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Preface

This book is based on some notes that I prepared for a class given at Cal-
tech during the academic year 1991-92, attended by both undergraduate
and graduate students. Although these notes underwent several revisions;
which included the addition of a uew chapter (Chapter V) and of many com-
ments and references, the final form still retains the informal and somewhat
compact style of the original version. So this book is best viewed as a set
of lecture notes rather than as a detailed and scholarly monograph.

I would like to thank R. Dougherty, H. Ki, X. Li, T. Linton, A. Louveau,
J. Mycielski, F'. van Engelen, and T'. Zavisca for many helpful comments and
suggestions. I am particularly grateful to A. Andretta, H. Becker, S. Solecki,
and S. M. Srivastava for their extensive and detailed criticism as well as
numerous corrections, which substantially improved the presentation.

It is my pleasure to acknowledge the financial support of the National
Science Foundation and the help from the Mathematics Department at
Caltech while I was writing this book. In particular, I would like to thank
J. Madow and J. Cassidy for typing the manuscript and B. Turring for
preparing the diagrams.

Los Angeles Alexander S. Kechris
September 1994



Contents

Preface

Introduction

About This Book

CHAPTER |
Polish Spaces

1. Topological and Metric Spaces
1.A Topological Spaces
1.B Metric Spaces
2. Trees
2.A Basic Concepts
2.B Trees and Closed Sets
2.C Trees on Products
2.D Leftmost Branches
2.E Well-founded Trees and Ranks
2.F The Well-founded Part of a Tree
2.G The Kleene-Brouwer Ordering
3. Polish Spaces
3.A Definitions and Examples
3.B Extensions of Continuous Functions and Homeomorphisms
3.C Polish Subspaces of Polish Spaces
4. Compact Metrizable Spaces
4.A Basic Facts
4.B Examples

vii

xvi}



X

Contents

4.C A Universality Property of the Hilbert Cube

4.D Continuous Images of the Cantor Space

4.E The Space of Continuous Functions on a Compact Space
4.F The Hyperspace of Compact Sets

. Locally Compact Spaces
. Perfect Polish Spaces

6.A Embedding the Cantor Space in Perfect Polish Spaces
6.B The Cantor-Bendixson Theorem

6.C Cantor-Bendixson Derivatives and Ranks
Zero-dimensional Spaces

7.A Basic Facts

7.B A Topological Characterization of the Cantor Space

7.C A Topological Characterization of the Baire Space

7.D Zero-dimensional Spaces as Subspaces ‘of the Baire Space
7.E Polish Spaces as Continuous Images of the Baire Space
7.F Closed Subsets Homeomorphic to the Baire Space

. Baire Category

8.A Meager Sets

8.B Baire Spaces

8.C Choquet Games and Spaces

8.D Strong Choquet Games and Spaces
8.E A Characterization of Polish Spaces
8.F Sets with the Baire Property

8.G Localization

8.H The Banach-Mazur Game

8.1 Baire Measurable Functions

8.J Category Quantifiers

8.K The Kuratowski-Ulam Theorem
8.L Some Applications

8.M Separate and Joint Continuity
Polish Groups

9.A Metrizable and Polish Groups

9.B Examples of Polish Groups

9.C Basic Facts about Baire Groups and Their Actions
9.D Universal Polish Groups

CHAPTER II
Borel Sets

10.

11.

12.

Measurable Spaces and Functions

10.A Sigma-Algebras and Their Generators

10.B Measurable Spaces and Functions

Borel Sets and Functions

11.A Borel Sets in Topological Spaces

11.B The Borel Hierarchy

11.C Borel Functions

Standard Borel Spaces

12.A Borel Sets and Functions in Separable Metrizable Spaces
12.B Standard Borel Spaces

22
23
24
24
29
31
31
32
33
35
35
35
36
38
38
39
41
41
41
43
44
45
47
48
51
52
53
53
55
56
58
58
58

63

65

65
65
66
68
68
68
70
73
73
74



13.

14.

15.

16.

17.

18.

19.

20.

21.

Contents

12.C The Effros Borel Space

12.D An Application to Selectors

12.E Further Examples

12.F Standard Borel Groups

Borel Sets as Clopen Sets

13.A Turning Borel into Clopen Sets

13.B Other Representations of Borel Sets

13.C Turning Borel into Continuous Functions
Analytic Sets and the Separation Theorem

14.A Basic Facts about Analytic Sets

14.B The Lusin Separation Theorem

14.C Souslin’s Theorem

Borel Injections and Isomorphisms

15.A Borel Injective Images of Borel Sets

15.B The Isomorphism Theorem

15.C Homomorphisms of Sigma-Algebras Induced by Point Maps
15.D Some Applications to Group Actions
Borel Sets and Baire Category

16.A Borel Definability of Category Notions
16.B The Vaught Transforms

16.C Connections with Model Theory

16.D Connections with Cohen’s Forcing Method
Borel Sets and Measures

17.A General Facts on Measures

17.B Borel Measures

17.C Regularity and Tightness of Measures
17.D Lusin’s Theorem on Measurable Functions
17.E The Space of Probability Borel Measures
17.F The Isomorphism Theorem for Measures
Uniformization Theorems

18.A The Jankov, von Neumann Uniformization Theorem
18.B “Large Section” Uniformization Results
18.C “Small Section” Uniformization Results
18.D Selectors and Transversals

Partition Theorems

19.A Partitions with a Comeager or Non-meager Piece
19.B A Ramsey Theorem for Polish Spaces
19.C The Galvin-Prikry Theorem

19.D Ramsey Sets and the Ellentuck Topology
19.E An Application to Banach Space Theory
Borel Determinacy

20.A Infinite Games

20.B Determinacy of Closed Games

20.C Borel Determinacy

20.D Game Quantifiers

Games People Play

21.A The *-Games

21.B Unfolding

21.C The Banach-Mazur or **-Games

75
77
78
80
82
82
83
84
85
85
87
87
89
89
90
91
92
94
94
95
96
99

103

103

105

107

108

109

116

120

120

122

123

128

129

129

130

132

132

134

137

137

138

140

147

149

149

150

151



xii

22.

23.

24’

Contents

21.D The General Unfolded Banach-Mazur Games
21.E Wadge Games

21.F Separation Games and Hurewicz's Theorem
21.G Turing Degrees

The Borel Hierarchy

22.A Universal Sets

22.B The Borel versus the Wadge Hierarchy
22.C Structural Properties

22.D Additional Results

22,E The Difference Hierarchy

Some Examples

23.A Combinatorial Examples

23.B Classes of Compact Sets

23.C Sequence Spaces

23.D Classes of Continuous Functions

23.E Uniformly Convergent Sequences

23.F Some Universal Sets

23.G Further Examples

The Baire Hierarchy

24.A The Baire Classes of Functions

24.B Functions of Baire Class 1

CHAPTER III
Analytic Sets

25.

26.

27‘

28.

Representations of Analytic Sets

25.A Review

25.B Analytic Sets in the Baire Space

25.C The Souslin Operation

25.D Wellordered Unions and Intersections of Borel Sets
25.E Analytic Sets as Open Sets in Strong Choquet Spaces
Universal and Complete Sets

26.A Universal Analytic Sets

26.B Analytic Determinacy

26.C Complete Analytic Sets

26.D Classification up to Borel Isomorphism
Examples

27.A The Class of 1ll-founded Trees

27.B Classes of Closed Sets

27.C Classes of Structures in Model Theory
27.D Isomorphisim

27.E Some Universal Sets

27.F Miscellanea

Separation Theorems

28.A The Lusin Separation Theorem Revisited
28.B The Novikov Separation Theorem

28.C Borel Sets with Open or Closed Sections
28.D Some Special Separation Theorems

28.E “Hurewicz-Type” Separation Theorems

153
156
160
164
167
167
169
170
173
175
179
179
181
182
182
185
185
188
190
190
192

196

196
196
197
198
201
202
205
205
205
206
207
209
209
209
212
213
214
215
217
217
219
220
221
224



29,

30.

31.

Contents xiii

Regularity Properties

29.A The Perfect Set Property

29.B Measure, Category, and Ramsey

29.C A Closure Property for the Souslin Operation

29.D The Class of C-Sets

29.E Analyticity of “Largeness” Conditions on Analytic Sets
Capacities

30.A The Basic Concept

30.B Examples

30.C The Choquet Capacitability Theorem

Analytic Well-founded Relations

31.A Bounds on Ranks of Analytic Well-founded Relations
31.B The Kunen-Martin Theorem

CHAPTER IV
Co-Analytic Sets

32.

33.

34.

35.

Review

32.A Basic Facts

32.B Representations of Co-Analytic Sets
32.C Regularity Properties

Examples

33.A Well-founded Trees and Wellorderings
33.B Classes of Closed Sets

33.C Sigma-Ideals of Compact Sets

33.D Differentiable Functions

33.E Everywhere Convergence

33.F Parametrizing Baire Class 1 Functions
33.G A Method for Proving Completeness
33.H Singular Functions

33.1 Topological Examples

33.J Homeomorphisms of Compact Spaces
33.K Classes of Separable Banach Spaces
33.L Other Examples

Co-Analytic Ranks

34.A Ranks and Prewellorderings

34.B Ranked Classes

34.C Co-Analytic Ranks

34.D Derivatives

34.E Co-Analytic Ranks Associated with Borel Derivatives
34.F Examples

Rank Theory

35.A Basic Properties of Ranked Classes
35.B Parametrizing Bi-Analytic and Borel Sets
35.C Reflection Theorems

35.D Boundedness Properties of Ranks

35.E The Rank Method

35.F The Strategic Uniformization Theorem
35.G Co-Analytic Fanilies of Closed Sets and Their Sigma-Ideals

226
226
226
227
230
230
234
234
234
237
239
239
241

242

242
242
243
244
245
245
245
246
248
251
262
253
254
255
257
262
266
267
267
267
268
270
272
275
281
281
283
285
288
290
291
292



xiv  Contents

35.H Borel Sets with F,, and K, Sections
36. Scales and Uniformization
36.A Kappa-Souslin Sets
36.B Scales
36.C Scaled Classes and Uniformization
36.D The Novikov-Kondé Uniformization Theorem
36.E Regularity Properties of Uniformizing Functions
36.F Uniformizing Co-Analytic Sets with Large Sections
36.G Examples of Co-Analytic Scales

CHAPTER V
Projective Sets

37. The Projective Hierarchy
37.A Basic Facts
37.B Examples
38. Projective Determinacy
38.A The Second Level of the Projective Hierarchy
38.B Projective Determinacy
38.C Regularity Properties
39. The Periodicity Theorems
39.A Periodicity in the Projective Hierarchy
39.B The First Periodicity Theorem
39.C The Second Periodicity Theorem
39.D The Third Periodicity Theorem
40. Epilogue
40.A Extensions of the Projective Hierarchy
40.B Effective Descriptive Set Theory
40.C Large Cardinals
40.D Connections to Other Areas of Mathematics

Appendix A. Ordinals and Cardinals
Appendix B. Well-founded Relations
Appendix C. On Logical Notation
Notes and Hints

References

Symbols and Abbreviations

Index

296
299
299
299
302
304
307
309
310

313

313
313
316
322
322
325
326
327
327
327
336
342
346
346
346
346
347

349
351
353
357
369
381
387



Introduction

Descriptive set theory is the study of “definable sets” in Polish (i.e., sep-
arable completely metrizable) spaces. In this theory, sets are classified in
hierarchies, according to the complexity of their definitions, and the struc-
ture of the sets in each level of these hierarchies is systematically analyzed.

In the beginning we have the Borel sets, which are those obtained from
the open sets, of a given Polish space, by the operations of complementation
and countable union. Their class is denoted by B. This class can be further
analyzed in a transfinite hierarchy of length w; (= the first uncountable
ordinal), the Borel hierarchy, consisting of the open, closed, F, (count-
able unions of closed), GGs (countable intersections of open), F,s (countable
intersections of F,), Gs, (countable unions of Gjs), etc., sets. In modern
logical notation, these classes are denoted by X, l'lg, for 1 < € < wy,

where 0 0
21 = open, Hl = ClOSGd;
¢ = {|J 4. : Anisin I for & < £};
neN

I} = the complements of ¢ sets.

(Therefore, 3 = F,, I} = G5, £} = G4, 1} = F,5, etc.) Thus B
ramifies in the following hierarchy:

20 %Y = =0
m g e m

where £ < 1 < wy, every class is contained in any class to the right of it,
and
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B= ) == g
£<u {<un

Beyond the Borel sets one has next the projective sets, which are those
obtained from the Borel sets by the operations of projection {or continuous
image) and complementation. The class of projective sets, denoted by P,
ramifies in an infinite hierarchy of length w (= the first infinite ordinal),
the projective hierarchy, consisting of the analytic (A) (continuous images
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical
notation, we let

¥} = ‘analytic, TI} = co-analytic;
x) ., = all continuous images of I} sets;
1
I,

the complements of X | sets;

so that in the following diagram every class is contained in any class to the
right of it:
T I} D ILED >

B
m oo mom,,

p=Jz=Jm.
n n

One can of course go beyond the projective hierarchy to study trans-
finite extensions of it, and even more complex “definable sets” in Polish
spaces, but we will restrict ourselves here to the structure theory of Borel
and projective sets, which is the subject matter of classical descriptive set
theory.

Descriptive set theory has been one of the main areas of research in
set. theory for almost a century now. Moreover, its concepts and results are
being used in diverse fields of mathematics, such as mathematical logic,
combinatorics, topology, real and harmonic analysis, functional analysis,
measure and probability theory, potential theory, ergodic theory, operator
algebras, and topological groups and their representations. The main aim
of these lectures is to provide a basic introduction to classical descriptive
set theory and give some idea of its connectionis or applications to other
areas.

and



About This Book

These lectures are divided into five chapters. The first chapter sets up the
context by providing an overview of the basic theory of Polish spaces. Many
standard tools, such as the Baire category theory, are also introduced here.
The second chapter deals with the theory of Borel sets. Among other things,
methods of infinite games figure prominently here, a feature that continues
in the later chapters. In the third chapter, the theory of analytic sets, which
is briefly introduced in the second chapter, is developed in more detail. The
fourth chapter is devoted to the theory of co-analytic sets and, in particular,
develops the machinery associated with ranks and scales. Finally, in the
fifth chapter, we provide an introduction to the theory of projective sets,
including the periodicity theorems.

We view this book as providing a first basic course in classical descrip-
tive set theory, and we have therefore confined it largely to “core material”
with which mathematicians interested in the subject for its own sake or
those that wish to use it in their own field should be familiar. Throughout
the book, however, are pointers to the literature for topics not treated here.
In addition, a brief summary at the book’s end (Section 40) describes the
main further directions of current research in descriptive set theory.

Descriptive set theory can be approached from many different view-
points. Over the years, researchers in diverse areas of mathematics—logic
and set theory, analysis, topology, probability theory, and others—have
brought their own intuitions, concepts, terminology, and notation to the
subject. We have attempted in these lectures to present a largely balanced
approach, which combines many elements of each tradition.

We have also made an effort to present a wide variety of examples



xviii About This Book

and applications in order to illustrate the general concepts and results of
the theory. Moreover, over 400 exercises are included, of varying degrees of
difficulty. Among them are important results as well as propositions and
leminas, whose proofs seem best to be left to the reader. A section at the
end of these lectures contains hints to selected exercises.

This book is essentially self-contained. The only thing it requires is fa-
miliarity, at the beginning graduate or even advanced undergraduate level,
with the basics of general topology, measure theory, and functional analy-
sis, as well as the elements-of set theory, including transfinite induction and
ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a]
or Y. N. Moschovakis [1994].) A short review of some standard set theo-
retic concepts and notation that we use is given in Appendices A and B.
Appendix C explains some of the basic logical notation employed through-
out the text. It is recommended that the reader become familiar with the
contents of these appendices before reading the book and return to them
as needed later on. On occasion, especially in some examples, applications,
or exercises, we discuss material, drawn from various areas of mathematics,
which does not fall under the preceding basic prerequisites. In such cases,
it is hoped that a reader who has not studied these concepts before will at
least attempt to get some idea of what is going on and perhaps look over a
standard textbook in one of these areas to learn iore about them. (If this
becomes impossible, this material can be safely omitted.)

Finally, given the rather informal nature of these lectures, we have
not attempted to provide detailed historical or bibliographical notes and
references. The reader can consult the monographs by N. N. Lusin [1972],
K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection
by C. A. Rogers et al. [1980] in that respect. The Q-Bibliography of Mathe-
matical Logic (G. H. Miiller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also
contains an extensive bibliography.



CHAPTER I

Polish Spaces

1. Topological and Metric Spaces

1.A Topological Spaces

A topological space is a pair (X,7), where X is a set and 7 a collection
of subsets of X such that @, X € 7 and 7 is closed under arbitrary unions
and finite intersections. Such a collection is called a topology on X and its
members open sets. The complements of open sets are called closed. Both
@, X are closed and arbitrary intersections and finite unions of closed sets
are closed.

A set of the form ﬂneN U,., where U,, are open sets, is called a G set,
and a set of the form |J,cy Fn, where F, are closed sets, is called an Fo
set.

A subspace of (X,7T) consists of a subset ¥ C X with the relative
topology 7)Y = {UNY : U € T}. (In general, for a set X, a subset
Y C X, and a collection A of subsets of X, its restriction to Y is defined
by AlY = {ANY: Ae A})

A basis B for a topology 7 is a collection B C 7 with the property that
every open set is the union of elements of B. (By convention the empty union
gives 0.) For a collection B of subsets of a set X to be a basis for a topology,
it is necessary and sufficient that the intersection of any two members of
B can be written as a union of members of B and |J{B: B€ B} =X. A
subbasis for a topology 7 is a collection S C 7 such that the set of finite
intersections of sets in S is a basis for 7. For any family S of subsets of
a set X, there is a smallest topology 7 containing S. called the topology
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generated by S. It consists of all unions of finite intersections of nembers of
S. (By convention the empty intersection gives X .) Clearly, S is a subbasis
for 7. A topological space is second countable if it has a countable basis.

If X is a topological space and 2 € X, an open nbhd (neighborhood)
of x is an open set containing x. A nbhd basis for « is a collection U of
open nbhds of x such that for every open nbhd V' of x there is U € U with
Ucv.

Given topological spaces X,Y, a map f : X — Y is continuous if the
inverse image of each open set is open. It is open (resp. closed) if the image
of each open (resp. closed) set is open (resp. closed). It is a homeomorphism
if it is a bijection and is both continuous and open. Finally, it is called an
embedding if it is a homeomorphism of X with f(X) (given its relative
topology). A function f : X — Y is continuous at x € X (or z is a point of
continuity of f) if the inverse image of an open nbhd of f(z) contains an
open nbhd of z. So f is continuous iff it is continuous at every point.

If (Y:)ier is a family of topological spaces and f; : X — Y;, a family of
functions, there is a smallest topology 7 on X for which all f; are contin-
uous. It is called the topology generated by (f;):ic;r and has as a subbasis
the family S = {f"Y(U) : U C Y;, U open, i € I}. If S; is a subbasis for
the topology of Y;, we can restrict I/ to S; here.

The product [[;.; X; of a family of topological spaces (X;):cs is the
topological space consisting of the cartesian product of the sets X; with the
topology generated by the projection functions (z;);c; — z, (5 € I). It has
as basis the sets []; U;, where U, is open in X; for all < € I, and U; = X;
for all but finitely many i € I. If B; is a basis for the topology of X;, the
sets of the form []; U;, where U; = X; except for finitely many i for which
U; € B;, form a basis for the product space. Note also that the projection
functions are open. If X; = X for all i € I, we let X' =], X..

The sum €, X; of a family of topological spaces (X;);ey is defined (up
to homeomorphism) as follows: If we replace X; by a homeomorphic copy,
we can assume that the sets X; are pairwise disjoint. Let X = |J,; Xi. A
set U C X is open iff U N X, is open in X; for each i € I.

1.B Metric Spaces
A metric space is a pair (X, d), with X aset and d : X? — [0, 00) a function
satisfying:

) d(z,y) =0 z=y
ii) d(z,y) = d(y,z);
iii) d(x,y) < d(x, z) + d(z,y)-

Such a function is called a metric on X.
The open ball with center x and radius r is defined by

B(z,r)={ye X : d(z,y) <r}.
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(The corresponding closed ball is denoted by
By(z,r)={ye X :d(z,y) < r}.)

These open balls form a basis for a topology, called the topology of the
metric space.

A topological space (X, T) is metrizable if there is a metric d on X so
that 7 is the topology of (X,d). In this case we say that the metric d is
compatible with 7. If 7 is metrizable with compatible metric d, then the
metric

is also compatible and d’' < 1.

A subset D C X of a topological space X is dense if it meets every
nonempty open set. A space X admitting a countable dense set is called
separable. Every second countable space is separable (but the converse does
not hold). If X is metrizable, then X is separable iff X is second countable,
so we use these terms interchangeably in this case.

A subspace of 4 metric space (X,d) is a subset Y C X with the in-
duced metric d|Y (i.e., d|Y(z,y) = d(z,y) for any z,y € Y). The topology
of (Y,d|Y') is then the relative topology of Y. Thus a subspace of a metriz-
able topological space is metrizable. Moreover, a subspace of a separable
metrizable space is separable.

A function f : X — Y between metric spaces (X,dx), (Y,dy) is
an isometry if it is a bijection and dx(z,,z2) = dy(f(z)), f(x2)). Every
isometry is clearly a homeomorphism. We call f an isometric embedding if
f is an isometry of X with f(X).

The product of a sequence of metric spaces ((Xn, dn))n cn 18 the metric
space (], Xu,d), where

o0

1 Gn(Tn,Yn)
_ n—1 )
day) =) 27" s

n=()

with £ = (z,,), ¥ = (¥»). The topology of this metric space is the product of
the topologies of ((X.,. dn)). Thus the product of a sequence of metrizable
topological spaces is metrizable. Moreover, the product of a sequence of sep-
arable metrizable spaces is also separable. The sum of a family ((X;, dﬂg))i(E P
of metric spaces is defined (up to isometry) as follows: By copying the met-
ric of each X; on a set of the same cardinality, we can assume that the sets
X; are pairwise disjoint. Let X = |J;c; X;. We define a metric d on X by
letting d(z,y) = di(z,y), ifz.y € X, and diz,y)=1,ifre X;and y € X;
with ¢ # j. The topology of this metric space is the sum of the topoloerles
of ((Xi,d;)). Thus the sum of metrizable topological spaces is metrizable,
and the sumn of a sequence of separable metrizable spaces is separable.

We recall here the following important metrization theorem. A topo-
logical space X is called T if every singleton is closed and is called regular
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if for every point x € X and open nbhd U of z, there is an open nbhd V
of  with V C U (where, as usual, A denotes the closure of A, i.e., the
smallest closed set containing A).

(1.1) Theorem. (Urysohn Metrization Theorem) Let X be a second count-
able topological space. Then X is metrizable iff X is Ty and regular.

We conclude with two basic results (the first of which is a special
case of the second) concerning the existence of continuous real functions on
metrizable spaces.

(1.2) Theorem. (Urysohn’s Lemma) Let X be a metrizable space. If A,B are
two disjoint closed subsets of X, there is a continuous function f:X — [0,1]
such that f(z) =0 for x € A and f(x) =1 for x € B.

(1.3) Theorem. (Tietze Extension Theorem) Let X be a metrizable space.
If AC X is closed and f:A — R is continuous, there is f:X — R which is
continuous and extends f. Moreover, if f is bounded by M, i.e., |f(z)| < M
forallz € A, sois f.
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2. Trees

2.A Basic Concepls

The concept of a tree is a basic combinatorial tool in descriptive set theory.
What is referred to as a tree in this subject is not, however, the same
notion as the one used either in graph theory or combinatorial set theory,
although it is closely related. On the rare occasion that we will use the
graph theoretic notion, we will refer to it as a “graph theoretic tree”.

Let A be a nonempty set and n € N. We denote by A™ the set of finite
sequences s = (s(0),...,5(n = 1)) = (soy...,8n-1) of length n from A. We
allow the case n = 0, in which case A’ = {0}, where 0 denotes here the
empty sequence. The length of a finite sequence s is denoted by length(s).
Thus length(@) = 0. If s € A™ and m < n, we let s|m = (so,...,8m-1)-
(So 5|0 = 0.) If s,¢ are finite sequences from A, we say that s is an initial
segment of ¢ and ¢ is an extension of s (in symbols, s C t) if s = ¢|m,
for some m < length(t). Thus @ C s, for any s. Two such finite sequences
are compatible if one is an initial segment of the other and incompatible
otherwise. We use s L ¢ to indicate that s,¢ are incompatible. Finally, let

A<N — U A"
neN

be the set of all finite sequences from A. The concatenation of s =
(8i)icn: t = (tj);<m is the sequence 8"t = (So....,8n—-1,00,-+.,tm—1). We
write s”a for s”(a), if @ € A.

Let AN be the set of all infinite sequences z = (z(n)) = (z,) from
A Ifz e ANand n € N, let z|n = (2g,...,Zn-1) € A™. We say that
s € A" is an initial segment of x € AN if s = z|n. We write s C z if
s is an initial segment of z. Also, for s € A<N and z € AN we let the
concatenation of s,z be the infinite sequence s z = y, where y(i) = s(i)
if ¢ < length(s) and y(length(s) + i) = z(i). The (infinite) concatenation
80°81782" ... of s; € AN is the unique £ € ANUA<N such that z(i) = so(3),
if i < length(sg); z(length(se) + i) = 51(2), if ¢ < length(s,); and so on.

(2.1) Definition. A tree on a set A is a subset T C A<N closed under initial
segments; i.e., ift € T and s C ¢, then s € T. (In particular, 9 € T if T is
nonempty.) We call the elements of T the nodes of T. An infinite branch
of T is a sequence x € AN such that x|n € T, for all n. The body of T,
written as [T), is the set of all infinite branches of T, i.e.,

[T] = {z € AN : Vn(z|n € T)}.

Finally, we call a tree T pruned if every s € T has a proper ertension
t2s,teT.

We visualize trees as follows (Figure 2.1):
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S Nas) (6,¢) d) Ye) T
® (bcf" N)
bef...) 7]
FIGURE 2.1.

The bold line represents an infinite branch (b,c, f”,...) € [T]. The tree in
Figure 2.1 is not pruned. The full binary tree {0, 1} <N pictured in Figure 2.2
is, of course, pruned.

oD (L0 (L1)

FIGURE 2.2.
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2.B Trees and Closed Sets

We can view a set A as a topological space with the discrete topology, i.e.,
the topology in which every subset of A is open. This is metrizable with
compatible metric §(a, b) = 1, if @ # b. Therefore AV, viewed as the product
space of infinitely many copies of A, is metrizable with compatible metric:
d(x,y) =2"""1if z # y and n is the least number with z, # yn.

(2.2) Exercise. A metric d is an ultrametric if
d(z,y) < max{d(z,z2), d(y,2)}.

Show that the above metric is an ultrametric.

The standard basis for the topology of AN consists of the sets
Ny={ze AN :5Cz},

where s € A<N, Note that sCt < N, D N,ands Lt < N,N N, =0.

(2.3) Exercise. i) Show that if U C AN is open, then there is a set § C A<M
such that: s,t € S, s £t = s L, and U = |J,c g Ns.

ii) Let U = US%D N, with D C A<N closed under extensions. Show
that U is dense in AN iff D is dense in A<N, i.e., Vs € A<N3t € D(s C ¢t).

iii) Let 2,z € AN, Show that z™ — z iff Vi(z™(i) = z(4), for all large
enough n).

iv) Show that (AN)® (n > 1), (AN)N are homeomorphic to AN,

(2.4) Proposition. The map T — [T is a bijection between pruned trees on
A and closed subsets of AN. Its inverse is given by

F—Tp={z|n:x € F, neN}.
We call Tr the tree of F.
The proof is evident.

For later reference we introduce the following notation. If T is a tree
on A, then for any s € A<N,

T,={tc AN:steT)

and
Tis) = {t € T : t is compatible with s} .

Thus [Ti5j] = [T] N N, forms a basis for the topology of [T]. Note that Tjy
is a subtree of T', but T, in general is not.

(2.5) Definition. Let S,T be trees (on sets A,B, resp.). A map p:S — T is
called monotone if s C ¢t implies p(s) C ¢(t). For such ¢ let
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D(¢)={z €[9]: lim length(p(z|n)) = oo} .

For z € D(yp), let
o*(2) = olaln) € [T

We call ¢ proper if D(p) = [S].

(2.6) Proposition. The set D(p) is Gs in [S] and ¢* :D(yp) — [T] is contin-
uous. Conversely, if f:G — [T] is continuous, with G C [S] a Gs set, then
there is monotone .S — T with f = ¢*.

Proof. We have x € D(p) & Vn3m(length(p(z|m)) > n), so D((p) =
N, U, with Uy, = {z : Im (length(p(x|m)) > n)} open. To see that ¢” is
continuous, note that the sets [T] N Ny = V; form a basis for the topology
of [T] and (¢*)~Y (Vi) = U{Ns N Dy, : s € S, ¢(s) 2t} is open in D,,.

Now, given G, a G5 set in [S] which we can assume is nonempty (oth-
erwise take ¢(s) = 0), and f : G — [T] continuous, define ¢ : S — T as
follows: Let (U,) be a decreasing sequence of open-sets in [S], with Uy = [5],
such that G = [}, U,. For any s € S, let k(s) € N be defined as follows:
k(s) = the largest k < length(s) such that N, N [S] C Uy. Now set ¢(s) =
the longest u € T of length < k(s) such that f(N;NG) C N, if N,NG # 0,
otherwise ¢(s) = w(s|m), where m < length(s) is largest with N,,,NG # 0.
(Note that if N,N G # 0, and f(N, N G) C N, N Ny, then v and v are
compatible:) Clearly, s C s’ = k(s) < k(s’) and ¢(s) C (s').

If z € G, then lim, k(x|n) = oo because £ € Uy for each N, and
thus there is n > N with N,, N [S] € Un, and so k(z|n) > N. Also
lim,, length(x(z|n)) = oc since for each N there is n with k(z|n) > N
such that 0 # f(N,, NG) C Nf(x)w, so f(z)[N C ¢(z|n). This also
shows that G C D(p) and f(z) = ¢*(z) for z € G. Finally, if z € D(yp),
then lim, k(z|n) = oo, so for each N there is n with k(z|n) > N; thus
z € Ny, N [S] € Un. Therefore, x € G and G = D(yp). 0

(2.7) Exercise. Let ¢ : § — T be monotone. We call i Lipschitz if
length(o(s)) = length(s). Show that in this case d(y*(1),¢*(y)) < d(z,¥)
for any x,y € D(p), where d is the usual metric on sequences (see remarks
preceding 2.2).

A closed set F in a topological space X is a retract of X if there is a
continuous surjection f : X — F such that f(z) =z for x € F.

(2.8) Proposition. Let F C H be two closed nonempty subsets of AN. Then
F is a retract of H.

Proof. Let S,T be pruned trees on A such that [$] = F and [T] = H. We
will define a monotone proper ¢ : T — S with ¢(s) = s for s € S (note
that § C T'). Then f = ¢* shows that F is a retract of H. We define ¢(t)
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by induction on length(t). Let (@) = 0. Given (t), we define ¢(¢t"a) for
a€ Aand t"a €T as follows: If t"a € S, let p(t"a) =t"a. If t"a € S, let
©(t"a) be any ¢(¢)"b € S, which exists since S is pruned. 0

2.C Trees on Products

We will sometimes have to deal with trees T on sets A which are products of
the form A= BxC or A= BxC x D, etc. When, for example, A = BxC,
a member of T is a sequence s = (s;);<n with 8; = (b;,¢;), b; € B, ¢; € C.
It is more convenient in this case to identify s with the pair of sequences
(t,u) with t; = b;, u; = ¢; and to view T as being a subset of B<N x C<N
with the property that (¢,u) € T implies that length(f) = length(u), and
(¢,v) € (¢',u') (e, t C ¢ and u C '), (¢',v') € T imply that (t,u) €
T. With this convention [T] is the set of pairs (z,y) € BN x CN with
(z|n,y|n) € T for all n. The meaning of T} 4, Tjs,«) for (¢,u) € BN x <N
with length(t) = length(u) is also self-explanatory.

According to 2.4, applied to (B x C)N, which we identify with BN x CN,
the closed subsets of BY x CN are exactly those of the form [T}, for T a
pruned tree on B x C.

If T is a tree on B x C and z € BN, consider the section tree T'(z) on
C defined by

T(z) = {s € C<N: (z[length(s),s) € T} .
Note that if T is pruned it is not necessarily true that T'(x) is pruned. Also,
(z.y) € [T &y €[T(z)].

Similarly, for s € BN, we define T(s) = {t € C<N : length(t) <
length(s) & (s|length(t),t) € T}.

2.D Leftmost Branches

We will now discuss the concept of the leftmost branch of a tree. Let T be a
tree on a set A and let < be a wellordering of A. If [T] # 0, then we specify
the (<-) leftmost branch of T', denoted by ar, as follows. We define ar(n)
by recursion on n:

ar(n) = the <- least element a of A such that [Tispjn)-al #0.

Ifforz #y € AN, or z # y € A™ (for some m), we define the (<-)
lexicographical ordering <), by = <jex ¥ < for the least n such that z(n) #
y(n), we have z(n) < y(n), then it is clear that ar is the lexicographically
least element of [T]. When T is pruned, ar is also characterized by the
property that for each m, ar|m is the lexicographically least element of
TNA™.
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2.F Well-founded Trees and Ranks

If a tree T on A has no infinite branches, i.e., [T] = 0, then we call T
well-founded. This is because it is equivalent to saying that the relation
s <t & 521 restricted to T is well-founded. (See Appendix B.) On the
other hand, if [T] # 0, we call T ill-founded. If T is a well-founded tree, we
denote the rank function of < restricted to T" by pr. Thus

pr(s) = sup{pT(t) +1:teT, tg s},
for s € T. An easy argument shows that we also have
pr(s) =sup{pr(s"a) +1:s"a €T}.

Also, pr(s) = 0 if s € T is terminal, i.e.,, for no a, s"a € T. We also
put pr(s) = 0 if s ¢ T. The rank of a well-founded tree is defined by
p(T) =sup{pr(s) +1:s € T}. Thusif T # 0, p(T) = pr(0) + 1.

If S,T are trees {(on A, B, resp) amap ¢ : S — T will be called
strictly monotone if s Gt = cp(s) @(t), i.e., if ¢ is order preserving for the
relation 2. Then if T is well-founded and ¢ : § — T is strictly monotone,
we have that S is well-founded and pgs(s) < pr(@(s)), for all s € S, so in
particular p(S) < p(T'). But we also have the converse here. If S5, T are well-
founded and p(S) < p(T), then there is a strictly monotone ¢ : S — T'. We
define ¢(s) by induction on length(s) for s € S, so that pg(s) < pr(e(s)).
First let (@) = 0. Assuming that (s) has been defined, consider s"0 € S.
Then ps(s”a) < ps(s) < pr(p(s)), so there is some b with ¢(s)"b € T and
ps(s”a) < pr(p(s)"b). Let ¢(s"a) = p(s)"b. We have therefore shown the
following fact.

(2.9) Proposition. Let S, T be trees on A, B, respectively. If T is well-
founded, then S is well-founded with p(S) < p(T) iff there is a strictly
monotone map ¢:S — T.

(2.10) Exercise. Given a relation < on X, we associate with it the following
tree on X:

(.’E(),...,;Itn_l) ETL © Tn-) < Tp-2 <+ <T) < Lp.

(By convention, when n = 1, (x9) € T« for any o € X.) Show that
< is well-founded iff T is well-founded, and in this case for any = € X
and any zg,...,%Tp-) With £ < z,_) < -+- < ) < T, We have p_(7) =
et ((Zo, ... ,Zn-1,%)). (We allow the case where n = 0 here, ie., p<(z) =
pt.((x)).) Conclude that p(<) = pr_(0).
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2.F The Well-founded Part of a Tree

Even if a tree T is ill-founded, we can define a rank function on its well-
founded part WFr, which is defined as follows:

s € WFr & s e T & T, is well-founded.

Note that if s € WFr and s C ¢t € T, then t € WFr. Also, the relation
< = 2 is well-founded on WFr, and so we can define the rank function pr
on WFr by
pr(s) = sup{pr(t) +1:t €T, ¢t 2 s}
= sup{pr(s"a)+1:5%a € T},

for s € WFr. Note that any terminal s € T belongs to WFr and pr(s) = 0.
For a tree T on A, it is also convenient to define

pr(s) = 0o = the smallest ordinal of cardinality > max{card(A4),Re},

for s € T\ WFr, so that pr(t) < pr(s) if t € WFr, s ¢ WFr. (Hence,
if A is countable, pr(s) = w;.) Finally, we can extend pr to all of A<N by
letting pr(s) = 0 if s ¢ T. Again, we let

p(T) = sup{pr(s) +1:s € WFr},
so that pr|WFr maps WFr onto {o: a < p(T)}.

(2.11) Exercise. For each tree T on A, let T* = {s € T : 3a(s"a € T)} and
by transfinite recursion define:

TO =T,
T(a+l) — (T(a))*’

T = () T, if Ais limit.
a<A

Let g be the least ordinal o such that T(® = T{(e+D) apd let T(™) =
T(>0), Show that WFr = T\ T¢*) and so T is well-founded iff T¢>) = @,
Additionally, show that for s € WFr,

pr(s) = the unique a with s € T \ T{a+D),

2.G The Kleene-Brouwer Ordering

Now let (A, <) be a linearly ordered set. We define the Kleene-Brouwer
ordering <xp on A<N as follows: If s = (sg,...,5m—1), £ = (to, ..., tn=-1),
then
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s <kpte (s2t)or (I <min{m,n} (Vi <i(s; =t;) & s <t;)].

It is easy to check that <kp is a linear ordering (extending the partial
ordering 2).

(2.12) Proposition. Assume that (A, <) is a wellordered set. Then for any
tree T on A, T is well-founded iff the Kleene-Brouwer ordering restricted
to T is a wellordering.

Proof. If T is ill-founded and z € [T, clearly z|(n + 1) <gp z|n for each
n, 80 <gp is not a wellordering on T. Conversely, let (s,) be an infinite
descending chain in <g g restricted to T. Then s4(0) > 5,(0) > 5,(0) > ---,
so eventually s,(0) is constant, say 5,(0) = sp for n > ng. Thus s,(1)
exists for all n > ng and sp,41(1) 2 $po42(1) > ---. Therefore, for some
ny > Mg, Sp(l) is constant, say s,(1) = s, for n > n,;, and so on. Then
(s0,51,...) € [T], i.e., T is ill-founded. 0



3. Polish Spaces 13

3. Polish Spaces

3.A Definitions and Exzamples

Let (X,d) be a metric space. A Cauchy sequence is a sequence {(x,) of
elements of X such that lim,, ,, d(x,,,z,) = 0. We call (X,d) complete if
every Cauchy sequence has a limit in X. Given any metric space (X, d),
there is a complete metric space (X,d) such that (X,d) is a subspace of
(X, d) and X is dense in X. This space is unique up to isometry and is
called the completion of (X, d). Clearly, X is separable iff X is separable.

(3.1) Definition. A topological space X is completely metrizable if it admits
a compatible metric d such that (X .d) is complete. A separable completely
metrizable space is called Polish.

(3.2) Exercise. Consider the open interval (0,1) with its usual topology.
Show that it is Polish although its usual metric is not complete.

The following facts are easy to verify.

(3.3) Proposition. i) The completion of a separable metric space is Polish.
it) A closed subspace of a Polish space is Polish.

iii) The product of a sequence of completely metrizable (resp. Polish)
spaces is completely metrizable (resp. Polish). The sum of a family of com-
pletely metrizable spaces is completely metrizable. The sum of a sequence
of Polish spaces is Polish.

EXAMPLES
1) R,C,R",C", RN, and CN are Polish; the unit interval
I=[0,1],
the unit circle
T={zeC:|z| =1},
the n-dimensional cube I, the Hilbert cube IN, the n-dimensional torus

T, and the infinite dimensional torus TN are Polish.

2) Any set A with the discrete topology is completely metrizable, and
if it is countable it is Polish.

3) The space AN, viewed as the product of infinitely many copies of A
with the discrete topology, is completely metrizable and if A is countable it
is Polish. Of particular importance are the cases A =2 = {0,1} and A = N.
We call

c=2N

the Cantor space and
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N =NV

the Baire space.

(3.4) Exercise. i) The Cantor (1/3 -) set is the closed subset Ej;3 of I
consisting of those numbers that have only 0's and 2’s in their ternary
expansion. Show that C is homeomorphic to E} /3.

ii) Denote by Irr the space of irrationals (with the relative topology as
a subset of IR). Show that the continued fraction expansion gives a homeo-
morphism of Irr N (0, 1) with (N\ {0})N, and therefore Irr is homeomorphic
to V.

4) The topology of any (real or complex) Banach space is completely
metrizable and for separable Banach spaces it is Polish.

Beyond the finite dimensional spaces R",C", examples of separable
Banach spaces that we will occasionally consider are the £P spaces (1 <
p < 00), in particular the Hilbert space £2; ¢y (the space of converging to
0 sequences with the sup norm); the LP(u) spaces (1 < p < o0), where u is
a o-finite measure on a countably generated o-algebra; C(X), the space of
continuous (real or complex) functions on a compact metrizable space X
with the sup norm.

5) Let XY be separable Banach spaces. We denote by L(X,Y) the
(generally non-separable) Banach space of bounded linear operators T :
X — Y with norm ||T|| = sup{||Tz||:z € X, ||z|]| < 1}. f X =Y, we let
L(X) = L(X, X). Denote by L,(X,Y) the unit ball

Ly(X,Y) = {Te L(X,Y) : |T|| < 1}

of L(X,Y). The strong topology on L{X,Y) is the topology generated by
the family of functions f(T) = Tz, f.: L(X,Y) - Y, for £ € X. It has
as basis the sets of the form

Vxl'___’a;n;s_;T = {S E L(X, Y) . ||S:B] _Txl” < 6, ey ||S$n - T.’Bn” < 6},

forzy,...,zn,e X, e>0, Te L(X,Y).

The unit ball L, (X,Y") with the (relative) strong topology is Polish. To
see this, consider, for notational simplicity, the case of real Banach spaces,
and let D C X be countable dense in X and closed under rational linear
combinations. Consider Y2 with the product topology, which is Polish,
since D is countable. The map T — T|D from L\(X,Y) into Y2 is injective
and its range is the following closed subset of Y'2:

F={feY? v,y e DVp,q € Q[f(pz + qy) = pf() + ¢/ (¥)]
& vz € D(||f ()l < =)} -

It is easy to verify that this map is a homeomorphism of L,(X,Y) and F,
thus L, (X,Y) with the strong topology is Polish.
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(3.5) Exercise. Show that the following is a complete compatible metric for
the strong topology on L, (X,Y):

o0

d(S,T) =Y _27"Y||($ - T)(xa)ll,

n=0

where (z,,) is a dense sequence in the unit ball of X.

3.B Extensions of Continuous Functions
and Homeomorphisms

Let X be a topological space, (Y, d) a metric space, AC X,and f: A— Y.
For any set BC Y, let

diam (B) = sup{d(z,y) : z,y € B}

(with diam(@) = 0, by convention), and define the oscillation of f at z € X
by
oscs(z) = inf{diam(f(U)) : U an open nbhd of =}

(where it is understood that f(U) = f(ANU)). Note that if z € A, then z is
a continuity point of f iff oscg(x) = 0. Letting A, = {z € X : oscs(x) < €},
note that A is open and {x : oscs(z) =0} =(, A1/(n+1) is a G5 set. Thus
we have shown the following proposition.

(3.6) Proposition. Let X be a topological space, Y a metrizable space, and
f:X — Y. Then the points of continuity of f form a Gs set.

Let us also note the following basic fact about metrizable spaces.

(3.7) Proposition. Let X be a metrizable space. Then every closed subset of
X is a G set. '

Proof. Let d be a compatible metric for X. For x € X, 0 # A C X define
d(z, A) = inf{d(z,y) : y € A}.

Note that
|d(z, A) — d(y, A)| < d(x,y).

Thus the e-ball around A, B(A,¢) = {z : d(z, A) < €} is open. It follows
that if F C X is closed (nonempty without loss of generality), then

F=()B(F,1/(n+1)),

and so F is a Gj. ()
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We will use the preceding ideas to prove the following basic extension
theorem.

(3.8) Theorem. (Kuratowski) Let X be metrizable, Y be completely metriz-
able, A C X, and f:A — Y be continuous. Then there is a G5 set G with
A C G C A and a continuous extension g:G — Y of f.

Proof. In the preceding notation, let G = AN {z : osc;(z) = 0}. This is a
G's set and since f is continuous on 4, A C G C A.

Now let £ € G. Since z € A, find z, € A, z, — z. Then
lim, (diam(f({Tn+1. Tnt2....}))) = 0, so (f(z,)) is a Cauchy sequence
and thus converges in Y. Let

g(z) = lim f(z,,).

It is easy to check that ¢ is well-defined, i.e., it is independent of the choice
of (), and extends f. To see finally that g is continuous on G, we have to
check that oscy(z) =0, for all x € G. If U is open in X, then ¢(U) C f(U),
so diam(g(U)) < dian(f(U)), thus osc,(x) < oscg(x) = 0. 0

The following is an important application.

(3.9) Theorem. (Lavrentiev’s Theorem) Let X,Y be completely metrizable
spaces. Let AC X, BCY, and f:A — B be a homeomorphism. Then f
can be extended to a homeomorphism h.G — H where G D A, H 2 B and
G, H are G5 sets.

In particular, a homeomorphism between dense subsets of X,Y can be
extended to a homeomorphism between dense Gg sets.

P?"OOf. By 38, let f] . G1 — Y, a - H] — X, where Gl 2 A, Hl 2 B
are G sets, be continuous extensions of f, f~! respectively. Let R =
graph(f1), § = graph™'(g1) = {(z,9) : z = 91()}. Let G = projx(RN
S), H = projy(RN S),sothat A C G € &, B C H C Hy, and
teG e alh@)==2 yeHs ilay) =y Ao, h = |G isa
homeomorphism of G with H. It is enough, therefore, to show that G, H
are G; sets. Consider, for example, G: The map w(z) = (z, f1(z)) is con-
tinuous from G, into X x Y and G = 7~ 1(&). But S is closed in X x H,,
so it is a G5 in X x Y. Thus, since inverse images of G sets by continuous
functions are G too, G is G5 in G, 50 G is G in X. 0

(3.10) Exercise. Let X be a completely metrizable space and A C X. If f :
A — A is a homeomorphisni, then f can be extended to a homeomorphism
h:G — G, where G D Ais a Gg set.
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3.C Polish Subspaces of Polish Spaces

We will characterize here the subspaces of Polish spaces which are Polish
(in the relative topology).

(3.11) Theorem. If X is metrizable and Y C X is completely metrizable,
then Y is a G in X. Conversely, if X is completely metrizable andY C X
is a Gs, then Y is completely metrizable.

In particular, a subspace of a Polish space is Polish iff it is a Gs.

Proof. For the first assertion, consider the identity idy : ¥ — Y. It is
continuous, so there is a G5 set G with Y € G C Y and a continuous
extension g : G — Y of idy. Since Y is dense in G, g =idg,so Y =G.

For the second assertion, let Y = [, Uy,, with U, open in X. Let
F, = X\Ux. Let d be a complete compatible metric for X. Define a new
metric on Y, by letting

d(z,y) =d(z,y) + imin{z‘"‘l, |d(a:1F - d(ylF )|}
n=0 en en

It is easy to check that this is a metric compatible with the topology of Y.
We show that (Y, d) is complete.

Let (y;) be a Cauchy sequence in (Y,d’). Then it is Cauchy in (X, d).
Soy, —» ye X. But also for each n, llmz'_,..oolaﬁm - ay;’_pnjl =0, so
for each n, Wyil,_FnT converges in R, so d(y;, F,,) is bounded away from 0.
Since d(y;, F.) — d(y, Fn), we have d(y, F,,) # 0 for all n, so y ¢ F}, for all
n,ie., y €Y. Clearly, y; — v in (Y, d'). 0

(3.12) Exercise. Let 0" = 0...0 (n times). Show that the map f(z) =
0% 10% 10%2.. ., where ¢ = (z,), is a homeomorphism of ' with a co-
countable G set in C. Identify f(N).
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4. Compact Metrizable Spaces

4.A Basic Facts

A topological space X is compact if every open cover of X has a finite
subcover, i.e., if (U:)icr is a family of open sets and X = |J;¢, Ui, then
there is finite I C I such that X = |J,., U:. This is equivalent to saying
that every family of closed subsets of X with the finite intersection property
(i.e., one for which every finite subfamily has nonempty intersection) has
nonempty intersection.

Recall also that a topological space X is Hausdorff if every two distinct
points of X have disjoint open nbhds. Metrizable spaces are Hausdorff.

Here are some standard facts about compact spaces.

(4.1) Proposition. i) Compact (in the relative topology) subsets of Hausdorff
spaces are closed.

i1) A closed subset of a compact space is compact.

iti) The union of finitely many compact subsets of a topological space
ts compact. Finite sets are compact.

i) The continuous image of a compact space is compact. In particular,
if f:X — Y is continuous, where X is compact and Y is Hausdorff, f(F)
is closed (resp. F,) in'Y, if F is closed (resp. Fy) in X.

v) A continuous injection from a compact space into a Hausdor{f space
s an embedding.

v1) (Tychonoff’s Theorem) The product of compact spaces is compact.

vit) The sum of finitely many compact spaces is compact.

For metric spaces we also have the following equivalent formulations
of compactness.

(4.2) Proposition. Let X be a metric space. Then the following stotements
are equivalent:

1) X is compact.

it) Every sequence in X has a convergent subsequence.

i) X is complete and totally bounded (i.c., for every e > 0, X can be
covered by finitely many balls of radius < ¢).

In particular, compact metrizable spaces are Polish.

Remark. A compact subset of a metric space is bounded (i.e., has finite
diameter). So compact sets in metric spaces are closed and bounded. This
characterizes compact sets in R, C", but not in general.

(4.3) Exercise. Show that the unit ball {x € €2 : ||z|| < 1} of Hilbert space
is not compact.
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(4.4) Exercise. If X is compact metrizable and d is any compatible metric,
(X, d) is complete.

Concerning continuous functions on compact metric spaces, we have
the following standard fact.

(4.5) Proposition. If (X,d) is compact metric, (Y,d') is metric, and f:X —
Y is continuous, then f is uniformly continuous (i.e., Vedé [d(z,y) < § =

& (f(z).f(®) <¢).

Finally, metrizability of compact spaces has a very simple characteri-
zation.

(4.6) Proposition. Let X be a compact topological space. Then X is metriz-
able iff X is Hausdorff and second countable.

4.B Examples

1) The finite or infinite dimensional cubes I", IV, and tori T*, TV are com-
pact (but R, C*, €2, etc. are not). The Cantor space C is compact.

2) Let X be a separable Banach space. The dual X* of X is the Banach
space of all bounded linear functionals z* : X — K, where K = R or C is the
scalar field, with norm ||z*|| = sup{[(z,z*)| : z € X, ||z|| < 1}, where we
let {x,z*) = z*(z). In other words, X* = L(X,K). For X = ¢!, X* = ¢>,
which is not separable. Consider now the strong topology on X*, i.e., the
one generated by the functions * — (z,z*), x € X, which in this context is
called the weak*-topology of X*. Let B){X*) (= L1(X, K)) be the unit ball
of X*. Asin Example 5) of Section 3.A, B)(X*) with the weak*-topology is
Polish, but actually in this case it is moreover compact. This is because in
the notation established there, F C [, <p(=Izll, ||z|]] (we are working with
R again) and [[_<p[—Ilzll, |||} is compact. We summarize in the following
theorem.

