A ~ N x C([O, 1]) is I:~, there is a continuous function F: N-> 
C([O, 1])!11 such that Ax = UF(x)· 

(37.13) Exercise. i) Show that U above is indeed I:~. 
ii) Say that Un) E C([O, 1])!11 is quasidense in C([O, 1]) if every h E 

C([O, 1]) is the pointwise limit of a subsequence of Un)· Show that the set 
of quasidense Un) E C([O, 1])!11 is D!-complete. 

iii) Show that there is a sequence of polynomials (Pn) such that letting 
Pn = Pni[O, 1] we have DIFF (= {f E C([O, 1]) : f is differentiable}) = 
{f E C([O, 1]): There is a subsequence (pn.) converging pointwise to!}. 

Recall now that. a sequence Un) E C([O, 1])!11 converges weakly to f E 
C([O, 1]) in the Banach space C([O, 1]) iff Un) is uniformly bounded and 
fn -+ f pointwise. R. Kaufman [1991] has shown that the set 

((!.,),f) E U # there is a subsequence UnJ converging weakly to f 

is C([O, 1])!11-universal for I:~( C[O, 1]). Again this holds uniformly, and one 
can repeat 37.13 in the (:ontext of weak convergence. 
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5) The work of Becker discussed in Example 4) has been extended by 
H. Becker, S. Kahane, and A. Louveau [1993) to provide further examples 
of universal and complete I:~ sets which, !-Surprisingly, include some classi­
cal classes of thin sets studied in harmonic analysis. The main fact is the 
following. 

(37.14) Theorem. (Becker-Kahane-Louveau) The set U ~ C(C x C,2)"" x C 
defined by 

( (/n), x) E U # there is a subsequence (/n;) 
such that f~. -+ 0 pointwise 

is C(C x C,2)""-universal for I:HC). (Here fX(y) = f(y,x).) 

We postpone the proof for a while to see some of the implications of 
this result. 

(37.15) Exercise. (Becker-Kahane-Louveau) i) Show that the sets {(/n) E 
C([O, I))"": some subsequence Un,) converges pointwise}, {(/n) E C([O, 1))"": 
some subsequence Un,) (:onverges pointwise to 0} are !:~-complete. (Using 
the method of R. Kaufman [1991) eonvergence can be replaced by weak 
convergence here.) 

ii) Let 11'n : C -+ 2 be defined by 11'n(x) = x(n). Show that the set 
{K E K(C): some subsequence (7rnJ converges to 0 pointwise on K} is 
!:~-complete. 

The following two classes of thin subsets of 'll' have been studied exten­
sively in harmonic analysis. The first class, denoted by No, was introduced 
by Salem: 

00 

No= {K E K('ll') : 3no < n1 < · · · (L: sin( nit) 

converges absolutely for all eit E K)}. 

The second, denoted by A, was introduced by Arbault: 

A= {K E K('ll'): 3no < n1 < ···(sin( nit) 

converges pointwise to 0 for all eit E K)}. 

Then we have the following result, using 37.15 ii) and some further con­
structions that we will not present here. 

(37.16) Theorem. (Becker-Kahane-Louveau) The sets No,A are !:~-comple­
te. 

We now give the proof of 37.14. 
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Proof. (of 37.14) It is easy to check that U is I:~. 
Let A ~ C now be I:~. We will find Un) E C(C x C, 2)!\1 such that 

x E A# there is a subsequence Un;) such that /7~; -+ 0 pointwise. 
Since A is I:~, there is an~ set B ~ c X c such that 

x E A# 3y(x, y) E B. 

Then, by 25.2, there is a tree Ton 2 x 2 x 2 such that (x, y) ft B # 3z E 
N(x,y,z) E [T], where N = {z E C: 300 n(z(n) = 1)}. Sox ft A# V'y3z E 
N(x, y, z) E [T]. 

Fix first a 1-1 enumeration (sn) of2<N so that Sm ~ Sn => m < n. Put 
ln = length(sn)· We will also look at sequences rr E (2 x 2 x N x 2)n (n EN), 
which we view interchangeably as 4-tuples a= (a, b, c, d) E 2n x2n xNn x2n. 
For each such sequence a we fix a nonempty clopen subset C17 ~ C such 
that 

i) (j ~ r => ct7 2 CT; 
ii) (j .l r => ct7 n CT = 0. 

Finally, we introduce the following crucial for the construction techni­
cal definition: 

Let a = (a, b, c, d) have length k + 1 (for some k), n E N. We call a 
n-good if the following hold: 

i) c E Nk+l is strictly increasing and c(k) = ln; 
ii) b(k) = d(k) = 1; 
iii) ifp = card({m :5 k: d(m) = 1}), then alp= sniP· 

Clearly, for each n there are only finitely many n-good a, since i) 
imposes an upper bound on k and also allows only finitely many such c. 

We now define the functions fn· Pnt. 

{ 

1, if u E C17 for some n-good 

f ( ) = a = (a, b. c, d) of length k + 1 with 
n u,x (xl(k+1),a,b)ET; 

0, otherwise. 

By the preceding remark fn is continuous. We will show now that it 
works. 

Claim 1. If x E A, then there is a subsequence (fn,) with f~; -+ 0 pointwise. 

Proof. Choose y E C with (x, y) E B. Let no < n1 < · · · be such t.hat 
yli = sn,. We will show that p::_i -+ 0 pointwise. If not, there is u E C and 
a subsequence ( mj) of ( ni) such that f{;t; ( u) = f mj ( u, x) = 1 for all j. Let 
ai be mrgood witnessing that. Since u E C17j, these a.1 are all compatible. 
Also, lmj = length(smj);::: j as length(sn,) = ·i and (mj) is a subsequence 
of ( ni). So if a1 = ( aj, bj, Cj, dj) has length kj + 1, then Cj(kj) = lm; ;::: j, 
so kj-+ oo. Thus there is (y',z',ry,6) E C x C x .N x C such that aj = 
(y'l(kj + 1),z'l(ki + 1),ryl(ki + 1),6l(kj + 1)). Also, (xl(kj + 1),y'l(kj + 
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1),z'l(kj + 1)) E T, and thus (x,y',z') E [T]. Finally, z'(k3) = 6(k3) = 1, 
so z' E N and Pi = card( {m :::; k3 : 6(m) = 1}) -+ oo. Therefore, since 
y'lpj = Sm1 IPi = YIPh we have y = y'. Thus 3z' E N(x, y, z') E [T], so 
( x, y) ft B, which is a (:ontradiction. 

Claim 2. If x ft A, then for any subsequence (! n;), (!~.) does not converge 
to 0 pointwise. 

Proof Fix x ft A, (ni). Going to a subsequence we can assume that lni j oo 
and for some y E C, Sn; converges toy. Clearly, (x, y) ft B, so there is z E N 
with (x, y, z) E [T]. Define 6 E 2!\1 recursively as follows: 

{ 

1, if z(i) = 1 and for p = card({m < i: 6(m) = 1}) + 1 
6( i) = we have YIP = Sn; lp, for all j ?: i ; 

0, otherwise. 

Note that 6 E N. Because if 6( io) = 1 (or io = -1) and p = card( { m :::; 
io : 6( m) = 1}) + 1, find the least jo > io snch that j ?: io => YIP = sn, lp, 
and since z E N, let i 1 be the least number ?: j 0 with z(il) = 1. Then 
6(i) = 0 ifio < i < i., and 6(i.) = 1. 

Also put -y(i) = ln,. Then note that for j with 6(j) = 1, (yl(j+1), zl(j+ 
1),-yl(j + 1),6l(j + 1)) is nrgood. Now let u E n{C(yln,zln,")'ln,6ln): n EN}. 
Then it is obvious that for any j with 6(j) = 1, fn;(u,x) = 1, and the 
proof is (:omplete. 0 
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38. Projective Determinacy 

38.A The Second Level of the Projective Hierarchy 

Part of the theory of the first level of the does so projective hierarchy (Df 
and I:l sets) extends to the second level but does so with an interesting 
twist. This is based on the fact that the rank or scale properties are pre­
served under projections. 

Recall that for any clas::s r of sets in Polish spaces, we denote by ~r 
the class 

~r ={A~ X: 3B E r(X x N)(A = proh(B))}. 

(38.1) Theorem. (Novikov, Moschovakis) Let r be a class of sets in Polish 
spaces which is closed under continuous preimages, finite intersections and 
unions, and co-projections. If r is ranked, so is ~r. 

Proof. Let A E 3Nr(X) and B E r(X x N) be such that A= proh(B) 
(i.e., x E A# 3y(x,y) E B). Let <P bear-rank on B. Define the rank 1/J 
on A by 

1/J(x) = inf{cp(x,y): (x,y) E B}. 

Then 1/J is a ~r-rank, since 

x :=:;¢ x' # 3y'v'y'(x,y) ::;~ (x',y'), 

:r, <¢ x' # 3y'v'y'(x,y) <~ (x',y'). 

(Note that ~r is closed 1mder continuous preimages and finite intersec­
tions and unions.) 0 

(38.2) Corollary. The class I:~ is ranked. In particular, (Novikov, Kura­
towski) I:~ has the generalized reduction property but not the separation 
property, and n~ has the general·ized separation property but not the reduc­
tion property. 

Proof. From 34.4, 35.1 and 38.1. 0 

(38.3) Exercise. Show that every I:~ set A admits a I:~-rank cp: A-+ w1• 

A similar transfer theorem holds for scales. 

(38.4) Theorem. (Moschovakis) Let r l;e a class of sets in Polish spaces 
containing all Borel sets, which is closed under Borel preirnages, finite in­
tersections and unions, and co-projections. If r is scaled, so is 3'vr. 

Proof. Let A~ X be in ~rand BE r(X X N) be such that X E A{:::} 
3y(x, y) E B. By 36.8, let (cpn) be a very good r-scale on B. Then let 
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B"' be the canonical uniformization of B given in the proof of 36.9. Then 
x E A# 3y(x, y) E B # 3!y(x, y) E B*, and for x E A denote by Yx the 
unique y with (:c, y) E B*. Define the following sequence of ranks on A, 

1/Jn(x) = 'Pn(X, Yx)· 

We claim first that this is a scale: Let Xi E A, .'ti-+ x and 1/Jn(xi)-+ an, 'Vn. 
Thus cpn(Xi, Yx.) -+ an, and so, since ( 'Pn) is a very good scale, Yx, -+ y, 
where (x, y) E B, and 'Pn(x, y) :::; a.,. So x E A. By the definition of 
Yx• 1/Jn(x) = 'Pn(X,Yx) ::5 'Pn(x,y) ::5 On, and so we are done. Finally, (1/ln) 
is a 3Nr-scale, since 

x :::;~,. x' # 3y'Vy'[(x, y) E B* & (x, y) ::5~ .. (x', y')], 

x <~ .. x' # 3y'Vy'[(x,y) E B* & (x,y) <~ .. (x',y')]. 

(38.5) Corollary. The class I:~ is scaled. 

0 

It does not follow immediately from this and from 36.9 that every I:~ 
set has a I:~ uniformization, but this can be deduced ea.<;ily from 36.14 and 
the following general fact. 

(38.6) Proposition. Let r be a class of sets in Polish spaces. If every r set 
has a r uniformization, every ~r set has a ~r uniformization. 

Proof. Let A ~ X x Y be in 3'vr, so (x, y) E A # 3z(x, y, z) E B for 
B E r. Let B* be a r uniformization of B on (y, z), i.e., B* ~ B and 
3y3z(x, y, z) E B # 3!(y, z) (x, y, z) E B*. Put 

(x,y) E A*# 3z(x,y,z) E B*. 

Then A* ~A, A* E 3Nr and clearly wliformizes A. 0 

(38.7) Corollary. (Kondo) The class I:~ has the uniformization property. 

Since n~ does not have the generalized reduction property or equiv­
alently the number uniformization property, 38.7 fails for n~. However, 
assunling !:}-Determinacy it can be shown that every n~ set can be uni­
formized by ana set (D. A. Martin and R. M. Solovay [1969], R. Mansfield 
[1971]). We will prove tllis result from Projective Determinacy in 39.9. One 
cannot prove that D~ sets admit "definable" nniformizations in ZFC. 

In view of the preceding results, we have one more step in the picture 
given at the end of 35.A: 



The boxed classes are scaled and ranked and have the number uni­
formization and generalized reduction properties, and the other classes have 
the generalized separation properties (in zero-dimensional spaces if e = 1 ). 
Notice the flip from then to the I: class between the first and seeond levels 
of the projective hierarchy. (Can you guess the pattern at higher levels?) 

(38.8) Exercise. (Sierpinski) Show that every I:~ set is the union of w1 Borel 
sets. 

(38.9) Exercise. i) Show that every I:~ set admits a !:~-scale t.hat is also 
an w1-scale. 

ii) (Shoenfield) Show that all I:~ sets are w1-Souslin. 

In particular, it follows from 38.8 (or 38.9 ii) and 36.17) that every I:~ 
set either has cardinality :5 N1 or else contains a Cantor set. This is the 
hest result that can be proved in ZFC. See, however, 38.14 ii) below. 

(38.10) Exercise. (Martin) Show that every I:~ well-founded relation has 
rank< w2. 

(38.11) Exercise. Show that the Boundedness Theorem 35.22 fails for r = 
I:~: Find a set A ~ X, in some Polish space X, which is in I:~ \ 4~, a 
I:~-rank cp : A - ORD, and a closed set B ~ A sueh that 'Vx E A3y E 
B(cp(x) < cp(y)). 