(4.7) Theorem. (Banach) The unit ball By(X™*) of a separable Banach space

X is compact metrizable in the weak™-topology. A compatible metric is given
by

oQ

U 57) = 32 () = (oms”)

n=0

for (z,,) dense in the unit ball of X.

(4.8) Exercise. Show that B)(£>°) = [~1,1]N and that the weak*-topology
on B, (£*) is the same as the product topology on [—1,1]N. (For the complex
case replace [—1,1] by D = {z € C: |z| < 1}, the unit disc.)
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(4.9) Exercise. Let X,Y be separable Banach spaces. The weak topology
on L(X,Y) is the one generated by the functions (from L(X,Y’) into the
scalar field)

T (Tz,y*) ; ze X, y" €Y.

Show that if Y is reflexive, L){X,Y) with the weak topology is compact
metrizable. Find a compatible metric.

(4.10) Exercise. A topological vector space is a vector space X (over R or
C) equipped with a topology in which addition and scalar multiplication are
continuous (from X x X into X and Kx X into X, resp., where K = Ror C).
So Banach spaces and their duals with the weak*-topology are topological
vector spaces. A subset K of a vector space is called convex if for every
z,y€e Kand0 <A <1, A+ (1 — Ay € K. A point z in a convex set K
is extreme (in K) if z = Ay + (1 — M)z, with 0 < A < 1, y,2 € K, implies
y = z (= z). Denote by 9.K the extreme boundary of K, i.e., the set of
extreme points of K. Show that if K is a compact metrizable (in the relative
topology) convex subset of a topological vector space, then the set 0. K is
Gs in K, and thus Polish. In particular, this holds for all compact convex
subsets of B)(X*), for X a separable Banach space. What is 0. (B (£°°))?

(4.11) Exercise. If T is a tree on A, we call T finite splitting if for every
s € T there are at most finitely many a € A with s”a € T. Show that if T
is pruned, [T] is compact iff T is finite splitting. In particular, if K C NV is
compact, there is £ € A such that for all y € K, y(n) < z(n) for every n.
Conclude that N is not a countable union of compact sets.

(4.12) Exercise. (Konig's Lemma) Let T be a tree on A. If T is finite
splitting, then [T'] # @ iff T is infinite. Show that this fails if T" is not finite
splitting.

(4.13) Exercise. (The boundary of a graph theoretic tree) An (undirected)
graph is a pair G = (V, E), where V is a set called the set of vertices,
and E C V? with (z,y) € E © (y,7) € E and (z,z) ¢ E. If (z,y) €
E, we say that (z,y) is an edge of G. A path jn G is a finite sequence
(0, Z1,...,Zn), n = 1, with (z;,2:11) € F for i < n and where the z; are
distinct except possibly for x4 and x,,, when n > 3. A closed path, i.e., one
in which 4 = z, is called a loop. A graph G is connected if for every two
distinct vertices x, y there is a path (zy,...,z,) withzg =z and z,, = y. A
graph theoretic tree is a connected graph with no loops. This is equivalent
to saying that for any pair (z,y) of distinct vertices there is a unique path
(z0,...,25) wWith z = 7o and y = z,,.

The two-dimensional lattice in Figure 4.1 is an example of a connected
graph that is not a graph theoretic tree. Figure 4.2 depicts a graph theoretic
tree,
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FIGURE 4.2.

A rooted graph theoretic tree is a graph theoretic tree with a distin-
guished vertex, called its root. A tree T on a set A can be viewed as a
rooted tree with @ as the root, vertices the nodes of T, and edges all pairs
(s,s"a) or (s"a,s) for s,5"a € T. Conversely, every rooted graph theoretic
tree G = (V, F) gives rise to a tree T (on V) as follows: Identify each v € V
with the sequence (vg, vy, ..., vs), which is the unigue path from vy = root
to the vertex v,, = v. (By convention, the root corresponds to 9.)

A graph theoretic tree G is locally finite if every vertex v has finitely
many neighbors (i.e., u for which (v,u) € E).

Given a tree G, an infinite path through G is a sequence (xg,2),...)
such that (zi,zi41) € F and z; # z; for each i # j. Two infinite paths
(z:), (1;) are equivalent if InIMVi(Tnti = Yms:). See, for example, Fig-
ure 4.3:
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FIGURE 4.3.

An end of G is the equivalence class of an infinite path. Denote the set
of ends by 0G. This is called the boundary of G. We define a topology
on 9G by taking as basis the sets of the form [zg,...,z,] = {e € 9G :
ITpt+1, T2y .- . (Zo, Z1,...) € €} with (zp,...,z,) a path in G.

If zo € V, then for each end ¢ € 8G, there is a unique infinite path
z = (xg, ), ...) with o € e. We call x the gkodesic from z¢ to e and denote
it by [z, €]. Thinking of zp as a root of G, we can view G as a tree T on
V. Show that the geodesic map e — [zg, €] is a homeomorphism of G with
[T]. In particular, G is locally finite iff T is finite splitting and in this case
0G is compact.

4.C A Universality Property of the Hilbert Cube

(4.14) Theorem. FEvery separable metrizable space is homeomorphic to a
subspace of the Hilbert cube IN. In particular, the Polish spaces are, up to
homeomorphism, exactly the G5 subspaces of the Hilbert cube.

Proof. Let (X, d) be a separable metric space with d < 1. Let (x,,) be dense
in X. Define f: X — M by f(z) = (d(z,z.)). Clearly, f is continuous and
injective. It remains to show that f~!: f(X) — X is also continuous. Let
f(z™) - f(z),ie., d(z™,zn) — d(z,z,) for all n. Fix € > 0 and then let n
be such that d(z,z,) < €. Since d(z™,z,) — d(z,z,), let M be such that:
m> M= d(z™,z,) <€ Thenifm > M, d(z™,z) <2 So 2™ —=x. O

It follows that every separable metrizable (resp. Polish) space X can

be embedded as a dense (resp. (5) subset of a compact metrizable space
Y.
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(4.15) Definition. If X is separable metrizable, a compactification of X is'a
compact metrizable space Y in which X can be embedded as a dense subset.

(4.16) Exercise. Show that C and I are both compactifications of M. So -
compactifications are not uniquely determined up to homeomorphism.

(4.17) Theorem. Every Polish space is homeomorphic to a closed subspace
of RN.

Proof. The proof is similar to that of 3.11. We can assume that the given
Pohsh space is a Gs set G C V. Let (U,) be open with G = [ Un. Let
= IM\U,. Define f : G — RN by letting f = (f,) with

f2n+l($) =1In, fx= (3:1'):

f2n(m) ( an)

where d is a compatible metric on IN. Clearly, f is injective and con-
tinuous. We check now that f(G) is closed and f~! : f(G) — G is
continuous: If f(z?) = y® — y € RN, then 2" — z € IN and also
1/d(z™, F;) converges for each i, so (d(z", F;)) is bounded away from 0,
thus d(z, F;) = lim,, d(z", F;) # 0 and = ¢ F; for each i, so z € G. Clearly,
f(z)=y. O

Remark. It has been proved by R. D. Anderson that RN is homeomorphic
to the Hilbert space #2; see J. van Mill [1989].

4.D Continuous Images of the Cantor Space

(4.18) Theorem. Every nonempty compact metrizable space is a continuous
image of C.

Proof. First we show that IV is a continuous image of C. The map f(z) =

2 0 Z(n)2™""! maps C continuously onto I, so (z,) — (f(z,)) maps
CN, whlch is homeomorphic to C, onto IV, Since every compact metrizable
space is homeomorphic to a compact subset of IV, it follows that for every
compact metrizable space X there is a closed set F C C and a continuous
surjection of F onto X. Using 2.8 our proof is complete. O

We will discuss next two important constructions of Polish spaces as-
sociated with compact spaces and sets.
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4.E The Space of Continuous Functions on a Compact Space

Let X be a compact metrizable space and Y a metrizable space. We denote
by C(X,Y) the space of continuous functions from X into Y with the
topology induced by the sup or uniform metric

du(f1 9) = sup dy(j’(ﬂ'),g(.’l-)),
xz€X

where dy is a compatible metric for Y. A simple compactness argument
shows that this topology is independent of the choice of dy. When Y = R
or C, we write just C(X) when it is either irrelevant or clear from the
context which of the two cases we consider. In this case C(X) is a Banach

space with norm ||f|lec = Supyex |£(2)l, and dy(f,9) = |If = gllo is the
associated metric.

(4.19) Theorem. If X is compact metrizable and Y is Polish, then C(X,Y)
is Polish.

Proof. Let dy be a compatible complete metric for Y and let d, be as
above. If (f,) is Cauchy in C(X,Y), then sup,.x dy (fm(2z), fa(z)) — 0 as
m,n — o0o. In partiqular, (f,.(x)) is Cauchy for each z, so f(z) = lim fn(z)
exists in Y. It is easy now to check that f € C(X,Y) and f, — f. So
C(X,Y) is complete.

We now prove separability. Let dx be a compatible metric for X and let
Cmn = {f € C(-X’ Y) : Yz, y[dX(-Lay) < l/m = d?(f(*T),f(y)) < l/n]}‘
Choose a finite set X,,, C X such that every point of X is within 1/m from
some point of X,,,. Then let Dy, ,, € Cy, » be countable such that for every
f € Cp,n and every € > 0 there is g € D, » with dy(f(y),9(y)) < € for
y € Xm. We claim that D = |J,, , Dyn is dense in C(X,Y). Indeed, if
f€C(X,Y)and € > 0, let n > 3/e and let m be such that f € Cy, »,
(which is possible since f is uniformly continuous). Let ¢ € D,, ,, be such
that dy(f(y),9(y)) < 1/n for all y € X,,. Given z € X, let y € X, be
such that dx(z,y) < 1/m. Then dy(f(z),9(z)) < e So d.(f,9) <e. 0

4.F The Hyperspace of Compact Sets

Let X be a topological space. We denote by K(X) the space of all compact
subsets of X equipped with the Vietoris topology, i.e., the one generated
by the sets of the form

(K € K(X): K CU),
(KeKX): KnU #0},

for U open in X. A basis for this topology cousists of the sets
{(KeK(X): KCU & KN, #0& ... EKNU, #0}
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for Uy, Uy, ..., Un openin X.

(4.20) Exercise. i) A point x in a topological space is isolated if {z} is open.
Show that @ is isolated in K(X).

ii) Show that if X is a topological subspace of Y, K(X) is a topological
subspace of K(Y').

Now let (X, d) be a metric space with d < 1. We define the Hausdorff
metric on K(X), dg, as follows:

dy(K,L)=0,if K=L =9,
= 1, if exactly one of K, L is 0,

where
6(K,L) = max d(z,L).

Thus we have for nonempty K,L € K(X),
dy(K, L)< e KC B(L,¢) & L C B(K,¢).

(4.21) Exercise. Show that the Hausdorff metric is compatible with the
Vietoris topology.

(4.22) Theorem. If X is a metrizable space, so is K(X). If X is separable,
so is K(X).

Proof. If D C X is countable dense in X, then Ky(D) = {K C D :
K is finite} is countable dense in K(X). ]

Next we will study convergence in K(X). Given any topological space
X and a sequence (K,) in K(X), define its topological upper limit,
T lim, K,,, to be the set

{z € X : Every open nbhd of z meets K, for infinitely many n},
and its topological lower limit, T lim, K, to be the set
{x € X : Every open nbhd of * meets K, for all but finitely many n} .

Clearly, Tlim,K, € Tlim,Kp, and both are closed sets. If they are
equal, we call the common value the topological limit of (K,), written
as Tlim,, K,,. Finally note that if X is metrizable and K, # 0, then the
topological upper limit consists of all x that satisfy:

d(z,.)[rn € K, for all n, and for some subsequence (z,,), Tn, — z],

and the topological lower limit consists of all = that satisfy:
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Hxn)[#n € Kn, for all n, and z, — z].

(4.23) Exercise. Let (X, d) be metric with d < 1. Show that for nonempty
K, K, € K(X):

i) 8(K, Kn) — 0= K C Tlim, Kn;

i) 6(Kn, K) = 0=> K D Tlm,K,.
In particular, dy(Kn,K) — 0 = K = Tlim K,. Show that the converse
may fail.

(4.24) Exercise. Let (X, d) be compact metric with d < 1. Then for K,, # 0,
i) if Tlim, K, # 0, then §(Tlim, K,, K,) — 0,
ii) 6(Kn, Tlim, K,) — 0.

So if K = Tlim, K, exists, dy(Kn, K) — 0.

(4.25) Theorem. If X is completely metrizable, so is K(X). Hence, in par-
ticular, if X is Polish, so is K(X).

Proof. Fix a complete compatible metric d <1 on X. Let. (K,) be Cauchy
in (K(X),dy), where without loss of generality we can assume K, # 0.
Let K = Tlim,K,. We will show that K € K(X) and dy (K., K) — 0.
Note first that K = [, (U2, K;) and that K is closed and nonempty.

Claim 1. K is compact: It is enough to show it is totally bounded. For
that we will verify that for each n there is a finite set F, C X with K C
Uzer, B(%,27") or even that for Ln = U, Ki, Ln € U,cp, B(2,277).
To see this, let F! be finite with K; C UmeF,: B(z,27""1). Let p > n be
such that dy(K;, K;) <27"7! for i,j > p. Finally, let F, = Un<i<p Ft.
Claim 2. dy(Kn,K) — 0: Fix € > 0. Then find N with: ¢,j > N =
du(Ki K,) < ¢/2. We will show that if n > N, dy(K,, K) <e.

i)Ifx € K, let z,, € K,,,, ©,, — x. Then for large i, n; > N and
d(Zn,. ) < €/2. For such i, let y, € K,, be such that d(z,,,,y.) < ¢/2. Then
d(z,yn) < €, and therefore 6( K, K,,) < e.

if) Now let y € K. Find n = k; < k2 < k3 < - such that
dy(Ki;, Km) < 2777 '¢ for all m > k;. Then define zx, € Ky, as fol-

lows: Let xx, = y and j,,, be such that d(zy,,,,zx,) < 2777 'e. Then
(zx,) is Cauchy, so zx; — = € K, d(y, ) <¢, and finally, §(K,,K) <e. O

(4.26) Theorem. If X is compact metrizable, so is K(X).

Proof. It is enough to show that if d is a compatible metric for X,d < 1,
then (K(X),dy) is totally bounded. Fix € > 0. Let FF C X be finite with
X = U,ep B(x,€). Then K(X) = Ugcp B(S, €) (the open ball of radius ¢
around S in dgy). 0
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(4.27) Exercise. Let (X,d) be a metric space with d < 1. Then z — {z} is
an isometric embedding of X in K(X).

(4.28) Exercise. Let X be metrizable and K, € K(X), Ko 2 K) 2 - .
Then lim, K, = (),, Kn. In particular, if K, is the union of the 2™ many
closed intervals occurring in the nth step of the construction of the Cantor
set Ey/3, Kn — Eyy3.

(4.29) Exercise. Let X be metrizable.

i) The relation “z € K” is closed, i.e., {(z,K) : ¢ € K} is closed in
X x K(X).

ii) The relation “K C L” is closed, i.e., {{K,L) : K C L} is closed in
K(X)2.

iii) The relation “K NL # @” is closed.

iv) The map (K,L)— K UL from K(X)? into K(X) is continuous.

v) For K € K(K(X)), let UK = U{K : K € K}. Show that UK €
K(X) and U K(K(X)) — K(X) is continuous.

vi) If f: X — Y is continuous, where Y is a metrizable space, then
the map f” : K(X) — K(Y) given by f"(K) = f(K) is continuous,

vii) If Y is metrizable, then the map (K,L) — K xL from K(X)xK(Y)
into K(X x Y) is continuous.

viii) Find a compact X for which the map (K,L) — K N L is not
continuous.

(4.30) Exercise. Let X be metrizable. Show that the set
K;(X)={K € K(X): K is finite}
is F, in K(X).

(4.31) Exercise. A topological space is perfect if it has no isolated points.
Let X be separable metrizable. Show that

Ky(X)={K € K(X): K is perfect}

is a G5 set in K(X).

(4.32) Exercise. View a tree T on N as an element of gN=? by identifying
it with its characteristic function (note that T C N<N), Let Tr C 2N°"
denote the set of trees and PTr C 2¥°" denote the set of pruned trees.
Show that if 28" is given the product topology with 2 = {0,1} discrete
(so that it is homeomorphic to C), Tr is closed and PTr is a Gs. Now let
Ty, C 22" denote the set of trees on 2 and PTr, C 22<" denote the set of
pruned trees on 2. Show that they are both closed and that K + Ty is a
homeomorphism of K{(C) with PTr,.
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Show that the sets Try of finite splitting trees on N and PTry of fi-
nite splitting pruned trees on N are not (G5 and that K — Ty is not a
homeomorphism of K(N) and PTx,.
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5. Locally Compact Spaces

A topological space is locally compact if every point has an open nbhd with
compact closure. Clearly, compact spaces and closed subspaces of locally
compact spaces are locally compact. Products of finitely many locally com-
pact spaces are locally compact, but a product of an arbitrary family of
locally compact spaces is locally compact iff all but finitely many of the
factors are compact. The sum of locally compact spaces is locally compact.

For example, all discrete spaces, R™ and C" are locally compact, but
RN and NV are not.

(5.1) Definition. Given a locally compact Hausdorff space X, its one-point
compactification X is constructed as follows: If X is compact, X = X.
Otherwise, let co ¢ X. Let X = X U {0}, and define the topology of X by
declaring that its open sets are the open sets in X together with all the sets
of the form X\K for K € K(X).

Clearly X is open in X and X is compact Hausdotff.

For example, the one-point compactification of R is (up to homeo-
morphism) T; the one-point compactification of (0,1] is [0,1]; and the
one-point compactification of R™ is S™, the n-dimensional sphere (i.e.,
{z € R : |jzl| = 1}).

(5.2) Definition. A set A in a topological space X is Kq if A = U,, Kx.
'U]here Kn € K(X).

(5.3) Theorem. Let X be Hausdorff and locally compact. Then the following
statements are egquivalent.

1) X is second countable;

it) X is metrizable and K,;

i1i) X is compact metrizable;

i) X is Polish;

v) X is homeomorphic to an open subset of a compact metrizable space.

Proof. i) = iii): By 4.6, it is enough to show that X is second countable.
Fix a countable basis {U,} for X. Then {U, : U, is compact} is also a
basis, so we can assume that U, is compact for ea.ch n. If (X\K) with
K € K(X) is an open nbhd of o0, then K C |,z Uy, for some finite F,
50 {Va} = {N,ep(X\Uy,) : F finite} is a countable nbhd basis for co. Then
{UY U{V,} is a basis for X.

ili) = v): Obvious since X is open in X.

v) = iv): Open subspaces of Polish spaces are Polish.

iv) = ii): As in the first part of i) = iii).

i) = i) Let X = |J, K, with K, compact. We will define in-
ductively a sequence (U,,) of open. sets in X with U,, compact and
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U C Untr, U, Um = X, as follows: For m = 0, let Uy be open
with Uy compact and Ko C Up. In general, let U,, be open such that
U1 UKm C U, and U, is compact.

Since Up, is second countable, so is Uy, and thus let {Um n}nen be a
basis for Up,. Then {Up n}m,nen is a basis for X. 0
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6. Perfect Polish Spaces

6.A Embedding the Cantor Space in Perfect Polish Spaces

A limit point of a topological space is a point that is not isolated, i.e., for
every open nbhd U of x there is a point y € U, y # z. A space is perfect if
all its points are limit points. If P is a subset of a topological space X, we
call P perfect in X if P is closed and perfect in its relative topology.

For example, R®, RN, C*, CN, N, ¢, N are perfect. If X is perfect, so
is K(X)\{0} (@ is an isolated point of K(X)). The space C(X), X compact
metrizable, is perfect.

(6.1) Definition. A Cantor scheme on a set X is a family (As),co<n of
subsets of X such that:

i) As-0 N Agy =0, for s € 2<K;

it) As~; C A, for s € 2<N i € {0,1}.

(See Figure 6.1.)

FIGURE 6.1.

(6.2) Theorem. Let X be a nonempty perfect Polish space. Then there is an
embedding of C into X'.
Proof. We will define a Cantor scheme (U,),c2<n on X so that
i) U, is open nonempty;
ii) diam(U,) < 2-leneth(e),
iii) Us-; C U,, for s € 2<N, i € {0,1}.
Then for x € C, N, Uz} = (), Uzjn is a singleton (by the completeness

of X), say {f(z)}. Clearly, f : C — X is injective and continuous, and
therefore an embedding.
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We define U, by induction on length(s). Let Up be arbitrary satisfying
i), ii) for s = @. Given U, we define Us-g,Us-) by choosing x # y in U,
(which is possible since X is perfect) and letting Us-9, Us-; be small enough
open balls around z, y, respectively. 0

(6.3) Corollary. If X is a nonempty perfect Polish space, then card(X) =
2% In particular, a nonempty perfect subset of a Polish space has the car-
dinality of the continuum.

6.B The Cantor-Bendizson Theorem

A point = in a topological space X is a condensation point if every open
nbhd of z is uncountable. (Note that in a metrizable space a limit point is
one for which every open nbhd is infinite.)

(6.4) Theorem. (Cantor-Bendixson) Let X be a Polish space. Then X can
be uniquely written as X = P U C, with P a perfect subset of X and C
countable open.

Proof. For any space X let
X* = {z € X : z is a condensation point of X}.

Let P = X*, C = X\P. If {Uy,} is an open basis of X, then C is the union
of all the U,, which are countable, so C is countable. It is evident that P is
closed. To show that P is perfect, let x € P and U be an open nbhd of z in
X. Then U is uncountable, so it contains uncountably many condensation
points, and U N P is thus uncountable.

To prove uniqueness, let X = P) UC) be another such decomposition.
Note first that if Y is any perfect Polish space, then Y* = Y. This is because
ify € Y and U is an open nbhd of y, then UNY is perfect nonempty Polish,
thus having cardinality 2%. So we have P; = P, and thus P, C P. Now if
x € (), then, since € is countable open, z € C' and so C} C C. It follows
that P = P; and C = C). (n

(6.5) Corollary. Any uncountable Polish space contains a homeomorphic
copy of C and in particular has cardinality 28°.

In particular, every uncountable G5 or F, set in a Polish space ¢ontains
a homeomorphic copy of C and so has cardinality 2%, i.e., the Continuum
Hypothesis holds for such sets.

(6.6) Exercise. In the notation of 6.4, show that P is the largest perfect,
subset of X.



6. Perfect Polish Spaces 33

(6.7) Definition. For any Polish space X, if X = PUC, where P is perfect
and C is countable with P NC = @, we call P the perfect kernel of X .

6.C Cantor-Bendizson Derivatives and Ranks

We will next give an alternative proof of the Cantor-Bendixson Theorem
and a more informative construction of the kernel. First we need a gen-
eral fact about monotone wellordered sequences of closed (or open) sets in
second countable spaces.

(6.8) Definition. We denote by ORD the class of ordinal numbers:
0,1,2,...,w,w+1,....

An ordinal « is successor if @ = 3+ 1 for some ordinal B and limit if it is
not O or successor. As usual, every ordinal is identified with the set of its
predecessors: a = {8:8 < a}, so1 = {0},2={01},..., w={0,1,2,...},
etc.

(6.9) Theorem. Let X be a second countable topological space and (Fo), .,
a strictly decreasing transfinite sequence of closed sets (i.e, a < 8 =
Fo 2 F). Then p is a countable ordinal. This holds similarly for strictly in-
creasing transfinite sequences of closed sets (and thus for strictly decreasing
or increasing transfinite families of open sets).

Proof. Let {U,} be an open basis for X. Associate to each closed set FF C X
the set of numbers N(F) = {n: U, N F # @}. Clearly, X\F = J{U, :n &
N(F)}, so F — N(F) is injective. Also, F C G = N(F) C N(G). Thus for
any strictly monotone (i.e., decreasing or increasing) transfinite sequence
(Fa)a<p: (Na) = (N(F,)) is a strictly monotone transfinite sequence of
subsets of N, so obviously p is countable. aQ

(6.10) Definition. For any topological space X, let
X'={re X: zisalimit point of X}.

We call X’ the Cantor-Bendixson derivative of X. Clearly, X' is closed
and X is perfect iff X = X'.

Using transfinite recursion we define the iterated Cantor-Bendixson
derivatives X*, o € ORD, as follows:

er+l = (Xa)f’

XA = ﬂ X<, if Ais limit.
[ 2@
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;{"hus (X*)ocorp 8 @ decreasing transfinite sequence of closed subsets of

(6.11) Theorem. Let X be a Polish space. For some countable ordinal
ag, X = X% for all @ > ag and X*° is the perfect kernel of X.

Proof. It is easy to see by induction on a, that if P is the perfect kernel of
X, P C X“ (note that P’ = P). If aq is now a countable ordinal such that
X* = X% for a > ap, then (X*0) = X0+l = X @ g0 X is perfect,
therefore X™ C P. 0

(6.12) Definition. For any Polish space X, the least ordinal ag as in 6.11 is
called the Cantor-Bendixson rank of X and is denoted by | X|cp. We also

let
X = x!Xles = the perfect kernel of X.

Clearly, for X Polish,
X is countable & X =0.

Note also that if X is countable compact, then X = @, and so by com-
pactness, if X is nonempty, |X|cg = a + 1 for some . In this case it is
customary to call a (instead of a + 1) the Cantor-Bendixson rank of X. To
avoid confusion, we will let | X[ = a in this case. (We also let (0|5 = 0.)

(6.13) Exercise. For each countable ordinal @, construct a closed countable
subset of C, K, such that |K,|g = a.

(6.14) Exercise. Let T be a tree on A. We call T perfect if
VseTH,u(t2s & uds & t,bueT & tLlu),

i.e., every member of T has two incompatible extensions in T. If T is a
pruned tree on A, show that T is perfect iff [T] is perfect in AN.

(6.15) Exercise. For any tree T on A we define its Cantor-Bendixson deriva-
tive T’ by

T'={seT:JtueT(t2s & uds & tLlu)}.

Recursively, we then define its iterated Cantor-Bendixson derivatives by
T0 =T, To+! = (T®)', T* = (), T, if A is limit. Show that for some
ordinal g of cardinality at most max{card(A4), N}, T® = T*° for all o >
ap. We call the least such o the Cantor-Bendixson rank of T, written as
IT|cp. Let T = TTlez, For A = 2 or N show that [T] is the perfect
kernel of [T, i.e., [T°°] = [T]°>°. However, construct examples on A = 2 to
show that [T%] may be different from [T]* even for pruned trees T. How
are [T°] and [T']” related? How about |T'|cg and |[T]|cg?
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7. Zero-dimensional Spaces

7 A Basic Facts

A topological space X is connected if there is no partition X =U UV, UN
V = @ where U,V are open nonempty sets. Or equivalently, if the only
clopen (i.e., open and closed) sets are § and X. For example, R?, C" are
connected, but C, A are not.

At the other extreme, a topological space X is zero-dimensional if it
is Hausdorff and has a basis consisting of clopen sets.

For example, the space AN is zero-dimensional since the standard basis
{Ns}sca<r consists of clopen sets.

(7.1) Exercise. Let (X, d) be a metric space, where d is actually an ultra-
metric. Show that

i) d(z,2) # d(y, 2) = d(z,y) = max{d(z, 2), d(y, 2)}.

ii) B(x,r) is clopen, and thus X is zero-dimensional.

iii) y € B(z,r) = B(z,r) = B(y,r) (and similarly for the closed balls).
iv) If two open balls intersect, then one is contained in the other.

v) (zn) is Cauchy iff d(zn,%,41) — 0.

(7.2) Exercise. Let X be a second countable zero-dimensional space. If
A, B C X are disjoint closed sets, there is a clopen set C separating A and
B,ie, ACC, BNC=40.

Notice that subspaces, products, and sums of zero-dimensional spaces
are zero-dimensional. Finally, 2.8 is valid also for any separable metrizable
zero-dimensional space (see K. Kuratowski [1966], Ch. II, §26, Cor. 2).

(7.3) Theorem. Let X be separable metrizable. Then X is zero-dimensional
iff every nonempty closed subset of X is a retract of X.

7.B A Topological Characterization of the Cantor Space

(7.4) Theorem. (Brouwer) The Cantor space C is the unique, up to home-
omorphism, perfect nonempty, compact metrizable, zero-dimensional space.

Proof. 1t is clear that C has all these properties.
Now let X be such a space and let d be a compatible metric. We will
construct a Cantor scheme (C;)seca<v 0n X such that

i) C@ =X N
ii) C, is clopen, nonempty;
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iii) CS = Cs"ﬂ U Cs“l;
iv) lim, diam(Cy,,,) = 0, for z € C.

Assuming this can be done, let f : C — X be such that {f(z)} =), Czn-
Then f is a homeomorphism of C onto X (by iii) ).

Construction of (Cs),ez<n: Split X into X = X; U ... U X,, where
XinX; =0if i # j and X; is clopen of diameter < 1/2. Let Cp:i-y = Xiyy
if0<i<n—1, Cogn-1 = Xp,and Cps = X1 U. .. UX,, for0<i<n-1
(here o’ = aa. ..o (j times)). (See Figure 7.1.)

FIGURE 7.1.

Now repeat this process within each X, using sets of diameter < 1/3, and
so on by induction. O

7.C' A Topological Characterization of the Baire Space

(7.5) Definition. A Lusin scheme on a set X is a family (A,) ,cn<n 0f subsets
of X such that

i) AN Ay =0, if se NN it jinN;
) Ag~; C A, if se NN i e N,
(See Figure 7.2.)

If (X ,d) is a metric space and (A,),cny<n i85 a Lusin scheme on X, we
say that (As),cn<n has vanishing diameter if lim,, diam(A;,) = 0, for all
x € N. In this case if D = {z € N:(\, Agn # 0}, define f:D — X by
{f()} =N, Azjn- We call f the associated map.

(7.6) Proposition. Let (A;),cn<n be a Lusin scheme on a metric space (X ,d)
that has vanishing diameter. Then if f:D — X is the assoctated map, we
have
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FIGURE 7.2.

i) f is injective and continuous.
it) If (X ,d) is complete and each A, is closed, then D is closed.
it1) If A, is open, then f is an embedding.

Proof. Part i) is straightforward. For ii), note that if z, € D, xz, — =, then
(f(zx)) is Cauchy since, given ¢ > 0, there is N with diam(A4,n) < € and
M such that z,|N = z|N for all n > M, so that d(f(zn), f(zm)) < €if
n,m > M. Thus, f(z,) — y € X. Since each A; is closed, y € A, for
all n, so that z € D and f(z) = y. Finally, iii) follows from the fact that
f(NsnD)=f(D)nAs' O

Recall that the interior, Int(A), of a set A in a topological space X is
the union of all open subsets of A.

(7.7) Theorem. (Alexandrov-Urysohn) The Baire space N is the unique,
up to homeomeorphism, nonempty Polish zero-dimensional space for which
all compact subsets have empty interior.

Proof. Clearly, N has all these properties (recall 4.11 here).
Now let X be such a space. Fix a compatible complete metric d < 1.
We will construct a Lusin scheme (C;)gcn<x on X such that

i) Cp= X, C, # 0 for all s e N<N;
ii) C; is clopen;

iil) Cs =U,;en Cssi

iv) diam(C,) < 2 'ength(s),

Let f: D — X be the associated map. By i) - iv) D =N, f(D) = X, and
so by ii) and 7.6 iii) f is a homeomorphism.
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For the construction it is enough to show that for any nonempty open
set U C X and any € > 0, there is a partition U = |J;.yU; into clopen
nonempty sets of diameter < e.

Since a compact set in X has empty interior, it follows that the closure
of U in X is not totally bounded, thus there is 0 < ¢ < ¢, so that no
covering of U by finitely many open sets of diameter < ¢ exists. If we
write U = jen Vi, where V; are pairwise disjoint clopen sets of diameter
< € (which we can certainly do as X is zero-dimensional), we have that
infinitely many V; are nonempty. O

7.D Zero-dimensional Spaces as Subspaces of the Baire Space

(7.8) Theorem. Every zero-dimensional separable metrizable space can be
embedded into both N and C. Every zero-dimensional Polish space is home-
otnorphic to a closed subspace of N and a G5 subspace of C.

Proof. The assertions about C follow from those about A and the fact that
N is homeomorphic to a G subspace of C (see 3.12).

To prove the results about A, let X be as in the first statement of the
theorem and let d < 1 be a compatible metric for X. Then we can easily
construct a Lusin scheme (Cs)sen<n on X such that

i) Co = X;
i) C, is clopen;
iii) Cs = U,'. Cs‘i;
iv) diain(Cy) < 27ensth(s)
(Some C; may, however, be empty.) Let f : D — X be the associated map.

By iii) f(D) = X, so by 7.6 iii) f is a homeomorphism of D with X, and
by 7.6 ii) D is closed if d is complete. O

7.E Polish Spaces as Continuous Images of the Baire Space

(7.9) Theorem. Let X be a Polish space. Then there is a closed set F C N
and a continuous bijection f:F — X. In particular, if X is nonempty, there
is a continuous surjection g:N — X extending f.

Proof. The last assertion follows from the first and 2.8.
For the first assertion fix a compatible complete metric d < 1 on X.
We will construct a Lusin scheme (Fs),en<x on X such that

i) Fp = X;
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ii) Fs is an F, set;
i) Fs = U; Fori = U; Fomi s
iv) diam(F) < 27leneth(s),

Then let f : D — X be the associated map. By iii) f(D) = X, so by 7.6
i) f is a continuous bijection of D onto X. It is thus enough to show that
D is closed. If z, € D, &, — z, then, as in the proof of 7.6 ii), (f(z.)) is
Cauchy, so f(zn) = y€ X and y € ), me (), Fayn (by iii) above), so
z€ Dand f(z)=1y.

To construct (F) it is enough to show that for every F,, set ¥ C X and
every € > 0, we can write F = |J, .y F;, where the F; are pairwise disjoint
F, sets of diameter < € such that F; C F. For that let F = ;yCi,
where C; is closed and C; C 'Cyyy. Then F = |J,n(Ci41\Ci). Now write

Cit1\Ci = . ieN EJ( ), where E; are pairwise disjoint F, sets of diameter

<¢€. Then F = Ui’j EJ(-” and Ef) CCiu\CiCCip CF. O

7.F Closed Subsets Homeomorphic to the Baire Space

Theorem 6.2 shows that every uncountable Polish space contains a closed
subspace homeomorphic to C, and, by 3.12, a G5 subspace homeomorphic
to A. We cannot replace, of course, G by closed, since A is not compact.
However, we have the following important fact (for a more general result
see 21.19).

(7.10) Theorem. (Hurewicz) Let X be Polish. Then X contains a closed
subspace homeomorphic to N iff X is not K,.

Proof. If X contains a closed subspace homeomorphic to A/, therr X cannot
be K, since N is not K, (by 4.11).

Assume now that X is not K, and fix a compatible complete metric
d < 1. We will find a Lusin scheme (F}),en<r Such that

i) Fp= X, Fy #0;

ii) Fy is closed;

iil) F, ¢ K.

iv) for each n and each z € X there is some open nbhd U of z such
that F; NU # @ for at most one s € N*;

v) diam(Fy) < 2-length(s)

Then let f: D — X be the associated map. By i), ii), and v), D = N,
We check next that f(D) is closed. Let z € f(D). Then, for each n, let
U be the open nbhd of = given by iv). We can assume that Up41 C U,.
Since U, N f(D) # @, U, intersects some Fj». Similarly, each nbhd U C U,
intersects some Fsr, s0 by the uniqueness of s*, s7; = s™. Thus z € Fyn
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and s® C 5"+, so there is y € A with z € [N, Fyn, i€, € f(D). Finally,
to see that f is a homeomorphism, it is enough to verify that F} is open in
f(D) (by applying 7.6 iii) to A, = f(D)NF,). But iv) immediately implies
that F is open in | J{F: : length(¢) = length(s)}, thus in f(D) as well.
We construct F; by induction on length(s) = n. For n = 0, taking
Fp = X clearly works. Assume F; has been defined for s € N" satisfying
i) - v). We will define F;~, for £k € N. Let H; = {z € F,; : V nbhd U of
z (UNF,isnot K;)}. Then H; is closed and is nonempty since Fy is not
K,. Moreover, H, cannot be compact for the same reason, since F,\H,
is contained in a K,. It follows that we can find a sequence of distinct
points {(xx), zx € H,, with no converging subsequence. Then let Uy be an
open nbhd of zi of diameter < 27~%~1 with Uy N U, = 0 if k # m. Put
F,-x = U N F,. This clearly works. D

(7.11) Exercise. Show that if X is zero-dimensional, so is K(X). Conclude
that K(C)\{0} is homeomorphic to C.

(7.12) Exercise. (Sierpiniski, Fréchet) Show that Q (the space of rationals
with the relative topology as a subspace of R) is the unique, up to homeo-
morphism, nonempty, countable metrizable, perfect space. Prove that every
countable metrizable space is homeomorphic to a closed subspace of Q.

(7.13) Exercise. Let X C R be G5 and such that X, R\ X are dense in R.
Show that X is homeomorphic to A/. Prove that the same fact also holds

when R is replaced by a zero-dimensional nonempty Polish space. Show
that it fails if R is replaced by R2.

(7.14) Exercise. A Souslin scheme on a set X is a family (A;),en<n of subsets
of X. If (X,d) is a metric space, we say again that (A4,) has vanishing
diameter if diam(A,) — 0 as n — oo, for all z € N. Again, in this case,
let D = {z: (), Az # 0} and for x € D, {f(z)} = (), Azjn. We call
f: D — X the associated map.

i) Show that f is continuous.

ii) If (X, d) is complete and each A; is closed, then D is closed in A.

iii) If each A; is open and A4, C |J, A,-; for all s G)N“N, then f is
open.

iv) If X is nonempty separable, show that there is a Souslin scheme
(U,) with Uy = X, U, open nonempty, Us-; C U, Us = U, Us~;, and
diam(U,) < 27'ength(s) jf s £ @. Conclude that if X is nonempty Polish,
there is a continuous and open surjection f : A — X. (In R. Engelking
[1969] it is shown that X can also be obtained as a continuous and closed
image of NV.)

(7.15) Exercise. Let X be a nonempty Polish space. Then X is perfect iff
there is a continuous bijection f: N — X,
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8. Baire Category

8.A Meager Sets

Let X be a topological space. A set A C X is called nowhere dense if its
closure A has empty interior, i.e., Int(4) = 0. _(This means equivalently
that X \A is dense.) So A is nowhere dense iff A is nowhere dense. A set
A C X is meager (or of the first category) if A = |, .y An, where each A,
is nowhere dense. A non-meager set is also called of the second category.
The complement of a meager set is called comeager (or residual). So a set
is comeager iff it contains the intersection of a countable family of dense
open sets.

For example, the Cantor set is nowhere dense in [0,1}, a compact set
is nowhere dense in A/, and so a K, set is meager in A/. A countable set is
meager in any perfect space, so, for example, Q is meager in R. Notice also
that if X is second countable with open basis {U,}, then F = |J,(TU,\Ux)
is meager F, and Y = X\ F is zero-dimensional.

An ideal on a set X is a collection of subsets of X containing § and
closed under subsets and finite unions. If it is also closed under countable
unions it is called a o-ideal. The nowhere dense sets in a topological space
form an ideal, and the meager sets form a o-ideal. Being a og-ideal is a
characteristic property of many notions of “smallness” of sets, such as being
countable, having measure 0, being meager, etc.

8.B Baire Spaces

(8.1) Proposition. Let X be a topological space. The following statements
are equivalent:

i) Every nonempty open set in X is non-meager.
i1) Every comeager set in X is dense.
ii1) The intersection of countably many dense open sets in X is dense.

The proof is straightforward.

(8.2) Definition. A topological space is called a Baire space if it satisfies the
equivalent conditions of 8.1.

(8.3) Proposition. If X is a Baire space and U C X is open, U is a Baire
space.

Proof. Let (Uy,) be a sequence of dense sets open in U and thus open in X.
Then U, U (X\U) is dense open in X, so (), (Un U (X\D)) = (N, Un) U
(X\U) is dense in X, so ), Un is dense in U. 0

(8.4) Theorem. (The Baire Category Theorem) Every completely metriz-
able space is Baire. Every locally compact Hausdorff space is Baire.
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Proof. Let (X, d) be a complete metric space. Let (U,) be dense open in X
and let U C X be a nonempty open set. We will show that (| U, N U # 0.
Since U N U, # 0, let By be an open ball of radius < 1/2 such that B, C
U N Uy. Since B NU, # 0, let B) be an open ball of radius < 1/3 such
that By C By N U\, etc. Let x; be the center of B;. Then (x;) is a Cauchy
sequence, 50 T; — T € (), Bn =, Bx € (N, Un)NU.

If X is Hausdorff locally compact, then for every point z and open
nbhd U of z there is an open nbhd V of z with V compact and V C U. We
can now use the same argument as above, but with B; open such that B;
is compact, so that again (), Bn # 0. 0

(8.5) Definition. Let X be a topological space and P C X. If P is comeager,
we say that P holds generically or that the generic element of X is in P.
(Sometimes the word typical is used instead of generic.)

In a nonempty Baire space X, if P C X holds generically, then, in
particular, P # 0. This leads to a well-known method of existence proofs in
mathematics: In order to show that a given set P C X is nonempty, where
X is a nonempty Baire space, it is enough to show that P holds generically.
Also in such a space, it cannot be that both P and X\ P hold generically.

(8.6) Exercise. Show that the generic element of C([0, 1]) is nowhere differ-
entiable. (So there exist nowhere differentiable functions.)

(8.7) Exercise. Let X be a perfect Polish space. Let Q@ C X be countable
dense. Show that @ is F, but not Gs.

(8.8) Exercise. i) Let X be a Polish space. Recall from 4.31 that
K,(X)={K € K(X): K is perfect}

is G5 in K(X). If X is also perfect, K,(X) is dense. In particular, the
generic element of K(X) is perfect.

ii) Let X,Y be Polish and f: X — Y continuous. Show that if f(X)
is uncountable, there is a homeomorphic copy K C X of C such that f|K
is injective. In particular, there is a homeomorphic copy of C contained in

F(X).

(8.9) Exercise. Show that if G C 2N is comeager, then there is a partition
N=A4,0U4, 49N A, =0 and sets B; C A;, 1 € {0,1}, such that for
A C N, if either AN Ay = By or AN A = By, then A € G. (Here we
identify subsets of N with their characteristic functions so we view them as
members of 2V.)
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8.C Choquet Games and Spaces

(8.10) Definition. Let X be a nonempty topological space. The Choquet
game Gx of X is defined as follows: Players I and Il take turns in playing

nonempty open subsets of X
I U, U

II 1) W

sothatUg D2 Vo 2U, 2 V1 2 -+ -. We say that II wins this run of the game
if Vo (=M Un) #0. (Thus Twins if (\,Un (=, Va) =0.)

A strategy for I in this game is a “rule” that tells him how to play, for
each n, his nth move Uy, given II’s previous moves Vy, ... ,Vo_1. Formally,
this is defined as follows: Let T be the tree of legal positions in the Choguet
game Gx, i.e., T consists of all finite sequences (Wy,... . Wy), where W;
are nonempty open subsets of X and Wo D W, 2 - D W,. (Thus T isa
pruned tree.on {W C X:W is open nonempty}.) A strategy for Iin Gx is
a subtree o C T such that

i) o is nonempiy;

it) if (Ug.Vo,...,Un) € o, then for all open nonempty V,, C U,, (Us,
Vo« - .Un,Vn) € 0;

i) if (Uo,Va,...,.Un—1,Va=1) € o, then for a unique U,, (Uy,Vh,. ..,
Un1. Va1 U,) € 0.

Intuitively, the strategy o works as follows: I starts playing Uy where
(Us) € o (and this is unique by #1)); IT then plays any nonempty open Vo C
Uy; by ii) (Up,Vy) € 0. Then I responds by playing the unique nonempty
open Uy C Vy such that (Uy,V,Uh) € o, ete.

A position (W, ... ,W,) € T is compatible with o if (Wy,...,W,) € o.
A run of the game (Uy,Vo,U1 .V, ...) is compatible with o if (Uy.Va,...)
€ |o]. The strategy o is a winning strategy for I if he wins every compatible
with o run (UO:‘/Oa' . ) (?:.6., (UU1V0= .- ) S [0'] = nn Un ( = nn V‘n) = 0)

The corresponding notions of strategy and winning strategy for II are
defined mutatis mutandis.

(8.11) Theorem. (Oxtoby) A nonempty topological space X is a Baire space
iff player I has no winning strategy in the Chogquet game Gx .

Proof. <=: Assume X is not a Baire space, and let Uy be a nonempty open set
in X and (G,,) be a sequence of dense open sets with ("}, G.NUp = 0. Player
[ starts by playing this Up. If II then plays V, C Uy, we have V, NGy # 0,
so I can play U) = Vy N Gy C V. II plays next V; C U, and I follows by
Uz = ViNG, C W, ete. Clearly, N, Us C (), Gn NUy = 0, so we have
described a winning strategy for L.
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=: Suppose I now has a winning strategy . Let Uy be I’s first move ac-
cording to ¢. We will show that Uy is not Baire. For this we will construct s
nonempty pruned subtree S C ¢ such that for any p = (Up, Vo, ..., U,) €8
the set 24, = {Un41 : (Us, Vos....Un,Va,Uny1) € S} consists of pairwise
disjoint (open) sets and |JU, is dense in U,. If we then let W, = | J{U,, :
(Up, Vi, ..., Uyp) € S}, it follows that W, is open and dense in Uy for each
n. We claim that (), W, = 0. Otherwise, if x € (), Wy, there is unique
(Us, Vo, U1, W1,...) € [S] with x € U, for each n, so (), U, # 0, contradict-
ing the fact that (U, Vp,...) € [o] and ¢ is a winning strategy for I.

To construct S we determine inductively which sequences from o of
length n we put in S. Fitst @ € S. If (Up,V,...,Upn-1,Va-1) € S, then
(Uo, Vo - -+, Un—1,Vn=1,Up) € S for the unique U, with (Uy, Vy,...,Upn_,
Va-1,Un) € o. If now p = (Up, Vp,...,U,) € S, notice that for any
nonempty open V,, C U, if V] = U, is what ¢ requires I to play next,
we obviously have that U,4) is a nonempty open subset of V;,. Let, by
an application of Zorn’s Lemma (or by a transfinite exhaustion argument),
V, be a maximal collection of nonempty open subsets V;, C Uy, such that
{Vy : Vi, € V, }is pairwise disjoint. Put in S all (Uy, Va,...,U,, Vo, V) with
Va € V. Then Up = {Ungr : (Voo .. Un, Vi, Unn) € S} = {Vy 1V €V, }
is a family of pairwise disjoint sets and |JU, is dense in U,, by the maxi-
mality of V,, since if V,, C U, is nonempty open and disjoint from Ui,
then V, U {V,} violates the maximality of V. Q

(8.12) Definition. A nonempty topological space is a Choquet space if player
IT has a winning strateqy in Gx.

Since it is not possible for both players to have a winning strategy in
Gy, it follows that every Choquet space is Baire. (The converse fails even
for nonempty separable metrizable spaces, using the Axiom of Choice.)

(8.13) Exercise. Show that products of Choquet spaces are Choquet. Also,
open nonempty subspaces of Choquet spaces are Choquet. (It is not true
that products of Baire spaces are Baire. See, however, 8.44.)

8.D Strong Choguet Games and Spaces

(8.14) Definition. Given a nonempty topological space X, the strong Cho-
quet game G% is defined as follows:

I z0.Up z1,Uh

I A Vi

Players I and II take turns in playing nonempty open subsets of X as in
the Choguet game, but additionally I is required to play a point x, € Uy
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and IT must then play Vi, C Un, with x, € V,,. So we must have Uy 2 Vg 2
Ul 2 V] 2 s, Ty GUVH:I:n = V'n.-
Player IT wins this run of the game if (| Vo (=, Un) # 0. (Thus I

wins if N Un (=Np Vo) = 0.)
A nonempty space X is called a strong Choquet space if player I has
o winning strategy in G%. (The notion of strategy is defined as before.)

(8.15) Exercise. Any strong Choquet space is Choquet. (The converse turns
out to be false.)

(8.16) Exercise. i) Show that all nonempty completely metrizable or locally
compact Hausdorff spaces are strong Choquet.

ii) Show that products of strong Choquet spaces are strong Choquet.

iii) Show that nonempty G5 subspaces of strong Choquet spaces are

strong Choquet.
iv) If X is strong Choquet and f : X — Y is a surjective continuous
open map, then Y is strong Choquet.

8.E A Characterization of Polish Spaces

(8.17) Theorem. Let X be a nonempty separable metrizable space and X a
Polish space in which X is dense. Then

i) (Oxtoby) X is Choguet < X is comeager in X;
i) (Choquet) X is strong Choquet & X is G5 in X < X is Polish.

This has the following immediate applications.
(8.18) Theorem. (Choquet) A nonempty, second countable topological space

is Polish iff it is T\, regqular, and strong Choquet.
Proof. By 8.17 and 1.1. 0

(8.19) Theorem. (Sierpiriski) Let X be Polish and Y separable metrizable.
If there is a continuous open surjection of X onto Y, then'Y is Polish.

Proof. Exercise. 0

Remark. Vainstein has shown that 8.19 remains true if “open” is replaced
by “closed” (see, e.g., R. Engelking [1977), 4.5.13).

Proof. (of 8.17) i) <=: This is easy, since X contains a dense G5 set in X.

=: Let ¢ be a winning strategy for II in Gx. Fix also a compati-
ble metric d for X. As in the proof of 8.11, we can build a nonempty
pruned tree S consisting of sequences of the form (Up, Vo,U1,VA,...,Uy)
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or (UO,%,UI,VI, Un,V") where U; are nonempty open in X and
V; are nonempty open in X, Vo 2V 2 - --,andif V; = V;NnX
(so that V; are nonempty open in X), then (Uy, V4, Uy, Wi,...,Uyn) or
(U0, Vo, U, V1, ... .,Un, V3) are compatible with o, and moreover .5' has the
following property: If p = (Up, Vo, ..., Un1, Vn_l) € S (allowing the empty
sequence too), and V, = {V, : (U, Voroo s Ve 1, Un, V) € .5'}, then Vp is
a family of pairwise disjoint open sets with |V, dense in V,,—; (in X if
p = 0) and such that diam(V,,) < 2" for all V, € V.

Let W, = U{V; : (Us,Vo,...,Un,V,) € S}. Then W, is dense open
in X. We claim that (), W, C X Indeed, if z € (), W, there is unique
(Uo» Vo, U1, WA4,...) € [S] such that z € N, Vx. Since dlam(Vn) < 27" we
actually have then that {z} =), V... But, as (Us, Vo, .-.) € [0], we have
N Va)NX =N, Va#0,50z€X.

ii) «<: By 8.16.

=: We need the following general lemma.

(8.20) Lemma. Let (Y, d) be a separable metric space. Let U be a family of
nonempty open sets in Y. ThenU has a point-finite refinement V, i.e., V is
a family of nonempty open sets with | JV = YU, YW € VAU e U(V C V).
andVy e Y({V € V : y € V} is finite). Moreover, given ¢ > 0 we can also
assume that diam(V) < e, VV € V.

Proof. Since Y is second countable, let (U,,) be a sequence of open sets such
that |J,, U = U and Vn3aU € U (U, C U). Furthermore, given ¢ > () we

can always assume that diam(U,) < e. Next let U =, ¢y P with U

open, U C UV and UP C U,. Put V,, = Un\Un<m US™ . First
we claim that | J, Vi, = |J, Un: Indeed, if z € |J,, Un and m is least with
z € U,,, then z € V,,,. Clearly, V,,, C U,,. Finally, if z € Uy, then z € U,(f )
for some p, so z € Vi, if m > p,n. Let V= {V, : V,, #0}. O

Now fix a compatible metric d for X and a winning strategy ¢ for Il in
G%. Using the preceding lemma we can now construct (as in the proof of
8.11 again) a tree S of sequences of the form (z0, (Vo, Vg) I, (Vl,Vl),
T,) or (xo, (Vo, Vo), z1, (W, Vi)y..., Zn, (Vas V), where V; is open in X, V
is open in X, z; € Vi 1ﬂX(w1thV1 = X) . €V, VinX C
‘/1) % 2 “/l 2 ) and (((BO,X) ‘/Oﬁ(xlr% nX) Vi? ) is Compa't’ib]e
with o, such that S additionally has the followmg property: For each p =
(zo, Vo, Vo), x1, (W, Vl), yTn-1, (Va-1,Va-1)) € S (including the empty
sequence), if V, = {V}, : (wo,(Vo,Vo),xl,---,(Vn—l,Vn—l),an,(VmVn)) €
S}, then X NV, _; C Uf),,, diam(f/ y<2 ™ foral V, € f) . and for every
teX there are at most finitely many (z,, (Vx, V) with (:co, (Va, o), ..
(Va=1, n_l),xn,(Vn,V ) € Sand & € V,.

Let W, = U{Vn (0, Vo, Vo), .. Zn, (Va, V2)) € S}. Then W, is
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open and X € W, (as we can see by an easy induction on n). It remains to
show that (), W, € X: Let & € [, W,,. Consider the subtree S; of S con-
sisting of all initial segments of the sequences (o, (Vo, Vo)s. oo s Zny (Vo Vi)
e § for which £ € V,. Since & € (), W,, S; is infinite. By the pre-
ceding conditions on S, it is ?,lso finite splitting. So, by Konig’s Leqlma
412, [Sz] # 0. Say (z0,(Vo,Vb),...) € [Sz]- Then ((zo, X), Vo, (z1,Vo N
X)W, (z2, VinX),.. .) is arun of G% compatible with ¢,s0(),, VaNX # 0,
thus, since diam(V,,) < 27", & € X. 0

8.F Sets with the Baire Property

Let 7 be a o-ideal on a set X. If A,B C X we say that A,B are
equal modulo 7, in symbols A =7 B, if the symmetric difference AAB =
(A\B) U (B\A) € I. This is clearly an equivalence relation that respects
complementation and countable intersections and unions.
In the particular case where 7 is the o-ideal of meager sets of a topo-
logical space, we write
A="B

if A, B are equal modulo meager sets.

(8.21) Definition. Let X be a topological space. A set A C X has the Baire
property (BP) if A=>U for some open set U C X.

Recall that a o-algebra on a set X is a collection of subsets of X
containing @ and closed under complements and countable unions (and
thus under countable intersections).

(8.22) Proposition. Let X be a topological space. The class of sets having
the BP is a o-algebra on X . It is the smallest o-algebra containing all open
sets and all meager sets.

Proof. Notice that if U is open, U\U is closed nowhere dense and so is
meager. Similarly, if F is closed, F\Int(F) is closed nowhere dense. Thus
U="U and F =* Int(F).

Now if A has the BP, so that A =* U for some open U, then X\ A =~
X\U =" Int(X\U), so X\ A has the BP. Finally, if each A, has the BP, say
An =" Uy, with U, open, then |, A, =* U, Ua, so |,, An has the BP.

The last assertion follows from the fact that if A =* U, where U is
open, then with M = AAU, M is meager, and A = MAU. 0

-In particular, all open, closed, F,, and G5 sets have the BP.

(8.23) Proposition. Let X be a topological space and A C X. Then the
following statements are equivalent:
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i) A has the BP;
i) A= GU M, where G is G5 and M is meager;
iii) A = F\M where F is F, and M is meager.

Proof. By 8.22, ii) = i) and iii) = i). For i) = ii), let U be open and F a
meager F, set with AAU C F. Then G = U\F is G5 and G C A. Also,
M = A\G C F is meager. To prove i) = iii), use ii) for X\ A. 0

(8.24) Example. There is a subset A C R not having the BP.

Proof. Using the Axiom of Choice, one can show that there exists a Bern-
stein set A C R, i.e., a set such that neither A nor R\ A contains a nonempty
perfect set. To see this, let (P);.ono be a transfinite enumeration of the
nonempty perfect subsets of R and find by transfinite recursion on & < 2%
distinct reals ag,be with ag,b; € Pe. Then let A = {ag : £ < 2%} If 4
has the BP, since either A or R\ A is not meager, one of them contains a
non-meager G set (by 8.23), which must therefore be uncountable and so,
being Polish, must contain a homeomorphic copy of C, a contradiction. O

8.G Localization
We localize the previous notions to open sets in a topological space.

(8.25) Definition. Let X be a topological space and U C X an open sct.
We say that A is meager in U if ANU is meager in X. (Note that this is
equivalent to saying that ANU is meager in U with the relative topology.)
Then A is comeager in U if U\ A is meager, which means that there is a
sequence of dense open in U sets whose intersection is contained in A. If
A is comeager in U, we say that A holds generically in U or that U forces
A, in symbols
| UlFA.

Thus A is comeager iff XIFA.

Note that
UCV,ACB= (VIFA= UIFB).

We now have the following important fact.

(8.26) Proposition. Let X be a topological space and suppose that A C X
has the BP. Then either A is meager or there is a nonempty open set
U C X on which A is comeager (i.e., XIFH(X\A) or there is nonempty open
U C X, with UlrA). If X is a Baire space, exactly one of these alternatives
holds.
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Proof. Let AAU = M, with U open and M meager. If A is not meager,
then U # 0 and A is comeager in U since U\A C M. O

A weak basis for a topological space X is a collection of nonempty
open sets such that every nonempty open set contains one of them. It is
clear that in the previous result U can be chosen in any given weak basis.

We can now derive the following formulas concerning the forcing rela-
tion UlFA. For convenience we put for 4 C X,

~A=X\A.

(8.27) Proposition. Let X be a topological space.
i) If A, C X, then for any open U C X,

UlF[)4n & Yn(UIFA,).
n

i) If X is a Baire space, A has the BP in X and U varies below over
nonempty open sets in X, and V over a weak basis, then

Uk~ A& VYW C U(VKFA)
(where VIFA iff it is not the case that VIFA).

Proof. Part i) is straightforward. For ii), note that if U C X is open, then
ANU has the BP in U, so this follows by applying 8.26 to U. O

(8.28) Exercise. If X is a Baire space, the sets A, C X have the BP, and
U below varies over nonempty open sets in X, and V, W over a weak basis,
then
Ur|J An & VYV CUIW C VIn(WiFA,).
n

Next we compute a canonical open set equal modulo meager sets to a
given set with the BP.

(8.29) Theorem. Let X be a topological space and A C X. Put
U(A) = J{U open: UIFA}.

Then U(A)\A is meager, and if A has the BP, A\U(A), and thus AAU(A),
is meager, so A =" U(A).

Proof. Let (U;)ier be a maximal pairwise disjoint subfamily of {U open:
UlF A} Let W = |J,.; Ui, so that W is dense in U(A), ie., U(4A) C W.
Then U(A)\W C W\W is meager. Since A is comeager in each U; and
these sets are pairwise disjoint, it follows that A is comeager in W. So
U(ANA C (U(A)\W) U (W\A) is meager.
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To prove the second assertion, let U be open with A =* U. Then U\ 4
is meager, so Ul A, i.e., U C U(A). Thus, A\U(A) C A\U is meager too.
0O

We can express this also by the following formula. Let X be a topo-
logical space, and suppose A C X has the BP. Then for the generic x € X,

x € A & 3 open nbhd U of z(UI+A).

(8.30) Exercise. A set U in a topological space X is called regular open if
U = Int(U). (Dually, a set F is regular closed if ~ F is regular open or
equivalently F = Int(F).) Let A C X. Show that U(A) is regular open.
Moreover, if X is a Baire space and A has the BP, then U(A) is the unique
regular open set U with A =" U. Thus U(A) =* Aand A=* B & U(A) =
U(B), i.e.. U(A) is a selector for the equivalence relation =*, on the sets
with the BP.

Let BP(X) denote the g-algebra of subsets of X with the BP and let
MGR(X) denote the o-ideal of meager sets in X. Let [A] = {B: B =* A}
be the =*-equivalence class of A, and BP(X)/MGR(X) be the quotient
space {[4] : A € BP(X)}. If we let RO(X) denote the class of regular
open subsets of X, the preceding shows that we can canonically identify
BP(X)/MGR(X) with RO(X), for Baire spaces X.

(8.31) Exercise. Assume X is a second countable Baire space. Show that the
o-ideal MGR(X) has the countable chain condition in BP(X), i.e., there is
no uncountable subset A C BP(X) such that A ¢ MGR(X) for any A € A,
and AN B € MGR(X) for any two distinct A, B € A,

(8.32) Exercise. Let X be a topological space. Equip the quotient space
BP(X)/MGR(X) with the partial ordering

[4] < [B] & A\B € MGR(X).

Show that this is a Boolean ¢r-algebra, i.e., a Boolean algebra in which
every countable subset has a least upper bound. (For the basic theory of
Boolean algebras, see P. R. Halmos [1963].) If, moreover, X is a Baire space,
show that it is a complete Boolean algebra, i.e., one in which every subset
has a least upper bound. This is called the category algebra of X, denoted
as CAT(X). Show that it is uniquely determined up to isomorphism if X
is nonempty perfect Polish.
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8. H The Banach-Mazur Game

We will characterize meagerness in terms of games.

Let X be a nonempty topological space and let A C X. The Banach-
Magzur (or **-game) of A, denoted as G**(A) (or as G** (A, X) if there is a
danger of confusion) is defined as follows:

Players I and II choose alternatively nonempty open sets with Up 2
V(:'! 2 Ul 2 V-l 2 Yy

I Uy U

II Vo 1%}
Player II wins this run of the game if (), V., (=), Ur) C A.

(8.33) Theorem. (Banach-Mazur, Oxtoby) Let X be a nonempty topological
space. Then

i) A is comeager & II has a winning strategy in G**(A).

ii) If X is Choguet and there is a metric d on X whose open balls are
open in X, then A is meager in a nonempty open set & I has a winning
strategy in G**(A).

Proof. i) =: Let (W) be a sequence of dense open sets with [, W, C A.
Let II play V,, = U, NW,,. <: Exactly as in the proof of 8.11.

ii) =: If A is meager in the nonempty open set Uy, let (W,) be dense
open in Up with (), W,, C ~ A. Since U is Choquet, I has a winning
strategy in the game

I Uy U,

n v Vi

Uo 2 Vo 20U, 2 -5 Uy, V; open nonempty; I wins iff (), U, # 0. (Note
that II starts first here.) Call such a strategy ¢. We describe now a strategy
for I in G**(A): He starts by playing Us. Then II plays Vo C Up. Let Vj =
Wy N Va. Player I responds by playing the unique U, so that (Vy,U)) € o.
Next II plays V; C U,. Let V| = V; N W,. Player I responds by playing
the unique U, such that (Vg,U),V{,U;) € o, etc. Then (), Un # 0 and
N Un=NVaCNWaC~As0N,Un ZA,ie.,]I wins.

«: Let o be a winning strategy for I in G**(A). Denote by Uy the first
move of I according to o. We claim that we can find a new winning strategy
o' for I such that ¢’ also starts by U and if in the nth move it produces
Un, then diam(U,,) < 27", for all n > 1 (diameter here is in the metric d).
We describe ¢’ informally: I starts by playing Uy. If II next plays Vy C U,
choose Vj C V4 of diameter < 2-! and respond by o, pretending that II
has played V;, to produce U; C Vy. Thus Uy C Vp and diam(U,) < 271,
Next II plays V; C Uj. Let VY C Vi have diameter < 272 and respond by
o, pretending that II has played Vy, V{ in his first two moves, to produce
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Us C V{. Thus Uz C V; and diam(U) < 272, etc. Using o’ instead of & one
now guarantees that (), Uy is a singleton and thus is contained in ~ A4, i.e.,
MNn Un €~ A. Asin i) (and 8.11), it follows now that A is meager in Up. O

(8.34) Definition. A game ts determined if at least one of the two players
has a winning strategy.

(8.35) Exercise. Assume X is as in 8.33 ii). Let A C X. Show that A has
the BP iff for all open U the game G**(~ AU U) is determined.

(8.36) Exercise. Let X be a nonempty topological space. Consider the vari-
ant of the Banach-Mazur game G**(A) in which players play open sets in
some fixed weak basis instead of arbitrary nonempty open sets. Show that
this variant is equivalent to G**(A). (Two games G, G’ are equivalent if [
(resp. II) has a winning strategy in G iff I (resp. II) has a winning strategy
in G'.)

Use this to show that for X = AN, the game G**(B) for B C X is
equivalent to the following gamne:

I So 82

II 1] 83

s; € A<N, 8; # P; Il wins iff s578," ... € B,

8.1 Baire Measurable Functions

(8.37) Definition. Let XY be topological spaces. A function f:X — Y is
Baire measurable if the inverse image of any open set in'Y has the BP in
X.

If Y is second countable, it is clearly enough to consider only the inverse
images of a countable basis of Y.

For example, every continuous function is Baire measurable. If Y is
metrizable, any function that is a pointwise limit of a sequence of continuous
functions is Baire measurable.

(8.38) Theorem. Let X,Y be topological spaces and f:X — Y be Baire
measurable. If Y is second countable, there is a set G C X that is a countable
intersection of dense open sets such that f|G is continuous. In particular,
if X is Baire, f is continuous on a dense G set.

Proof. Let {U,} be a basis for Y. Then f~!(U,) has the BP in X, so let
Vn be open in X and let F,, be a countable union of closed nowhere dense
sets with f~Y(U,)AV,, C F,. Then G, = X\F, is a countable intersection
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of dense open sets and so is G = (), Gn. Since Y U)NG =V, NG, fIG
js continuous. O

(8.39) Exercise. Let X be a nonempty perfect Polish space, ¥ a second
countable space, and f : X — Y be injective and Baire measurable. Then
there is a homeomorphic copy of C contained in f(X).

8.J Category Quantifiers

It is sometimes convenient to use the following logical notation: When A C

X we let
Alx) er e A,

We view A here as a property, with A(z) meaning that x has property A.

(8.40) Notation. Let X be a topological space and A C X. Lel
V*zA(x) & A is comeager,
I*zA(x) & A is non-meager.

Similarly for U C X open, let

v*z € UA(z) & A is comeager in U,
I*z € UA(x) & Ais non-meager in U .

Thus (denoting negation by —)
-V'z e UA(z) & F*z € U ~ A(z).

We read V*x as “for comeager many” x and 3*x as “for non-meager many ”
x.

With this notation, 8.27 (under the appropriate hypotheses) reads:
i) V*z¥nAp(z) © Vnv*zA.(z),
ii) v’z e UA(z) & YV C UF*z € VA(x)

(we switched A and ~ A here).

8.K The Kuratowski- Ulam Theorem

We now consider sets in product spaces.

(8.41) Theorem. (Kuratowski-Ulam) Let X.,Y be second countable topolog-
ical spaces. Let AC X x Y have the BP. Then

) V'2(A, = {y:A(z,y)} has the BP in Y). Similarly, V*y(AY =
{z:A(z,y)} has the BP in X).
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i) A is meager © V*x(A; is meager) & V*y(AY is meager).

#i) A is comeager & V*z(A; is corneager) & V*y(AY is comeager)
(i.e., V*(z,9) A(z,y) © VaV*yA(z,y) © VyV* zA(z,y))-

Proof. First we need the following lemma.

(8.42) Lemma. Let X be any fopological space and Y a second countable
space. If F.C X x Y is nowhere dense, then ¥V*x(Fy is nowhere dense).

Proof. We can assume that Y # 0 and F is closed. Let U = (X xY)\F. It
is enough to show that V*z(U, is dense). Let {V,,} be a basis for Y, V, # 0.
Then U, = projx(U N (X x V,)) is dense open in X, since if G C X is
nonempty open, then UN(G x V;) # 0. If z € [, Un, then Uz NV, # 0 for
all n, i.e., U, is dense. 0

It follows immediately that if M C X x Y is meager, then V" z(M, is
meager).

Let A C X x Y now have the BP, so A = UAM, with U open, M
meager. Then A, = U, AM,, so V*z(A, has the BP). Thus we have proved
i) and =) of ii). (Clearly, ii) « iii).)

(8.43) Lemma. Let X,Y be second countable. If A C X, BCY, then AxB
is meager iff at least one of A, B is meager.

Proof. If A x B is meager, but A is not meager, there is x € A with
(A x B); = B meager (by (=) of ii)). Conversely, if A is meager and
A =, Fn, with F, nowhere dense, then A x B = |J.(F,, x B), so it is
enough to show that F;, x B is nowhere dense. This is clear since if GG is
dense open in X, G x Y is dense open in X x Y. O

Finally, let A € X x Y have the BP and be such that V*z(A, is
meager). If A = UAM, U open, M meager, and A is not meager, U is
not meager, so there are open G C X, H C Y with G x H C U and
G x H not meager (since X,Y are second countable). So by 8.43, G, H
are not meager. So there is x € G with A; meager and M, meager. Since
H\M, CU\M, CU,AM, = A;, we have H C A, U M,, so H is meager,
which is a contradiction. 0

Theorem 8.41 fails if A does not have the BP. For example, using the
Axiom of Choice, there exists a non-meager A C [0, 1)2 so that no three

points of A are on a straight line.

(8.44) Exercise. Show that if X,Y are second countable Baire spaces, so is
X xY.

(8.45) Exercise. Let X,Y be topological spaces and f : X — Y be open
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and continuous. Then the inverse image of a dense set is dense and of
a comeager set is comeager. In particular, this applies to the projection
function projx : X xY — X,

8.I Some Applications

(8.46) Theorem. (First topological 0-1 law) Let X be a Baire space and G
a group of homeomorphisms of X with the following homogeneity property:
IfU,V are nonempty open sets in X, there is g € G such that g(U)NV # 0.
Let A C X be G-invariant (i.e., g(A) = A for g € G). If A has the BP,
then A is either meager or comeager.

Proof. If this fails, there are nonempty open sets U,V with Ul A, VIF ~ A.
Let g € G besuch that W = g(U)NV # 0. Since g(A4) = A and g(U)IFg(A),
we have WIFA and WIF ~ A, so W is meager, which is a contradiction. O

Given a sequence (X,) of sets, a subset A C [],, X, is called a tail set
if (z,) € A and if ¥, = x,, for all but finitely many n implies that (y,) € A.

(8.47) Theorem. (Second topological 0-1 law) Let (X,) be a sequence of
second countable Baire spaces. If A C T[], X, has the BP and is a tail set,
then A is either meager or comeager.

Proof. Assume A is not meager. Then for some n and nonempty open sets
U; C Xi, 0 < i < n—1, we have that A is comeager on [} U x [T, X;.
Let Y =[5! Xs, Z = [T;2,, X, so that X =Y x Z under the obvious
identification of x = (z;) with (y,z), where y = (Zi)icn, 2 = (Zi)i>n-
To show that A is comeager in X it is enough, by the Kuratowski-Ulam
Theorem, to show that V*yv*2A(y,2). Fix z; € U, (0 < 1 < n) with
V*2A((x:)i<n, 2), which.is possible, since A is comeager in H::ol U; x Z,so
V'y € ]']?;01 U; V*zA(y, 2), and []:‘;01 U, is Baire, by 8.44. Since A is a tail
set, this shows that Yyv*zA(y, z), and thus we are done. 0

(8.48) Theorem. Let X be nonempty, perfect Polish. Let < be a wellordering
of X. Then < C X2 does not have the BP.

Proof. Assume < has the BP. If < is meager, then V*z(<, and <® are
meager), so for some z, <, and < are meager and X =<, U <* U{z} is
meager, a contradiction.

S0 < is not meager. Then for some z, <* is not meager and has the
BP. Let z4 be the <- least such. Put Y = <® and <'=< |Y (= < NY?),
Since <'=< N (X xY) A(Y x X) and X x Y, Y x X have the BP (by
8.43), clearly <’ has the BP. By the minimality of zo, ¥*z((<’)* is meager).
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Thus <’ is meager and V*z(</, is meager). So there is z € Y with </, (<’)*
meager. Then Y =< U (<’)* U {z} is meager, a contradiction. ]

(8.49) Exercise. Let X be a Polish space. Let (I, <) be a wellordered set,
and (A;);er a family of meager sets in X. Let A = |J,.; A;. Consider the
relation z <* y defined by:

z,y€ A & (the < - least ¢ with z € A;) < (the <-least j withy € A)).

If <* has the BP (in X?2), then A is meager. (Note that this is a strength-
ening of 8.48.)

(8.50) Exercise. For any set X, Pow(X') denotes its power set:
Pow(X)={A: AC X}.

An ultrafilter on X is a set i C Pow(X) such that &/ # 0 and i) A €
U BDA=Beli)ABecU=ANBelii) A¢U S ~Acl.
An ultrafilter is principal if for some z € X, {z} € U or, equivalently,
U={A:z € A} for some z € X.

Let & now be an ultrafilter on N. View U as a subset of 2N, If I/ is
non-principal, then show that I/ does not have the BP in 2N,

8.M Separate and Joint Continuity

(8.51) Theorem. Let X,Y,Z be metrizable spaces and f:X xY — Z. As-
sume [ is separately continuous (i.e., forx € X,y €Y, f.:Y — Z given by
fz(y) = f(zy) and f¥: X — Z given by fY(x) = f(x,y) are both continu-
ous). Then there is a comeager set G C X x Y such that forally €Y, GY
is comeager in X and f 1s continuous at every point of G.

Proof. Let dy,dz be compatible metrics for Y, Z. Let

Fok = {(z,y) : Vu.v € B(y.27")[dz(f(z. u), f(z,v)) < 27"}

Since f is continuous for each z, X xY =, |, Fuk. We claim that F,, «
is closed: Let (z;,y;) € Frxy (%i,4:) — (2,9). Fix u,v € B(y,27%) and 4
such that for i > 4y, u,v € B(y;,27%). For such 4, dz(f(x;, u), f(xi,v)) <
27", s0, as f*, fV are continuous and x; — z, dz(f(x,u), f(z,v)) <27

Now let
D = JUl(=,y) : z € FY \Int(FY )}
n k
Then D C U, Ui (Fn k\Int(F, x)), and so D is meager, and DV is also

meager for all y. Let G = (X x Y)\D. It is enough to verify that f is
continuous at each (z,y) € G. Let ¢ > 0 and n be such that 27" < e
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et k be such that (z,¥) € Fny. Then z € FY\D¥ C Int(FY,).
Since fY is continuous, let V be open with z € V C FY, and for
s € V, dz(f(@.9)./(5,9)) < ¢ Then for s € V, t € B(y,2¥), we have
dz(f(.’B, y),f(s, t)) < dzlgf('r? y)a f(sa y)) + dZ(f(S,y)’ f(S, t)) < 26, since
se€FY, andt€ B(y,2” ). :

I. Namioka [1974] has shown that if, for example, X,Y are also com-
pact, then we can take G to be of the form H x Y for H comeager in

X.
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9. Polish Groups

9.A Metrizable and Polish Groups

A topological group is a group (G, ) together with a topology on G such
that (x,y) — xy~! is continuous (from G2 into G).
First we have the following metrization theorem.

(9.1) Theorem. (Birkhoff, Kakutani) Let G be a topological group. Then
G is metrizable iff G is Hausdorff and the identity 1 has a countable nbhd
basis. Moreover, if G is metrizable, G admits a compatible metric d which
is left-invariant: d(zy,z2) = d(y,2).

Similarly, of course, a metrizable group admits a right-invariant metric.
However, in general it may not admit a (two-sided) invariant metric. A
necessary and sufficient condition for that is the existence of a countable
nbhd basis {U,} at 1 such that gUn,g™! = U,, for all ¢ € G, n € N.
Groups that admit compatible invariant metrics include the abelian and
the compact groups (see E. Hewitt and K. A. Ross [1979), (8.6)).

If d is a left-invariant compatible metric on ¢, consider the new metric

p(z, y) = d(z,y) + d(m_l’ y_l)~

It is easy to see that it is also compatible (but not necessarily left-invariant).
If (G, p) is the completion of (G, p), then the group multiplication extends
uniquely to G so that G becomes a topological group (with compatible met-
ric #). Thus every metrizable topological group can be densely embedded in
a completely metrizable one (see C. A. Rogers et al. [1980], pp. 352-353).

(9.2) Definition. A Polish group is a topological group whose topology is
Polish.

Every separable metrizable group is thus densely embedded in a Polish
group. Also, every Haunsdorff, second countable, locally compact group is
Polish.

A Polish group admits a compatible complete metric, but it may not
admit a left-invariant compatible complete metric.

9.B Examples of Polish Groups

1) All countable groups with the discrete topology.
2) (R, +), (R* = R\{0},+), (T,), and (X, +), where X is a separable
Banach space.

3) If (X,) is a sequence of Polish groups, so is [], X,.. An example
is ZY (which is topologically the same as C), the so-called Cantor group.
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Identifying = € Zg;’ with the subset of N, of which it is the characteristic
function, we have z +y = zAy.

4)Let K= R or C. Any set S of n x n matrices will be considered as a
subspace of K"’ . Let GL(n,K) be the group of no:zl-singula,r n X n matrices
over K. Then GL(n,K) is an open subspace of K™, so it is a Polish locally
compact group. Let SL(n, K) be the subgroup of GL(n,K) conszisting of all
matrices with determinant 1. This is a closed subspace of K™, and so is
also a Polish locally compact group. _

For an n x n matrix A, denote by A* = (A)* its adjoint matrix. The
unitary group U(n) consists of all A € GL(n,C) with AA* = A*A = I.
Viewing C* as an n-dimensional Hilbert space, we can view U(n) as the
group of linear isometries of C". The orthogonal group O(n) is defined sim-
ilarly using R instead of C. The groups SU(n) and SO(n) are also defined
analogously to SL(n,K). Thez groups U(n), O(n), SU(n), and SO(n) are
closed bounded subsets of K™, so they are Polish compact groups.

5) More generally, all (second countable) Lie groups are Polish locally
compact.

6) Let H now be a separable, infinite-dimensional Hilbert space, such
as ¢2. Let L(H) be the algebra of bounded linear operators T : H — H.
For T € L(H) its adjoint T* : H — H is the bounded linear operator
defined by (z,T*y) = (Tz,y). An operator T for which TT* =T*T =1 is
called unitary. This is the same as saying that T is a linear isometry of H.
Unitary operators form a group called the unitary group, U(H), if H is a
complex space and the orthogonal group, O(H), if H is a real space. This
group is a subspace of the unit ball L, (H) of L(H), and it turns out that
the strong topology (see Example 5 in Section 3.A) and the weak topology
(see Exercise 4.9) agree on U(H) and O(H). With this topology U(H) and
O(H) are Polish groups (as they are G subsets of L)(H) with the strong
topology). A compatible complete metric is

d(S,T) = _ 27" N(||Sz — Tzull + 1972 — T*z4l),

n=0

where {z,} is dense in the unit ball of H.
(9.3) Exercise. Show that U(H) and O(H) are not locally compact.

7) Let S, be the group of permutations of N. With the relative
topology as a subset of A, it is a topological group and it is a Pol-
ish group since S, is a G5 set in . A compatible complete metric is
P(x,y) = d(z,y) +d(x~",y~ "), where d is the usual metric on N/ = NN (see
Section 2.B). Again, S, is not locally compact.

More generally, consider a structure A = (A4, (R;):er, (f;)jes, (k) rek)
(in the sense of model theory) consisting of a set A4, a family of relations
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(Ri)ier, operations (fi)jes, and distinguished elements (ci)rex on A. As-
sume A is countably infinite. Let Aut(.A) be the group of automorphisms
of A. Thinking, without loss of generality, of A as being N, Aut(A) is a
closed subgroup of Su,, so again Polish. (The group S is just the group
Aut(A), where A = (N), the trivial structure on N.)

8) Let X be a compact metrizable space. Let H(X) be the group
of homeomorphisms of X. Then H(X) C C(X, X), and with the relative
topology it is a topological group. Since H(X) is G in C(X, X), it is a Pol-
ish group. A compatible complete metricis p(f, g) = du(f. 9)+du(f~1,971),
where d,, is the sup metric on C(X, X). Again, H(X) is in general not lo-
cally compact, for example, for X = [0, 1].

9) Let (X, d) be a complete separable metric space. Denote by Iso( X, d)
the group of its isometries. Put on Iso( X, d) the topology generated by the

functions f — f(x), for £ € X. This is a Polish group with a compatible
complete metric given by

_ — _-n—1 d(f(a:n),g(-xn)) d(f_l(mn)ag_l(xn))
6(f.9) =23 2 (1 F (@), g@n) T 1T d(f-'(wn),g-l(xn)))’

n=0

where {z,} is dense in X.

(9.4) Exercise. If (X, d) is a compact metric space, show that Iso( X, d) is a
compact subgroup of H(X).

(9.5) Exercise. Let G be a graph theoretic tree (see 4.13). If G is locally
finite, then Aut(G) is locally compact.

(9.6) Exercise. Let H be a Polish group and G C H a subgroup of H. Show
that if G is Polish (in the relative topology, that is, a G5 set in H), then G
is closed in H.

(9.7) Exercise. Let 7 be an ideal on N. View Z as a subset of 2N identifying
a set with its characteristic function. Show that if 7 is G55, then it is closed.
Show that the Fréchet ideal, T, = {A C N: A is finite}, is F, but not Gs.

9.C Basic Facts about Baire Groups and Their Actions

A topological group is Baire if it is Baire as a topological space. Such groups
have a number of interesting properties, which therefore also hold for all
Polish groups.

(9.8) Proposition. Let G be a topological group. Then G is Baire iff G is
non-meager.
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Proof. Assume G is not meager. Let U be a nonempty open set. If U is
meager, so is gU for any g € (7, so (7 is a union of a family of open meager
sets. Since for U meager open, U | 0, it follows from 8.29 that U(0) = G,

so GG is meager. O

(9.9) Theorem. (Pettis) Let G be a topological group. If A C G has the
Baire property and is non-meager, the set A7'A (= {z7'y: zy € A})
contains an open nbhd of 1.

Proof. Let U be nonempty open with AAU meager. By the continuity of
zy~!, let g € G and V an open nbhd of 1 be such that gVV-l C U. So
gV CUNU, for h € V. We will now show that V C A~' A, by showing that
forall h € V, AnAh # 0. Indeed, if h € V, we have (UNUR)A(AN Ah) C
ULA)U (UAA)R), so (UNU)A(AN Ah) is meager. If AN Ah is empty,
then (U NU k) is meager, and then so is gV, a contradiction to the fact that
G is Baire (by 9.8). 0

(9.10) Theorem. Let G,H be topological groups and ¢:G — H a homomor-
phism. If G is Baire, H is separable, and ¢ is Baire measurable, then ¢ is
continuous.

Proof. It is enough to show that ¢ is continuous at 1. Fix an open nbhd U of
1 € H. Let V be an open nbhd of 1 € H such that V=V C U. Let {h,} be
dense in H, so that, in particular, J,,(h.V) = H. Thus U, ¢~ ! (h.V) =G,
so for some n, ~!(h,V) is non-meager. By 9.9, (¢~ (A, V)) o~ (h,V)
contains an open nbhd of 1 € G. But clearly, (¢~ (h, V) Yo 1 (R, V) C
e\ (VW) C 7' (U). o

(9.11) Exercise. Let G be a topological group. Let H C G be a subgroup
that has the Baire property and is not meager. Show that H is clopen.
Show also that every proper subspace of a Banach space which has the
Baire property is meager.

(9-12) Exercise. Let f : R — R be Baire measurable and satisfy the func-

tiopal equation f(x + y) = f(z) + f(y). Show that for some @ € R, f(x) =
az.

(9.13) Definition. Let G be a group and X a set. An action of G on X is a
map (9,x) € G x X — g.x € X such that L.z = z, (gh).z = g.(h.z).

Thus for each g € G, the map x — g.x is a bijection of X with itself
with inverse x — ¢~ 1.x. The map that sends g to x — ¢.x 18 a homomor-
phism of G into the group of permutations of X.

If G.X are also topological spaces, the action is continuous if it is
continuous as a function from G x X into X . In this case we have a homo-
morphism- of G into the group of homeomorphisins of X .
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(9.14) Theorem. Let G be a group with a topology that is metrizable and
Baire, such that for each g € G the function h v gh is continuous. Let
X be a metrizable space and (g9,x) — g.x an action of G into X which is
separately continuous (i.e., the maps g — g.x forz € X,z v g.x forg e G
are continuous). Then the action is continuous.

Proof. Fix (g0,%9) € G x X. By 8.51 the map (g,z) — g.x i3 continuous
at (g,x9) for comeager many g. So let hy be such that (g,2) — g¢.r is
continuous at (hg, Top). Since g.x = (gohg ').(hogy '9.2), the map (g, ) —
g.x is continuous at (go, Zo)- 0

(9.15) Corollary. Let G be a group with a topology that is metrizable and
Buaire. Assume g — g~} is continuous and (9,h) — gh is separately contin-
uous. Then G is a topological group.

Proof. Let G act on itself by (g, h) — gh. 0

Remark. In 9.15, if the topology is Polish one can drop the hypothesis
that the inverse is continuous (see 14.15). It can also be shown that this
hypothesis can be dropped if the topology is Hausdorff locally compact (see
C. A. Rogers et al. [1980], pp. 350-352).

(9.16) Exercise. i) Let G be a group with a metrizable Baire topology
in which multiplication is separately continuous and let X be separable
metrizable. Let (g,z) — g.z be an action of G on X, which for each g is
continuous in x and for each x is Baire measurable in g. Show that this
action is continuous.

ii) Let G, H be groups with metrizable topologies in which multiplica-
tion is separately continuous. Assume G is Baire and H is separable. Then
any homomorphism ¢ : G — H that is Baire measurable is continuous.

(9.17) Theorem. (Miller) Let G be a topological group such that G and all its
closed subgroups are Baire, X a T\ second countable space, and (g,x) — g.x
an action of G on X. Assume that for a given x € X, the map g — g.x
restricted to any closed subgroup H C G is Baire measurable on H. Then
the stabilizer G, = {g € G:g.x = z} is closed.

Proof. Clearly, G, is a subgroup of G as is its closure H = G,. By our
hypothesis, if we restrict the action to H it has the property that h — h.x
is Baire measurable on H for any = € X. So, replacing G by H if necessary,
we can assume that G, is dense in G. From this we want to conclude that
G, =0G.

If G,. is non-meager, we are done by 9.11 (since G, has the BP, as points
are closed in X'). So assume G, is meager. Let {V,} be an open basis for
X and note that, since X is T}, {V,,} separates points in X (i.e., for each
z,y € X with z # y, thereis n with z € V,,, y ¢ V,). Let f(g9) = ¢.z, and
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put An = f~Y(Va), so that A, has the BP in G. Moreover, A,h = A, if
h € Gy. Since g.x = h.z & f(g)=f(h) & Vn(ge A, & h € A,), we have
Gz ={An:9€ A, }. By applying 8.46 to the group of homeomorphisms
of G induced by right multiplication by elements of GG, we have that each
A, is either meager or comeager. Since ¢G, is meager, there is n with
g € An and A, meager. So G = |J{A, : A, is meager}, so G is meager,
which is a contradiction. 0

9.D Universal Polish Groups

We have seen in 4.14 that the Hilbert cube IM has an important universality
property: Every Polish space is a subspace of IN (up to homeomorphism).
We prove here that the Polish group of homeomorphisms H (IN) of IN has
a similar property among all Polish groups.

Given two topological groups G, H, we call them isomorphic if there
is an algebraic isomorphism 7 : G — H that is also a homeomorphism.

(9.18) Theorem. (Uspenskii) Every Polish group is isomorphic to a (nec-
essarily closed) subgroup of H(IV).

Proof. For a separable Banach space X, let LIso(X) be the group of linear
isometries of X. This is a closed subgroup of Iso( X, d), where d is the metric
induced by the norm of X, so it is Polish.

Now let G be an arbitrary Polish group. First we will find a separa-
ble Banach space X such that G is isomorphic to a (necessarily closed)
subgroup of LIso(X).

Let d be a bounded left-invariant metric compatible with the topol-
ogy of G. Given g € G, associate with it the bounded continuous map
fo : G — R given by f,(h) = d(g,h). Let C,(G) be the Banach space
of bounded continuous real-valued functions on G with the sup norm
1fllce = sup{|f(z)| : * € G}. (It is not necessarily separable.) Let X be the
closed linear subspace of Cy(G) generated by the functions {f, : g € G}.
Then X is separable. Every ¢ € G determines a linear isometry T, : X — X
given by To(f)(h) = f(9~'h). It is easy now to check that g +— T, is an-
isomorphism of G with a closed subgroup of Llso( X).

Now let K = By(X*) be the unit ball of the dual X* of X with the
weak”-topology. By 4.7,- K is compact metrizable. For § € LIso(X), let
§* € Llso(X*) be its adjoint, i.e., (z,5*z*) = (Sz,z*). Then S$*|K €
H(K). For T € LIso(X), let h(T) = (T~Y)*|K € H(K).

Claim. The map h is an isomorphism of LIso(X) with a (necessarily closed)
subgroup of H(K).

PTOOf It is easily an algebraic isomorphism. We will show next that it is
continuous. If T;, — T and d is the metric on K given in 4.7, we will verify
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that d(h(T,)(z*),h(T)(z*)) — O uniformly on z* € K, or equivalently
Yo 27T N (#m), 2%) — (T~ H&m),2*)| — 0 uniformly on z* € K
where {z,,} is dense in the unit ball of X. But this is easy, since T,,(z,,) —
T(xm), for all m.

Finally, we check that k™! is continuous. Let A(T},) — A(T) (in H(K ),
so that d(h(T,)(z*),h(T)(x*)) — O uniformly on z* € K. In particular,
KT Yz m), ") — (T~ Y(zm),z*)| — 0 uniformly on z* € K, for any m. To
see that T, — T, or equivalently T} — T}, it is enough to check that
T zm) = T (@m), for allm, ie., (T =T~ (zm)|| — 0, for all in. But
1T =T @m)l| = sup{ (T @), &) — (TN (&m) )] : 2* € K} — 0
for any m.

We use now the following result in infinite-dimensional topology (see
C. Bessaga and A. Pelczyniski [1975]).

(9.19) Theorem. (Keller’s Theorem) If X is a separable infinite-dimensional
Banach space, B\(X*) with the weak™-topology is homeomorphic to the
Hilbert cube IN.

If X is infinite-dimensional, we are done. Otherwise, X is finite-
dimensional, so K = B,(X”) is homeomorphic to " for some n. Then
G is isomorphic to a subgroup of H(I"), which is easily isomorphic to a
subgroup of H(IN), and the proof is complete. 0
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Borel Sets

10. Measurable Spaces and Functions

10.A Sigma-Algebras and Their Generators

Let X be a set. Recall that an algebra on X is a collection of subsets of X
containing @ and closed under complements and finite unions (so also under
finite intersections). It is a o-algebra if it is also closed under countable
unions (so also under countable intersections). Given £ C Pow(X), there is
asmallest g-algebra containing £, called the o-algebra generated by £ and
denoted by (). Also, £ is called a set of generators for o(£). A g-algebra
is countably generated if it has a countable set of generators.

(10.1) Theorem. Let X be a set.

i) For any £ C Pow(X), a(£) 1is the smallest collection of subsets of
X containing 0, €, and ~ £ (= {~A:A € £}) and closed under countable
intersections and unions.

.it)- Let A C Pow(X) be an algebra on X. Then o(A) is the small-
est monotonically closed class of subsets of X containing A, where M C
Pow(X) is monotonically closed if for any decreasing (resp., increasing)
sequence (A,), where A, € M, (), An € M (resp., U,, An € M),

12) (The n — X theorem) Let P C Pow(X) be closed under finite inter-
sections (a w-class). Then o(P) is the smallest A-class containing P, where
£ C Pow(X) is a A-class if it contains X and is closed under complements
and countable disjoint unions.
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) Let £ C Pow(X). Then o(£) is the smallest class of subsets of
X containing 0, £, and ~ £ and closed under countable intersections ang
countable disjoint unions.

Proof. i) Let S be the smallest such class. Clearly, S C o(£). Let 8’ = {A ¢
X : A~ A€ 8). Then §' is a o-algebra containing £, so 0(£) C &' C S,

ii) Let M be the smallest monotonically closed class containing A. It
is enough to verify that if A,B € M then A\ B,AU B € M. Indeeq,
if this holds, M is closed under complements and countable unions, since
Un A, = Un(Ao U---U A ).

For AC X, let M(A)={B:A\B,B\A,AUB € M}. Then M(4)is
monotonically closed. If A € A, then A C M(A), so M C M(A). Thus if
B e M, B € M(4), so A€ M(B). Therefore, A C M(B) for all B e Mm
(i.e., M C M(B) for all B € M), and we are done.

iii) Let £ be the smallest A-class containing P. We will show that it
is an algebra. It will then follow that it is a o-algebra, since |J, A, =
U, (Ax\U;., Ai) and the latter is a pairwise disjoint union.

For any A C X, let L(A) = {B: AN B € L}. Then £(A) is a A-class
for any A € L since if ANB € L, then A\ B=~ ((~ A)U(ANB)) € L. So
if Ae P, PC L(A),so L.C L(A). Thusif Be L, A€ L(B),soP C L(B)
and therefore £ C £(B). It follows that if A,B € £, then AN B € L.

iv) Let R C Pow(X) be the smallest class containing ), £,~ £ and
closed under countable intersections and countable pairwise disjoint. unions.
Let R = {Ae€eR:~ A€ R} Then £ C R/, and R’ is closed under
complements. So it is enough to show that R’ is closed under countable
unions. Since |J,, An = U, (An\Uicn 4i), it is enough to show that R’
is closed under finite unions. Let A,B € R’. Then AUB = (A\ B)U
(B\ A) U (AN B) and this is a disjoint union, so AU B € R. But also
~{(AUB)=(~A)N(~B)eR,s0 AUBeR' 0

10.B Measurable Spaces and Functions

A measurable (or Borel) space is a pair (X,S), where X is a set and S is
a o-algebra on S. The members of S are called measurable.

A subspace of (X,S) consists of a subset Y C X with the relative
c-algebra S|Y = {ANY : A € S}. Notice that if § = ¢(£), then S|Y =
a(E|Y).

Let (X,S),(Y,.A) be measurable spaces. A map f : X — Y is
called measurable if f~1(A) € S for any A € A. If £ generates A, it is
enough to require this for A € £, since f~1(a(€)) = a(f~1(€)) (where
YD) = {f7Y(4) : A € D} for D C Pow(Y)). A (measurable) isomor-
phism between X,Y is a bijection f : X — Y such that both f, f~! are
measurable. If such an isomorphism exists, we call X, Y (measurably) iso-
morphic. A (measurable) embedding of X into Y is an isomorphism of X
with a subspace of Y.
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If X is a set, (Y%, 8:))ier a family of measurable spaces, and f; : X —
Y, are maps, there is a smallest g-algebra & on X such that all f; are
lrr:.z,asumble. We call it the o-algebra generated by (f;). If & is a set of
generators for S;, then {f7}(A): ACY;, A€, i € I} generates S.

Let {(Xi,S:))ier again be a family of measurable spaces. The product
neasurable space ([]; X, [1; S:) is that generated by the projection maps
(z:)ier — %5 (7 € I). Equivalently, it is generated by the sets of the form
I1, A where A; € S; and A; = X; except perhaps for at most one i (or
eqilivalently except for finitely many :). If £; is a set of generators for S;,
then the sets of the form []; A;, where A; = X, except perhaps for at most
one i for which A, € &;, formn a set of generators for the product space.

The sum (P, X, @; S:) of a family of measurable spaces ((X, S;))ier
is defined (up to isomorphism) as follows: Replacing X; by an isomorphic
copy, We can assume that the sets X; are pairwise disjoint. Let X = L_Jz-e 1 Xa
A set A C X is measurable if AN X, € §; for each i € I.

(10.2) Exercise. Let X, Y be measurable spaces. If A C X x Y is measurable
(in the product space), then for each x € X, A; is measurable in Y.
Similarly if X,Y, Z are measurable spaces and f : X xY — Z is measurable,
then for each z € X the function f; : ¥ — Z is measurable. Generalize
these to arbitrary products.
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11. Borel Sets and Functions

11.A Borel Sets in Topological Spaces

Let (X,7) be a topological space. The class of Borel sets of X is the -
algebra generated by the open sets of X. We denote it by B(X,T) (or
by B(X) or B(7), when appropriate). We call (X, B(X)) the Borel space
of X. If £ is a countable subbasis for X, then clearly B(X) = o(£), so
B(X) is countably generated when X is second countable. Note also that
if Y is a subspace of X then (Y,B(Y)) is a subspace of (X, B(X)) (i.e,
B(Y) = B(X)|Y). It is obvious that B(X) contains all open, closed, F,,
and G; sets in X.

By applying 10.1 to the class of open sets in X, we see the following:

(a) B(X) is the smallest collection of subsets of X containing the open
as well as the closed sets and closed under countable intersections and
unions;

(b) B(X) is the smallest collection of subsets of X containing the open
sets and closed under complements and countable pairwise disjoint unions;

(c) B(X) is the smallest collection of subsets of X containing the open
as well as the closed sets and closed under countable intersections and
countable pairwise disjoint unions.

Note also that if (X,) is a sequence of second countable spaces, then

(IT X~ BT Xa) = (J1 %=, [[ B(X.)).

By standard terminology, if (X,S) is a measurable space and Y a topo-
logical space, we call a function f : X — Y measurable if it is measurable
with respect to (X,S), (Y,B(Y)). If {V,,} is a countable subbasis for Y, it
is enough to require that f~1(V;) € S for each n.

11.B The Borel Hierarchy

Assume now that X is metrizable, so that every closed set is a G5 set. Let
w) be the first uncountable ordinal, and for 1 < ¢ < w) define by transfinite
recursion the classes BHX ),l'[g(X ) of subsets of X as follows:

2Y(X) = {U C X : U is open},
I(X) = ~ ZZ(X),
ZAX)={{JAn: A e M (X), &, <& neN}ifE> L
n ’
In addition let
AY(X) = ZYX) NIIY(X)
be the so-called ambiguous classes.
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Traditionally, one denotes by G(X) the class of open subsets of X, and
by F(X) the class of closed subsets of X. For any collection £ of subsets of

a,set X) let
£a={UAn:An€£, n € N},
n

Es={[)An: An €&, neN}.

Then we have ZYX) = G(X), mM(X) = F(X), BYX) = (F(X)), =
F,(X), My(X) = (G(X)); = Gs(X), ZY(X) = (Gs(X)), = Gso(X),
m(x) = (Fo(X)); = Fy5(X), etc. (Also, AYX)={AC X :Ais
clopen}.) In general, an easy transfinite induction shows that

SUX)UIIZ(X) C AL, (X),

so in particular
221 (X) = (X)),

Finally, it is easy to see that
B(X)= | =2x)= |J mx) = |J adx),
E<un E<un E<un

which gives us the following picture,

=9 =9 = =0
Al Al .o AL LAl
om m I m
B

where £ < 7 and any class is contained in every class to the right of it. This
gives a ramification of the Borel sets in a hierarchy (of at most w, levels),
the Borel hierarchy. We will study it in some detail in Section 22,

EXAMPLES

1) A number z in the interval (0,1) is normal (in base 2) if its non-
terminating binary expansion x = 0.5, b2b3. .. is such that

t<n'h; =
lim card({i <n:b, =1}) _

N=400 n

1/2.

Let N be the set of normal numbers. We claim that it is Borel. To see this,
let d, be the following step function on (0,1) : d,, = 0 on (0,1/2"], d,, =
1on (1/2%,2/2"], dn = 0 on (2/2™,3/2"],.... Then £ = 32, d,(z)/2" is
the non-terminating binary expansion of z. Let Q* be the set of positive
rationals. Then for z € (0,1) we have:

x €N & Ve e QtInym > n(|(2}“=ldi(w))/m -1/2|< e).
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Now X%, di(x) is constant on each dyadic interval (k/2™, (k + 1)/2™], so
the set A,,. = {z : |(T2,di(z))/m — 1/2 |< €} is a finite union of such

intervals. Since
N=[1UN Ame

¢eQt n m>2n
it follows that N is Borel in (0,1).

2) Let X = C([0,1]) and denote by C* the class of continuously differ-
entiable functions in C([0,1]). (At the endpoints we take one-sided deriva-
tives.) Then for f € X, f € C* iff for all ¢ € Q* there exist rational open
intervals Iy, ..., I,—, covering [0,1] such that for all j < n:

Va,b,c,d € I; 0 [0,1] with a # b,c # d(|f(“2:£(b) - f(°2:£(d)| < E),

So if for an open interval J and € > 0, we put A;. = {f € C([0.1)) :
Va,b,c,d € JN[0,1] with a # b, ¢ # d,| L={®) _ S-S |< ¢} we have
that A, is closed in X and

c=NU U N4se

eeQt n (Iy,..,Jn1}J<n

where (1o, ..., In—,) varies over all n-tuples of rational open intervals with
Ui<n Ii 2 [0,1]. Thus C! is Borel.

3) Let X = IN and consider Cy = ¢oNX = {(x,) € X : z, — 0}. Then
we have for (z,) € X :

(x.) € Cp < Ve € QtInvm > n(z,, < ¢),

so Cy is Borel.
4) Let f € C([0,1]). Put Dy = {z € [0,1] : f'(x) exists} (at endpoints
we take one-sided derivatives). Then for z € [0,1] :
re€ D &Vee QtI6€ QtVp,qe [0,1]1NQ:
(lp—z|lg-z|<é=

)= 1) _f@-1@)] _,
p—x g— -7

so again Dy is Borel.

(11.1) Exercise. Show that all of the preceding examples are actually IT3.

11.C Borel Functions

Let X,Y be topological spaces. A map f : X — Y is Borel (measurable)
if the inverse image of a Borel (equivalently: open or closed) set is Borel.
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IfY hasa countable subbasis {V,}, it is enough to require that f~'(V,) is
Borel for each n. We call f a Borel isomorphism if it is a bijection and both
f,f) are Borel,ie,for ACX, AeB(X)e f(A)eB(Y) If X =Y, we
C;u f a Borel automorphism.

It is clear that continuous functions are Borel.

(11.2) Exercise. i) Let (X,S) be a measurable space and Y a metriz-
able space. Let fn : X — Y be measurable. If f, — f pointwise (i.e.,
lim,, fa(x) = f(z) for each z), then f is also measurable.

ii) Call a function f : [0,1] — R a derivative if there is F : [0,1] —
R differentiable such that F' = f (again at endpoints we take one-sided
derivatives). Show that derivatives are Borel functions.

iii) Let X be a topological space and f : X — R a lower (resp., upper)
semicontinuous function, i.e., {z : f(x) > a} (resp., {z : f(z) < a}) is open
for every a € R. Show that f is Borel.

(11.3) Exercise. Let X, Z be metrizable with X separable and Y a topo-
logical space. Let f : X x Y — Z be such that f¥: X — Z is continuous
forall ye Y and f; : Y — Z is Borel for a countable dense set of x € X.
Show that f is Borel.

(11.4) Exercise. Let X be a Polish space.

i) Show that the family of sets {K € K(X): K C U}, U open in
X, generates B(K(X)). Prove the same fact for the family of sets {K €
K(X): KnU #0}, U open in X.

ii) Show that the map K — K’ (= the Cantor-Bendixson derivative
of K) on K(X) is Borel. Show also that the map (K,L) — K N L from
K(X) x K(X) into K(X) is Borel. If Y is compact metrizable and F C
X x Y is closed, show that z — F, is Borel.

The following obvious fact is important, as it allows us to apply the
theory of Section 8 to Borel sets and functions.

(11.5) Proposition. Every Borel set has the Baire property, and every Borel
function is Baire measurable.

The Borel sets are generated from the open sets by the operations of
complementation and countable union. We will now see that real-valued
Borel functions are generated from the continuous functions by the oper-
ation of taking pointwise limits of sequences. (We will prove an extension
and a more detailed version of this result in 24.3, but the present form will
suffice in the meantime.)