(38.12) Exercise. Let 6~ = 6:t:~ = sup{p(<): :5 is a 4~ prewellordering}. 

Show that 6~ = sup{p( -<) :-< is a I:~ well-founded relation} and 6~ < 
w2. (Compare this with 35.28.) Show, however, that if A is I:~ and <P: A­
ORD is a I:~-rank, then p( <"") < 6~. 

(38.13) Exercise. Show that for any Polish space X and any 0 =fA~ X, A 
is I:~( X) iff there is a continuous function f: WO- X with f(WO) =A. 

Many regularity properties of the second level projective sets can also 
be established using !:~-Determinacy. 

(38.14) Exercise. (!:~-Determinacy) i) Recall (see 36.20) that every I:~ and 
n~ set in a Polish space is universally measurable and has the BP. Show that 
every I:~ set has a uniformizing function that is both universally measurable 
and Baire measurable. 

ii) Show that the perfect set property holds for the I:~ sets: Every 
uncountable I:~ set in a Polish space contains a Cantor set. 

iii) Let X be Polish and let A~ X be I:~. Then either A is contained 
in a K17 set or else it contains a closed set homeomorphic to .N. 
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iv) Show that if X, Yare Polish spaces, U ~ Y is nonempty open, and 
A~ X x Y is I:~, then {x: Ax is uncountable} is I:~, {x: Ax is not meager 
in U} is I:~, and similarly with "not meager" replaced by "comeager". Show 
also that {(1-£,x,r) E P(Y) x X x IR: ~t(Ax) > r} is I:~. Finally, show that 
{x: A:r. is not contained in a K.,.} is I:~. 

38.B Projective Determinacy 

In developing the basic theory of sets in the first and second level of the 
projective hierarchy, we have used only one instance so far of "Definable 
Determinacy", namely !:~-Determinacy. In developing the theory of higher 
level projective sets, however, we will have to tap a stronger form, that of 
"Projective Determinacy". In fact, several properties of second level sets 
cannot be established with just !:}-Determinacy, such as, for example, the 
Perfect Set Property for ll~ sets. 

(38.15) Definition. We will abbreviate by 

Projective Determinacy (PD) 

the principle that all games G(N,X), where X ~ _NN is projective, are de­
termined. 

It is now straightforward to verify that several results that we proved 
earlier for the lowest levels of the projective hierarchy carry over immedi­
ately to all projective sets using Projective Determinacy. For example, the 
results of 2l.E hold for all projective sets, at;1d the ordering (WADGE'f., :::;*) 
is wellordering (P stands for "projective" here). A set A~ X, where X is 
Polish, is !:~-complete iff A E I:~\ ll~. Moreover, any two sets in I:~\ ll~t 
are Borel isomorphic (and similarly switching I:~, n~). Also, the theory of 
21.F and 28.E goes through with the obvious modifications. For instance, 
a separable metrizable projective space is Polish iff it is completely Baire. 
The same applies to 21.G. 

For any class r we let 

QNr ={A~ X: for some BE r(X x .N), :rEA# QNy(x, y) E B}. 

Thus 9NI:Y = n}, g!\fny = I:l (see 25.3 and 32.B). 

(38.16) Exercise. (Projective Determinacy) Show that QNI:~ = ll~t:!l and 
gNn~ = 1:::,+1 for all n > 1. Therefore, gNn: = I:~, g~n} = ll~, QNDl = 
I:!, and so on. 
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38. C Regularity Properties 

It should also be clear by now that all the usual regularity properties can 
be established for the projective sets using Projective Determinacy. 

(38.17) Theorem. (Projective Determinacy) i) (Davis) The perfect set 
property holds for the project·ive sets; that is, every uncountable projective 
set in a Polish space contains a Cantor· set. 

ii) (Mycielski-Swierczkowski, Banach-Mazur) Every projective set in 
a Polish space is universally measurable and has the BP. Similarly, every 
projective function is universally measurable and Baire measurable. 

Proof. See 2l.A, 21.C and the proof of 36.20. 0 

(38.18) Exercise. (Projective Determinacy) Let X be Polish and let A~ X 
be projective. Show that A either is contained in a Ku set or else contains 
a closed set (in X) homeomorphic to .N. 

(38.19) Exercise. It can be shown using only Projective Determinacy (see 
L. Harrington and A. S. Kechris (1981]) that all projective sets are com­
pletely Ramsey, but this seems to require more advanced techniques. One 
can use, however, a stronger form of "Definable Determinacy", namely the 
determinacy of all games G(A, X), where A is standard Borel and X~ AN 
is projective, to establish this. It is clear that an equivalent form of determi­
nacy is obtained here by restricting A to be any fixed uncountable standard 
Borel space, like .N or IR.. Therefore, this form of "Definable Determinacy" 
is called Real Projective Determinacy (PDR)· 

Use PDR to prove that all projective sets are completely Ramsey. 
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39. The Periodicity Theorems 

S9.A Periodicity in the Projective Hierarchy 

As we have seen earlier, many basic structural properties of the projective 
sets of the first two levels are consequences of the fact that the classes 
nl, I:~ have the scale property. Using Projective Determinacy, we will es­
tablish in this section that this property propagates throughout the projec­
tive hierarchy with a periodicity of order 2, so that we have the following 
picture: 

where the boxed classes are scaled (and thus also satisfy the uniformization, 
rank, and generalized reduction properties) and the other classes satisfy the 
generalized separation property. Thus the basic structure of the projective 
hierarchy is periodie of order 2. However, a finer analysis reveals significant 
structural differences, for example, between the first and the higher odd 
levels (see A. S. Kechris, D. A. Martin, and R. M. Solovay (1983]), that we 
will not pursue here. 

We will establish fir&t. the above periodicity pattern for the weaker 
rank property (the First Periodicity Theorem) in 39.B in order to see more 
clearly in a simpler context some of the ideas needed in establishing the full 
result for the scale property (the Second Periodicity Theorem), which we 
will prove in 39.C. 

Although the Second Periodicity Theorem can be nsed to extend a 
significant part of the theory of the first two levels throughout the projective 
hierarchy, it still leaves out some important reEmlts. This gap can he filled 
by the Third Periodicity Theorem, which we will prove in 39.D. This result 
provides an extension of 35.32 to all odd levels of the projective hierarchy. 

The reader should note that the game methods employed in this section 
can be used to give (in ZFC) alternate proofs of many results for Borel, I:~, 
and n} sets, which we proved earlier by different means. 

39.B The First Periodicity The01·em 

If B ~X X .N, ·we denote by vN B ~X the co-projection of B, defined by 

x E 'VN B # 'Vy( x, y) E B. 

For a class r, let 
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(39.1) Theorem. (The First Periodicity Theorem) (Martin, Moschovakis) 
Let r be a class of sets in Polish spaees closed under continuous preim.ages 
and projections. Assume that every game G(N,P), for P ~ .N in A, is 
determined. 

If X is Polish and BE r(X x .N) admits a r-rank, A= 'VNB admit.s 
a vNr-rank. Thus, ifr is ranked, so is vNr. 

P?·oof. (MoschoV'dkis) Let <P bear-rank on B. For each x, y EX consider 
the following game Gx,y on N: 

I a(O) a(l) 

II b(O) b(l) 

a(i), b(i) EN; II wins iff (x,a) :5~ (y,b). 
Note that if x, yEA, the winning condition is just cp(x,a) < cp(x,b), 

since (x,a), (y,b) E B. Note also that Gx,y is determined for any yEA, 
since then (x,a) <~ (y,b) # (x,a) E B & cp(x,a) :5 cp(y,b), which is in A 
by the definition of r-rank. 

(This game is c.alled the sup game since a winning strategy for II is a 
uniform way of d~monstrating that sup{cp(x,a) :a E .N} < sup{cp(y,b) : 
bE .N}. Compare this with the inf method used in the proof of 38.1.) 

For x, y E A, let 

x :5 y # II has a winning strategy in Gx,y· 

We will show that < is a prewellordering on A whose associated rank is a 
vNr-rank, which will complete the proof. 

Claim 1. < is reflexive, i.e., x :5 x. 

This is evident: II copies I's moves in Gx,x· 

Claim 2. < is transitive, i.e., x :::; y & y:::; z => x :::; z. 

Proof. Fix winning strategies for II in G,,y and Gy,z· 
We describe a winning strategy for II in Gx.z in the following diagram 

(Figure 39.1). 
Player I starts with a(O) in Gx,zi this is copied as I's first move in Gx,y; 

II plays b(O) following his winning strategy in Gx,yi this is copied as I's first 
move in Gy,zi II then plays c(O) following his winning strategy in Gy,zi this 
is copied as II's reply to a(O) in Gx,z; etc. 

Then cp(.1:,a):::; cp(y,b):::; cp(z,c), so II win!> by this strategy. 

Claim 3. :::; is connected, i.e., x :::; y or y :::; x. 

Proof. Asswne x :::; y fails, so fix a winning strategy for I in G."C,y· The 
diagram in Figure 39.2 shows how to obtain a winning strategy for II in 
Gy.x· 

Since cp(:r,a) > cp(y,b), it follows that cp(y,b):::; cp(x,a). 
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I a(O) 
"' 

II b(O) 
~ 

I b(O) 

~ 
II c(O) 

I a(O) 

II c(O) 

FIGURE 39.1. 

a(O) a(l) 

a(O) 

/ 
b(O) 

a(l) 

FIGURE 39.2. 

a(l) 

~ 
b(l) 

b(l) 

~ 
c(l) 

1--

a(l) 

c(l) 

a(2) 

/ 
b(l) b(2) 

a(2) 

Claim 4. The strict part < of S is well-founded. 

Proof Assume · · · < x2 < x 1 < x0 , toward a contradiction. Notice first 
that from Claim 3 it follows easily that 

x < y # I has a winning strategy in G 11 ,x· 

Thus fix winning strategies for I in Gx,.,x ... +l and consider the following 
diagram (Figure 39.3): 
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I ~(0) ao(l) a
0
(2) 

G / / X(), XI 

II ~(0) a! (1) 

~ ~ 
I 

(:/ (;:/ 
a

1 
(2) a

1 
(0) a! (1) 

G / / Xl'X2 

II ~(0) ~(1) 

~ # 
I ttz(O)~ ?/ 

~(I) a
2
(2) 

G / / X2,X3 

II ~(0) ~(1) 

FIGURE 39.3. 

Then <P(x0 , ao) > <P(x 1 , a!)> <P(x2, a2) > ···,which is a contradic­
tion. 

Finally, we have to compute that if 1/J is the rank associated with <, 
then 1/J is a vNr-rank. 

View here strategies as fwKtions a : _N<N -+ N (see 20.A). If a is a 
strategy for II and II plays b E .N by a when I plays a E .N, we will denote 
b by a * a. Similarly, if r is a strategy for I, we will write a = b * r if I play!> 
a via r when II plays b. Then we have for y E A, 

x E A & 1/J(x) $'1/•(y) # 3aV'a((x,a) <~ (y,a *a)] 

# V'r3b((x, b * r) $~ (y, b)], 

the last equivalence following from the determinacy of the games Gx,y· 0 

(39.2) Corollary. (Martin, l\iloschovakis) (Projective Determinacy) For each 
n, n~n+l' I:~n+2 are ranked. 

(39.3) Exercise. Use 39.1 to give an alternative proof that n~ is ranked. 

Recall now 35.28 and the notation preceding it. We put 6~n+l = 60 1 
2n+l 

and 6~,.+2 = 6E1 
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( 39.4) Exercise. (Kechris, Moschovakis) (Projective Determinacy) Show 
that 

The projective ordinaJs 6~ play an important role in the theory of 
projective sets. We have seen that 6} = w1 and 6:} < w2 . It turns out that 
all the 6], can actually be "computed explicitly"; seeS . .Jackson (1989]. 

(39.5) Exercise. Using the notation from the proof of 39.1, show that 

x $~ y # V'au3boV'al3bl · · · (x, (an)) $~ (y, (bn)), 

x <;, y # 3boV'ao3bl V'a1 · · · (x, (a")) <~ (y, (bn)). 

We will prove now a generalization of 39.1, whose proof will also be 
useful in that of the Third Periodicity Theorem. 

For A ~ X x N, recall that QNA ~ X is the set defined by x E QNA # 

gNy(x, y) E A, and for a class r, gNr(X) = {QNA : A E r(X X N)}. Note 
now the following simple fact (generalizing 38.16). 

(39.6) Proposition. Let r be a class of sets in Polish spaces closed under 
continuous preimages. Then we have: 

i) :JAI'r u vNr ~ g""r; 
ii) vNr ~ r => g""r = :JAI'r; 
iii) if 3Nr ~ r and all garne.s G(N,A) with A ~ N in r are deter­

mined, then QNr = vNr. 

Proof. i) Note that for A~ X x N, 

3y(x, y) E A# 9Nz(x, z) E B, 

where (x,z) E B # (x, (z(O),z(2),z(4), ... )) EA. Similarly for vN. 
ii) In the notation of the proof of 39.1 and letting (x, y) = (x(O), y(O), 

x(1),y(1), ... ) for x,y EN, we have 

9Ny(x, y) E A# 3r'v'b(x, (b * r, b)) E A). 

iii) Note that 

QNy(x, y) E A# I has a winning strategy in G(N, Ac) 

# II has no winning strategy in G(N, A.,) 
# V'a3a(x, (a, a* a)) EA. 

We now have the following result. 

0 
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(39.7) Theorem. (Moschovakis) Let r be a class of sets in Polish spaces 
closed under continuous preimages and fimte unions and intersections. As­
sume that every game G(N,P), for P ~ .N in r, is determined. If X is 
Polish and B E r(X X .N) admits a r-rank, then A= gf\IB admits a gf\lr­
rank. Thus, if r is ranked, so is gNr. 

Proof. Let <P bear-rank on B. For x,y EX consider the following game 
G"t,y on N between two players, whom we will call Circle and Square (Figure 
39.4): 

~ ~ y I I I I 
I \ I \ 

l:o;j \ l:z;j ~ 
I I I ---------,---+------

1 1 I 

~-<,;1 \ 1;3;1 
X 1 I 1 

I I I 

@ ~ 
FIGURE 39.4. 

Players Circle and Square play successively a(O), a(l), b(O), b(l), ... , as 
shown in the picture. (Thns, in effect, they play simultaneously, and in the 
order shown, two rounds, one of the game G(N, Bx) and oue of G(N, By)· 
In the first game Circle plays al$ player I, but in the second Circle plays as 
player II.) Circle wins iff (x,a) :::;~ (y,b). 

Note that G"t,y is determined for all x, y. 
Define for x, yEA, 

x :::;+ y # Circle has a winning strategy in G~,y· 

We will show that this is a prewellordering whose associated rank is a gNr­
rank. 

Claim 1. There are no x 0 , x 1, • .• with xo E A such that Square has a 
winning Strategy in eX+ X l for all n. 

n' n+ 

Proof. Otherwise fix strategies for Square in all these games and consider 
the following diagram (Figure 39.5). 

Here Square plays following these strategies and Circle copies as shown 
except for ao(O), ao(2), .... These are determined by following a winning 
strategy for I in G(N, Bx0 ), when II plays in this game ao(l), ao(3), .... 
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FIGURE 39.5. 

This ensures that (xo, ao) E B, therefore (xn, an) E B for all n and 
<P(Xo, ao) > <P(Xl, a.) > <P(X2, a2) > · · ·, which is a contradiction. 

Claim 2. :::;+ is reflexive. 

Proof. Otherwise for some x E A, • x :::;+ x, meaning that Square has a 
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winning strategy in Gt x• contradicting Claim 1. 
' 

Claim 3. ::;+ is transitive. 

Proof. Let x ::;+ y, y ::;+ z and fix strategies for Circle in Gt,y, Gt,z· The 
diagram in Figure 39.6 describes a strategy for Circle in Gt.z: 

z 

X 

z 

y 

y 

X 

FIGURE 39.6. 

Then we have (x,a) ::;~ (y,b) ::;~ (z,c), so (x,a) ::;~ (z,c) and Circle 
wins. 

Claim 4. ::;+ is connected. 

Proof. If<+ is the strict part of ::;+, then using Claim 1 we can easily see 
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that x <+ y # Square has a winning strategy in Gt.x· It follows that if 
--, y :::;+ x, then x <+ y and we are done. 

From Clil.ims 1-4 it follows that :::;+ is a prewellordering on A. Call'ljJ 
its associated rank. 

Claim 5. :::;~, <~ are in gNr, so 1/J is a g""r-ra.nk. 

Proof. We have, as it is easy to see, 

X :s~ y {:::} Circle has a winning strategy in ct,y 
# 3a(O)V'a(l)V'b(0)3b(l) 3a(2)V'a(3)V'b(2)3b(3) · · · (x,a) :5~ (y,b), 

so :::;~ is in g""r. 
To prove the same fact for <~, consider the following game, G;,y be­

tween Circle and Square as in Figure 39.7, where Circle wins iff ( x, a) <~ 
(y, b). 

~ ~ Y I I I \ 

lb(o;l '\, ~~ \\\ 
\ \ ~ 
I I ,. 
I I I I -------.,.----------.---1--1 I 1 I 

\ ~-<·;1 \ 1;3;1 
X I 1 I 1 

I I I I 

~ ~ 
FIGURE 39.7. 

We claim now that 

x <¢ y # Cil'qle has a 'Yvinning strategy in G;,y 

# V'b(0)3b(1)3a(O)Va(l) V'b(2)3b(3)3a(2)V'a(3) · · · (x,a) <~ (y,b), 

which shows that <~ is also in gNr and completes the proof. 
To see this, note that if x E A and y ft A, Circle has a winning 

strategy in c;,y, and if Circle has a winning strategy in G;,y, then X E A. 
So it is enough to prove the above equivalence when x, y E A. In this case, 
x <~ y # x <+ y #Square has a winning strategy in Gt,x· So finally it 
is enough to show: 

Claim 6. For x, y E A, Square has a winning strategy in Gt,x # Circle has 
a. winning strategy in G; . 
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Proof. ¢=:This follows from the following diagram (Figure 39.8). (Note that 
(x,a.) <~ (y,b)::;} • (y,b) :5~ (x,a).) 

c;,, 

X 

y 

FIGURE 39.8. 

::;}: Fix, toward a contradiction, winning strategies for Square in Gt,x 
and also in G;,y. Consider then the diagram in Figure 39.9. 

Square plays following his winning strategies and Circle copies as 
shown, except for a0 (0), ao(2), ... , which he plays following a winning 
strategy for I in By, when II plays ao(l), ao(3.), .... Thus (y, a<()) E B 
and so (x,a1), (y,a2), (x,a3), ... are also in Band <P(Y,ao) > <P(x,a.) ~ 
<P(y,a2) > <P(x,aa) >···,which is a contradiction. 0 

39. C The Second Periodicity Theorem 

(39.8) Theorem. (The Second Periodicity Theorem) (Moschovakis) Let r 
be a class of sets in Polish spaces containing all Borel sets and closed under 
Borel preimages, finite intersections and unions, and projections. Assume 
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. . . 

X 

y 

y 

X 

X 

c· ---------y.x 

y 

FIGURE 39.9. 

that every game G(N,P) for P ~ N in A is determined. If X is Polish and 
B E f( X X N) admits a r -scale, A = vN B admits a vNr -scale. Thus, if r 
is scaled, so is 'VNf. 

Proof. We will "localize" the rank construction in the proof of 39.1 to obtain 
the scale. 

First, by 36.8let (<Pn) be a very good r-scale on B. Fix an enumeration 
(sn) ofN<N with so= 0 and Si ~ Sj => i:::; j. For each n EN and x, y EX, 
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consider now the game G~.Y on N: 

I a(O) a(1) 

II b(O) b(l) 

a(i), b(i) EN; II wins iff (x,s.,:a) <~" (Y,Rn'b). 
Define next for x, yEA, 

x :5n y # II has a winning strategy in G~.y· 

As in the proof of 39.1, :::; .. is a prewellordering on A. Let 1/Jn be the asso­
ciated rank. Then, if we let for x E A, 

where as in 36.B (a, {3) denotes the ordinal corresponding to (a, .6) in the 
lexicographical ordering so that 

1P .. (x) :5 '¢n(Y) # 1/Jo(x) < 1Po(Y) or (1/Jo(x) = ·t/Jo(Y) & Wn(x) :51/Jn(Y)), 

then we can see (by the computations in 39.1) that each 1Pn is a vNr-rank 
(keep in mind here that s0 = 0). 

It remains to show that (1/Jn) is a scale (from which it is immediate 
that so is (~n)). 

So let x;. E A and X;. --+ x, 1/J,,(xi) --+ O:n, in order to show that 
x E A and 1/Jn(x) < O!n· By going to a subsequence we can assume that 
'1/Jn (Xi) = O!n for all i ;::: n. 

Claim 1. x EA. 

Proof. Fix a E .N in order to show that (x,a) E B. Put a!k = Snk' so that 
0 = no < n1 < n2 < · ... Let Yi = Xn,. Then ·t/Jn, (yi) = '1/-•n, (Yi+l ). thus 
Yi+l <n· y.;, so II has a winning strategy in all any; y·. Fix such strategies - " 1+1, t 

and consider Figure 39.10, where I plays a.'l shown and II follows his winning 
strategies. 

Let ao = (an(O),ao(l), ... ), a1 = (a(O),al(1), ... ), a2 = (a(O),a(1), 
a2(2), ... ), .... Since 1Pn0 (Yu,ao) > IPno(y,,al), <f>,.Jy.,a..);::: 4/n1 (Y2,a2), 
... and (<Pn) is a very good scale, it follows that <Pno(Yu,ao);::: <Pno(YJ ,a1);::: 
!t'n.u(Y2,a2);::: ···,so <Pnu(Yi,ai) converges, and similarly <Pn,(Yi,ai) con­
verges, etc., so (yi,ai)--+ (x,a) E B. 

Claim 2. ·1/.! .. (x) < O!n· 

Proof. We have to show that x :511 Xn, i.e., II has a winning strategy in 
G~.x,.. Since 'iflk(Xk) = 1/.!k(xm) for all m;::: k, fix winning strategies for II in 
all G~,.,,xk form;::: k. The diagram in Figure 39.11 then describes a winning 
strategy for II in c;;;,x,... 

I plays ao in G~,x .... Let Sn1 = s,.. 'ao, so n1 > n. Put Yl = :I:n, and 
consider en ,Xn.. Let I play ao and II answer by his winning strategy to 
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a(O) a(l) I a(2) a/3) a
3
(4) 

G "2 \ \ \ '3''2 

a(O) a(l) II az<2) ~(3) a
2
(4) 

~ ~ ~ 
)i )i '0i 

a(O) I a(l) ~(2) a/3) a/4) 

G n! \ \ \ \ y2.y1 

a(O) II a! (1) a1(2) a1(3) a1(4) 

\\ S\ S\ 
~ \S ~ 

0 I a(O) a, (I) a
1 
(2) a

1 
(3) 

c"o \ \ \ \ r1.y0 

0 11 a
0
(0) ao(l) a

0
(2) a

0
(3) 

FIGURE 39.10. 

give bo(O). This is what II plays in G~.x .. answering au. Next I plays a1 
in G~.x .. · Let Sn2 = Sn 1 'a1 = sn'ao'a!, so n2 > n1. Pnt Y2 = Xn2 and 
consider G~i.v 1 • Let I play a1 and II answer by his winning strategy to 
rlay bl( 1). Copy. b1 ( 1) as l's next move in G~1 ,x,. and let II answer by 
his wiiming strategy to play bo(1). This is Il's answer in G';,xn to a2, etc. 
Let a'= sn'((Lo,a!,···), and b0 = sn'(bo(O),bo(1), ... ), b\ = .sn'ao' 
(bl{1),bl(2), ... ), b2 =sn'ao'at'(b2(2),b2(3), ... ), .... Then<pn(xn,b0) 2: 
<pn(y., bl), <pn1 ('!11. bD 2: 'Pn1 (y2, b2), ... , so as before (y;, bD --+ (x, a') and 
<pn(X, a') ::5 limi 'Pn(Yi, bD < 'Pn(:I:,., bo), SO II wins in G~,x... 0 

Remark. Y. N. Moschovakis [1980], 6E.l5, has also proved an analog of :39.7 
for scales. 

(39.9) Corollary. (Moschovakis) (Projective Determinacy) For e_ach ~. the 
classes n~n+l ,:E~n+2 are scaled and satisfy the un·iformization pmperty. 

In particular, the class of projective sets has the uniformizat-ion prop­
erty. 

(39.10) Exercise. Use the proof of 39.8 to give an alternative proof that Df 
is scaled. 

( 39.11) Exercise. (Moschovakis) (Projective Determinacy) Show that every 
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G n2 
'3''2 

Sn II 
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Sn I 
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G nl 
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Sn II 
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Gn 
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Sn II b
0
(0) 
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al 

\ 
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FIGURE 39.11. 

\ 
b/2) 

b/2) 

\ 
b) (2) 

b) (2) 

\ 
b

0
(2) 

r-
a2 

:E~n+2 set is 6~n+ 1 -Souslin and every :E~n+l set is ~~:-Souslin for some 11: < 
6~n+ 1 . (K unen, Martin) Show that 6~n+2 :S ( 6~n+ 1) +. 

Using Projective Determinacy, Martin has shown that 6! :::; w3 , so 
from the preceding we have 6~ < w4 , and S. Jackson [1989] has shown that 
Vn(6; < Ww)· 

(39.12) Exercise. (Projective Determinacy) (Martin) Use this to show that 
every :E~ set is the union of a transfinite sequence of w2 Borel sets and every 
:E~ set is the union of a tranbiinite sequence of w3 Borel sets. (Jackson) Show 
that every projective set is the union of transfinite sequence of < Ww Borel 
sets. 

(39.13) Exercise. (Projective Determinacy) i) Show that if X, Y are Polish 
spaces and A ~ X x Y is :E~,, n ;::: 1, so are { x : Ax is uncountable}, { x : Ax 
is not meager in U}, {x : A:r. is comeager in U} for any nonempty open 
U ~ Y, {x: Ax is not contained in a K.,.}, and {(1-£,x,r) E P(Y) x X x IR: 
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~t(Ax) > r}. 
ii) (Kechris) Show that if X, Y are Polish spaces, A ~ X x Y is a 

n~n+l set, and X~ Ix is a n~n+l on n~n+l map from X to a-ideals on y 
such that each Ix is D~n+1-additive, then B = { x : Ax (j. Ix} is D~n+l and 
there is a D~n+1-measurable function f: B--+ Y with f(x) E Ax, 'Vx E B. 
In particular, tlllil holds if Ix = NULL~'"', with x ~ ILx E P (Y) a 4~n+l 
map, or if Ix = MGR(Y). 