(11.6) Theorem. (Lebesgue, Hausdorff) Let X be a metrizable space. The
class of Borel functions f:X — R is the smallest class of functions from
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X into R which contains all the continuous functions and is closed under
taking pointwise limits of sequences of functions (i.e., if fn:X — R belong
in the class and f(z) = lim, fo(z) for each z, then f is in the class t00).

Proof. Denote by B the smallest class of real-valued functions containing
the continuous functions and closed under the operation of taking pointwise
limits of sequences of functions. It is easy to see that B is a vector space,
ie,ifr,seRand f,g € Bthenrf + sg € B.

We claim first that the characteristic function x4 of any Borel set
A C X is in B. To see this we use 10.1, iii). Since x~4 = 1 — x4 and
XUn a, =limy(xa, +---+x A, ) if (An) are pairwise disjoint, it is enough

to show that xy € B for any open U. Let U = |J,, Fy, with F;, closed and
F, C Fh41- By Urysohn’s Lemma 1.2, let f, : X — IR be continuous with
0<fm<l, fa=lonF,, fn=00n~U. Clearly, f, — xu pointwise, so
xu € B.

Let now f : X — R be a Borel function. We will show that f € B.
Now f = f+ — f~ with f+ = U ¢ - =L Clearly |f), £+, f-
are also Borel, so it is enough to consider non-negative f. For such f,
let for n = 1,2,3,...and 1 < i < n2", A,,; = fY([52, %)) and put
fo =22 (i —-1)/2". XA, ;- Then, since A, ; is Borel, f, € B. But f, — f
pointwise, so f € B.

Since the class of Borel functions contains the continuous functions
and is closed under taking pointwise limits of sequences of functions, our
proof is complete. 0

(11.7) Exercise. Show that 11.6 holds when R is replaced by any of the
following: R™®, C™ (n =1,2,...), an interval J C R or J". In particular, the
class of bounded Borel functions f : X — R is the smallest class of real-
valued functions containing the bounded continuous functions, which is
closed under taking bounded pointwise limits of sequences of functions (i.e.,
if f, are in the class, with |f,| < M for some M, and f, — f pointwise,
then f is in the class).
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12. Standard Borel Spaces

12.A Borel Sets and Functions in Separable Metrizable Spaces

We characterize first the Borel spaces of separable metrizable spaces.

(12.1) Proposition. Let (X,S) be a measurable space. Then the following
are equivalent:
i) (X,S) is isomorphic to some (Y, B(Y)), where Y is separable metriz-

able;
i) (X,S) is isomorphic to some (Y ,B(Y)) for Y C C (and thus to
some Y C Z for any uncountable Polish space Z);

i1) (X,S) is countably generated and separates points (i.e., if z,y are
distinct points in X, there is A€ S withxz € A,y & A).

Proof. ii) = i) = liii) are trivial. We will prove now that iii) = ii). Let
{A.} generate S. Define f: X — C by f(z) = (xa,(z)). where x4 = the
characteristic function of A. Then f is injective, since { A, } separates points.
It is also measurable, since f(z)(n) =1 & z € A, Let Y = f(X) C C.
Since f(4n) = {y € C : y(n) = 1} NY, f~! is also measurable (ie.,
(X,S), (Y, B(Y)) are isomorphic). 0

For measurable spaces (X,S) satisfying the equivalent conditions of
12.1, we will usually denote S by B(X) and call its elements the Borel sets
of X, when there i3 no danger of confusion. We will also call measurable
maps between such spaces Borel maps.

The following is an analog of 3.8.

(12.2) Theorem. (Kuratowski) Let X be a measurable space and Y be
nonempty Polish. If Z C X and f:Z — Y is measurable, there is a mea-
surable function f:X — Y extending f.

Proof. Tt is enough to find a measurable set Z2* C X, Z2* O Z and a
measurable function f* : Z* — Y extending f.

Let {V,} be a basis of nonempty open sets for Y. There are measurable
sets B, in X with f~1(V,) = ZNnB,. Thusfor z € Z, z € B, & f(2) € Vi.
Put Z*={re X:3yeYvn(z € B, & yeV,)}, and for z € Z*, let
f*(x) = y, where {y} = N{V,, : x € B,}. Clearly, Z C Z*, f* extends f
and f*: Z* — Y is measurable since (f*)™Y(V,) = B, N Z*. It remains to
show that Z* is measurable.

Let (n,x) € B« x € B, so that B* = {n:z € B,}. Then z € Z* iff
{Va:n e B*}is the family of basic open nbhds of some point in Y, so that
z € Z* iff the three following conditions hold:

(1) B* #9,
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(2) VkVn € B*Ym € B*3 € B*(V, C Vo NV, & diam(Ve) < 1/(k + 1)),

(3) va¥m(m € B* & V,, CV, = n € BY).

Conditions (1) and (2) guarantee, by the completeness of Y. that
(ncp= Vn consists of a unique point, say y, and then condition (3) guaran.
tees that B* = {n:y e V,,}. .

Letting

(k,€,m,n) € C & V; CV, NV, & diam(V;) < 1/(k + 1),
(m,n)e D&V, CV,,
we have

z € Z* & In(x € B,) &VkVn¥m|r € B, & x € B, =
I(x € By & (k,¢,m,n) € C) &
Vn¥mlz € B,, & (m,n) € D = z € B,],

so that Z* is measurable (see Appendix C). 0

We have also the analog of Lavrentiev’s Theorem 3.9.

(12.3) Exercise. Let X,Y be Polishand AC X, BCY.If f:A— Bisa
Borel isomorphism, then show that there exist Borel sets A* C X, B*CY
with A C A*, B C B* and a Borel isomorphism f* : A* — B* extending
f. Formulate and prove an analog of 3.10.

There is a basic connection between the measurability of functions and
their graphs.

(12.4) Proposition. Let (X ,S) be a measurable space, Y a separable metriz-
able space, and f:X — Y a measurable function. Then graph(f) C X xY
i3 also measurable (with respect to S x B(Y')).

Proof. We have
flz)=y e Vn(y eV, = f(z) e Vn),
where {V,,} is a basis for Y. D

The converse is also true when X, Y are Polish (see 14.12).

12.B Standard Borel Spaces

(12.5) Definition. A measurable space (X,S) is a standard Borel space if it
is isomorphic to (Y . B(Y)) for some Polish space Y or equivalently, if there
is a Polish topology T on X with § = B(T).
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The product and sum of a sequence of standard Borel spaces are stan-
dard. We will also see later (see 13. 4), that if (X, S) is standard and Y C X
s in S, then (¥, S|Y) is also standard. Finally, from 12.1 it follows that a
countably generated and separating points (X, S) is a subspace of a stan-
dard Borel space (and conversely of course).

12.C The Effros Borel Space

We will now discuss an important example of a standard Borel space.
Given a topological space X we denote by F(X) the set of closed
subsets of X. (When X is metrizable, we also use IT}(X) for this set, but
we will retain the classical notation F(X) in the context of the Effros Borel
structure.) We endow F(X) with the o-algebra generated by the sets

(FeF(X):FnU # 0},

where U varies over open subsets of X. If X has a countable basis {Uy,},
it is clearly enough to consider U in that basis. The space F(X) with this
o-algebra is called the Effros Borel space of F/(X).

(12.6) Theorem. If X is Polish, the Effros Borel space of F(X ) is standard.

Proof. Let X be a compactification of X. Then the map F € F(X) — Fe
K(X) (F denotes the closure of F' in X) is injective, since F = FN X.
We claim now that G = {F : F € F(X)} is Gs in K(X). Indeed, for
KeK(X), KeG& KnNX is dense in K, so if X = (), Uy, where U,
is open in X, and letting {V,,} be a basis for X, we have by the Baire
Category Theorem:

K € G& Vn(KNU, is dense in K)
< VnVm(K NV, # 0= K0 (Vi NU,) #0).

Thus G is Polish. Transfer back to F(X) its topology via the bijection
F — F, to get a Polish topology 7 on F(X). We have to verify that the
Borel space of this topology is the Effros Borel space. By 11.4 i), the sets
{K € K(X) : KNU # @} for U open in X generate the Borel space of
K(X), so the sets of the form | {F € F(X): FNU # 0} generate the Borel
space of T. But {F € F(X): FNU # 0} = {F € F(X): FNUNX) # 0},
so these are exactly the generators of the Effros Borel space. 0

Let d be a compatible complete metric on the Polish space X. G. Beer
[1991] has shown that the topology on F(X)\ {#} generated by the maps
F— d(z,F), z € X,is Polish and that the Effros Borel space on F(X)\{0}
is the Borel space of this topology.

(12 7) Exercise. Let X be Polish locally compact. Consider the Fell topology
on F(X), which has as a basis the sets of the form {F € F(X): FNK =
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D& FNU, #0& -+ & FNU, # 0}, where K varies over K(X) apg
U; over open sets in X. Show that the Fell topology is compact metrizabje
and its Borel space is exactly the Effros Borel space. (For X compact, thjg
is the Vietoris topology.)

(12.8) Exercise. Let X be separable metrizable. If X is K, then the Effrog
Borel space on F(X) is standard.

(12.9) Remark. J. Saint Raymond [1978] has shown that for separable
metrizable X, the Effros Borel space on F(X) is standard iff X is the
union of a Polish space and a K.

(12.10) Exercise. Let X = A/. View a tree on N as an element of 2N°" by
identifying it with its characteristic function. Recall from 4.32 that the set
of pruned trees PTY is G4 (thus Polish) in 2N " Show that the Effros Borel
space of F(N) is exactly the one induced by its identification with PTr via
the map F — Tr (see 24).

(12.11) Exercise. Let X be Polish.

i) Show that K(X) is a Borel set in F(X). Moreover, the Borel space
of K(X) is a subspace of the Effros Borel space. (In particular, if X is
compact, the Effros Borel space on F(X) = K(X) is the Borel space of
K(X), which also follows from 12.7.)

ii) Show that the relation “F, C F,” (in F(X)?) is Borel and that
the function (F},Fz) — F, U F> (from F(X)? into F(X)) is also Borel.
In particular, F(Y) is Borel in F(X), if Y is closed in X. If Z is also
Polish, show that the function (Fy, F3) — Fy x F> (from F(X) x F(Z) into
F(X x Z)) is Borel and if f : X — Z is continuous, the map F s f(F)
(from F(X) into F(Z)) is also Borel.

iii) Let RF(X) be the class of regular closed sets in X. Show that
RF(X) is Borel in F(X).

(By 8.30 and 8.32 the category algebra CAT(X) can be identified with
RO(X) and, by taking complements, with RF(X). So by 13.4 we can view
CAT(X) as having a standard Borel structure.)

(12.12) Remark. In general, the operation (Fy, F») — Fy N F; is not Borel
(see 27.7). Also for U open in X, {F : F C U} is in general not Borel (see
also 27.7). For F C X x Y closed, the map = — F is also in general not
Borel (see 15.5).

The following is a basic fact about the Effros Borel space.
(12.13) Theorem. (The Selection Theorem for F(X)) (Kuratowski-Ryll-

Nardzewski) Let X be Polish. There is a sequence of Borel functions
dn:F(X) — X, such that for nonempty F € F(X), {dn(F)} is dense in F-
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Proof. Assume that X # @ and fix a compatible complete metric for X.
et (Us) be a Souslin scheme on X with Up = X, U, open nonempty,
Fo: € Us, Us = U; Us~s, and diam(U,) < 27'eneth(s) if s £ @ For £ € N, let
r}(;)-} =), Usln- Then f: M — X is a continuous (and open) surjection
ESee 7.14). Given nonempty FeF(X),let Tp = {se NN: FnU, # 0}
\nd note that Tr is a nonempty pruned tree on N. Denote by ar (= at,)
ts leftmost branch (see Section 2.D). Let d(F) = f(ar) so that d(F) € F.
Define also d(@) = %o, some fixed element of X. Now the function ¢ :
FOXON\ {0} — N given by g(F) = ap is Borel, since given a basic open set

N,, s € N*, we have
g(F)EN, & FNU; #0 &Vt € N*(t <jex s = FNU, = 0),

where <jex is the lexicographical ordering on N™. So d is Borel as well.

Fix now a basis {V,,} of nonempty open sets in X. By the above argu-
ment, we can find, for each n, a Borel function d}, : F(X) — X such that
#(F)€ FOVy if FOV, #0. Finally, let

_[(d(F), POV, #0;
dn(F) = {d(F), if FNV, = 0.

O

(12.14) Exercise. Let X be a measurable space and Y a Polish space. Show
that a function f : X — F(Y) is measurable iff f~*({0}) is measurable and
there is a sequence of measurable functions f, : X — Y such that {f.(z)}
is a dense subset of f(z) when f(x) # 0.

12.D An Application to Selectors

(12.15) Definition. Let X be a set and E an equivalence relation on X.
A selector for E s a map $:X — X such that zEy = s(z) = s(y)Ex.
A transversal for E is a set T C X that meets every equivalence class in
exactly one point.

If 5 is a selector for E, then {z : s(x) = z} is a transversal for E. If T
is a transversal for £, then s : X — X, given by {s(z)} = TN [z]g, is a
selector for E (here [z]g is the equivalence class of z).

For a set A C X its (E-) saturation [A]g is defined by

[Ale = {z € X : Jy € A(zEy)}.

The following is a basic result on Borel selectors. (See also 18.20 iv) for a
stronger theorem.)
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(12.16) Theorem. Let X be a Polish space and E an equivalence relatio,
such that every equivalence class is closed and the saturation of any oper,
set is Borel. Then E admits a Borel selector (and thus a Borel transversal),

Proof. Consider the map = — [z]g from X to F(X). We claim that it ig
Borel. Indeed, if U C X is open, then

Uﬂ[x]E#(D@mG[U]E.

By 12.13, let d : F(X) — X be Borel with d(F) € F if F # 0. Then
s(z) = d([z]g) works. 0

An important special case is the following:

(12.17) Theorem. Let G be a Polish group and H C G a closed subgroup.
There is a Borel selector for the equivalence relation whose classes are the
(left) cosets of H. In particular, there is a Borel set meeting every (left)
cosel in exactly one point.

Proof. 1t is clear that every (left) coset gH is closed. Let now U C G be
open. Then the saturation of U is the set UH = |,y Uh, which is open,
So by 12.16 we are done. D

(12.18) Exercise. Show that in 12.16 the condition that the saturation of
open sets is Borel can be replaced by the condition that the saturation of
closed sets is Borel.

12.E Further FExamples

1) Every Polish space is homeomorphic to a closed subspace of RN by 4.17.
So we can view F(RV) as being a representation (up to homeomorphism) of
all Polish spaces, and by giving it the Effros Borel structure we can endow
the class of Polish spaces with a standard Borel structure. We can call this
the Borel space of Polish spaces. For example, the sét of compact Polish
spaces is Borel. (This means that {F € F(RV) : F is compact} is Borel.)

2) Similarly we can identify, by 9.18, the Polish groups, with the closed
subgroups of Gy = H(IM). Let Subg(Go) = {F € F(Gy) : F is a subgroup}.
Then Subg(Gy) is a Borel set in F(Gy), since if (d,) is as in 12.13,

Fe Subg(Gp)21e F& Van(d_n(F)dm(F)‘l € F).
So we can endow the class of Polish groups with the relative Borel space

on Subg(Gy). It is standard, as it follows from 13.4. We can call this the
Borel space of Polish groups. (See also here C. Sutherland [1985].)
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(12.19) Exercise. Show that the classes of abelian Polish groups and of
Polish locally compact groups are Borel,

3) Let X now be a separable Banach space. Let Subs(X) = {F €
F(X):F is a closed (linear) subspace of X}. Then Subs(X) is a Borel set
in F(X). To see this, notice that if (d,) is as in 12.13, then for F' € F(X):

F € Subs(X) & 0 € F & YnVmVp, ¢ € Q[pdn(F) + gdn(F) € F].

(We consider here the case of real Banach spaces. One replaces Q by Q+:Q
for the complex ones.)

It is a basic result of Banach space theory that every separable Banach
space is isometrically isomorphic to a closed subspace of C(2V), i.e., there is
a linear isometry between the given space and a closed subspace of C(2V).
(To see this, consider the unit ball B,(X*) of X* with the weak®-topology.
It is compact metrizable, so let ¢ : 2" — B, (X") be a continuous surjection
by 4.18. For & € X, let %, € C(2") be defined by 1.(y) = p(y)(). Then
« += 9, is a linear isometry of X with a closed subspace of C(2V).)

So identifying separable Banach spaces with the closed subspaces of
C(2N), ie., with Subs(C(2")), we can endow the class of separable Banach
spaces with the relative Borel space of Subs(C(2V)), which again is standard
by 13.4. We can call this the Borel space of separable Banach spaces.

(12.20) Exercise. Show that the set of finite-dimensional Banach spaces is
Borel.

4) Again let X be a separable Banach space and X* its dual. Let
B, (X*) be the class of Borel sets in X* in the weak*-topology. We claim
that (X*, B,«(X™)) is standard. To see this, notice that the closed balls
B (X*) = {z* € X* : ||lz*|| £ r} are closed in the weak*-topology, so if
Sn = Bnt1(X*)\Br(X™), then X* is the disjoint union of the {S.}, S, €
B..(X™) and thus (X* B, (X)) is the direct sum of (S,, By~ (X*)|S,).
But B« (X*)| S, are just the Borel sets of S, in the relative weak*-topology.
Since S, is open in the weak*-topology of Bp+1(X™), therefore Polish in
the weak*-topology, B,,- (X *)|S, is standard and so is (X*, By, (X*)).

(12.21) Exercise. If X* is separable, show that B,,. (X*) coincides with the
class of Borel sets in the norm-topology (which is of course Polish).

5) Now let H be a (complex) separable infinite-dimensional Hilbert
space and let L{H) be the non-separable Banach space of bounded linear
Operators on H. We have already seen, in Example 5) of Section 3 and
In 4.9, the definition of the strong and weak topologies on L(H). There is

another important topology on L(H), called the o-weak topology, defined
as follows.
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An operator T € L(H) is compact if T({zx € H : ||z|| < 1}) C g
has compact closure. We denote by Lo(H) the class of these operators, |;
is a closed subspace of L(H). Although L(H) is not separable, Lo(H) is
separable. An operator T € L(H) is positive if (Tz,z) > 0forallz ¢ .
For such an operator we define its trace by tr(T') = Ln(Ten, €n}), where { en}
is an orthonormal basis for H (this definition is independent of the choice
of such a basis). Thus 0 < tr(T) < oo. Now for any T € L(H), there is 5
unique positive operator .5, usually denoted by |T', such that ||Tz|| = || Sz|
for all z € H. Denote by L'(H) the set of trace class operators (i.e., thoge
T € L(H) for which tr(|T|) < oo0). They form a separable Banach space
under the norm ||T||; = tr(|T]). It turns out that Lo(H)* = L'(H) anq
L}*(H)* = L(H). (Compare this with ¢§ = ¢*, (£')* = €*.) So L(H) is
the dual of a separable Banach space and its weak *-topology is called the
o-weak topology.

It turns out that on L,(H) = {T € L(H) : ||T|| <€ 1}, the weak anq
o-weak topologies coincide and it is easy to see that on L)(H) the strong,
weak, and o-weak topologies have the same Borel space, which is standarq
by Example 5) of Section 3 or 4.9. Then, as in the preceding Example 4),
the Borel space of the strong, weak and o-weak topologies on L(H) is the
same and standard. We will denote it by B(L(H)). It turns out that the
usual operations like ST, T are Borel. (Actually, T — T* is continuous in

.the weak and g-weak topology. but not in the strong one. The operation
(5,T) — ST is not continuous in any of these topologies, but is separately
continuous. It is continuous in the strong topology on L,(H).)

6) (Effros) A von Neumann algebra is a subalgebra A C L(H) closed
in the weak (equivalently in the strong) topology and such that I € A and
T € A= T" € A. Since A is conpletely determined by A = ANL.(H), we
can identify A with A. Clearly, A € K(L,(H)), and it can be easily checked
that VN = {A : A is a von Neumann algebra} is Borel in K(L,(H)), where
L\(H) is given the weak topology, so that it is compact metrizable. So
we can endow the class of von Neumann algebras with the relative Borel
space of VN, which is standard by 13.4. It is called the Borel space of von
Neumann algebras on a separable Hilbert space. It turns out that the basic
notion of factor, and the classification into types (I, II, III, etc.) define Borel
subsets of this space (see O. A. Nielsen [1980] or E. A. Azoff [1983)).

(12.22) Exercise. Let X,Y be separable Banach spaces. Generalize the pre-
ceding Examples 4) and 5) to show that the Borel spaces of the weak
(see 4.9) and strong (see Example 5) of Section 3.A) topologies on L(X,Y)
are the same and are standard.

12.F Standard Borel Groups

(12.23) Definition. A standard Borel group is a standard Borel space G
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If G is a standard Borel group, it is not necessarily true that there exists
a Polish topology T giving its Borel space such that (G, T) is a topological
group. However, if such a topology exists it must be unique.

(12.24) Proposition. Let G be a standard Borel group. There is at most one
Polish topology T giving its Borel space so that (G,T) is a topological group.

proof Let T, T ’ be two such topologies. Then idg : (G,T) — (G,T') is a
Borel, therefore Baire measurable, homomorphism. Consequently, by 9.10
it is continuous, i.e. 7' € 7. Similarly, T CT',s0 T'=T". 0

(12.25) Definition. A standard Borel group G is Polishable if there is a
(necessam’ly unique) Polish topology T giving its Borel space, so that (G,T)
is a topological group.

(12.26) Exercise. Consider the compact metrizable group TN and the sub-
group G C TN consisting of the sequences (z,) such that z, = 1 for all
large enough n. Show that G is Borel in TN and (G, B(G)) is a standard
Borel group. Show that G is not Polishable.

(12.27) Exercise. Consider the Polish group R™ and the subgroup €2 C R™.
Show that (€2, B(€2)) is a standard Borel group that is Polishable.
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13. Borel Sets as Clopen Sets
13.A Turning Borel into Clopen Sets

The following is a fundamental fact about Borel sets in Polish spaces.

(13.1) Theorem. Let (X,T) be a Polish space and A C X a Borel set. Ther,
there is a Polish topology Ty 2 T such that B(T4) = B(T) and A is clopep,
n TA.

Proof. We need the following two lemmas, which are interesting in their
own right.

(13.2) Lemma. Let (X,7) be Polish and FF C X closed. Let Tr be the
topology generated by T U {F'}, i.e., the topology with basis TU{UNF .
U € T}. Then Tg is Polish, F is clopen in Tp, and B(7Tp) = B(T).

Proof. Note that Tr is the direct sum of the relative topologies on F and
~ F 8o, by 3.11, Tr is Polish. 0

(13.3) Lemma. Let (X, T) be Polish and let (T,)nen be a sequence of Polish
topologies on X with T C T,, n € N. Then the topology T generated by
U, Tn is Polish. Moreover, if T, € B(T), B(Ts) = B(T). (As we will see
in 15.4, T,, C B(T) is implied by T C Ty,.)

Proof. Let X,, = X for n € N. Consider the map ¢: X — [],, X, given by
o(z) = (z,x,...). Note first that o(X) is closed in [],,(Xr.T»). Indeed, if
(zn) € ¢(X), then for some i < j, z; # x;, so let U,V be disjoint open in
T (thus also open in 7;,7; resp.) such that x; € U, z; € V. Then

(zn) € Xox - x Xiy xUxXipp % - x XjaxVxX, 4 x - C~p(X).

So (X)) is Polish. But ¢ is a homeomorphism of (X, T,) with ¢(X),
so (X, 7T ) is Polish.

If T, C B(T) and {U™}.en is a basis for Ty, then {U{™}; nen is o
subbasis for T, so Toe € B(T) as well. D

Consider now the class S of subsets A of X for which there exists a
Polish topology 74 2 7 with B(74) = B(7) and A clopen in T4. It is
enough to show that 7 C S and § is a g-algebra. The first assertion follows
from 13.2. Clearly, S is closed under complements. Finally, let {A,} € .
Let T, = T4, satisfy the above condition for A,,. Let T, be as in 13.3.
Then A = |J,, An is open in T, and one nore application of 13.2 completes
the proof. 0

(13.4) Corollary. Let (X,S) be a standard Borel space andY C X be in S.
Then (Y,S|Y) is also standard. (Note that S|Y = {A C Y:A € S}, since
Y e€S.)
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Proof. We can assume that X is Polish and § = B(X). Since Y is Borel,
we can assume without loss of generality, by 13.1, that Y is clopen and
therefore Polish. Since B(X)|Y =B(Y), (Y,B(X)|Y) is standard. 0

(13.5) Exercise. Let (X,7T) be Polish and (A,) a sequence of Borel sets.
Show that there is a Polish topology 7" on X with 7 € 7', B(T) = B(T')
and Ar, clopen in T ’ for all n. Show, moreover, that 7’ can be taken to be

zero-dimensional.

The following application of 13.1 solves the cardinality problem for
Borel sets in Polish spaces.

For convenience we will say that a subset C of a topological space is a
Cantor set if it is homeomorphic to the Cantor space C.

(13.6) Theorem. (The Perfect Set Theorem for Borel Sets) (Alexandrov,
Hausdorff) Let X be Polish and A C X be Borel. Then either A is countable
or else it contains e Cantor set. In particular, every uncountable standard
Borel space has cardinality 2%

Proof. By 13.1 we can extend the topology T of X to a new topology T4
with the same Borel sets in which A is clopen, so Polish (in the relative
topology.) By 6.5, if A is uncountable, it contains a homeomorphic (with
respect to T4) copy of C. But since T C T4, this is also a homeomorphic
copy with respect to 7. ]

13.B Other Representations of Borel Sets

The following are useful representations of Borel sets.

(13.7) Theorem. (Lusin-Souslin) Let X be Polish and A C X be Borel.
There is a closed set F C N and a continuous bijection f:F — A. In par-
ticular, if A # O, there is also a continuous surjection N — A ertending

f

Proof. Enlarge the topology 7 of X to a Polish topology 74 in which A
is clopen, thus Polish. By 7.9, there is a closed set F C A and a bijection
f i F — A continuous for T4|A. Since T C T4, f: F — A is continuous
for T as well. The last assertion follows from 2.8. 0

(13.8) Exercise. Derive 13.6 using 13.7 and 8.39.

(13.9) Theorem. Let X be Polish and A C X Borel. Then there is a Lusin
scheme (As)semcn such that

i) A, is Borel;

Z‘E) A@ =A1As = UnAs‘m s € N(N;
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i) ifz € N and Agjn # 0 for alln, then A; = (), Az is a singletoy,
{z*} and for any x, € An, Tn — z*.

Moreover, if d is a compatible metric for X, we can make sure thy
diam(A,) < 27'eneth(s) if 5 £ 0,

Proof. Let Ty be a Polish zero-dimensional topology extending the topolo

T of X with B(T4) = B(7) and A clopen in T4 (by 13.5). Let d4 be 4
compatible metric for 74, and note that d); = d + d, is also a compatihle
metric for T4, so we can assume that d < d4. Now it is easy to define
recursively on length(s), A, so that A; is clopen in 74 and satisfies i), ii),
and iii) of the statement, and diam(A4,) < 27'e"&th(s) for 5 £ P. 0

(13.10) Exercise. Let X be Polish and A C X Borel. Show that there is 5
closed set FF € X x A such that

(%) z€Ae y(r,y) € F o Ny(x,y) € F,

where “3!” abbreviates “there exists unique”. Similarly, there is G C X x
C, G a Gg set satisfying (x). Show that G cannot in general be taken to be.
F,in X xC.

13.C Turning Borel into Continuous Functions

Finally, we derive some consequences concerning Borel functions.

(13.11) Theorem. Let (X ,T) be a Polish space, Y a second countable space,
and f:X — Y a Borel function. Then there is a Polish topology Ty 2 T
with B(Tf) = B(T) such that f:(X,T;) —= Y is continuous.

Proof. Let {U,} be an open basis for Y. Consider the sets f~!(U,,) and use
13.5. D

(13.12) Exercise. i) Let (X,7x), (Y,7y) be Polish and f : X — Y a Borel
isomorphism. Show that there are Polish topologies Ty, 2 Tx, Ty 2 Ty
with B(7y) = B(7x), B(Ty) = B(Ty) such that f : (X,Tx) — (Y, Ty) is
a homeomorphism.

i) Formulate and prove versions of 13.11 and part i) of this exercise
for a countable sequence of functions.
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14. Analytic Sets and the Separation Theorem

14.A Basic Facts about Analytic Sets

(14.1) Definition. Let X be a Polish space. A set A C X is called analytic
¢ there is a Polish space Y and a continuous function f1Y — X with
f(Y)=A. (The empty set is analytic, by taking Y = 0.)

By 7.9, we can take in this definition Y = A if A # 0. The class of
analytic sets in X is denoted by

=H(X).

(The classical notation is A(X))
It follows from 13.7 that

B(X) C S}(X).
This inclusion is proper for uncountable X.

(14.2) Theorem. (Souslin) Let X be an uncountable Polish space. Then
B(X)EZ1(X).

Proof. Let T be a class of sets in arbitrary Polish spaces (such as open,
closed, Borel, analytic, etc.). By I'(X) we denote the subsets of X in I'.
IfU C N x X, we call Y N-universal for ['(X) if U is in A x X) and
NX)={U,:yeN}.

First notice that there is an A-universal set for £Y(A). Indeed, enu-
merate N<N in a sequence (s,) and put (y,z) € U & x € |J{N,, : y(¢) = 0}.

Since M2 is homeomorphic to N, it follows that there is an /- universal
set for £9(AN?), and by taking complements there is an, A-universal set F
for TIY(NM?). We now claim that A = {(y,z) : 3z(y,z,2) € F} is N-
universal for £}(A/). Since projection is continuous, A and all sections A,
are X}. Conversely, if A C A is X}, there is closed F C A and continuous
surjection f : F — A (F could be empty). Let G = graph(f)~!, so that G
is closed in N and x € A & 32(x, 2) € G. Let y € A be such that G = F,,.
Then A = A,.

Now A cannot be Borel, since then ~ A would be too, so A = {z :
{z,7) ¢ A} would also be Borel and thus analytic, so for some yo, 4 = Ay,
(ie, (x,z) ¢ A (y0,z) € A). Let x = yy, to get a contradiction.

Since every uncountable Polish space X contains a homeomorphic copy
of NV, it follows that B(X)SE!(X) as well. O

The following exercise gives another representation of analytic sets.
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(14.3) Exercise. Let X be Polish and let A C X. Then the following g,
equivalent:

i) A is analytic.

ii) There is Polish ¥ and Borel B C X x Y with A = projx(B).

iii) There is closed F C X x N with A = projx (F).

iv) There is G5 G C X x C with A = projx(G).

Here are some additional basic closure properties of the analytic sets,

(14.4) Proposition. i) If X is Polish and A, C X are analytic, then
U, An, N, An are analytic.

©) If X,Y are Polish and f:X — Y is Borel, then for A C X analytic
and B C Y analytic, f(A), f~1(B) are analytic.

Proof. i) Let Y, be Polish and f, : ¥;, — X ‘continuous with f,(¥,) =
A,. We can assume that the spaces Y, are disjoint and thus |J,, f, maps
continuously the direct sum of (Y;,) onto |J,, An, so |J, A is analytic.
Now let Z = {(y) €[], Yn : fa(yn) = fm(ym), for all n,m}. Then Z
is closed in [],, ¥», and so is Polish. If f : Z — X is defined by f((z,)) =
fo(zo), f is continuous and f(Z) =), A, so [, An is analytic.
il) We have

y€ f(A) & Iz € AL f(z) =)
& Jz(y,x) € F

(where (y,z) € F o z € A & f(z) = y), i.e, f(A) = projy(F). Since
projection is continuous and, obviously, continuous images of analytic sets
are analytic, it is enough to show that F is analytic. By 124, {(y,z) :
f(z) = y} is Borel, so it remains to check that {(y,z):z€ A} =Y x A'is
E1(Y x X). Let Z be Polish and g : Z — X be continuous with g(Z) = A.
Then g* : Y x Z —» Y x X given by g*(y, z) = (v, 9(2)) is continuous and
g (Y xZ)=Y x A.
Finally, note that

ze f~YB)® W(f(z) =y &y € B),

so we are done as before. ]

(14.5) Definition. If X is a standard Borel space and A C X, we say that
A is analytic if there is a Polish space Y and a Borel isomorphism f:X —
Y such that f(A) is analytic in Y. (By the preceding proposition, this s
independent of the choice of Y,f.) We will again denote by T1(X) the
class of analytic subsets of X.

(14.6) Exercise. Show that for any standard Borel space X, £}(X) ={AC
X : for some standard Borel space Y and Borel f : Y — X, f(Y) = A} =
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{AC X : for some standard Borel space ¥ and Borel B C X x Y, A =
proj x(B)}-

14.B The Lusin Separation Theorem

The following result is of fundamental importance.

(14.7) Theorem. (The Lusin Separation Theorem) Let X be a standard
Borel space and let A,B C X be two disjoint analytic sets. Then there is a
Borel set C C X separating A from B, ie, ACC andCNB=0.

Proof. We can assume of course that X is Polish. Call two subsets P, Q of
X Borel-separable if there is a Borel set R separating P from Q.

(14.8) Lemma. IfP=U,, Pm, @ =U, @n, and Ppn,,Q, are Borel-separable
for each m;n, then P,Q are Borel-separable.

Proof. If R » separates Py, Qy,, then R = J,,, (), Rm n separates P,Q. O

Assuming now, without loss of generality, that A, B are nonempty, let
f:N = A, g: N — B be continuous surjections. Put A, = f(N,), B, =
g(Ng). Then A, = |, As'm: Bs = U, Bs'n. If A,B are not Borel-
séparable, toward a contradiction, then by repeated use of Lemma 14.8
we can recursively define x(n), y(n) € N such that A;,, By, are not Borel-
separable for each n € N. Then f(z) € A, g(y) € B, so f(zx) # g(y)- Let
U,V be disjoint open sets with f(z) € U, g(y) € V. By the continuity of
f, g, if n is large enough we have f(N,,,) C U, g(N,n) €V, so U separates
Agjn from By, a contradiction. D

The following extension is immediate.

(14.9) Corollary. Let X be a standard Borel space and (An) a pairwise

disjoint sequence of analylic sets. Then there are pairwise disjoint Borel
sets B, with B, 2 A,.

14.C Souslin’s Theorem

(14.10). Definition. Let X be a Polish space and let A C X. We call A
co-analytic if ~ A is analytic and sinilarly when X is a standard Borel
space. We denote by I} (X) the class of co-analytic subsets of X. (The
classical notation is CA(X).) The bi-analytic sets are those that are both
analytic and co-analytic. Their class is denoted by AY(X), i.e., Al(X) =
BH(X) NI} (X).
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(14.11) Theorem. (Souslin’s Theorem) Let X be a standard Borel space.
Then B(X) = A}(X).

Proof. Take B =~ A in 14.7. D

One final application provides a converse to 12.4 in standard Borel
-spaces.

(14.12) Theorem. Let XY be standard Borel spaces and f:X — Y. Then
the following are equivalent:

i) f is Borel;

it) graph(f) is Borel;

i) graph(f) is analytic.
In particular, if f is a Borel bijection, then f is a Borel isomorphism (i.e.,
f~1 is also Borel).

Proof. It is enough to show that if graph(f) is analytic, f is Borel. Let A
be Borel in Y. Then

(1) ze fTY(A) e Wflx)=y&ye A
(2) & Vyf(zx) =y =y € 4]

It is clear by (1) that f~'(A) is analytic and by (2) that f~!(A4) is co-
analytic (since the negation of (2) is Jy[f(z) =y & v & A]), so f~1(A) is
in A}(X) = B(X). 0

(14.13) Exercise. (The Perfect Set Theorem for Analytic Sets) (Souslin)
Let X be a Polish space and let A C X be analytic. Show that either A is
countable or else A contains a Cantor set. In particular, every uncountable
analytic set in a standard Borel space has cardinality 2%¢. (This extends
13.6 and solves the cardinality problem for analytic sets in Polish spaces.)

(14.14) Exercise. Let X be a standard Borel space. Let E be an analytic
equivalence relation on X (i.e., E € £1(X?)). Let A,B C X be disjoint
E-invariant analytic sets. (A set A C X is E-invariant if z € A and zEy
imply y € A.) Show that there is an E-invariant Borel set C separating A
from B.

(14.15) Exercise. Let G be a group with a Polish topology in which multi-
plication is separately continuous. Show that G is a topological group.

(14.16) Exercise. (Blackwell) Let X be a standard Borel space and (A,)
a sequence of Borel sets in X. Consider the equivalence relation zEy <
Vn{(zr € A, & y € A,). Show that a Borel set A C X is E-invariant iff it
belongs to the o-algebra generated by {4, : n € N}.
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15. Borel Injections and Isomorphisms

15.A Borel Injective Images of Borel Sets

Although the continuous image of a Borel set need not be Borel, we have
the following basic fact,.

(15.1) Theorem. (Lusin-Souslin) Let X,Y be Polish spaces and f: X — Y
be continuous. If A C X is Borel and f|A is injective, then f(A) is Borel.

Proof. By 13.7 we can assume that X = A and A is closed. Let B, =
f(ANN,) for s € N<N. Then, since f|A is injective, (B,) is a Lusin scheme,
By = f(A), Bs = |J,, Bsn, and B, is analytic. So by 14.9 we can find a
Lusin scheme (Bs), with B Borel, such that By =Y, B, C B;. We finally
define by induction on length(s) Borel sets B}, such that (B}) is also a
Lusin scheme, as follows:

ano,...,'nk) = ano,...,‘nk) N B* NK_1) N B(no,-'-,ﬂk)’

Then we can easily prove by induction on & that B, ,.n,) € B,
B(no,....ny)- We claim now that

A= U B,

k seNk

which shows of course that f(A) is Borel.

If z € f(A), let a € A be such that f(a) = x, so that = € (), Byx, and
thus z € (), B}, Conversely, if z € (), U,enx B:, there is unique a € N
such that z € (), B; ;. Then also z € ), Bk, so in particular B, # 0
for all k and thus AN N, # 0 for all k, which means that a € A since A
is closed. So f(a) € (), B,x- We claim that f(a) = z. Otherwise, since f is
continuous, there is an open nbhd Ny i, of a with f(Ny,) € U, where U

is open such that z ¢ U. Then z ¢ f(Nyjk,) 2 Bajko» & contradiction. O

k) =

(15.2) Corollary. Let XY be standard Borel spaces and f:X — Y be Borel.
If AC X is Borel and f|A is injective, then f(A) is Borel and f is a Borel
isomorphism of A with f(A).

Proof. First we can clearly assume that X,Y are Polish. Then we can apply
15.1 to the projection of X x Y onto Y and the set (A x Y')Ngraph(f). O

(15.3) Exercise. Show that the Borel sets in Polish spaces are exactly the

injective images by continuous (equivalently Borel) functions of the closed
subsets of N,
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(15.4) Exercise. i) Let (X,7), (X,7’) be Polish with 7 C B(7"). Then
B(T) = B(T’). (In particular, T C 7' implies that B(T) = B(T")).

ii) Let (X, S) be a standard Borel space. Let £ C S be countable and
assume & separates points. Then S = ¢(&).

Remark. Notice that 15.1 implies the more general version in which Y is
allowed to be just separable metrizable, since we can view Y as a subspace
of a Polish space. Similarly, in 15.2 we can allow Y to be just countably
generated and separating points (by 12.1).

(15.5) Exercise. Show that there is a closed set FF C A2 such that the map
z — F,, from N to F(N), is not Borel.

15.B The Isomorphism Theorem

The next result classifies standard Borel spaces up to isomorphism.

(15.6) Theorem. (The Isomorphism Theorem) Let X,Y be standard Borel
spaces. Then X,Y are Borel isomorphic iff card(X) = card(Y'). In partic-
ular, any two uncountable standard Borel spaces are Borel isomorphic.

Proof. It is enough to show that if X is an uncountable Polish space, then
X is Borel isomorphic to C. By 7.8, 7.9 and 14.12, there is a Borel injection
f:X —=C. (As B. V. Rao and S. M. Srivastava point out, this can be also
seen in a more elementary way as follows: By 3.12 and 3.4 ii), C and I are
Borel isomorphic and thus so are C and IN. But X is homeomorphic to a
subspace of IN by 4.14.) By 6.5 there is a continuous, thus Borel, injection
g : C — X. So it is enough to prove the following fact, which is important
in its own right.

(15.7) Theorem. (The Borel Schroder-Bernstein Theorem) Let XY be
standard Borel spaces and f:X — Y, ¢:Y — X be Borel injections. Then
there are Borel sets A C X, B C Y such that f(A) = Y\B and ¢(B) =
X\A. In particular, X andY are Borel isomorphic.

Proof. Define inductively X,.,Y,, as follows: Xg = X, Yo =Y, Xpnpy =
9f(Xr), Yas1 = fg(Ya). Let Xoo =N, Xn, Yoo =, Ya.. Then f(X) =
Yoo and f(Xn\g(Yn)) = F(Xn)\Yasr, 9(Ya\f(Xn)) = (Yo )\ Xn41- Finally
let A = Xog UU, (X \ 9(¥u)), B = U,(¥a \ F(Xa)- All these sets are
Borel by 15.2. 0

0

Notice that, by the same proof, 15.7 holds more generally when X,Y
are measurable spaces, f is an isomorphism of X with a measurable sub-
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space of Y, and g is an isomorphism of ¥ with a measurable subspace of
X.

(15.8) Exercise. Let X,Y be standard Borel spaces and AC X, BCY
Borel sets. Show that there is a Borel isomorphism f: X — Y with f(A) =
B iff card(A) = card(B) and card(X\A4) = card(Y'\ B).

15.C Homomorphisms of Sigma-Algebras Induced by Point
Mayps

The Isomorphism Theorem is often used to reduce a problemn from arbitrary
standard Borel spaces to a particular one that is appropriately chosen for
the problem at hand. Let us consider an example of this.

Let (X,S) be a measurable space and Z C S a o-ideal in S (i.e., T
is closed under subsets that are in S and countable unions). As usual, we
let for A,B € S: A=7r B AAB € T and [A] = {B : B =1 A}. Let
S/T = {[A] : A € S}. With the partial ordering [4] < [B] & A\B €
Z. S/TI as a Boolean o-algebra. In general, in a Boolean o-algebra we
denote by —a the complement of a and by V,a, the supremum of {a,},
also called the countable join of {a,}. In the case of S/ we have —[4] =
[~ A] and V,[A,] = [U, 4r]- A map between Boolean o-algebras is a
o-homomorphism if it preserves complements and countable joins.

(15.9) Theorem. (Sikorski) Let (X,S) be a measurable space, ZC S a o-
ideal in S, and Y a nonempty standard Borel space. If 2:B(Y) — S/7T is
a o-homomorphism, then there is a measurable map v: X — Y such that
®(B) = [p~*(B)] for any B € B(Y'). This ¢ is uniquely determined modulo
T (i.e., if ¥ is another such map, then {z:p(z) # ¥(z)} € I).

Proof. By the Isomorphism Theorem we can assume that Y = [0,1]. (The
case where Y is countable is straightforward.)

For p € QN [0,1] we can choose B, € § with [B,] = ®([0, p]) such that
B =X.
For z € X, now let p(z) = inf{p : z € By}. Then p : X — [0,1] and
{z:¢(z) <a} = UT,@ B, for a € (0,1], so y is measurable. If & : B(Y) —

S/T is given by ®(B) = [p~!(B)], then & is also a g-homomorphism and
®, ® agree on the intervals [0,p), p € QN [0, 1]. Since the class {B € B(X):
®(B) = ®(B)} is a o-algebra, we have ® = @, which completes the first
part of the proof.

For the uniqueness, suppose that 7 is another such map and, say,
{z : p(z) < ¥(z)} ¢ I. Then, since T is a o-ideal, there is a rational
p with A = {z : ¢(z) < p < P(z)} = ¢ 1([0,p)\¢¥™'([0,2]) ¢ Z. But
[¢~([0,2]))] = ®([0, p]) = [¥~([0,p])], so A € Z, a contradiction. 0
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This result in turn has the following consequence.

(15.10) Theorem. Let XY be standard Borel spaces and T C B(X), J C
B(Y) be o-ideals in B(X), B(Y), respectively. Then ®:B(X)/T — B(Y)/J
is an isomorphism (of the corresponding Boolean algebras) iff there are
Borel sets Xo C X, Yo C Y with~ Xg € Z, ~ Yy € J and a Borel
isomorphism @Yy — Xg such that ®([4]) = (¢~ (AN Xa)]. Such a ¢ is
uniquely determined modulo J. If both T and J contain uncountable sets,
then we can actually take Xog = X and Yy =Y.

Proof. By 15.9, let ¢ : Y — X be Borel with ®([4]) = [#~!(A)] and
¥ : X — Y be Borel with &~ !([B]) = [¢=!(B)]. Then ¢ o ¢ = idy modulo
J and ¢ o) = idxy modulo Z. So there are Borel sets Xo C X, Yo C Y
with ~ Xo € Z, ~ Yy € J such that ¢ = ¢|Yy : Yy — X is a Borel
isomorphism.

The last assertion is evident, since any two uncountable standard Borel
spaces are Borel isomorphic. ]

(15.11) Exercise. Let X be a standard Borel space and 7 C B(X) a o-
ideal in B(X). If @ is an automorphism of B(X)/Z, then there is a Borel
automorphism ¢ of X such that ®([4]) = [¢~'(A)].

(15.12) Exercise. Recall the category algebra of 8.32. Since every set
with the BP is equal to a Borel set modulo meager sets, it follows that
CAT(X) = BP(X)/MGR(X) = B(X)/(B(X) N MGR(X)) under the ob-
vious identifications. Show that if X is perfect Polish, any automorphism
of CAT(X) is induced by a homeomorphism of a dense G5 in X (i.e., if ®
is an automorphism, there is a dense G5 set G C X and a homeomorphism
@ of G onto itself with ®([4]) = [¢~ (AN G))).

15.D Some Applications to Group Actions

Let G be a standard Borel group, X a standard Borel space, and (g,z) —
g.r a Borel action of G on X (i.e., the action is a Borel map of G x X
into X). The orbit of z € X is the set {g.x : ¢ € G}: Any two distinct
orbits are disjoint and thus the orbits give a partition of X. We denote the
equivalence relation on X whose equivalence classes are the orbits by E¢.
Thus for z,y € X,

rEcy & 39 € G(g.x =vy).

It is easy to verify that Eg is analytic (in X2). In general, however (see,
e.g., Sections 16.C and 27.D), it is not Borel. Here are two cases where it
is actually Borel.
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(15.13) Exercise. i) Let G be a standard Borel group, X a standard Borel
space, and (g,) — ¢.z a Borel action of G on X. This action is called free
if forzx e X,g#1, g.x # x. Show that if the action is free, F¢; is Borel.

ii) Let G be a Polish locally compact group, X a Polish space, and
(g, ) — g.2 a continuous action of G on X. Show that E¢ is F,.

We have now the following basic fact concerning orbits of Borel actions
of Polish groups.

(15.14) Theorem. (Miller) Let G be a Polish group, X a standard Borel
space, and (g,2) — g.x a Borel action of G on X. Then every orbit {g.z:g €
G} is Borel.

Proof. By 9.17 the stabilizer G, = {9 : gz = z} of z € X is a closed
subgroup of G. So by 12.17, let T,, be a Borel set meeting every left coset of
G, in exactly one point. Note that g.x = h.z if A~ lg.z =2 iff h™1g € G, iff
g € hG, iff g, h belong to the same left coset of G,. Thus the map g — g.z
is a Borel bijection of T, with {g.z : g € G}, so this orbit is Borel. 0

(15.15) Exercise. Let G be a Polish group, H a standard Borel group, and
¢ : G — H a Borel homomorphism. Then ¢(G) is Borel in H.
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16. Borel Sets and Baire Category

16.A Borel Definability of Category Notions

Every Borel set has the BP, and every Borel function is Baire measurable.
We will calculate next the complexity of the property of being meager for
Borel sets.

(16.1) Theorem. (Montgomery, Novikov) Let (X,S) be a measurable space,
Y @ Polish space, and A C X x Y a measurable set (for S x B(Y)). Then
for any open set U C Y,

{x e X : A, is meager in U}

and the corresponding sets unth “meager” replaced by “non-meager” or “co-
meager” are measurable.

Proof. If U is empty the result is trivial, so let us assume that U varies over
nonempty open sets. Let {U,} be a basis of nonempty open sets for Y.

Consider the class A of measurable sets A C X x Y such that the set

Ay = {z € X : A, is not meager in U}
={re X:FyeU(zx,y) € A}

is measurable for every open nonempty U/ C Y. We will show that A con-
tains all the rectangles S x V with S € S and V open in Y and is closed
under complementation and countable unions. This implies that it contains

all measurable sets in X x Y, and our proof is complete.
This follows immediately from the following properties:

) If S€ S, Visopenin Y, then
(SxVu=S8,ifUNV #0,

and
(SxWVy=0,ifUNV =0.

ii) (Un Aﬂ)U = Un(An)U

i) (~ A = ~ Ny, cu (Ao

Only iii) is not straightforward. We have
z€(~Ay e IyelU~ Az,y)

& 'y e UA(z,y)
& VU, CU*y € U, A(z, ),

where the last equivalence follows from 8.27 ii) (see also Section 8.J) since
A is Borel and therefore has the BP. 0
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Notice that the previous result can be expressed by saying that if A C
X x Y is measurable, then so are

B(z) & V'y e UA(z,y), C(z) & Ty e UA(z,y);

i.e., the category quantifiers V*y € U, 3*y € U preserve measurability. This
is far from true for the usual quantifiers Vy, 3y. (Why?)

We will discuss now some applications to group actions and model
theory.

16.B The Vaught Transforms

Let G be a Polish group, X a standard Borel space, and (g,7) — ¢.7 a
Borel action of G on X.

Let us denote by [A] the saturation of A, i.e., the smallest invariant
(under the action or equivalently the associated equivalence relation Eg)
set containing A, and by (A) the hull of A, i.e., the largest invariant set
contained in A. Then [A] = {z : Ig € G(g9.x € A)}, (4) = {r : Vg €
G(gz € A)}, and (4) C AC [4].

If A is Borel, then (A) is co-analytic and [4] is analytic.

(16.2) Definition. For A C X, let A* = {z:¥*g € G(g.z € A)} and A2 =
{z:3*g € G(g9.x € A)}. We call A*,A® the Vaught transforms of A. We can
also define the local Vaught transforms of A as follows: For U nonempty
open in G, let A*V = {zv*g € U(g.x € A)}, A®Y = {z:3*g e U(g.z € A)}.

(16.3) Proposition. i) The Vaught transforms A* A% are invariant and
(A) C A* C A® C [A]. Thus A is invariant iff A = A* iff A= A%,

i) If A is Borel, so are A*V, AU In particular, A*, A® are Borel
invariant sets sandwiched between the hull and the saturation of A.

Proof. i) Let z € A*, so that {g : g.x € A} is comeager. Then for any
heG, {g:gxe AAh™t = {gh~! : gx € AY = {g: g.(h.x) € A} is
also comeager, i.e., h.z € A*. The proof for A2 is similar. The inclusions
(A) C A* C A% C [A] are straightforward.

i) If Ais Borel let (z,9) € A & g.z € A, so that A is Borel and note

that A*V = {z: A, is comeager in U}, which is Borel by 16.1 (similarly for
ASRY), 0

(16.4) Exercise. i) Show that A?V = ~ (~ A*Y, 2 € A" o g2 €
A*(Ug_l) n A )*U n )*‘U’ and U A )AU U )AU

ii) It {Uy,} is a weak bas_us for G and A, A,, are Borel, then APY =
~Uy,cy A*V" and (U, 4.)*Y = nU;gU'UU,-gUiU (An)"‘UJ
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16.C Connections with Model Theory

(16.5) Definition. Let L be a countable language, which for notational sim-
plicity we assume to be relational, say L = (R;);c;, where I is countable,
and R; is an n;-ary relation symbol. Denote by X1 the space

xp=]]2"",

which is homeomorphic to C, if L # 0. We view X, as the space of countably
infinite structures for L, since every x = (z;) € X can be identified with
the structure Ay = (N, (R{'®),c;), where R{*(s) & z4(s) =1 for s € N™.