(39.14) Exercise. (Busch, Mycielski, Shochat) (Projective Determinacy) 
Show that every projective set A ~ X, X compact metrizable, is -y­
capacitable for any capacity 1' with -y(0) = 0 which is alternating of order 
oo. 

We have seen until now that, using Projective Determinacy, the pro­
jective sets have all the usual regularity properties, such as the perfect set 
property, universal measurability, BP, etc. and satisfy the uniformization 
property. Woodin has conjectured that conversely these properties of the 
projective sets imply (in ZFC) Pro.ject.ive Determinacy. 

The class of projective sets does not form a a-algebra. However, it is 
straightforward to eyctend the preceding theory to the smallest "projective" 
a-algebra. 

(39.15) Definition. For each Polish space X, denote by uP(X) the small­
est &-algebra of subsets of X containing the open sets and closed under 
projections. We call these the D'-projective subsets of X. 

(39.16) Exercise. If X is an uncountable Polish space, then D"P(X) ~ P(X). 

(39.17) Exercise. Show that if every game G(N, A) for A C .N in D"P is 
determined (which we abbreviate by D"-Projective Determinacy), then all 
the sets in D"P are universally measurable and have the BP and the class 
D' P has the uniformization property. 

(39.18) Exercise. For 1 :::; e < w1, define the classes Eh DJ, 4J as follows: 

:EJ+~ = :r"nJ, 

n~ ="' :E~, 
4J = :EJ nn~, 

:El =·{UAn: An E :EJ,., en<>.} if>. is limit. 
n 

Show that :EJ u n~ ~ 4~ for any e < 1] and D"P = Ul::;~<Wt :EJ -
u.::;~<wt DJ = Ul::;~<wt 4J. Show that these form a proper hierarchy on 
any uncountable Polish space, and also show that :E1 +l is closed under 
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continuous preimages, countable intersections and unions, and continuous 
images. Establish the analogous properties for n~+l and 4~+1· Show that 
for >. limit., :Ei is closed under all these operations except countable inter­
sections. 

Assuming a-Projective Determinacy, show that all :Ei+2n, D~+2n+l 
are scaled for any limit ordinal >. (or >. = 0). 

39.D The Third Periodicity Theorem 

In the periodicity picture, one often denotes :EA = :E~ and DA = n~ and 
views :E~n, n~n as higher level analogs of :E?, n~. With this analogy, the 
following general Strategic Uniformization Theorem, which is usually called 
the Third Periodicity Theorem, generalizes 35.32. 

(39.19) Theorem. (The Third Periodicity Theorem) (Moschovakis) Let r 
be a reasonable class of sets in Polish spaces containing all the clopen sets, 
and closed under continuons preimages and finite intersections and unions. 
Assume r is scaled. Let r+ = g""r and assume also that r+ is closed under 
Borel preima,qes. If every game G(N,P), for P C .N in r, is determined, 
then for any Polish space X and any A ~ X x .N, if we let A+ = 9NA, 
there is a r+-measurable function CTI:A+-+ Tr such that 'Vx E A+(ai(x) is 
a winning strategy for I in G(N, Ax)). 

Proof. We claim that it is enough to find E ~ X x N<N in r+ such that 
projx (E) = A+ and for each x E A+, Ex is a winning quasistrategy for 
I in Ax. To see this, notice that r+ cont.ains all clopen sets and is closed 
under continUous preimages and countable intersections and unions, so by 
39.7 it satisfies all the hypotheses of 35.1 ii), and so it satisfies the number 
uniformization property. Using this we can define En ~ X x N<~'1 recursively 
in r+ such that E 2 E0 2 E1 2 E2 2 · · · for each x E A+, E~ is a 
quasistrategy for I (so it is winning in Ax), and if s E E~ has even length 
::::; 2n, then 3!m(s'm E E~). Then CTI(x) =nnE~ clearly works. 

Next notice that since r+ is closed under Borel preimages, it is enough 
to work with X zero-dimensional. Then, by the first part of the proof of 
36.8, we <:an find a very good r-scale (<pn) on A. For X E A+, let 

Et ={sEN<~'~: length(s) is even & 

I has a winning strategy in G(N, (Ax) 8 )}, 

that is, 
s E Et # length(s) is even & 9Ny(x,sAy) EA. 

Motivated by the proof of 39. 7, consider for each n the game Gt,n;.•,L (Figw-e 
39.12). 

Players Circle and Square play successively a(O), a(1), b(O), b(1), ... , as 
in the picture. Circle wins iff (x,s'a) ::::;*" (x,t'b). 
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FIGURE 39.12. 

Then if for s, tEEt we put 

s :::;;t,n t # Circle has a winning strategy in Gt,n;s,t• 

we have, by an argument as in 39. 7, that :5i,n is a prewellordering on Et. 
In particular, s :5t,n s for all s E Et'. So if s E Et, 3a(O)V'a.(l) (Circle has 
a winning strategy in G~.n.s,s;a(O),a(l)), where a;,n,s,t;a(O),n.(l) is the game 
given in Figure 39.13 in which Circle wins iff (x, s'a) :5~., (x, tAb). (Here 
a.(O), a(l) are given a priori, and so Square starts from b(O), etc.) 

~ ~ I I I I 

lh{o;l \ ~~ \\ 
I I ~ 
I I .,. 

t 

I I I I -------.,----+-----.---1--
1 I 1 I 

\ ~ a(3;1 \ ~ a(5;1 
I 1 I 1 
I I I I 

~ ~ 

a(l) 

s 

a(O) 

FIGURE 39.13. 

Note also that if Circle has a winning strategy in a;,n,s,t;a(O),a(l)' then 
I has a winning strat.egy in G(N, (Ax)s·a(O)"a(l))· So for all n, 

s E E;t :::? 3a(O)V'a(l)[s' a(O)" a(l) E Et & 

Circle has a winning strategy in a;,n,s,s;a(O),a(l)l• 
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This shows that if for length(s) odd, say equal to 2n + 1, we put 

.s E Ex # Vj(s' j E Et & 

Circle has a winning strategy in G;,n,s12n,sl2n;s(2n),j), 

and for length(s) even, s E Ex iff (s = 0 or sl(length(s)- 1) E Ex), then 
Ex is a quasistrategy for I and if we let E(x, s) # x E A+ & s E Ex, 
then clearly E is in r+. So the proof will be complete if we can show it is 
winning for I in Ax· So fix a E [Ex] in order to show that (x, a) E A. Fix 
also winning strategies for Circle in all the games c:,i,al2i,al2i;a(2i),a(2i+l)' 

Consider Figure 39.14, where Circle always follows his winning strate­
gies and Square copies a.<; shown, except for a0 (0), a0 (2), · · ·, which 
are played following a winning strategy for I in G(N, Ax)· Let a} -
a(O)' a(1)' a1. a2 = a(O)' a(1)' a(2)' a(3r a2, etc. Then <po(x, aD < 
<po(x,ao), <pl(x,a2):::; <p1(x,al), ···,so (:r,a~)--+ (x,a) EA. 0 

(39.20) Corollary. (Moschovakis) (Projective Determinacy) Let X be Pol­
ish, A ~ X X .N be :E~n• and let A+ = 9wA. Then there is a n~n+l­
measurable function a 1:A+·--+ Tr such that Vx E A+(a1(x) is a winning 
strategy for I in G(N, Ax)). 

(39.21) Exercise. Show that the application of 39.19 tor= D~n+l is already 
included in 39.9. 

(39.22) Exercise. Prove the following generalization of 35.32: Let X be a 
standard Borel space and A~ X x.N a Borel set with open sections. Then if 
A+= 9wA, A+ is Dl and there is a Dl-measurable function O'J: A+ --+ Tr 
such that for x E A+, a 1(x) is a winning strategy for I in G(N, Ax)· 

(39.23) Exercise. (Martin) (Projective Determinacy) Let X, Y be Polish 
spaces and let A~ X x Y be :E~n+l· Let B = {x: Ax is countable} (so 
that B is n~n+l by 39.13). Show that there is a sequence fi : B --+ Y of 
D~n+1-measurable functions with Ax ~ {fi(x) : i E N} for x E B. (Note 
that this generalizes and strengthens 35.13. The proof for n = 0 can be 
carried in ZFC.) In particular, if A is 4~n+l and Vx(Ax is countable), 
projx(A) is 4~n+l and there is a sequence of 4~n+l functions fi :X--+ Y 
such that Ax = {fi(x): i EN} for x E proh(A). (This generalizes 18.15.) 

(39.24) Exercise. (Kechris) (Projective Determinacy) Let X, Y be Polish 
spaces and let A ~ X x Y be :E~n+l' Let B = { x : Ax is meager (resp., 
contained in a Ka set)} (which is n~n+l by 39.13). Show that there is 
a sequence Fi : B --+ F(Y) of D~n+l-mea.<;urable functions such that for 
x E B, Fi(x) is nowhere dense (resp., compact) and A"'~ Ui Fi(x). 
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FIGURE 39.14. 

(39.25) Exercise. (Moschovakis) (Projective Determinacy) If X, Yare Polish 
spaces and A~ X X y is 4~n+l• then {x; 3ly(x,y) E A} is n~n+l· (This 
generalizes 18.11.) Also, iff: X --+ Y is 4~n+l and A~ X is 4~n+l such 
that JIA is injective, then f(A) is also 4~n+I· (This generalizes 15.2.) 

Y. N. Moschovakis [1980], 6E.14, has also shown that the following 
analog of 13.10 goes through, using Projective Determinacy: 

Let X be Polish and A ~ X be 4~n+l' Then there is a D~n set 
B <; X x .N such that 

x E A# 3y(x,y) E B # 3!y(x,y) E B. 
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40. Epilogue 

40.A Extensions of the Projective Hierarchy 

The projective sets constitute the traditional field of study in descriptive 
set theory, but they only form a part, albeit one that is very important, of 
the domain of "definable" sets in Polish spaces. In the last 25 years or so the 
rang~ of classical descriptive set theory has been greatly expanded, under 
"Definable Determinacy", to encompass vastly more extensive hierarchies of 
"definable sets", such as, for example, those belonging to L(IR), that i~:~, the 
smallest model of ZF set theory containing all the ordinals and reals. (The 
projective, the a-projective, as well as the more complex hyperprojective 
sets belong to this model.) The reader can consult Y. N. Moschovaki~:~ [1980] 
and the seminar notes A. S. Kechris et al. [1978, 1981, 1983, 1988] on these 
developments. 

40.B Effective Descriptive Set Theory 

In these lectures we have prf',seuted a basic introduction to classical descrip­
tive set theory. For a deeper understanding of the subject, the concepts and 
methods of effective descriptive set theory are indispensable. In effective 
descriptive set theory the classical concept of topology is replaced by that 
of an effective topology. 

Given a set X and a sequence (Un) of "basic" open sets satisfying 
appropriate effectiveness conditions, one defines an effective open set to be 
a set of the form Un Uf(n)> where f: N ~ N is a computable (or recursive) 
function. Starting from thh;, one defines and studies effective analo~ of the 
Borel and projective classes. The effective classes are properly contained 
in the classical ones, but in turn the classical (uon-self-dual) classes can 
be obtained by the process of taking sections of sets from the effective 
OMI:!. Iu particular, the results of the effective theory immediately imply 
their classical counterparts. In the effective theory new powerful ideas and 
methods of computability (or recursion) theory have been n::;ed to develop 
au extensive subject that is of great interest iu its owu right. In relation to 
the classical theory, this lead-; both to uew (often much simpler, once the 
basic effective theory is Wlderstood) proofs of known results as well as to 
new results in the classical context for which no "classical-type" proof has 
yet been found. The reader ca.u consult Y. N. Moschovakis [1980] and the 
forthcoming A. Lonveau [199?] to learn more about this. 

40.C Large Cardinals 

Beyond the effective theory, the further study of projective and more general 
"definable sets" is intrinsically connected with the study of large cardinals 
in set theory and their inner models. This uncovers a deep "duality", where 
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these two a priori unrelated subjects are shown to provide equivalent de­
scriptions of an underlying reality. For more on this, see Y. N. Moschovakis 
[1980], and the forthcoming A. Kanamori [199?] and D. A. Martin [199?]. 

40.D Connections to Other Areas of Mathematics 

Traditionally, the theory of Borel and analytic sets has been useful in many 
areas of mathematics, including measure theory, probability theory, func­
tional analysis, potential theory, group representation theory, and operator 
a.lgebras. See, for example, C. A. Rogers et al. [1980], J. Hoffman-J0rgensen 
[1970], C. Dellacherie [1972]: C. Dellacherie aud P.-A. Meyer [1978], J. P. 
R. Christensen [1974], K. P. Parthasarathy [1967], R. M. Dudley [1989], 
D. L. Cohn [1980], D. P. Bertsekas and S. E. Shreve [1978], W. Arveson 
[1976], L. Auslander and C. C. Moore [1966], G. W. Mackey [1976], :rvi. 
Takesaki [1979], B. R. Li [1992], R.. Zimmer [1984], E. Klein and A. C. 
Thompson [1984]. More recently, the theory of co-analytic sets provided 
the appropriate context for applications of descriptive set theory to the 
cla.<;sical theory of trigonometric series and related areas of harmonic anal­
ysis, such as the study of thin sets and the harmonic analysis of measures 
(5ee, e.g., A. S. Kechris and A. Lonvea.u [1989, 1992], and the references 
contained therein). The class of projective (or a-projective) sets has all the 
desired regularity properties, like universal measurability, BP, etc., but it 
ha.<;, moreover, strong closure properties (projection) and important struc­
tural properties, like w1iformization. Therefore, it seems quite probable to 
us that the theory of projective sets will prove very useful in providing the 
proper framework for applications of descriptive set theoretic methods to 
further mathematical theories. 



Appendix A. Ordinals and 
Cardinals 

We denote by ORO the class of ordinaJs and by < the ordering among 
ordinals. As is common in set theory, we identify an ordinal a with the set 
of its predecessors, i.e., a = {,8 : ,B < a}. Also, we identify the finite ordinals 
with the natural numbers 0, 1, 2, ... , so that the first infinite ordinal w is 
equal to {0, 1,2, ... } = N. 

The successor of an ordinal a is the least ordinal > a. An ordinal is 
successor if it is the successor of some ordinal, and it is limit if it is not 0 or 
successor. Finally, every set of ordinals X has a least upper bound or supre­
mum in ORO, denoted by sup(X) If (a~)~<>. is an increasing transfinite 
sequence of ordinals, with A limit, we write 

lima~= sup{a~: e <.A}. 
~<>. 

The cofinality of a limit ordinal 9, written as cofinality(9), is the small­
est limit ordinal .A for which there is a strictly increasing transfinite sequence 
(a~h<>. with lim~<>. a~= 9. 

If a, ,B are ordinals, then a+ ,B, a· ,8, and a!3 denote respectively their 
sum, product, and exponentiaL These are defined by transfinite recursion 
as follows: a+ 0 =a, a+ 1 =the successor of a, a+ (,8 + 1) =(a+ ,B)+ 
1, a+ .A= limf3<>.(a+,B) if A is limit; a ·0 = 0, a· (,8+ 1) =a· .B+a, a· .A= 
limf3<>.(a ·,B); a 0 = 1, a!3+l = a!3 ·a, a>.= limf3<>. af:l. 

An ordinal a is initial if it cannot be put in one-to-one correspondence 
with a smaller ordinal. Thus 0, 1, 2, ... , ware initial ordinals. For a E ORO, 
a+ denotes the smallest initial ordinal > a. We define (wa)oeORD by trans­
finite recursion as follows: Wo = w, Wo+l = (wa)+, W>. = limo<>.Wo if A is 
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limit. Thus WI = the first uncountable ordinal, w2 = the first ordinal V~ith 
cardinality bigger than that of WI, etc. 

Using the Axiom of Choice, there is a bijection of any set X with 
unique initial ordinal a, so we identify the cardinality card(X) of X with 
this ordinal. When we view the initial ordinal w0 as a cardinal in this 
fashion we often use the'notation N"' for Wa· So No= w, NI =WI, etc. We 
denote by 2No the cardinality of the set of reals (not to be confused with 
the ordinal exponentiation 2w). 



Appendix B. Well-founded 
Relations 

Let X he a set and -< a (binary) relation on X (i.e., -< ~ X 2). We say 
that -< is well-founded if every nonempty subset Y ~ X has a -<-minimal 
element (i.e., 3yo E YV'y E Y..., (y -< y0 )). This is equivalent to asserting 
that there is no infinite descending ehain · · · -< :r:2 -< x1 -< x0 . Otherwise, 
we call -< ill-founded. 

For a well-founded relation -< on X we have the following principle of 
induction: If Y ~ X is such that 

V'y(y -< X :::} y E Y) :::} X E Y, 

then Y =X. 
We also have the following principle of definition by recursion on any 

well-founded relation -< on X: Given a function g, there is a unique function 
f with 

f(x) = g(JI{y: y-< x}, x) 

for all x EX. (It is assumed here that g: Ax X~ Y, where A= {h: his 
a function with domain a subset of X and range included in Y} for some 
set Y.) 

Using this, we can define the rank function P-< of -<, P-< : X ~ ORD 
as follows: 

P-<(x) = sup{p-<(Y) + 1: y-< x}. 

In particular, P-<(x) = 0 if x is minimal, i.e., ..., 3y(y -< x). Note that P-< 
maps X onto some ordinal a (which is clearly< card( X)+). This is because 
if a is the least ordinal not in range(p-<), then hy a simple induction on -< 
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we have P-< (x) < a for all x E X. We denote this ordinal by p( -<) and call 
it the rank of-<. Thus p(-<) = sup{p-<(x) + 1: x EX}. 

If -< = < is a well ordering, then a = p( <) is the unique ordinal iso- · 
morphic to < and P< is the unique isomorphism of < with a. 

If -<x, -<y are two relations on X, Y respectively, a map f : X ~ Y 
such that x -<x x':::} f(x) -<y f(x') will be called order preserving. Note 
that if -<y is well-founded and f: X ~ Y is order preserving, then -<x is 
well-founded and P-<x (x) < P-<y (f(x)) for all x E X, so that in particular 
p( -<x) ::::; p( -<y ). It follows that a relation -< on X is well-founded iff there 
is order preserving f :X ~ ORD (i.e., x -< y:::} f(x) < f(y), with < the 
usual ordering of ORD ). Moreover, if f : X ~ ORD is order preserving, 
then P-< (x) $ f( x) (i.e., P-< is the least (pointwise) order preserving function 
into the ordinals). 

Note finally that iff ; X ~ Y is a surjection, -<y is a well-founded 
relation on Y, and the relation -<x on X is defined by x -<x x' # f(x) -<y 
f(x'), then p( -<x) = p( -<y ). 



Appendix C. On Logical Notation 

In this book we use the following notation for the usual connectives and 
quantifiers of logic: 

..., for negation (not) 

& for conjunction (and) 

or for disjunction (or) 
:::} for implication (implies) 
{:::} for equivalence (iff) 

3 for the existential quantifier (there exists) 

'V for the universal quantifier (for all). 

It should always be kept in mind that "P:::} Q'' is equivalent to "...,p or Q" 
and "P # Q" to "(P:::} Q) & (Q:::} P)". The expressions "3x E X" and 
"'Vx E X" mean "there exists x in X" and "for all x in x:. respectively, 
but we often just write 3x, 'Vx when X is understood. For example, as a 
letter such as n (as well as k, l, m) is usually reserved for a variable ranging 
over the set of natural numbers N, we most often write just "3n" instead 
of "3n E N". 

For convenience and brevity we frequently employ logical notation in 
defining sets, functions, etc., or express them in terms of other given ones. 
It should be noted that there is a simple and direct correspondence between 
the logical connectives and quantifiers and certain set theoretic operations, 
which we now describe. 

If an expression P(:~:), where x varies over some set X, determines 
the set A, i.e., A = {x E X : P(x)}, and similarly Q(x) determines B, 
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then P(x) & Q(x) determines An B, i.e., conjunction "& " corresponds 
to intersection n. Similarly, disjunction "or" corresponds to union U, and 
negation"...," to complementation"', i.e., if P(x) determines A, then ...,p(x) 
determines "' A = X \ A. Also ":::}", "#" correspond to somewhat more 
complicated Boolean operations via the above equivalences. 

Now let P(x, y), where x varies over a set X and y over a set Y (or 
equivalently ( x, y) varies over X x Y), determine a set A, i.e., A = { ( x, y) E 
X x Y: P(x,y)}. Then 3yP(x,y) determines the projection projx(A) of 
A on X, i.e., existential quantification corresponds to projection. Similarly, 
since '"</yP(x, y)" is equivalent to "...,3y...,P(x, y )", it follows that VyP(x, y) 
determines the (somewhat less transparent operation of) co-projection "' 
proh("-' A) of A, i.e., the universal quantifier corresponds to co-projection. 
Note here that if Z ~ Y, then the expression 3y E Z P( x, y) is equivalent 
to 3y(y E Z & P(x,y)) and thus determines the set projx(A n (X x Z)), 
and Vy E ZP(x,y) is equivalent to Vy(y E Z :::} P(x,y)) and determines 
the set"' proh((rv A) n (X x Z)). 

One can also interpret the existential and universal quantifiers as in­
dexed unions and intersections. If I is an index set and P( i, x) is a given 
expression, where i varies over I and x over X, we can view A = { ( i, x) : 
P(i,x)} as an indexed family (Ai)iei, where Ai = {.1:: (i,x) E A}, and 
then 3iP(i,x) determines the set UiEl Ai and ViP(i,x) the set niEIAi. 
This interpretation is particularly common when I = N or more generally 
I is a c.ountable index set, such as I = N<"". 

If P(x) is a given expression, where x varies over X, which defines 
a set A ~ X, and f : Y ~ X is a function, then the expression P(f(y)), 
obtained by substituting f(y) for x in P, determines the set {y : P(f(y))} = 
{y: f(y) E A} = f- 1 (A), i.e., substitution corresponds to inverse images. 
To consider another situation, if au expre::;sion P(x, y) defines A ~ X x Y 
and f: Z ~ Y, the expression P(x,f(z)) defines t.he set. g- 1(A), where 
g : X x Z ~ X x Y i.'! given by g(x, z) = (x, f(z )). Similarly, one can 
handle more complex types of substitution as appropriate inverse images. 
Also note that if P(x, y) defines A~ X x Y and Q(x) defines B ~X, then 
an expression such as "Q(x) or P(x, y)", for example, which is the same as 
"Q(1r(x, y)) or P(x, y)", with 1r(x, y) = x, defines 1T- 1 (B)UA = (B x Y)UA. 

In view of these correspondences between logical connectives and quan­
tifiers and set theoretic operations, we often employ logic.al notation in eval­
uating the descriptive complexity of various sets, functions, etc., in these 
lectures. For example, to show that a set is Borel, it is enough to exhibit 
a definition of it that involves only other known Borel sets or functions 
(recall that the preimage of a Borel set by a Borel function is Borel) and 
...,, &, or, =>, #, 3i, Vi (i varying over a cow1table index set). Similarly, if 
a set is defined by an expression that involves only other known I:t (resp., 
DD sets and&, or, 3i, Vi (i again varying over a countable index set), 3x 
(reBp. Vx) (x varying over a Polish space), then it is I:t (resp., nl), etc. 
The application of such logical notation to descriptive complexity calcula-
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tions is usually referred to as the Tarski-Kuratowski algorithm (see Y. N. 
Moschovakis [1980]). 

As a final comment, we note that we occasionally also follow logical 
tradition in thinking of sets A ~ X as properties of elements of X and in 
writing "A(x)" interchangeably vrith "x E A", A(x) meaning that x has 
the property A. Similarly, if R ~ X x Y, we can view R as a (binary) 
relation between elements of X, Y and write R(x, y) or sometimes xRy 
(instead of the cumbersome R((x, y))) as synonymous with (x, y) E R, and 
correspondingly P(x, y, z) if P ~X x Y x Z, etc. 



Notes and Hints 

CHAPTER I 

4.32. To show that Tr 1 and PTr 1 are not G 6 use the map x E C ~ Tx E Tr, 
where Tx is defined by 0 E Tx, s E Tx:::} {n: sAnE Tx} = {n: x(n) = 1}, 
and the Baire Category Theorem (see 8.4), which implies that {x E C : 
x(n) = 1 for only finitely many n} is not G6• 

Sections 7, 9. See the article of F. Top50e and J. Hoffmann-J0rgensen in 
C. A. Rogers, et al. [1980]. 

7.1. SeeN. Bourbaki [1966], IX, §2, Ex. 4. 

7.2. _By taking complements, it is enough to prove Kuratowski's reduction 
property: If A, B ~ X are open, there are open A* ~ A, B* ~ B with 
A* U B* =AU B and A* n B* = 0. Write A= UiEN Ai, B = UiEN Bi with 
Ai, Bi clopen and put A* = Ui(AinnJ<i rv Bj), B* = Ui(Binnj::;i rv Aj). 

7.10. Thh; proof comes from the article of E. K. van Donwen inK. Kunen 
and J. E. Vaughan [1984], Ch. 3, 8.8. 

7.12. Show that if X is nonempty countable metrizable and perfect, then 
i) it is zero-dimensional; ii) if U ~X is clopen, x E U and e: > 0, then there 
is a partition of U into a countable sequence (Ui)ieN of nonempty clopen 
sets of diameter < e: with~· E Uo. Construct an appropriate Ltisin scheme 
(Cs) and points X 8 E C8 with X 8 ·o = X 8 and X 8 = the least (in some fixed 
enumeration of X) element of C8 • 

7.15. Let X be nonempty perfect Polish with compatible complete metric 
d. Show that for each e: > 0 there is a sequence ( Gn)n.eN of pairwise disjoint 
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nonempty G6 sets with diameter < € such that G = Un Gn and each Gn is 
perfect in its relative topology. Use this to construct a Lusin scheme ( G 8 ) 

with G0 = X, each G., a G r, set that is perfect in it::s relative topology v,ith 
compatible complete metric d8 , and ( Gs·n)neN satisfies the above conditions 
relative toGs for the compatible complete metric d + E dsli and 
€ = 2-length(s), O<i:=;tcngth(s) 

Section 8. For a detailed historical survey of the Banach-Mazur and related 
games such as the (strong) Choquet games, seeR. Telgarsky [1987]. (Note, 
however, that his terminology is sometime::s different than ours.) 