The Polish group S, acts in the obvious way on X :

9.z =y & Yilyi(so. .. ,8n,-1) =1 & zi(977(50), -, 97 (8ns-1)) = 1].

In other words, g.z = y iff g is an isomorphism of A, with A,. This action,
called the logic action, is clearly continuous. The associated equivalence
relation is just isomorphism, i.e., 3g € S..(9.2 = y) iff A;=A, (= denotes
isomorphism of structures). It follows that = is analytic (but in general not
Borel; see Section 27.D).

We have inunediately from 15.14 the following result.

(16.6) Theorem. (Scott) The isomorphism class {y: A=A, } of anyz € X,
s Borel.

Consider now the logic L, based on the language L. It is the ex-
tension of first-order logic associated with L in which for any countable
sequence (p,,) of formulas whose free variables are among vy, . .., vx-1 (for
some k independent of n) we can form the infinite conjunction and disjunc-
tion Anpn, Vapn. So every formula has finitely many free variables. For
any structure A = (A4, (R;):er) for L, any formula ¢(vg,...,vk—1) of L. 0
whose free variables are among vy, ...,vx—1, and any ay,...,a;-1 € A, the
notation A = plao,-..,ar—1] means as usual that A satisfies the formula
¢(ve, - ..,vx-1), when v; is interpreted by a;.

(16.7) Proposition. Let ¢(vg,- .. vk-1) be a formula of L,,,.,. Then the set
Acp,k c XL X Nk deﬁned by

(z.8) € Ay © Az = @[50, -1 5k-1].

is Borel (in X1 x N*, with N discrete).

Proof. By induction on the construction of . If ¢ is atomic, say, for exam-
ple, ¢ is R, (vo,v1) (%o € I), then letting = (x,) € X we have
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(:I.', S) € A%g = :1.‘3'0(80,81) =1,

so this set is clopen. Clearly, A, = ~ Ay k. (here -y is the negation
of ©), Arnenk = [Vn Apn.kr etc., for the Boolean connectives, including
the infinitary ones. Finally, if, e.g., ¢ is the formula Jvgy(va, - . ., V-1, Vi),
then

(z,58) € Ay & IM(z,8"Mm) € Ay, k41,

s0 Apk = U, frnl(Ay ks1), where fr + Xp x N¥ — X x N¥*! s the
continuous function f,,(z, s) = (z, s"m). 0

Note now that if ¢ is a sentence in L, (i.e., a formula with no free
variables), then A, (= A, = {z: A, |= 0}) is invariant Borel in X (i.e.,
=.invariant). The following is the converse.

(16.8) Theorem. (Lopez-Escobar) The invariant Borel subsets of Xy are
ezactly those of the form A, for o a sentence of L, .

Proof. (Vaught) The group S, is topologically a G5 subspace of /. We fix
a particular basis for S, as follows:

Denote by (N)* the set of u € N* that are injective (i.e., u; # u; if
i # 7). For u € (N), let

[ul={g€ Sx:ulyg '}

In particular, for k = 0, [0] = S.. Clearly, {[u] : u € (N)*, k € N} is a
basis for S..
For AC X1, keN, let

A = {(z,u) : u e (N & ¢ € A*M),
AB% = [(z,u):u € (N)* & ¢ € ABW)Y,

The basic fact now follows.

(16.9) Proposition. For each Borel set A C X1 and k € N, A** is of the
form A, i for some formula pi(vo,...,vk—1) of Lu,w-

Granting this, let A C X} be Borel invariant and take k£ = 0. Then
A* = A is of the form A, for o a sentence of L, ..

Proof. (of 16.9) We show that the class of A C X satisfying 16.9 contains
the sets of the form ;" ( Y(U) for j € I and U a basic open set in 2V
(here m,((z;)) = #;) and is closed under complementation and countable
intersections.

First, fix j € I and U a basic open set in 2V 7. Then it is easy to check
that 7 1(U) has the form

A={$€XL:A.1:|=0[Oa"'?p_11}3
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for some p € N and a formula 6(vo, . ..,v,—1) that is a boolean combination
of atomic formulas of L. Then for any k € N,
(z,u) € A** o u e (N)* &V*'g € [u](g.x € A)
sue (N &V'geu(A: E60,...,p—1))
s ue(N* &g e lu(A E0lg1(0),...,g7 (p—1)]).

If k > p, then, since g € [u] & © C g™, we have (g71(0),...,97 (p -
1)) = (uo,. . ,'U,p._l), S0

(z,u) € A* s ue (N* & A, |=0ug,...,up1]

Thus A** = A, , with @i(vg,...,vk—)) being the formula A, ck(v; #
) A8t D).
On the other hand, if £ < p, notice that

V*g €u] (As = 0lg7"(0),...,97 (P - 1))
& Vw Ju, we (N)P (A:l': |= 9[?1)0, AR wp—l]))
since any comeager set in [u] must intersect all [v] with v 2 u, v € (N)*.
So A** = A, i, where pi(vo,...,v%—1) is the formula Ak (vi # vj) A
YORYvR 41 - Vo1 (Aicicp(Vs # v5) = (o, . .., vp1)).
For the operation of complementation, let A** = A, , for k € N and
formulas @i (vg,.--,vk-1)- Then, by 16.4 ii),

(z,u) € (~ A)* =z € (~ A)*M
& V2> kYw 2 u,we (N)(z ¢ A*M)
& Ve > kYw D u,w € (N)((z,w) & A,,.)

SO (N A)*k = A?.bk'k with ¢k(v0,. .o 7'Uk—l) the formula /\,;<J-<k(v,- 75 'UJ') A

Ae> e VUEVUr 4y - Yoo [Aicice(vs 7 v5) = —pe(vo, . . -, vemy)]-
Finally, for countable intersections, note that if A** = Agr i forkeN
and formulas ©%(vo, ..., vk-1), then if A=, A,, we have by 16.4 i),

ok __ *k __
A - nAn - AAHQD:(an""Uk—l)ak’
n

so A** = A, ;, where pr = A7}, 0

Here are some applications to model theory.

(16.10) Corollary. (Scott) For every countable structure A of L there is
a sentence g4 of L, .. such that for any countable structure B of L, B |=
o iff B= A. (Such a sentence is called a Scott sentence of A.)
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Proof. This is straightforward if A is finite. For infinite A use 16.6 and
16.8. ]

The following is a form of the Interpolation Theorem for L. It is
due to Lopez-Escobar. For sentences p,o of L, we write p =* o if for
any countably infinite structure A for L, A |= p implies A = o.

(16.11) Corollary. Let R,S be two distinct symbols not in L and let p,o,
respectively be sentences in (LU{R}),, , and (LU{S}) If p E* o, then
there is a senlence T in L, with p|=* 7 and 7 =* 0.

Proof Let A = {z € Xp : A, |= IRp}, B = {z € X1 : A, = VSo}.
Then A is analytic, B is co-analytic, and A C B. Moreover, A and B are
invariant, so by 14.14 there is an invariant Borel set C with A C C C B.
By 16.8, C = A, for some sentence 7 of L. Thus p =* 7, 7 E* ¢. 0

wiw "'

16.D Connections with Cohen’s Forcing Method

The following is a brief and informal introduction to one approach to the
Cohen method of forcing, which illustrates its connections with the cate-
gory methods studied here. Proofs are omitted and some knowledge of the
axiomatics and models of set theory would be desirable.

Let P = (P, <) be an infinite countable, partially ordered set (poset)
with least element denoted by 0. We call the elements of P conditions. If
p < q, we say that g extends p. When there is r € P with p < r and g<r,
we call p, ¢ compatible. If p, ¢ are incompatible we write p 1 ¢. We will
assume below that [P is separative, i.e., if p £ ¢, then thereisr > ¢, r L p.

An ideal in PP is a subset G C P such that i) @ # G # P; ii) (¢ €
G&p<qg=>peG)andiil)) (p.ge G=>TIre Glp<r&qg<r)). An
ideal G is called strong maximal if for every p ¢ G there is r € G with
plr.

The ideals of P are in one-to-one correspondence with the equivalence
classes of

PM = {(p,) € PV : pryy > pu}
under the equivalence relation
(Pn) ~ (gn) & YM3In(Pm < gn) & YM3In(gyn < pr).
If we write [p,] for the equivalence class of (p,,), the correspondence is
[on] «— Glp,) = {p: In(p < pn)}.

Under this correspondence, the strong maximal ideals correspond to the
maximal (p,,) € PV, i.e., those for which Vp € P3n(p < p, or p L py). Let

Xp = {G C P: G is a strong maximal ideal}.
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We view Xp as a subspace of 2° (= {0, 1}, which is homeomorphic to the
Cantor space). Then Xp is easily G and thus Polish. The topology of Xp
has as basis the sets

{G EXP:pOa--"pn-l GG; 4o;- -, 9m-1 ¢G},

which we denote by Us ~; (if # = (po,..-,Pa-1), §= (90, -, q9m-1))- But
if G € Up -4, there are ¢; L g; such that ¢, € G. Then G € Uz-5 C Uj -5.
Furthermore, if G € Up-g, then there is r € G with p;,¢; < r for all 4, j, so
G € U, € Up~4. So we can take the sets

Up={GeXp:peG}

as basis for Xp. Notice that they are clopen, since if p ¢ G thereisr € G
with p L r so that ~ U, = |J,,,U-. Note also that Uy = Xp, p < g &
U, 20U, a.ndpJ.q@UpﬂUq,:a.
Call D C P open if ¥p € DVq > p(q € D), and dense if Vp € PIg €
D(p < ¢q). Then U C Xp is open (and dense) if U = |J _, Uy, for D open
(and dense).
For any A C Xp, put

peD

pIFA & UylFA.

If p IFA we say that p forces A.

Suppose now that M is a countable transitive model of Zermelo-
Fraenkel set theory (ZF) and P € M. Then Cohen has shown that for
the generic G € Xp (i.e., for comeager many G € Xp) there is a smallest
transitive model of ZF containing M as a subset and G as an element, de-
noted by M|[G]; M[G] is also countable and has the same ordinals as M. If
M satisfies the Axiom of Choice (AC), so does M[G].

By choosing P appropriately, one can make sure that various state-
ments in set theory hold or fail in M[G], thus showing that they are con-
sistent or independent of ZF or ZFC (= ZF & AC). For example, if P is
chosen to consist of all p which are functions with domain a finite subset of
RM x N (where R} is the second uncountable cardinal in M) and values in
{0, 1}, with ordering p < g < p C ¢, then for the generic G, M|[G] = -~ CH,
where CH is the Continuum Hypothesis (i.e., the assertion that 2% = §,).
On the other hand, if one chooses P to consist of all functions in M with
domain a countable in M ordinal and range included in Pow(N)¥ (i.e., the
power set of N in M) with the partial order of inclusion, then for the generic
G, M[G] = CH. It follows that the CH is both consistent and independent
of ZFC, which are results of Godel (with a different proof than the above)
and Cohen, respectively.

We will give a brief sketch of the ideas involved in proving the ba-
sic facts about the so-called generic extension M|[G] in order to see the
connection with the category methods discussed here.
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One first sets up a system of “naming” elements of the model M[G]
by elements of M. This is done by defining in the language of set theory a
class function K(z,y, z), which has the following properties:

i) K is simply definable and therefore it has the same meaning (i.e., is
absolute) in any transitive model of ZF. (Technically K is AZF )

ii) Let M be a transitive model of ZF, P € M, and G € Xp. Let M[G] =
{K(G,P,a) : a € M}. Then M[G] is transitive, M C M([G], G € M[G],
and for any transitive model N of ZF with M U {G} C N, M[G] C N.
Finally, M and M[G] have the same ordinals.

Thus every element = € M|[G] is of the form Kp(a) = K(G,P,a) for
some @ € M. We view @ as a name of z.

For a fixed countable transitive M and P € M, the forcing language
(of PP over M) is the language of ZF augmented by constant symbols for
elements @ € M. A sentence in this language is of the form ¢(ay,...,an_1),
where ¢(vg,...,vn—1) is a formula in the language of set theory and
ag,-.-,an-1 € M. We write

M[G] '= QO(GO, s )a’n—l) g M[G] |= ‘P[K]P.G(GO)} Ty KP,G(an—l)l-

We also define the forcing relation

plkplao, ... an1) & p Ik {G: M[G] = p(ao, .- ., an-1)}-

Put
A(p(an ..... an_i) = {G . M[G] |= (p(a(),'. . ,an_l)}.

Then one shows, by induction on the construction of o, that A ... .c._,) IS
Borel in Xp. The only difficulty is when ¢ is atomic, i.e., of the form “a € ”
or “a = b”. The proof is then by induction on max{rank(a), rank(b)} and
uses the particular definition of K, which we have not spelled out here.

From the paragraph preceding 8.30 we have the Truth Lemma: For the
generic G, for all w(ay,...,a,-1),

M(G] = ¢(ag,-- - an-1) & I € G(p Ik p(ap, .- - ,an-1))-

(Notice here that there are only countably many such ¢(ag,....an-1).)

Finally, one proves the key Definability Lemma: For every forimula
©(Tg, . - ., Vn—1) of the language of ZF, we can find a formula ¢* (v, . . ., vn_1,
Un,Un4+1) such that

y/ I- (p(G’O’ B 7an—1) -~ M '= <P*[ar0, cee -;an—l)paplv

which shows that the relation of forcing is definable within M. The proof
of the definability lemma proceeds by induction on the construction of ¢
using the formulas of 8.27.

For example, we have (omitting the aq,...,an~), when they are un-
necessary)
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plkoAyp o plkp&plk 1y,
i) p Ik~ & Vg > p(g Kp);
iii) p IFYv,p(ag, . .. ,an-1,vn) &
Van, € M(p Ik p(ag,. .. an-1,0n))

(since M is countable). Again one handles the atomic formulas “a = b”,
“a € b” by induction on max{rank(a),rank(b)} using the definition of K
and the formulas of 8.27.

Once the definability lemma is established, it is used in conjunction
with the truth lemma to verify that all the axioms of ZF (or AC) are true
in M[G] for the generic G, essentially by reducing this verification to the
fact that the corresponding axioms are true in M.

The further development of the technique of forcing requires the fol-
lowing refinement.

The various facts mentioned above are true generically: There is a dense
G set of G’s for which they hold. This means that there is a countable
sequence of dense open sets D, C P such that if G € (,,U,¢p, Up, then
G has the required properties. Notice that G € Upe p, Up just means that
GND, # 0, so if G meets all the D, it has the required properties. The
aforementioned refinement is that it is enough to take {D,} to be the
family of dense open sets which are in M. We say that G is M-generic if
G meets all the dense open D € M. All the previous results hold when G
is M-generic.

(16.12) Exercise. i) Show that the Banach-Mazur game G**(A) for A C Xp
is equivalent to the following game:

I po P2

II n P3

Players I and II take turns playing p; € P with py < pp < ps < --+; player
IT wins iff (p,) is maximal and Gy, ) € A.

ii) The Cohen poset is P = (P, <), where P =N<Nandp <t e pCt.
What is Xp?
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17. Borel Sets and Measures

17.A General Facts on Measures

Let (X,S) be a measurable space. A measure on (X,S) isamap y:8 —
[0,00] such that (@) = 0 and p(U, An) = >, #(An) for any pairwise
disjoint family {A4,} C S. A measure space is a triple (X,S, u), where
(X,S) is a measurable space and p is a measure on (X, ). We often write
(X, 1) when there is no danger of confusion.

A measure is called o-finite if X = |, X, with X, € §, pu(Xr) < o0,
finite if (X) < 0o, and a probability measure if u(X) =1,

A measure space (Y, A, v) is asubspace of (X, S, p)ifY € S, A=8§|Y
and v = u|A (i.e, v(A) = p(A) for A CY, A € S). In this case we write
v=ulY.

A set A C X is called p-null if there is B € § with A € B and
w(B) = 0. We say that a property P C X holds p-almost everywhere
(p-a.e.) and we write

P(z) p-ae,

if X'\ P is p-null. We denote by NULL,, the class of y-null sets. It is clearly
a o-ideal on X. The o-algebra generated by S U NULL,,, which is easily
seen to consist of the sets of the form AU N with A € S and N € NULL,,
is denoted by MEAS,, and its members are called u-measurable sets. The
measure p is extended to a measure & on MEAS,,, called its completion,
by i{A U N) = u(A). We will also write 51 for this completion, if there is
no danger of confusion.

An outer measure on a set, X is a map p* : Pow(X) — [0, co] such that
p (@) =0, AC B = p*(A) < p*(B), and p* (U, An) < 3, #"(An). A set
A C X is p*-measurable if for every F, pu*(F) = p*(ENA) + p*(E\ A).
The p*-measurable sets form a o-algebra MEAS,.., and p* restricted to
MEAS,.. is a measure,

Every measure x on (X,S) gives rise to an outer measure u* defined
as follows: p*(A4) = inf{u(B) : B € S, B 2 A}. If u is o-finite, then
MEAS,, = MEAS,,. and (the completion of) p and u* agree on MEAS,,.

A function f : X — Y, where Y is a measurable space, is called p-
measurable if the inverse imnage of a measurable set in Y is y-measurable. If
Y is countably generated, this is easily seen to be equivalent to the assertion
that there is a measurable g : X — Y such that f(z) = g(z) holds p-a.e.

When f: X — R or C, and f is integrable with respect to yu, we write
J fdp or [ f(z)du(x) for its integral.

If (X,S, 1) is a measure space, (Y,.A) is a measurable space, and f :
X — Y is p-measurable, then the image measure fu (also denoted f.(u))
is defined by

fu(B) = w(f~1(B))
for any B € A. Note that
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f 9d(fu) = f (gof)dy,

in the sense that if one of these integrals exists, so does the other and they
are equal.

Given now o-finite measure spaces (X;,S;, pi), ¢ =0,...,n — 1, there
is a unique product measure u = [].., p: on [, ., (X:.S;) such that for

A; €S;
#(JT 40 = I m(40.
i<n i<n
Moreover, u is o-finite.

Consider, for notational simplicity, the case n = 2. Let (X, u), (Y,»)
be o-finite measure spaces. Then the Fubini Theorem asserts that if f is
integrable with respect to u x v then f, is integrable u-a.e., f¥ is inte-
grable v-a.e., and [ fd(u x v) = [(f fzdv)du(z) = [([ f¥dp)dv(y) (which
implicitly implies also that z — [ f;dv, y — [ f¥du are integrable).

Let now ((X,., Sn, tn))neN be a sequence of probability measure spaces.
Then there is a unique product measure p = [], p., on ([1, Xr,[1, Sn)
such that u([], ., A:) = [1;c, #(4) for A; € S;. (Here [],_, A; = {(x;) €
[1, X : Vi < n(z; € A;)}.) Clearly, u is a probability measure too.

Given measure spaces {(Xn,Sn, #n)) with X, pairwise disjoint, we de-
fine their sum (@,, X, P, Sn, D, 1n) by letting P, pin = p, where

H(A) =) pn(A0 Xy)

for any A € @, Sn.

(17.1) Exercise. (The 0-1 law) Let (X, u,) be probability measures and
(X, ) = [1.(Xn,ptn). Let A C [],, Xn be a measurable tail set. Then
#(A) =0or u(A) =1.

(17.2) Exercise. Let (X,S, 1) be a o-finite measure space. Consider the o-
algebra MEAS,, and the o-ideal NULL,,. Show that NULL,, has the count-
able chain condition in MEAS,,. (Compare this with 8.31.)

For A,B € MEAS,,, let A =}, B & AAB € NULL,, and denote by
[A] the equivalence class of A. As in 8.32 and 15.C, consider the Boolean
algebra MEAS, /NULL,, of equivalence classes under the partial ordering
[A] < [B] & A\B € NULL,, (which is clearly the same as S/(NULL, NS))
and show that it is a complete Boolean algebra, called the measure algebra
of i, in symbols MALG,,.

Let u,v be measures on (X,S). We say that. 1 is absolutely contin-
uous with respect to v, written as u < v, if NULL, C NULL,. We say
that p is equivalent. to v, denoted as p ~ v, if g €K v and v <« u (ie.,
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NULL, = NULL,). This is an equivalence relation and we denote by [y]
the equivalence class of u, called its measure class.

Two measures u, v as above are orthogonal, in symbols ¢ L v, if there
exists A € § with p(A4) =0, ¥(X\A) =

(17.3) Exercise. i) If 4 ~ v, then MEAS,, = MEAS, and so MALG, =
MALG, .

ii) If p is non-zero o-finite, there is a probability measure v with u ~ v.

The Radon-Nikodym Theorem asserts that if p, v are o—finite mea-
sures on (X,S), then pu<v iff there is measurable f : X — [0,00) with
w(A) = [, fdv (= [ fxadv). This f is unique v-a.e and also satisfies
[ gdu = j gfdv for all measurable g, which are integrable for u. It is de-
noted by % 7= and called the Radon-Nikodym derlvatlve of g with respect to

v. The usual chain rule holds: If A\<u<v, then d” aﬁ holds v-a.e.
One can also characterize absolute contmulty for finite measures y, v

as follows: u<v iff Ve > 036 > OVA € S(v(A) < 6 = u(A) <e).

(17.4) Exercise. Let (X,S) be a measurable space such that {z} € S for
all z € X. A measure p on X is called continuous if p({z}) = 0 for all z.
Equivalently this means that p(A) = 0 for all countable A C X. A measure
i on X is called discrete if pu(X\A) = 0 for some countable set A C X;
in other words, u = 3, u({z})ds, where §; is the Dirac measure at z,
ie., 6;(A) = xa(z) for A € S. (Notations such as u = Y .. ; a;v; mean that
p(A) = 3, ey aivi(A).) Show that if 4 is o-finite, there are only countably
many points £ € X with p({z}) > 0, and ux can thus be uniquely written
in the form u = p, + p4, where p. is continuous and iy is discrete. We call
itc the continuous and p4 the discrete part of . '

17.B Borel Measures

(17.5) Definition. Let X be a topological space or a standard Borel space. A
Borel measure on X is a measure u on (X ,B(X)).

Let us consider some examples of Borel measures.

1) Let m (= m,, if there is a danger of confusion) be the Lebesgue
measure on R". It is o-finite, and every bounded Borel set has finite mea-

sure. Also my, = (m,)" (= the product of n copies of Lebesgue measure on
R).

2) Let G be a Polish locally compact group. Then there is a unique
(up to a multiplicative positive constant) o-finite Borel measure ug on G
“such that pug(K) < co if K is compact, uc{U) > 0 if U # 0 is open, and
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pc(gA) = pc(A) for any ¢ € G and Borel A. It is called the (left) Haar
measure on G. Similarly there is a unique right-invariant one. These are in
general distinct but equivalent. (They are, however, the same if GG is abelian
or compact.) In the compact case, the Haar measure is normalized, making
it a probability measure.

3) Fix 0 < p < 1. Put on the set 2 = {0,1} the measure x({0}) = p,
u({1}) = 1 - p, and let y, be the product measure on 2N = C. Then
pep(Ns) = p*(1 — p)®, where s = (sp,...,85n—1) €2 and a = card({i<n:
s; =0}), b = n— a. The measure y, /2 is the Haar measure on the compact
group ZY (= C). We will denote it by pic.

4) Let (X, d) be a metric space and y* an outer measure on X. We call
p* a metric outer measure if for any A, B C X with d(A, B) = inf{d(z,y) :
z € A, y € B} > 0, we have p*(AUB) = u*(A)+ p*(B). A standard result
in measure theory asserts that u* is a metric outer measure iff every Borel
set in X is p*-measurable. So in this case u*|B(X) is a Borel measure.

An example of this is the Hausdorff measure. Let (X,d) be a 1net-
ric space and h : [0,00) — [0,20) a continuous nondecreasing function
with 7 > 0 = h(r) > 0. For € > 0, let u5(A) = inf{d_, h(diam(F,)) :
F, closed with diam(F,) < e and A C |J, F}. Then ¢ < € = pf, > u
and we put pj(A) = lim._qu}(A). This turns out to be a metric outer
measure called the h-Hausdorff outer measure. Its restriction to B(X)
is called the h-Hausdorff measure u,. It may not be o-finite. When
h(z) = z®, s > 0, this is called the s-dimensional Hausdorff measure.

Let A be an algebra on X and let 2 be a countably additive function
p:A—[0,00] (ie., if A, € A are pairwise disjoint and |J, Ar € A, then
1(A) =3, u(Ar)) with p(0) = 0. This is also called a measure on A. It
is o-finite, if X = |J,, An, with A, € A, u(A,) < c0. Then one has the
following standard extension theorem.

(17.6) Proposition. If A is an algebra on X and p a o-finite measure on A,
then u has a unique extension to a measure, also denoted by p, on o(A).

(17.7) Exercise. Show that if  : 2<N — [0, 1] satisfies () = 1 and ©(s) =
@(570) + ¢(s"1) for all s € 2<N, then there is a unique probability Borel
measure u on C with p(N;) = ¢(s). Show also that all probability Borel
measures on C arise in this way.

(17.8) Exercise. Consider the map f : C — [0,1] given by f(x)

o0

0 x(8)27%7 1. Let ¢ be the Haar measure on C. Show that fuc
m|[0,1].

(17.9) Exercise. Recall the Lebesgue Density Theorem for R: If A C R is
Lebesgue measurable, then
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m(ANI)

-—n{(].)— = XA(w), m-a.e.,

limlI | =0
where I varies over open intervals containing = and [I| = m(I) = length(I).
Prove a similar result for the Haar measure pc, namely, for all pe-
measurable A C C,

li [J,c(A N Na;|n)
m

= x), —a.e.
N ,-l'C(i mln) XA( ) Hc

17.C Regularity and Tightness of Measures

(17.10) Theorem. Let X be a metrizable space and p a finite Borel measure
on X. Then p is regular: For any p-measurable set A C X

(A) = sup{u(F): F C A, F closed}
= inf{u(U) : U 2 A,U open}.

In particular, a set A C X is u-measurable iff there isan F, set F C A
with A\F € NULL,, iff there is a G5 set G 2 A with G\A € NULL,,.

Proof. It is easy to check that the class of sets A C X that satisfy the
above condition contains all the closed sets (since they are G5) and is closed
under complementation and countable unions. So it contains all Borel sets.
If now A € MEAS,,, let B,C € B(X) and N C C be such that u(C) =
0, A = BUN. First, u{A) = p(B) = sup{p(F): F C B, F closed} <
sup {#(F) : F C A, F closed} < u(A). Also, given € > 0, let Uy 2 B be
open with u(U)\B) < ¢/2 and U, D C be open with p(U;) < €/2. Then if
U=U,uUl,, we have U 2 A and p(U\A) < e. 0

For Polish spaces we have the following strengthening.

(17.11) Theorem. Let X be Polish and p a finite Borel measure on X. Then
p is tight, i.e., for any p-measurable set A C X

u(A) = sup{p(K): K C A, K compact}.
In particular, a set A C X is pu-measurable iff there is a K, set F C A
with p(A\F) = 0.

Proof. By 17.10 we can assume that A is closed. Then A itself is Polish, so
by considering p | A if necessary, it is enough to show that

(X)) = sup{p(K) : K compact}.
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Fix a compatible complete metric for X. Let € > 0. For each n pick a se-
quence of closed balls B{™ with X = J, B™ and diam(B{™) < 2~™. Since
(Ui <x B™) = u(X) as k — 0, let k, be such that pu(X\ Ui<, B <
e/27*!. Let K =, U, B™. Then K is closed and totally bounded, and
thus compact. Also, u(X\K) < 3, w(X\ U<k, B,(")) < e 0

17.D Lusin’s Theorem on Measurable Punctions

(17.12) Theorem. (Lusin) Let X be a metrizable space and p a finite Borel
measure on X. Let Y be a second countable topological space and f:X — Y
a p-measurable function. For every € > 0, there is a closed set F C X with
w(X\F) < € such that f|F is continuous. Moreover, if X is Polish, we can
take F Lo be compact.

In particular, if Y = R, there is a conlinuous ¢:X — R with
u({z:f(z) # 9(@))) < e

Proof. Let {U,} be an open basis for Y. Then f~!(U,) is y-measurable,
so let F,,V, be closed, resp. open, such that F, C f~Y(U,) € V, and
p(Va\Fy) < €/20*1, Let U = U, (Vo \Fr), so that U is open and u(U) < e.
Let F = X\U. Then F is closed and f~'(U,)NF = V, N F, thus f|F is
continuous. ]

(17.13) Exercise. i) Let G be a Polish locally compact group, pg its (left)
Haar measure, A C G a pg-measurable set with pg(A) < oo, and let
f(z) = pc(xAAA). Show that f: G — R is continuous.

ii) Show that if A C G is ug-measurable and pc(A) > 0, then A~1A
contains an open nbhd of 1.

Remark. Notice that this is the analog of 9.9 for measure instead of cat-
egory. For Polish locally compact groups, one can use measure instead of
category in most results in Section 9. (It is instructive to do this as an
exercise.) However, category methods apply to every Polish group.

Mackey has shown that if a standard Borel group G admits even a so-
called (left) quasi-invariant o-finite measure p (i.e., u(A4) = 0iff u(gA4) =0
for all g € G, A € B(G)), then it must be Polishable locally compact (i.e.,
Polishable and the unique topology given in 12.25 is locally compact) and
i is equivalent to jic.

(17.14) Exercise. Prove the analog of 8.48 for measures: If X is a standard
Borel space, < a wellordering on X, and u a continuous probability Borel
measure on X, then < is not u?-measurable. Formulate and prove also an
analog of 8.49. Using the notation of 8.50, show that U is not pc-measurable.
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(17.15) Exercise. Let X be a Polish space, A C X a Borel set, Y a second
countable space, and f : A — Y a Borel function. If x is a finite Borel
measure on X, then for each € > 0 there is a compact set K C A with
#(A\K) < € and f|K continuous.

(17.16) Exercise. (The Kolmogorov Consistency Theorem) Let (X, Ss))
be a sequence of measurable spaces and f, : X, — Xn-1 a surjective
measurable map (for n > 1). Let

l.}Elan = {(xn) € HXn 1vn > l(fn(xﬂ) = mn—l)}’

and let 7, : lim, X, — X,, be defined by 7,((z;)) = z,. Thus f, om, =
Tno1. Let 771(Sa) = {n7Y(A) : A € S,}. Verify that =7'(S,) C
Ty (Sne1). Let Soo = U, 75 '(Sa). Verify that this is an algebra on
lim,, X, and let

lir_nnSn = 0(Sw0)-

The measurable space (lim, X,,lim,S,,) is called the inverse limit of

((Xn,8n), fn)- Show that if (X,,S,) are all standard Borel spaces, so is
their inverse limit.

Now let un be a probability measure on (Xy,,Sy) such that fou, =
tn—1. Show that if (X,,S,) are standard Borel spaces, there is a unique
probability measure

B = liinnﬁ‘n

on (lim, Xp, lim,S,,) such that m,u = u,,. We call (lim, X,,,1im,S,, lim,z,,)

the inverse limit of ((X,.Sn, tn), fn).
Show that the product of ((Xn,Sn, ttn)), where (X,,S,) are standard
Borel spaces, is a special case of an inverse limit.

(17.17) Exercise. Let T be a pruned tree on N. Show that for every function
@ : T — [0,1] such that (@) = 1 and (s) = X .-, cp@(s"9) there is a
unique probability Borel measure g on [T] with u([T] N N,) = ¢(s). Show
that all probability Borel measures on [T'] arise in this fashion.

17.E The Space of Probability Borel Measures

Let X be a separable metrizable space. We denote by P(X) the set of prob-
ability Borel measures on X and we denote by C,(X) the set of bounded
continuous real-valued functions on X. We endow P(X) with the topol-
ogy generated by the maps pu — [ fdu, where f varies over Cy(X). This
topology has as a basis the sets of the form



110 II. Borel Sets

Uﬂ'esflv'-y.fn = {V e P(X) : |/fzdu_ /fidﬂl < 63 i = 1""’”’}’

for p € P(X), € >0, f; € Cp(X).
For many arguments we need a more manageable subclass of bounded
continuous real-valued functions, which still defines the same topology.
Fix a metric d compatible with the topology of X, such that the com-
pletion (X, d) of (X, d) is compact. Denote by U4(X) the class of uniformly
continuous (for d) real-valued functions on X. Since every f € Uy(X) has
a unique extension f € C(X ), it follows that U, (X) C Cu(X).

(17.18) Proposition. If f € Cy(X), there are fo,gn € Ug(X), with fo 1 f
and gn | f (i.e., (fn) is monotonically increasing and converges pointwise
to f and analogously for (gn)).

Proof. It is clearly enough to find (f»). Put f,(z) = inf {f(y) + nd(z,y) :
y € X}. Then fn < foqa < f. Also |fnlz) — fn(2)] £ nd(z,z), so in
particular f, is uniformly continuous. It remains to check that f, — f.
Clearly lim,, fo(z) < f(z). Fix € > 0. For each n, pick y, with f(yn) <
f(yn)+nd(z,y,) < fn(x)+e. Since f is bounded, y, — z. So f(yn) — f(z),
and thus f(z) < lim, fa(z) + €. 0

It follows from this and from the usual convergence theorems of in-
tegration, that in the definition of the topology of P(X) we can replace
Cy(X) by Ua(X).

Consider the vector space Us(X) with the sup norm || f||__. Since every
f € Uy(X) extends to a unique f € C(X) with ||f||c,o = || f]loo, We have
that (Ug(X), || ||eo) is isometric with (C(X), ]| ||oc ), S0 in particular, Us(X)
is a separable Banach space. Pick a dense set {f,,} in Uy(X) with the sup
norm, with f, not the constant 0 function. It follows immediately that we
can replace C,(X) by {f»} in the definition of the topology of P(X).

The map u H(I%:—_Tlcf:)nelﬂ from P(X) into [—1,1]" is an embedding,

and so P(X) is separable metrizable with compatible metric

0 d— [ fud
8(p,v) = ZO g-n-1 LS “‘}n”if 4

We summarize all of this in the following result, which also determines
canonjcal countable dense sets.

(17.19) Theorem. Let X be separable metrizable and d a compatible metric,
whose completion is compact. Let { fr,} be non-zero and dense in Uy(X) with
the sup norm. Then P(X) is separable metrizable with compatible metric

& wdpt = [ fud
5(u,u)=22-“-‘|” If}nllif 4}

n=0
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Moreover, if D C X is countable dense, the set of p € P(X) of the
form 2:;; by, with o € Q, ax 2 0, Yosy ax = 1 and zx € D is
countable dense in P(X).

Proof. It suffices to prove the last assertion.

Note that if z, — zin X, then é,,, — &, in P(X) since [ fd(6,) = f(y)
for f € Cy(X). So it is enough to show that the discrete measures of
the form Z:;Cl, by, With ax € R, ax >0, D ax =1, and ¢ € X,
are dense. Since a discrete probability measure ) .y @nds,, where a, €
R, an >0, 3o, =1, and z, € X, is the limit of the probability measures

a"‘sxn [ . . s
-ZE"LL!—, it is enough to show that the discrete probability measures
n<k

> nenN Onfsz, as above are dense in P(X).

Fix u € P(X). For each n, let X = J; A™ be a (finite or infinite)
partition of X into Borel sets with diam(A{™) < 2-*, Pick z{™ ¢ 4.
Let pn = 3, p(Ai"))ér(n). We claim that p, — p. To see this, let

f € Uy(X). Let of™ = inf(f]4™), 8™ = sup(f|A™). By uniform conti-
nuity, €™ = sup, (8™ - a{™) =0 asn — 0. So | [ fdpn — [ fdu | =
| 5 Laem (F = F@))dp | € €™ =0 asn — oo, O

We will prove now a number of important equivalences for convergence
in P(X).

(17.20) Theorem. (The Portmanteau Theorem) Let X be separable metriz-
able. The following are equivalent for u,un € P(X):

8) pn = 14

i) [ fdun — [ fdu, for all f € Co(X), or equivalently all f in any
countable dense subset of Uy(X) with the sup norm, where d is a compatible
metric for X, whose completion is compact,

i3) limp pn (F) < p(F) for every closed F

w) lim, pin(U) = p(U) for every open U;

v) lim, un(A) = p(A) for every Borel set A whose boundary 9A ( =
A\ Int(A)) is p-null.

Proof. It is clear that i) < ii) and iii) & iv).

ii) = iv): Let U be open, F = X\U and fi(z) = min{l, kd(z, F)}.
Then f; € Cy(X) and 0 < fi T xv- So w(U) = [xvdp = limy, [ frdy.
Now [ frdp = lim, [ fidy,. In addition, [ fedpn < [ xvudin = pn(U), so
lim,, [ fedpin < lim, pin(U), and thus p(U) < lim, pin (D).

iv) = v): We have by iv), and thus iii), u(Int{A)) < lim, u,(Int(A)) <
lim,p,(A) < limupn(A) < Timp,(4) < p(A). If w(d4) = 0, then
p#(Int(A)) = p(A), so pun{A) — p(A) (= u(A4)).

v) = ii): Fix f € Cp(X), say f : X — (a,b), in order to show that
f fdun — [ fdu. For each x € (a,b) consider the set F, = f~'({z}).
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These sets are pairwise disjoint, so at most countably many of them have
positive p-measure. Fix €¢ > 0 and then find e = {p < ) < -+ < ¢, = b,
with u(F;,) = 0 and t;4) — ; < €. Let A; = f~'([ti—1,¢;)). Then X =
l_J,_l A; and 8A; C F, , U Fy,, so u(0A;) = 0, and thus u,(A4;) — p(A;),
fori=1,...,m. Let g = >.;~, ti—1xa,. Then ||f — g||,, < & therefore
| [ fdpn — ffdul<flf gl dun+ [ 1 f—gldu+|]odun—[gdul
< 2+ 3072 | pa(As) — w(A;) | - | tic1 |- Letting n — oo, we have

fm | [ fdun — [ fdp| < 2¢,50 f fdun — [ fdu. 0

(17.21) Corollary. Let X be separable metrizable. Then for each open U C
X, the function p — u(U) is lower semicontinuous and for each closed
F C X the function p— u(F) is upper sernicontinuous.

(17.22) Theorem. If X is compact metrizable, so is P(X).

Proof. Consider the separable Banach space C(X) (= C(X,R)) and its
dual C(X)*. The unit ball B,(C(X)*) with the weak*-topology is compact
metrizable. Let

K={AeB(CX)): LA =1&
VfeC(X)(f=20=(f,A) >0)}.

By the Riesz Representation Theorem there is a bijection A < u between
K and P(X) satisfying (f,A) = [ fdu for f € C(X). It is immediate that
this bijection is a homeomorphism of K with P(X). But K, being closed
in B;(C(X)*), is compact metrizable, and thus so is P(X). 0

(17.23) Theorem. If X is Polish, so is P(X).

Proof. Let X be a compactification of X. Cousider the map y € P(X)
i € P(X) given by fi(A) = u(ANX) for any A € B(X). It is easy to see that
it is an embedding of P(X) into P(X) with range {u € P(X): p(X) =1}.
So it is enough to show that this set is G5 in P(X).

Let U, be open in X with X = [, U,. Since u(X) = 1 iff Vo(u(U,.) =
1), it is enough to show that for any open U C X, {1 € P(X): u(U) = 1}
is G's; or equivalently if FF C X is closed, {u € P(X) : u(F) = 0} is Gs.
Since u(F) = 0 & Vn(u(F) < 277), it suffices to show that {u € P(X):
w(F) < €} is open, which is immediate from 17.21. ()

(17.24) Theorem. Lzt X be separable metrizable. Then B(P(X)) is gener-
ated by the maps y — p(A), A € B(X), and also by the maps p— [ fdp,
where f varies over bounded Borel real-valued functions.

Proof. Denote by S the o-algebra generated by the maps p— u(A), A €
B(X), and by &' the o-algebra generated by the maps p— [ fdu for f a
bounded Borel real-valued function. It is clear that S C &’. To prove that
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S’ C S, use “step function” approximations of bounded Borel functions, as
in the proof of 11.6 and the Lebesgue Dominated Convergence Theorem.
Finally, we show that &' = B(P(X)). Since the basic open sets of
P(X) are in &', it is clear that B(P(X)) C &'. So it is enough to verify
that 4 — [ fdp is Borel on P(X) for each bounded Borel real-valued f. By
11.7 and the Lebesgue Dominated Convergence Theorem again, it is enough
to verify this for f € Cy(X). But by definition x — [ fdu is continuous
when f € Cy(X), so the proof is complete. 0

For each standard Borel space X, we denote by P(X) the space of all
probability Borel measures on X equipped with the o-algebra generated by
the maps p — p(A), A € B(X). By 17.23 and 17.24 this is a standard Borel
space and it is also generated by the maps > [ fdu, where f varies over
bounded Borel real-valued functions on X. We will denote by B(P(X)) this
o-algebra.

The following important computation is the analog of 16.1 for mea-
sures.

(17.25) Theorem. Let (X ,S) be a measurable space, Y a separable metrizable
space, and A C X x Y a measurable set. Then the map

(z,p) € X x P(Y) — p(Az)

is measurable (for S x B(P(Y))). Similarly, if f:X xY — R is bounded
measurable, the map

(z,p) — / frdp

18 measurable.

Proof. Consider the class A of measurable sets A C X xY such that the map
(x, 1) — p(A;) is measurable. We will show that A contains all rectangles
S x U, with S € S and U open in Y, and is closed under complementation
and countable disjoint unions. By 10.1 iii), this will prove the first assertion.

This follows immediately from the following facts:

)If Se€ S, UisopeninY and A = § x U, then u(A;) = p(U),
ifx € S, and p(A;) = 0,if x ¢ S. Since by 1721 u — p(U) is lower
semicontinuous, the proof for rectangles is complete.

i) p((~ A)z) =1 - p(Az).

iii) If (A,) are pairwise disjoint measurable, then p((lJ, An)z) =
Zn p{((An)z)-

The second assertion follows, as f can be expressed as the pointwise
limit of a bounded sequence of linear combinations of characteristic func-
tions of measurable sets (see the proof of 11.6). 0

(17.26) Notation. Let (X,u) be a measure space and A C X. Let
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V,zA(z) & X\Ais p-null
& A(z) p-ae,
J,zA(z) & Ais not p-null.

So if A is p-measurable, I zA(z) & wu(A) > 0. If u is a probabil-
ity measure, V;,zA(z) & u(A) = 1. We call these the measure quanti-
fiers. In this notation and under the appropriate hypotheses, the Fubini
Theorem implies, for example, that ¥}, ., (z,y)A(z,y) & V2V, yA(z,y) &
v yv Lz A(T, y).

It follows from the preceding theorem that if A C X x Y is measur-
able, then so are B(x, u) & Y, yA(x,y) and C(x, u) & J,yA(z,y), ie., the
measure quantities V},y, 3}y preserve measurability.

(17.27) Exercise. Let X be separable metrizable. Then z — §, is an em-
bedding of X into P(X).

(17.28) Exercise. Let X,Y be separable metrizable and let f: X — Y be
continuous. Show that the map u — fu from P(X) into P(Y') is continuous.
If fis an embedding and f(X) € B(Y), then p — fu is an embedding.
In particular, if X C Y is in B(Y'), then P(X) is homeomorphic to {u €
P(Y): u(X) =1}.

(17.29) Exercise. Let X be separable metrizable. Show that
{(n,K,a) € P(X) x K(X) xR: p(K) > a},
{(u, K,a) € P(X) x K(X) xR: p(K) > a},
{(1t,K,a) € P(X) x K(X)xR: u(K) < a},

are closed, F,, and Gj, respectively. In particular, for any g € P(X),
NULL, N K(X) is G5 in K(X).

(17.30) Exercise. By 17.7, we can identify P(C) with the set of all ¢ : 2<N —
[0,1] that satisfy (D) = 1 and ¢(s) = ¢(s°0) + ¢(s"1). Note that this is
a closed subset of [0, 1]2<N (which is homeomorphic to the Hilbert cube).
Show that this identification is a homeomorphism.

(17.31) Exercise. (Prohorov) Let X be a Polish space and M C P(X). Then
M has compact closure iff M is (uniformly) tight, i.e., for every ¢ > () there
is a compact set K C X such that u(X\K) < e forall pe M.

(17.32) Exercise. Let X be compact metrizable. Denote by Mg(X) the
dual space C(X,R)* of C(X,R). By the Riesz Representation Theorem the
members of Mr(X) can be viewed as signed Borel measures on X (i.e.,,
they have the form u — v for y,v finite Borel measures on X). Similarly,
Me(X) = C(X,C)* can be viewed as the space of complex Borel measures
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on X (i.e., those of the form p + iv for u,v signed Borel measures on X).
As we pointed out in the proof of 17.22, P(X) is a closed subspace of
B, (Mg(X)) as well as of B, (M¢(X)). So P(X) is a compact convex set in
Mg(X) and Mg (X). What is 8.(P(X))? (Recall 4.10 here.)

(17.33) Exercise. Let X be a compact metrizable space and G a group of
homeomorphisms of X. One can view G as acting on X by g.x = g(x). Let
Ec be the associated equivalence relation zEgy < 39 € G(g.¢ = y). We
call a measure yu € P(X) invariant if gu = p, for all g € G. Denote by
INVg the set of invariant p € P(X). Show that INVs is compact convex
in P(X).

We call p € P(X) G (or Eg)-ergodic if for every invariant Borel set
A C X we have u(A) = 0 or u(A) = 1. For example, if X = Z} (= C) and
G is the subgroup of Z} consisting of all (x,) € Z%, which are eventually 0,
acting on ZY by addition (g.z = g+ z if ¢ € G, = € X), then the invariant
sets are exactly the tail sets, so the 0-1 law 17.1 implies that every product
measure g = [[,, ptn, Where u, are probability measures on {0,1} (= Z5), is
ergodic. (Of course pu, has the form p, = ppdo+(1—pn)é for 0 < p, < 1.)
In particular, the Haar measure u¢ is both invariant and ergodic.

Denote by EINV; the set of ergodic invariant g € P(X). Assuming
that G is countable, show that 8.(INV) = EINV; and therefore EINV;
is a Gs set in P(X).

(17.34) Exercise. Let X be a standard Borel space and p € P(X) and let
Y = XZ and v = uZ be the corresponding product measure. Let S: Y — Y
be the shift map S((z,)) = (zn+1). Finally, let G = {S"},¢z be the group
generated by S. Show that v € EINV.

(17.35) Exercise. (The Measure Disintegration Theorem) i) Let X,Y be
standard Borel spaces and f : X — Y be a Borel map. Let 4 € P(X)
and » = fu. Show that there is a Borel map y — y, from Y into P(X)
such that W2y (s, (f*({y})) = 1) and & = [ p,du(y) (ie., for any Borel
AC X, u(A) = [p,(A)dv(y), or equivalently for any bounded Borel
w: X =R, [pdu= [(f@duy)dr(y)). Show also that if y — v, is another
map with these properties, then p, = v, v-a.e.

ii) Apply this to the projection map projx of X xY onto X to show that
any probability Borel measure p on X x Y can be written as an “iterated”
measure, i.e., that there is a Borel map z — p, from X into P(Y) with
w(A) = [ pr(Az)dv(z) for any Borel set A C X x Y, where v = projyu.
(The case u, = p gives, of course, the product measure v x p.)

Check also the converse: If v is any probability measure on X and
£ — p, is a Borel map from X into P(Y’), then the formula p(A) =
J uz(Az)dv(z) defines a measure u € P(X x Y) with projxp = v. Show
that the following generalized Fubini Theorem holds: If f : X xY — R is
bounded Borel, then [ fdu = [([ frdu,)dv(z).
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(17.36) Exercise. Let X be a measurable space, Y a separable metrizable
space, and u a o-finite Borel measure on Y. If A C X x Y is measurable,
show that the map = — u(A;) is measurable (from X into [0, 0], viewed
as the one-point compactification of [0,00)). Similarly, show that if f :
X xY — [0,00) is bounded measurable, the map z — f fzdu is measurable.

(17.37) Exercise. Let X be standard Borel. Show that {y € P(X) : p is
continuous} is Borel in P(X).

(17.38) Exercise. Let X be separable metrizable and y € P(X). The
(closed) support of u (denoted by supp(y)) is the smallest closed set of
p-measure 1. Show that this exists. Assume now that X is Polish and show
that the map g — supp(u) is Borel from P(X) to F(X).

(17.39) Exercise. Let X be standard Borel. Show that u < v, u ~ v, and
p L v are Borel (in P(X)?).

(17.40) Exercise. Show that if X,Y are standard Borel, then the map
() € P(X)x P(Y)— uxv € P(X xY)isBorel. Also,if f: X =Y is
Borel the map p € P(X) — fu € P(Y) is Borel.

17.F The Isomorphism Theorem for Measures

(17.41) Theorem. Let X be a standard Borel space and p € P(X) a con-
tinuous measure. Then there is a Borel isomorphism f:X — [0,1] with
fu=m|[0,1] ( = the Lebesgue measure on [0,1]).

Proof. We can, of course, assume that X = [0,1]. Let g(z) = u([0,z]).
Then g : [0,1] — [0,1] is continuous and increasing, with g(0) = 0, g(1) =
1. Also, gu = wn, since if y € [0,1] and g(z) = y, we have gu([0.y]) =
(g~ ([0, 9]) = u([0. z]) = 9(z) = y = m([0, 3]).

For y € [0,1], let F, = g7 '({y}) and note that F, is an interval
which may be degenerate, i.e., a point. Let N = {y : F, is not degenerate}.
Then N is countable and if M = g—!(N), then u(M) = m(N) = 0. Clearly,
9|([0, 1]\ M) is a homneomorphism of [0, 1|\ M with [0,1]\N.Let Q C [0,1\N
be an uncountable Borel set of m-measure 0, and put g7}(Q) = P, so
that u(P) = 0. Then P UM, QU N are uncountable Borel sets, so there
exists a Borel isomorphism h : PUM — @Q U N. Finally, define f by
FI(PU M) = h, FI([0,1]\(P U M)) = ¢|([0,1]\(P U M)). Then f is a Borel
isomorphism of [0, 1] onto itself and fu = m|[0, 1]. 0

(17.42) Exercise. Show that the measure algebra MALG,, of a continuous
probability Borel measure on a standard Borel space is uniquely determined
up to isomorphism. It is called the Lebesgue measure algebra.
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(17.43) Exercise. i) Let X be a standard Borel space and 4 € P(X). Define
the following metric on MALG,:

&8P, [Q)) = w(PAQ).

Show it is complete separable. (This makes MALG,, a Polish space in this
topology.) Show that if A C B(X) is an algebra that generates B(X), then
{[P] : P € A} is dense. Show that the Boolean operations —[P] = [~
P, [PIA[Q] =[P NQ], and [P] V [Q] = [P U Q)] are continuous. (Here A,
v denote the meet and join operations, respectively.)

ii) Let A C MALG, be a og-subalgebra, i.e., a subset closed under
complements and countable joins. Show that A is closed in MALG,,.

Show also that there is a standard Borel space Y and a Borel map
f:X — Y such that if » = fu and if f* : MALG, — MALG, is given
by f (@) = [f~*(Q)], then f* is a (Boolean algebra) isomorphism of
MALG, with A. Thus A is (up to isomorphism) also a measure algebra of
some measure.

If AC B(X) is a o-algebra and if A = {[P] : P € A}, then show that
f above can actually be taken to be measurable with respect to (X, .A).

Remark. Woodin has shown that there is no Polish topology in the category
algebra (of R) in which the Boolean operations are continuous. (See the
Notes and Hints section for a simple proof by Solecki.)