8.8. ii) Argue that we can assume without lo~:~s of generality that f(U) is 
uncountable for each nonempty open U ~ X and in this case show that 
{K E K(X): JIK is injective} is dense G6. 

8.32. For the last assertion, use 7.12 and 3.9 to show that for any 
two nonempty perfect Polish spaces X, Y there are dense G6 subsets 
A~ X, B ~ Y that are homeomorphic. 

9.1. For a proof, seeS. K. Berberian [1974]. 

9.16. i) By 9.14, it is enough to check that the action is separately con­
tinuous. So fix x in order to show that g ~---+ g.x is continuous in g. By 
8.38, g ~-+ g.x is continuous on a dense G6 set A. Given 9n ~ g, note that 
n, {h. : hgn E A} n { h : hg E A} # 0. 

9.17. See D. E. Miller [1977]. 

9.18. See V. V. Uspenskfi [1986]. 

9.19. See C. Bessaga and A. Pelezynski [1975]. 

CHAPTER II 

12.A, B. See G. W. Mackey [1957]. 

12.C. See E. G. Effros [1965] and J. P. R. Christensen [1974]. 

12.7. Let X= Xu{oo} be the one-point compactification of X and consider 
the map F ~-+ F U { oo} from F(X) t.o K(X). 

12.8. Use the proof of 12.6, hut now argue that G is Borel in K(X). Then 
use 13.4. 

12.13. SeeK. Kura.towski and C. Ryll-Nardzewski [1965]. 

14.13. Use 8.8 ii). 

14.15. Use 9.14 and 9.15 to show that multiplication is continuous. For 
the inverse, show that g ~-+ g-1 is Borel, and thus must be continuous on a 
dense G6. 

14.16. Let f : X ~ 2"" be defined by f(x)(n) = 1 # x E An.. Letting 
S = a({An: n EN}), note that f is (S,B(2Jil))-measurable (in particular, 
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.,Borel). If A ~ X is Borel E-invariant, then f(A), f("' A) are disjoint 
analytic subsets of 2!\f. Now use the Lusin Separation Theorem. 

15.C. See H. L. Royden [1968], Ch. 15. 

16.B, C. SeeR. L. Vaught [1974]. 

16.D. For an exposition of Cohen's method offorcing, seeK. Kunen [1980]. 

17.16. SeeK. R. Parthasarathy [1978], §27. 

17.E. SeeK. R. Parthasarathy [1967]. 

17.:n. SeeK. R. Parthasarathy [1967], Ch. II, 6.7. 

'17.34. See R. M. Dudley [1989], 8.4.5. 

17.35. We can assume that X= C. For any clopen set A~ C, define VA E 
P(Y) by l/A(B) = p.(A n f- 1(B)). Then v.4 << 1/. Put JLy(A) = d:t (y). 
Then use 17.6. This elegant proof comes from 0. A. Nielsen [1980], 4.5, 
where it is attributed to Effros. 

17.39. Work with X = C. 

17.F. SeeP. R. Halmos [1950]. 

17.43. For ii) argue as follows: Let A ~ B(X) be a a-algebra and A = 
{[P] : P E A}. Choose a sequence (Pn), with Pn E A, such that {[Pn]} is 
den::se in A (for the metric 6). Define f: X~ C by f(x)(n) = 1 # x E Pn. 

17.43. (Remark following it) Solecki has found the following simple proof of 
this result: If CAT=CAT(IR) admitted such a topology, the sets Fn ={a E 
CAT: a(\ Un = 0}, where Vn = [V,l] with {Vn} a basis of nonempty open 
sets in IR, would be Borel in this topology. Clearly, Un Fn = CAT \ { 1}; so 
for some no, Fnu is not meager. Each Fn is a subgroup of the Polish group 
(CAT,+), where a+ b =(a V b)- (a 1\ b), so hy 9.11 Fn0 is open, thus has 
countable index i~ (CAT, + ). Bnt {a E CAT : a :5 Vn0 } is uncountable, so 
there are a. :f b :5 Vno with a+ bE F,.0 • Then (a+ b) 1\ t',.0 = 0, so a= b, 
which is a contradiction. 

11.44. For ii), if D s; A is countable dense, show that D generates A. For 
the other direction one can use the following approach suggested by Solecki: 
Let B ~A be a countable subalgebra generating A. Adapting 10.1 ii) in an 
obvious way to any Boolean a-algebra, A is the smallest monotone subset of 
A containing B. So it is enough to show that B (the closure of Bin (A,6)) 
is monotone. For that use the easy fact that if (an) E AN is increasing, then 
6(Vnan, a)= limn6(an, a). For iv), seeP. R. Halmos [1950], §41. 

,. 

17.46. i) See P. R. Halmos [1960]. ii) See the survey article J. R. Choksi 
and V. S. Prasad [1983]. 

18.B. The re.-;nlts here are special cases of those in 36.F - see references 
therein. The measure case of 18.7 was first proved in D. Blackwell and C. 
R.yll-Nardzewski [1963]. See also A. Maitra [1983]. 
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18.8. Assuming P :f 0, let f : .N-+ X x Y be continuous with f(.N) = P. 
Put ps = f(]\[8 ). Then ps is I:l, P 0 = P, ps = Un ps·n, and if a E 

.N, Wn E pain for all n, then Wn -+ w, where w is the unique element of 
nnpaln 

Put P: = {y : (x, y) E P8
}, and note that (P:)sEN<" has the above 

properties for Px if Px :f 0. For each x E proh(P), let Tx = {s E N<N: 
P; :f 0}, so that Tx is a nonempty pruned tree on N. Let ax be its leftmost 
branch. Put {f(x)} = nn P:"1n. Then f uniformizes P. 

18.16. See J. Feldman and C. C. Moore [1977]. 

18.17. For (x, y) E .N x .N, put (x, y) = (x(O), y(O), x(1), y(1), ... ) E .N, 
and if z = (x, y), let (z)o = x, (zh = y. As in the proof of 14.2, let F £;;; 
.N X .Af3 be .N-universal for n~(.Af3). Define s £;;; .N X .N by 

(x,y) E S # { 3!(u,'V)(x,x,u,v) E F:::? y :f (u)o, 

where (u, v) are (unique) such that ( x, x, u, v) E F}. 
Show that S is I:L so let F £;;; .N x .N x .N be closed with (x, y) E S # 

3z(x,y,z) E F. Put (x,u) E F # (x,(u)o,(u)l) E F. Note that F is closed 
and V'x3u(x, u) E F. Show that this work<;, using 13.10. 

For another proof, using later material, see the notes to 35.1. 

18.20. i) For the case when X is Polish and E is closed, let {Un} be an 
open basis for X and notice that if (x, y) '¢ E there are U, V E {Un} with 
(x,y) E u X v £;;; rv E. Now use 14.14. 

ii) See A. S. Kechris [1992], 2.5. 
iii) See J. P. Burgel:IS [1979]. 
iv) See S. M. Srivastava [1979]. Let p(x) = [~·]E, p : X -+ F(X). 

Show that p is Borel and xEy # p(:~:) = p(y), so in particular E is Borel. 
Define P £;;; F(X) x X by (F,x) E P # p(x) = F, and for F E F(X), 
let IF = the a-ideal of meager in (the relative topology of) F sets. Verify 
that F ~--+ IF is Borel on Borel. Then, by 18.6, Q = projF(X)(P) is 
Borel and there is a Borel function q : Q -+ X with p(q(F)) = F. It 
follows that s(x) = q(p(x)) is a Borel selector for E. The verification that 
F ~--+ IF is Borel on Borel is based on the following fact which can be 
proved by the same method as 16.1: If (Y,S) is a measurable space, Z a 
Polish space, U £;;; Z open, and A £;;; Y x Z x F(Z) is Borel, then so is 
Au= {(y,F) E Y x F(Z): {z: (y,z,F) E A} is meager in (the relative 
topology of) F n U}. 

19.1. See J. Mycielski [1973] and K. Kuratowski [1973]. 

19.11. See F. Galvin and K. Prikry [1973]. 

19.14. See E. Ellentuck [1974]. 
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19.E. We follow here a seminar presentation by Todorcevic. 

19.20. See H. P. Rosenthal [1974]. 

20.1. See D. Gale and F. M. Stewart [1953]. 

20.C. See D. A. Martin [1985]. 

20.11. For the last assertion, let A ~ .N be Borel and find F, H closed 
in .N x .N with x E A# 3u(x,u) E F, x '¢A# 3v(x,v) E H. Let 
(x, y) E F' # (x, (y)o) E F, (x, y) E H' # (:r, (y)I) E H, where for 
y E .N, (Y)o(n) = y(2n), and (y)l(n) = y(2n + 1). Let C ~ .N x .N be 
clopen separating F', H'. Then x E A # QNyC ( x, y). 

21.A, B. The *-games for X = C in the form given in 21.3 were studied in 
M. Davis [1964], which contains the proof of 21.1 for these games. 

21.B, C, D. Unfolded games seemed to have been first considered by Solo­
vay, for a measure-theoretic game of Mycielski-Swierczkowski, and later by 
Martin for *-games and by Kechris for **-games. 

21.4. In the notation of 16.C, let L be the language containing one binary 
relation symbol R. Consider XL = 2!11

2
, put WO = {x E XL : Ax is a 

wellordering}, and for x E WO, let Ax = (N, <x), and lxl = p( <x) be 
the unique ordinal isomorphic to <x· Thus {lxl : x E WO} = w1 \ w. For 
w <a< w1, let WOo= {x E WO: lxl =a}. 

Consider the following game G: I starts by playing either (WOo, 0) for 
some a< w1 or (X, 1) for some X~ 2!11. If I chooses the first option, from 
then on I and II play O's or 1 's and if II plays y(O), y(1), ... , then I wins 
iffy'¢ WO,... If I chooses the second option, then II next plays i E {0, 1}, 
which we view as choosing a side in the game G*(X). Then they play a run 
of the game G* (X) with II starting first if she chooses i = 0 and I starting 
first if she chooses i = 1. Let x be the concatenation of the sequence of 
their moves. Then I wins iff (i = 0 & x '¢X) or (i = 1 & x EX). Without 
using the Axiom of Chok-e, show that this game is not quasidetermined. 
Use the proof of 8.24, which shows that if we can wellorder 2!11, then there 
is a subset of 2!11 which is w1countable but contains no perfect subset. 

21.9. See J. H. Silver [1970]. 

21.15. See D. A. Martin [1981]. 

21.22. See A. S. Kechris, A. Louveau and W. H. Woodin [1987]. The ease 
when B is analytic was also proved in A. Louveau and J. Saint Raymond 
[1987]. 

21.23, 24. This was proved independently in A. S. Kechris [1977] for X= .N 
in the form given in 21.24, and in J. Saint Raymond [1975] for general X. 

21.25. See D. A. Martin [1968]. 
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22.6. See Y. N. Moschovakis [1980], 1G.11. Let C ~ Y be a Cantor set. Let 
U' ~ C x X be C-universal for I:~(X). Then let U ~ Y x X be I:~(Y x X) 
with u n (C X X)= U'. Clearly, u is Y-universal for I:~(X). 

22.14, 16. The con~:.-ept of (generalized) reduction is due to Kuratowski, 
who also established the generalized reduction property for I:~. The (gen­
eralized) separation property for n~ is due to Sierphiski. 

22.17. Apply the separation property of the D~'s. 

22.24. See R. L. Vaught [1974]. 

22.E. For a more detailed exposition of the difference hierarchy, see A. 
Lonveau [199?]. 

22.26. For iii), notice that if De((A11 ) 11<e) is defined by the same formula for 
any, not neces..'larily increa.'!ing (A11 ) 11<e, then Do((A11 ) 11<e) = De((A~)11<e), 
where A~1 = U,::;,., A( (which is increasing). 

22.29. See F. Hausdorff [1978]. 

23.2. For c3, show that Pa :Sw c3 by considering the map X E 2!\lxl\1 f-.+ 

x' E N"" given by x'( (m, n)) = (m, n) if x(m, n) = 0; = m if x(m, n) = 1, 
where () is a bijection of N x N with N, with (m, n) > m. 

For Pj, one method is to show that P3 ::::; w P;. An easier method, sug­
gested by Linton, is to show that C3 ::5 w Pj. Define for each s E Nn, s* E 
2(n+I)x(n+l) by induction on n, ::10 that if s ~ t, then s* ~ t* (in the sense 
that s* = t*j2(n+l)x(n+l)). Let 0* = (0). Given s* for s E Nn, consider 
t = s"k. To define t*, enumerate in increasing order ao < ·· · < ap-1 all 
the numbers 0 < a. ::::; n for which s* (a, b) = 0, for all 0 ::::; b ::::; n. Define 
then for 0 :::; a ::::; n, t*(a, n + 1) = 0 iff a = ai for some i < k, and let 
t*(n + 1, b)= 0 for all 0 ::5 b ::5 n + 1. For each x EN~'~, let x* = Un(xln)*. 
Show that x E C3 # x* E Pj. Finally, a third method is to use 23.5 i) 
for X = C, e = 1 and the fact that any closed but not open subset of C is 
n?-complete. 

23.4. Fix a bijection ( ) of 2<!':1 v..ith N so that s ~ t :::? (s) < (t}. For 
x E 2"", let (x) ~ N be given by (x} = { (xln) : n EN}. Note that (x) n (y) 
infinite :::? x = y. For A ~ 2"", let IA = the ideal on N generated by the 
sets (x) for x EA. Note that A :Sw IA via x ~--+ (x). 