(17.44) Exercise. A measure algebra is a Boolean o-algebra A together with
a strictly positive probability measure v : A — [0,1],i.e., v(a) =05 a =0
and v(Va,) = >, v(a,) for any sequence of pairwise disjoint elements (a,)
of A. (If a,b € A, we call a,b disjoint if aAb = 0.) The algebras MALG,,,
with v([P]) = p(P), are clearly measure algebras. Show that all measure
algebras are complete (as Boolean algebras).

i) An isomorphism 7 : (A,v) — (A',v') between measure algebras
is a Boolean algebra isomorphism that also preserves the measure, i.e.,
v{a) = v'(n(a)). Show that 17.42 is also valid in the sense of measure
algebra isomorphismns. Also, 17.43 ii) holds in that sense, where A is viewed
as a measure algebra by restricting the measure to it.

ii) If (A,v) is a measure algebra, we define the metric 4 or A as in
17.43: &(a,b) = v(aAb), where aAb = (aVvb) — (aAb). Show that (A4, 6) is
complete. Show that it is separable iff A is countably generated as a Boolean
o-slgebra, (i.e., there is a countable set B C A such that A is the smallest
Boolean c-algebra containing B).

iii) An atom in a Boolean algebra A is a non-zero element 2 € A such
that: b < a = (b = 0 or b = a). Show that any two distinct atoms are
disjoint and also that in a measure algebra there are only countably many
atoms.

iv) A Boolean algebra is atomless if it contains no atoms. Show that
the Lebesgue measure algebra is the unique (up to isomorphism) separable
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(in the sense of ii)), atomless measure algebra. Show also that any sepa-
rable measure algebra is isomorphic to MALG,, for some probability Borel
measure u on a standard Borel space X.

(17.45) Exercise. Let X be a standard Borel space, ¢ € P(X), and
MFUNCT, be the set of real-valued p-measurable functions. For f,g €
MFUNCT, let f ~ g & f(x) = g(z) p-a.e. This is an equivalence rela-
tion and denote by [f] the equivalence class of f and by M, the set of
equivalence classes. Define on it the metric

a1 la = [

Show that this metric is complete and separable. (Thus M, is a Polish
space in this topology.) Prove that [f,] — [f] iff f, — f in measure, i.e.,
for all € > 0, p({z :| fu(z) - f(2) |2 €}) — 0.

Show that MALG,, is homeomorphic to a closed subset of M,,.

(17.46) Exercise. i) Let X be a standard Borel space and u € P(X). For
S,T Borel automorphisms of X define the equivalence relation: S ~ T &
S(z) = T(z) p-a.e. Denote by [T] the equivalence class of T. (It is cus-
tomary to write often T instead of [T'], if there is no danger of confusion.)
A Borel automorphism T of X is (u-) measure preserving if Ty = pu. Let
Aut{X, 1) be the set of equivalence classes [T'] of such measure preserving
automorphisms. It is a group under composition, called the group of mea-
sure preserving automorphisms of x. (Notice that this group is independent
of u, if u is continuous.) By 15.11, we can canonically identify Aut{X, u)
with the grolip of measure algebra automorphisims of the measure algebra
MALG,,.

Every T € Aut(X,u) gives rise to a unitary operator Ur € U(L?(X,
1)), given by

Ur(f)=foT™".

Show that T — Uz is an algebraic isomorphism of Aut(X, 1) with a closed

(thus Polish) subgroup of the unitary group U(L?(X, 1)) Put on Aut(X, )

the topology induced by this isomorphism, so it becomes a Polish group.
Define the following metric on Aut(X, u):

p(S,T) =D 27" [u(S(An)AT(An)) + (ST (An) AT (4n))],

where A = {A,} is an algebra generating B(X). Show that it is complete
and compatible with the topology of Aut(X, u). Also show that Aut(X, )
is a closed subgroup of Iso(MALG , §), where MALG,, is endowed with the
metric é as in 17.43 i).

(We call T € Aut(X,u) ergodic if every invariant under T Borel set
A C X has measure 0 or 1. Halmos has shown that the set of ergodic T is
a dense G set in Aut(X, u).)
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ii) Let X be a standard Borel space and p € P(X). A Borel automor-
phism T of X is (p-) non-singular if Ty ~ u. By 15.11, we can canonically
identify the group of automorphisms of the Boolean algebra MALG,, with
the group, denoted by Aut*(X,pu), of all [T] with T non-singular (under
composition). (Again, this group is independent of u, if x is continuous.)

To each T € Aut*(X,u) we can assign the unitary operator Upr €
U(L(X, n)), given by

Ur(f)(z) = (CI(TT:—)(QT))‘/"'f(T“’m)-

Show that T — Ur is an algebraic isomorphism of Aut* (X, x) with a closed
subgroup of U(L?(X, u)). Put on Aut*(X, u) the topology induced by this
isomorphism so that it becomes a Polish group. Show that Aut(X,u) is a
closed subgroup of Aut*(X, ). (Choksi and Kakutani have shown that the
set of ergodic T is dense G5 in Aut*(X, p).)

(17.47) Exercise. i) For each Lebesgue measurable set A C (0,1), let

p(A) = {z : x has density 1 in A}
m(ANT)

= o zeIl,lll}}—-O m(I) 1
(where I varies over open intervals). Recall (from 17.9) that A =3, p(A).

We thus have for any two Lebesgue measurable sets A,B: A=) B =
w(A) = ¢(B) =}, A;30 A — p(A) is a canonical selector for the equivalence
relation A =}, B. (Compare this with 4 — U(A); see 8.30.)

ii) We define a new topology on (0, 1) called the density topology, by
declaring that the open sets are those Lebesgue measurable sets A C (0, 1)
for which A C ¢(A). Prove that this is indeed a topology and that it
contains the usual topology on (0,1).

iii) Show that for A C (0,1), A is nowhere dense in the density topology
iff A is closed nowhere dense in the density topology iff A is meager in the
density topology iff A has Lebesgue measure 0.

iv) Show that for A C (0,1), A has the BP in the density topology iff
A is Lebesgue measurable.

v) Show that if A C (0,1) is Lebesgue measurable and z € ¢(A) N A,
then there is a perfect nonempty set P C A with z € (P)N P.

vi) Show that the density topology is strong Choquet and regular.
However, it is not second countable.
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18. Uniformization Theorems

18.A The Jankov, von Neumann Uniformization Theorem

Given two sets X,Y and P C X x Y, a uniformization of P is a subset
P* C P such that for all x € X, JyP(x,y) & NyP*(z,y) (where I stands
for “there exists unique”). In other words, P* is the graph of a function f
with domain A = projx(P) such that f(z) € P, for every z € A. Such an
f is called a uniformizing function for P.

Y

FIGURE 18.1.

The Axiom of Choice makes it clear that such uniformizations exist.
However, our interest here is to find “definable” uniformizations of “defin-
able” sets. We will study here the case when P is Borel.

Given measurable spaces (X,S), (Y, A) and a function f : X' = Y,
where X' C X, we say that f is measurable if it is measurable with respect
to the subspace (X’,S | X'). As usual, 0(2}) is the o-algebra generated by
the X} sets.

(18.1) Theorem. (The Jankov, von Neumann Uniformization Theorem) Let
X,Y be standard Borel spaces and let P C X x Y be X}. Then P has a
uniformizing function that is o(X})-measurable.

Proof. We can assume, of course, that X,Y are uncountable and, since
o(X}]) is invariant under Borel isomorphisms, we can assume that X =
Y = AN. If P =9, there is nothing to prove, so we also assume that P # 0.

Let 7 : N — X xY be a continuous function with 7(A") = P and define
FC X xNby(z,2) € F& projy(n(z)) = z. Then F is closed. Let A =
projx(P) = projx(F). If f uniformizes F, then g(x) = projy(n(f(z)))
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uniformizes P. Since 7, projy are continuous, if f is #(X})-measurable, so
is g. We can thus assume that actually P is closed.

By 2.C, there is a pruned tree T on N x N such that P = [T). If for
z € N, T(z) is the section tree determined by z, then we have

Py = [T(z))-
So for each x € A = projx(P), let

f('T) = aT(x)

be the leftmost branch (see 2.D) of T(x) (with respect to the ordering
on N). This is our uniformizing function. We will show that it is ¢(X})-
measurable. (Its domain A is clearly £}.) For that we will check that for
each s e N<N, f~}(N,) = {x € A: s Car(,} is in o(E}). We prove this
by induction on length(s). It is clear when s = @. Assume it holds for s;
now consider ¢ = s k. Then f~!(N,) is the intersection of f~!(N,) and the
set of z satisfying the following condition:

W{(z,y) € [T) & s°k C y} & V¢ < k-3y{(z,y) € [T] & s"¢ C y},
so f~YN,) is in o(X}) (refer to Appendix C). 0

In general, we cannot improve the above result to obtain a Borel uni-
formizing function, even when P is closed and projx(P) = X; see 18.17.

(18.2) Exercise. Give an alternative argument for 18.1 as follows: As before,
assume X,Y are Polish and P C X x Y is closed. Let p(z) = Py, so that
p: X — F(Y). Verify that p is ¢(21)-measurable and then use 12.13.

(18.3) Exercise. Let X,Y be standard Borel spaces and f : X — Y a Borel
function. Show that there is a ¢(X])-measurable function ¢ : f(X) — X

such that f(g(y)) = ¥.

(18.4) Exercise. Recall the notation of 4.32. Put IF = {T € Tr : [T] # 0}.
Show that IF is £! and that the map T € IF — ar € N (see 2.D) is
o(2})-measurable. Also denote by Tr; the set of finite splitting trees on N,

and let IF; = IF N Try. Show that Try is Borel in oN =" IR # is Borel, and
T € IF; — a7 is Borel.

Next we will prove results that, under various conditions, allow us to
uniformize Borel sets by Borel functions. They basically fall in two cat-
egories: One applies when the Borel set P has the property that all its
nonempty sections Pp are “large”. The other applies when all the sections
P, are “small”.
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18.B “Large Section” Uniformization Results

(18.5) Definition. Let X,Y be standard Borel spaces. A function &:X —
Pow(Pow(Y)) is called Borel on Borel if for every standard Borel space Z
and Borel set AC Z x X xY the set {(z,2):A.+ € ®(x)} is Borel.

We are particularly interested here in the case where to each x € X
we assign a o-ideal ®(x) = Z,; of subsets of Y. For example, we could have
a Borel map = — p; € P(Y) and take Z, = NULL,,_. By 17.25, the map
z — I, is Borel on Borel. Also, if Y is Polish and Z,, = MGR(Y) (this is
independent of ), then again this is a Borel on Borel assignment, by 16.1.

(18.6) Theorem. Let X,Y be standard Borel spaces and P C X xY be Borel.
Let x +— I, be a Borel on Borel map assigning to each x € X a o-ideal in
Y. If for x € proj x(P), P; & I, then there is a Borel uniformization for
P, and in particular proj (P) is Borel.

Proof. We can assume that X,Y are Polish. Consider then a Lusin scheme
(P*)sen<~ associated to P according to 13.9 and satisfying i) - iii) of that
theorem. For each z € X, let P = (P*); (= {y : P%(z,¥)}). Then
(P2)een<n satisfies i) — iii) of 13.9 for P,.

For each z € projy(P), let T, = {s € NN : p3 ¢ T.} so that T}
is a nonempty pruned tree on N. Let a; be its leftmost branch. By the
properties of (PS), P2= = (0, P2=™ is a singleton, say {f(z)}. This is our
uniformizing function. We will show that it is Borel. Let {V},} be an open
basis for Y.

We have for each open U C Y,

f(2)eU e k[V, CU&LIMYn>mVt e N*NT,Ise N* N T}
(5 <iex t & Vi NP} ¢ T.)]
SV, CU&IMn>mvt e N*[Pi ¢TI, =
35 € N"(s Siex t & PL @€ T, & Vi O P2 ¢ T)]),

where <)ex is the lexicographical ordering on N™. Since z — Z, is Borel on
Borel, f is Borel. O

(18.7) Corollary. Let XY be standard Borel spaces and P C X xY be Borel.
Let  +— i, be a Borel map from X to P(Y'). If for x € projx(P), p.(P:) >
0, then P admits a Borel uniformization (and so projy(P) is Borel). Sim-
ilarly, this holds if Y is Polish and if for each x € projy(P), P, is non-
meager.

(18.8) Exercise. Show that if X,Y are standard Borel spacesand P C X xY
is £, then there is a uniformization P* C P of the form P* = () A,
where each A,, is a union of a ¥} and a I} set.
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Remark. Martin and Steel (see Y. N. Moschovakis [1980], 4F.22) have
shown that P* cannot in general be of the form |J, Az, with A, an inter-
section of a ¥} and a IT} set.

(18.9) Exercise. Show that there is a closed set F C N x A such that. every
nonempty F, is uncountable, but F' admnits no Borel uniformization. Prove
also that if X,Y are uncountable standard Borel spaces and P C X x Y is
Borel, the set {z € X : P, is countable} is not necessarily Borel. Show that
it is IT}.

18.C “Small Section” Uniformization Results

(18.10) Theorem. (Lusin-Novikov) Let X,Y be standard Borel spaces and
let P C X xY be Borel. If every section P, is countable, then P has a
Borel uniformization and therefore projx(P) is Borel.

Moreover, P can be written as |, Pn, where each P, is a Borel graph
(i.e., if Po(z,y) and P,(z,y') hold, then y=1v').

Proof. (Kechris) We will need the following result, which is interesting in
its own right.

(18.11) Theorem. (The set of unicity of a Borel set) (Lusin) Let X,Y be
standard Borel spaces and let RC X x Y be Borel. Then

{z € X : y(x,y) € R}

is TI}.
We will assume this temporarily and now complete the proof of 18.10.

(18.12) Lemma. Let X,Y be standard Borel spaces and P C X x Y a Borel
set with each section P; countable. Then proj(P) is Borel.

Proof. We can assume that X,Y are Polish. Let F C N be closed and
m: F — X x Y a continuous injection with 7(F) = P. Let @ C X x A be
defined by (z,2) € @ & z € F & projyx(n(2)) = z. Then Q is closed, every
section . is countable, and projx(P) = projx{(@). So we can assume that
P is closed to start with.

Since P, is countable closed, it must have an isolated point if it is
nonempty. If {U,} is a basis of open sets for Y and we let

Ap={z: My((z,¥) € P&y e U,)},

then by 18.11 A,, is IT} and (by our preceding remark) projx (P) = U, 4n.
Since the IT} sets are closed under countable unions, projx (P) is IT} and
thus, since it is clearly X1, it is Borel, by Souslin’s Theorem. 0
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To prove 18.10, note that it is enough to show that P C | J,, P, where
(P,) is a sequence of Borel graphs (since then P = |J (P N F,)) and
80, by enlarging P if necessary, we can assume that each section P, is
countably infinite. We will find then a Borel map ¢ : X — YV such that
P, = {e(z)n : n € N} and put P, = {(z.y) : e(2)n = y}.

For that purpose, let E C X x YN be defined by

(z,(en)) € E & (e,) enumerates P,
& Vnle, € Pp) &
Yy € Pr3n(y = en).

We claim that E is Borel: Clearly, “vn(e, € P.)” is Borel. To see that
“Yy € P,3n(y = e,)” is Borel, consider its complement

(z,(en)) € R & Jyly € P, & Vn(y # e,.))]
& Jy(z, (en),y) € 5,

where S is Borel and its sections S, (.,.) are countable, and so by 18.12, R
is Borel.

We finally come down to the problem of finding a Borel uniformization
of E. This will be accomplished using 18.6.

For each z, give P, the discrete topology and then PN the product
topology. Thus P is homeomorphic to A. Clearly, E, = {(e,) € PY: (e,)
is surjective (i.e., Yy € P.In(y = e,))}. So E; is a dense G5 set in PL.
Then define the following o-ideal Z, on YV :

AeTI, & AN E, is meager in PE’.

Thus E; ¢ Z,. So if we can show that z — 7, is Borel on Borel, then, by
18.6, F has a Borel uniformization and we are done.

So fix a standard Borel space Z and a Borel set AC Z x X x Y™, and
consider {(2,2) : A, € Iz} = {(z,2) : A, N E, € I,} in order to show it
is Borel. We can clearly assume that A C Z x E.

If e = (e,) : N = P, is a bijection, e induces a homeomorphism T,
between N and PN given by 7.(w) = eow. So A, ; € I, & A, . is meager
in PY & 7;71(A,,,) is meager in N & {w € N : eow € A, .} is meager.
By 16.1, the set

(z,7,6) € Q & (z,e) E E&VnVm(n # m = e, # €m)
& {w e N :(2,7,eo0w) € A} is meager
is Borel. But

A, €T, & Je(z,x,e) €Q
< Ve{l|(z,e) € E & Vavm(n #m =
en # em)] = (Z,:B, e) € Q}v
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so {(z,2) : Ay € I;} is £} and II] (see Appendix C), and thus Borel, by
Souslin’s Theorem. O

Finally, we give the proof of 18.11.

Proof. (of 18.11) (Kechris) We can assume that X =Y = N, and as in the
proof of 18.12, using the fact that R is the injective continuous image of a
closed set in A/, we can assume that R is closed. Let S be a pruned tree on
N x N such that R = [S]. Then we have Jy(z,y) € R & My(y € [S(z))]).
Since the map z — S(z) is easily continuous (from A to T¥) it is enough
to show that the set

UB = {T € Tr: y(y € [T))}

is TI}. We will prove this by a game argument.
Let Lo C Tr be defined by

TeL,evVnise N*(seT).

L is clearly Borel. For each tree T on N, now consider the following game

GT.‘
I no z(0) z(1)

II ¥(0) y(1)
Player 1 starts with ng € N, II responds with y(0) € N, then I plays z(0) €
N, II responds by y{(1) € N, etc. Player I wins this run of the game ift
Vo2 l(yin € T = xn € T) & 3n < no(z(n) # y(n)).

(We require that player I play something different than player II before stage

np, in order to make sure that I wins iff a certain condition is satisfied at

each stage of the game, thereby ensuring that the set W below is Gs.)
The main claim is that, for T € L:

() T ¢ UB « I has a winning strategy in Gp.

Granting this the proof is completed as follows. As in 8.10, a strategy for I
in G7 is a nonempty tree ¢ on N such that if s € o has odd length, s n € ¢
for all n, and if s € o has even length, s"n € o for a unique n. It is winning
if every run (ng,y(0),z(0),y(1),z(1)....) € [o] is a win for I. Denote by
W C Tr the set of winning strategies for I in Gr.

Define W C Tr x Tr by (0,T) € W & o € Wp. Then we have

(0, T)EW & o #0&VmVse N*[(s€o &
misodd = Vn(s'nenm)) &
(s€eoc&miseven = Jn(s"n € a))]
& Vn¥'s € N"Vt € N"Vno{[(no,to, S0, - - s tn-1,8n-1)
€o=>(teT=>seN]&(n>n= .
3 < no(si #t))},
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so W is clearly Gs. Finally, T € UB iff T € L, and I has no winning
strategy in Gr, i.e,

TeUB&eTEe Ly, & -30(0,T) e W,

so UB is IT}.

(The preceding calculation is a particular instance of 20.11.)

It remains to prove ().

<«=: Let T € UB. We will show that II has a winning strategy in G
(and thus I has no winning strategy). Since T € UB, let y be its unique
infinite branch. Let II play this y, independently of what I does.

=: Now let T ¢ UB. We will show that I has a winning strategy in
Gr.

Case 1. [T] has at least two elements. Let z; # z2 be two infinite
branches of T and let n be least with z,(n) # z2(n). Player I starts
by playing ng = n + 1. Then, independently of what II plays, I plays
(z(0),...,z(n = 1)) = z1|n (= z2|n). If Il now plays y(n), then for some
i € {1,2}, y(n) # z:(n), and I plays from then on (z(n),z(n +1),...) =
(zi(n),zi(n + 1),...), i.e. z = z;. This is clearly winning for I.

Case 2. [T] = 0. Then the tree T is well-founded, and so let pr be its
associated rank function. Since we are assuming that T € L, it follows
easily that pr(0) > w. So pr(®) = A + n, where X is a limit ordinal and
n <w.

The strategy of I is as follows: He starts by playing ng = n + 1. To
describe how I plays from then on, let us say that a position of the game
(no, y(0), 2(0), ..., y(k), z(k)) with k < ng is decisive if either: (A) y|k €
T, zlk € T, y|(k+1) ¢ T, and z(k) # y(k), or (B) y|(k+1) € T, z|(k+1) €
T, and pr(yl(k + 1)) < pr(z|(k + 1)) (so that, in particular, y|(k + 1) #
z|(k + 1)). Notice that if I can reach a decisive position, then in case (A)
he plays from then on z(k + 1), x(k +2),... arbitrarily, and in case (B) he
plays (after seeing y(k+1), y(k+2),...) z(k+1), z(k+2),... insuch a way
that for any m > k, y|(m+1) € T = (z|(m+1) € T and pr(y|(m + 1)) <
pr(z|(m+1))). He can do that inductively on m since, if s, € TNN™+! and
pr(s) < pr(t), then for every p with s"p € T, pr(s"p) < pr(s) < pr(t),
so there is ¢ with "¢ € T and pr(s”p) < pr(¢”¢). In either case, if I plays
from then on this way he wins.

So it is enough to show that I can play, responding to II's moves, in
such a way that he reaches a decisive position. Say II starts with y(0). If
y|1 = (¥(0)) ¢ T, then I plays x(0) # y(0), and I has reached a decisive
position. Else y|1 € T. Then I tries to find z(0) such that z|1 = (z(0)) e T
and pr(y|1) < pr(z|l). If he can do that he reached a decisive position.
Otherwise, since pr(y|1) < pr(#) = sup{pr((p)) +1: (p) €T} = A +n, it
must be that n > 0 and pr(y|1) = A+n—1. In this case, I plays z(0) = y(0).
Player II next plays y(1). If y|2 ¢ T, II plays any z(1) # y(1) and we are
done. Else y|2 € T. Player I again tries to find z(1) with z|2 € T and
pr(¥|2) < pr(z|2). If he succeeds, we are done. Else, as before, we must
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have n > 1 and pr(y|2) = pr(y|l) =1 = A + n — 2, etc. If I has failed
by £k = n — 1 to reach a decisive position, we must have z|n = y|n € T
and pr(y|n) = pr(z|n) = A+ n — n = A. Then II plays y(n) and we have
pr(yl(n+1)) < pr(y|n) = A, so there is definitely z(n) with pr(y|(n+1)) <
pr(z|(n + 1)); thus we have reached a decisive position. 0

(18.13) Exercise. Show the converse of 18.11: If X is a Polish space and
A C X is I}, there is a Polish space Y and a Borel set R C X x Y with
A = {z € X : y(z,y) € R}. In fact, show that there is a Polish space Y
and a surjective continuous f: Y — X such that A = {z : 3y(f(y) = z)}.

(18.14) Exercise. Let X, Y be standard Borel spaces and f : X — Y a Borel
function, which is countable-to-1 (i.e., f~!({y}) is countable for any y € Y).
Show that f(X) is Borel and there is a Borel function g : f(X) — X with

fl9(y)) = y for all y € f(X).

(18.15) Exercise. Let X,Y be standard Borel spaces and P C X xY a Borel
set with countable sections P, for all z € X. Show that there is a sequence
(f.) of Borel functions f, : projx(P) — Y such that P, = {f.(z) : n € N}
for all z € projy (P).

Next show that if A, = {z: card(P;) = n} for n = 1,2,..., Ry, then
A, is Borel and for each n there is a sequence ( f(") )i<n of Borel functions
f(”) A, — Y with pairwise disjoint graphs such that for x € A,, P

(™(2) i <n).

(18.16) Exercise. (Feldman-Moore) Let X be a standard Borel space and
E a Borel equivalence relation on X. We say that F is countable if every
equivalence class [z]g of F is countable. Show that if F is countable, there
is a countable group GG of Borel automorphisms of X such that zFy <

Jg € G(g(z) = v).

(18.17) Exercise. Show that there is a closed set F C N x A whose (first)
prcjection is all of A/, but F has no Borel uniformization.

The uniformization theorem 18.10 admits a powerful generalization,
which we will prove later in 35.46.

(18.18) Theorem. (Arsenin, Kunugui) Let X be a standard Borel space, Y
a Polish space, and P C X x Y a Borel set all of whose sections P,, for
z € X, are K,. Then P has a Borel uniformization and so, in particular,
projx (P) is Borel.
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18.D Selectors and Transversals

Problems of uniformization are closely connected with those of selectors for
equivalence relations. Recall here 12.15 for the basic definitions.

A Borel equivalence relation need not have a “nice” selector or transver-
sal, e.g., a transversal having the BP or being measurable (with respect to
some given measure). For example, if F is the Vitali equivalence relation
on [0,1] (i.e,, zEy © = — y € @), then E cannot have a transversal that
either has the BP or is Lebesgue measurable.

(18.19) Exercise. Prove the preceding statement.

In the special case when E is a closed (in X?) equivalence relation
on a Polish space X, the map z — E, = [z]g is ¢(X})-measurable (see
18.2) and so by 12.13 E has a o(X})-measurable selector (and we will see
later in 29.B that (X})-measurable functions are Baire measurable and
p-measurable, for any probability Borel measure p). But such an E might
not have a Borel selector or equivalently a Borel transversal. To see this,
let F C N x N be closed such that its first projection is 3} but not Borel.
Then F clearly has no Borel uniformization. Take X = F and consider the
equivalence relation E on X given by (e,b)E(a’,b’) & a = d'. A transversal
for E is just a uniformization of F.

For a special situation when we can obtain a Borel selector for E, recall
12.16.

(18.20) Exercise. Let X be a standard Borel space and F a Borel equivalence
relation on X. We say that F is smooth if thereisa Borelmap f : X - Y, Y
a standard Borel space, with xEy < f(z) = f(y).

i) Show that FE is smooth iff there is a sequence (A,) of Borel subsets of
X with zEy & Vn(x € A, © y € A,). Show that if E has a Borel selector
or if X is Polish and F is closed, then F is smooth. (Thus smoothness does
not imply the existence of Borel selectors.)

ii) (Kechris) Show that if E is smooth and moreover that = — Z, is
a Borel on Borel map assigning to each x € X a g-ideal of subsets of [z]g
such that xBy = I, =7, and [z]g € Z,. then E has a Borel selector.

iii) (Burgess) Show that if E is smooth and moreover it is induced
by a Borel action of a Polish group G on X (i.e., in the notation of 15.D,
E = E for a Borel action of G on X), then E has a Borel selector.

iv) (Srivastava) Show that if X is a Polish space and F an equivalence
relation on X such that every equivalence class is G5 and the saturation of
every open set is Borel, then F has a Borel selector.
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19. Partition Theorems

19.A Partitions with a Comeager or Non-meager Piece

Recall the pigeon-hole principle: If N = Py U .- - U P,_, is a partition of N
into finitely many pieces, then for some ¢ < k, P; is infinite. Ramsey proved
the following important extension: For any set X, let X, [X]*={AC X :
card(A) =n}, n=1,2,.... If [N]* = PyU .- U Px._, is a partition of [N]|™
into finitely many pieces, there is infinite H C N such that [H]* C P; for
some ¢ < k. Such an H is called a homogeneous set for the partition.

We will consider here extensions of Ramsey’s theorem involving Polish
spaces instead of N or infinite exponents.

First we consider the case of partitioning with one large piece.

(19.1) Theorem. (Mycielski, Kuratowski) Let X be a metrizable space.
Let U C X™ be a dense open set. For any set A, let (A)" = {(z;) €
A™z; # x4, if i # j}. Then {K € K(X):(K)" C U} is a dense Gs
in K(X). In particular, if R, C X™ are comeager for i € N, then {K €
K(X)Vi((K)™ C R;)} is comeager in K(X). So if X is a nonempty perfect
Polish space, there is a Cantor set C C X with (C)™ C R; for all i.

Proof. Let D = {(z),...,z,) € X" : z; = z; for some i # j}: Then
(K)"*CU & K® CUUD. Now the map K — K" from K(X) to K(X")
is continuous by 4.29 vii) and UUD is G5 in X™, from which it follows that
{K:(K)"CU}is Gs in K(X).

We show next that {K : (K)* C U} is dense. Notice first that if
V € K(X) is nonempty open and does not contain @, there is m > n and
nonempty open U),..., U, C X such that if x; € U;, 1 < ¢ < m, then
{z;:1 < i <m} e V.Itis enough then to show that we can shrink U; to
U! C U,, U] nonempty open, such that for any distinct #,,...,i, < m we
have U] x --.x U] CU. This is easily accomplished by repeated (finitely
often) application of the following fact, which holds since U is open and

dense: If Gi,...,G, are nonempty open in X, there are nonempty open
sets G; C G; such that G| x --- x G, CU.
The last statement follows from 8.8. 0

(19.2) Exercise. i) Show that there is a Cantor set C € R whose members
are linearly independent over Q.

i) Show that there is a Cantor set C C S, that generates a free group.

(19.3) Exercise. Let X be a nonempty perfect Polish space and R C X2 be
a comeager set. Show that there is Cantor set C C X and a dense G, set
GC X withCxGCR.
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(19.4) Exercise. Let X be a nonempty perfect Polish space and let Y be
second countable. Let f; : X™ — Y be Baire measurable (i € N). Then
there is a Cantor set C C X with f;|(C)™ continuous for all i € N.

(19.5) Exercise. Let X be a perfect Choquet space, and assume there is a
metric d on X whose open balls are open in X. Let R C X™ be comeager.
Then there is a Cantor (in the topology of (X, d)) set C C X with (C)* C R.

It is easy to see that if A C X? is non-meager and has the BP, it is
generally not possible to find a Cantor set C C X with (C)? C A. But we
still have the following fact.

(19.6) Theorem. (Galvin) Let X be a nonempty perfect Polish space and
let P C X™ have the BP and be non-meager. Then there are Cantor sets
Cr.--,Cn € X with Cy x +++ x C,, € P. In particular, if X" = U;cn P,
where each P; has the BP, then there are Cantor sets C,,...,Cn C X and
ieNwithCy x+--xCp C P,

Proof. Since P is non-meager and has the BP, let U/, ...,U, be nonempty
open in X with P comeager in U, x -.- x U,. So let G,, be open dense
in Uy x -+ x U, with () Gm € P. Thus for any m € N and nonempty
open sets V; C U, there are nonempty open sets V C V; with V{ x --- x

V) C G- Using this, we can construct n Cantor schemes (R( )) , 1=

€2<N
1,..-,n,such that Rf;) =U;, Rgi) is a nonempty open subset of U, R(;)m C
R diam(Rg)) < 2-length(s) (with respect to some complete compatible
metric for X) and for each m, if s;,...,s, are sequences of length m, then
R{) %+ x R{Y C G Then let C; be the Cantor set defined by the scheme
(R_(J)), ie.,
' (2)
=N U &= U NERy.
m s€2m xe2N m

ThenC])("'anganfngP. D

19.B A Ramsey Theorem for Polish Spaces

If X is a nonempty perfect Polish space and X = |J;cy P; with each P;
having the BP, then one of them will be non-meager, and will thus contain
a non-meager G; set and therefore a Cantor set. We need some “regularity”
assumption for the P;, as the Axiom of Choice can be used to show the
existence of partitions R = Py U P, where neither P, nor P, contain a
Cantor set (see the proof of 8.24).

(19.7) Theorem. (Galvin) Let X be a nonemply perfect Polish space and
[X ]2 = PyU:--U Px_y a partition, where each P; has the BP, in the sense
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that P* = {(x,y) € X%{z,y} € P;} has the BP in X2. Then there is a
Cantor set C C X with [C]? C P; for some i.

Proof. We can clearly assume that the P; are pairwise disjoint and thus
so are the P, The function f(z,y) = the unique i with (z,y) € P?, if
z # y,(= 0, if £ = y) is Baire measurable; by 19.4 there is a Cantor
set Y C X so that this function is continuous on (Y)2. Then if Q; =
P; n[Y]2> {(a:»y) €Y?: {a:,y} € Qt} = {(z.y) € (Y)2 : flz,y) = i} is
open in Y2, So by replacing X by Y, if necessary, we can assume that each
P} is open. Also notice that by induction we can assume that k = 2. So
[X]* = B u Py, with P}, P} open in X2

If there is a nonempty open set U C X with (U)? C P, then any
Cantor set C C U works. So assume that for all nonempty open U, (U)%nN
Py # 0, so by the openness of Py we can find two disjoint nonempty
open sets U',U"” C U such that U’ x U” C P;. By repeating this, we can
easily construct a Cantor scheme (G;),co<v With Gy = X, G4 nonempty
open, G,-; C G, diam(G,) < 27'*18th(s) (with respect to some complete
compatible metric for X), and Gs-9 X Gs-1 € Py. If C is the Cantor set
defined by this scheme, [C]? C P,. 0

(19.8) Exercise. Let X be a nonempty perfect Polish space, let Y be a
second countable Hausdorff space, and let f : X — Y be Baire measurable.
Then there is a Cantor set C C X such that f|C is either a homeomorphism
or a constant.

(19.9) Exercise. Show that 19.7 fails in general for partitions of [X]? into
infinitely many, even clopen, pieces.

(19.10) Exercise. For distinet z,y € C, let A(z,y) = least n such that
z(n) # y(n). Let <jx be the lexicographical order on C and identify [C]®
with the set of triples (x,y, z) € C3 such that = <jex ¥ <jex 2. Considering
the partition [C]2 = Py U Py, where Py = {(z,¥.2) € [C]® : A(z,y) <
Ay, 2)}, Py = {{z,y,2) € [C]?: A(z,y) > A(y, 2)}, show that 19.7 fails in
general for partitions of [X]3 into finitely many, even clopen, pieces.

Suppose now that n > 2 and identify again [C]™ with the set of all
lexicographically increasing n-tuples To <jex 1 <lex< *** <lex Tn—1- We
say that (xg,...,Zn—1) has a type if A(z;,zit1) # A(zj,z541) for i # 7,
and in that case its type is the ordering of {0,...,n -2} given by: i < j &
A(x;, Ti41) < A(x;,x541). Thus there are (n — 1)! possible types. Theorem
19.7 has been generalized by Galvin (for n = 3) and A. Blass [1981] (in
general) to show that if [C]" = PyU:--U Px_;, with each P; baving the BP,
then there is a Cantor set C C C such that all (zg,...,7,-1) € [C]™ have a
type and if (2o,...,%n-1), (%0, -, ¥n-1) € [C]" have the same type, they
belong to the same P; (depending on the type). It follows that if X is a
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nonempty perfect Polish space and [X]* = PyU---U P;_,, with each P
having the BP, then there is a Cantorset C C X and SC {0,...,k—1} of

cardinality < (n — 1)! such that [C]* C U,.s P,

19.C The Galvin-Prikry Theorem

We will consider now an infinitary analog of Ramsey’s theorem. For each
set X, let

[X]® = {AC X : card(4) = Ro}.

Given a partition [N = PyU.--U Py, is it possible to find an infinite
H C N so that [H]* C P; for some i? It is easy to see that this fails for
“pathological”’ partitions constructed using the Axiom of Choice. Indeed,
enumerate all infinite subsets of N in a transfinite sequence (Hg)e< v and
by transfinite recursion on £ < 2™ find distinct infinite subsets of N, A, B,
with A.g UBe C He. Let Py = {Ag : £ <2®}, P, = [N]?\ P, Clearly there
is no i and infinite H with [H]? C P;.

However, we will see that for “definable” partitions this extension of
Ramsey’s theorein goes through.

Consider [N]* as a G5 (so Polish) subspace of C, identifying subsets
of N with their characteristic functions.

(19.11) Theorem. (Galvin-Prikry) Let [N]"® = PyU- -+ U Py_,, where each
P; is Borel. Then there is infinite H C N and i < k with [H]"° C P,

Remark. We cannot have an infinite partition [N]*¢ = | J;_y Pi, here, as the
example P; = {A € [N]® : the least element of A is i} shows.

We will actually prove a much stronger result in the next section, which
allows for considerable extensions of 19.11.

19.D Ramsey Sets and the Ellentuck Topology

We will introduce a new topology on [N]*¢ called the Ellentuck topology.
For distinction we will call the topology of [N]*¢ its usual topology.

Here the letters a,b,¢,... vary over finite subsets of N and A, B,C,. ..
over infinite subsets of N. We write ¢ < A if max(e) < min{A). For a < A,
let

(@, A] = {Se[N]*:aC S CauUA}

This notion is motivated by work of Mathias in forcing. Note that [0, A] =
[A]?e. The Ellentuck topology on [NJ*¢ has as basic open sets the sets of
the form [a, A] for @ < A. Note that there are continuum many of them.

(19.12) Exercise. Show that [e,A] C [b,B]iffe 2 b, a\bC B, AC B.
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(19.13) Exercise. Show that the Ellentuck topology is strong Choquet but
not second countable. Show also that it contains the usnal topology of [N]®e,

A set X C [N]® is called Ramsey if there is A with [0, 4] C X or
[0,4] € ~ X. It is called completely Ramsey if for every a < A there is
B C A with [a,B]C X or [a,B] C ~ X.

We now have the main result.

(19.14) Theorem. (Ellentuck) Let X C [N]™°. Then X is completely Ramsey
iff X has the BP in the Ellentuck topology.

Let us see how this implies the Galvin-Prikry theorem.

Proof. (of 19.11 from 19.14) By a simple induction and using the fact that
the increasing enumeration of an infinite set # C N gives a homeomorphism
of [N]®* with [H|®*, it is enough to consider the case [N|¥e = Pyu Py, with
Po, P, Borel, Py P, = 0. Then P, is Borel in the Ellentuck topology, so it
has the BP in this topology; thus it is completely Ramsey by 19.14 and we
are done. O

We give now the proof of 19.14,

Proof. (of 19.14) Everything below refers to the Ellentuck topology.

If X is completely Ramsey, then we claim that ¥ = X\Int(X) is
nowhere dense (so X has the BP). Indeed, if this fails, there is a < A
with [a¢,A] C Y. Let B C A be such that [¢,B] C X or [¢,B] C ~ X.
Since [a,B]NY # 0, [e,B] C ~ X is impossible. So, [a,B] € X, thus
[a, B] € Int(X) and [a, B]NY = 0, giving a contradiction.

We will show now that every set with the BP is completely Ramsey.

(19.15) Lemma. Let U be open. Then U is completely Ramsey.

Proof. Call [a, A] good if for some B C A, [a, B] C U; otherwise call it
bad. Call [a, A] very bad if it is bad and for every n € A, [aU {n}, A/n] is
bad, where A/n. = {m € A: m > n}. Notice that: [a, A] is (very) bad and
B C A = [a,B] is (very) bad.

We claim now that if [e, 4] is bad, there is B C A with [a, B] very
bad. Indeed, if this fails, let ng € A be such that [a U {ne},A/n¢] is good,
0 there is Bg C A/ng with [a U {ne}, Bo] C U. Since [a, By] is not very
bad, let n; > ng, ny € By be such that [a U {n;}, Ba/n1] is good, so there
is By C By/ny with [aU {m,},B1] C U, etc. Let B = {ng,ny,...}. Then
[a, B] C U, so [a, A] is good, which establishes a contradiction.

Suppose now [a, A] is given. If it is good, we are done. So assume
it is bad." We will then find B C A with [a,B] € ~ U. To do this, use
repeatedly the preceding claim to find a decreasing sequence A 2 By 2
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B, 2 -+, with n; = min(B;) strictly increasing, such that for any b C
{ng,...,ni_1}, [aUb, B;] is very bad and thus [a U b, B;/n,] is bad for all
b C {no,...,ni}. Then let B = {ng,ny,...}. We claim that [¢,B] C ~ U.
Otherwise, since U is open, there is [a', B'] C [a, B] such that [a/,B'| C U.
Then for some ¢, a’ = aUb with b C {no,...,n;} and B'/n; C B;/n, so,
since [aUb, B’ /n;] C U, we have that. [aUb, B;/n;] is good, a contradiction.

g

(19.16) Lemma. If X is nowhere dense, then for anya < A, there is BC A
with [a,B] C ~ X.

Proof. By 19.15, X is completely Ramsey. So there is B C A such that
[0,B] € ~ X € ~ X or else [¢,B] C X. Since Int(X) = 0, the second
alternative fails. 0

(19.17) Lemma. If X is meager, then for every a < A, there is B C A with
[a,B] € ~ X.

Proof. Let X = |J,, Xn, with X, nowhere dense. Let up = a and let Ao C A
be such that [azg, Ag] € ~ Xo. Put ng = min(Ap). Let a; = ap U {no}
and choose A; C Ay/ng such that [a Ubd,A,] € ~ X, for any b C {ng}.
Let 7, = min(A,). Let az = a; U {n1} and choose A2 € A,/n, such that
[aub, A2 C ~ X, for any b C {ng,m}, etc. Put B = {ng,ny,...}. 0

We can complete now the proof: Let X have the BP. Thus X = UAY,
with U open, Y meager. Given a < A, let B C A besuch that [e, B]C ~Y.
Let then C C B be such that [¢,C] C U or [a,C] C ~ U. In the first case,
[2,C] € X, and in the second, [e¢,C] C ~ X. 0

(19.18) Exercise. A set X C [NJ* is Ramsey null if for any a < A there is
B C A with [a, B] C ~ X. Show that X is Ramsey null iff X is meager in
the Ellentuck topology iff X is nowhere dense in the Ellentuck topology.

(19.19) Exercise. Let f : [N]* — X, with X second countable, be a Borel
function. Then there is infinite H C N with f | [H]®° continuous. (Here
“Borel” and “continuous” refer to the usual topology of [H]R¢.)

19.F An Application to Banach Space Theory

Let X be a real (for simplicity) Banach space with norm || ||. Given a
sequence (z,) in X we say that (z,) is equivalent to the unit basis of ¢! if
there are positive constants a, b such that for any n € Nand ¢p,...,cn-1 €

R n—1 n—1 n-—-1
ad led SN eml| <5l

=0 i=0 i=0

L]
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Then the map (¢;) € €' — Yo, cix;, which exists by the preceding in-
equalities, is an embedding of £! into X.

For each nonempty set S, denote by £°°(S) the Banach space of
bounded real-valued functions on S with the sup norm || f||_, = sup{}f(z)|:
z € S}

(19.20) Theorem. (Rosenthal) If (f») is a bounded sequence in €°(S), there
is a subsequence (f,, ) such that either (f,, ) is pointwise convergent or else
(fn,) is equivalent to the unit basis of €'.

(19.21) Corollary. If X is a real Banach space, then the following are equiv-
alent:

i) Every bounded sequence (z,) in X has a weakly Cauchy subsequence
(xn,) (i.e., for any ¥ € X*, (¢*(n,)) converges).

it) & does not embed in X.

Proof. (of 19.21 from 19.20) i) = ii): If e, is the nth unit vector in £ (i.e.,
en is the infinite sequence with exactly one 1 in the nth position), then
(ex) has no weakly Cauchy subsequence, because if (e,,) was such, then
for z* € (£')* = £ given by 2*(i) = 1 if i = ng for some k, and by
z*(i) = 0 otherwise, we have z*(en, ) = )_z"(i)en,, (i) = z*(ny).

ii) = i): Immediate from 19.20, since every element z of X can be
viewed as a function on S = B,(X*), namely z(z*) = z*(x). Note that

Izl = llll. O

Proof. (of 19.20; see J. Diestel [1984]) Given A, B C S, we say that (A, B) is
disjoint if ANB = . A sequence ((A,, By,)) of disjoint pairs is independent
if for any two finite disjoint subsets F,G C N,

[ An [ Ba #0.

ner neG

(19.22) Lemma. For rationalsr < s, let A, = AR* = {z: fo(x) <r}, B, =
Bp® = {z: fa(z) > s}. If ((An, By)) is independent, then (f,,) is equivalent
to the unit basis of £'.

Proof. Since for some b, ||f, ||, < b < oo for all n, clearly || S0 ¢ fill, <
b7, leil. So it suffices to show that

n-1 n—1
s§—r
||Zcif1-||oo2( > )gm.

=0

Let F={i <n:c¢ >0}, G={i <n:c¢ <0} By independence, let
T € (Vep Ai NNicq Bis ¥ € Nicg Ai N[ i Bi- Then

c=Y cfi(¥) 2 lels = leilr

i<n el teG
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and
d=) afi@) <Y ladr =) leds,
i<n ieF 1€C
so c—d 2> (s—r)2 ;.n lc:l|, and the proof is complete. O

We say that a sequence ((A,,, Bp)) of disjoint pairs is convergent if
Vz[(for all but finitely many n, =z ¢ A,) or (for all but finitely many
n, T ¢ By)).

89.)23) Lemma. If );or.all rationals r < s ((AL*, B5®)) is convergent, then
n) converges pointwise.

Proof. Otherwise, let r < s be such that for some z € S, limf,(z) < r <
s < limfp(z). Then for infinitely many n, x € A";* and for infinitely many
n, £ € B}*, which gives a contradiction. O

So the proof can be easily completed using the following lemma and a
simple diagonal argument.

(19.24) Lemma. Every sequence ((An, B)) of disjoint pairs contains a con-
vergent subsequence or an independent subsequence.

Proof. Let P C [N]®® be defined by:

{no,m,..}eP&VE[ [ A4Ann (] Ba #0],

t<k,i even i<k,i odd

where ng < ny < ---. P is clearly closed, so there is infinite H C N such
that [H]" C P or [H]|® C ~ P.

Case I. [H]® C P. We will show that if H = {mqg,m,,...}, with my <
my < -, then ((Ams,4,s Bmaiy:)) is independent. To see this, it is enough
to show that if F,G C {0,...,k—1}, FNG=0, FUG={0,...,k—1},
then (V;cp Amaiy:s N icg Bmaiy, # 0. But it is easy to see that there is
I = {ng,my,...} € H, with ng < n, < .-, such that (;cp Amyip: N
MicG Bmaivs 2 Mi<esi gven Ani N ni<t‘,i odd Bn; # 0 (for some £ > k), so we
are done.

Case II. [H|* C ~ P.If H = {my,m,,...}, we show that ((Am,,Bm.))
converges. Otherwise, there is z and infinite I, J such that I = {m; :
T € Ay}, J={m; :x € By} Note that INnJ = 0. So we can find
K = {ng,m,...} C H, with ng <ny <--+, such that {ng,n2,...} € I and
{n1,n3,...} C J. Then K € P, which is a contradiction. 0

O
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20. Borel Determinacy

20.A Infinite Games

Let A be a nonempty set and X C AN. We associate with X the following
game:

I ag az

II a) as

Player I plays ag € A, II then plays a; € A, I plays a; € A, etc. I wins iff
(an) € X. (Thus X is the payoff set.)

We denote this game by G(A4, X) or G(X) if A is understood. A strat-
egy for I is a map ¢ : AN — A<N such that length(y(s)) = length(s) + 1
and s C ¢t = ¢(s) C (t). Intuitively, if ¢(0) = (a0), ¢((a1)) =
(@0, a2), ¢((ay,23)) = (an,az,aaq),..., then I plays, following ¢, aq, az, a4,
..., when II plays a,,as,....

Equivalently, a strategy for I can be viewed as a map ¢ : AN - 4
with I playing aq = @), a2 = ¢((a1)), as = ¢((a1,a3)), when II plays
dy,03,+ ..

Finally, we can also view a strategy for I as a tree ¢ C A<N such that

i) o is nonempty and pruned;

ii) if (ag,ay,...,a2;) € o, then for all az;+y, (ao,-..,a25,0a254)) € 0;

iii) if (ag, a1, ...,a2)-1) € o, then for a unique az;, (ay,...,a02j-1,a2;)
€ 0.

Again, this is interpreted as follows: I starts with the unique ag such
that (ag) € o. If II next plays a,, then (ag,a;) € o, so there is unique a;
with (ag,a1,a2) € o, and this is I’s next move, etc.

We define the notion of a strategy for player II mutatis mutandis.

A strategy for | is winning in G(A, X) if for every run of the game
(ap, ay,4az2,...), in which I follows this strategy, (a,) € X. Similarly, we
define a winning strategy for player II. Note that it cannot be that both I
and II have a winning strategy in G(A4, X). We say that the game G(4, X),
or just the set X, is determined if one of the two players has a winning
strategy.

It is easy to see again, using the Axiom of Choice, that there are
“pathological” sets X C 2N that are not determined. For example, if X C 2N
is a Bernstein set (see the proof of 8.24), then X is not determined (why?).
However, we expect “definable” sets to be determined. We will prove this
below for Borel sets.

It is often convenient to consider games in which the players do not
play arbitrary ag, a,,... from a given set A, but have to obey also certain
rules. This means that we are given A and a nonempty pruned tree T C
A<N_ which determines the legal positions. For X C [T consider the game
G(T, X) played as follows:
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I ag a2

II ay as
I, II take turns playing ag,a,,... so that (ay,...,a,) € T for each n. I wins
iff (a,,) € X.

Thus if 7= A<N and X C AV, G(A<N, X) = G(A4, X) in our previous
notation.

The notions of strategy, winning strategy, and determinacy are defined
as before. So, for example, a strategy for I would now be a nonempty pruned
subtree o C T satisfying condition ii) before, as long as a,4, is such that
(@oy. .+, a2),a2;41) € T, and iii). It will be winning iff [¢] C X.

Note that all the games we considered earlier in Section 8 are particular
instances of this general type of game. Note also that the game G(T, X) is
equivalent to the game G(A, X'), where X' = {z € AV : [In(zIn ¢ T) &
(the least n such that z|n ¢ T is even)] or (z € [T] & = € X)}, where two
games G, G’ are equivalent if I (resp. II) has a winning strategy in G < 1
(resp. II) has a winning strategy in G’'. Thus the introduction of “games
with rules” does not really lead to a wider class of games.

20.B Determinacy of Closed Games

As usual AN will be given the product topology with A discrete and [T, a
closed subset of AN, the relative topology. We have first the following basic
fact,

(20.1) Theorem. (Gale-Stewart) Let T be a nonempty pruned iree on A.
Let X C [T] be closed or open in [T]. Then G(T,X) is determined.

Proof. Assume first that X is closed. Assume also that II has no winning
strategy in G(T, X). We will find a winning strategy for I.

Given a position p = (ag,ay,...,a2,—)) € T with I to play next, we say
that it is not losing for I if II has no winning strategy from then on, i.e., II
has no winning strategy in the game G(T}, X,,), where T, = {s : p"s € T'}
and X, = {z: p"z € X}. So D is not losing for L.

The obvious, but crucial, observation is that if p is not losing for I,
there is a3, with (a2,) € T, such that for any az,41 with (azn,a2,41) €
Ty, p"(G2n,82n4,) is not. losing for I too.

We use this to produce a strategy for I as follows:

I starts by choosing an ag, with (ag) € T, such that for all ¢, with
(ag,ay) € T, (ag,ay) is not losing for L. II then plays some a, with (ag,a,) €
T. I responds by choosing some a3, with (ag,a,,a2) € T, such that for all
az with (a9, ay,a2,a3) € T, (ao,a,,az,a3) is not losing for I, etc.

We claim that this strategy is winning for L. Indeed, if (ap,,,...) is a
run of the game in which I followed it, then (ag,a,,...,a2,-1) € T is not
losing for I, for all n. If (a,,) ¢ X, then, as ~ X is open in [T, there is &
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such that Ny, ....a0._;)N[T] € ~ X. But then (ao, ..., a2t—1) is losing for I,
as II has a trivial winning strategy from then on (i.e., she plays arbitrarily).

The case when X is open is essentially the same, switching the roles of
I and II. The only difference is that II plays second, but this is irrelevant
in the previous argument. 0

(20.2) Exercise. Let T be a nonempty pruned tree on A and let X C [T] be
closed. Thus X = [S] for 5 a subtree of T. Define by transfinite recursion
S¢ € T as follows:

PESo & p=(ao,...,02n—1) €T\ S,
p€S¢+1 <=>p=((10,...,(12n_]) eT &
Vaznhfazn €T = Juont (pnazn"azn.{.l € Sg)],
P € S\ & I <A(p € Se), if \is limit.