23.5. For i), use the following argument of Solecki: Every n~+2 set is a 
decreasing intersection of a sequence of I:g+l sets. If e :?: 2, every I:~+l set 
is the union of a sequence of pairwise disjoint D~ sets. For e = 1, every 
I:g set is the union of a point-finite seqnence (Fn)new of closed sets (i.e., 
{ n : x E Fn} is finite for each x ). This follows easily using the fact that every 
metric space is paracompact (see, e.g., K. Kuratowski [1966], p. 236). For ii), 
consider iterations defined as follows: A E :F*g # {m: {n: (m, n) E A} E 
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9} E :F and A E :F * (9n)neN # {m: {n: (m, n) E A} E 9m} E F, where 
() i"! a bijection of N x N with N. 

23.7. See H. Ki and T. Linton [199?]. 

23.12. Show that it is enough to prove that W is I:g-hard. Then verify 
that Sa ::::;w JiV, where Sj is as in 23.2. 

23.25. Show that for every I:~ set X ~ 2!11, X ::::;wTR. For that prove by 
induction on n that for every X ~ 2!\1, X E I:~, there is B ~ N and a 
sentence a in the language { +, ·, U, V}, U, V unary relation symbols, such 
that 

A EX# (N,+,·,A,B) I= a. 

Encode then (A, B) by AEBB = {2n: n E A}U{2n+1: nEB}. For n = 1, 
also use the functions f, g. 

24.8. Use 22.21, 24.7 and the method of proof of 18.6. To obtain that the 
unifonnizing function f defined this way is actually I:~+l-rnf'..asurable, use 
the following argument of Ki: Fix a countable dense set D ~ Y and find 
fn : proh(A) --+ Y which are !:~+ 1 -measurable and take values in D, so 
that fn --+ f uniformly. Then use 24.4 i). 

24.19. See K. Kuratowski [1966], §24, III, Th. 2 '. 

24.20. See J. Saint Raymond [1976], and for further results and references 
seeS. Bhattacharya and S. M. Srivastava [1986]. By induction one, show 
that it is enough to consider the case e = 1. The proof is then a variant of 
that of 12.13. Find a Sousli.n scheme (Fs) on X with F0 =X, F,, nonempty 
closed, F~-i ~ Fs, Fs = Ui F8 ·.;, diam(Fs) < 2-tcngth(.•), and diam(g(Fs)) ::::; 
2-teiJgth(s) if s :f;0. Also t\Be 24.4 i). 

CHAPTER III 

25.11. See Y. N. MoschoV'd.kis (1980], p. 71. 

25.19. It is enough to show that if 0 f A ~ X carries a topology S 
that extends its (relative) topology and is second countable strong Cho­
quet, then A is anal:y1:ic (in X). Fix a. compatible metric d for X and a 
countable basis W = {Wn} for S. Fix a winning strategy a for II in the 
strong Choquet game for (A, S). We can a.'lsurne that in this game the 
players play open sets in W and in his nth move II plays a set of diame­
ter < 2-n. View a as a tree Ton W x Ax W, i.e., (Ui,Xi, V;)i<n E Tiff 
((xo, Uo), Vo, ... , (xn-1 ,[fn_t), Vn-d is a run of the strong Choquet game in 
which II follows a. ForB~ A, denote by T 8 the subtree ofT determined by 
restricting the xi to he in B. For au infinite branch f = (Uhxi, Vi)iEN ofT8 

denote by Xf the unique point in ni V;, and let p(T8 ) = {xt: j E (T8 ]}. 

Show that for some countable B ~A, A= p(T8 ). 

27.6 and 27.7. For more general results, see J. P. R. Christensen [1974]. 
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27.9. We can work with X= .N (why?). To each tree Ton 2 assign a tree 
T* on N as follows: Fix a bijection () : 2 x N--+ Nand let ((n)0 , (nh) = n. 
Puts= (so, ... , Sn-d E T* # ((so)o, ... , (sn-do) E T & Vi < n((si)o = 
0:::? (si) 1 = 0). If N is as in 27.3, show that [T] n N =10 # [T*] contains a 
uonempty superperfect tree (see 21.24). 

27.10. For each tree Ton N define a sequence of pruned trees (Tn) on N 
such that T E IF # nn[Tn] :f;0. 

27.E, F. See H. Becker [1992]. 

27.18. To each set B ~ [0, 1] x [Or 1] assign the set B* = { xeiY : (x, y) E 

B} ~ C = IR2
. Note that proj[O,lJ(B) = {lzl : z E B*}. 

Section 28. See the article by Rogers and Jayne in C. A. Rogers, et al. 
[1980]. 

28.9. For the last assertion, see 18.17. 

28.12. See R. Dougherty [1988], p. 480. 

28.15. See D. Preiss [1973]. 

28.20. See the proof of 21.22. 

29.6. Given an open nbhd U of 1 E G, show that there is an open nbhd N 
of 1 E H with N c <p(U). Let V be an open nbhd of 1 E G with v-•v ~ U. 
Argue that <p(V) is not meager and then use 9.9. 

29.18. ii) It is enough to consider the case X = .N. Let (Ps)~eN<N be given 
with Ps E S. Let f: .N--+ .N be defined by f(x) = (XP,.<,.>(x))nel\1, where 
h: N-+ N<N is a bijection. Show that A .. P. = r 1(B), with B = {x: 3y E 
.N\in(x(h- 1(yln)) = 1}. 

Section 30. The exposition here is based on C. Dellaeherie [1972], [1981]. 

30.17. Use Example 1) of 30.B. 

CHAPTER IV 

32.2 and 32.3. For stronger results, see 38.14. 

33.1. i) Use 18.13. ii) Use 27.5 and recall 4.32. iii) Use one of the repre­
sentations in 32.B. 

33.2. For a pruned tree Ton 2 consider (T, <KB IT) (see 2.G). Show that 
[T] is countable# (T, <KB IT) is scattered. 

33.3. See A. S. Kechris, A. Louveau, and W. H. Woodin [1987]. 

33.13. See M. Ajtai and A. S. Kechris [1987]. 

33.H. See R. D. Mauldin [1979] and A. S. Kechris [1985]. 
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3:U. See H. Becker [1992]. 

33.20. For more on Lipschitz homeomorphisms, see R. Dougherty, S. Jack­
son and A. S. Kechris [1994]. (Note that the Lipschitz homeomorphisms 
are exactly the isometries of ( C, d), where d is the usual metric on C = 2!\1, 
given in the paragraph preceding 2.2.) 

33.22. See F. Beleznay and M. Foreman [199?]. 

33.25. Assume X* is not separable. Then it is easy to find uncountable 
Y £;;; B1(X*) and € > 0 such that llx* -y*ll > € for all x* :f y* in Y. Work 
from now on in the weak *-topology of B 1(X*). Fix a compatible complete 
metric d for it. We can assume that every p~int in Y is a limit point of 
Y. Build a Cantor scheme (Us) consisting of open sets in B 1 (X*) with 
Us n Y =I 0, Us·i C Us and diam(Us) < 2-length(s), having the following 
property: If x* E Us·o, y* E Us·b then llx*- y*ll > €. 

33.27. See A. S. Kechris and R. Lyons [1988], R. Kaufman [1991]. 

33.28. See R. Kaufman [1987]. 

34.B. The modem concept of r-rank was formulated by Moschovakis and 
can be viewed as a distillation of the crucial properties of ordinal rankings, 
like the Lusin-Sierphiski index, that have long played a prominent role in 
classical descriptive set theory. See Y. N. Moschovakis [1980], p. 270. 

34.6. ii) Show first that it is enough to consider the case X = Tr, A = 
WF. Note now that the proof of 31.1 shows the following parametrized 
version of 31.2: If Y is Polish and A £;;; Y x Tr is I:l, then there is a Borel 
function fA : Y --+ Tr such that: Ay £;;; WF :::? fA (y) E WF & p(f A (y)) > 
sup{p(T) : T E Ay}· Define Borel functions fn : Tr --+ Tr by fo(T) = T 
and fn+l =!A.,., wqere An(T,S) # 3T'(T' E T & S = fn(T')). Note that 
T E WF:::? Vn(fn(T) E WF) & p(T) = p(fo(T)) < p(J.(T)) < p(h(T)) < 
···.Put <P(T) = SllPnPUn(T)). 

34.16. To show that if A£;;; nD· is I:l, then sup({IFID :FE A}) < w1 , 

use the relation R(x, F) in the proof of 34.10 to show that otherwise WO* 
would be I:}. 

35.1. The generalized reduction property for Dl is due to Kuratowski, and 
the non-separation property for Dl to Novikov. 

Becker h~ suggested the following simpler proof of 18.17 using 35.1: 
U 18.17 fails, given any two I:~ sets A, B £;;; .N with AU B = .N, there are 
I:f sets A* £;;; A, B* £;;; B with A* n B* = 0, A* U B* = .N. This implies 
that n} has the separation property. 

35.2. See H. Becker [1986]. Let U £;;; .N x.Af2 be .A!-universal for n?(.Af2) and 
consider U1 = {(w:x): Vy(w,x,y) '¢ U}, U2 = {{w,x): 3ly(w,x,y) E U}. 
If U1 ,U2 are separated by a Borel set V, argue that V is .N-universal for 
B(.N). Use 13.10 for that. 
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35.7. See proof II of 28.1. 

35.10. See A. S. Kechris [1975], p. 286. 

35.16. See L. Harrington, D. Marker, and S. Shelah [1988]. 

35.18, 19. See J. P. Burgess [1979a]. 

35.20. See .J. H. Silver [1980]. 

35.21. ii) See J. P. Burgess [1978]. The following simplified argument 
was suggested by Becker: Write E = n~<w1 E~, with E~ decreasing Borel 
equivalence relations. By 35.20 we can assume that each E~ has only 
countably many equivalence cla.<;ses, say B~,n, n E N. Put {Ad~<w1 = 
{B~,nh<w1 ,nEN· Thus xEy {:::} Ve < Wt(X E A~ {:::} y E A~). Assume that 
E has more than N1 equivalence classes. Call A C X big if it meets more 
than Nt equivalence classes. Note that. if A is big, then for some e < Wl, 

both An A~, A\ A~ are big. Using these remarks, 13.1 and 13.3, we can 
find a countable Boolean algebra A of Borel sets in X, which contains a 
countable basis for the topology of X, such that the topology generated by 
A is Polish, say with compatible complete metric d < 1, and for A E A that 
is big there is e < w1 with A~ E A such that An Ae, A\ A~ are big. Then, 
also using the obvious fact that if A = Un An is hig, then for some n, A,. is 
big, it is easy to construct a Cantor scheme {As)se2<N, with As E A, such 
that A0 = X, diam(As) :::; 2-tength(s) {in the metric d), each As is big and 
for each s E 2<!':1 there is es < Wl such that As·o ~ Ae,, A,.·l ~ rv A~.· If 
{f(x)} = nn Axln for X E 2"", then X=/; y:::? ...,f(x)Ef(y). 

35.27 and 35.28. See Y. N. Moschovakis [1980], pp. 212-217. 

35.29. See Y. N. Moschovakis [1980], 7C.8. Let. U be as in 35.26 and let ·t/J : 
U-+ 6r bear-rank. Put P(q,x) {:::} x E A or x E \ll({y: (q,y) <~ (q,x)}). 
Then pis in r, so fix Po E c with PPo = UPo• i.e., U(po,x) {:::}X E A or 
X E \ll({y; (po,y) <~, (po,x)}). By induet.ion one= 1/J(po,x), show that. 
X E Pp0 :::? X E we+1(A) and hy induction on 'f/ show that X E W71 {A) :::? 

X E Ppo· So W00{A) = u~<6r \II~(A) = Ppo· 

35.G. The exposition here is based on Dellacherie's article in C. A. Rogers 
et al. [1980], IV. 4. 

35.43. See J.P. Burgess [1979a] and G. Hillard [1979]. 

35.45. See J. Saint Raymond [1976a]. 

35.47. Fore = 2 argue first, using 21.18, that it is enough to consider the 
case X= Y =C. Then use 28.21. 

35.48. See A. Louveau and J. Saint Raymond [1987]. 

36.1. Use a wellordering of .N. 

36.B, C, D. The approach here is based on Y. N. Moschovakis [1980], 4E. 
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36.7. See 22.21. 

36.11. ii) See V. G. Kanovei [1983]. Let f : IR -+ IR be as in i). Consider 
9n(x) = f(x) + 1/2n. 

36.17. SeeR. Mansfield [1970]. Use the method of 29.2. 

36.18. See A. S. Kechris [1977]. Use the method of 29.4 or 21.24 iii). 

36.20. These regularity properties of I:~ sets were first established by Solo­
vay (unpublished, but see the related R. M. Solovay [1969], [1970]) from a 
large cardinal principle that turns out to be implied by I:l-Determinacy. 

36.22. See D. R. Busch [1979]. First recall that ry is of the form given in 
30.4, and thus also of the form given in Example 3) of 30.B. So it is enough 
to show that if X, Y are compact metrizable, K C X x Y is compact, J.L a 
probability Borel measure on X, and ry(A) = JL*(proh((X x A) n K)) for 
A~ Y, then every Il~ subset of Y is ry-capacitable. Then use a version of 
30.18 and 36.21. 