Show that II has a winning strategy in G(T, X) iff @ € U, S¢.

Note that because of the single-valuedness condition iii) in the defini-
tion of strategy (see Section 20.A), 20.1 requires in general the Axiom of
Choice.

(20.3) Exercise. Show that in fact 20.1 is equivalent (in ZF) to the Axiom
of Choice.

Without the Axiom of Choice, we can still prove a form of 20.1, by
introducing the notion of quasistrategy, which is useful apart from these
comments about choice.

Let T be a nonempty pruned tree on A. A quasistrategy for I in
T is a pruned nonempty subtree 3 C T such that if (ag,...,a2;) € T

and (ao,...,azj,(123+1) € T, then (ao,...,azj,azj+1) € . Note that
since ¥ is pruned, if (ag,...,a2;_1) € I then there is some az; with
(@9,...,a2i-1,a2;) € I, but this may not be unique. Similarly, we define

quasistrategies for II. If X C [T is given, we say that a quasistrategy I for
I is winning in G(T', X) if [£] € X (similarly for II). Note that if T C T
is a winning quasistrategy for I (II) in G(T’, X), then there is a winning
strategy ¢ C X for I (II) in G(T, X), using the Axiom of Choice.

Remark. It follows, using the Axiom of Choice, that both players cannot
have winning quasistrategies in a game. Actually, one only needs for that
the Axiom of Dependent Choices, which is the assertion that any nonempty
pruned tree on a set A has an infinite branch. Conversely, it is trivial to
see that if T is a nonempty pruned tree on A with [T] = 0, then in the
game G(T,®), T itself is a winning quasistrategy for both players. Thus
the Axiom of Dependent Choices is equivalent to the assertion that in all
such games-it cannot be that both players have winning quasistrategies.
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We can call a game G(T, X) quasidetermined if at least one of the
players has a winning quasistrategy. Then the proof of 20.2 shows that

every closed or open game is quasidetermined without using the Axiom of
Choice.

(20.4) Exercise. Using the notation of 20.2, show that if § € |J, S, then
one can explicitly describe (without using the Axiom of Choice) a winning
quasistrategy for player Il in G(T', X), while one can do the same for player

Lit 0 ¢ U, Se.

Independently of these remarks about choice, it will be important in
the sequel to isolate the quasistrategy for the “closed” player that arises
in the proof of 20.1. So let T be a pruned tree and X C [T] a closed set
for which I has a winning strategy in G(T, X). Call a position p € T of
arbitrary length (not necessarily even) not losing for I if I has no winning
strategy from then on. If p = (aqg,...,a2,-;), this means the same thing
as in the proof of 20.1. If p = (ag, ..., az2n-1, a2, ), it means that II has no
winning strategy in the game G(T}, X;), with the convention that II starts
first in this game. Let ¥ = {p € T : p is not losing for I}. Then ¥ is a
winning quasistrategy for I in G(T, X), called the canonical quasistrategy
for I in G(T, X).

20.C Borel Determinacy

(20.5) Theorem. (Martin) Let T be a nonempty pruned tree on A and let
X C [T] be Borel. Then G(T,X) is determined.

The idea of the proof of this (and many other determinacy results)
is to associate to the game G(T, X) an auxiliary game G(T™*, X*). which
is known to be determined, usually a closed or open game, in such a way
that a winning strategy for any of the players in G(T™*, X*) gives a win-
ning strategy for the corresponding player in G(T, X). Most often, in the
game G(T*, X*) the players play essentially a run of the game G(T, X) but
furthermore they play in each turn some additional objects, part of whose
role is to make sure that the payoff set becomes simpler, such as closed or
open. So, in particular, there is a natural “projection” from T* into T.

In our case the above general ideas are captured in the concept of
covering of a game.

Let T be a nonempty pruned tree on a set A. A covering of T is a
triple (T, 7, ), where

i) T is a nonempty pruned tree (on some A).

i) 7 : T — T is monotone with length(m(s)) = length(s). Thus =
gives rise to a continuous function from [T'] into [T also denoted here by
(L [T] — [T]
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iii)  maps strategies for player I (resp. IT) in T to strategies for player
I (resp. II) in T, in such a way that ¢(&) restricted to positions of length
< n depends only on & restricted to positions of length < n, for all n.

More precisely, we view here strategies as pruned trees as in Section
20.A. Letting for any tree S, S|n = {u € §: length(u) < n}, this condition
means that for each strategy & (for I or II) on T, ¢(5)|n depends only
on &|n. In other words, ¢ is really defined on partial strategies #|n in a
monotone way (m < n = ¢(G|lm) = @(dln)|lm) and ¢(6) is defined by
@(6)|n = ¢(d|n) for each n.

iv) If & is a strategy for I (resp. IT) in T and z € [T] is played accordmg
to ¢(6) (i.e., € [¢(d)]), then there is # € [T] played according to &
(i.e., T € [5]) such that n(z) = z.

It is clear that if (T, 7, ) is a covering of T and X C [T], then the
game G(T, X) can be “simulated” by the auxiliary game G(T, X), where
X = 7#7Y(X) (a run & € [T] giving rise to the run n() € [T]). If 5 is a
winning strategy for I (resp. IT) in G(T, X), then (&) is a winning strategy
for I (resp. II) in G(T, X). Indeed, otherwise there is x € [p(5)] withz ¢ X
(resp. z € X). But, by iv), we can find £ € [5] with n(&) = z. Then £ € X
(resp. £ ¢ X), soz € X (resp. z ¢ X), which is a contradiction.

For technical reasons we will also need a strengthening of the concept
of covering. For k € N, we say that (T, w, ) is a k-covering if it is a covering
such that T|2k = T|2k and |(T|2k) is the identity. Intuitively, this means
that in the auxiliary game G(T', X) the first k moves of each player are
identical to those of G(T, X). Note that if (T, 7,¢) is a k-covering, then for
any strategy & in T" (for either player), we have that ¢()|2k = &|2k. This
is because by iv) we have that ¢(6)|2k C 7|2k, so since T'|2k = T'|2k and
@(6)|2k, 5|2k are both partial strategies for the same player in T', we must
have ¢(d)|2k = &2k.

Finally, we say that a covering (T, 7, ) unravels X C [T] if =1(X) =
X is clopen (in [T7]).

It is clear then that if (T,w,cp) unravels G(T, X), then, by the Gale-
Stewart Theorem G(T, X) is determined and thus, by the preceding re-
marks, G(T, X) is determined. So 20.5 will follow from the following:

(20.6) Theorem. (Martin) IfT is a nonempty pruned tree on A and X C [T
is Borel, then for each k € N there is a k-covering of T which unravels X.

The reason for proving 20.6 for k-coverings (although we need it only
for coverings to prove determinacy) is so that we can carry out an inductive
argument. The two main lemmas that we need are given next.

(20.7) Lemma. Let T be a nonempty pruned tree and let X C [T be closed.
For each k € N there is a k-covering of T that unravels X.
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(20.8) Lemnma. (Existence of inverse limits) Let k € N. Let (Ti41,Ti41,0i41)
be a (k + i)-covering of T;, i = 0,1,2,.... Then there is a pruned tree To,
and Moo iy Poos SUCH that (T, Moo iPoo i) 8 @ (K + i)-covering of T; and
T4l © Moo,i+l = Moo,is Pi4l © Poo,i4l = Poo,i-

Granting these two lemmas, 20.6 can be proved as follows:

Recall from Section 11.B the Borel hierarchy on [T]. (Note that AN
and thus (7] are metrizable.) We will prove by induction on 1 < £ < w
that for all T, k € N and X C [T] in Z}([T]) there is a k-covering of T that
unravels X.

Notice that if a k-covering unravels X it also unravels ~ X, so by
20.7 this is true for £ = 1. Assume now that it holds for all < £. So for
each T, each Y € II}([T]), n < &, and for each k there is a k-covering
that unravels ~ Y, thus also Y itself. Let X € 32([T]) and k € N. Then
X = U;en Xi, with X; € Hgi([T]), & < & Let (Th,m, 1) be a k-covering
of Tp = T that unravels Xo. Then n]'(X;) is also in I ([Th]) for i > 1,
since it is easy to check that 22, Hg are closed under continuous preimages.
By recursion define now (T} ;. mi41,9i+1) to be a (k+1)-covering of T; that
unravels 7; Yom Y 0. o (X;). Let (Too, Moo 4, Poo i) be as in 20.8. Then
(Too ) T20,0, P20,0) unravels every X;. Thus W;I'O(X) = |, W;I‘O(X,-) is open
in [Tho). Finally, let (T, , ) be a k-covering of T, that unravels 7.}, (X)
(by 20.7). Then (T, Too,0 O T, Poo,004) is & k-covering of T that unravels X.

We now prove the two lemmas.

Proof. (of Lemma 20.8) Note that for any finite sequence s, if 2(k + i) >
length(s), then whether s € T; or not is independent of i. So put

s € Ty © s € T; for any 1 with length(s) < 2(k + 1).

It is easy to see that T, is a pruned tree (on sone set). It is also clear that
Too|2(k + 1) = T3|2(k + ).

We next define m ;: If length(s) < 2(k + i), then 7o ;(s) = s. If
length(s) > 2(k + %) and 2(k + j) > length(s), we put 7 i(s) = miyy ©
Tip2 o - --m;(s). Notice again that this is independent of j.

Finally, we define ¢ ;. If 0 is a strategy for T, let Yoo i(F50)|2(k +
1) = 0x0|2(k + 1), and for § > i, ¥,i(0)|2(k + J) = Pit1 0 Pig20---0
;i (0oc|2(k + 7)). (Note that since T;|2(k + j) = Tso|2(k + ), 0ocl2(k + 7)
is a partial strategy for T; as well.)

It remains to verify condition iv) of the definition of covering. Sup-
pose 0 is a strategy for T, and let i € [psi(0s)]- Let ziy1 €
[Poc,i4+1(00)]y Tit2 € [P it2(00)];. .. come from condition iv) for the
coverings (Ti4). Mig1, @it1), (Tig2, Tig2,0it2), ... together with the fact
that ©;41(Poo,j4+1(Fx)) = Poo,j(00) for any j > ¢, so that w11 (zj41) =z
for any j > i. Since ;4 is the identity on sequences of length < 2(k + 7),
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it follows that (z;,z;41,%i42,...) converges to a sequence T, defined by
Tool2(k + j) = z;|2(k + j) for j > i. Now 0o and ¢ j(0) agree on se-
quences of length < 2(k + 7) so, as z; € [peo j(0o0)] for j > i, we have that
Too € [0oo]. Finally, it is clear that T (o) = . o

Proof. (of Lemma 20.7) Recall that for a tree S, S, = {v : ¢v"v € S} and
for Y C[S], Yo={x:u"z €Y}, sothat ¥, C [S.].

Fix k, T, X and let Tx be the tree of the closed set X, i.e., s €Ty &
Jr € X(sCx). Thus Tx CT.

The game G(T, X) has the form

I =z T2

IT T T3

(o, ..., x;) € T for all i, and I wins iff (z,,) € X.

The k-covering (T, m,¢) that we will define is a way of playing an
auxiliary game in which players I and II, beyond the moves z¢,z,,.. .,
make also some additional moves. First we informally describe this auxiliary
game. Its legal moves define the tree T.

In the games on T players start with moves zgo,Z1,...,%T2k—2.T2k—1,

I x T2k—2

II z) T2k-1

which must be such that (x,...,2;) € T for i £ 2k — 1. In her next move
I plays (xzk, 2])

I =z Tok—2 (Z2k, Z1)
II T T2k—1
where (xg,...,22¢) € T and X is a quasistrategy for I in Ti,,  o,.), with

the convention that II starts first in games on T(,,  :,,)- In her next move
II has two options:

Option 1. She plays (z2k41,u),

Iz Tok_2 (z2r, 1)

II T Tok—1 (T2k41, 1)

where (zg,...,%2t4+1) € T and u is a sequence of even length such that
u€ T(:c._.,...,xz,:“) and u € (21)(3:2“1) \ (TX)(mo,---,zzkH)'

If IT chooses this option, from then on players I and II play xo42,
T2543, ... so that (zg,...,x;) € T for all § and moreover we have u C
(T2k+2, T2k 43: - - .), 1.€., these moves are consistent with wu.

Option 2. She plays (z2x41, 211),
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I To Tok—2 (T2k, Z1)

II z Tak—1 (T2k41, Z11)

where (Zo,...,%2t41) € T and Ty is a quasistrategy for II in (Z1)(x,,,,)
with L € (Tx )(zo,...,52x41)-

If II chooses this option, from then on players I and II play xui42,
T2k43 ..+ S0 that (Tory2, Tokys, ..., Te) € T, for all € > 2k + 2.

Thus, formally, T consists of all finite sequences of the form

(1) (xO) e s L2k—1, ($2kr El)a ($2k+1, (11 'U,)), T2h42y+ ¢ oy $g)
or
(2) (®oy - -+ s T2k—1, (T2, Z1)s (T2k 41, (2, 211)) s L2kt 2y - - » Te)

such that (zq,...,2;) € T for all 1 £ ¢ %1 is a quasistrategy for I in
Tizo,...,x,,) and for the sequences of type (1), v € Ty, xsx,,) has even
length, u € (V1) (22 41) \ (T )(zo,....v2641)> @0 (T2k42,...,Z¢) is compatible
with u, while for the sequences of type (2), Zy; is a quasistrategy for II
in (Z1)(z50.,) With 211 C (Tx )(zo.....02041)> a0D (T2642,-..,%¢) € Ty (It
is understood here that £ could be < 2k + 1, in which case some of these
conditions will be vacuous.)

It is easy to check that T is pruned, i.e., that every player has a legal
move at each turn.

The map 7 is also straightforward:

(Lo, .+« T2k—1, (£2k, ®)s (T2k41,®), T2k 42, -+, Te) = (o, ..., Tp)-
Notice also that
$en Y (X) & #(2k + 1) is of the form (z2x41,(2, Z11))

(i.e., IT chose option 2), so that 7=1(X) is clopen.

It remains to define p. We will informally describe how to play, given
a strategy & on T, the strategy ¢ = () on T in such a way that for any
run z € [o] there is a run & € (] with m(%) = z. It will be clear from our
description that ¢|n depends only on &|n.

Case I. & is astrategy for I in T

For the first 2k moves, o just follows &. Next & provides I with (z2x, Zp).
I plays z2x by o.
Then II plays in T x5141. We have two subcases now.

Subcase 1. 1 has a winning strategy in

G((EI)(x2k+1)’ [(21)(3:2!:4.1)] \ X(fvu,---,ﬂ?zk“))'

Then o requires I to play this strategy. After finitely many moves, a
shortest position u of even length is reached for which u ¢ (T'x )z, .

oy T2E41)?
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say u = (T2k42,...,%2¢—1). Then (xo,...,T2e_1, (T2k, T1), (T2k41, (1, 2)),
Tok42;-.-,%2e—1) is a legal position of T, and ¢ requires I from then on to
play just following &.

Subcase 2. II has a winning strategy in

GUZD) (z2k41) (B @are)] \ X(zo.. 2204 1))-

Let X1 be her canonical quasistrategy in this game (recall here that
the set X(4,, . z54,,) IS closed). In particular, 11 C (1)(z,,,)- From then
on I plays, according to , just following &, assuming that in the game on T
II plaved (z2k41,(2, Z1r)) in her appropriate move. I can do that as long as
IT collaborates and plays her moves afterward so that (r2x42,...,%2¢-1) €
(Z0)(wo,.... 26 +1)» Since then we have legal positions in T. But if for some ¢
with 26—1 > 2k+2, II plays (in the game on T) so that (x2x42,...,%20-1) ¢
(Z11)(zo.... xox +1): then by definition of Xy it follows that I has a winning

Stra«tEgy in G((zl)(a:zk.,.l,...,wzz_])?[(El)($2k+lu---am2€—l)] \ X(xo""ﬁmzf—l)). But
then I can continue by ¢ as in Subcase 1.

Case II. & is a strategy for IT in 7.

Again for the first 2k moves o just follows 6. Next I plays xu; (in the
game on T'). Put § = {X; : X is a quasistrategy for Iin T,  ,.)} and
U = {(x2k41) "¢ € T(x,,... z,) * © has even length, and there is Iy in S such
that & requires II to play (z2x41,(1,u)) when I plays (z2x, 1)}. Then

U = {z € [Tay,...20)] : HT2k41) v € U(x 2 (T2k41) )}

is an open set in [Ty, 2.0

Consider the game on T4, ,,),
I T2k42
II T2k+1 T2k+3

where II plays first and wins iff (z2x41, T2k42,...) EU.
Subcase 1. II has a winning strategy in this game.

Then (in the game on T') ¢ follows after x2; this winning strategy for
II, until (T2k41,T2642. .. ,Z2¢—1) € U. Let u = (T2k42y .- ,Z2¢—1) and, by
the definition of U, let ¥; witness that this sequence is in U. It is clear
that from then on (i.e., for (z24,...)) Il can play o by just following & on

(zo, - T2k—1, (T2k, Z1), (T2k41. (1, 0)), T2ks2, - -+, T26-1)-
Subcase 2. 1 has a winning strategy in this game.

Call Zj her canonical winning quasistrategy. (This game is closed for
I.) Then if I played in the game on T, (z2x,21), ¢ cannot ask II to play
something of the form (zox41,(1,u)). Because then (z2¢41) u € U and, by
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the rules of T, (z2k41)"u € Ly, contradicting the fact that no sequence in
Y can bein U.

So if I played in the game on T, (z2x,%1), 0 asks II next to play
(z2k+1,(2, Z11)). So II plays according to ¢ this x2;41 and continues to
play by o just following & on (xo,...,T2k—1, (Z2k, L1); (T2641, (2, B11)),s
Tok42,---,%2¢) as long as I collaborates so that (z2x42,...,%2¢) € Zn.
If for some € > k + 1, I plays xo, with (z2x42,...,T2¢) € Zq1, then, since
En is a quasistrategy for Il in (2p)q,,,, so that I's moves are unrestricted
as long as they are in Xy, it follows that (z2x42,...,%2¢) & (1)(az,,,) and
we are back in Subcase 1 again. O

Notice that in order to unravel a closed game in which the moves are in
{0,1} (i.e., T = 2<N), we need to play in the preceding proof a game whose
moves are essentially from Pow(N) (quasistrategies are subsets of 2<N which
can be “identified” with N by some enumeration). Tracing then the proof
that Borel games on {0,1} are determined, we see that one uses there the
existence of Pow¢(N), the {th iterated power set of N, for all £ < w). Thus
one uses set theoretic objects of very high type (natural numbers have type
0, sets of natural numbers have type 1, etc.). A metamathematical result
of H. Friedman [1971] shows that this is necessary for any proof of Borel
determinacy. In other words, to establish the validity of Borel determinacy
for games on {0, 1}, which is a statement about simply definable subsets
of the Cantor set, requires the existence of quite large sets, certainly much
bigger than the reals, the sets of reals, etc. This turns out to be a typical
phenomenon in descriptive set theory.

(20.9) Exercise. Give a direct proof that £ games are determined as fol-
lows: Let X C AN be 3, so that X =, Fy,, F, C AN closed. Let T}, be a
pruned tree with F,, = [T},]. Define by transfinite recursion Wé C A<N by:

s € W% & length(s) is even & In(I has a winning strategy in (F)s).
If W7, 5 < €&, have been defined, let

z € C%" & Veven k(z|k € U WTUT,),
n<§

and put
s € W¢ & length(s) is even &
3n(I has a winning strategy in (C*™),).

(Note that C¢™ is closed.) Show that: 1) s € {J, W® = I has a winning
strategy in X,; and 2) 0 ¢ |J, W€ = II has a winning strategy in X.
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20.D Game Quantifiers

Let X C AN. Then the statement “I has a winning strategy in G(4, X)”
can be abbreviated naturally as

JagVa;Jasvasz - - (a,) € X.
Similarly,
Yag3daiYazda) -+ —(a,) € X
abbreviates the statement that II has a winning strategy in G(A4, X). Thus
the determinacy of G(A, X) can be expressed as
=JagVay - (an) € X & VagIa; -+ ~(a,) € X.

So determinacy can be thought of as an infinitary analog of the basic rule
of logic
—JdagVay - Qan—1X (a0, *,an-1) &

Vag3a; -+ Qan-1-X(ag, -+ ,an_1),

where Q@ = Jor ¥ and Q (= the dual of Q) is ¥ or 3. Notice that this logical
rule asserts the determinacy of the finite game

I ao az n-2
I1 a as -1
I wins iff X(ag.....an—1), where we took n to be even for definiteness.

Thus this infinitary rule is valid if X is a Borel set in AN, but not for
arbitrary X even in 2V, using the Axiom of Choice. As we will discuss later
(see 26.B), it is one of the basic strong axioms of modern set theory that all
“definable” games with moves in A, where A is a standard Borel space, are
determined, so this rule is valid if X is a “definable” set in AN, A standard
Borel.

(20.10) Exercise. Define explicitly a game with moves in A = Pow(2V) which
is not determined. (Remark: It is easy to define such a game explicitly and
then show that it is not determined using the Axiom of Choice. In 21.4 we
will ask for another example, where the Axiom of Choice can be avoided,
even in the proof that the game is not determined.)

For any nonempty set A the game quantifier G4 is defined by
GayP(x,y) & JagVar3axVas - - - Pz, (a,)),
where P C X x AN, The dual game quantifier G, is defined by
GayP(z,y) © Vay3a;Vazdaz - - - P(z, (an)).

So if all games G(A, P;) are determined, then
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~GayP(z.y) & Ga-P(z,y).

(20.11) Exercise. Show that the sets of the form GnyF(z,y), where F C
N x N is closed, are exactly the £1 subsets of M. Show that the sets of
the form GnyC(z,y), where C C N x N is clopen, are exactly the Borel
subsets of N,
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21. Games People Play

21.A The *-Games

Let X be a nonempty perfect Polish space with compatible complete metric
d. Fix also a basis {V, } of noneimnpty open sets for X. Given A C X, consider
the following *-game G*(A):

0) ;{0 1 1
r @ o™ o)

II 10 0
U™ are basic open sets with diam(U™) < 2=, UM nU™ =0, i, €
(0,1}, and U™V UM™Y c UM, Let © € X be defined by {z} =
N, US™. Then I wins iff z € A.

Thus in this game I starts by playing two basic open sets of diameter
< 1 with disjoint closures and II next picks one of them. Then I plays
two basic open sets of diameter < 1/2, with disjoint closures, which are
contained in the set that II picked before, and then II picks one of them,

etc. (So this is a version of a cut-and-choose game.) The sets that II picked
define a unique . Then I wins iff z € A.

(21.1) Theorem. Let X be a nonempty perfect Polish space and A C X.
Then

i) I has a winning strategy in G*(A) iff A contains a Cantor set.

it) II has a winning strategy in G*(A) iff A is countable.

Proof. i) A winning strategy for I is essentially a Cantor scheme (Us),c2<x,
with U; open, U, UU,~; C Us, diam(U,) < 271ensth(s)+1 if 5 £ @ such
that for each y € 2V, if {z} =, Uyjn. then = € A. So A contains a Cantor
set.

Conversely, if C C A is a Cantor set, we can find a winning strategy for
I as follows: I starts with (a legal) (Uéu), Ul(o)) such that Ui(o) NC # 0, for
i € {0,1}. Next II chooses one of them, say Uéo) for definiteness. Since C is
perfect, I plays (a legal) (UM, UMY such that UM nC # 0, for i € {0,1},
etc. Clearly, this is a winning strategy for I.

ii) If A is countable, say A = {zq, 71,...}, then a winning strategy for
II is defined by haviug her choose in her nth move Ui(n) so that z,, ¢ U{(")
(i.e., plays i, = 1).

Finally, assume ¢ is a winning strategy for II. Given x € A, call a
position

p=((Us", U)o, .., (Us" ", Uy ), i)

good for z if it has been played according to o (i.e., p € 0) and z € Ui(:_-ll).
By convention, the empty position @ is good for z. If every good for z
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position p has a proper extension that is also good for z, then there is a
run of the game according to o. which produces x € A, so player I won,
giving a contradiction.

So for each © € A there is a maximal good p for z. If p is as just
defined, then

ze Ay, ={y UV Vlegal (UM, UM), it
i is what o requires II to play
next, then y ¢ Ut-(n)}.

Thus, A C UpE » Ap. Now notice that A, contains at most one point, since

if yo # 3 belong to A, and I plays (a legal) (U[(,"), U{")) with y; € Ui("), we
have a contradiction to the fact that y; € A,. The tree of legal positions in
G*(A) is countable and thus so is o, being a subtree of it. So A is countable.

O

Since the map that sends a run of G*(A4), ((Uéo) Ufo)),z'g,...) to z,
where {z} =, Ui(:), is clearly continuous (from [T] into X, where T is
the tree of legal positions of this game), this shows that if A C X is Borel,
this game is determined, so we have one more proof that an uncountable
Borel set in a Polish space contains a Cantor set. (If the space X on which
we are working is not perfect, replace it by its perfect kernel.) Recall that
in 14.13 we proved that this so-called perfect set property also holds for all
analytic sets. We can, in fact, prove this extension by using a further trick,
called unfolding, which actually allows us to use only the determinacy of
closed games.

21.B Unfolding

Suppose now X is a perfect Polish space, and let F C X x A. Consider
then the unfolded *-game G, (F):

1 y(0), s, v y(1), UV, UM

II to 1
I and II play moves as in the *-game, but additionally I plays y(n) € N in
her nth move. If z is defined as before, then I wins iff (x,y) € F.

(21.2) Theorem. Let X be a perfect Polish space, F C X x N, and A =
projx{(F). Then

t) I has a winning strategy in G,,(F) = A contains a Cantor set.

it) II has a winning strategy in G.(F) = A is countable.

Proof. i) If I has a winning strategy in G%(F), then it is immediate that
(by ignoring the y(n)’s) I has a winning strategy in G*(A), so A contains
a Cantor set.
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ii) If now II has a winning strategy o in G.,(F), let € A and choose a,
“witness” yo with (z,y0) € F. As in 21.1 there must exist a maximal good
for (z, yo) position

p=((%(0), (U, UM), 60, ..., (go(r — 1), U, U8 D), 4n),

where good means that p € o and z € U1, So if @ = yo(n), we have that

t€A,,={z¢€ Ut-(:'__ll) : V legal (a, (Uén), Ul("))),
if ¢ is what & requires II to
play next, then z ¢ U™}

So A C Upeoaen Ap,a and, as in 21.1, 4, , contains at most one element.
So A is countable. O

In particular, if A C X is analytic and (by 14.3) we choose FF C X x
closed with projx(F) = A, we have that G%(F') is a closed game for I, so
determined. Thus, either A is countable or contains a Cantor set, so we
have another proof of 14.13.

(21.3) Exercise. For A C 2V consider the following game

I 8o 8

II 10 (3

sn € 2N, i, € {0,1}. Let £ = 897i¢" 5,4, -+ -. Then I wins iff z € A.
Show that this game is equivalent to G*(A). (So it is also usually
denoted G*(A).) Study its unfolded version as well.

(21.4) Exercise. Define explicitly a game on A = Pow(2") and show, without
using the Axiom of Choice, that it is not quasidetermined. (Recall 20.10.)

21.C The Banach-Mazur or **-Games

Let X be a nonempty Polish space and d a compatible complete metric on
X. Also let W be a countable weak basis for X and let A C X. We define
the **-game G**(A) as follows:

I U U,

II Vo Wi

U,‘,V:; €W, djam(Un),ﬁa.m(Vn)f 27" Ug 2V 2U), D2V D« . Letzx
be such that {z} =), Un =), V. Then II wins iff z € A.
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This game is a variant of the Banach-Mazur game G**(A) as defined in
8.H, but it is easy to see (compare, e.g., 8.36) that it is actually equivalent
to it, so there is no danger of confusion. From 8.33 we have:

i) I has a winning strategy in G**(A) < A is meager in some nonempty
open set.

ii) II has a winning strategy in G**(A) & A is comeager.

We can also consider the unfolded version of this game which allows
us to show that all analytic sets have the BP.
Let F C X x N, and define the unfolded **-game G*(F) as follows:

I Uy U

II ¥(0), Vo y(1), V1

I and II play Uy, Vo, . . . as in the **-game, but additionally II plays y(n) € N
in her nth move. If z is defined as before, II wins iff (z,y) € F.

(21.5) Theorem. Let X be a Polish space, F C X x N, and A= projx(F).
Then

i) I has a winning strategy in G3*(F) = A is meager in some nonempty
open sel.

it) II has a winning strategy in G.*(F) = A is comeager.

Proof. ii) If IT has a winning strategy in G**(F), she also has one in G**{ A).

i) Let Up be I's first move by a winning strategy ¢. We will show
that A is meager in Uy. Given z € A N Uy, choose a witness yo € N with
(z,y0) € F. Call a position

pP= (UO’ (?]O(O)s Vﬂ)a oy Uny, (yﬂ(n - 1)’ Vn—l)s Un)

good for (z,70) if p € o and x € U,. Again it is clear that not every good
position has a proper good extension, so let p be a maximal good for (x, yn)
position. If a = yo(n) and p is as defined above, then

z € Fpo={2€U,:Vlegal (a,V,,), if
Up4 is played next by I
following o, then z & Un 4y }.

Clearly, F, 4 is aclosed in U}, set and has no interior, since if V,, is a set in the
weak basis with V,, C F,, , and diam(V,) < 27", and II plays (a, V3) in her
nth move, then I, following o, plays Un4y C Va, with U, 1NF}, o = O, which
is a contradiction. So F}, , is meager and since ANUg C Upe o,0eN Fp,as AN
Uy is meager t00. 0

In particular, if we take A to be analytic and choose F to be closed, so
that the game G.*(F) is closed too, and thus determined, we obtain that
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i) or ii) of the theorem holds, in particular that G**(A) is determined. But
then, by 8.35, it follows that all analytic sets have the BP. Thus we have
the following result.

(21.6) Theorem. (Lusin-Sierpinski) Let X be a Polish space. Then all an-
alytic sets have the BP.

It also follows that all sets in o(X]) have the BP, so by 18.1 every
analytic set has a Baire measurable uniformizing function.

(21.7) Exercise. Consider the game defined in the second part of 8.36. For
countable A, analyze its unfolded version.

21.D The General Unfolded Banach-Mazur Games

The proof of 21.5 makes use of the existence of a countable weak basis
for X. Actually, one can prove a much more general version of this fact
which avoids such countability assumptions and therefore applies to such
topologies as the Ellentuck and the density with further applications.

We will consider nonempty topological spaces X that are Choquet and
have a metric whose open balls are open in X (see 8.33 ii)). Fix a weak basis
W for X. As before, it is easy to see that for A C X the Banach-Mazur
game G**(A), as defined in 8.H, is equivalent to the following:

I U, Uy

II Vo Vl

Ui,Vg‘ EW, g2 Veg2U 2V D+, dia.m(U,),dla.m(V,) < 27 11 wins
lﬁ nn ‘{ﬂ (= nn Uﬂ) g A

Suppose now F C X x N, and let A = projy(F). Consider the
unfolded Banach-Mazur game G*(F)

I U U,

II ¥(0), Vo y(1), W

U, Vie W, U 2V 20, 2V 2 -+, diam(U;),diain(V;) < 27*. II wins
iff (), Vo x {y} C F.

Note that in both games if a player has a winning strategy then, since
X is Choquet, she can guarantee, by modifying her winning strategy, also
that (), Va (=), Un) is nonempty, thus a singleton (see the proof of 8.33
ii)).

We now have the next theorem.

(21.8) Theorem. Let X be a nonempty Chogquet space that admits a metric
whose open balls are open in X. Let F C X x N and A = projx(F). Then
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i) I has a winning strategy in G2*(F) = A is meager in a nonempty
open sel.

ii) II has a winning strategy in G.*(F) = A is comeager.

Proof. ii) is clear, since if II has a winning strategy in G2*(F), II clearly
has a winning strategy in G**(A).

i) Let ¢ be a winning strategy for I. Let Uy be her first move by . We
will show that A is meager in Uy.

Fix a finite sequence u € N<N of positive length. We say that a finite se-
quence (Up, Vo, U1, W,...,Uy), with n < length(w), or (U, Vo, ..., Un, Va)
with n < length(u), is compatible with o, u if (U, (u(0), Vo), U1, (u(1), 1),
.., Uy), respectively (Ug, (u(0),Vy),...,Un,(u(n),V3)), is in 0. It is easy
now (see, e.g., the proof of 8.11) to construct for each u a tree T,, of com-
patible with o, u sequences such that:

a) For any (Uo,Vo, ..., Up) € T, the family U = {Un+] : (Us, Voo -- -,
Uiy Va,Uny1) € T,} is pairwise disjoint and (JU dense in U if n+1 <
length(u).

b) If u C v/, then T, is the restriction of T,/ to the sequences as above
with n < length(u), respectively n < length(u).

Then let W, = U{Ulength(u) : (U0, Vs -+ s Ulength(u)) € T.}. Thus W,
is open dense in Uy for each u € NN, Let G = M, Wu. Then G is comeager
in Uy, so it is enough to check that G C ~ A (i.e., if x € G then Vy €
N(x,y) ¢ F). Fixy € N. Since z € ), Wy, in particular = € (), W,,, and
so by a) and b) there is unique (U, Va,...,Un,Va,...) such that 2 € Uy,
for each n and (U, (¥(0), Vo), Uy, (¥(1), V1), ...) € [o]. So (z,y) ¢ F and we
are done. ]

Now consider a Polish space (X,7) and let 7/ 2 7 be another topol-
ogy on X which is Choquet. Let d be a compatible complete metric for
(X, 7). The preceding result clearly applies to (X, 7). Actually, it is more
convenient to work in this context with the following equivalent variant of
G**(A). Fix a weak basis W for 7’. Consider then the game

I Uy Vi

I1 Vo Wi

Ui Vi € W, Us D Vo DUy 2 Vi D ---, diam(U;), diam(V;) < 2~%. II wins
if z € A, where {z} =, V2 (=N,.T%), with U’ = the closure of U in
7.

We define the unfolded games G*(F) for F C X x N. Note here that
if F is closed in (X,7) x N, then G:*(F) is determined, being a closed
game.
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(21.9) Theorem. (Silver) Let S C [N be analytic. Then S is completely
Ramsey.

Proof. Let [a, A] be any basic open set. in the Ellentuck topology. Note that
[a, 4] is closed in the usual topology of [N]*°. By applying Theorem 21.8
and the preceding remarks to X = [a, A], 7 = the usual topology, 7’ =
the Ellentuck topology, we have that either S is comeager in [a, A] or there
is [b, B] C [a, A] with S meager in [b, B].

In order to show that S is completely Ramsey, it is enough, by 19.14,
to show that S has the BP in the Ellentuck topology; for the latter, it is
enough to show by 8.29 that S\ U(S) is nowhere dense. Otherwise, there
is [a, A] € S\ U(S), where closure is in the Ellentuck topology. If S is
comeager in [a, A], then by definition [a, A] C U(S), contradicting the fact
that [a, A] N (S\ U(S)) and thus [a, A]\ U(S) is nonempty. There must be
therefore (b, B] C [a, A] with S meager in [b, B], so by 19.17 there is [b, B']
with B’ C B such that [b,B’] C ~ S. Since [b, B'] C [b,B] C [a, 4], we
have that [b, B’ ] N (S \ U(S)) (and thus [b, B'] N S) is nonempty, which is a
contradiction. O

A set A C X, where X is a standard Borel space, is called univer-
sally measurable if it is g-measurable for any o-finite Borel measure g on
X. A function f : X — Y between standard Borel spaces is universally
measurable if it is g-measurable for any o-finite Borel measure .

(21.10) Theorem. (Lusin) Let X be a standard Borel space. Every analytic
set 8 C X is universally measurable.

Proof. Let p be a ¢-finite Borel measure on X. We will show that 5 is p-
meaéurable. Since p is equivalent to a probability measure, we can assume
that u is actually a probability measure. By separating p into its continuous
and discrete parts, we can assume, without loss of generality, that p is
continuous. Then by 17.41 we can assume that X = (0,1) and that g is
Lebesgue measure.

Let P = ~ S and p.(P) = sup{u(A) : A C P, A Borel}. Clearly,
g+ (P) = p(A) for some Borel A C P. Let P = P\ A. Then g, (P') =0 and
P’ € II}. If P’ has y-measure 0, then P’ C B for some Borel set B of p-
measure (), so AC P C AUB and ;i(A) = p(AUB); thus P is y-measurable,
and so is S. Therefore it is enough to show that P’ has y-measure 0.

As in the proof of 21.9, but working now with the density topology
(see 17.47), we see that either ~ P’ is comeager or else ~ P’ is meager in
a nonempty open set in this topology. In the first case, by 17.47, P’ has
measure 0 and we are done. In the second case, let U be nonempty open in
the density topology so that U \ P’ is meager. Thus U \ P’ has measure 0,
so U\ P' C G, where G is Borel of measure 0. Then U\G C P’ and U\ G is
measurable of positive measure, thus p,(P’) > 0, which is a contradiction.



156 II. Borel Sets

In particular, every set in ¢(X}]) is universally measurable. Thus it
follows (from 18.1) that every analytic set admits a universally measurable
uniformizing function.

(21.11) Exercise. Given X C [N]*, consider the following game:
I (ao,Ao) (az, A2)

II (a1, Ay) (@3, A3)

a; € U,[N]*, A; € [N]%, a; < A;, aig1 2 a4, ai1 \@; C A;, Ain C
A;, card(a;) > i+ 1. Let A=J, an. € [N]*. Il wins iff A € X.

Show that this game is equivalent to the Banach-Mazur game for the
Ellentuck topology (and similarly, for the unfolded version).

(21.12) Exercise. For A C (0,1) consider the following game:
I F P

IT 31 By

F;C(0,1), F; closed, Fs 2 F} 2 F5 D -+, diam(F;) < 27}, m(F;) >0 (m
is Lebesgue measure). Let {x} = (), Fn. II wins iff z € A.

Show that this game is equivalent to the Banach-Mazur gamne for the
density topology (and similarly, for the unfolded version).

21.F Wadge Games

(21.13) Definition. Let XY be sets and AC X,B C Y. A reduction of A
toBisamap f:X — Y with f"Y(B)=A,ie,z€ A& f(z)e B.IfX\Y
are topological spaces, we say that A is Wadge reducible to B, in symbols
A <w B, if there is a continuous reduction of A to B. (Strictly speaking,
we should write (X,A) <w (Y ,B), but XY are usually understood.)

This gives a notion of relative complexity of sets in topological spaces.
If A <w B, then A is “simpler” than B. It is easy to see that <y is re-
flexive and transitive (i.e., a partial preordering) which is called the Wadge
(pre)ordering, We will study here the Wadge ordering on Borel sets in
zero-dimensional Polish spaces.

From now on we will consider sets A in nonempty zero-dimensional
Polish spaces X. By 7.8 we can view X as a closed subspace of N, thus
X = [T] for a nonempty pruned tree on N.

(21.14) Theorem. (Wadge's Lemma) Let S,T be nonempty pruned trees
on N, and A C [S], B C [T] be Borel sets. Then either A <w B or
B <w~ A (=[S]\ A4).



21. Games People Play 157

Proof. Consider the Wadge game W G(A, B),
I z(0) z(1)

II y(0) y(1)

z(i),y(}) € N; z|n € S, yln € T for all n. Il wins iff (r € A < y € B).
Since A, B are Borel, this is clearly a Borel game, so determined.
Suppose first that II has a winning strategy. We can view this strategy

as a monotone map ¢ : S — T such that length(yp(s)) = length(s) (a

Lipschitz map; see 2.7). Thus ¢ gives rise to a continuous map ¢* : [S] —

[T]. Since ¢ is winning for II, z € A & ¢*(z) € B,so A <w B.

Notice that I wins the above game if (x ¢ A & y € B). So, as above,

if I has a winning strategy, then B <y ~ A. 0

For sets A, B as above, let
A=w B& A<w B& B <w A.
This is an equivalence relation, whose classes
A= [Alw

are called Wadge degrees. We denote by WADGE the set of Wadge degrees
and by WADGEg the set, of Wadge degrees of Borel sets. Let also,

A<B& A<w B,
so that (WADGE, <) is a partial ordering. For each A define its dual A by
A=~ Aw.

Note that A < B < A <B.

It is possible that A = A. For example, take X = 2N, A= Noy={z ¢
2N : £(0) = 0}. It is also possible that A # A. Take, for instance, A = 0 or
for a more interesting example, A = Q = a countable dense subset of 2M.
When A # A, the Wadge degrees A, A are clearly not (<-) comparable.
Wadge’s Lemma asserts that, for Borel sets, these are the only incomparable
pairs of Wadge degrees, in fact, for any given A, B with B # A, A we must
have B< A,A or A A <B.

We can define then a coarser equivalence relation by identifying A, A.
Let

A=y Be A=w Bor A=y~ B,
and let
A'=[AlwU[~ Alw = AUA.

We call A* the coarse Wadge degree of A and deuote the set of these coarse
degrees by WADGE* (WADGEY} if we look at Borel sets only). Again, we
can define an ordering on it by
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A"<"B*"© A<w Bor A <w~ B.

Thus Wadge’s Lemma says that (WADGE}, <*) is a linear ordering.
We will next show that it is actually a wellordering,.

First note though that if A C [T, then there is B C NV with A=w B.
To see this, fix a continuous surjection f : N — [T] with f being the identity
on [T] (see 2.8). Put B = f~}(A) C M. Then B <w A. But the identity
map from [T into A also shows that A <w B. Thus, when studying Wadge
degrees, we can work just with subsets of A,

(21.15) Theorem. (Wadge, Martin) The ordering (WADGEF, <*) is a well-
ordering.

Proof. (Martin-Monk) It is enough to show that there is no infinite de-
scending chain - .- <* A% <* A} < A}, with Borel A; C V. If such existed,
toward a contradiction, then player I would have a winning strategy, say 2,
in WG(An, Any1) (since A, £w A, 1) and I would also have a winning
strategy, say o, in WG(Ap,~ A,4)) (since A, L€w~ Ang1)-

I () {0) () © (0)

X h ) i) Yy
x(0
60 ? (1)/ (1)/ ( )/ (l)/
I % x "
VA, S S
I )6(1) yl(l) )Q(l) .Jé(l) J’q(l)
o " ( )/ ( )/ S S/
I * 2 % 2 y @ (b))
A A 2 i JZ'J%
I J6(2) yl(z) )&(2) 35(2) % (2)
o, S S S S/
1 3 e 3 )
/;Jb f Y, 2 /;l’)é
I )6(3) yl(.’o) )&(3) }%(3) y4(3)
O-sx(s) / / / /
I @ @ g @
/;1)6 /:'Jﬁ /713& /71)3
</ < [d 44
FIGURE 21.1.

Fix z € 2N, Consider the diagram in Figure 21.1. I plays yé") in the nth
game following ¢=(™. This fills the first column. Then II copies as shown
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to play y("“'“) in the nth game. This fills the second column. I responds by

following =™ in the nth game to play y (") This fills the third column,
etc. Let yp(z) = (y,c ))keN Then

(x) Un(e) & An & Yni1(2) € AZTY,
where A? = A,,, Al =~ A,. Let
X = {(EE N . yo(.'E) € An}

Since z — y,(x) is continuous, X is Borel and thus has the BP. Notice
now that if z, 7 € 2N and z,Z differ at exactly one point, say z(n) = #(n)
for n # k, but z(k) # z(k), then z € X & T ¢ X. To see this, note that
y»(z) depends only on z(n), z(n + 1), . 50 Ye(x) = yg(:c) if € > k. Then,
by (*), yk(z) € Ax & yrpa(x) € Ak < Y41 () € Ak+1 & ya1(T) ¢
A:Sﬁ) & yYi(Z) € Agx. Finally, since z(n) = Z(n) for n < k, it follows from
(*) again that yo(z) € Ao & y0(Z) ¢ Ao

We will now derive a contradiction by showing that X does not have
the BP. Otherwise, by 8.26, there is n € N and s € 2", so that X is
either meager or comeager in N;. Let ¢ : Ny — N, be the homeomorphism
giVEh by \P((.’Bg)) = (.780, v Tn-, 1- TnyZngly ) Thenz € X & (,0(:13) ¢
X, so (X N N,;) = ~ X NN, which is a contradiction. 0

We call a Wadge degree A self-dual if A = A. The following facts
have been proved by Steel-Van Wesep (see R. Van Wesep [1978]). If A is
a self-dual (resp., not self-dual) degree and B* is the successor of A* in
(WADGEF, <*), then B is not self-dual (resp., is self-dual). Moreover, it
is easy to see that the least element of this ordering is [0]lw U [M]w. At a
limit stage A in the wellordering (WADGEY, <*) we have a self-dual degree
if cofinality(\) = w, and a non-self-dual degree if cofinality(A) > w. Finally,
the ordinal type of (WADGEF, <*) is a limit ordinal 8, where w; < # < ws.
Thus we have the following plcture of the partial ordering of Wadge degrees
(and by identifying a degree with its dual, of the wellordering of coarse
Wadge degrees) of Borel sets:

* L * *

0 @O 2 O (W) (w+1) (w1)

Thus the Wadge ordering <y imposes an (essentially wellordered) hi-
erarchy on the Borel sets, called the Wadge hierarchy. Since the classes
22, Hg are closed under continuous preimages, these classes are initial seg-
ments of the Wadge hierarchy. The Wadge hierarchy gives a very detailed
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hierarchical analysis of the Borel-sets, much finer than that given by the
classes 22, .

(21.16) Exercise. Show that [O]lw = {0}, [NM]w = {N} occupy level 0 of
the Wadge hierarchy. Show that the clopen sets that are # 0, A occupy
level 1 of this hierarchy. Show that level 2 consists of U,F, where U is
open, not closed, and F is closed, not open. Show that level 3 consists of
A = [U & Flw, where U, F are as aboveand U F = {i"z: (teven & z €
U) or (i 0dd & x € F)}. (It can be shown that level w, is occupied by A, A,
where A is F, but not Gs.)

(21.17) Exercise. Show that if @ C 2N is countable dense, then A <w Q
for any A C N in F),.

21.F Separation Games and Hurewicz’s Theorem

Let S,T be nonempty pruned trees on N and let A C [S] and By, B, be
subsets of [T'] with By N By = 0. The following generalization of the Wadge
game, which is also due to Wadge, is called the separation game of A, By, B),
denoted as SG(A; By, By),

I z(0) 2(1)

II ¥(0) y(1)

z(i),y(t) € N; zjn € S,yln € T. Il wins iff (z € A = y € By) and
(x ¢ A= y € B)). In particular, SG(A; B,~ B) = WG(A, B).

As in the proof of 21.14, if | has a winning strategy, there is a continuous
function f : [T] — [S] induced by this winning strategy such that (y € B, =
f(y) € A) and (y € By = f(y) ¢ A), so f~*(A) separates B, from By. If,
on the other hand, II has a winning strategy, there is a continuous function
g : [S] — [T] induced by her winning strategy such that g(A4) C B, and
9(~ A4) C By.

We will use such games to prove Hurewicz’s Theorem 7.10 and, in fact,
much stronger results. Let us first state the original form of Hurewicz’s The-
orem, of which 7.10 is a special case. (For the following results it is relevant
to recall the fact that every countable dense subset of C is homeomorphic
to Q (see 7.12) and that its complement is homeomorphic to A (see 7.13).)

(21.18) Theorem. (Hurewicz) Let X be a Polish space and A C X an
analytic set. If A is not F,, then there is a Cantor set C C X such that C\ A
s countable dense in C, so that CN A is a relatively closed subset of A that
is homeomorphic to N'. Therefore, if B C X is co-analytic, then either B
is Gs (i.e., Polish) or else B contains a relatively closed set homeomorphic

to Q.
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Let us mention some corollaries.

(21.19) Corollary. (Same as 7.10) Let X be Polish. Then X contains a
closed subspace homeomorphic to N iff X is not K.

Proof. (of 21.19 from 21.18) If X is K, it clearly cannot contain a closed
set homeomorphic to N, since A/ is not K. Conversely, if X is not K, and
X is a compactification of X, then X is not F, in X, so it contains a closed
set homeomorphic to A. O

Recall that every Polish space is Baire and so is every closed subspace of
it (also being Polish). We call a topological space completely Baire if every
closed subspace of it is Baire. Is every separable, metrizable, completely
Baire X a Polish space?

(21.20) Exercise. Use the Axiom of Choice to show that there exists A C R
that is completely Baire but not Polish (i.e., Gs).

However, for “definable” X the answer to the question preceding 21.20
turns out to be positive. Below, call a separable metrizable space co-analytic
if it is homeomorphic to a co-analytic set in a Polish space.

(21.21) Corollary. Let X be a separable metrizable co-analytic space. Then
X is Polish iff it conlains no closed subset homeomorphic to Q iff it is
completely Baire.

Proof. (of 21.21 from 21.18) We can assume that X C Y, where Y is Polish
and X is IT} in Y. If X is not Polish, then X is not Gs in Y, so there is a
clesed subspace of X homeomorphic to Q. But Q is not Baire. O

We will now prove 21.18 by actually proving a stronger “separation”
result.

(21.22) Theorem. (Kechris-Louveau-Woodin) Let X be a Polish space, let
A C X be analytic, and let B C X be arbitrary with AN B = 0. If there
is no F, set separating A from B, then there is a Cantor set C C X such
that C C AU B and CN B is countable dense in C. In particular, CN B is
homeomorphic to Q and C N A is homeomorphic to N.

Hurewicz’s Theorem 21.18 follows by taking B = ~ A.

Proof. (of 21.22) First we will verify that it is enough to prove the theorem
for X =C.

It is clear that we can replace X by a compactification X, so we may
as well assume that X is compact. Then let # : C — X be a continuous
surjection and put A’ = 7~'(A4), B’ = #~1(B). Then A’ is analytic, A’ N
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B’ = 0 and if an F, set F' separates A’ from B’, then, as it is actually
K,, m(F') is also K, and separates A from B. So if the result holds for
C, there is a Cantor set H C C with H C A’ U B’ and H N B’ countable
dense in H. Then K = w(H) is a closed subset of X, K C AU B, and
KN A, KN B are disjoint dense subsets of K, with K N B countable.

In particnlar, K is perfect. It is easy now to construct a Cantor set C C
K having the same properties. Just construct a Cantor scheme (C;) o<,
where C, is open in K, diam(C,) < 2~'¢n8th(¢) O, C C,, together with
points z; € Cs N B such that z;,-9 = z, for all s. Then the set C =
U.ec N Cxjn has all the required properties.

In fact, from the preceding argument, we see that it is actually enough
to prove the following;:

Let A, B C C, A analytic, and ANB = . If there is no F, set separating
A from B, then there is a closed set K CC with K CAUB, KNAKNEB
dense in K and K N B countable.

To prove this, consider the separation game SG(Q; B, A), where @ C C
is a countable dense set. We note first that player I cannot have a winning
strategy in this game, because a winning strategy would induce a continuous
function f : C = Csuchthat (ye A= f(y) € Q) and (y € B = f(y) ¢ Q).
But then f~!(Q) is F, and separates A from B, a contradiction.

So, if this game is determined, II has a winning strategy, which again
induces a continuous function g : C — C such that ¢(Q) € B and g(~ Q) C
A soif K=g(C), KCAUB, KNA,KNB are dense in K and KN B
is countable, so we are done. However, it is not clear how to prove that
this gamne is determined since, among other things, B is arbitrary (not even
necessarily “definable”).

So we will work instead with an appropriate “unfolded” game. Denote
by m;y : C x C — C the projection to the first coordinate. By 14.3, let
G C CxC be G so that m (G) = A. Put Ug = | J{U open in CxC : m|(UNG)
can be separated by an F, set from B}, Clearly, G\ Uy = Gy # 0 since
the union of countably many F, sets is F,. Also, Gy is Gs. Fix a basis of
nonempty open sets {W,,} for Gg (in the relative topology). We claim that
T (W) B # 0. Indeed, otherwise, letting U}, be open with U, NGy = W,
we have that m (U], N G) C m(W,)um (U A G) Cm(W,)UmUsNG),
which can be separated by an F, set from B. Thus U,, C Uy, and so W, = 0,
which is a contradiction.