36.23. See A. S. Kechris [1973]. 

36.25. See the hint for 18.17. 

CHAPTER V 

37.4. If (Ps) is a regular Souslin scheme with Ps En;, recall from 25.10 
that x ft AsPs # Tx = {s E N<N : x E Ps} is well-founded # 3w E 
W03f: N<N-+ NV's, t E Tx(s ~ t:::} w(f(s),.f(t)) = 1), so that AsPs is 
n; if n 2: 2. 

37.6. The main difficulty is to show that any open set U ~ !Rn is defin­
able with parameters in 'R. Take n = 1 for notational simplicity. Let U = 
Un(pn,qn), with p,. < qn in Q. Using the functions h,J,g of 23.25, show 
first that there is a definable in n (i.e., having definable graph) surjection 
q: N-+ Q2 . Let A= {kEN: 3n(q(k) = (pn,qn))} (where we use (pn,qn) 
ambiguously here for the interval (pn, qn) and the pair (pn, qn)). Note that, 
assuming without loss of generality that {(pn, qn) : n E N} is infinite, we 
have that A is infinite and co-infinite. So there is a real 0 < r < 1, which is 
not a dyadic rational, sueh that its binary expansion r = ror1 r 2 · · · is such 
that r~c = 1 iff k E A. Next, using the functions h, J, g again, show that there 
is a definable in 'R functions : IR2 -+ {0, 1} such that if 0 < y < 1 is not a 
dyadic rational with binary expansion y = Y0Y1Y2 ···,then s(y, k) = Yk, 'Vk. 
Thus x E U # 3n(pn < x < qn) # 3k(s(r, k) = 1 & qo(k) <X< q1(k)), 
where q(k) = (qo(k), ql (k)). 

37.9. For the second assertion argue as follows: On R2 define the following 
equivalence relation: (x, y)E(x', y') {:::}X- x', y- y' E Q. Let A~ R ben~ 
and find B ~ R x R2 in I:l such that a E A# 'V(x,y) (a,(x,y)) E B. Put 
(a,(x,y)) E B' # 'V(x',y')E(x,y) (a,(x',y')) E B, so that B' is also I:~ 
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and for each a, B~ 5:;; H2 is E-invariant. Note now that a E A# Bu = H2 # 

B~ = H2 # B~ has nonempty interior. 

37.B. For Example 3), the comments following it, and Exercise 37.12, see 
H. Becker [1992]. 

37.15. For ii) let As;; c be I:~ and, by 37.14, let Un) be such that A= u(f,.). 
For any x E C, let Kx = {z E C: 3y E C'cfn(z(n) = f.,(y,x))}. 

38.1, 4. See Y. N. Moschovakis [1980], 4B.3, 6C.2. 

38.11. If boundedness holds, argue that every n~ set is I:!. 

38.12. Use the proof of 31.5. 

38.13. Argue that it is enough to show that every nonempty n~ set A s;; C 
is a continuous image of WO. Use the fact that WO i'l D~-complete, 26.11 
and 7.3. 

38.14. Fori), see the note for 36.20. For ii), seeR. M. Solovay [1969]. For 
iii), see A. S. Kechris [1977] for X = .N. For iv), see A. S. Kechris [1973] 
for measure and cat.egory. For the final statement, use the proofs of 21.22 
and 21.23. 

38;17. SeeM. Davis [1964] and J. Mycielski and S. Swierczkowski [1964]. 

38.18. See A. S. Kechris [1977] for X = .N. 

38.19. See the proof of 21.9. 

39.B, C, D. See Y. N. Moschovakis [1980], Ch. 6. 

39.4. For 6~n+l < 6~n+2 use 35.28. For 6~n+2 < 6~n+.'3 show that there 
is a I:~n+3 well-founded relation -< such that p( -<) > p( -<') for any I:~n+2 
well-founded relation -<', and then use 35.28 again. 

39.12. If Tis a tree on N x "'• where "'is a cardinal of cofinality > w, then 
p[T] = U~<"'p[TieJ, where Tie= {(s,u) E T: u E e<N}. 

39.13. i) The first statement is due to Martin. For measure and category, 
see A. S. Kechris [1973]. 

39.23. Use unfolded *-games; see 21.B. It is convenient to work with X= 
Y = C and use 21.3. 

39.24. For the Ku case use the method of proof of21.22, but with separation 
games if n > 0 and the game in 28.21 if n = 0. For the meager case, 
notice first that by considering the complement of the closure of the set 
of isolated points of Y, we can assume Y is nonempty perfect and by 8.A, 
throwing away a meager Fu, we can assume that Y is zero-dimensional, 
and so Y = [T] for a perfect nonempty tree on N. We can also assume that 
X = .N. Consider now unfolded Banach-Mazur games (most conveniently 
in the form similar to that in 8.36; see 21.7 and 21.5). 

39.25. Use 39.23. 
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0 (empty set), N (natural numbers), G6, F17 1 

nbhd (neighborhood), flieiXi,ffiieiXi (for topological spaces), X 1 , 

B(x, r) 2 

Bc~(x, r), I (restriction), T1 3 

A 4 

s = (s(O), ... , S\n- 1)) = (so, ... , sn_l), 0 (empty sequence), length(s) 
slm, s ~ t, s .l t, A<"", s" t, s" a, A"", x = (x(n)) = (x,.), xln, s" x, 
s~s~ s; · · ·, [T] 5 

N,., Tp, T,., 1(sJ 7 

D(<P), <P* 8 

T(x), T(s), <Jex• aT 9 

PT (for well-founded trees), p(T), T-< 10 

WFT, PT (for any tree), PT(s) = oo, p(T) (for any tree), T*, r<a>, 
<KB 11 

IR (real numbers), C ((:omplex numbers), n, 11', C 13 

]\[, E 113 , Irr, fP, eo, LP(IJ.), C(X), L(X, Y), L(X), L1(X, Y), Q 
(rationals) 14 

diam, osc1, B(A, €) 15 

graph(!), projx (projection onto X) 16 

idy (identity on Y) 17 

X*, B1 (X*), fOO, IIJ) 19 



382 Symbols and Abbreviation:; 

OeK 20 

&g, [xo, ... , x .. ], [xo, e] 22 

C(X, Y), C(X), du, 11/lloo, K(X) 24 

dH(K,L), 6(K,L), TlimnKn, TlimnKn, Tlim., Kn 25 

UK, .f"(K), KJ(X), Kp(X), Tr, PTr, Irz, PTr2 27 

Tr1, PTr1 28 

K 17 29 

(As)se2<N 31 
ORD, w, X', xo: 33 

xoo,IXIca, IXIcB• T', T'\ roo, ITicB 34 

(As)seN<N 36 

Int(A) 37 

Gx 43 

ax 44 

A =z B, A6B, A =* B, BP 47 

II- 48 

"'A, U(A) 49 

BP(X), MGR(X), RO(X), BP(X)/MGR.(X), CAT(X) 50 

G**(A), G**(A,X) 51 

A(x) {:::} x E A, 'V*x, 3*x, 'V*x E U, 3*x E U, -.,A;,, AY 53 

Pow(X), fx, JY 56 

IR*, Z2 (integers mod 2) 58 

GL(n,IK), SL(n,IK), A*, U(n), O(n), SU(n), SO(n), 

T*, L(H), L1(H), U(H), Soo 59 

Aut( A), H(X), !so( X, d), IFr 60 

g.x 61 

Gx 62 

a(£) 65 

SlY 66 

Ul xi, Il Si), (ffii xi, ffii si) 67 

B(X, T), B(X), B(T), I':~(X), D~(X), .6-~(X) 68 

G(X), F(X), £17 , £6, card (cardinality), Q+ 69 

C1, Co, D1 70 
XA (characteristic nmction of A) 73 

F(X) 75 

RF(X) 76 
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[A]e 77 

B,.(X*), Bw·(X*), Lo(H) 79 

tr(T), ITI, L1(H), VN 80 

3! 84 

I":L A(X) 85 

DHX), CA(X), .6-l(X) 87 

Sji, -a, Vnan 91 

Eo 92 
[A], (A), A*, A6., A*u, A6.U 95 

XL, A:~;, "', Lw1 ,w, F 96 

OA 98 
.l, p(N)' Xp 99 

Up, 11-, ZF, M[G], AC, ZFC. CH 100 

p-a.e., NULL~', MEAS~-', 1-L• 1-L*, MEAS~-'.' f fd/-L (= f f(x)dJl.(x)), 
f J1. 103 

fli<n /-Li• Tin J.L.,_, ffin /-Ln: MEASI-' /NULL,., MALGI-', /-L « I/, /-L rv V 104 

[l.t], /-L .1 v, ~~, bx, Li aivi, Jlc, /-Ld, m, mn, /-LG 105 

1-Lp, /-LC, d(A, B), 1-Lh• 1-Li., /-Lh 106 

l/1, length(/) 107 

lim nXn, lim nSn, limn/-Lt&, P(X), Cb(X) 109 .... .... -
Ud(X), 6(/-L, v) 110 

aA 111 

v;,, 3~, MR(X), Mc(X) 114 

INV a, EINV c:, Z (integers) 115 

supp(p) 116 

1\, v, a6b 117 

MFUNCT~-', M~-', Aut(X, /-L), UT 118 

Aut*(X,p), UT 119 

a(I":D 120 

IF, IF 1 121 

UB 125 

[x]e 128 
[X]n, (A)n 129 

[:X]Nu, [a., A] 132 

Ajn 133 

f 00 (S) 135 
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G(A, X), G(X), G(T, X) 137 

Xp 138 

PowdN) 146 

3aoV'ai3a2V'a3 · · ·, V'ao3al V'a1 3a3 · · ·, 9A, gA 147 

G*(A) 149 

G~(F) 150 

G**(A) 151,153 

G~*(F) 152,153 

Sw 156 

WG(A,B), =w, [A]w, WADGE, WADGEB, A< B, A, A =wB B, A*, 
WADGE*, WADGE'B 157 

A* <* B* 158 

8G(A; B0 , Bl) 160 

G(A) 163 

ST, =T, [x]r, D, x S y, 0, 0, la 164 

xvy, Cx 165 

r, r(X), t (='"" r), ~ = r n t 167 

limnAn, limn-An, limAn 173 

De((A11 ) 11<e ), De(l::V 175' 

op 177 

De((A11 ) 11<e, (B11 ) 11<e) 178 

V'00
, 300

, P3, 83 179 

C3, D3, Pj, 83, Fn.An, Fr 180 

P4, 84, K1(X), Koc(X), H 181 

Ka(C), Lp, C00 ('1l'), AR, ANR 182 

j( n ), AN('Il'), cn('ll') 183 

UCx, UC, UCo, 8N(f), UCF, Ci 185 

f v g, f 1\ g, Cj 187 

c,, TR 188 
wo<o: 189 

BdX, Y), BdX) 190 

V 0 (K) 192 

Dl31, ~ 194 

l::l{X) 196 

4l(X), p[T], N 197 

A, AsPs, Af 198 



Symbols and Abbreviations 385 

3Yf 205 

IF, IF2 209 

UNIQ, MULT, LO 212 

wo, NWO, X "' y 213 

woo., ap(T) 214 

6iJ• A-L::=oUm, R(l:um,A), CS 215 

[L(n) 216 

EX,Y IIX,Y 221 
~ ' ~ 

Si, Tf, Tf' 226 

C(X) 230 

'"'/j,'"'/K 234 

u~t 235 

P1 (X), '"'fc, 1l:' 236 

WF, lxl (for x EWO) 240 

nl(x) 242 

A, AsPs 244 

\VF, WF2, UB, Wn, SCAT, K(A), KN0 (X), FN0 (X) 245 

E(e;1]J,···,1Jk), Q(9) 247 

DIFF 248 

CN, CNo 251 

CF, bt, fox f 252 

NDIFF 254 

L1('1l'), Jint(.J), NH, SCON 255 

JC 256 

QP 258 

MD, SB 262 

NU, SD 263 

REFL, NL1 265 

H.L 266 

<'{J, :::;~, :5~ 267 

<'P, <~, <~, <P(x) = oo, :5~, <~ 268 

D 0 (A), lAID, D 00 (A), lx, AID, E 0 (A), IAIE, E00 (A), lx, AlE 270 

b, i>, DB, IFIB, lx, FIB 271 

nD 212 

LO*, WO*, lxl* 273 

no, n;:,o, IAI7)o 275 
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D.,, De./• 1/lorPP, C 1([0, 1]) 277 
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wunb De,(/.,.)• IUn)lz 279 

1/lz 280 

Ao~> 285,286 

6r 289 

61 290 

F* u 292 

p[T], ( ar, h), Ts,u 299 

~ = (<P~), ai-+ a, T<P, (ao, ... , a:11.-1), 1!7 = (1/1'£), f :5 g 300 

IL•, I':~ 307 

1::;, D~, .6.;, A, CA, PCA, CPCA, P 313 

MV, PCONn 317 

SCONm NHn 318 

N0 , A 319 

6~ 324 

PD, g""r 325 

PDR 326 

vN, vNr 327 

6; 331 

o-P(X), I-:J, n~, .6.~ 341 

ORD, w, sup( X), lim a:~, 
{<.>. 

cofinality(9), a+ (3, a· (3, al3, a+, Wo: 349 

card(X), No:, 2Nn 350 

P-< 351 

p( -<) 352 

...,, &, or, :::}, #, 3, 'V 353 
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