Therefore choose z,, € T (Wy,) N B. Let By = {z,, : n € N}. Then
Go, By x C are disjoint and there is no F, set (in C x C) separating Gy
from By x C. To see this, let, toward a contradiction, F, be closed with
Go € U, Fr and (|J,, Fn) N Bg x C = 0. Then by the Baire Category
Theorem (applied to the Polish space Gy), there are m, n with W,,, C F,, so
T (Wm) € m (Fr) since my(Fy,) is closed, being compact. So ., € m(Fy),
and thus F,, N (By x C) # 0, which is a contradiction.
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Consider the game SG(Q; By xC, Gg). (To put it in the proper form as
described in the beginning of this section, we can think of C x C as identified
with C via the homeomorphism (z,y) = (z(0),y(0),z(1),%(1),...).) The
payoft of this game is now a Boolean combination of GG sets, so it is Borel,
thus determined. Since there is no F, set separating Gg from By x C, player
I cannot have a winning strategy as before. So II has a winning strategy,
which again gives a closed set K’ with K’ C GoU (Bg xC), K'N Gy, K' N
(Bo xC) dense in K’ and K'N(By xC) countable. Then K = m(K’) clearly
works. 0

Let us finally notice one more corollary of 21.22. Compare this with
the perfect set theorem for analytic sets (see 14.13 and Section 21.B).

(21.23) Corollary. (Kechris, Saint Raymond) Let X be Polish and A C X
be analytic. Either there is a closed set F C X homeomorphic to N which
is contained in A or else A is contained in a K, subset of X (and exactly
one of these alternatives holds).

Proof. Consider a compactification X of X and let B = X \ X. If there is
an F, set separating A from B. then clearly A is contained in a K, subset
of X. Otherwise, there is a Cantor set C C X such that C C AU (X \ X)
and F=CnNA=CnNJX is closed in X and homeomorphic to NV, 0

(21.24) Exercise. i) Recall that a tree T is perfect if every s € T has
an extension t 2 s in T with at least two distinct immediate extensions
t"a,t"b € T (a # b). We call T superperfect if every s € T has an extension
£ O s in T with infinitely many distinct immediate extensions in T.

Show that if T is a nonempty superperfect tree, then there is a closed
subset of [T'] which is homeomorphic to A

ii) Call A C N o-bounded if it is contained in a K, subset of N
(eqnivalently, if there is a countable set {z,} € A such that Vz € AIn(x <
z,), where x <y & z({) < y(¢), Vi). Show that if FF C A is closed, then
F can be written uniquely as F = PUC, with PNC =0, P = [T] with T
superperfect (we call P itself superperfect in this case) and C o-bounded
(which is an analog of the Cantor-Bendixson Theorem). In particular, a
closed set in A contains a closed subset homeomorphic to A iff it contains
a nonewmpty superperfect set. 3

iii) For A C N consider the game G(A):

I 80 81

I1 ky k2

$; € NN\ {0}, k; € N, 5;(0) > k;. I wins iff 54”5, 52" -+ € A.
Show that

a) I was a winning strategy in G'(A) < A contains a nonempty super-
perfect set.
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b) II has a winning strategy in G'(A) & A is o-bounded.

Consider also the unfolded version of this game, and use it to show
that for analytic A C N, either A contains a nonempty superperfect set or
A is o-bounded. (This is another proof of 21.23 for X = N\)

21.G Turing Degrees

Recall from 2.7 that every continuous function f : G — N, where G C N in
G's, has the form f = ¢* for some monotone ¢ : N<N — N<N, We call such
a ¢ recursive (or often computable) if there is an algorithm that for each
s € N<N computes the value (s). Note that there are only countably many
such ¢. Given z,y € N, we say that z is recursive in y, in symbols z <t v,
if there is recursive ¢ as above with ¢*(y) = z. Intuitively, this means that
x is computable relative to y. Since the identity is computable and if ¢, ¥
are recursive, so is @ o1, the relation <r is reflexive and transitive. Define
the Turing equivalence relation x =1 y by

z=ryezry&yrz.

Its equivalence classes
x = [z]r
are called Turing degrees, and their set is denoted by D. On D we define

the partial ordering
XSy®Tiry

The study of the structure of (D, <) occupies a large part of recursion (or
computability) theory. This structure is very complex, but here are some
elementary facts:

i) (D, <) has a least element denoted by 0. It is defined by 0 = [0],
where 0 = (0,0,...). Clearly, O consists of the recursive r € N, i.e., those
functions £ : N — N that can be computed by algorithnis.

ii) The initial segments I, = {b : b < a} are countable, but D has
cardinality 2%°.

iil) (D, £) is not linearly ordered. This can be seen as follows: Notice
first that the relation <z is £3 (in A" x N). If {¢,,} enumerates the recursive
monotone maps, then

z<rye Eln[klim length(en(y|k)) = co
& Vk(pn(ylk) C 2)].

So <t has the BP. Now {z : ¢ <7 y} is conntable and thus meager. By
8.41, <r is meager, hence for comeager many z, {y: ¢ <p y} is meager.
Then if £ <7 y or y <7 z holds for any z,y, A must be meager, which is
a contradiction.
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iv) Any two x,y € D have a least upper bound x V y = [(2(0), y(0),
z(1),y(1),...))r (but in general not a greatest lower bound).

v) Any sequence Xg,X), ... in D has an upper bound (but not neces-
sarily a least one). Indeed, fix a recursive bijection () : N x N — N and let
z({m,n)) = x,(n). Then x; < x, for each 1.

vi) (D, <) has no maximal element. Indeed, given y, theset {x : x <y}
is countable, so let 2 € D be such that z £ y. Then if y* =y V z, we have
that y < y*.

The cone of an element x € D is the set
Cx={y€DZyZX}.

We have now the following important fact about (D, <).

(21.25) Theorem. (Martin) Let A C D be Borel, in the sense that A* =
{x € N:x € A} is Borel. Then for somex € D, Cy C A or Cx C ~ A.

Proof. Consider the game G(A*):
I a(0) a(2)

II a(1) a(3)

a(t) € N. I wins iff a € A*.

This game is Borel, so determined. Say I has a winning strategy. (The
argument in the other case is similar.) We will view this strategy as a map
¥ ¢ NN - N (see 20.A). Fix now a recursive bijection ¢ : N — N<N
and let x = 1 o ¢ so that z € M. We claim that Cx C A. Let y € Cx
so that x is recursive in y. Consider the run of the above game in which
II plays (a(1),a(3),...) = y and I responds by ¥ to play (a(0),a(2),...).
Then y <r a, so y < a. But also, a <7 (y(0),2(0),y(1),z(1),...), so
a<yVx=y,thusa=y. Since a€ A, y € A, and we are done. O

Consequently, in any Borel partition of D into two pieces, one (and
by iv) above, exactly one) of the pieces contains a cone. We define the
Martin measure on the Borel snubsets of D by asserting that such a set
has measure 1 if it contains a cone, and measure 0 otherwise. Since, by
v), the intersection of countably many cones contains another cone, this
is a countably additive {0,1}-valued measure on the Borel subsets of D.
(Note that the only such measures on a standard Borel space are the Dirac
measures.)

(21.26) Exercise. Show that if A C D is Borel and cofinal (i.e.,, vx € D3y €
A(x <y)), then A contains a cone.

Call y € D a minimal cover if there is x < y so that y is minimal
above x, i.e., there is no z with x < z < y. A theorem of G. E. Sacks [1963]
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shows that for any x € D there is y € D minimal above x. Use this to show
that there is a cone consisting solely of minimal covers.

(21.27) Exercise. Let AC D be Borel and let A* = {z e N :x€ A}, A’ =
{z € C: x € A}. Show that A* (and A’) is meager or comeager. Show that
if pe is the usual product measure (Haar measure) on C (see Example 3) in
17.B), then pe(A’) = 0 or 1. (This shows that category and measure also

provide countably additive {0,1}-valued measures on the Borel subsets of
D.)
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22. The Borel Hierarchy

22.A Universal Sets

For any metrizable space X recall the definition of the Borel hierarchy
TA(X), M(X), AY(X) in Section 11.B. Without repeating it explicitly, in
this notation we always assume that 1 <& <.

Note that if X C Y, then ZY(X) = B(Y)|X = {ANX: Ae TYY))}
and similarly for ITY. But this fails in general for A?(X). Consider, for
example, @ € R and let A C Q be such that A,Q\ A are dense. Then
A € AY(Q), but there is no B C R in AY(R) with BN Q = A. It is true,
however, for £ > 2 and X Polish, as it follows easily from 22.1 for £ > 3
and from 22.27 for £ = 2.

Let us note the following simple closure properties of the classes
2,112, and AZ.

(22.1) Proposition. For each £ > 1, the classes 20,1'12, and Ag are closed
under finite intersections and unions and continuous preimages. Moreover,
Eg is closed under countable unions, Hg under countable intersections, and

Ag under complements.

Proof. By induction on &. 0

There is a partial converse to closure under continuous preimages; see
24.20.

The classes 22, l'lg, and Ag provide for each Polish space X a hierarchy
for B(X) of at most w, levels. We will next show that this is indeed a proper
hierarchy, i.e., all these classes are distinct, when X is uncountable. This is
based on the existence of universal sets for the classes 22, and Hg.

(22.2) Definition. Let I be a class of sets in various spaces (such as Eg,l'lg,

Borel, 31, etc.). We denote by I'(X) the collection of subsets of X which are
in'. We say that a set U C Y x X is Y -universal for I'(X) if U € I'(Y x X)
and {Uyy € Y} = I(X). (Thus in the proof of 14.2 we have shown that
there exists a set that is N -universal for £}(N).) Such a universal set
provides a parametrization (or coding) of the sets in ['(X), where we view
y as a parameter (or code) of U,,.

For any class of sets I', we denote by I its dual class
IN(X)=~T(X)={X\A: AcT(X)}
and by A its ambiguous part
AX)=T(X)NI(X)={AC X: A ~AcT(X)}



168 IIL. Borel Sets

(22.3) Theorem. Let X be a separable metrizable space. Then for each & > 1,
there is a C-universal set for £Y(X) and similarly for IIY(X).

Proof. We proceed by induction on £. Let {V,,} be an open basis for X. Put
(y,x)eUoyelC&kreX&
z € U{V” s y(n) = 0}.

Then U € £¥(C x X) and {U, : y € C} = T}(X), so U is C-universal for
= X).

l Note next that if i is Y -universal for I'( X'), then ~ U is Y -universal for
the dual class I'(X). In particular, there exists a C-universal set for II9(X),
and if there is a C-universal set for £2(X), there is also one for l'lg(X ).

Assume now that C-universal sets Uy for IT}(X) are given for all n < ¢.
Let 5, < &, n € N, be such that 5, < np4y and sup{n, +1:n € N} = &.
For each y € C, let (y)n € C, n € N, be defined by (y)n(m) = y({n,m}),
where () is a bijection of N x N with N. Then y — (y).. is continuous and
for any sequence (y,) € CN there is y € C with (y),, = yn, ¥n € N. Put

(y,x) €U © In((Y)n, ) € Uy, .
Then U is C-universal for T(X). 0

(22.4) Theorem. Let X be an uncountable Polish space. Then for each &,
UX) # OYX). Therefore AYX) G ZHUX) & AL (X), and similarly
for Hg(X ).

Proof. Since X is uncountable, we can assume that C C X. So if £2(X) =
Hg(X), then Eg(C) = Sg(X)IC = II(X)[C = l’lg(C). Let U be C-universal
for £2(C). Put y € A & (y,y) € U. Then A € ITY(C) = TY(C), so for some
yo € C, A = Uy,, which is a contradiction. O

(22.5) Exercise. Show that if X is an uncountable Polish space and A is a
limit ordinal, then

U =4x) (= | mix) = |J a¥dx)) € a%x).
E<A E<A £<H

(22.6) Exercise. Show that if X,Y are Polish and Y is uncountable, then
there exists a Y-universal set for 32(X), and similarly for IT2(X).

(22.7) Exercise. A class I is called self-dual if it is closed nnder complements
(i.e., T = I'). Show that if T', a class of sets in metrizable spaces, is closed
under continuous preimages and is self-dual, then for any X there cannot
be an X-universal set for I'(X). Conclude that the classes Ag(X ) cannot
have X-universal sets.
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(22.8) Exercise. Show that for any uncountable Polish X, X2(X) is not
closed under either complements or countable intersections. Also IT}(X) is
not closed under either complements or countable unions and, for £ > 2 or
¢ = 1 and X zero-dimensional, A?(X ) is not closed under either countable
unions or intersections.

22.B The Borel versus the Wadge Hierarchy

We discuss here the relationship between the Borel and the Wadge hierar-
chies.

If A € XF (resp., IT}) and B <w A, then B € X} (resp., I13). So X
and l'I° are uutla.l segments of <y . We will next see that all the sets m
20 \ l'l° are maxima in <y among all 2 sets (and similarly switching X2

nd Hg)

(22.9) Definition. Let I" be a class of sets in Polish spaces. If Y is a Polish
space, we call A C Y I'-hard if B <w A for any B € I'(X), where X
is a zero-dimensional Polish space. Moreover, if A € I'(Y), we call A T-
complete.

Note that if I' is not self-dual on zero-dimensional Polish spaces and
is closed under continuous preimages, no I'-hard set is in I'. Note also that
if A is [-hard (I'-complete), then ~ A is [-hard (I'-complete). Finally, if
A is T'-hard (I'-complete) and A <y B, then B is I-hard (I'-complete, if
also B € I'). This simple remark is the basis of a very conmon method for
showing that a given set B is I'-hard: Choose an already known I'-hard set
A and show that A <y B.

(22.10) Theorem. (Wadge) Let X be a zero-dimensional Polish space. Then
AC X s 2 -complete iff A is in 2 \l'l Moreover, a Borel set AC X 1s

x2-hard iff zt is not 11 and szmzlarly znterchanging = and ITY.

Proof. If A is $2-hard, it cannot be ITg, since T(A) # IZ(N). If now A
is Borel and A ¢ Hg, Y is zero-dimensional and B C Y is 22, then by
Wadge’s Lemma 21.14, A <w~ B or B <y A. The first alternative fails,
so B <y A. Thus A is Eg-hard. 0

Recall from 21.16 that every clopen (= AY) set A, with @ # A # N,
is AY-complete. We will see in 22.28 that there is no Ag-complete set for
£ > 2. So for N we have the following picture of the Wadge degrees:
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(22.11) Exercise. Show that if £ < 2 and X is an arbitrary Polish space,
then every A C X, A € X\ II{ is X}-complete (similarly, interchanging
=2 and ITY).

It turns out that 22.11 holds (for any Polish space) for any & > 1; see
24.20.

(22.12) Exercise. Let Y be Polish and U be Y-universal for 22(}\1’). Show
that U is £2-complete and similarly for IT?.

(22.13) Exercise. Let X be Polish and let Ag, Ay C X be Borel sets with
AgN A, = 0 and assume there is no 22 set separating Ay, from A,. Let
B C C be any Hg set. Show that for X = C there is a continuous function
f:C — X with f(C) C AgU A, and B = f~}(4,).

Again this holds for any Polish space X and £ > 1; see 24.20. Finally,
26.12 and 28.19 are also relevant here.

22.C Structural Properties

(22.14) Definition. Let I" be a class of sets. We say that I has the separation
property if for any X and A.B € I'(X) with ANB =0, there is C € A(X)
separating A from B.

We say that T' has the generalized separation property if for any se-
quence A, € I'(X) with (), A, = 0 there is a sequence B, € A(X) with
A, C B, and, B, =0.

A class T’ has the reduction property if for any A,B € I'(X) there are
A* B* € I'(X) such that A*C A,B*CB,A*UB*=AUB,A*nB*=0.
(We say then that A*,B* reduce A,B.)

We say that I’ has the generalized reduction property if for any se-
quence A, € I'(X) there is a sequence A}, € I'(X) with A}, C A,, A;NA;, =
0 forn#m andJ, An =, 4}
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Finally, I' has the number uniformization property if for any R C
X xN, R e I'(X x N), there is a uniformization R* C R also in I'(X x N).

Let us note the following simple facts concerning these structural prop-
erties of a class. For convenience, let us call a class I" reasonable if for any
sequence (A,) with A, C X, A, e I'(X) for all n iff A € I'(X x N),
where (z,n) € A & = € A,. Notice that if I', a class of sets in metrizable
spaces, contains all clopen sets and is closed under continuous preimages
and finite unions and intersections, and either I" or I" is closed under count-
able unions, then I' is reasonable. This is because the projection functions
(z,m) — z, (x,m) — m as well as the functions z — (x,n) are continuous,
while if (A,), A are as above, A = |J,, 4= x {n}, ~ A =J,(~ 4xn) x {n}
and A, x {n} = B, NC,, where B, = A, x N= {(z,m) :z € A}, Cn =
X x {n} = {(z,m): m =n}.

In particular, £2 and I0 are reasonable.

(22.15) Proposition. Let I' be a cluss of sets in metrizable spaces.

i) If T has the reduction property, I' has the sepuration property.

it) If T is closed under countable unions and has the generalized reduc-
tion property, I' has the generalized separation property.

1) IfT' is reasonable, then I' has the generulized reduction property iff
I’ has the number uniformization property.

iv) IfT is closed under continuous preimages and there is a C-universal
set for I'(C), then I' cannot have both the reduction and separation proper-
ties.

Proof. i) To separate A, B reduce ~ A,~ B.

i) Let A, € I'(X), N, 4~ = ® and consider C,, = ~ A,. By gen-
eralized reduction let C; € I'(X), C;, C C,, C;NC, = 0ifn #m
and |J,Cr = U,Crn = X. Then {C;} is a partition of X and so
Cp =~ Upsn O thus C; € A(X ), as I is closed under conntable unions.
Now let B,, = ~ C7;. Clearly, A, C B, and (), B, = 0.

iii) Let I have the number uniformization property, 4, € I'(X), and
(z,n) € A& z € A,. Then, since I is reasonable, A € I". Let A* C A be
a uniformization of A that is in I'(X). Set = € A}, & (z,n) € A*. Again,
Ar e I(X) and A;, € Ap, AL N A}, =0if n # m, while |J, 4. = U, 4.
So I" has the generalized reduction property.

For the converse, let A C X xN bein'(X xN). Put z € A, & A(z,n).
Then A, € I'(X) and by the generalized reduction property, let 4}, € I'(X)
satisfy the above properties and put (z,n) € A* & x € A;,. This easily
works as before.

iv) Let i C C xC be C-universal for I'(C). Put (y,z) € U® & ((y)o,z) €
U, (y,z) eU & ((¥)h,x) € U, where (y)o(n) = y(2n), (¥h(n) = y(2n+1).
Then (U°,U) is a universal pair, i.e., if A, B € ['(C) there is y € C such that
"), = A, (U"), = B. By the closure of " under continuous preimages,
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Assume now that I" has both the reduction and separation properties.
Then let ¢4, 0* € T reduce U°, U’ and let V € A separate I{°, . Then it
is easy to check that V is C-universal for A(C), violating 22.7. O

(22.16) Theorem. In metrizable spaces and for any & > 1. the class 22
has the number uniformization property, and thus the generalized reduction
property, but it does not have the separation property. The cluss l’lg has the
generalized separation property but not the reduction. property.

This also holds if £ = 1 for zero-dimensional spaces.

Proof. It is enough to show that Eg has the number uniformization property.

Let R C X x N be in 20 (6 > 1) and write R = {J,cyRi. R; €
l'l“, & < & So xn)GR@EIz(xn)ERz Put Q(z. k) & (z,(k)h) €
R(k)n, where k — ((k)o.(k)1) is a bijection of N with N x N. Let

(k) eQ" o (2,k)eQ&VE<k(x,f) ¢ Q

and finally let (z.n) € R* & 3Ji(z,{i,n)) € Q. Clearly, R* uniformizes R.
Notice now that R* = |, S;, where S; = {(z.n): (z.(i,n)) € @}, s0 it is
enough to show that S; € 20 Since Eg is reasonable, it is enough to check
that for each k, (Q*)* = {x : (z,k) € Q*} is B or, since T is closed
under finite intersections, that @Q*, (~ Q)¥ are in 22. But this is clear, as
each Q¥ is in I} for some 7 < ¢.

For £ = 1 and X zero-dimensional, write R = |J; R; with R; clopen
and repeat the above proof. W

The above result allows to distinguish structurally the classes 7 from
the classes l'[g by the fact that exactly one of them has the number uni-
formization (and reduction) property and the other has the (generalized)
separation property. Then we have the following picture:

=20 1=) (=) =2

m o 1y

where the boxed classes are those that have the number uniformization
property (in zero-dimensional spaces if £ = 1) and the others have the
generalized separation property.

(22.17) Exercise. (Kuratowski) Given any sequence of sets (A,), 4, C X
let
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li—mnAn =n U Am

n m2n

= {x : z belongs to infinitely many A,};

lim, A, =U n Am

n m2n

= {z : belongs to all but finitely many A,}.

It is clear that lim, A,, C lim,, A,. If they are equal, let lim,, A, = lim, A, =
lim, A,.
Show that for £ > 1,

Ais Ag_n s A= li%n A, for some sequence (A,) with A4, € Ag.

This is also true for £ = 1, in zero-dimensional spaces.
Show also that if A is a limit ordinal,

A€ AY,, & A =lim A, for some sequence (A,) with A, € U A,
n
n<A

22.D Additional Results

We will discuss here level-by-level versions of results that we proved for
Borel sets in earlier sections. Additional such results will be given in Sec-
tion 24.

The following is a refinement of results in 13.A.

(22.18) Theorem. (Kuratowski) Let (X,7T) be a Polish space and A,, C X be
AY(X,T). Then there is a Polish topology T' 2 T such that T' C TH(X,T)

and A, € AYNX,T") for all n.

Proof. By 13.3, it is enough to prove this for a single set A € AR(X,T).
The proof is by induction on £ > 1. For £ = 1 take 7' = 7. For § = 2,
both A and ~ A are Gs, so Polish in the relative 7-topology. Put on X
the direct sum 7' of these relative topologies. So U € T if UN A, U\ A
are open in A, ~ A respectively. This is clearly Polish, and A is AY in 7.
Also, T'CA;,XT)CE (X, 7).

Let now £ be a limit ordinal. Then A = |J,, An =), Bn, with A,, B, €
A° (X, T), & < &. Let 7, T, be topologies that work for A,, B, resp.
Let T’ be the topology generated by |J,,(7,U7.). By 13.3 it is Polish and
clearly A € A}(X,T’). Since every set in T, U T, is in (X, T), clearly
T' C X, T).

Flna,lly, let & =
lim, A,, A, € A? (X
and A, € AYX, T ) fo

7+ 1 > 3 be successor. Then, by 22.17, A =
T). Let T* D T be Polish with 7> C Zg(X,T)
or all n (also using 13.3). Then again by 22.17,
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A€ AY(X,T*). Apply now the case { = 2 to (X,7™) to obtain 7" D T*
with A€ AYX,T") and T' C BY(X,T*) C £2,,(X,T) = ZYX,T). O

(22.19) Exercise. Using the notation of 22.18, show that if £ > 1 is successor
and A € A%(X, T), there is a Polish topology 7' 2 T with 7' C A}(X,T)
and A € AY(X,T').

(22.20) Exercise. Using the notation of 22.18, show that if £ > 1 and
A, € AYX,T), there is a Polish topology 7' 2 T such that 7/ C
Eg(X ,T), A, € AYNX,T") for all n, and T’ is zero-dimensional.

The next result refines 13.9,

(22.21) Theorem. Let X be a Polish space and A € TY(X). If§ > 1, then
there is a Lusin scheme (As) ,cn<n such that

i) A, € AYX), if s#D;

i) Ap= A4, Ay = U, Aen

iit) ifx € N and Ayn # 0 for alln, then Ay =), Azpn i a singleton
{z*} and for any z, € Ayjn, zn — 2*.

Moreover, if d is a compatible metric for X. we can make sure that
diam(A,) < 271eneth(s) jf ¢ £ (),

The same result holds for £ = 1 if X is zero-dimensional.

Proof. First assume that X is zero-dimensional and that 4 € £3(X). Write
A=, An, with A, clopen of diameter < 1/2. Put A(,,) = A,. Since A, is
clopen, it is easy to find a Lusin scheme (A7?),cn<n satisfying all the above
properties for A, and ¢ = 1, additionally with diam(A") < 2-lensth(s)-1 for
s #0. Thenforn > 2and s € N*, s = (sp,...,8n-1), let A; = AT

(31 »'-'!37\—1).

Now let £ > 1 and A € E£2(X). Let T be the topology of X. Write
A=, An, with A, € AXX,T) and let 7' be as in 22.20. Let d < d' be
a compatible metric for 7’. Now apply the case £ = 1 to 4 € Z)(X,T")
(and the metric d') to find (A,),en<n, which clearly works, as A X, T’) C
Ag(X ,T). 0

The next exercises provide refinements of results given in Sections 16
and 17,

(22.22) Exercise. (Montgomery) Let X,Y be Polish, A C X xY be 2g and
let U C Y be open. Show that {x : A is non-meager in U} is £2. Show the
same for l'lg if “non-meager” is replaced by “comeager”. (Compare with
16.1.)

(22.23) Exercise. Let G be a Polish group, X a Polish space, and (g,z) —
g.x a continuous action of G on X. Recall the definition of the Vaught



transforms in 16.B. Show that if A is £, so is A2V and that if A is IT,
so is A*U.

(22.24) Exercise. (Vaught) Using the notation of 16.C, define the 2, IT?
formulas of L, as follows: The Y formulas are those of the form V,8,,
where 8, is of the form Jv, - -- 3ui, pn, with p, quantifier-free. The l'lg
formulas are the negations of Zg formulas. The 22 formulas for £ > 1 are
those of the form Vv,8,, where 8, is of the form v, -+ Jug_pn, with p, a
Hgn formula, &, < &.

Prove the following refinement of 16.8: An invariant subset of X is
T2(IIQ) iff it is of the form A, for o a E(IT?) sentence.

(22.25) Exercise. (Montgomery) Let X,Y be Polish spaces. f A C X xY
is‘ 22, then {(p,z,7) € P(Y) x X x [0,1] : p(Az) > r} is 22. (Compare
with 17.25.)

22.F The Difference Hierarchy

We will finally study a method of constructing the class Ag +1 from the
class X2, which leads to the so-called difference hierarchy. (There is also
a corresponding construction and ramification of the classes A9, A limit
from U, » A2 which we will not discuss here.)

Every ordinal @ can be uniquely written as 8 = A + n, where X is limit
or 0 and n < w, We call @ even (resp., odd) if n is even (resp., odd).

Now let (A,),<¢ be an increasing sequence of subsets of a set X with
6 > 1, Define the set Dy((An)p<s) € X by

x € Do((An)n<s) & z € | ] A, & theleast n < 8 withz € 4,
n<é

has parity opposite to that of 8.

So Dy((Ag)) = Ao, D2((Ao, A1) = Ay \ Ao, D3((Ao, A, A2)) = (A2
Al) UAO:--- y Dw((An)n<w) = Un(A2n+l \A2n)a Du+l((An)n5u) = AO U

Un(A2n+2 \ A2n+l) U (Aw \ Un An),. e
For 1 <§,0 < wy, X metrizable, let

Ds(2g)(X) = {Ds((An)n<s) : Ay € TZ(X), n < 6}.

(22.26) Exercise. i) Show that Dg(X?) is closed under continuous preimages
and is reasonable.

ii) Show that if X C Y, then Dy(E2)(X) = Dy(ED(YIX ={AnX:
A€ Dy(Z)(Y)}.
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iii) Show that for each separable metrizable space X, there is a C-
universal set for Dp(E§)(X). Conclude that Da(E2)(X) # Dg(E2)(X), for
any uncountable Polish space X, where Dy( 20) is the dual class of Dy( 20)

iv) Show that for 4, C X, X \ Ds(( ,,),,<9) = Doy1((Ay)n<t” X)
Conclude that Dg(E I Da( ﬁ) - D9+1(2€)

A. Louveau and J. Saint Raymond [1988] have shown that Dy(X2) has
the number uniformization property (in zero-dimensional spaces if £ = 1),
which gives us the following picture

22=) [DuED)| |DA=D) Dy(E9) D,(zd)
(M2=) Dy} D(ZP Dy(2Y) Dy(2)

where 8 < 7, every class is contained in every class to the right of it, and the
boxed classes are exactly those that have the number uniformization prop-
erty and the others have the separation property (again in zero-dimensional
spaces if £ = 1).

We establish now the main result.

(22.27) Theorem. (Hausdorff, Kuratowski) In Polish spaces and for any

IS£<wla
£+1— U Dy( 2

1<0<un

Proof. Clearly, Do(2?) C £2,,, and by 22.26 iv) Dp(E}) C Do41(Z}), so

U1<9<w1 DG(Ee) c A£+1 i
For the other inclusion, we claim that it is enough to prove it for £ = 1:

Let (X,T) be Polish and A € Ag_H(X, T). Then there are A, € Ag(X, 7)),
with A = lim, A,, by 22.17. By 22.18, let 7' 2 7 be a Polish topology
so that A, € AY(X,7’) and T’ C Eg(X,T). Then A € AY(X,T") (by
22.17 again), so A € Dyp(E?)(X,T’) for some @ by the £ = 1 case. Since
(X, T)=T'¢C 2('(X T), clearly A € Dg(EO)(X 7).

Consequently, we only have to prove that A C Us Do =9).

It will be actually convenient to work w1th decreasing sequences of
closed sets as opposed to mcxeasmg sequences of open sets. It is easy to
verify that the sets in | J, Dp(X?) are exactly those of the form

A=U('FU\H’J)
n<@
for some & < wy, where Fp 2 Ho 2 F, 2 H, 2 --- D F, 2

H, 2 --- are closed sets. To see this note that any set of that form
is equal to Dg-((A¢)eco+), Where 6* = A + 2n if & = X + n, and
Apesak = ~ Foeqk, Aves2esr = ~ Hogyr are open. Conversely, if
A = Dy«((Ay)n<o+), where by 22.26 iv) we can assume that 6* = A + 2n



22. The Borel Hierarchy 177

is even, and we define F,, H, for n <6 = A 4+ n by the previous formulas,

then A = U, o(F, \ Hy).
Now let X be Polish, and A C X and F C X be closed. Put

Or(A)=(ANF) n (~ANF)
= the boundary of AN F in F.

Define by transfinite recursion

FO = X:
Foq1 = 0F,(A),
Fy= (] F, if Xis limit.
n<A

This is a decreasing sequence of closed sets, so let # < w, be least such that
Fo = F9+1.

Claim. If A € AY, then Fy = 0.

Proof. Note that if Z is nonempty Polish and C C Z is AY, then the
boundary of C cannot be equal to Z, since otherwise both C and ~ C
would be dense G4 sets.

If now Fy # @, Fy is Polish nonempty and A N Fy is AJ(Fp). Also
Or,(A) = boundary of AN Fy in Fy, and Op,(A) = Fyyy = Fy, which is a
contradiction.

NowletH —(~A)ﬂF ifn <@. ThllSFoDHoDFlDHl -2
F,2H,2- Fmally, we claim that if A € A, then A = U, o(F, \H,,)
If £ € A, let 7 be such that x € F;,\ F,y,. If x € H,, then z €
(~A)NF, Nn (AN F,) C F,41, which is a contradiction. So z € F,)\ H,,.
Conversely, if z € F,, \ H, for some n, but £ ¢ A, thenz € (~ A)NF, C
(~ A)N F, = H,, a contradiction. 0

(22.28) Exercise. Show that for any £ > 2 there is no Ag-complete set.

(22.29) Exercise. Show that | J
containing the X7 sets.

n(X2) is the smallest Boolean algebra

n<w

(22.30) Exercise. Let X be Polish and A, B C X be such that AN B = 0.
Define for any closed set F C X,

Or(A,B)=ANFNBNF.

Use 9r and the argument in 22.27, to show that if there is no A9 set
separating A from B, there is a Cantor set C C X with ANC, BNC dense
in C (and the converse is also trivially true).
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Use this also to show directly that any two disjoint G5 sets A, B can
be separated by a set in | J, . Dg(29) (which also follows from 22.16 and
22.27).

(22.31) Exercise. Let (A,)y<6, (By)n<s, Where § < wy, be two transfinite
sequences of subsets of a set X. For z € | J, .y Ay, let pa(x) = least n(z €
A,) and for z ¢ U, o Ay let pa(z) = w. Slmllarly define up. Put

DB((An)n<9v (Bn)n<s) = {z:pa(r) < p(x)}.

(Thus if 2 € De((Ay)n<e, (By)y<s), then z € |, o Ay.) For 6 = A +n, let
6* = A+2n. Define C,,, n < 8%, recursively, by C/ = er\’ AgU Ugn BeU
By, Cyizk = Cag2k~1 U Byt and Cyyzk-1 = Cxngzk=2 U Ay k-1
if ' < A is limit or 0 and k > 0. Show that Dy((A,).<or(B,),<s) =
Dyg- ((Cn)n<9‘) and

U D0(22)= U {D9((An)'?<9v(Bn)n<9) A"T’B GZ}

1<0<w 1<0<w;
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23. Some Examples

23.A Combinatorial Examples

Recall from 22.11 that any 29 \ IT3 set is £9-complete and similarly inter-
changing X3, ITJ. It follows that if X is a perfect Polish space and Q C X
is countable dense, then Q is £3-complete and its complement N = X\ Q
is IT13-complete.

(23.1) Exercise. Prove directly that any countable dense Q C C is X3-

complete, by showing that player II has a winning strategy in the Wadge
game WG(A, Q) for any A € ZY(N).

Let us abbreviate as follows:
v*nP(n) & {n € N: P(n)} is cofinite,
3*°nP(n) & {n € N: P(n)} is infinite.

Then it follows from the above that the sets

Q: = {z € C ¥°n(z(n) = 0)},
Nz ={z € C:3%n(z(n) = 0)},
Ny ={zeC:3n(z(n) =0) &

™n(z(n) = 1)},

are respectively £3-. IT3-, I13-complete.
Now let

Py = {z € 2N vmv>n(z(m, n) = 0)}.

(This is the set of all NxN (-1 matrices, every row of which is eventually 0.)
We claim that it is II3-complete. Indeed, let X be Polish zero-dimensional
and A C X be IT3. Then A =, Am, with 4,, € Z3(X). Let fi. : X = C
be continuous such that x € A,, & fn(2) € Q2. Define f: X — 2NN by
f(x)(m,n) = fm(z)(n). Then f is continuous and = € A & Vm(fm(z) €
Qz2) & f(z) € Ps.

It follows that the set

Sy = {z € 2N : I3n3®n(z(m,n) = 0)}

is £3-complete.

Below one should keep in mind the remarks following 22.9: One method
for showing that a given set A in some class I is I'-complete is to choose
judiciously an already known I'-complete set B and reduce it continuously
to A (i.e., show B <w A).

(23.2) Exercise. Show that the set
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Cs = {z € NN : limz(n) = o0}
n

is IT3-complete, and thus the set
D3 = {z € NN : lim,,z(n) < 0}
is $9-complete. Show also that the set
P; = {z € 2N 3*myn(z(m, n) = 0)}
is TI3-complete, and thus the set
83 = {z € 2VN . y®mIn(z(m,n) = 0)}

is £3-complete.

(23.3) Exercise. For each £ < w), show that if the set A C C is Z3-complete,
then the set A’ = {z € 2¥N : vm(z,, € A)} is I12, ,-complete, where
ZTm(n) = z(m,n). More generally, show that if the sets A, C X, are 22-

complete, where X, are Polish spaces, then [],, An C [],X» is l'[g e
complete.

(23.4) Exercise. We saw in 9.7 that every ideal on N which is ITI$ (in 2V) is
actually TI? and the Fréchet ideal is £9 but not II3 and so 3-complete.
Show that for every £ > 3 there is an ideal Z on N which is Eg-complete,

and similarly for IT3.

(23.5) Exercise. For each ¥ C Pow(N), define the Hausdorff operation
FnA, on sequences {A,) of subsets of a set X by

FrAn={z:{n:z€ A} € F}.

For example, if F = {N}, FoApn = ), An; if F = {A C N: A #
0}, Fudn = U, An; if F = {4 C N: A is cofinite}, F,An = lim, Ay;
and if F = {4 C N: A is infinite}, F,,An = lim,A,. Usually F is mono-
tone (i.e., A € F & B2 A= B € F), but this is not required in the above
definition.

For any class I" of sets in metrizable spaces, let
FT = {FoA, : A, € [(X), X metrizable}.

Also let
v = {A C N: Ais cofinite},

3*° = {A C N: Aisinfinite}.
i) Show that if X is separable metrizable, then for any £ > 1,
FI(X) = Ig,5(X),
VX)) = B2,.(X).
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ii) For each metrizable space X, show that
B(X) = | {F=(X) : F Borel }.
Show that for £ > 1 there is Borel F; such that

DUX) = FZHX).

(23.6) Exercise. Consider the sets

Py = {z € 2N . 3%;,3%0 (2(m, n) = 0)},
S, = {z € 2V N . v®°my>®n(z(m,n) = 0)}.

Show that they are respectively IT}-, $9-complete.

(23.7) Exercise. (Ki-Linton) i) For a subset A C N we say that A has density
z if lim, wd(*‘“{" 2= = . Show that {4 C N : A has density 0} in
I1-complete (in 2¥).

ii) Show that the set of normal (in base 2) numbers (see Example 1 in
11.B) is IT3-complete.

23.B Classes of Compact Sets

(23.8) Exercise. Let X be a perfect Polish space. Show that the set
KiX) = {K € K(X) : K finite} is £3-complete (and so Ko(X) ={K €
K(X).: K infinite} is I13-complete). Show that for each n, {K € K(X):
card(K) = n} is in D2(X}), but not in 9 or ITY.

(23.9) Exercise. i) Let X be a perfect compact metrizable space. Show that
the set {K € K(X) : K is meager (i.e., nowhere dense)} is I13-complete.

ii) Let X be compact metrizable. Show that if u € P(X) is continuous,
then {K € K(X) : u(K) = 0} is II3-complete.

(23.10) Exercise. The following class of closed subsets of T is of interest in
harmonic analysis:
H = {K € K(T) : 3 an open interval (arc) I in T
Ing < ny <np <---Voe KVi(nix ¢ 1)},
where if z = ¢ € T, then nz = €. For example, show that K = {e® :

6/2m € E\ 3} is in H, where E, /3 is the Cantor set (see 3.4). Show that H
is =Y. (T. Linton [1994] has shown that H is actually £3-complete.)
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The Cantor-Bendixson analysis of closed sets provides examples of
classes of compact sets occupying higher levels of the Borel hierarchy. Con-
sider K(C), and recall 6.12 and the notation introduced in the comments
following it. For a < wy, let

K.(C) = {K € K(C): |K|zp < a)
={K e K({C): K*=0)}.

D. Cenzer and R. D. Mauldin [1983] have shown that K, is X9,,-complete
if n < w, and that Ky, is £%,,-complete if A is limit and n < w.

Let AR, = {K € K(R"): K is an AR (absolute retract)} and
ANR, = {K € K(R"): K is an ANR (absolute nbhd retract)}. (See
J. van Mill [1989] for these basic topological concepts.) It was shown in
R. Cauty, T. Dobrowolski, H. Gladdines and J. van Mill [1997] that AR,
is II3-complete and ANR; is Dy (E3)-complete, while T. Dobrowolski and
L. R. Rubin [1997] prove that AR,, ANR,, are I1}-complete for n > 3. (For
n = 1 these classes are £3.)

23.C Sequence Spaces

(23.11) Exercise. Consider the Hilbert cube IN. For 0 < p < oo let
L, = {(zn) €M : (z,,) € P}.
Also let N
Co = {{zn) €I" : (z,) € ¢ (i€, zs, — O)},
C = {(zn) € IV : (x,) converges}.

Show that L, is £9-complete and that Cy,C are II3-complete. Show, in
fact, that there is no X3 set S with Co C S C C.

(23.12) Exercise. (Becker) A sequence () in ¢ converges weakly to = € ¢g
if (zp,2*) — (x,2*) for any z* € (¢o)* = €' (i.e., (||zn]|) is bounded and
Tn (i) — z(i) for each i). Let X = B){cp) be the unit ball of ¢y. Show that
the set

W = {(z,) € XN : (z,) is weakly convergent in co}

is I19-complete.

23.D Classes of Continuous Functions

A function f € C(T) is in C*°(T) if it is infinitely differentiable (viewed as

a 2m-periodic function on R). It is analytic if it can be expressed as a power
oo
ornvine N a (o o AT v mrn mrmer A AR acravrer metvd . XA Aariates tha
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class of such functions by AN(T). Finally, we denote by C™(T) the class of
n-times continuously differentiable functions.

It is known froin Fourier analysis (see Y. Katznelson [1976]) that for
f e C(T),

f € C=(T) & VkIMVn € Z(|f(n)| < M|n|™%),

i.e., the Fourier coefficients (f(n))ncz, Where f(n) = + 02" f(t)e~intdt,
converge to 0 “faster than polynomially”. It is also known that for f € C(T)

f € AN(T) & 3IM3a > 0Vn € Z(| f(n)| < Me™™),

i.e., (f(n)) converges to 0 “exponentially”,

(23.13) Exercise. Show that C™(T), C°°(T) are all IT3 and that AN(T) is
>9-complete.

(23.14) Theorem. The sets C*(T),C=(T) are I13-complete.

Proof. We prove the result for C*°(T). The proof for C*(T) is similar and
can be left as an exercise.
We will need the following simple lemma.

(23.15) Lemma. For any closed interval I CR, anye > 0 and any k > 1
there is a C°°-function in I which is 0 in open nbhds of the endpoints of I
and || f9)|oo = €.

Proof. Say I = [a,b]. Pick a < ¢ < d < b. Let g(x) = e~ 1/(e=9) . g=1/(z=d)*
when z € (c,d), and g(z) = 0, in [a, b]\ (c,d). Then g € C=. Let ||g®|| = 6.
Put f = (¢/8)g. D

Consider the IT3-complete set P; given in 23.A. We will construct a
continuous function  — f; from 2¥*N into C(T) and show that z € P; &
fz.€ C=(T).

Start with the interval I = [0,2n] and split it into the subintervals
Io, Iy, ... as in Figure 23.1.

0 [0 I 1'2 I 2z
® P 9— -0—8—@

FIGURE 23.1.

Thus |I,| = 2r - 2~ (]I| = length of J). Split each also I,, into subin-
tervals I, In1,... by the same subdivision process, so that |I ;| =
|I.| - 2=¢¥+1), By the lemma, let frx be a C™-function that is non-zero
only in an open concentric interval properly contained in the interior of
I-n,’k, and

Y S -
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For z € 2N*N et
fe= ch(n, k) fn k-
n.k
Since || fn.klloc € |Ink|. this is a uniformly convergent series, so fr € C(T)
(by extending f, with 2n-periodicity to R; note that f,(0) = fr(27) = 0).
It is easy also to check that z — f, is continuous (from 2¥*N into C(T)):
Given € > 0, choose N so that 3 -y, || fakllc < €/2 and then K such
that 3, v sk |l faklloo < €/2. Thenif 2(p, q) = y(p,q) forp < N, ¢ < K,
we have || fu = fylloc < €.

First let x € P3. Clearly, fr € C(T) and f;(0) = f.(27x) = 0. Assume
inductively that fi™ exists and f;s-n) 0= fg(cn) (2m) = 0. Clearly, i’”l)(y)
exists for y € (0,2n). Also, the right derivative of fén) at 0 is 0. It is then
enough to show that the left derivative of f;f-n) at 27 is also 0. Let a € Iy,
where ¢ > n. Then

160 = £ @m) | _ IRl
a- 2 = o-(t+1) —
£+1
W Moo 272

9—-(€+1) = 9—(£+1) — 0, as £ — co.
So fi"V(2x) = 0.
If now z ¢ P3, let n be such that for infinitely many k&, x(n,k) = 1.
. (n+1) (n+1) _ o(n+1) . o - _
Consider f; . Clearly, fz = fax  In the interior of I, i if z(n, k) =
1. So, for each k with z(n, k) = 1, pick ax, by € I,, x with

| £ (g)] = 272, fint(hy) = 0.

This shows that f; {n+1) cannot be continuous at the right endpoint of I,
so fp & C*(T). 0

Of course it is well known that AN(T) & C*(T), but the preceding
fact shows that there is an interesting “definability” distinction between
the classes.

It is also known (again see Y. Katznelson [1976]) that if f € C(T)

and ¥ |n|P|f(n)] < oo, then f € CP(T), while if f € CP(T), then
neL

f(n) € O(|n|~?). Notice that conditions of this form cannot exactly char-
acterize CP(T), since otherwise they would give XY definitions of C?(T).
So, for example, there exists f € C(T) with f(n) € O(|n|~?), but for which
f ¢ CP(T) (while on the other hand, for such f, f € CP~%(T)). This is an
analysis result proved by definability methods. It is a typical use of clas-
sification results to prove existence theorems: If A C B are sets and A, B
have different “definable complexity”, then A G B in particular, i.e., there
exists an element of B that is not in A.
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23.F Uniformly Convergent Sequences

Let X be a separable Banach space and let
UCx = {(zn) € X" : (xn) converges (in X)}.

23.16) Exercise. Show that UCx C XM is II3-complete. In particu-
3

lar, for X = C(T) show that UC = UCgm = {(fn) € C(TN :
(fn) converges uniformly} is TI3-complete. Show also that UCy = {(f») €
C(T)N : f, — 0 uniformly} is T13-complete.

o0 ~ .
For f € C(T),let 5 f(n)e*"* be its Fourier series. We denote by

n=—o0

N . :
Sn(f) its partial sums: Sy (f)(x) = > f(n)e*, N=0,1,2,.... Wesay

n=—N

o0 - .
that > f(n)e'"* converges (uniformly) iff the sequence of partial sums
n=-oo

(Sn(f)) converges (uniformly). Now let
m ~ ,
UCF = {f e C(T): Z f(n)e*™* converges uniformly}
n=—0o0
be the class of functions with uniformly convergent Fourier series. (Note

that if f € UCF, ¥ f(n)ei™® = f(x) uniformly.)

(23.17) Exercise. Show that UCF is ITJ. (Ki has shown that it is IT3-
complete.)

23.F Some Universal Sets

Let X be a Polish space and f = (fn) a sequence of continuous functions
frn: X = R. Let

Cr={z € X: (fu(z)) converges}.

(23.18) Theorem. (Hahn) Let X be Polish. A subset A C X is IT3 iff it is of

the form Cf for some sequence of continuous functions f = (fn), f:X —
R.
In particular, if X is compact, the set

U= {(f,z) € C(X)N x X : (fn(x)) converges}

is C(X)N-universal for TIY(X).
Proof. If f,: X — R, then
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(fn(z)) converges & VmINVk, € > N(|fi(z) — fe(z)l £ 1/(m + 1)),

so Cris IT3, and if X is compact metrizable, U is IT} since the map (f, ) €
C(X) x X — f(x) € R is continuous.

It remains to show that if A C X is IT, then A = C for some f.

We claim first that it is enough to show that if A C X is X9, then

there exists a sequence f, : X — [—1,1] of continuous functions such that
A = Cy and moreover fu(z) — 0, ¥z € A. Indeed, if A is a I13 set and

A =, Am with Ap € 52, let (f™)aen work as above for A, with
NA™|loo < 1/(m + 1). Rewrite (f™)m.n as a single sequence (f;)ien.
Clearly, fi(z) — 0 for all z € A, since for each ¢ > 0, | f,(tm)(a:)| < € for
all but finitely many m, and for these m, |f\™(z)| < € for all but finitely
many n. On the other hand, if z ¢ A, so that = ¢ A,, for some m, then
( f,(zm)(ac)) diverges as 1 — 00, so ( fi(z)) diverges too.

So it is enough to prove the above fact about X9 sets. For that we use
a basic result about semicontinuous functions.

Recall that an extended real-valued function f : X — [—00, 00| is lower
semicontinuous if for each a € R, {z : a < f(z)} is open. Then we have:

(23.19) Theorem. Let X be a metrizable space. Let f : X — [—o00,00] be
bounded from below. Then f is lower semicontinuous iff there is an increas-
ing sequence fo < L £ fo £ -+ of continuous functions f : X — R such
that f(z) = sup,, fu(x).

Proof. If f is the sup of an increasing sequence of continuous functions, it
is clearly lower semicontinuous.

For the converse, we can assume that f is not identically oo, since
otherwise we can take f, = n. Let d be a compatible metric for X. Put

fo(z) = inf{f(y) + nd(z.y): y € X}.

Then fo : X — R and fu(2) < fara(2) < £(z). Also, |fa(2) — fa(y)] <
nd(z,y), so f, is continuous. We will now show that f,(z) — f(z). Fix e >
0. For all n, let y, € X be such that f(y.) < f(ya) +nd(z,yn) < fulz) +e.
If M is a lower bound for f. then d(z,y,) < M’E)—H“_—M If fo(z) — o0,
then f(z) = oo and we are done. So we can assume that (f,(z)) is bounded
and thus that y, — z. By the lower semicontinuity of f, f(z) < lim,, f(¥n)-
Thus f(z) < lim,, f(ys) < lim,,(fr(z)+€) = lim, fno(£)+e, ie., im, fu(z) =
f(z). 0

Say now A € £, A= ,,5, Fn, with F,, closed and F, C F> C ---.
Consider the function f : X — [—o0, 00| given by

f(z)=1on Fy; f(z)=non F,\ Fhe) forn > 2; f(z) =coon ~ A.
Then for a € R,
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{z:flx)>a}=Xifa<];
{z: f(z)>a}=~F,ifn<a<n+1l,n>1

So f is lower semicontinuous. By 23.19, let ¢,, : X — R be continuous with
@1 S @2 < -+ and supnpn(z) = f(z).

For any two real-valued functions f, g let f A g(z) = min{f(z), ¢(z)},
fvg(z) = max{f(z),g9(z)}. Clearly, if f, g are continuous, so are fVg, fAg.

By replacing ¢, above by (¢, V 1) A n, we can assume also that 1 <
¢n < n. Finally, since ¢, 11 — ¢, < n, we can interpolate between ¢,,, ¢, +1
the functions ¢,, + %((pn“ —n) for k=0,...,2n, sothat by renumbering
we can assume that 1 = ¢y < 1 < --- and @p41 — @, < 1/2. Finally put

fn(z) = sin(mpa(z)).

Then f, : X — [-1,1] is continuous and f,(z) — 0 for z € A, as @, (x)
converges to an integer. On the other hand if = ¢ A, then ¢,(2) — o
and since @, 41(z) — pa(z) < 1/2, for each k there is at least one n with
wa(z) € [k + 1/4,k + 3/4], so (=1)* sin(mpn(z)) > sin(r/4) and (f.(z))
diverges. 0

(23.20) Exercise. Show that 23.18 remains valid if Cj, U are respectively
replaced by C% = {z : fu(z) — 0} and U° = {( £.2): fo(z) — 0).

(23.21) Exercise. Show that for X compact metrizable the set
U={(f,z) e c(X)N x X : inf, f.(z) > 0}
is C(X)N-universal for Y(X).

(23.22) Exercise. Prove the following uniform version of 23.18: Let X,Y be
compact metrizable. Show that for any A C Y x X, A € I, there is a

continuous function F: ¥ — C(X)N such that Ay = Cgy-

Consider now f € C([0,1]). Let
Dy = {z € [0,1] : f'(z) exists}.

(At endpoints we consider one-sided derivatives.)

Zahorski (see, e.g., A. Bruckner [1978], p. 228) has shown that the sets
of the